

Statistics for Astronomers: Lecture 01, 2019.02.07

Prof. Sundar Srinivasan

IRyA/UNAM

\%

Probability Theory and Statistical Inference ${ }^{1}$

- Given a data-generating process, what are the properties of the outcomes?

Probability theory.

- Given the outcome of an observation/experiment, what can be said about the process(es) that generated the data? Statistical inference.

Why Must Astronomers Care About Probability? ${ }^{2}$

Probability quantifies uncertainty

"Uncertain knowledge + Knowledge of the amount of uncertainty in it = Usable knowledge."

- C. R. Rao (1997)
- Astronomers have little to no control over their "test subjects".
- Experiments observe events with uncertain outcomes, and are affected by random error as well as uncertainty due to small samples.
- Typically either costly to repeat observations, or there are physical/instrumental constraints (e.g., resolution, weather).
- Can provide quantitative information about whether our measured interval captures the "true" value of a quantity. Can also quantitatively compare properties of two different samples.
- Uncertainty due to ignorance of the underlying physical processes could be reduced using past experience (e.g., "updating priors").
- Predicting exact behaviour of individual members of a class difficult, but easier to describe the class as a whole with some confidence.
e.g.: stellar populations, globular clusters, kinetic theory of gases, radioactive decay, mortality, prevalence of a disease, the science of psychohistory in the Foundation series by Isaac Asimov.

Why Must Astronomers Care About Statistics? ${ }^{3}$

A relevant definition of statistics

" $[T]$ he theory and methods of collecting, organizing, presenting, analyzing, and interpreting data sets so as to determine their essential characteristics."

- Panik (2005)
- Statistics: what to compute.

Informatics: how to compute.

- Data-driven vs. hypothesis-driven science.
- Most data will never be seen by humans (already the case).
- Patterns in (multidimensional) data cannot be comprehended by humans directly.
- Why you should care: Jobs! Jobs! Jobs! Data science! Big data! LSST! SKA! Flatiron Institute!

Review: Sets

Universal set U, Ω
Null set \varnothing
Operations on sets: Complement, "Addition", "Difference", Union, Intersection.

Review: Sets (contd.)

For the following, let $U=$ the set of natural numbers, $A=\{1,2,3,4\}$, and $B=\{2,4,5,6\}$:

- Complement: A^{c} or $\neg A=\{x \mid x \notin A\}$
e.g., $A^{c}=\{5,6,7,8, \ldots\}$ (all natural numbers except 1, 2, 3, and 4).
- Addition ("inclusive OR"): $A+B=\{x \mid x \in A \vee x \in B\}$ e.g., $A+B=\{1,2,2,3,4,4,5,6\}$
- Union ("exclusive OR"): $A \cup B=\{x \mid x \in A \underline{\vee} x \in B\}$ e.g., $A \cup B=\{1,2,3,4,5,6\}$
- Difference: $A-B=\{x \mid x \in A \wedge x \notin B\}$ e.g., $A-B=\{1,3\}$
- Intersection: $A \cap B=\{x \mid x \in A \wedge x \in B\}$ e.g., $A \cap B=\{2,4\}$

Review: Sets (contd.)

The four binary relations defined above are related as follows (verify using a Venn diagram):
$A \cup B=A+B-A \cap B$ (to avoid double-counting)
This will be useful later when computing probabilities.

Review: Combinatorics

Combinatorics deals with the number of ways of choosing k objects from a total of n.
Notation: we represent by the symbol $\binom{n}{k}$ the quantity

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!},
$$

where k ! is the factorial of k.

Review: Combinatorics ${ }^{4}$ (contd.)

Choosing k objects from a total of n. The number of ways this can be done depends on whether replacement is allowed (e.g., an object selected from the pile is replaced before the next selection), and on whether the order in which the objects are selected matters.

	Order doesn't matter	Order matters
Without replacement		
$(k \leq n)$	$\binom{n}{k}$	$\binom{n}{k} \times k!$
With replacement	$\binom{n+k-1}{k}$	
$(k>n$ allowed $)$	(Select and replace same object k objects from n, k times $=k-1$ replacements the k objects.) $=n+k-1$ "objects.")	n^{k}

Review: Binomial Coefficients

The quantity $\binom{n}{k}$ is called a binomial coefficient because it features in the expansion of the binomial:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

The number of ways of forming a term of the type $x^{k} y^{n-k}$ is exactly $\binom{n}{k}$. E.g., number of ways of forming the term $x^{1} y^{3}=\binom{4}{1}=\binom{4}{3}=4$.

Review: Binomial Coefficients (contd.)

Some properties of the binomial coefficients:

- Choosing k objects from n is the same as rejecting $n-k$ objects from n :

$$
\binom{n}{k}=\binom{n}{n-k}
$$

- The coefficients for a total of n objects sum to 2^{n} (the number of ways of choosing at least one object from n objects is $2^{n}-1$):

$$
(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

- The term $n-k=(n-s)+(k-s)$ for any s :

$$
\begin{gathered}
\frac{(k+s)!}{(n+s)!} \times\binom{ n+s}{k+s}=\frac{k!}{n!} \times\binom{ n}{k} \\
\frac{(k+1)}{(n+1)} \times\binom{ n+1}{k+1}=\binom{n}{k}
\end{gathered}
$$

Probability

Some definitions

Outcome: One of many possible results of an experiment/observation.
Symbol: ω.
Sample space: Set of all possible outcomes. Also called outcome space. Symbol: Ω.

Event: A subset of the sample space Ω, consisting of zero or more outcomes ω.
Event space: A collection of events in the sample space.
Needs to satisfy some properties (σ-algebra): must be closed over complement and closed over countable unions (see Q1 on Homework \#1).
Symbol: \mathscr{F}.
Warning: some sources refer to Ω as the event space.
We usually talk about probabilities of events (which are a more general construct than outcomes).

Events and Event Spaces

Experiment: Two-coin toss.
Sample space: $\Omega=\{(\mathrm{TT})$, (TH), (HT), (HH) $\}$.

Consider the following events:
(1) $\mathrm{E}_{1}=$ At least one tail $=\{(\mathrm{TT}),(\mathrm{TH})$, (HT) $\}$,
(2) $\mathrm{E}_{2}=$ Exactly one head $=\{(\mathrm{TH}),(\mathrm{HT})\}$, and
(3) $\mathrm{E}_{3}=$ Second coin ends up heads $=$ $\{(\mathrm{TH}),(\mathrm{HH})\}$.
Are the collections $\mathscr{F}_{1}=\left\{\mathrm{E}_{1}, \mathrm{E}_{3}\right\}$ and $\mathscr{F}_{2}=$
$\left\{E_{1}, E_{2}, E_{3}\right\}$ event spaces? See Q1 in
Homework \#1 (solutions here).

Estimating probability: an exercise

Example: In a two-coin toss, what is the probability of obtaining two tails?

Why?

Two assumptions:
(1) All outcomes are equally likely, and
(2) The sum of probabilities of all outcomes is 1 .

