
Statistics for Astronomers

Final Exam (09:00 Thursday, 2019.05.30 – 17:00 Friday, 2019.05.31)

Prof. Sundar Srinivasan

Instructions:
– You are free to use the course notes and solutions, as well as any online material. I only require that you
cite your sources for such materials if any.
– Some scripts from your homework submissions will be useful for this exam. You’re welcome to paste/import
them into code for the exam.
– As usual, submit your scripts/plots electronically and submit any written material in person before the
deadline.
– Most importantly, don’t panic. Email me if you have any doubts. I’ll also be in the office all day Friday.

Questions

1. A company has announced that some bottles of its flagship soft drink, Ískaldur, have a code printed
on them that entitles the bearer to an all-expenses paid trip to Iceland. The probability that any
bottle is a “winner” is 1/N . You purchase N bottles of Ískaldur.

(a) (2 points) What is the probability that at least one of the bottles you purchased has a winning
coupon code?

(b) (1 point) What is the value of this probability as N →∞?

2. (a) (3 points) If u ∼ U(0, 1) and t = uα, then what is the pdf of t?

(b) (2 points) Using the above result, how would you use uniform random numbers to draw from
the distribution pT (t) = 1

3 t
−2/3, with 0 < t ≤ 1?

3. In this problem, you will compute a power-law relation for the excess flux at 8 µm for LMC C-rich
AGB stars as a function of their luminosity. The data required for this problem can be downloaded
here. Given the luminosity L in solar luminosities and the 8 µm excess flux F8 in Jy, you have to
find parameters (α, β) such that

F8 = αLβ. (1)

Assume that the uncertainties associated with L and F8 are independent, uncorrelated, and normally
distributed.

It will help to visualise the data on a log-log plot before you answer the questions that follow.

(a) (3 points) Is Equation 1 linear in the parameters (α, β)? If not, define new variables (x, y) and
parameters (a, b) such that you transform Equation 1 into the equation for a line.

(b) (3 points) Propagate the uncertainties in (L,F8) to the uncertainties in (x, y). You can use the
linear approximation of the Taylor Series (i.e, just use the first derivative).
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http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics/python/datasets/Srinivasanetal2009_Crich_8micron_excess.csv


(c) (1 point) Using the (x, y) values and the uncertainty sy you obtained from the previous parts,
fit a straight line using the method described in Section 1 of Hogg et al. (2010). What are the
intercept and the slope?

(d) (1 point) Based on the resulting covariance matrix for the parameters, what are the uncertain-
ties in the parameters?

(e) (2 points) What is the correlation coefficient between the uncertainties in the intercept and
the slope?

(f) (2 points) Compute the reduced χ2 using the (x, y) values, the uncertainty sy, and the best-fit
intercept and slope. Is the value very different from unity? If so, what do you think it is the
reason?

(g) (1 point) Based on the discussion in Section 4 of Hogg et al., are the parameter uncertainties
computed in Question 3d realistic? Why/why not?

(h) (5 points) Use B = 100 bootstrap resamples to estimate the standard deviations for the
intercept and the slope. Caution: this is a time-consuming step, so make sure this
part of the code runs independent of the rest.

4. Sections 7 and 8 in Hogg et al. describe one method to fit a line that incorporates uncertainties along
both axes as well as intrinsic scatter. In this method, we transform the intercept and the slope into
parameters θ (the angle subtended by the line at the X-axis) and b⊥ (the perpendicular distance of
this line from the origin). An additional parameter V accounts for intrinsic scatter orthogonal to
the line (V is the variance of the orthogonal intrinsic scatter).

Download orthofit.py. This code performs maximum likelihood estimation using Equation (35) in
Hogg et al. to derive the best-fit values for θ, b⊥, and V .

In order to perform the fitting, the code requires the data (x, y) and the uncertainties (sx, sy). It also
requires an initial guess vector for the parameters θ, b⊥, and V . The code then outputs the best-fit
values for b,m (transforming back from θ, b⊥), and V .

(a) (1 point) Use the best-fit intercept and slope computed in Question 3c to derive initial guesses
for θ and b⊥.

(b) (2 points) In Question 3f, the reduced χ2 was computed assuming that the covariance matrix
only had contributions from sy. Suppose instead that the covariance matrix was of the form
Sigma = np.diag(s x**2 + s y**2 + invar),
where invar is a number less than 1. From trial-and-error, find any one value of invar for
which the reduced χ2 is close to 1 (remember, the number of parameters has increased by 1
because of invar). Use this value of invar as the initial guess for V .

(c) (4 points) Execute orthofit.py. It outputs the best-fit intercept, slope, and intrinsic variance.
Plot the data onto a figure and overlay a line generated from the (intercept, slope) pair computed
in this question, and compare it to a line generated from the pair computed in Question 3c.

(d) (2 points) In the above, we started with a likelihood defined for three parameters (the intercept
and slope defined through θ and b⊥, and the intrinsic variance orthogonal to the best-fit line)
and maximised it. In your own words, explain how you would proceed if, instead of the above
procedure, you decided to “go Bayesian”.
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http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics/python/orthofit.py

