Statistics for Astronomers
 Midterm Exam (Due before 5:00 PM on Tuesday, 2021.02.09)

Prof. Sundar Srinivasan

February 8, 2021

Abstract

Notes: (1) You are welcome to use Python functions to evaluate probabilities for various distributions, and Mathematica/Wolfram Alpha to compute integrals if necessary. Just mention your source in each case! (2) Email me your Python scripts and any/all resulting output plots/images.

1. (6 points) The file SN_data.vot (VOTable) contains the morphology type and stellar mass of the host galaxies of 68 Type Ia supernovae. Perform a t-test to determine whether galaxies with types S 0 or earlier have larger stellar masses than those with types $\mathrm{S} 0 / \mathrm{a}$ or later. Repeat the test for (S0/a or earlier) vs. (Sa or later), and for (Sab or earlier) vs. (Sb or later).

Note: assume in each case that the two subgroups are drawn from populations with differing variances.
2. Rishi wants to compute a linear fit to his data (VOTable) consisting of observations (x, y) with measurement uncertainties sy on the y variable. He performs a χ^{2} minimisation procedure that results in best-fit estimates of 27 and -10.4 for the intercept and slope respectively.
(a) ($\mathbf{3}$ points) Rishi considers χ^{2} values within the 68% central confidence interval around the expected χ^{2} for his dataset as "acceptable". For the best-fit parameter values given above, does he have an acceptable fit?
(b) (5 points) Sarah suspects that the data might violate some of the conditions required for the χ^{2} distribution to be applicable. Design an appropriate hypothesis test and determine whether her suspicions are valid.
3. In this problem, you will compute a power-law relation for the excess flux at $8 \mu \mathrm{~m}$ for LMC C-rich AGB stars as a function of their luminosity. The data required for this problem can be downloaded here (CSV). Given the luminosity L in solar luminosities and the $8 \mu \mathrm{~m}$ excess flux F_{8} in Jy, you have to find parameters (α, β) such that

$$
\begin{equation*}
y=\alpha+\beta x, \quad \text { with } x \equiv \log L, y \equiv \log F_{8} . \tag{1}
\end{equation*}
$$

Assume that the uncertainties associated with L and F_{8} are independent, uncorrelated, and normally distributed.

It will help to visualise the data on a log-log plot before you answer the questions that follow.
(a) (3 points) Propagate the uncertainties in $\left(L, F_{8}\right)$ to the uncertainties $\left(s_{x}, s_{y}\right)$ in (x, y). You can use the linear approximation of the Taylor Series (i.e, just use the first derivative).
(b) (1 point) Using the (x, y) values and the uncertainty s_{y} you obtained from the previous parts, fit a straight line using the method described in Section 1 of Hogg et al. (2010). What are the intercept and the slope?
(c) (1 point) Based on the resulting covariance matrix for the parameters, what are the uncertainties in the parameters?
(d) (2 points) What is the correlation coefficient between the uncertainties in the intercept and the slope?
(e) ($\mathbf{2}$ points) Compute the reduced χ^{2} using the (x, y) values, the uncertainty s_{y}, and the best-fit intercept and slope (Hint: use Equation 7 from Hogg et al. and divide the χ^{2} by the number of degrees of freedom). Is the value very different from unity? If so, what do you think it is the reason?
(f) (1 point) Based on the discussion in Section 4 of Hogg et al., are the parameter uncertainties computed in Question 3c realistic? Why/why not?
(g) (5 points) Use $B=100$ bootstrap resamples to estimate the standard deviations for the intercept and the slope. Caution: this is a time-consuming step, so make sure this part of the code runs independent of the rest.
4. We will now improve the fit to the data in Question 3 using the description in Sections 7 and 8 in Hogg et al. In these sections, the paper describes a method to fit a line by incorporating uncertainties along both axes as well as intrinsic scatter. In this method, we transform the intercept and the slope into parameters $\theta \equiv \tan ^{-1}$ (slope) (the angle subtended by the line at the X-axis) and $b_{\perp} \equiv$ intercept $/ \cos \theta$ (the perpendicular distance of this line from the origin). An additional parameter V accounts for intrinsic scatter orthogonal to the line (V is the variance of the orthogonal intrinsic scatter).
Download orthofit.py. This code performs maximum likelihood estimation using Equation (35) in Hogg et al. to derive the best-fit values for θ, b_{\perp}, and V. In order to perform the fitting, the code requires the data (x, y) and the uncertainties $\left(s_{x}, s_{y}\right)$ from Question 3 as input. It also requires an initial guess vector for the parameters θ, b_{\perp}, and V. The code then outputs the best-fit values for the intercept and slope (transforming back from θ, b_{\perp}), and V.
(a) (1 point) Use the best-fit intercept and slope computed in Question 3 b to derive initial guesses for θ and b_{\perp}.
(b) ($\mathbf{2}$ points) In Question 3 e , the reduced χ^{2} was computed assuming that the covariance matrix only had contributions from s_{y}. Suppose instead that the covariance matrix was of the form Sigma $=$ np.diag (s_x**2 + s_y**2 + invar),
where invar is a number less than 1. From trial-and-error, find any one value of invar for which the reduced χ^{2} is close to 1 (remember, the number of parameters has increased by 1 because of invar). Use this value of invar as the initial guess for V.
(c) (4 points) Execute orthofit.py. It outputs the best-fit intercept, slope, and intrinsic variance. Plot the data onto a figure and overlay a line generated from the (intercept, slope) pair computed in this question, and compare it to a line generated from the pair computed in Question 3b.

