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Review

Probability: Classical vs. Frequentist vs. Bayesian.
Kolmogorov Axioms.
Conditional and marginal probability.
Independence and exclusivity.
Law of Total Probability from union of pairwise disjoint, collectively exhaustive sets.
Bayes’ Theorem.
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Random variables and probability distributions
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Random variables

Random: Uncertain, no “pattern” can be detected.

Randomness: A measure of uncertainty of the outcome of an experiment.
Some sources of “true” randomness – initial conditions of the experiment
(e.g., throwing dice, chaos) and environmental effects (e.g., Brownian Motion, dark current).

Random variable: A function that assigns a numerical value to each distinct outcome.
The set of assigned numerical values is the state space S .
A random variable is a mapping from the sample space to the state space; X : Ω −→ S.

Random process: A sequence of random variables whose outcomes don’t follow a pattern.
Their evolution can, however, be described probabilistically.
Example: Markov Chains.

Probability distribution: A function that maps a random variable to a real number; p : X → R.

Convention:
X : random variable, X : value assigned to random variable.

“Probability that X has value X ”: P(X = x), PX (X ) (X discrete) or pX (X ) (X continuous).

Specifying PX (X ) or pX (X ) for all X ∈ S , the state space results in a probability distribution.

Discrete: mass function (PMF). Continuous: density function (PDF).

Note: I won’t abbreviate “probability distribution function”, so that “PDF” is unambiguous.
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Illustration

3 balls are drawn (w/o replacement) from a box containing 2 red balls and 8 yellow balls.

Sketch the probability distribution for the colour of the third ball.

Sample space: Ω = {��, , , , , , , }. State space: S = {0, 1}.
Random variables: X1, X2, X3 (one for the colour of each ball), each draws values from S.

The PMF for X3 is obtained by marginalising over X1 and X2:

PX3
(X3) =

∑
X2∈S

∑
X1∈S

P(X3 = X3|X2 = X2,X1 = X1) P(X2 = X2|X1 = X1) P(X1 = X1)

The state X3 = 0 (“third ball is red”) can be achieved in three ways (see Ω).

P(X3 = 0) = P(X3 = 0|X2 = 1,X1 = 0) P(X2 = 1|X1 = 0) P(X1 = 0)

+ P(X3 = 0|X2 = 0,X1 = 1) P(X2 = 0|X1 = 1) P(X1 = 1)

+ P(X3 = 0|X2 = 1,X1 = 1) P(X2 = 1|X1 = 1) P(X1 = 1)
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Discrete and continuous probability distributions

Sum of numbers displayed on two dice after
one throw (discrete distribution):

State space = {2, 3, ..., 11, 12}

(Tim Stellmach/Public Domain)

P(X = 4) makes sense, is finite.

P(4 ≤ X ≤ 7) =

7∑
i=4

P(X = i) =
18

36
=

1

2
.

Actual departure time of Flight 1522
(continuous distribution):

State space = (5.4,∞)

C
o

d
e
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r

p
lo
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a

va
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a

b
le

h
er
e.

Shaded region = P(8:00 AM < T < 8:44 AM).

P(X = 8:15 AM) is meaningless, zero.

P(8:00 AM < T < 8:44 AM) =

8:44 AM∫
8:00 AM

pX (X ) dX is finite.
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Populations and samples

If a random variable X has probability distribution is PX (X ) (discrete) or pX (X ) (continuous),

we say that X is drawn from the PMF/PDF: X ∼ PX (X ) or X ∼ pX (X ).

Population: the underlying probability distribution.
Sample: the results of a finite number of experiments/draws from the population (a subset).

Experiment performed a finite number of times; sample unable to faithfully reproduce the
population – statistics (quantities derived from the sample) are only guesses at (estimates of)
the corresponding parameters (values that describe the population).
Convention: Greek symbols for parameters (e.g., µ, σ), Latin symbols for statistics (e.g., x̄ , s).

(Tim Stellmach/Public Domain)
Population: µ = 7.00, Var(X ) = 5.83.

Sample distribution seems uniform, results in a larger sample mean/variance than the true (population) values.
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population – statistics (quantities derived from the sample) are only guesses at (estimates of)
the corresponding parameters (values that describe the population).
Convention: Greek symbols for parameters (e.g., µ, σ), Latin symbols for statistics (e.g., x̄ , s).

(Tim Stellmach/Public Domain)
Population: µ = 7.00, Var(X ) = 5.83.

Sample distribution seems uniform, results in a larger sample mean/variance than the true (population) values.
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X̄ = 7.43, sample variance (discussed later) = 6.67

Sample distribution seems uniform, results in a larger sample mean/variance than the true (population) values.
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Cumulative distribution function (CDF)

Definition (Cumulative distribution function)

A function FX (X ) of a random variable X such that FX (X ) is the probability that X ≤ X .

For a discrete PMF:

FX (X ) = P(X ≤ X ) =
∑
Xi≤X

P(X = Xi ).

For a continuous PDF:

FX (X ) = P(X ≤ X ) =

t=x∫
t=−∞

pX (t) dt.

From this definition, the probability of the variable ranging between two values a and b is

P(a < X ≤ b) = FX (X = b)− FX (X = a). For a PDF, this is also equal to

t=b∫
t=a

pX (t) dt.

The CDF is a monotonically increasing function.

For a discrete random variable, it is constant in between values.

For the continuous case, the PDF is the derivative of the CDF w.r.t. X .
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Cumulative distribution function (contd.)

Definition (Quantile function)

The inverse of the CDF, a function Q(p) that returns the value of X such that FX (X ≤ X ) = p.

e.g., Q(p = 0.5) is the median (equal “mass” on either side of x = Q(0.5)).
Q(p = 0.25) and Q(p = 0.75) are the first and third quartiles.

Definition (Independent and identically distributed variables)
Two random variables X and Y are said to be iid if and only if they are mutually independent
and drawn from the same distribution:

FX ,Y (X , y) = FX (X )× FY (y)
FX (X ) = FY (x)

Heteroskedastic: originally iid observations + measurement errors that aren’t identical.

Typical case in astronomy.
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Expectation value

Definition (Expectation value)

The expectation value E [g(X )] of a function g(X ) of a random variable X , is the weighted
average of g(X ), with the weights being the associated probabilities:

Discrete: E [g(X )] =
N∑
i=1

g(Xi ) P(X = Xi ). Continuous: E [g(X )] =

t=∞∫
t=−∞

g(X ) pX (X ) dX .

Linearity: E [αg(X ) + βh(X )] = αE [g(X )] + βE [h(X )]. (
∑

and
∫

are linear operators!)

Independence: X⊥Y =⇒ E [XY ] = E [X ]E [Y ].

Mean ≡ E [X ]. An estimate of the distribution’s location or central tendency.

Variance, Var [X ] ≡ E [(X − E [X ])2] = (standard deviation)2. An estimate of spread.

Why the square? What is E [X − E(X )]?

The expression for the variance can be simplified: Var [X ] = E [X 2]− (E [X ])2.

Note: When no other function is specified, “expectation value” refers to the mean, E(X ).
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Some properties of the variance of a random variable

1 By definition, non-negative.

2 For any constant α:

– Var(α) = 0, because E [α] = α.

– Var(X + α) = Var(X ) – i.e., invariant w.r.t. a location parameter.

– Var(αX ) = α2Var(X ).

3 For constants α, β and random variables X ,Y ,

Var(αX + βY ) = ??

Evaluate this expression using the definition of variance in terms of expectation values.
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Covariance

Var(αX + βY ) = α2Var(X ) + β2Var(Y ) + 2αβ

interpretation?︷ ︸︸ ︷
E [(X − E [X ])(Y − E [Y ])] (1)

If X⊥Y , then (Y − E [Y ]) independent of (X − E [X ]) for any (X ,Y ) pair.
=⇒ the term quantifies a dependence between X and Y .

If X and Y are not independent, then (X − E [X ])(Y − E [Y ]) > 0 if both deviations are in the
same direction, and < 0 if the variables deviate from their means in opposite directions.

The third term in Eq (1) is the average of these products of X and Y deviations.

Definition (Covariance)
The covariance is a measure of joint variability of two random variables:

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]. By definition, Cov(X ,X ) = Var(X ).

Therefore, Var(αX + βY ) = α2Var(X ) + β2Var(Y ) + 2αβCov(X ,Y ).

If the two variables are uncorrelated, then the third term vanishes.
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Correlation coefficient

The sign of Cov(X ,Y ) probes a linear relationship between the two variables X and Y .

However, the magnitude isn’t as useful, as the covariance is not scale-invariant:
Cov(αX , βY ) = αβCov(X ,Y ).

We can define a scale-invariant of Cov(X ,Y ) instead:

Definition ((Pearson’s) Correlation coefficient)

ρXY =
Cov(X ,Y )√
Var(X )Var(Y )

=
Cov(X ,Y )

σXσY

By definition, ρXX = 1. “Perfect correlation”.

ρXX = −1: “perfect anticorrelation”.
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Uncorrelated random variables
If random variables X and Y are such that Cov(X ,Y ) = 0, then they are uncorrelated.

The variance of the sum of N uncorrelated variables is therefore the sum of their variances:

Var

(
N∑
i=1

Xi

)
=

N∑
i=1

Var(Xi ) (Bienaymé formula).

For N iid variables, Var(X̄ ) =
1

N2
Var

(
N∑
i=1

Xi

)
=

1

N2

N∑
i=1

Var(Xi ) =
1

N2
N Var(X ) =

Var(X )

N

Two-dice example

(Tim Stellmach/Public Domain)
µ = 7.00, Var(X ) = 5.83.

X1,X2: random variables for the values on the 1st and 2nd die
after each throw, we record X1 + X2 each time.

Variance on a single measurement of this sum = 5.83.

Variance on average of 10 measurements:
5.83

10
= 0.583

As # measurements N ↑, variance on the mean of N
measurements ↓.
Sample mean approaches population mean.

See Law of Large Numbers.
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For N iid variables, Var(X̄ ) =
1

N2
Var

(
N∑
i=1

Xi

)
=

1

N2

N∑
i=1

Var(Xi ) =
1

N2
N Var(X ) =

Var(X )

N

Two-dice example

(Tim Stellmach/Public Domain)
µ = 7.00, Var(X ) = 5.83.

X1,X2: random variables for the values on the 1st and 2nd die
after each throw, we record X1 + X2 each time.

Variance on a single measurement of this sum = 5.83.

Variance on average of 10 measurements:
5.83

10
= 0.583

As # measurements N ↑, variance on the mean of N
measurements ↓.
Sample mean approaches population mean.

See Law of Large Numbers.

Statistics for Astronomers: Lecture 2, 2020.09.23

Prof. Sundar Srinivasan - IRyA/UNAM 14



Uncorrelated random variables
If random variables X and Y are such that Cov(X ,Y ) = 0, then they are uncorrelated.

The variance of the sum of N uncorrelated variables is therefore the sum of their variances:

Var

(
N∑
i=1

Xi

)
=

N∑
i=1

Var(Xi ) (Bienaymé formula).
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Some common probability distributions
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Attributes of probability distributions via Python/Scipy

(See documentation for each distribution in scipy.stats)

rvs - random variates (sample from the distribution)

pmf/pdf - PMF or PDF

logpmf/logpdf - log of the PMF or PDF

cdf - CDF

logcdf - log of the CDF

ppf - percent point function (inverse of cdf; percentiles)

stats - Mean(’m’), variance(’v’), skew(’s’), kurtosis(’k’)
(also see mean, median, var, std)

expect - Compute expectation value of a function of this random variable

interval - Confidence interval
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Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question.

State space: {0, 1}. Probability distribution: (1− p, p), where p = probability of success.

Definition (Bernoulli Distribution)

P(X = x) = px (1− p)1−x Ix∈{0,1}(x),

with I(x) the Indicator (or Heaviside) function: Ix∈{0,1}(x) =

{
1, if x ∈ {0, 1}
0, otherwise

Mean: E [X ] = 1× P(X = 1) + 0× P(X = 0) = 1× p + 0× (1− p)= p

Variance: First, E [X 2] = 12 × P(X = 1) + 02 × P(X = 0) = 12 × p + 02 × (1− p) = p

⇒ Var [X ] = E [X 2]− (E [X ])2 = p − p2= p(1− p)

Example of a Bernoulli random variable: outcome of tossing a single (not necessarily fair) coin.

Generate 10 samples from scipy.stats.bernoulli:
from scipy.stats import bernoulli

p = 0.25 #probability of success

print(bernoulli.rvs(p, size = 10)) #10 random deviates

[0 0 0 1 1 0 0 0 0 0] #possible output
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Binomial (discrete, scipy.stats.binom)

Distribution of # successes in n independent experiments (n Bernoulli trials).

Distribution = probability of k successes (and n − k failures) in n trials:

P(X = k) =
(n
k

)
pk (1− p)(n−k) (Binomial distribution)

Examples:

The number of heads obtained in n tosses of a fair coin = Binomial(n, p = 1
2

).

The number of “point” masses in a volume fraction V1/V of space with N points in volume V

= Binomial(N, p = V1
V

) (Meszaros, A. 1997 A&A 328, 1).

Mean: E [X ]= np (demonstrated on following slide) Variance: Var [X ]= np(1− p)
Both are n times the values for the Bernoulli distribution as expected (n independent Bernoulli
trials).

Compute probability of 2 successes in 10 trials

from scipy.stats import binom

n, k, p = 10, 2, 0.25 #total trials, num successes, prob of 1 success

print(binom.pmf(k, n, p)) #prob of k successes in n trials

0.28156757354736334 #output
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Binomial (discrete, scipy.stats.binom)

Distribution of # successes in n independent experiments (n Bernoulli trials).

Distribution = probability of k successes (and n − k failures) in n trials:

P(X = k) =
(n
k

)
pk (1− p)(n−k) (Binomial distribution)

Examples:

The number of heads obtained in n tosses of a fair coin = Binomial(n, p = 1
2

).

The number of “point” masses in a volume fraction V1/V of space with N points in volume V

= Binomial(N, p = V1
V

) (Meszaros, A. 1997 A&A 328, 1).

Mean: E [X ]= np (demonstrated on following slide) Variance: Var [X ]= np(1− p)
Both are n times the values for the Bernoulli distribution as expected (n independent Bernoulli
trials).
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Expectation value of a Binomial Distribution

Recall:

(x + y)n =
n∑

k=0

(n
k

)
xkyn−k (2) k

(n
k

)
= n

(n − 1

k − 1

)
(3)

Expectation value for the binomial distribution:

E(X ) =
n∑

k=0

k
(n
k

)
pk (1− p)n−k

=
n∑

k=1

k
(n
k

)
pk (1− p)n−k (k = 0 term vanishes)

=
n∑

k=1

n
(n − 1

k − 1

)
pk (1− p)n−k using Eq. (3)

=

n−1∑
s=0

n
(n − 1

s

)
ps+1(1− p)n−s−1 (setting s = k − 1)

= np

n−1∑
s=0

(n − 1

s

)
ps(1− p)n−1−s

= np using Eq. (2)

Similarly, we can compute Var [X ] using k(k − 1)
(n
k

)
= n(n − 1)

(n − 2

k − 2

)
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