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1. (a) Both S1 and S2 are computed by summing together random deviates. They are, therefore, also
random numbers.
(i) We implicitly assume that the random number generator is able to generate independent
random deviates. Therefore, S1 and S2 must be independent since they are derived from inde-
pendent runs of the generator. (ii) Due to the Central Limit Theorem, the sum of iid random
numbers also derives from the same distribution as the original deviates. Therefore, S1 and S2

are identically distributed.

(b) The mean of the sums should be 10 times the population mean of the original random deviates.
Therefore, µmean = 35. From Bienaymé’s Identity, the variance of a sum of independent random
variables is the sum of their variances. Therefore, Var(S1) = Var(S2) = 10×Var(Xi) = 0.25.

2. The total passenger load is the sum of 100 normal random numbers drawn from N (µ, σ2). The sum
is therefore distributed according to N (100µ, 100σ2) = N (100µ, (10σ)2) from Bienaymé’s Identity
and the Central Limit Theorem1.
The problem asks for the probability that this sum is greater than the passenger load limit of 8450
kg; that is, P (

∑
X > 8450) = 1−P (

∑
X ≤ 8450). The second term on the RHS is nothing but the

CDF for the Normal distribution with mean 100µ and variance 100σ2.
We can use the scipy.stats.norm module to calculate the necessary probability, setting µ = 80 kg
and σ = 15 kg:

from scipy.stats import norm

print(1 - norm.cdf(8450, loc = 100 * 80, scale = 10 * 15))

The result is close to 0.00135.

Note that the passenger load limit is exactly 3 standard deviations higher than the mean passenger
load, so we could also have solved the problem using the Standard Normal:

print(1 - norm.cdf(3))

3. We assume independence here – i. e., that the occurrence of one binary does not affect the occurrence
of any other binary. In such a case, the detection or non-detection of a single binary is the result of
a Bernoulli trial. Since we are interested in the sum of many such trials, the problem requires use
of the Binomial distribution.

1In fact, as long as the masses are independent and identically distributed, the actual distribution from which they are
drawn is immaterial – their sum will still be normally distributed according to the Central Limit Theorem.
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(a) We first estimate the probability p of finding a single binary in the dataset: p̂ = 0.6 (given). If
X is the total binary count, we are asked to find P (X = 7) (7 binaries ≡ 3 non-binaries) in a
random sample of N = 10 stars. The requisite probability is

P (X = 7) =

(
10

7

)
p7(1− p)3 ≈ 0.215.

This result can also be obtained using the scipy.stats.binom package:
from scipy.stats import binom

print(binom.pmf(7, 10, 0.6))

(b) The event “at least 2 non-binaries” is the same as “at most N-2 binaries”. The problem states
that the probability associated with this event is 0.99. That is, P (X ≤ N − 2) ≥ 0.99. The
term on the LHS is just the CDF of the Binomial distribution. We are given the smallest value
that the CDF can have, and are asked to find the argument N − 2 such that this is true. Using
the cdf method of the scipy.stats.binom module,

from scipy.stats import binom

prob = 0.0; i = 2

while prob < 0.99:

prob = binom.cdf(i-2, i, 0.6)

i += 1

print(i-1, prob) #because i was updated when exiting the loop

The result is N = 14.

The problem can also be solved by root-finding methods. The probability associated with the
complementary event “at least N-1 binaries” is 0.01 = α (say). If X is the number of binaries
found in a sample of N stars,

P (X ≥ N − 1) = NpN−1(1− p) + pN = pN
(

1 +N
1− p
p

)
≤ α.

While we can guess the value of N quite easily by substitution, I’ll describe a couple of methods
here that will be applicable to more general problems. Since p < 1, pN rapidly decreases.
In order to reduce the dynamic range, let’s work with the logarithmic version of the above
inequality:

N log p+ log
(

1 +N
1− p
p

)
− logα ≤ 0, with p = 0.6, α = 0.01. (1)

We can solve Equation (1) for N in many ways. I’ll discuss three possibilities below.
(a) Precise solution via a root finder: the scipy.optimize.root scalar method is suitable for
this problem, using the bisection method (method = "bisect"). Please find this implementa-
tion in the sample python script here . Solution: N ≥ 14.
(b) Approximate solution by finding the minimum absolute value: since we are interested in
an integer, we can evaluate the function on a relatively low-resolution grid of x values and find
the integer such that the absolute value of the function is closest to zero for x < N . This is
implemented in the sample script. Solution: N ≥ 14.
(c) Approximate solution by visual estimation from plot: the sample script also generates Fig.
(1). Solution: N ≥ 14.

4. According to the problem, the rate per square degree of occurrence of quasars in the BOSS survey
area is 87822/3275 ≈ 26.82. Therefore, λ = 26.82 deg−2 × 1 deg2 = 26.82.

(a) We can assume a Poisson distribution if (a) the occurrence of each quasar is independent of the
occurrence of other quasars and (b) the average rate of occurrence is independent of the region
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Figure 1: The function from Equation (1) (thick curve) hits zero (blue line) at x > 13. The smallest integer
higher than this value is also indicated (dashed line).

of the survey area picked. If X is the number of quasars detected, then the problem requires

P (X < 4) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)

= e−λ
(λ0

0!
+
λ1

1!
+
λ2

2!
+
λ3

3!

)
≈ 8.11× 10−9.

The required result is the CDF forX = 3, which can also be computed using the scipy.stats.poisson
module:

from scipy.stats import poisson

print(poisson.cdf(3, 26.82))

The low probability is consistent with the fact that the expected number of quasars per square
degree is 26.82.

(b) The expected number of quasars in an area of A square degrees is 26.82 A. The probability
of finding zero quasars in this area is P (X = 0) = e−26.82 A, which the problem requires to be
< 0.01. The inequality becomes

e−26.82 A < 0.01 =⇒ A < − ln 0.01

26.82
≈ 0.172 sq. deg.
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5. Let Y = cosφ. For φ ∈ [0, π), Y ∈ (−1, 1], and the inverse is not multi-valued. We have

y = cosφ =⇒ φ = cos−1 y and
dy

dφ
= sinφ =

√
1− y2.

(a) Using the above relations and the PDF method described in the notes, we get

pY (y) =
pΦ(φ)∣∣∣dy
dφ

∣∣∣ =
1

π
√

1− y2
, since Φ ∼ Uniform[0, π). This PDF is valid for for −1 < y ≤ 1.

(b) The population mean equals the expectation value, since we know the underlying distribution

in this case: E[Y ] ≡ 1

π

1∫
−1

y dy√
1− y2

= 0

(c) The variance is E[Y 2] − (E[Y ])2 = E[Y 2], since the expectation value is zero from above. The
second moment, and therefore the variance, is

E[Y 2] ≡ 1

π

1∫
−1

y2 dy√
1− y2

=
1

2

6. (a) It is convenient to work with polar coordinates (r, φ) for this part of the problem. In the second
part, we can relate these coordinates to their Cartesian equivalents for plotting purposes.

Step 1: determine the joint PDF for R and Φ

Figure 2: The infinitesimal area at distance r from the centre of the circle.

The problem requires N points uniformly distributed inside a circle of radius R0 (say). This is

equivalent to requiring a constant surface density σ =
N

π R2
0

. An infinitesimal strip at distance
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r from the centre of the circle has area dA = r dr dφ (see Fig. 2). The number of points in this
infinitesimal area is given by

dn(r, φ) = dn(r) (isotropy required!) = σ dA = σ r dr dφ

However, by definition, the fraction of points
dn(r, φ)

N
in this infinitesimal area equals the joint

probability density of R and Φ, so that dn(r, φ) = NpRΦ(r, φ) dr dφ. Therefore, a constant

surface density requires pRΦ(r, φ) =
σ

N
r.

Step 2: split the joint PDF into the individual PDFs for R and Φ
One possible solution is obtained by requiring that R and Φ be independent random variables.
The joint distribution is then the product of the PDFs for R and Φ:

pRΦ(r, φ) = pR(r) pΦ(φ) =
σ

N
r =⇒ pR(r) = 2π

σ

N
r, pΦ(φ) ∼ Uniform[0, 2π] (2)

The last two relations are the only way to ensure that Φ is independent of R, and the propor-
tionality constant for the PDF of R is chosen such that it cancels the normalisation factor of
(2π)−1 in the Uniform distribution for Φ.

Note that, at first glance, the näıve choice of PDFs would be to draw both R and Φ from
Uniform distributions. From Equation 2, it is clear that this is only possible if σ ∝ r−1, so
that there is a concentration of points close to the centre of the circle. The left panel in Fig 3
demonstrates the result of this erroneous choice.

Step 3: connect R to a Uniform random variable through a transformation
The remainder of the problem is figuring out how we can draw random numbers from a distri-
bution that is proportionate to r. Let us exploit the transformation properties for functions of
random variables. We set R equal to a function of a Uniform random variable Z, then use the
transformation properties of PDFs to determine the form of this function. That is,

R ≡ R(Z) such that pR(r) = 2π
σ

N
r, with Z ∼ Uniform(a, b) for a, b ∈ R.

Using the PDF method described in class, we have

pZ(z)
(

=
1

b− a

)
= pR(r)

∣∣∣dr
dz

∣∣∣ = 2π
σ

N
r
∣∣∣dr
dz

∣∣∣ =⇒ d

dz
r2 =

N

π σ (b− a)

We have reduced the problem to solving a first-order differential equation for r. The solution is

r2 =
N

π σ

z − a
b− a

= R2
0

z − a
b− a

=⇒ r = R0

√
z − a
b− a

Since this is true for any values of a and b 6= 0, we can conveniently pick a = 0, b = 1 so that Z
is a Standard Uniform random variable. We then have

R = R0

√
Z, with Z ∼ Uniform(0, 1). (3)

Procedure summary
The following steps guarantee that the N points will be uniformly distributed inside a circle of
radius R0:
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i. Draw N values for the angle φ from Uniform(0, 2π).

ii. Draw N Standard Uniform deviates.

iii. Compute N radii from these Standard Uniform deviates according to Equation 3.

This is not the only way to solve the problem; an approximate solution can be obtained by the
following procedure instead for the Cartesian coordinates:

i. Draw N points (X,Y ) uniformly distributed inside a square of size 2R0 – that is, both X
and Y are drawn from Uniform(−R0, R0).

ii. Compute R =
√
X2 + Y 2.

iii. Remove any points that have R > R0.

The problem with this method is that, due to randomness, the final number of points inside
the circle is not guaranteed to be exactly equal to N . In fact, in the first step above, we are
drawing N points that will be uniformly distributed over a square of size 2R0. Truncating

these points to a circle of radius R0 then reduces the total number of points by a factor
π

4
. We

can compensate for this by drawing
4N

π
points in the first step; due to randomness, however,

the resulting number of points inside the circle will still only be approximately equal to N (and,
due to the randomness associated with the problem, will change each time the procedure is
repeated). Of course, this discrepancy vanishes as N →∞.

(b) The script here implements the procedure described in the previous part of the problem for
R0 = 4 and N = 1000 points. This result is compared to the näıve (and erroneous) method in
which both R and Φ are drawn from a Uniform distribution and converted to their Cartesian
equivalents (see Fig. 3).

Figure 3: The incorrect (left) and correct (right) ways of generating a uniform distribution of N ≈ 1000
points on a circle. In the first case, the is a higher concentration of points near the centre of the circle of
radius R = 4. See text for details.
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