Statistics for Astronomers: Lecture 17, 2019.05.02

Prof. Sundar Srinivasan

IRyA/UNAM

Recall: Bayes' Theorem (model selection version)

"Global likelihood" because $\mathscr{L}(M, I)$ is marginalised over each parameter:

$$
\mathscr{L}(M \mid I)=\int \prod_{j=1}^{N_{\text {par }}} d \theta_{j} \overbrace{p\left(\theta_{j} \mid M, I\right)}^{\begin{array}{c}
\text { prior prob. } \\
\text { for } \theta_{j}
\end{array}} \mathscr{L}\left(\theta_{j} \mid M, I\right)
$$

Recall: Model selection and Occam's Razor

Occam's Razor

Simpler solutions are more likely to be correct than complex ones.
Prefer the simplest solution unless there is sufficient evidence for a more complex one.
The Bayes setup naturally penalises complexity. We can also penalise likelihoods via information criteria such as the BIC or AIC. For a single-parameter model,

$$
\mathscr{L}(M \mid I)=\int_{\theta} d \theta \overbrace{p(\theta \mid M, I)}^{\substack{\text { prior prob. } \\ \text { for } \theta}} \mid \mathscr{L}(\theta \mid M, I)=\mathscr{L}\left(\hat{\theta}_{\mathrm{MLE}} \mid M, I\right) \Omega_{\theta}
$$

Where $\hat{\theta}_{\text {MLE }}$ is the value of θ at which the likelihood is maximised (i.e., $\hat{\theta}_{\text {MLE }}$ is the MLE for that likelihood).
Ω_{θ} (called the Occam Factor or Occam Penalty) ≤ 1.
N parameters: likelihood can be written as a product of N such Ω values, each ≤ 1.
Ω can therefore be thought of as a penalty for model complexity, or a penalty for the fraction of the parameter space ruled out by the likelihood.

Recall: Information criteria and the posterior odds ratio

Information criteria are related to the Occam Penalty. If k is the number of parameters in a model, then

Akaike Information Criterion: $\mathrm{AIC}=2 k-2 \ln \mathscr{L}\left(\hat{\theta}_{\mathrm{MLE}}\right)$
Bayesian Information Criterion: BIC $=k \ln N-2 \ln \mathscr{L}\left(\hat{\theta}_{\mathrm{MLE}}\right)$
By these definitions, the model with the lowest AIC/BIC (note the negative sign for the maximum likelihood) should be preferred.

The odds ratio, O_{12}, in favour of M_{1} over M_{2}, is, the ratio of the posterior probabilities: Bayes Factor prior odds ratio

$$
O_{12}=\frac{p\left(M_{1} \mid D, I\right)}{p\left(M_{2} \mid D, I\right)}=\frac{\overbrace{\mathscr{L}\left(M_{1}\right)}^{\mathscr{L}\left(M_{2}\right)}}{} \times \frac{\overbrace{\frac{\pi\left(M_{1} \mid I\right)}{}}^{\pi\left(M_{2} \mid I\right)}}{}
$$

Bayes Factor = ratio of global likelihoods.
Jaynes' scale: $O_{12}<3$: "not worth a mention";
>10 : "strong evidence for M_{1} ";
>100 : "decisive evidence for M_{1} ".

Multivariate posteriors

(from Andrew Gelman et al., "Bayesian Data Analysis", 3ed.)

In most of the problems you will deal with in research,
$\overrightarrow{\boldsymbol{\theta}}=\left(\theta_{1}, \theta_{2}, \cdots, \theta_{N_{\mathrm{par}}}\right)$ with $N_{\text {par }}>1$.
Definition (Joint, conditional, and marginal posteriors)
$p(\overrightarrow{\boldsymbol{\theta}} \mid$ data $)$ - joint posterior distribution for all the parameters.
$p\left(\theta_{1} \mid \theta_{2}, \cdots, \theta_{N_{\text {par }}}\right.$, data) - conditional posterior for θ_{1} at fixed values of all other components of $\overrightarrow{\boldsymbol{\theta}}$ and data.
$p\left(\theta_{1} \mid\right.$ data $)$ - marginal posterior for θ_{1}, marginalised over all other parameters.

Illustration: normal posterior, joint distribution

For data $\sim \mathscr{N}\left(\mu, \sigma^{2}\right)$, with uniform priors for μ and $\ln \sigma$, the joint posterior distribution is
$p\left(\mu, \sigma^{2} \mid\right.$ data $) \propto \sigma^{-(N+2)} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]$.
Use $\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}=\operatorname{Var}(x)+(\mu-\bar{x})^{2}$:
$p\left(\mu, \sigma^{2} \mid\right.$ data $) \propto \sigma^{-(N+2)} \exp \left[-\frac{1}{2} \frac{\operatorname{Var}(x)}{(\sigma / \sqrt{N})^{2}}\right] \exp \left[-\frac{1}{2}\left(\frac{\mu-\bar{x}}{\sigma / \sqrt{N}}\right)^{2}\right]$.

(contd.) normal posterior, conditional distributions

$p\left(\mu, \sigma^{2} \mid\right.$ data $) \propto \sigma^{-(N+2)} \exp \left[-\frac{1}{2} \frac{\operatorname{Var}(x)}{(\sigma / \sqrt{N})^{2}}\right] \exp \left[-\frac{1}{2}\left(\frac{\mu-\bar{x}}{\sigma / \sqrt{N}}\right)^{2}\right]$
$p\left(\mu \mid \sigma^{2}\right.$, data) obtained by treating σ as fixed in the above equation:
$p\left(\mu \mid \sigma^{2}\right.$, data $) \propto \exp \left[-\frac{1}{2}\left(\frac{\mu-\bar{x}}{\sigma / \sqrt{N}}\right)^{2}\right]=\mathscr{N}\left(\bar{x}, \sigma^{2} / N\right)$.
$p\left(\sigma^{2} \mid \mu^{2}\right.$, data) obtained by treating μ as fixed instead:
$p\left(\sigma^{2} \mid \mu^{2}\right.$, data $) \propto\left(\sigma^{2}\right)^{-(N+2) / 2} \exp \left[-\frac{1}{2} \frac{\operatorname{Var}(x)+(\mu-\bar{x})^{2}}{(\sigma / \sqrt{N})^{2}}\right]$
Defining $y=\frac{(\sigma / \sqrt{N})^{2}}{\operatorname{Var}(x)+(\mu-\bar{x})^{2}}$,
$p\left(\sigma^{2} \mid \mu^{2}\right.$, data $) \propto y^{-(N+2) / 2} \exp \left[-\frac{1}{2 y}\right]$, which is the Inverse- χ^{2} distribution for degree N. If $z \sim \chi^{2}(N), z^{-1} \sim \operatorname{Inv}-\chi^{2}(N)$.
$\Longrightarrow p\left(\sigma^{2} \mid \mu\right.$, data $)=N\left(\operatorname{Var}(x)+(\mu-\bar{x})^{2}\right) \operatorname{Inv}-\chi^{2}(N)$.

(contd). normal posterior, marginal distribution for μ

$p\left(\mu, \sigma^{2} \mid\right.$ data $) \propto \sigma^{-(N+2)} \exp \left[-\frac{1}{2} \frac{\operatorname{Var}(x)}{(\sigma / \sqrt{N})^{2}}\right] \exp \left[-\frac{1}{2}\left(\frac{\mu-\bar{x}}{\sigma / \sqrt{N}}\right)^{2}\right]$
$p(\mu \mid$ data $) \propto \int_{0}^{\infty} d \sigma^{2} p\left(\mu, \sigma^{2} \mid\right.$ data $)=\int_{0}^{\infty} \frac{d \sigma^{2}}{\sigma^{2}}\left(\sigma^{2}\right)^{-N / 2} \exp \left[-\frac{1}{2} \frac{\operatorname{Var}(x)+(\mu-\bar{x})^{2}}{(\sigma / \sqrt{N})^{2}}\right]$.
As before, define $y=\frac{(\sigma / \sqrt{N})^{2}}{\operatorname{Var}(x)+(\mu-\bar{x})^{2}}$:
$p(\mu \mid$ data $) \propto \int_{0}^{\infty} \frac{d y}{y}\left[\frac{y}{\operatorname{Var}(x)+(\mu-\bar{x})^{2}}\right]^{N / 2} \exp [-y] \propto\left[\operatorname{Var}(x)+(\mu-\bar{x})^{2}\right]^{-N / 2}$.
Recall: $\operatorname{Var}(x)=\frac{N-1}{N} s^{2}$
$\Longrightarrow p(\mu \mid$ data $) \propto\left[1+\frac{1}{N-1}\left(\frac{\mu-\bar{x}}{s / \sqrt{N}}\right)^{2}\right]^{-N / 2} \propto t(N-1)$ (Student's t for $N-1$ dof).
$\Longrightarrow p(\mu \mid$ data $)=\bar{x}+\frac{s}{\sqrt{N}} t(N-1)$.

(contd). normal posterior, marginal distribution for σ^{2}

$$
\begin{aligned}
& p\left(\mu, \sigma^{2} \mid \text { data }\right) \propto \sigma^{-(N+2)} \exp \left[-\frac{1}{2} \frac{\operatorname{Var}(x)}{(\sigma / \sqrt{N})^{2}}\right] \exp \left[-\frac{1}{2}\left(\frac{\mu-\bar{x}}{\sigma / \sqrt{N}}\right)^{2}\right] \\
& p\left(\sigma^{2} \mid \text { data }\right) \propto \int_{-\infty}^{\infty} d \mu p\left(\mu, \sigma^{2} \mid \text { data }\right) \\
& =\sigma^{-(N+2)} \exp \left[-\frac{1}{2} \frac{\operatorname{Var}(x)}{(\sigma / \sqrt{N})^{2}}\right] \int_{-\infty}^{\infty} d \mu \exp \left[-\frac{1}{2}\left(\frac{\mu-\bar{x}}{\sigma / \sqrt{N}}\right)^{2}\right] \\
& \propto\left(\sigma^{2}\right)^{-(N+1) / 2} \exp \left[-\frac{1}{2} \frac{\operatorname{Var}(x)}{(\sigma / \sqrt{N})^{2}}\right] ; \text { therefore } p\left(\sigma^{2} \mid \text { data }\right)=N \operatorname{Var}(x) \operatorname{Inv}-\chi^{2}(N-1) .
\end{aligned}
$$

Summary: if the data is drawn from a normal distribution, with non-informative priors for μ and σ^{2}, the posterior is such that
For known σ^{2}, μ is distributed normally about the sample mean, with variance σ^{2} / N.
For known μ, σ^{2} has an Inverse- χ^{2} distribution with degree equal to the sample size.
For unknown σ^{2}, μ has a Student's t distribution around the sample mean.
For unknown μ, σ^{2} has an Inverse- χ^{2} distribution with degree equal to the sample size minus 1 .
For the last two cases, the unknown parameter is a nuisance parameter that has been marginalised over.

(contd). Sampling and visualising the posterior

To sample the posterior, note that
$p\left(\mu, \sigma^{2} \mid\right.$ data $)=p\left(\mu \mid \sigma^{2}\right.$, data $) p\left(\sigma^{2} \mid\right.$ data $)=p\left(\sigma^{2} \mid \mu\right.$, data $) p(\mu \mid$ data $)$.
One way: we can first sample σ from the distribution for $p\left(\sigma^{2} \mid\right.$ data $)$, then use those values to sample μ from the distribution for $p\left(\mu \mid \sigma^{2}\right.$, data).
Other way: μ first then σ^{2}.
Activity:

1) Generate data: draw $N_{\text {data }}=10$ deviates from a normal distribution with $\mu=-5.0$ and $\sigma=0.3$.
2) Draw $N_{\text {samples }}=1000$ values from the marginal posterior for σ^{2}, use these to draw the same number of values from the conditional distribution for μ.
3) Plot one histogram each for the distribution of the resulting μ values and σ^{2} values (these are the marginalised distributions, since they don't care about the value of the other parameter).

(contd). Visualising the posterior via seaborn. jointplot

$N_{\text {data }}=10, N_{\text {samples }}=1000$.

$N_{\text {data }}=1000, N_{\text {samples }}=1000$.

Posterior predictive distribution

Given a set of observations (data) and the resulting posterior for the model ("data is drawn from a normal distribution"), predict the pdf of future data values.
For the problem discussed in this lecture,
$p($ future data \mid data $)=\iint d \mu d \sigma^{2} \underbrace{p\left(\mu, \sigma^{2} \mid \text { data }\right)}_{\text {joint posterior }} \overbrace{p\left(\text { future data } \mid \mu, \sigma^{2}, \text { data }\right)}^{\sim \mathscr{N}\left(\mu, \sigma^{2}\right)}$
To simulate this distribution, first draw μ, σ^{2} from their joint pdf then draw new data values from $\mathscr{N}\left(\mu, \sigma^{2}\right)$.

We expect that the new data point be distributed around \bar{x}, the mean of the current dataset.
The expected variance is $\sigma^{2}+\sigma^{2} / N=(1+1 / N) \sigma^{2}$.
In fact, the posterior predictive pdf for the new data point is a Student's t distribution with location \bar{x}, scale $\sigma \sqrt{1+1 / N}$, and degree $N-1$.

