Statistics for Astronomers
 Final Exam (09:00 Thursday, 2019.05.30 - 17:00 Friday, 2019.05.31)

Prof. Sundar Srinivasan

Instructions:

- You are free to use the course notes and solutions, as well as any online material. I only require that you cite your sources for such materials if any.
- Some scripts from your homework submissions will be useful for this exam. You're welcome to paste/import them into code for the exam.
- As usual, submit your scripts/plots electronically and submit any written material in person before the deadline.
- Most importantly, don't panic. Email me if you have any doubts. I'll also be in the office all day Friday.

Questions

1. A company has announced that some bottles of its flagship soft drink, Ískaldur, have a code printed on them that entitles the bearer to an all-expenses paid trip to Iceland. The probability that any bottle is a "winner" is $1 / N$. You purchase N bottles of Ískaldur.
(a) ($\mathbf{2}$ points) What is the probability that at least one of the bottles you purchased has a winning coupon code?
(b) (1 point) What is the value of this probability as $N \rightarrow \infty$?
2. (a) (3 points) If $u \sim U(0,1)$ and $t=u^{\alpha}$, then what is the pdf of t ?
(b) (2 points) Using the above result, how would you use uniform random numbers to draw from the distribution $p_{T}(t)=\frac{1}{3} t^{-2 / 3}$, with $0<t \leq 1$?
3. In this problem, you will compute a power-law relation for the excess flux at $8 \mu \mathrm{~m}$ for LMC C-rich AGB stars as a function of their luminosity. The data required for this problem can be downloaded here. Given the luminosity L in solar luminosities and the $8 \mu \mathrm{~m}$ excess flux F_{8} in Jy, you have to find parameters (α, β) such that

$$
\begin{equation*}
F_{8}=\alpha L^{\beta} . \tag{1}
\end{equation*}
$$

Assume that the uncertainties associated with L and F_{8} are independent, uncorrelated, and normally distributed.

It will help to visualise the data on a log-log plot before you answer the questions that follow.
(a) (3 points) Is Equation 1 linear in the parameters (α, β) ? If not, define new variables (x, y) and parameters (a, b) such that you transform Equation 1 into the equation for a line.
(b) (3 points) Propagate the uncertainties in $\left(L, F_{8}\right)$ to the uncertainties in (x, y). You can use the linear approximation of the Taylor Series (i.e, just use the first derivative).
(c) (1 point) Using the (x, y) values and the uncertainty s_{y} you obtained from the previous parts, fit a straight line using the method described in Section 1 of Hogg et al. (2010). What are the intercept and the slope?
(d) (1 point) Based on the resulting covariance matrix for the parameters, what are the uncertainties in the parameters?
(e) (2 points) What is the correlation coefficient between the uncertainties in the intercept and the slope?
(f) (2 points) Compute the reduced χ^{2} using the (x, y) values, the uncertainty s_{y}, and the best-fit intercept and slope. Is the value very different from unity? If so, what do you think it is the reason?
(g) (1 point) Based on the discussion in Section 4 of Hogg et al., are the parameter uncertainties computed in Question 3d realistic? Why/why not?
(h) (5 points) Use $B=100$ bootstrap resamples to estimate the standard deviations for the intercept and the slope. Caution: this is a time-consuming step, so make sure this part of the code runs independent of the rest.
4. Sections 7 and 8 in Hogg et al. describe one method to fit a line that incorporates uncertainties along both axes as well as intrinsic scatter. In this method, we transform the intercept and the slope into parameters θ (the angle subtended by the line at the X-axis) and b_{\perp} (the perpendicular distance of this line from the origin). An additional parameter V accounts for intrinsic scatter orthogonal to the line (V is the variance of the orthogonal intrinsic scatter).

Download orthofit.py. This code performs maximum likelihood estimation using Equation (35) in Hogg et al. to derive the best-fit values for θ, b_{\perp}, and V.

In order to perform the fitting, the code requires the data (x, y) and the uncertainties $\left(s_{x}, s_{y}\right)$. It also requires an initial guess vector for the parameters θ, b_{\perp}, and V. The code then outputs the best-fit values for b, m (transforming back from θ, b_{\perp}), and V.
(a) (1 point) Use the best-fit intercept and slope computed in Question 3c to derive initial guesses for θ and b_{\perp}.
(b) ($\mathbf{2}$ points) In Question 3f the reduced χ^{2} was computed assuming that the covariance matrix only had contributions from s_{y}. Suppose instead that the covariance matrix was of the form Sigma $=$ np.diag(s_x**2 + s-y**2 + invar),
where invar is a number less than 1. From trial-and-error, find any one value of invar for which the reduced χ^{2} is close to 1 (remember, the number of parameters has increased by 1 because of invar). Use this value of invar as the initial guess for V.
(c) (4 points) Execute orthofit.py. It outputs the best-fit intercept, slope, and intrinsic variance. Plot the data onto a figure and overlay a line generated from the (intercept, slope) pair computed in this question, and compare it to a line generated from the pair computed in Question 3c.
(d) (2 points) In the above, we started with a likelihood defined for three parameters (the intercept and slope defined through θ and b_{\perp}, and the intrinsic variance orthogonal to the best-fit line) and maximised it. In your own words, explain how you would proceed if, instead of the above procedure, you decided to "go Bayesian".

