Statistics for Astronomers: Lecture 20, 2019.05.13

Prof. Sundar Srinivasan

IRyA/UNAM

Recall: Monte Carlo error propagation

Assume: magnitude $\sim \mathscr{N}\left(7.27,0.54^{2}\right)$. Draw from this distribution $N=1000$ times and compute the flux from each draw. Use the resulting distribution to estimate the location and scale parameters.

Distribution is severely skewed.
$($ Mean, median, mode $)=(0.09,0.08,0.03) \mathrm{Jy}$.
Scale has to be evaluated in one of many ways (e.g., equal-tailed interval).

This method is extremely useful when
(a) many errors have to be simultaneously propagated and/or (b) the relationship between the variables is nonlinear (e.g., the blackbody flux in terms of its parameters).

Recall: Quadrature (Deterministic vs. stochastic)

Based on weighted averages of function evaluations at predetermined points e.g.: Trapezoid Rule, Simpson's Rule, Gauss quadrature.
$0^{\text {th }}$ order: $f(x)$ piecewise constant $\left(w\left(x_{i}\right)=1\right.$ above). Error $\sim N^{-1}$.
$1^{\text {st }}$ order: $f(x)$ piecewise linear (Trapezoid Rule). Error $\sim N^{-2}$.
$2^{\text {nd }}$ order: $f(x)$ piecewise quadratic (e.g., Simpson's Rule). Error $\sim N^{-4}$.
d dimensions: error $\sim(\text { one-dimensional error })^{1 / d}$. More efficient techniques required!
Based on function evaluations at randomly drawn points e.g.: Monte Carlo, Markov Chain Monte Carlo.
The simple Monte Carlo method to evaluate $\mathbb{E}[g(x)]=\int d x p(x) g(x)$ is as follows:
Draw samples of x from $p(x)$, evaluate $g(x)$, and approximate $\mathbb{E}[g(x)]$ with the average of $g(x)$:
$\mathbb{E}[g(x)]=\int d x p(x) g(x) \approx \frac{1}{N} \sum_{i=1}^{N} g\left(x_{i}\right)$.
Note that $\int_{a}^{b} d x g(x)=(b-a) \int_{a}^{b} d x p(x) g(x)$, where $p(x)=U[a, b]=\frac{1}{b-a}$.
Error $\sim \sqrt{\frac{\operatorname{Var}(g(x))}{N}} \propto N^{-1 / 2}$. Simple Monte Carlo not very efficient! Better than Simpson only for $d>8$!!

Recall: Rejection sampling

Rejection sampling samples from a proposal distribution $g(x)$ instead of the target distribution $p(x)$.
$g(x)$ is such that for some $M>1, f(x) \leq M g(x)$.
The general procedure for rejection sampling is as follows
(1) Sample an x value from the proposal distribution.
(2) For this x value, sample a y value from $U[0, g(x)]$ (that is, find a height that is between zero and the value of the proposal distribution at this x value).
(3) If the sampled $y \leq f(x)$ for the corresponding x value, accept this x value. If not, reject it and go back to step 1 .

The fraction $\nu=\frac{N_{\text {accepted }}}{N_{\text {total }}}$ of accepted values is such that $\int d x f(x)=\nu \int d x g(x)$.
Another example of rejection sampling: computing the value of π using a circle inscribed in a square.

Problems with rejection sampling

Rejection sampling uses independent draws, and is great for 1 - or 2-dimensional problems.

For efficiency, need a good guess for the proposal distribution $g(x)$.
"Curse of dimensionality". e.g., in order to have the same resolution N along one dimension, the total number of points required $\sim N^{d}$. The probability of rejection increases as d increases. e.g., ratio of hypervolumes of hypersphere inscribed in a hypercube goes to zero as d increases!

Need something better!

Importance sampling (PSU Astrostatistics Summer School lecture notes)

Simple MC requires large samples for accurately computing p(rare events). One solution - give those regions a larger weight so they are sampled more often.
In some situations, it is easier to sample from a proposal distribution $q_{X}(x)$ instead of sampling from the target distribution $p_{X}(x)$:
$\mathbb{E}[f(X)]=\int d x p_{X}(x) f(x)=\int d x q_{X}(x) \frac{p_{X}(x)}{q_{X}(x)} f(x) \equiv \int d x q_{X}(x) w(x) f(x)$,
where $w(x)$ is called the importance weight function. Then,
$\mathbb{E}_{p}[f(X)]=\mathbb{E}_{q}[w(X) f(X)] \approx \frac{1}{N} \sum_{i=1}^{N} w\left(X_{i}\right) f\left(X_{i}\right)$, where $X_{i} \sim q_{X}(x)$.
Compare to simple Monte Carlo method: $\mathbb{E}_{p}[f(X)] \approx \frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)$, where $X_{i} \sim p_{X}(x)$.
Numerical considerations: for stability, w should be normalised, especially when one or both of $p_{X}(x)$ and $q_{X}(x)$ aren't.

The MC estimator for $\mathbb{E}_{q}[w(X) f(X)]$ is unbiased. For a smart choice of $q_{X}(x)$, it can also minimise variance. In fact, one of the applications of importance sampling is to reduce the variance in MC estimates.

Expectations over several different distributions $p_{X, 1}(x), p_{X, 2}(x), \cdots$ can be computed with one sample from $q_{X}(x)$.

For $X \sim \mathscr{N}(0,1)$, find $p(X>5)$ via simple Monte Carlo using $N=1000$ samples.
$p(X>5)=\int_{-\infty}^{\infty} d x p_{x}(x) \mathbb{I}_{x>5}(x)=\mathbb{E}_{p}\left[\mathbb{I}_{x>5}(x)\right] \approx 10^{-7}$ (>5 σ event)
In a sample of $N=1000$ points, we therefore expect np.round (1000*1e-7) $=0$ such points! Need $N \gtrsim 10^{7}$ samples for accuracy!

Using importance sampling:

Step 1: Pick $q(x)$ such that it "enhances" the tail region. Since direction matters, choose $q(x)$ to be the exponential distribution with location $x=5$.

Step 2: Draw $N=1000$ variates from q instead of p : $\mathrm{x}=$ scipy.stats.expon.rvs $(\mathrm{loc}=5$, size $=1000)$.

Step 3: Compute the average of $w(X) f(X)$:
expect $=$ (norm.pdf(x)/np.exp(5-x)).mean()
(I get $\approx 2.91 \times 10^{-7}$).
Step 4: Verify with exact answer:
print(1 - norm.cdf(5))
(1 get $\approx 2.87 \times 10^{-7}$).

Some astronomical papers using importance sampling

Estimation of cosmological parameters:
Lewis \& Bridle 2002, https://arxiv.org/abs/astro-ph/0205436
Trotta 2008, https://arxiv.org/abs/0803.4089

X-ray luminosity plane:
Gallo et al. (2018), http://adsabs.harvard.edu/abs/2018MNRAS.478L.132G

Extrasolar planet modelling:
Ford 2005, https://arxiv.org/abs/astro-ph/0512634.
Nelson et al. 2018, http://adsabs.harvard.edu/abs/2018arXiv180604683N.
Hsu et al. 2018, http://adsabs.harvard.edu/abs/2018AJ...155..205H.
Rajpaul et al. 2017, http://adsabs.harvard.edu/abs/2017MNRAS.471L.125R.

The story so far

We use Monte Carlo methods in order to either sample from a distribution or compute an expectation value of a function over a distribution.
Simple MC: $\mathbb{E}[f(X)] \approx \frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)$, where $X_{i} \sim p_{X}(x)$.
Problem: $p_{X}(x)$ may be too complicated (esp. multidimensional), and/or difficult to sample from.
Solution: rejection sampling, importance sampling - sample from a proposal distribution instead of the target distribution.

Problem: "curse of high dimensionality" - the proposal needs to be as close as possible to the target; as d increases, the discrepancy increases exponentially.
Solution: Markov Chain Monte Carlo (MCMC); explore multidimensional parameter space by sampling ("travelling") along regions/zones of high probability.

Markov Chains

Refresher: Stochastic/random process - a family/sequence of random variables. State space - set of all possible values attained by the random variables.

In general, in a random process $\left\{X_{0}, X_{1}, \cdots, X_{n}\right\}, p\left(X_{n+1}=x_{n+1}\right)$ depends on the values attained by $X_{0}, X_{1}, \cdots, X_{n}$.

Memorylessness (Markov property): $p\left(X_{n+1} \mid X_{n}, \cdots, X_{0}\right)=p\left(X_{n+1} \mid X_{n}\right)$ (Given present, future is independent of the past).
The variables $X_{0}, X_{1}, \cdots, X_{n+1}$ then form a Markov Chain of order 1, and the family $\left\{X_{0}, X_{1}, \cdots, X_{n+1}\right\}$ is a Markov process.

Because of the Markov property, Markov Chains consist of dependent variables. These are useful in describing, e.g., time-series data.

Members of Markov Chains can be indexed by discrete or continuous variables ("discrete-time" or "continuous-time" chains), and can attain discrete or continuous values ("discrete-space" or "continuous-space" chains. Space here refers to the state space).

Daily weather: discrete-time chain. Poisson process: continuous-time chain. Brownian motion, stock prices: continuous-space chains. Simplification of Brownian motion into discrete-space, discrete-time chain: random walk.

Example: two-state discrete Markov Chain

(credit: User:Joxemai4/CC BY-SA 3.0)
$p\left(X_{j+1}=E \mid X_{j}=E\right)=0.3$,
$p\left(X_{j+1}=A \mid X_{j}=E\right)=0.7$,
$p\left(X_{j+1}=E \mid X_{j}=A\right)=0.4$,
$p\left(X_{j+1}=A \mid X_{j}=A\right)=0.6$.
These probabilities form the transition matrix (or, for the continuous case, kernel) for the system, such that $X_{j+1}=X_{j} T$
(T acts on the current state to give the future state).

Markov Chains: some definitions

A time-homogeneous MC is such that the probability of a given transition is independent of time. That is, $p\left(X_{j+1}=b \mid X_{j}=a\right)=T_{a b}$ independent of j.

A MC is irreducible if, given enough time (steps), it is possible to get to any state starting from any other state. That is, \exists some $j>0$ such that $p\left(X_{j+1}=b \mid X_{0}=a\right)>0$.

A distribution π on the state space S is stationary w.r.t. the transition matrix T if $\pi T=\pi$ (π is a left-eigenvector of T with eigenvalue 1). In other words, once the system attains state π, it stays there.

Ergodic Theorem for Markov Chains

If $\left(X_{0}, X_{1}, \cdots, X_{n}\right)$ is an irreducible Markov Chain with stationary distribution π, then $\frac{1}{N} \sum_{i=0}^{N} f\left(X_{i}\right) \xrightarrow[N \rightarrow \infty]{ } \mathbb{E}[f(X)]$; that is, $f(X)$ averaged over the Markov Chain is an unbiased estimate of the expectation of $f(X)$.

In addition, if the MC is aperiodic, then $P\left(X_{n}=x \mid X_{0}=x_{0}\right) \xrightarrow[N \rightarrow \infty]{ } \pi(x)$ irrespective of x_{0}.

Markov Chain Monte Carlo

The purpose is to generate draws from a target distribution $p_{X}(x)$. Algorithms are framed in such a way that the Markov process asymptotically approaches a unique stationary distribution $\pi(x)$ such that $\pi(x)=p_{X}(x)$.
After N steps (iterations), $\mathbb{E}[f(X)] \approx \frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)$, where X_{i} is the states explored at step i. As N increases, the average converges to $\mathbb{E}[f(X)]$ due to the Ergodic Theorem.

Markov Chain: the decision as to where to advance in parameter space depends only on the current location. The next "link" in the chain is decided using a jump distribution.
Monte Carlo: Pseudorandom numbers are generated in order to sample the target distribution.
Dependent sampling: Future step depends on present step.
The algorithm for each iteration:
(1) Select starting point/state (parameter value θ_{0}).
(2) Evaluate unnormalised posterior probability at this point.
(3) Draw new parameter value θ_{j+1} from a proposal distribution.
(4) Evaluate unnormalised posterior probability for this value.
(5) Decide whether you will accept the new value.

Metropolis-Hastings Algorithm

One of the oldest MCMC implementations.
(1) Select starting point/state (parameter value θ_{j}).
(2) Evaluate unnormalised posterior probability at this point.
(3) Draw new parameter value θ_{j+1} from a proposal distribution ("jump distribution" centered on current value).
For the Metropolis algorithm, the jump distribution must be symmetric:
$p\left(\theta_{j+1} \mid \theta_{j}\right)=p\left(\theta_{j} \mid \theta_{j+1}\right)$. Usually, $\theta_{j+1} \sim \mathscr{N}\left(\theta_{j}, \sigma^{2}\right)$, with σ the characteristic "step size".
The results may depend on σ (small $=$ high acceptance rate but more iterations required, and vice versa).
(4) Evaluate unnormalised posterior probability for this value.
(5) Decide whether you will accept the new value accept with probability $\alpha=p\left(\theta^{\prime}\right) / p\left(\theta_{j}\right)$.

This is implemented by comparing α to a uniform random variable $u \sim U(0,1)$. If $\alpha>u$, the new value is accepted. If not, the old value is retained. This is because $p(\alpha \geq u)=p(u \leq \alpha) \equiv F_{u}(\alpha)=\alpha$ for $U(0,1)$.

Look stuff up!

AstroML implementation:
https://github.com/astroML/astroML/blob/master/astroML/plotting/mcmc.py
emcee ("The MCMC Hammer"): http://dfm.io/emcee/current/
Example of article that uses emcee to determine the most-probable combinations of parameters of a modified blackbody model for circumstellar dust around AGB stars: Dharmawardena et al. 2018 (https://arxiv.org/abs/1805.10599).

