Statistics for Astronomers: Lecture 14, 2019.04.11

Prof. Sundar Srinivasan

IRyA/UNAM

Recall: quadratic alternatives to the KS test

There are two important alternatives to the KS test. They are both quadratic ECDF tests.
In quadratic ECDF tests, the distance is computed as $N \int_{-\infty}^{\infty} d F(x)\left[\hat{F}_{n}(x)-F(x)\right]^{2} w(x)$, where $w(x)$ is a weight function to emphasize different regions of the distribution.

The Cramér-von Mises test uses $w(x)=1 \forall x$.
The Anderson-Darling test uses $w(x)=\frac{1}{F(x)(1-F(x))}=\frac{1}{\operatorname{Var}\left(\hat{F}_{n}(x)\right)}$, placing more weight on observations near the tails of the distribution.

The $A D$ test is more sensitive than the KS test to deviations in the tails of the distribution.

Recall: Spearman's rank correlation test

Given a sequence X_{i} of size N, the rank \widetilde{X}_{i} of the data point X_{i} is its location in the ordered sequence. For example, if $X=[5.2,2.1,1.0,-1.1,4.3]$, then $\widetilde{X}=[5,3,2,1,4]$.

The relationship between two variables X and Y can be quantified using Pearson's correlation coefficient: $\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}$.
Use Pearson's correlation coefficient, except with $\widetilde{X}, \widetilde{Y}$ instead of X, Y.
This is Spearman's rank correlation coefficient, $r_{S}=\frac{\operatorname{Cov}(\widetilde{X}, \widetilde{Y})}{\sqrt{\operatorname{Var}(\widetilde{X}) \operatorname{Var}(\widetilde{Y})}}$.
$\rho_{X Y}$ measures the extent of linear relationship between X and $Y . r_{s}$, on the other hand, measures the extent of any monotonic relationship (think of the definition of d_{i}).
r_{S} is much more resistant to outliers!!

Recall: Bayes' Theorem, reframed

Given some prior information I, we can select a model M that includes parameters $\overrightarrow{\boldsymbol{\theta}}$. Bayes' Theorem is then

This form is appropriate for parameter estimation.
Frequentist: parameters are fixed!
Bayesian: this is our degree of belief in a given value of the parameter.
For model selection, we expand the prior: $p(M, \overrightarrow{\boldsymbol{\theta}} \mid I)=p(\overrightarrow{\boldsymbol{\theta}} \mid M, I) p(M \mid I)$
(second term on RHS $\neq 1$ for model selection).

Priors

(from lvezić et al.)

In terms of information, priors can be informative or "non-informative".

Informative prior

Specific information about parameter(s). Progressively increasing amounts of data \Longrightarrow posterior is evidence-dominated.

Example: "Data from the past ten years suggests that there is a 2% change of rain in Morelia today between 2 and 3 PM."

Non-informative prior

Vague information about parameters, typically based on general principles/objective information (also called objective prior). "Light" modification to observations \Longrightarrow posterior is likelihood-dominated.
Example: "The flux from this star is non-negative" ($0 \leq F<\infty$).
This is also an example of an improper prior, as it does not integrate to unity.
However, we are still OK if the resulting posterior is well-defined
(bus example from last week $-p(\tau \mid I) \propto 1 / \tau, t \leq \tau<\infty$).
The Principle of Indifference is a classic example of an uninformative prior.

Priors (contd.)

Let $p(\theta \mid I)=C \theta^{k}$ for constants $C, k(k=0$ gives the uniform distribution). Define $y=\operatorname{ar}$ (scaled version of θ, similar to changing units). Activity: What must k be if we want the form of the prior in terms of y to remain unchanged?
$p(y)=C y^{k} / a^{k+1}$.
For $k=-1, p(y)=C y^{k}$, same form as $p(\theta) . \Longrightarrow$ scale-invariant prior for θ is $p(\theta \mid I) \propto 1 / \theta$.

This was why, in the bus example, we chose $p(\tau \mid I) \propto \tau^{-1}$.
This is an example of a non-informative prior: "The prior for the scale parameter is independent of the choice of units." A similar prior for a location parameter demands independence from translations.

Two more probability distributions

We'll use these in the current lecture as well as in the future for Bayesian inference.
$\operatorname{Beta}(\alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \quad$ with $x \in(0,1)$ and $\alpha, \beta>0$.
Mean: $\frac{\alpha}{\alpha+\beta}$; mode: $\frac{\alpha-1}{\alpha+\beta-2}$.
$\operatorname{Gamma}(k, \theta)=\frac{1}{\theta^{k} \Gamma(k)} x^{k-1} \exp \left[-\frac{x}{\theta}\right] \quad$ with $x \in(0, \infty)$ and $k, \theta>0$.
Mean: $k \theta$; mode: $(k-1) \theta$.

Credit: de:User:Horas/en:User:Krishnavedala, Public domain.

Credit: w:User:Marksweep/en:User:Cburnett, CC BY-SA 3.0, via Wikimedia Commons.

Bayesian point/location and interval estimates

Once $p(\theta \mid$ data $)$ is computed, we can compute the location estimates (mean, median, mode).
For example, the Bayesian estimator of the parameter mean is $\bar{\theta}=\int d \theta \theta p(\theta \mid$ data $)$.

We can also compute Bayesian interval estimates, also called posterior intervals or credible intervals (abbreviated in these lectures as CrI).

One example of a $100(1-\alpha) \% \mathrm{CrI}$ is $[a, b]$ such that
$\int_{-\infty}^{a} d \theta p(\theta \mid$ data $)=\int_{b}^{\infty} d \theta p(\theta \mid$ data $)=\alpha / 2$.
Another type of Crl is the highest posterior density (HPD) interval, defined as the narrowest interval that contains $100(1-\alpha) \%$ of the posterior probability.

Numerical computation of HPD interval

(1) Obtain N random deviates $x[i]$ drawn from the posterior density distribution.
(2) Sort them in ascending order.
(3) For each $x[i]$, find the point that is $w=(1-\alpha) N$ points away.
(4) Compute the widths $w[i]=x[w+i]-x[i]$.
(5) Find the location $i=i_{0}$ corresponding to the smallest width. The HPD interval is then $\left(x\left[i_{0}\right], x\left[i_{0}+w\right]\right)$.

Write your own script! You'll need it for your research if you're using Bayesian inference.

Example from Wasserman's "All of Statistics"

A coin has an unknown probability θ of coming down heads. Flipping the coin N times, we observe s heads. Find the posterior distribution of θ.

Let us pick a prior $p(\theta)=U(0,1)$ so that the prior mean is $1 / 2$ (expected for a fair coin).
The likelihood of obtaining s heads is $\mathscr{L}(\theta) \propto \theta^{s}(1-\theta)^{N-s}$.
The posterior is then $p(\theta \mid$ data $)=\mathscr{L}(\theta) p(\theta) \propto \theta^{s}(1-\theta)^{N-s}=\operatorname{Beta}(\alpha, \beta)$,
What are α and β ? $\quad \alpha=s+1, \beta=N-s+1$.
Posterior mean $\bar{\theta}=\frac{\alpha}{\alpha+\beta}=\frac{s+1}{N+2}$.
We can rearrange the above:
$\bar{\theta}=\frac{s+1}{N+2}=\frac{s}{N+2}+\frac{1}{N+2}=\underbrace{\frac{s}{N}}_{\text {data mean }} \times \frac{N}{N+2}+\underbrace{\frac{1}{2}}_{\text {prior mean }} \times \frac{2}{N+2}$
The posterior mean is thus the weighted average of the data mean and the prior mean. The effective sample size is then $N+2$.

Prior-dominated posterior

(from Andreon \& Weaver, "Bayesian Methods for the Physical Sciences")

The prior can drive the posterior away from the data (likelihood) if it is steep and/or has very little overlap with the region where the likelihood dominates.

One example: inferring the true (photon) count rate from a faint source.
I observe a faint source once and get a photon count rate of $S_{\text {obs }}=4 \mathrm{~s}^{-1}$. Based on this observation, what is the constraint on the true photon count rate S from the source?

If the distribution of photon counts from sources in the Universe were uniform (uniform prior), the photon-counting uncertainty would symmetrically scatter values on either side of the population mean $\Longrightarrow 95 \% \mathrm{Cl}$ from data nicely constrains true count rate.
However, there are way more faint sources in the Universe.
e.g., in Euclidean space, $\frac{d N}{d S} \equiv p(S) \propto S^{-5 / 2}$ (steep prior, small intersection with likelihood).
\Longrightarrow more likely that a lower photon count gets observed as a higher value due to Poisson uncertainty. This is a form of Eddington Bias.

Prior-dominated posterior (contd.)

Prior: $p(S) \propto S^{-5 / 2}$.
Likelihood of obtaining data $S_{\text {obs }}=4$ from Poissonian uncertainties acting on S : $\mathscr{L}(S) \propto S^{S_{\text {obs }}} \exp [-S]=S^{4} \exp [-S]$.
Posterior $p\left(S \mid S_{\text {obs }}\right) \propto S^{3 / 2} \exp [-S]$

$$
=\operatorname{Gamma}\left(\frac{5}{2}, 1\right) .
$$

\Longrightarrow Mean: 5/2; Mode: 3/2. Can also compute HPD (homework).

