
Statistics for Astronomers

Midterm Exam (Due before 5:00 PM on Tuesday, 2021.02.09)

Prof. Sundar Srinivasan

February 8, 2021

Notes: (1) You are welcome to use Python functions to evaluate probabilities for various distributions, and Mathematica/Wolfram Alpha

to compute integrals if necessary. Just mention your source in each case! (2) Email me your Python scripts and any/all resulting

output plots/images.

1. (6 points) The file SN data.vot (VOTable) contains the morphology type and stellar mass of the
host galaxies of 68 Type Ia supernovae. Perform a t-test to determine whether galaxies with types
S0 or earlier have larger stellar masses than those with types S0/a or later. Repeat the test for (S0/a
or earlier) vs. (Sa or later), and for (Sab or earlier) vs. (Sb or later).

Note: assume in each case that the two subgroups are drawn from populations with differing variances.

2. Rishi wants to compute a linear fit to his data (VOTable) consisting of observations (x, y) with
measurement uncertainties sy on the y variable. He performs a χ2 minimisation procedure that
results in best-fit estimates of 27 and −10.4 for the intercept and slope respectively.

(a) (3 points) Rishi considers χ2 values within the 68% central confidence interval around the
expected χ2 for his dataset as “acceptable”. For the best-fit parameter values given above, does
he have an acceptable fit?

(b) (5 points) Sarah suspects that the data might violate some of the conditions required for the
χ2 distribution to be applicable. Design an appropriate hypothesis test and determine whether
her suspicions are valid.

3. In this problem, you will compute a power-law relation for the excess flux at 8 µm for LMC C-rich
AGB stars as a function of their luminosity. The data required for this problem can be downloaded
here (CSV). Given the luminosity L in solar luminosities and the 8 µm excess flux F8 in Jy, you have
to find parameters (α, β) such that

y = α+ β x, with x ≡ logL, y ≡ logF8. (1)

Assume that the uncertainties associated with L and F8 are independent, uncorrelated, and normally
distributed.

It will help to visualise the data on a log-log plot before you answer the questions that follow.

(a) (3 points) Propagate the uncertainties in (L,F8) to the uncertainties (sx, sy) in (x, y). You can
use the linear approximation of the Taylor Series (i.e, just use the first derivative).
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https://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/datasets/SN_data.vot
https://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/datasets/chisq_data.vot
http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/datasets/Srinivasanetal2009_Crich_8micron_excess.csv


(b) (1 point) Using the (x, y) values and the uncertainty sy you obtained from the previous parts,
fit a straight line using the method described in Section 1 of Hogg et al. (2010). What are the
intercept and the slope?

(c) (1 point) Based on the resulting covariance matrix for the parameters, what are the uncertain-
ties in the parameters?

(d) (2 points) What is the correlation coefficient between the uncertainties in the intercept and
the slope?

(e) (2 points) Compute the reduced χ2 using the (x, y) values, the uncertainty sy, and the best-fit
intercept and slope (Hint: use Equation 7 from Hogg et al. and divide the χ2 by the number of
degrees of freedom). Is the value very different from unity? If so, what do you think it is the
reason?

(f) (1 point) Based on the discussion in Section 4 of Hogg et al., are the parameter uncertainties
computed in Question 3c realistic? Why/why not?

(g) (5 points) Use B = 100 bootstrap resamples to estimate the standard deviations for the
intercept and the slope. Caution: this is a time-consuming step, so make sure this
part of the code runs independent of the rest.

4. We will now improve the fit to the data in Question 3 using the description in Sections 7 and 8 in Hogg
et al. In these sections, the paper describes a method to fit a line by incorporating uncertainties along
both axes as well as intrinsic scatter. In this method, we transform the intercept and the slope into
parameters θ ≡ tan−1(slope) (the angle subtended by the line at the X-axis) and b⊥ ≡ intercept/ cos θ
(the perpendicular distance of this line from the origin). An additional parameter V accounts for
intrinsic scatter orthogonal to the line (V is the variance of the orthogonal intrinsic scatter).

Download orthofit.py. This code performs maximum likelihood estimation using Equation (35) in
Hogg et al. to derive the best-fit values for θ, b⊥, and V . In order to perform the fitting, the code
requires the data (x, y) and the uncertainties (sx, sy) from Question 3 as input. It also requires an
initial guess vector for the parameters θ, b⊥, and V . The code then outputs the best-fit values for
the intercept and slope (transforming back from θ, b⊥), and V .

(a) (1 point) Use the best-fit intercept and slope computed in Question 3b to derive initial guesses
for θ and b⊥.

(b) (2 points) In Question 3e, the reduced χ2 was computed assuming that the covariance matrix
only had contributions from sy. Suppose instead that the covariance matrix was of the form
Sigma = np.diag(s x**2 + s y**2 + invar),
where invar is a number less than 1. From trial-and-error, find any one value of invar for
which the reduced χ2 is close to 1 (remember, the number of parameters has increased by 1
because of invar). Use this value of invar as the initial guess for V .

(c) (4 points) Execute orthofit.py. It outputs the best-fit intercept, slope, and intrinsic variance.
Plot the data onto a figure and overlay a line generated from the (intercept, slope) pair computed
in this question, and compare it to a line generated from the pair computed in Question 3b.
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http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/orthofit.py

