Statistics for Astronomers
 Solutions to Homework \＃9

Prof．Sundar Srinivasan
February 2， 2021

Note：the solutions below use the script hw9．py．
1．（a）The script hw9q1a prints out

```
Best-fit intercept: 7.14 士 32.6
Best-fit slope: 2.38 土 0.18
Correlation coefficient rho_bm = -0.99
```


Figure 1：Linear（left）and quadratic（right）fits to the Hogg et al．data．
（b）The script hw9q1b prints

```
Best-fit constant term b: 93.31 土 220.3
Best-fit linear term m: 1.36 土 2.59
Best-fit quadratic term q: (2.936 士 7.425)e-03
Correlation matrix:
4.85e+04 -5.69e+02 1.62e+00
-5.69e+02 6.70e+00 -1.92e-02
```

```
1.62e+00 -1.92e-02 5.51e-05
```

Figure 1 compares the linear and quadratic fits to the data.
(c) The model with the lower reduced χ^{2} (the χ^{2} per degree of freedom) is preferred. The code hw9q1c prints

Reduced chi-square for linear model: 17.52
Reduced chi-square for quadratic model: 17.36
The reduced chi-squared for the quadratic model is lower.
The quadratic model is a better fit.
An improvement on the reduced χ^{2} is the Bayesian Information Criterion, which is defined in terms of the best-fit χ^{2} as

$$
\mathrm{BIC}=p \ln N+\chi_{\mathrm{best}}^{2}
$$

where $p=$ the number of parameters. The smaller the BIC, the better the model. The code prints out

BIC for linear model: 22.8
BIC for quadratic model: 25.28
The BIC for the linear model is lower, the linear model is better.
2. The code hw9q2 computes 1000 bootstrap resamples of the uncensored data and computes a linear fit for each resample. If b is the vector of resampled intercepts and b_{0} is the best-fit intercept, we define $\widehat{\sigma_{b}}=\sqrt{\operatorname{mean}\left[\left(b-b_{0}\right)^{2}\right]}$. A similar expression can be written down for $\widehat{\sigma_{m}}$. These are the bootstrap estimates for the standard deviations of the parameters. The code prints out

```
-----------------
Standard deviation in intercept: 86.59
Best-fit slope: 1.08
Standard deviation in slope: 0.49
```

The standard deviations are higher than the estimates derived from the covariance matrix for the problem (see Figure 2 in Hogg et al.), but they are more realistic.

