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Recall: Multivariate posteriors
(from Andrew Gelman et al., “Bayesian Data Analysis”, 3ed.)

In most of the problems you will deal with in research,
~θ = (θ1, θ2, · · · , θNpar) with Npar > 1.

Definition (Joint, conditional, and marginal posteriors)

p(~θ|data) – joint posterior distribution for all the parameters.

p(θ1|θ2, · · · , θNpar , data) – conditional posterior for θ1 at fixed values of all

other components of ~θ and data.

p(θ1|data) – marginal posterior for θ1, marginalised over all other
parameters.
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Recall: Illustration for a normal posterior

If the data is drawn from a normal distribution, and we pick
non-informative priors for µ and lnσ, then

1 For known σ2, µ is distributed normally about the sample mean, with
variance σ2/N.

2 For known µ, σ2 has an Inverse-χ2 distribution with degree equal to
the sample size.

3 For unknown σ2, µ has a Student’s t distribution around the sample
mean.

4 For unknown µ, σ2 has an Inverse-χ2 distribution with degree equal
to the sample size minus 1.

For the last two cases, the unknown parameter is a nuisance parameter
that has been marginalised over.
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Recall: Posterior predictive distribution

Given a set of observations (data) and the resulting posterior for the model (“data is drawn
from a normal distribution”), predict the pdf of future data values.
For the problem discussed in this lecture,

p(future data|data) =

∫ ∫
dµ dσ2 p(µ, σ2|data)︸ ︷︷ ︸

joint posterior

∼ N (µ, σ2)︷ ︸︸ ︷
p(future data|µ, σ2,data)

To simulate this distribution, first draw µ, σ2 from their joint pdf then draw new data values
from N (µ, σ2).

We expect that the new data point be distributed around x̄ , the mean of the current dataset.

The expected variance is σ2 + σ2/N = (1 + 1/N)σ2.

In fact, the posterior predictive pdf for the new data point is a Student’s t distribution with
location x̄ , scale σ

√
1 + 1/N, and degree N − 1.
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Visualising data
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Five-number summary

Five number summary of a dataset of size N: x(1), q25, q50, q75, x(N).
q50 = median, a robust location measure.
Interquartile range, IQR = q75 − q50 is a robust scale measure (for a
normal distribution, IQR ≈ 1.349σ). The IQR encloses 50% of the sample
distribution.
Compare x̄ to q50 to check for skewness.
One way of visualising data, the box plot, uses the five-number summary.
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Box plot or Box-and-whisker plot
A non-parametric way to visualise the data distribution, without binning.
Procedure illustrated with the blood cholesterol data from Homework #3
(https://bit.ly/2Wvy49i):

1 Identify median with a horizonal line. In addition,
can show the mean with a dotted line. Compare
the two → skewness.

2 Draw a box enclosing the central 50% of the data
(the box edges are q25 and q75).

3 From each box edge, extend a “whisker” of length
3
2
IQR. These whiskers display the tails of the

distribution.

4 Any data outside the box-and-whisker region are
outliers and can be displayed with individual
symbols.

5 Mild
(3

2
≤
|x − q50|
IQR

< 3
)

and extreme( |x − q50|
IQR

≥ 3
)

outliers can be also distinguished.

Comparing relative locations and sizes of boxes → comparing distributions.

Activity: use the blood fat data from HW#3 and pyplot.boxplot to replicate above plot.
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Histogram

Also non-parametric, generates a piecewise constant estimator of the underlying density
distribution. Data of size N is placed into M bins of width h such that

f̂ (x) =
1

hN

N∑
i=1

M∑
b=1

I

(
|xi − xb|

h
≤ 1

)
I

(
|x − xb|

h
≤ 1

)

where xi are the data points, xb is the central location of the bth bin, and I is the indicator
function.
Advantages: easy and quick to compute, does well for large N.
Disadvantages:
Location information for data degraded (location for all points in a bin is now center of bin).
Shape highly sensitive on bin edge and bin width.
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Histogram (contd.)

Effect of binwidth.
Source: Applied Multivariate Statistical Analysis, Härdle &
Simar Effect of bin location.

Source: AstroML book
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Optimal bin width for a histogram

Frequentist methods
Find the binwidth that optimises some function of deviation of the estimated density from the
true density. This requires assumptions about the true density.

e.g. Assuming that the data are normally distributed, Scott’s rule (Scott 1979) is
h ≈ IQR N−1/3, with s the sample standard deviation.

e.g. Allowing for some departure from normality (viz.), the Freedman-Diaconis rule (Freedman
& Diaconis 1981) is h = 2 IQR N−1/3.

Disadvantage of these methods: not sensitive to multimodal distributions.

Bayesian methods:
No assumptions required about underlying distribution, can form a data likelihood and assume
appropriate priors for the problem.

Knuth (2006) used a multinomial likelihood and Jeffreys priors to find the optimal h. The
Bayesian method also allows the computation of the means and standard deviations of the bin
heights. Good multimodal/unimodal distinction!

The method of Bayesian Blocks (e.g., Scargle et al. 2013, applied to time-series data) designs a
log-likelihood allowing for varying binsize. The explanation by Jake VanderPlas is worth a read:
https://jakevdp.github.io/blog/2012/09/12/dynamic-programming-in-python/.
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Comparison of optimal widths

Source: AstroML book
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Bayesian methods: constant vs. variable bin width

Source: AstroML book

Bayesian blocks method better for small samples.
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Kernel density estimate

Non-parametric density estimate. Recall the histogram estimator equation:

f̂ (x) =
1

hN

N∑
i=1

K(ui )︷ ︸︸ ︷
M∑
b=1

I

(
|xi − xb|

h
≤ 1

)
I

(
|x − xb|

h
≤ 1

)

Generalisation: replace the inner sum with a function K(ui ) of ui =
( x − xi

h

)
. The function

K(u) is called a kernel, and h is its bandwidth. K(u) is evaluated at each data point xi . Instead

of each data point being treated as a delta function at its location, each data point now has a
“bin” represented by the normalised function K(u), and the bins are allowed to overlap with
those of other data points. The estimated density is then a sum of these overlapping functions.
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KDE (contd.)

There are many functions used for K(u).
Some standard ones: Gaussian, top hat, Epanechnikov (quadratic in u), exponential, linear, and
cosine. The Gaussian kernel is one of the most popular choices. The Epanechnikov kernel
minimises the mean square error, so it is also popular.

For more, see https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/.

The influence of K(u) is controlled by
its bandwidth h, which must be
estimated. Modern codes for
computing the KDE have built-in
options for this.
KDE is implemented in Python

packages such as Scikit-learn,
Scipy, and Statsmodels.

KDE can also be modified to handle
measurement errors (see chapter 6 in
AstroML book)!

Summary table from Jake VanderPlas’ blog.
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Summary

1 If you’re only interested in the general trend in your data, use box
plots. They’ll also immediately identify outliers!

2 Histograms are fast but bad for various reasons – their shapes depend
on bin size and bin location, and they degrade the information
contained in the raw data.

3 There are ways to figure out the optimum bin size – both frequentist
and Bayesian. The Bayesian versions are more sensitive to multimodal
distributions, and allow for the computation of the optimum bin size
without as few assumptions on the underlying distribution as possible.

4 The Bayesian Blocks method allows for variable bin size! It is
especially applicable for small data sizes.

5 If you’re really interested in generating a function that mimics the
true population distribution, use KDEs.
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	Visualising data

