

Recall: Model selection and Occam's Razor

Occam's Razor

Simpler solutions are more likely to be correct than complex ones.

Prefer the simplest solution unless there is sufficient evidence for a more complex one.

The Bayes setup naturally penalises complexity. We can also penalise likelihoods via information criteria such as the BIC or AIC. For a single-parameter model,

$$\mathscr{L}(M|I) = \int_{\theta} d\theta \quad \overbrace{p(\theta|M,I)}^{\text{prior prob.}} \mathscr{L}(\theta|M,I) = \mathscr{L}(\hat{\theta}_{\text{MLE}}|M,I) \ \Omega_{\theta}$$

Where $\hat{\theta}_{MLE}$ is the value of θ at which the likelihood is maximised (*i.e.*, $\hat{\theta}_{MLE}$ is the MLE for that likelihood).

 Ω_{θ} (called the Occam Factor or Occam Penalty) ≤ 1 .

N parameters: likelihood can be written as a product of *N* such Ω values, each ≤ 1 . Ω can therefore be thought of as a penalty for model complexity, or a penalty for the fraction of the parameter space ruled out by the likelihood.

Prof. Sundar Srinivasan - IRyA/UNAM

Statistics for Astronomers: Lecture 17, 2019.05.02

Recall: Information criteria and the posterior odds ratio

Information criteria are related to the Occam Penalty. If k is the number of parameters in a model, then

Akaike Information Criterion: AIC = $2k - 2 \ln \mathscr{L}(\hat{\theta}_{MLE})$ Bayesian Information Criterion: BIC = $k \ln N - 2 \ln \mathscr{L}(\hat{\theta}_{MLE})$

By these definitions, the model with the lowest AIC/BIC (note the negative sign for the maximum likelihood) should be preferred.

The odds ratio, O_{12} , in favour of M_1 over M_2 , is the ratio of the posterior probabilities: Bayes Factor prior odds ratio

$$O_{12} = \frac{p(M_1|D,I)}{p(M_2|D,I)} = \overbrace{\mathcal{L}(M_2)}^{\mathcal{L}(M_1)} \times \overbrace{\frac{\pi(M_1|I)}{\pi(M_2|I)}}^{\mathcal{L}(M_1)}$$

Bayes Factor = ratio of global likelihoods.

Jaynes' scale: $O_{12} < 3$: "not worth a mention"; > 10: "strong evidence for M_1 ";

> 100: "decisive evidence for M_1 ".

Multivariate posteriors

(from Andrew Gelman et al., "Bayesian Data Analysis", 3ed.)

In most of the problems you will deal with in research, $\vec{\theta} = (\theta_1, \theta_2, \cdots, \theta_{N_{\mathrm{par}}})$ with $N_{\mathrm{par}} > 1$.

Definition (Joint, conditional, and marginal posteriors)

 $p(\vec{\theta}|\text{data})$ – joint posterior distribution for all the parameters.

 $p(\theta_1|\theta_2, \cdots, \theta_{N_{\text{par}}}, \text{data})$ – conditional posterior for θ_1 at fixed values of all other components of $\vec{\theta}$ and data.

 $p(\theta_1|\text{data})$ – marginal posterior for θ_1 , marginalised over all other parameters.

Prof. Sundar Srinivasan - IRyA/UNAM

Statistics for Astronomers: Lecture 17, 2019.05.02

Illustration: normal posterior, joint distribution

For data $\sim \mathcal{N}(\mu, \sigma^2)$, with uniform priors for μ and $\ln \sigma$, the joint posterior distribution is

$$p(\mu, \sigma^{2} | \text{data}) \propto \sigma^{-(N+2)} \exp \left[-\frac{1}{2} \sum_{i=1}^{N} \left(\frac{x_{i} - \mu}{\sigma} \right)^{2} \right].$$

Use $\frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2} = \text{Var}(x) + (\mu - \bar{x})^{2}:$
 $p(\mu, \sigma^{2} | \text{data}) \propto \sigma^{-(N+2)} \exp \left[-\frac{1}{2} \frac{\text{Var}(x)}{(\sigma/\sqrt{N})^{2}} \right] \exp \left[-\frac{1}{2} \left(\frac{\mu - \bar{x}}{\sigma/\sqrt{N}} \right)^{2} \right].$

(contd.) normal posterior, conditional distributions

$$p(\mu, \sigma^{2} | data) \propto \sigma^{-(N+2)} \exp\left[-\frac{1}{2} \frac{\operatorname{Var}(x)}{(\sigma/\sqrt{N})^{2}}\right] \exp\left[-\frac{1}{2} \left(\frac{\mu - \bar{x}}{\sigma/\sqrt{N}}\right)^{2}\right]$$

$$p(\mu | \sigma^{2}, data) \text{ obtained by treating } \sigma \text{ as fixed in the above equation:}$$

$$p(\mu | \sigma^{2}, data) \propto \exp\left[-\frac{1}{2} \left(\frac{\mu - \bar{x}}{\sigma/\sqrt{N}}\right)^{2}\right] = \mathscr{N}(\bar{x}, \sigma^{2}/N).$$

$$p(\sigma^{2} | \mu^{2}, data) \text{ obtained by treating } \mu \text{ as fixed instead:}$$

$$p(\sigma^{2} | \mu^{2}, data) \propto (\sigma^{2})^{-(N+2)/2} \exp\left[-\frac{1}{2} \frac{Var(x) + (\mu - \bar{x})^{2}}{(\sigma/\sqrt{N})^{2}}\right]$$
Defining $y = \frac{(\sigma/\sqrt{N})^{2}}{Var(x) + (\mu - \bar{x})^{2}},$

$$p(\sigma^{2} | \mu^{2}, data) \propto y^{-(N+2)/2} \exp\left[-\frac{1}{2y}\right], \text{ which is the Inverse-}\chi^{2} \text{ distribution for degree } N.$$
If $z \sim \chi^{2}(N), z^{-1} \sim \operatorname{Inv-}\chi^{2}(N).$

$$\Rightarrow p(\sigma^{2} | \mu, data) = N\left(Var(x) + (\mu - \bar{x})^{2}\right) \operatorname{Inv-}\chi^{2}(N).$$
Statistics for Astronomers: Lecture 17, 2019.05.02

(contd). normal posterior, marginal distribution for
$$\mu$$

$$p(\mu, \sigma^{2}|\text{data}) \propto \sigma^{-(N+2)} \exp\left[-\frac{1}{2} \frac{\text{Var}(x)}{(\sigma/\sqrt{N})^{2}}\right] \exp\left[-\frac{1}{2} \left(\frac{\mu-\bar{x}}{\sigma/\sqrt{N}}\right)^{2}\right]$$

$$p(\mu|\text{data}) \propto \int_{0}^{\infty} d\sigma^{2} p(\mu, \sigma^{2}|\text{data}) = \int_{0}^{\infty} \frac{d\sigma^{2}}{\sigma^{2}} (\sigma^{2})^{-N/2} \exp\left[-\frac{1}{2} \frac{\text{Var}(x) + (\mu-\bar{x})^{2}}{(\sigma/\sqrt{N})^{2}}\right].$$
As before, define $y = \frac{(\sigma/\sqrt{N})^{2}}{\text{Var}(x) + (\mu - \bar{x})^{2}}$:

$$p(\mu|\text{data}) \propto \int_{0}^{\infty} \frac{dy}{y} \left[\frac{y}{\text{Var}(x) + (\mu - \bar{x})^{2}}\right]^{N/2} \exp\left[-y\right] \propto \left[\text{Var}(x) + (\mu - \bar{x})^{2}\right]^{-N/2}.$$
Recall: $\text{Var}(x) = \frac{N-1}{N}s^{2}$

$$\Rightarrow p(\mu|\text{data}) \propto \left[1 + \frac{1}{N-1} \left(\frac{\mu-\bar{x}}{s/\sqrt{N}}\right)^{2}\right]^{-N/2} \propto t(N-1) \text{ (Student's t for } N-1 \text{ dof)}.$$

$$\Rightarrow p(\mu|\text{data}) = \bar{x} + \frac{s}{\sqrt{N}}t(N-1).$$

(contd). Sampling and visualising the posterior

To sample the posterior, note that $p(\mu, \sigma^2 | \text{data}) = p(\mu | \sigma^2, \text{data})p(\sigma^2 | \text{data}) = p(\sigma^2 | \mu, \text{data})p(\mu | \text{data}).$

One way: we can first sample σ from the distribution for $p(\sigma^2|\text{data})$, then use those values to sample μ from the distribution for $p(\mu|\sigma^2, \text{data})$. Other way: μ first then σ^2 .

Activity:

1) Generate data: draw $N_{\rm data} = 10$ deviates from a normal distribution with $\mu = -5.0$ and $\sigma = 0.3$.

2) Draw $N_{\text{samples}} = 1000$ values from the marginal posterior for σ^2 , use these to draw the same number of values from the conditional distribution for μ .

3) Plot one histogram each for the distribution of the resulting μ values and σ^2 values (these are the marginalised distributions, since they don't care about the value of the other parameter).



Posterior predictive distribution

Given a set of observations (data) and the resulting posterior for the model ("data is drawn from a normal distribution"), predict the pdf of future data values. For the problem discussed in this lecture, $\sim \mathcal{N}(u, \sigma^2)$

$$p(\text{future data}|\text{data}) = \int \int d\mu \ d\sigma^2 \underbrace{p(\mu, \sigma^2|\text{data})}_{\text{ioint posterior}} \underbrace{p(\text{future data}|\mu, \sigma^2, \text{data})}_{p(\text{future data}|\mu, \sigma^2, \text{data})}$$

To simulate this distribution, first draw μ, σ^2 from their joint pdf then draw new data values from $\mathcal{N}(\mu, \sigma^2)$.

We expect that the new data point be distributed around \bar{x} , the mean of the current dataset. The expected variance is $\sigma^2 + \sigma^2/N = (1 + 1/N)\sigma^2$.

In fact, the posterior predictive pdf for the new data point is a Student's t distribution with location \bar{x} , scale $\sigma \sqrt{1+1/N}$, and degree N-1.

