Statistics for Astronomers Homework \#7 (Due before 12:00 PM on Monday, 2021.01.18)

Prof. Sundar Srinivasan

January 10, 2021

Notes: (1) You are welcome to use Python functions to evaluate probabilities for various distributions, and Mathematica/Wolfram Alpha to compute integrals if necessary. Just mention your source in each case! (2) Email me your Python scripts and any/all resulting output plots/images.

1. (6 points) Derive the Jeffreys priors for the population mean and population standard deviation of a normally-distributed random variable.
2. Tossing a coin $N=1000$ times results in $x=473$ heads. Let θ be the probability of obtaining a head from a single coin toss. Consider two scenarios: (a) θ has a Uniform prior (b) θ has the Jeffreys prior. Answer the following questions using the properties of the Beta distribution and the fact that

$$
\int_{0}^{1} d \theta \theta^{x}(1-\theta)^{N-x}=\frac{\Gamma(x+1) \Gamma(N-x+1)}{\Gamma(N+2)} .
$$

(a) (2 points) Derive the Jeffreys prior for θ.
(b) ($\mathbf{3}$ points) For each prior, what are the mean and variance? Based on these values, explain which prior is less informative and why.
(c) (4 points) What is the prior predictive distribution for x for each prior?
(d) ($\mathbf{7}$ points) What is the posterior distribution of θ for each prior? For each prior, what are the posterior mean and variance? Is the difference in the distributions and the means/variances significant? What is the reason for this?
(e) ($\mathbf{4}$ points) For each prior, what is the posterior probability that $\theta>0.5$?
(f) (4 points) For each prior, what is the probability that, following the above experiment, a single coin toss results in a head?

