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Recall: Bayes’ Theorem (model selection version)

p(M|D, I )︸ ︷︷ ︸
posterior predictive

prob.

=

sampling prob.
for D︷ ︸︸ ︷

p(D|M, I ) ×

prior
prob.︷ ︸︸ ︷
p(M|I )

p(D|I )︸ ︷︷ ︸
prior predictive

prob.

=

Global
likelihood of M︷ ︸︸ ︷

L (M|I ) ×

prior
prob.︷ ︸︸ ︷
p(M|I )

p(D|I )︸ ︷︷ ︸
prior predictive

prob.

“Global likelihood” because L (M, I ) is marginalised over each parameter:

L (M|I ) =

∫ Npar∏
j=1

dθj

prior prob.
for θj︷ ︸︸ ︷

p(θj |M, I ) L (θj |M, I )
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Recall: Model selection and Occam’s Razor

Occam’s Razor
Simpler solutions are more likely to be correct than complex ones.

Prefer the simplest solution unless there is sufficient evidence for a more complex one.

The Bayes setup naturally penalises complexity. We can also penalise likelihoods via information
criteria such as the BIC or AIC. For a single-parameter model,

L (M|I ) =

∫
θ

dθ

prior prob.
for θ︷ ︸︸ ︷

p(θ|M, I ) L (θ|M, I ) = L (θ̂MLE|M, I ) Ωθ

Where θ̂MLE is the value of θ at which the likelihood is maximised (i.e., θ̂MLE is the MLE for
that likelihood).

Ωθ (called the Occam Factor or Occam Penalty) ≤ 1.

N parameters: likelihood can be written as a product of N such Ω values, each ≤ 1.
Ω can therefore be thought of as a penalty for model complexity, or a penalty for the fraction of
the parameter space ruled out by the likelihood.
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Recall: Information criteria and the posterior odds ratio

Information criteria are related to the Occam Penalty. If k is the number of parameters in a
model, then

Akaike Information Criterion: AIC = 2k − 2 ln L (θ̂MLE)

Bayesian Information Criterion: BIC = k lnN − 2 ln L (θ̂MLE)

By these definitions, the model with the lowest AIC/BIC (note the negative sign for the
maximum likelihood) should be preferred.

The odds ratio, O12, in favour of M1 over M2, is the ratio of the posterior probabilities:

O12 =
p(M1|D, I )
p(M2|D, I )

=

Bayes’ Factor︷ ︸︸ ︷
L(M1)

L(M2)
×

prior odds ratio︷ ︸︸ ︷
π(M1|I )
π(M2|I )

Bayes Factor = ratio of global likelihoods.

Jaynes’ scale: O12 < 3: “not worth a mention”;
> 10: “strong evidence for M1”;
> 100: “decisive evidence for M1”.
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Multivariate posteriors
(from Andrew Gelman et al., “Bayesian Data Analysis”, 3ed.)

In most of the problems you will deal with in research,
~θ = (θ1, θ2, · · · , θNpar) with Npar > 1.

Definition (Joint, conditional, and marginal posteriors)

p(~θ|data) – joint posterior distribution for all the parameters.

p(θ1|θ2, · · · , θNpar , data) – conditional posterior for θ1 at fixed values of all

other components of ~θ and data.

p(θ1|data) – marginal posterior for θ1, marginalised over all other
parameters.
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Illustration: normal posterior, joint distribution

For data ∼ N (µ, σ2), with uniform priors for µ and lnσ, the joint
posterior distribution is

p(µ, σ2|data) ∝ σ−(N+2) exp

[
− 1

2

N∑
i=1

(xi − µ
σ

)2
]

.

Use
1

N

N∑
i=1

(xi − µ)2 = Var(x) + (µ− x̄)2:

p(µ, σ2|data) ∝ σ−(N+2) exp

[
− 1

2

Var(x)

(σ/
√
N)2

]
exp

[
− 1

2

(
µ− x̄

σ/
√
N

)2]
.
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(contd.) normal posterior, conditional distributions

p(µ, σ2|data) ∝ σ−(N+2) exp

[
−

1

2

Var(x)

(σ/
√
N)2

]
exp

[
−

1

2

(
µ− x̄

σ/
√
N

)2]
p(µ|σ2, data) obtained by treating σ as fixed in the above equation:

p(µ|σ2, data) ∝ exp

[
−

1

2

(
µ− x̄

σ/
√
N

)2]
= N (x̄ , σ2/N).

p(σ2|µ2, data) obtained by treating µ as fixed instead:

p(σ2|µ2, data) ∝ (σ2)−(N+2)/2 exp

[
−

1

2

Var(x) + (µ− x̄)2

(σ/
√
N)2

]

Defining y =
(σ/
√
N)2

Var(x) + (µ− x̄)2
,

p(σ2|µ2, data) ∝ y−(N+2)/2 exp
[
−

1

2y

]
, which is the Inverse-χ2 distribution for degree N.

If z ∼ χ2(N), z−1 ∼ Inv-χ2(N).

=⇒ p(σ2|µ, data) = N
(
Var(x) + (µ− x̄)2

)
Inv-χ2(N).
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(contd). normal posterior, marginal distribution for µ

p(µ, σ2|data) ∝ σ−(N+2) exp

[
−

1

2

Var(x)

(σ/
√
N)2

]
exp

[
−

1

2

(
µ− x̄

σ/
√
N

)2]

p(µ|data) ∝
∞∫

0

dσ2p(µ, σ2|data) =

∞∫
0

dσ2

σ2
(σ2)−N/2 exp

[
−

1

2

Var(x) + (µ− x̄)2

(σ/
√
N)2

]
.

As before, define y =
(σ/
√
N)2

Var(x) + (µ− x̄)2
:

p(µ|data) ∝
∞∫

0

dy

y

[
y

Var(x) + (µ− x̄)2

]N/2

exp [−y ] ∝
[
Var(x) + (µ− x̄)2

]−N/2
.

Recall: Var(x) =
N − 1

N
s2

=⇒ p(µ|data) ∝
[

1 +
1

N − 1

(
µ− x̄

s/
√
N

)2]−N/2

∝ t(N − 1) (Student’s t for N − 1 dof).

=⇒ p(µ|data) = x̄ +
s
√
N
t(N − 1).
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(contd). normal posterior, marginal distribution for σ2

p(µ, σ2|data) ∝ σ−(N+2) exp

[
−

1

2

Var(x)

(σ/
√
N)2

]
exp

[
−

1

2

(
µ− x̄

σ/
√
N

)2]

p(σ2|data) ∝
∞∫
−∞

dµ p(µ, σ2|data)

= σ−(N+2) exp

[
−

1

2

Var(x)

(σ/
√
N)2

] ∞∫
−∞

dµ exp

[
−

1

2

(
µ− x̄

σ/
√
N

)2]

∝ (σ2)−(N+1)/2 exp

[
−

1

2

Var(x)

(σ/
√
N)2

]
; therefore p(σ2|data) = N Var(x) Inv-χ2(N − 1).

Summary: if the data is drawn from a normal distribution, with non-informative priors for µ and
σ2, the posterior is such that
For known σ2, µ is distributed normally about the sample mean, with variance σ2/N.
For known µ, σ2 has an Inverse-χ2 distribution with degree equal to the sample size.
For unknown σ2, µ has a Student’s t distribution around the sample mean.
For unknown µ, σ2 has an Inverse-χ2 distribution with degree equal to the sample size minus 1.

For the last two cases, the unknown parameter is a nuisance parameter that has been
marginalised over.
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(contd). Sampling and visualising the posterior

To sample the posterior, note that
p(µ, σ2|data) = p(µ|σ2,data)p(σ2|data) = p(σ2|µ, data)p(µ|data).

One way: we can first sample σ from the distribution for p(σ2|data), then
use those values to sample µ from the distribution for p(µ|σ2,data).
Other way: µ first then σ2.

Activity:
1) Generate data: draw Ndata = 10 deviates from a normal distribution
with µ = −5.0 and σ = 0.3.
2) Draw Nsamples = 1000 values from the marginal posterior for σ2, use
these to draw the same number of values from the conditional distribution
for µ.
3) Plot one histogram each for the distribution of the resulting µ values
and σ2 values (these are the marginalised distributions, since they don’t
care about the value of the other parameter).
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(contd). Visualising the posterior via seaborn.jointplot

Ndata = 10,Nsamples = 1000. Ndata = 1000,Nsamples = 1000.
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Posterior predictive distribution

Given a set of observations (data) and the resulting posterior for the model (“data is drawn
from a normal distribution”), predict the pdf of future data values.
For the problem discussed in this lecture,

p(future data|data) =

∫ ∫
dµ dσ2 p(µ, σ2|data)︸ ︷︷ ︸

joint posterior

∼ N (µ, σ2)︷ ︸︸ ︷
p(future data|µ, σ2,data)

To simulate this distribution, first draw µ, σ2 from their joint pdf then draw new data values
from N (µ, σ2).

We expect that the new data point be distributed around x̄ , the mean of the current dataset.

The expected variance is σ2 + σ2/N = (1 + 1/N)σ2.

In fact, the posterior predictive pdf for the new data point is a Student’s t distribution with
location x̄ , scale σ

√
1 + 1/N, and degree N − 1.
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