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Recall: Monte Carlo error propagation

Assume: magnitude ∼ N (7.27, 0.542). Draw from this distribution N = 1000 times and
compute the flux from each draw. Use the resulting distribution to estimate the location and
scale parameters.

Distribution is severely skewed.
(Mean, median, mode) = (0.09, 0.08, 0.03) Jy.

Scale has to be evaluated in one of many ways
(e.g., equal-tailed interval).

This method is extremely useful when
(a) many errors have to be simultaneously
propagated and/or (b) the relationship between
the variables is nonlinear (e.g., the blackbody
flux in terms of its parameters).
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Recall: Quadrature (Deterministic vs. stochastic)

Based on weighted averages of function evaluations at predetermined points e.g.: Trapezoid
Rule, Simpson’s Rule, Gauss quadrature.
0th order: f (x) piecewise constant (w(xi ) = 1 above). Error ∼ N−1.
1st order: f (x) piecewise linear (Trapezoid Rule). Error ∼ N−2.
2nd order: f (x) piecewise quadratic (e.g., Simpson’s Rule). Error ∼ N−4.
d dimensions: error ∼ (one-dimensional error)1/d . More efficient techniques required!

Based on function evaluations at randomly drawn points e.g.: Monte Carlo, Markov Chain
Monte Carlo.

The simple Monte Carlo method to evaluate E[g(x)] =

∫
dx p(x) g(x) is as follows:

Draw samples of x from p(x), evaluate g(x), and approximate E[g(x)] with the average of g(x):

E[g(x)] =

∫
dx p(x) g(x) ≈

1

N

N∑
i=1

g(xi ).

Note that

b∫
a

dx g(x) = (b − a)

b∫
a

dx p(x) g(x), where p(x) = U[a, b] =
1

b − a
.

Error ∼
√

Var(g(x))

N
∝ N−1/2. Simple Monte Carlo not very efficient! Better than Simpson

only for d > 8!!
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Recall: Rejection sampling

Rejection sampling samples from a proposal distribution g(x) instead of the target distribution
p(x).

g(x) is such that for some M > 1, f (x) ≤ M g(x).

The general procedure for rejection sampling is as follows

1 Sample an x value from the proposal distribution.

2 For this x value, sample a y value from U[0, g(x)] (that is, find a height that is between
zero and the value of the proposal distribution at this x value).

3 If the sampled y ≤ f (x) for the corresponding x value, accept this x value. If not, reject it
and go back to step 1.

The fraction ν =
Naccepted

Ntotal
of accepted values is such that

∫
dx f (x) = ν

∫
dx g(x).

Another example of rejection sampling: computing the value of π using a circle inscribed in a
square.
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Problems with rejection sampling

Rejection sampling uses independent draws, and is great for 1- or
2-dimensional problems.

For efficiency, need a good guess for the proposal distribution g(x).

“Curse of dimensionality”. e.g., in order to have the same resolution N
along one dimension, the total number of points required ∼ Nd . The
probability of rejection increases as d increases. e.g., ratio of hypervolumes
of hypersphere inscribed in a hypercube goes to zero as d increases!

Need something better!
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Importance sampling (PSU Astrostatistics Summer School lecture notes)

Simple MC requires large samples for accurately computing p(rare events). One solution – give
those regions a larger weight so they are sampled more often.
In some situations, it is easier to sample from a proposal distribution qX (x) instead of sampling
from the target distribution pX (x):

E[f (X )] =

∫
dx pX (x) f (x) =

∫
dx qX (x)

pX (x)

qX (x)
f (x) ≡

∫
dx qX (x) w(x) f (x),

where w(x) is called the importance weight function. Then,

Ep [f (X )] = Eq [w(X )f (X )] ≈
1

N

N∑
i=1

w(Xi )f (Xi ), where Xi ∼ qX (x).

Compare to simple Monte Carlo method: Ep [f (X )] ≈
1

N

N∑
i=1

f (Xi ), where Xi ∼ pX (x).

Numerical considerations: for stability, w should be normalised, especially when one or both of
pX (x) and qX (x) aren’t.

The MC estimator for Eq [w(X )f (X )] is unbiased. For a smart choice of qX (x), it can also
minimise variance. In fact, one of the applications of importance sampling is to reduce the
variance in MC estimates.

Expectations over several different distributions pX ,1(x), pX ,2(x), · · · can be computed with one
sample from qX (x).
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Importance sampling: example (PSU Astrostatistics Summer School lecture notes)

For X ∼ N (0, 1), find p(X > 5) via simple Monte Carlo using N = 1000 samples.

p(X > 5) =

∞∫
−∞

dx pX (x) Ix>5(x) = Ep [Ix>5(x)] ≈ 10−7 (> 5σ event)

In a sample of N = 1000 points, we therefore expect np.round(1000*1e-7) = 0 such points!
Need N & 107 samples for accuracy!

Using importance sampling:

Step 1: Pick q(x) such that it “enhances” the tail region.
Since direction matters, choose q(x) to be the
exponential distribution with location x = 5.

Step 2: Draw N = 1000 variates from q instead of p:
x = scipy.stats.expon.rvs(loc = 5, size = 1000).

Step 3: Compute the average of w(X )f (X ):
expect = (norm.pdf(x)/np.exp(5-x)).mean()

(I get ≈ 2.91× 10−7).

Step 4: Verify with exact answer:
print(1 - norm.cdf(5))

(I get ≈ 2.87× 10−7).
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Some astronomical papers using importance sampling

Estimation of cosmological parameters:
Lewis & Bridle 2002, https://arxiv.org/abs/astro-ph/0205436
Trotta 2008, https://arxiv.org/abs/0803.4089

X-ray luminosity plane:
Gallo et al. (2018), http://adsabs.harvard.edu/abs/2018MNRAS.478L.132G

Extrasolar planet modelling:
Ford 2005, https://arxiv.org/abs/astro-ph/0512634.
Nelson et al. 2018, http://adsabs.harvard.edu/abs/2018arXiv180604683N.
Hsu et al. 2018, http://adsabs.harvard.edu/abs/2018AJ....155..205H.
Rajpaul et al. 2017, http://adsabs.harvard.edu/abs/2017MNRAS.471L.125R.
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The story so far

We use Monte Carlo methods in order to either sample from a distribution or compute an
expectation value of a function over a distribution.

Simple MC: E[f (X )] ≈
1

N

N∑
i=1

f (Xi ), where Xi ∼ pX (x).

Problem: pX (x) may be too complicated (esp. multidimensional), and/or difficult to sample
from.
Solution: rejection sampling, importance sampling – sample from a proposal distribution instead
of the target distribution.

Problem: “curse of high dimensionality” – the proposal needs to be as close as possible to the
target; as d increases, the discrepancy increases exponentially.
Solution: Markov Chain Monte Carlo (MCMC); explore multidimensional parameter space by
sampling (“travelling”) along regions/zones of high probability.
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Markov Chains

Refresher: Stochastic/random process - a family/sequence of random variables.
State space - set of all possible values attained by the random variables.

In general, in a random process {X0,X1, · · · ,Xn}, p(Xn+1 = xn+1) depends on the values
attained by X0,X1, · · · ,Xn.

Memorylessness (Markov property): p(Xn+1|Xn, · · · ,X0) = p(Xn+1|Xn) (Given present, future is
independent of the past).
The variables X0,X1, · · · ,Xn+1 then form a Markov Chain of order 1, and the family
{X0,X1, · · · ,Xn+1} is a Markov process.

Because of the Markov property, Markov Chains consist of dependent variables. These are useful
in describing, e.g., time-series data.

Members of Markov Chains can be indexed by discrete or continuous variables (“discrete-time”
or “continuous-time” chains), and can attain discrete or continuous values (“discrete-space” or
”continuous-space” chains. Space here refers to the state space).

Daily weather: discrete-time chain. Poisson process: continuous-time chain. Brownian motion,
stock prices: continuous-space chains. Simplification of Brownian motion into discrete-space,
discrete-time chain: random walk.
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Example: two-state discrete Markov Chain

(credit: User:Joxemai4/CC BY-SA 3.0)

p(Xj+1 = E |Xj = E) = 0.3,
p(Xj+1 = A|Xj = E) = 0.7,
p(Xj+1 = E |Xj = A) = 0.4,
p(Xj+1 = A|Xj = A) = 0.6.

These probabilities form the transition matrix
(or, for the continuous case, kernel) for the
system, such that Xj+1 = XjT
(T acts on the current state to give the future
state).
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Markov Chains: some definitions

A time-homogeneous MC is such that the probability of a given transition is independent of
time. That is, p(Xj+1 = b|Xj = a) = Tab independent of j .

A MC is irreducible if, given enough time (steps), it is possible to get to any state starting from
any other state. That is, ∃ some j > 0 such that p(Xj+1 = b|X0 = a) > 0.

A distribution π on the state space S is stationary w.r.t. the transition matrix T if πT = π (π is
a left-eigenvector of T with eigenvalue 1). In other words, once the system attains state π, it
stays there.

Ergodic Theorem for Markov Chains
If (X0,X1, · · · ,Xn) is an irreducible Markov Chain with stationary distribution π, then

1

N

N∑
i=0

f (Xi ) −−−−→
N→∞

E[f (X )]; that is, f (X ) averaged over the Markov Chain is an unbiased

estimate of the expectation of f (X ).

In addition, if the MC is aperiodic, then P(Xn = x |X0 = x0) −−−−→
N→∞

π(x) irrespective of x0.
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Markov Chain Monte Carlo

The purpose is to generate draws from a target distribution pX (x). Algorithms are framed in
such a way that the Markov process asymptotically approaches a unique stationary distribution
π(x) such that π(x) = pX (x).

After N steps (iterations), E[f (X )] ≈
1

N

N∑
i=1

f (Xi ), where Xi is the states explored at step i . As

N increases, the average converges to E[f (X )] due to the Ergodic Theorem.

Markov Chain: the decision as to where to advance in parameter space depends only on the
current location. The next “link” in the chain is decided using a jump distribution.

Monte Carlo: Pseudorandom numbers are generated in order to sample the target distribution.

Dependent sampling: Future step depends on present step.

The algorithm for each iteration:

1 Select starting point/state (parameter value θ0).

2 Evaluate unnormalised posterior probability at this point.

3 Draw new parameter value θj+1 from a proposal distribution.

4 Evaluate unnormalised posterior probability for this value.

5 Decide whether you will accept the new value.
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Metropolis-Hastings Algorithm

One of the oldest MCMC implementations.

1 Select starting point/state (parameter value θj ).

2 Evaluate unnormalised posterior probability at this point.

3 Draw new parameter value θj+1 from a proposal distribution (“jump distribution”
centered on current value).
For the Metropolis algorithm, the jump distribution must be symmetric:
p(θj+1|θj ) = p(θj |θj+1). Usually, θj+1 ∼ N (θj , σ

2), with σ the characteristic “step size”.
The results may depend on σ (small = high acceptance rate but more iterations required,
and vice versa).

4 Evaluate unnormalised posterior probability for this value.

5 Decide whether you will accept the new value accept with probability α = p(θ′)/p(θj ).
This is implemented by comparing α to a uniform random variable u ∼ U(0, 1). If α > u,
the new value is accepted. If not, the old value is retained.
This is because p(α ≥ u) = p(u ≤ α) ≡ Fu(α) = α for U(0, 1).
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Look stuff up!

AstroML implementation:
https://github.com/astroML/astroML/blob/master/astroML/plotting/mcmc.py

emcee (“The MCMC Hammer”): http://dfm.io/emcee/current/

Example of article that uses emcee to determine the most-probable combinations of parameters
of a modified blackbody model for circumstellar dust around AGB stars: Dharmawardena et al.
2018 (https://arxiv.org/abs/1805.10599).
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