Statistics for Astronomers Homework #5 (Due before 5:00 PM on Monday, 2019.04.29)

Prof. Sundar Srinivasan

April 21, 2019

1. (5 points)

You toss a coin N times, obtaining k heads. Unsure about whether the coin is fair, you assume that the probability of obtaining a head, θ , is Beta (α, β) , with $\alpha, \beta > 0$.

- (a) What is the prior mean of θ ?
- (b) What is the posterior probability distribution of θ ?
- (c) What is the posterior mean of θ ?
- (d) What is the effective sample size?

2. (5 points)

Suppose we draw N random deviates X_i $(i = 1, \dots, N)$ from a normal distribution with known population standard deviation σ .

- (a) Derive the Jeffreys prior for μ .
- (b) Use the prior you just computed to find the posterior probability distribution for μ in terms of the data values x_i , N, and σ .

3. (7 points)

- (a) Develop a script to compute the highest posterior density (HPD) interval using the algorithm discussed in Lecture 14.
- (b) Use this script to compute the HPD interval for the source counts example discussed during the same lecture.

4. (10 points)

N = 4 random deviates X_i $(i = 1, \dots, N)$ are drawn from a Poisson distribution with unknown rate parameter λ , resulting in a sample mean of $\bar{X} = 0.5$.

- (a) Compute the Jeffreys prior for λ . Is it an improper prior?
- (b) Compute the posterior probability distribution for λ , normalise it, and find the mode, mean, and variance.
- (c) Compute the HPD interval for the posterior using the script from part (3a).
- (d) Discuss how the results to parts (4b) and (4c) would change if N = 40.