Statistics for Astronomers
 Solutions to Homework \#3

Prof. Sundar Srinivasan
October 25, 2020

1. Notational confusion: I apologise that the parameters for the lower and upper limits for the mass function were denoted m_{1} and m_{2}. To avoid confusion with the data points m_{i}, they are henceforth referred to as M_{1} and M_{2}.
(a) The initial mass function

$$
p_{M}(m)=C m^{-\alpha} \quad \alpha>1, M_{1} \leq m \leq M_{2}
$$

is nothing but a probability density function for the number of stars. Thus, the number of stars with masses between m and $m+d m$ is given by $C m^{-\alpha} d m$.

As it is a PDF, it should be normalised (i.e., it should integrate to unity). We can use this normalisation constraint to compute the value of C in terms of the parameters α, M_{1}, and M_{2} :

$$
\int_{M_{1}}^{M_{2}} C m^{-\alpha} d m=\frac{C}{\alpha-1}\left(M_{1}^{1-\alpha}-M_{2}^{1-\alpha}\right)=\frac{C}{\beta}\left[M_{1}^{-\beta}-M_{2}^{-\beta}\right]=1, \text { with } \beta \equiv \alpha-1>0
$$

Therefore,

$$
\begin{equation*}
C=\frac{\beta}{M_{1}^{-\beta}-M_{2}^{-\beta}} \tag{1}
\end{equation*}
$$

Note that C depends on the parameters! We must be careful not to ignore it when differentiating the likelihood.
(b) The likelihood that a star observed at random has a mass in the range m_{i} and $m_{i}+d m$ is $C m_{i}^{\alpha}$. As the observations are independent, the combined likelihood of obtaining a set of masses $\left\{m_{1}, m_{2}, \cdots, m_{N}\right\}$ is

$$
\begin{equation*}
\mathscr{L}=\prod_{i=1}^{N} C m_{i}^{-\alpha} \Longrightarrow \ln \mathscr{L}=N \ln C-\alpha \sum_{i=1}^{N} \ln m_{i} \tag{2}
\end{equation*}
$$

Using Equations (1) and (2), we first compute the partial derivatives of $\ln C$ with respect to each of the parameters (recall: since $\beta=\alpha-1$, it is convenient to find $\widehat{\beta}$, from which $\widehat{\alpha}$ can be
readily computed):

$$
\begin{gathered}
\frac{\partial}{\partial M_{1}} \ln C=\frac{1}{C} \frac{\beta M_{1}^{-\alpha}}{M_{1}^{1-\alpha}-M_{2}^{1-\alpha}} \\
\frac{\partial}{\partial M_{2}} \ln C=-\frac{1}{C} \frac{\beta M_{2}^{-\alpha}}{M_{1}^{1-\alpha}-M_{2}^{1-\alpha}} \\
\frac{\partial}{\partial \beta} \ln C=\frac{1}{\beta}+\ln M_{1}-\frac{\ln \left(\frac{M_{2}}{M_{1}}\right)}{\left(\frac{M_{2}}{M_{1}}\right)^{\beta}-1}
\end{gathered}
$$

We then use these relations to evaluate the partial derivatives of $\ln \mathscr{L}$:

$$
\begin{gather*}
\frac{\partial}{\partial M_{1}} \ln \mathscr{L}=N \frac{\partial}{\partial M_{1}} \ln C=-\frac{N}{C} \frac{(1-\alpha) M_{1}^{-\alpha}}{M_{1}^{1-\alpha}-M_{2}^{1-\alpha}} \tag{3}\\
\frac{\partial}{\partial M_{2}} \ln \mathscr{L}=N \frac{\partial}{\partial M_{2}} \ln C=\frac{N}{C} \frac{(1-\alpha) M_{2}^{-\alpha}}{M_{1}^{1-\alpha}-M_{2}^{1-\alpha}} \tag{4}\\
\frac{\partial}{\partial \beta} \ln \mathscr{L}=N\left[\frac{1}{\beta}+\ln M_{1}-\frac{\ln \left(\frac{M_{2}}{M_{1}}\right)}{\left(\frac{M_{2}}{M_{1}}\right)^{\beta}-1}-\overline{\ln m}\right], \tag{5}
\end{gather*}
$$

where $\overline{\ln m}$ is the sample mean of $\ln m_{i}$.
The standard procedure to find the MLE values requires us to set the derivatives (Equations (3) and (4)) to zero. This method does not give us a meaningful solution for this particular problem. Instead, we will have to investigate the functional dependence of the likelihood on M_{1} and M_{2} from Equations (1) and (2).

The denominator of Equation (1) increases if either M_{1} decreases or M_{2} increases, increasing $\ln C$ and therefore $\ln \mathscr{L}$. The likelihood therefore achieves its largest value if the smallest (largest) possible data value is used as an estimate for $M_{1}\left(M_{2}\right)$. Accordingly, we have

$$
\widehat{M_{1}}=\min \left(m_{i}\right)=m_{(1)} ; \quad \widehat{M_{2}}=\max \left(m_{i}\right)=m_{(N)}
$$

That is, the ML estimates for the lower and upper mass limits of the IMF are the smallest and largest masses in the data set. $m_{(i)}$ refers to the $i^{\text {th }}$ order statistic.
(c) Having found $\widehat{M_{1}}$ and $\widehat{M_{2}}$, to find $\widehat{\alpha}$, we can use the standard method and equate Equation (5) to zero. The problem also gives us the value of the sample mean of $\ln m_{i}$. Equation (5) to zero gives us a non-linear equation for which $\widehat{\beta}$ are the roots. We can use a root-finder algorithm to solve for this exponent. The script provided here uses the scipy.optimize.root_scalar package to get $\widehat{\beta} \approx 1.24$, or $\widehat{\alpha} \approx 2.24$.
2. Since supernova explosions are independent events, we can assume Poisson statistics.

In solving problems involving the Poisson distribution, remember that the Poisson rate parameter λ must be dimensionless. Always use this as a sanity check!

Each galaxy is observed for a different time t_{i}, which means the expected number of supernova events ($=$ the Poisson rate parameter!) is different for each galaxy.

The Poisson rate parameter λ_{i} for each galaxy is the product of the explosion rate p (dimensions: time ${ }^{-1}$) and the exposure time t_{i} (dimensions: time). The total likelihood is therefore

$$
\mathscr{L}=\prod_{i=1}^{N} \frac{\lambda_{i}^{n_{i}} e^{-\lambda}}{n_{i}!}=\prod_{i=1}^{N} \frac{\left(p t_{i}\right)^{n_{i}} e^{-p t_{i}}}{n_{i}!} \Longrightarrow \ln \mathscr{L}=\mathrm{constant}+\sum_{i=1}^{N}\left(n_{i} \ln p-p t_{i}\right)
$$

We set the first derivative of the log-likelihood to zero to compute the MLE for p :

$$
\left(\frac{\partial \ln \mathscr{L}}{\partial p}\right)_{\widehat{p}}=\sum_{i=1}^{N}\left(\frac{n_{i}}{\widehat{p}}-t_{i}\right)=0 \Longrightarrow \hat{p}=\frac{\sum_{i=1}^{N} n_{i}}{\sum_{i=1}^{N} t_{i}}
$$

(b) The Expected Fisher information is

$$
\mathcal{I}(p) \equiv-\mathbb{E}\left[\frac{\partial^{2} \ln \mathscr{L}}{\partial p^{2}}\right]=\mathbb{E}\left[\frac{1}{p^{2}} \sum_{i=1}^{N} n_{i}\right]=\frac{1}{p^{2}} \sum_{i=1}^{N} \mathbb{E}\left[n_{i}\right]
$$

For Poisson statistics, $\mathbb{E}\left[n_{i}\right]=\lambda_{i}=p t_{i}$; therefore, the Cramér-Rao Lower Bound on the variance is

$$
\mathrm{CRLB} \equiv \frac{1}{\mathcal{I}(p)}=\frac{p}{\sum_{i=1}^{N} t_{i}}
$$

Since the supernovae in different galaxies are independent occurrences, we can also define the total number of events $N=\sum_{i=1}^{N} n_{i}$ and the total observing time $T=\sum_{i=1}^{N} t_{i}$. In terms of these quantities,

$$
\widehat{p}=\frac{N}{T} \text { and } \operatorname{CRLB}(\widehat{p})=\frac{\widehat{p}}{T}=\frac{N}{T^{2}}
$$

In other words, the standard error on \widehat{p} is $\frac{\sqrt{N}}{T}$. This is consistent with the standard deviation on the total number of events N being \sqrt{N} as a result of Poisson statistics.

