Statistics for Astronomers Homework \#2 (Due before 5:00 PM on Monday, 2020.10.05)

Prof. Sundar Srinivasan

October 6, 2020

Abstract

Notes: (1) You are welcome to use Python functions to evaluate probabilities for various distributions, and Mathematica/Wolfram Alpha to compute integrals if necessary. Just mention your source in each case! (2) For Question 6, email me your Python scripts and any/all resulting output plots/images.

1. Sarah writes a code to print out the sum of 10 independent random deviates drawn from a probability distribution $p_{X}(x)$ that has mean 3.5 and variance 0.025 . She runs the code twice, generating sums S_{1} and S_{2}.
(a) 2 points Explain why S_{1} and S_{2} are (i) independent and (ii) identically distributed random numbers.
(b) $\mathbf{1}$ point What are the mean and variance of the distribution from which the sums are drawn? Why?
2. (3 points)

A 100 -seater plane has a passenger load limit of 8450 kg . Assuming that the passenger masses are independent and identically distributed according to $\mathscr{N}\left(\mu, \sigma^{2}\right)$, with $\mu=80 \mathrm{~kg}$ and $\sigma=15 \mathrm{~kg}$, what is the probability that the load limit is exceeded?
3. (Adapted from Chapter 2 of "Practical Statistics for Astronomers" by J. V. Wall छ C. R. Jenkins) Given that about 60% of the sources in the Hubble Guide Star Catalogue are binary stars,
(a) ($\mathbf{1}$ point) what is the probability that a random sample of $N=10$ stars contains 3 non-binaries (corresponding to a 30% contamination from non-binaries)?
(b) (3 points) what is the smallest value of N for a $>99 \%$ probability that there are at least 2 non-binaries in a randomly selected sample?
4. (Adapted from Problem 2 in Example Set 2 of the Astronomical Data Analysis lectures by Martin Hendry of Glasgow University.)
The Baryon Oscillation Spectroscopic Survey (BOSS) program identified 87822 quasars over a survey area of $3275 \mathrm{deg}^{2}$ (Pâris et al. 2012 A\&A 548, A66). Assuming that the projected distribution of quasars can be modelled as a Poisson distribution,
(a) (1 point) what is the probability of observing less than 4 quasars in a given square degree of the sky? Justify your choice of probability distribution.
(b) (2 points) what area of sky could one expect to survey before the probability of finding no quasars was less than 1% ?
5. Assume that stars of the same spectral type have the same radial speed v_{rad}, but that their directions are oriented randomly. Thus, the projected radial velocities are $v_{\mathrm{rad}} \cos \phi$, where ϕ (the angle between the line-of-sight and the radial velocity vector) is drawn from Uniform $[0, \pi)$.
(a) (2 points) What is the probability distribution of the projected velocities?
(b) (1 point) What is the population mean?
(c) (2 points) What is the population variance?
6. Generate $N=1000$ random points inside a circle of radius R such that each unit area contains approximately the same number of points.
(a) (5 points) Justify the probability distribution(s) you use to generate the locations of these points.
(b) (2 points) Write a Python script that, for a given N and R pair, generates the sample and outputs a scatter plot showing their distribution. (You can use this plot to verify that the distribution of points is uniform)

