Statistics for Astronomers
Solutions to Homework #6

Prof. Sundar Srinivasan

January 23, 2021

Note: the solutions below use the script hwé . pyl
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Figure 1: Left: box-and-whisker plots for the control and test samples, showing the medians (orange) and
means (green) for each sample. Right: comparison of the empirical distributions of the samples with normal
distributions centred at the sample means and with spreads equal to the sample standard deviations.

1.

(a)

Figure|l|shows the box-and-whisker plot for the cholesterol levels in the control and test samples.
The mean and median of the control population are almost equal, indiicating a symmetric
distribution. This is also borne out by the fact that the distance of the top and bottom whiskers
from the mean are comparable.

The mean of the test sample is slightly higher than the median, as is also evidenced by the
presence of large-magnitude outliers in this sample (which bias the sample mean to higher
values). While both samples are skewed towards larger values, the test sample is definitely more
asymmetric than the control sample.

This is a trick question! We do not know the mean and variance of the populations from
which the samples are drawn. Can we perform a KS test on these sample to test for normality
in such a case? Nalvely, we might think that there are two possible ways to do so:

i. What if we compare the raw data to a normal distribution whose location and scale pa-
rameters are set to the sample mean and standard deviation? Unfortunately, parameters
estimated from the data cannot be used to generate the model for a KS test
(see here)!


http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/Homework06.pdf
http://www.irya.unam.mx/gente/s.srinivasan/Teaching/Statistics2020/python/hw6.py
https://asaip.psu.edu/Articles/beware-the-kolmogorov-smirnov-test

ii. What if we studentise the raw data and then compare it to a standard normal? The stu-
dentised data will be drawn from a Student’s ¢-distribution by definition, (at least for
large samples), which is similar enough in shape to the Gaussian that a KS test might
result in false negatives (being unable to reject the null hypothesis that the sample is drawn
from a normal distribution). In general, this won’t help us draw correct inferences about
the original data. We can demonstrate this for data drawn from an exponential distribution:

from scipy.stats import expon, kstest
x = expon.rvs(1.0, size = 10)

_, pvaluel = kstest(x, ’norm’)

xx = (x - x.mean()) / x.std(ddof = 1)
_, pvalue2 = kstest(xx, ’norm’)

print (pvaluel, pvalue2)

2.87e-08 9.84e-01

The null hypothesis is correctly rejected for the original sample at 5% significance, but can’t
be rejected for the studentised sample. In fact, the p-value for the latter case is almost one,
consistent with a high likelihood that the studentised sample is drawn from a Gaussian.

Therefore, the 1-sample KS test cannot be applied to the datasets in this problem.

We will have to use a different test to test for normality of the two samples. Let’s try the
Anderson-Darling test. The module hw6qlb prints out

****x*x]l-sample Anderson-Darling test for control sample.*¥**x*
HO: sample drawn from a normal distribution.
AD statistic = 0.22 <= critical value at 5.0% = 0.74, unable to reject HO.
*¥kxkk]l-sample Anderson-Darling test for test sample.*xk¥kkkx
HO: sample drawn from a normal distribution.
AD statistic = 1.3 >= critical value at 5.0% = 0.78, HO rejected.
At least one of the samples is not drawn from a normal distribution.
The t- and F-tests cannot be applied.

Since the KS test isn’t applicable to this problem and the Anderson-Darling test points to at
least one of the two datasets not being drawn from a normal distribution, the ¢- and F-tests in
their original are not applicable to this problem. However, the scipy.stats.ttest_ind module
is flexible enough that it’s worth performing a 2-sample ¢-test assuming that the samples are
independent. We set the keyword alternative = ’less’ in the call to ttest_ind to determine
whether the population mean of the control sample is smaller than that of the test sample, as
would happen if people with heart disease have higher blood cholesterol. The code prints out

*ofkkokkkkkkk2-independent-sample t-testkkkkxkskofkokkk

HO: population means are equal.

Ha: population mean of control sample < population mean of test sample.
p-value < alpha, HO rejected.



Interestingly, the 2-sample t-test leads us to believe that there is a correlation between cholesterol
level and heart disease. We can reinforce this result with nonparametric tests that do not require
the assumption of normality, as is done in the following part of the problem.

We use the scipy.stats.mannwhitneyu module with the keyword alternative = ’less’ to
test whether the population mean of the control sample is lower than that of the test sample.
The module hw6qglc prints out

ok ok ok kR ok ok ok ok sk oksk koo k ok [ — T @ ST ok ok sk sk sk sk sk sk ok sk sk sk sk o o o o o o o ok

HO: population means are equal.

Ha: population mean of control sample < population mean of test sample.
p-value < alpha, HO rejected.

This result is in agreement with the 2-sample ¢-test performed in the previous part of the
problem. Thus, based on these data, we can establish a connection between cholesterol level
and heart disease.

The module hw6q2a returns

Rk Rk 2-sample  KS testrskskkkkkkkkkkokkok

HO: samples drawn from the same distribution.

p-value = 0.09 >= alpha = 0.05, unable to reject HO.
Fkkkokkkkkk2-sample Anderson-Darling testiskskskskskkokkk

HO: samples drawn from the same distribution.

AD statistic = 3.59 >= critical value at 5% = 1.96, HO rejected.

There is good agreement in the central parts of the distributions; in fact, the two samples have
nearly identical means (Figure [2); since the KS test is not sensitive to disagreement in the
wings, it does not reject the null hypothesis. The distribution of absolute magnitudes for M31
globular clusters is tightly peaked around its central location, as demonstrated by the flatness
of the distribution at extreme values and its steep rise in the centre. The Milky Way glob-
ular clusters are more spread out, as demonstrated by almost constant slope of its empirical
distribution curve. The Anderson-Darling test is sensitive to such disagreements in the wings
of the distributions, and is therefore able to reject the null hypothesis in this case. Figure
also shows box-and-whisker plots and histograms for both samples, confirming the larger spread
of magnitudes in the Milky Way sample. Note, also, that the Milky Way distribution is more
or less symmetric about its centre; the box plot and histogram show that the M31 data has a
longer tail at the faint end.

Correction: the question asks to use the U test to determine whether the samples are drawn
the same distribution. This is incomplete; the U test is used determine whether two samples
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Figure 2: Left: empirical distributions for the Milky Way (blue) and M31 (orange) samples. Box-and-
whisker plots (center) and histograms (right) are also shown for the two samples. The distribution of
magnitudes is much tighter in the M31 case.

are drawn from distributions with the same population mean, regardless (e.g.) of whether
the population variances are equal. The hw6q23b module prints out

ook kKKK ok sk sk skkkokokokok ok ok T @ STk okokokokok sk sk sk sk sk sk sk sk sk ok ok ok ok o
HO: population means are equal.
p-value = 0.41 >= alpha = 0.05, unable to reject HO.

(¢) Clarification: formally, the Anderson-Darling test for normality requires studentisation if the
population parameters are unknown (see, e.g.; here), however, the scipy.stats version
doesn’t. We demonstrate this using the module hw6q2c, which performs the test for both the
original and studentised datasets, obtaining the same result regardless:

*fkkkkkkkAnderson-Darling test for Milky Way samplesskskskskskkkk

HO: sample drawn from a normal distribution.

AD statistic = 0.3 <= critical value at 5.0% = 0.75, unable to reject HO.
**kAnderson-Darling test for studentised Milky Way samplex***

HO: sample drawn from a normal distribution.

AD statistic = 0.3 <= critical value at 5.0% = 0.75, unable to reject HO.
*kkkkkkkkkkkAnderson-Darling test for M31 sampledkkokkkkkkkkx

HO: sample drawn from a normal distribution.

AD statistic = 1.79 >= critical value at 5.0% = 0.78, HO rejected.
*xxxxxAnderson-Darling test for studentised M31 sample*k***x

HO: sample drawn from a normal distribution.

AD statistic = 1.79 >= critical value at 5.0% = 0.78, HO rejected.

Based on these results, we can say that the M31 distribution (after studentisation) is less likely
to be drawn from a standard normal. This is also clear from Figure


https://en.wikipedia.org/wikiAnderson%E2%80%93Darling_test#Test_for_normality

