Statistics for Astronomers Homework #6 (Due before 10:00 PM on Monday, 2020.12.14)

Prof. Sundar Srinivasan

December 7, 2020

Notes: (1) You are welcome to use Python functions to evaluate probabilities for various distributions, and Mathematica/Wolfram Alpha to compute integrals if necessary. Just mention your source in each case! (2) Email me your Python scripts and any/all resulting output plots/images.

For each question, assume independent datasets, and that all hypothesis tests require 5% significance.

1. The questions below require the files available here. These tables contain data from Scott et al. (1978) on the levels (in mg dL⁻¹) of plasma cholesterol (first column) and triglycerides (second column, which you won't use) for a control sample (first file) of $N_1 = 51$ subjects with no evidence of heart disease and for a test sample (second file) of $N_2 = 320$ subjects who had narrowing of the arteries (arteriosclerosis/atherosclerosis).

You will use these data to determine whether there is a correlation between plasma cholesterol level and heart disease.

- (a) (**3 points**) Compare the distributions of cholesterol levels among the two samples using a boxand-whisker plot that shows the median and mean of each sample. Based on the box plots, can you comment on whether or not each of the distributions is symmetric?
- (b) (4 points) Perform a 1-sample Kolmogorov-Smirnov test on each sample to determine whether they are Gaussians. Can you use the 2-sample *F* or *t*-tests on these samples?
- (c) (3 points) Can you reject the null hypothesis "there is no difference in cholesterol levels in the two samples (and, therefore, no connection between cholesterol level and heart disease)" using the Mann-Whitney U test? In order for there to be a connection between cholesterol level and heart disease, we must demonstrate that the cholesterol level is higher in patients in the second sample (that is, perform a one-sided test). Use this as your alternate hypothesis.

2. Comparing globular cluster luminosity functions.

We want to know if the properties of globular clusters are the same between the Milky Way and the Andromeda Galaxy. Download K-band data for globular clusters in the Milky Way and M31. The Milky Way data is corrected for distance (*i.e.*, they are absolute K magnitudes), but the M31 data aren't. Correct the latter assuming a distance modulus of 24.9 mag. Use these two datasets to answer the following questions.

- (a) (5 points) Perform the 2-sample Kolmogorov-Smirnov and Anderson-Darling tests to determine whether the two samples are drawn from the same distribution. Compare the empirical distributions of the two samples to explain why the two tests disagree.
- (b) (1 points) Perform a two-sided Mann-Whitney U test to determine whether the two samples are drawn from the same distribution.
- (c) (5 points) Use the sample mean and sample standard deviation to studentise each dataset. Perform the 1-sample Anderson-Darling test to see if the studentised data in each case are consistent with a standard normal distribution. Which dataset is less likely to be drawn from a standard normal?
- 3. (6 points) Cite one example of a refereed astronomy paper since 2015 that uses either the likelihoodratio test or the *F*-test in its analysis. Briefly explain in your own words for what purpose the test is used. Identify the null and alternate hypotheses, and comment on their conclusion – for example, what is their *p*-value? Are they able to reject their null hypothesis?