Statistics for Astronomers Homework #3 (Due before 5:00 PM on Wednesday, 2020.10.21)

Prof. Sundar Srinivasan

October 14, 2020

Notes: (1) You are welcome to use Python functions to evaluate probabilities for various distributions, and Mathematica/Wolfram Alpha to compute integrals if necessary. Just mention your source in each case! (2) Email me your Python scripts and any/all resulting output plots/images.

1. Assume that the Initial Mass Function of stars is of the form

$$p_M(m) = C m^{-\alpha}$$
 $\alpha > 1, m_1 \le m \le m_2$

- (a) (2 points) Compute C.
- (b) (5 points) A data set consists of independently-determined masses $m_i (i = 1, 2, \dots, N)$ for N stars. What are the expressions for the maximum likelihood estimates for m_1 and m_2 in terms of the data?
- (c) (4 points) If the sample mean of $\ln m$ ($m \text{ in } M_{\odot}$) for the data is 0.8, and $\widehat{m_1} = 1 M_{\odot}$, $\widehat{m_2} = 200 M_{\odot}$, write down an equation for $\widehat{\alpha}$ and find a numerical solution with a Python script.
- 2. Assume that the probability p per unit time of a supernova event is independent of the properties of the host galaxy. In a dataset of N galaxies, the i^{th} galaxy was observed for time t_i resulting in n_i SNe observations.
 - (a) (2 points) What is the maximum likelihood estimate for *p*?
 - (b) (2 points) What is the Cramér-Rao bound on the variance of this estimate?