Statistics for Astronomers Solutions to Homework #3

Prof. Sundar Srinivasan

October 25, 2020

- 1. Notational confusion: I apologise that the parameters for the lower and upper limits for the mass function were denoted m_1 and m_2 . To avoid confusion with the data points m_i , they are henceforth referred to as M_1 and M_2 .
 - (a) The initial mass function

$$p_M(m) = C m^{-\alpha}$$
 $\alpha > 1, M_1 \le m \le M_2$

is nothing but a probability density function for the number of stars. Thus, the number of stars with masses between m and m + dm is given by $Cm^{-\alpha}dm$.

As it is a PDF, it should be normalised (*i.e.*, it should integrate to unity). We can use this normalisation constraint to compute the value of C in terms of the parameters α , M_1 , and M_2 :

$$\int_{M_1}^{M_2} C \ m^{-\alpha} \ dm = \frac{C}{\alpha - 1} \left(M_1^{1 - \alpha} - M_2^{1 - \alpha} \right) = \frac{C}{\beta} \left[M_1^{-\beta} - M_2^{-\beta} \right] = 1, \text{ with } \boldsymbol{\beta} \equiv \alpha - 1 > 0$$

Therefore,

$$C = \frac{\beta}{M_1^{-\beta} - M_2^{-\beta}} \tag{1}$$

Note that C depends on the parameters! We must be careful not to ignore it when differentiating the likelihood.

(b) The likelihood that a star observed at random has a mass in the range m_i and $m_i + dm$ is Cm_i^{α} . As the observations are independent, the combined likelihood of obtaining a set of masses $\{m_1, m_2, \dots, m_N\}$ is

$$\mathscr{L} = \prod_{i=1}^{N} C m_i^{-\alpha} \Longrightarrow \ln \mathscr{L} = N \ln C - \alpha \sum_{i=1}^{N} \ln m_i$$
⁽²⁾

Using Equations (1) and (2), we first compute the partial derivatives of $\ln C$ with respect to each of the parameters (recall: since $\beta = \alpha - 1$, it is convenient to find $\hat{\beta}$, from which $\hat{\alpha}$ can be

readily computed):

$$\begin{split} \frac{\partial}{\partial M_1} \ln C &= \frac{1}{C} \frac{\beta M_1^{-\alpha}}{M_1^{1-\alpha} - M_2^{1-\alpha}} \\ \frac{\partial}{\partial M_2} \ln C &= -\frac{1}{C} \frac{\beta M_2^{-\alpha}}{M_1^{1-\alpha} - M_2^{1-\alpha}} \\ \frac{\partial}{\partial \beta} \ln C &= \frac{1}{\beta} + \ln M_1 - \frac{\ln\left(\frac{M_2}{M_1}\right)}{\left(\frac{M_2}{M_1}\right)^{\beta} - 1} \end{split}$$

We then use these relations to evaluate the partial derivatives of $\ln \mathscr{L}$:

$$\frac{\partial}{\partial M_1} \ln \mathscr{L} = N \, \frac{\partial}{\partial M_1} \ln C = -\frac{N}{C} \, \frac{(1-\alpha) \, M_1^{-\alpha}}{M_1^{1-\alpha} - M_2^{1-\alpha}} \tag{3}$$

$$\frac{\partial}{\partial M_2} \ln \mathscr{L} = N \; \frac{\partial}{\partial M_2} \ln C = \frac{N}{C} \; \frac{(1-\alpha) \; M_2^{-\alpha}}{M_1^{1-\alpha} - M_2^{1-\alpha}} \tag{4}$$

$$\frac{\partial}{\partial\beta}\ln\mathscr{L} = N\left[\frac{1}{\beta} + \ln M_1 - \frac{\ln\left(\frac{M_2}{M_1}\right)}{\left(\frac{M_2}{M_1}\right)^\beta - 1} - \overline{\ln m}\right],\tag{5}$$

where $\ln m$ is the sample mean of $\ln m_i$.

The standard procedure to find the MLE values requires us to set the derivatives (Equations (3) and (4)) to zero. This method does not give us a meaningful solution for this particular problem. Instead, we will have to investigate the functional dependence of the likelihood on M_1 and M_2 from Equations (1) and (2).

The denominator of Equation (1) increases if either M_1 decreases or M_2 increases, increasing $\ln C$ and therefore $\ln \mathscr{L}$. The likelihood therefore achieves its largest value if the smallest (largest) possible data value is used as an estimate for M_1 (M_2). Accordingly, we have

$$\widehat{M}_1 = \min(m_i) = m_{(1)}; \qquad \widehat{M}_2 = \max(m_i) = m_{(N)}$$

That is, the ML estimates for the lower and upper mass limits of the IMF are the smallest and largest masses in the data set. $m_{(i)}$ refers to the i^{th} order statistic.

(c) Having found $\widehat{M_1}$ and $\widehat{M_2}$, to find $\widehat{\alpha}$, we can use the standard method and equate Equation (5) to zero. The problem also gives us the value of the sample mean of $\ln m_i$. Equation (5) to zero gives us a non-linear equation for which $\widehat{\beta}$ are the roots. We can use a root-finder algorithm to solve for this exponent. The script provided <u>here</u> uses the scipy.optimize.root_scalar package to get $\widehat{\beta} \approx 1.24$, or $\widehat{\alpha} \approx 2.24$.

2. Since supernova explosions are independent events, we can assume Poisson statistics.

In solving problems involving the Poisson distribution, remember that the Poisson rate parameter λ must be dimensionless. Always use this as a sanity check!

Each galaxy is observed for a different time t_i , which means the expected number of supernova events (= the Poisson rate parameter!) is different for each galaxy.

The Poisson rate parameter λ_i for each galaxy is the product of the explosion rate p (dimensions: time⁻¹) and the exposure time t_i (dimensions: time). The total likelihood is therefore

$$\mathscr{L} = \prod_{i=1}^{N} \frac{\lambda_i^{n_i} e^{-\lambda}}{n_i!} = \prod_{i=1}^{N} \frac{(pt_i)^{n_i} e^{-pt_i}}{n_i!} \Longrightarrow \ln \mathscr{L} = \text{constant} + \sum_{i=1}^{N} (n_i \ln p - pt_i)$$

We set the first derivative of the log-likelihood to zero to compute the MLE for p:

$$\left(\frac{\partial \ln \mathscr{L}}{\partial p}\right)_{\widehat{p}} = \sum_{i=1}^{N} \left(\frac{n_i}{\widehat{p}} - t_i\right) = 0 \Longrightarrow \widehat{p} = \frac{\sum_{i=1}^{N} n_i}{\sum_{i=1}^{N} t_i}$$

(b) The Expected Fisher information is

$$\mathcal{I}(p) \equiv -\mathbb{E}\left[\frac{\partial^2 \ln \mathscr{L}}{\partial p^2}\right] = \mathbb{E}\left[\frac{1}{p^2} \sum_{i=1}^N n_i\right] = \frac{1}{p^2} \sum_{i=1}^N \mathbb{E}[n_i]$$

For Poisson statistics, $\mathbb{E}[n_i] = \lambda_i = pt_i$; therefore, the Cramér-Rao Lower Bound on the variance is

$$CRLB \equiv \frac{1}{\mathcal{I}(p)} = \frac{p}{\sum_{i=1}^{N} t_i}$$

Since the supernovae in different galaxies are independent occurrences, we can also define the total number of events $N = \sum_{i=1}^{N} n_i$ and the total observing time $T = \sum_{i=1}^{N} t_i$. In terms of these quantities,

$$\hat{p} = \frac{N}{T}$$
 and $\text{CRLB}(\hat{p}) = \frac{\hat{p}}{T} = \frac{N}{T^2}$

In other words, the standard error on \hat{p} is $\frac{\sqrt{N}}{T}$. This is consistent with the standard deviation on the total number of events N being \sqrt{N} as a result of Poisson statistics.