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1. (a) For Question 1, I assumed implicitly that each answer is equally likely and that each individual

answer has a probability of
1

total number of answers
. These numbers are the result of applying

the Principle of Indifference.

(b) For Question 2, I am updating the prior probability of 20% with evidence (that the professor’s
lectures alluded to this answer in particular), resulting in a higher posterior probability. This is
a result of applying the Bayesian interpretation of probability to the problem.

2. The table below shows the breakdown by number of the possible scenarios, with the ones relevant to
this problem shown in bold:

Spectral type Classified Classified Total
O-rich C-rich

O-rich 782 20 802
C-rich 3 79 82

882

The total number of sources that are either classified as O-rich or misclassified is 782 + 20 + 3 =
805, out of a total of 884 objects. The third of these numbers is for the situation where the sources

are classified as O-rich and misclassified. The relevant probability is therefore
805

884
≈ 0.91.

3. From the table, total number of FIR(RGB) objects in the Magellanic Clouds = 1262 + 303 = 1565.
Of these, FIR(RGB) objects in the LMC = 1262.

Therefore, P (LMC|FIR(RGB)) =
1262

1565
≈ 0.81.

4. (a) We define the following six events:
D = “person infected”; P (D) = 0.0025 (given in problem).
Dc = “person not infected”; P (Dc) = 1− P (D) = 0.9975.
+|D = “test is positive given person is infected”; P (+|D) = 0.995 (given in problem).
+|Dc = “test is positive given person isn’t infected”; P (+|Dc) = 0.072 (given in problem).

This event is called a false positive or a Type I error1.

1The rejection of a TRUE null hypothesis is a Type I error (“false positive”), and the failure to reject a FALSE null
hypothesis is a Type II error (“false negative”). In this problem, the null hypothesis is that H0 = “person is not infected”.
Type I error: H0 is true (i.e., person is not diseased), but the ELISA test is positive for infection.
Type II error: H0 is false (i.e., person is infected), but the ELISA test is negative for infection.
Both types of errors can be accounted for in the Bayesian framework, as demonstrated in this problem.
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−|D = “test is negative given person is infected”; P (−|D) = 1− P (+|D) = 0.005.
This is a false negative or a Type II error.

−|Dc = “test is negative given person isn’t infected”; P (−|Dc) = 1− P (+|D) = 0.005.

The problem asks us to compute P (D|+). Using Bayes’ Theorem,

P (D|+) =
P (+|D)

P (+)
×P (D) =

Accuracy of test

Total probability of testing positive
×Probability of being infected

Using the Law of Total Probability,
P (+) = P (+|D)× P (D) + P (+|Dc)× P (Dc) = 0.995× 0.0025 + 0.072× 0.9975 ≈ 0.074

Therefore,

P (D|+) =
0.995

0.074
× 0.0025 ≈ 0.034 ≈ 3%

Even though the accuracy of the test is quite high, testing positive does not necessarily mean
a high probability of being infected, because of (a) the very low incidence of the disease in the
population (very low prior), which reduces the numerator, and (b) the non-zero false positive
rate of the test, which increases the denominator.

(b) If the same person is administered a second ELISA test, the accuracy remains the same, as
does the total probability of testing positive. The only thing that changes is that we have
to update our prior – the probability of being infected increases to 0.034, as the person is no
longer from the general population but one who has tested positive. With this updated prior,

P (D|+) =
0.995

0.995× 0.034 + 0.072× (1− 0.034)
× 0.034 ≈ 33%.

5. For brevity, we denote the array [0, 1, 2, 3, 4] as ~C, and store the probabilities P (H1|Ci) in an array:

P (H1|~C) =
1

4
× [0, 1, 2, 3, 4]

5∑
i=1

P (H1|Ci) =
1

4
× 10

The probability P (Ci) of randomly selecting coin Ci is independent of i: P (Ci) =
1

5
∀ i

(a) P (Ci|H1) =
P (H1|Ci)

P (H1)
× P (Ci) (Using Bayes’ Theorem)

=
P (H1|Ci)

N∑
j=1

P (H1|Cj)× P (Cj)

× P (Ci) (Law of Total Probability)

So that, in vector form,

P (~C|H1) =
1

10
× [0, 1, 2, 3, 4]

So, for instance, the probability that the coin #4 was selected, given that the first toss resulted

in a head, is equal to
3

10
.

(b) We need to compute P (H2|H1), which we first rewrite as

P (H2|H1) =
P (H2 ∩H1)

P (H1)
.
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As before, the denominator can be written using the Law of Total Probability in terms of
conditional probabilities involving the coins Ci:

P (H1) =
N∑
i=1

P (H1|Ci)× P (Ci).

A version of the Law of Total Probability can also be used to rewrite the numerator:

P (H2 ∩H1) =
N∑
i=1

P (H2 ∩H1|Ci)× P (Ci).

The term P (H2∩H1|Ci) represents the probability of getting two heads once coin Ci is selected.
For each coin Ci, the outcomes of successive tosses are independent; therefore,
P (H2 ∩H1|Ci) = P (H2|Ci)× P (H1|Ci) = P (H|Ci)

2.
In vector form, we write

P (H2 ∩H1|~C) =
1

16
× [0, 1, 22, 32, 42].

Using the fact that
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
, we get P (H2|H1) =

30/16

10/4
=

3

4
.

This probability for two consecutive heads seems quite high. It is, however, consistent with the
fact that we have two coins with P (H) > 0.5 and only one with 0 < P (H) < 0.5. In fact, one of
the coins has P (H) = 1. This artificial example biases the probability of success towards higher
values. The following code snippet prints out probabilities close to our theoretical answer above:

import numpy as np

from scipy.stats import bernoulli

trials = 1000

c = np.arange(5) #the coins

#pick a coin

k = np.random.choice(c, size = trials)

p = 0.25 * k #probability of success once coin k is chosen

tosses = bernoulli.rvs(p, size = (2, len(p)))

numerator = len(np.where(tosses.sum(axis = 0) == 2)[0])

denominator = len(np.where(tosses[0, :] == 1)[0])

prob = numerator / denominator

print("The probability P(H2|H1) = ".format(np.round(prob, decimals = 3)))
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