

Statistics for Astronomers: Lecture 2, 2020.09.23

Prof. Sundar Srinivasan

IRyA/UNAM

Review

Probability: Classical vs. Frequentist vs. Bayesian.
Kolmogorov Axioms.
Conditional and marginal probability.
Independence and exclusivity.
Law of Total Probability from union of pairwise disjoint, collectively exhaustive sets.
Bayes' Theorem.

Random variables and probability distributions

Random variables

Random: Uncertain, no "pattern" can be detected.

Random variables

Random: Uncertain, no "pattern" can be detected.
Randomness: A measure of uncertainty of the outcome of an experiment. Some sources of "true" randomness - initial conditions of the experiment (e.g., throwing dice, chaos) and environmental effects (e.g., Brownian Motion, dark current).

Random variables

Random: Uncertain, no "pattern" can be detected.
Randomness: A measure of uncertainty of the outcome of an experiment. Some sources of "true" randomness - initial conditions of the experiment (e.g., throwing dice, chaos) and environmental effects (e.g., Brownian Motion, dark current).

Random variable: A function that assigns a numerical value to each distinct outcome.
The set of assigned numerical values is the state space S.
A random variable is a mapping from the sample space to the state space; $X: \Omega \longrightarrow S$.

Random variables

Random: Uncertain, no "pattern" can be detected.
Randomness: A measure of uncertainty of the outcome of an experiment. Some sources of "true" randomness - initial conditions of the experiment (e.g., throwing dice, chaos) and environmental effects (e.g., Brownian Motion, dark current).

Random variable: A function that assigns a numerical value to each distinct outcome.
The set of assigned numerical values is the state space S.
A random variable is a mapping from the sample space to the state space; $X: \Omega \longrightarrow S$.
Random process: A sequence of random variables whose outcomes don't follow a pattern.
Their evolution can, however, be described probabilistically.
Example: Markov Chains.

Random variables

Random: Uncertain, no "pattern" can be detected.
Randomness: A measure of uncertainty of the outcome of an experiment. Some sources of "true" randomness - initial conditions of the experiment (e.g., throwing dice, chaos) and environmental effects (e.g., Brownian Motion, dark current).

Random variable: A function that assigns a numerical value to each distinct outcome.
The set of assigned numerical values is the state space S.
A random variable is a mapping from the sample space to the state space; $X: \Omega \longrightarrow S$.
Random process: A sequence of random variables whose outcomes don't follow a pattern.
Their evolution can, however, be described probabilistically.
Example: Markov Chains.
Probability distribution: A function that maps a random variable to a real number; $p: X \rightarrow \mathbb{R}$.

Random variables

Random: Uncertain, no "pattern" can be detected.
Randomness: A measure of uncertainty of the outcome of an experiment.
Some sources of "true" randomness - initial conditions of the experiment (e.g., throwing dice, chaos) and environmental effects (e.g., Brownian Motion, dark current).

Random variable: A function that assigns a numerical value to each distinct outcome.
The set of assigned numerical values is the state space S.
A random variable is a mapping from the sample space to the state space; $X: \Omega \longrightarrow S$.
Random process: A sequence of random variables whose outcomes don't follow a pattern.
Their evolution can, however, be described probabilistically.
Example: Markov Chains.
Probability distribution: A function that maps a random variable to a real number; $p: X \rightarrow \mathbb{R}$.

Convention:

X : random variable, x : value assigned to random variable.
"Probability that X has value x ": $P(X=x), P_{x}(x)$ (x discrete) or $p_{x}(x)$ (x continuous).
Specifying $P_{x}(x)$ or $p_{x}(x)$ for all $x \in S$, the state space results in a probability distribution.
Discrete: mass function (PMF). Continuous: density function (PDF).
Note: I won't abbreviate "probability distribution function", so that "PDF" is unambiguous.

Illustration

3 balls are drawn (w/o replacement) from a box containing 2 red balls and 8 yellow balls. Sketch the probability distribution for the colour of the third ball.

Illustration

3 balls are drawn (w/o replacement) from a box containing 2 red balls and 8 yellow balls. Sketch the probability distribution for the colour of the third ball.

Sample space: $\Omega=\left\{\propto{ }^{\sigma}, \bullet \bullet \bullet, \bullet \bullet \bullet\right\}$. State space: $S=\{0,1\}$. Random variables: X_{1}, X_{2}, X_{3} (one for the colour of each ball), each draws values from S .

Illustration

3 balls are drawn (w/o replacement) from a box containing 2 red balls and 8 yellow balls.
Sketch the probability distribution for the colour of the third ball.
Sample space: $\Omega=\{\propto \bullet, \bullet \bullet \bullet\}$. State space: $S=\{0,1\}$.
Random variables: X_{1}, X_{2}, X_{3} (one for the colour of each ball), each draws values from S . The PMF for X_{3} is obtained by marginalising over X_{1} and X_{2} :
$P_{x_{3}}\left(x_{3}\right)=\sum_{x_{2} \in S} \sum_{x_{1} \in S} P\left(X_{3}=x_{3} \mid X_{2}=x_{2}, X_{1}=x_{1}\right) P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) P\left(X_{1}=x_{1}\right)$

Illustration

3 balls are drawn (w/o replacement) from a box containing 2 red balls and 8 yellow balls.
Sketch the probability distribution for the colour of the third ball.
Sample space: $\Omega=\{\bullet \bullet, \bullet \bullet \bullet, \bullet \bullet \bullet, \bullet \bullet \bullet, \bullet \bullet \bullet, \bullet \bullet, \bullet \bullet \bullet, \bullet \bullet \bullet\}$. State space: $S=\{0,1\}$.
Random variables: X_{1}, X_{2}, X_{3} (one for the colour of each ball), each draws values from S . The PMF for X_{3} is obtained by marginalising over X_{1} and X_{2} :
$P_{x_{3}}\left(x_{3}\right)=\sum_{x_{2} \in S} \sum_{x_{1} \in S} P\left(X_{3}=x_{3} \mid X_{2}=x_{2}, X_{1}=x_{1}\right) P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) P\left(X_{1}=x_{1}\right)$
The state $X_{3}=0$ ("third ball is red") can be achieved in three ways (see Ω).

Illustration

3 balls are drawn (w/o replacement) from a box containing 2 red balls and 8 yellow balls.
Sketch the probability distribution for the colour of the third ball.
Sample space: $\Omega=\{\bullet \bullet, \bullet \bullet \bullet, \bullet \bullet \bullet, \bullet \bullet \bullet, \bullet \bullet \bullet, \bullet \bullet, \bullet \bullet \bullet, \bullet \bullet \bullet\}$. State space: $S=\{0,1\}$.
Random variables: X_{1}, X_{2}, X_{3} (one for the colour of each ball), each draws values from S .
The PMF for X_{3} is obtained by marginalising over X_{1} and X_{2} :
$P_{x_{1}}\left(x_{3}\right)=\sum_{x_{2} \in S} \sum_{x_{1} \in S} P\left(X_{3}=x_{3} \mid X_{2}=x_{2}, x_{1}=x_{1}\right) P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) P\left(X_{1}=x_{1}\right)$
The state $X_{3}=0$ ("third ball is red") can be achieved in three ways (see Ω).

$$
\begin{aligned}
P\left(X_{3}=0\right) & =P\left(X_{3}=0 \mid X_{2}=1, X 1=0\right) P\left(X_{2}=1 \mid X_{1}=0\right) P\left(X_{1}=0\right) \\
& +P\left(X_{3}=0 \mid X_{2}=0, X 1=1\right) P\left(X_{2}=0 \mid X_{1}=1\right) P\left(X_{1}=1\right) \\
& +P\left(X_{3}=0 \mid X_{2}=1, X 1=1\right) P\left(X_{2}=1 \mid X_{1}=1\right) P\left(X_{1}=1\right) \\
& =\frac{2}{10} \cdot \frac{8}{9} \cdot \frac{1}{8}+\frac{8}{10} \cdot \frac{2}{9} \cdot \frac{1}{8}+\frac{8}{10} \cdot \frac{7}{9} \cdot \frac{2}{8}=\frac{1}{5}
\end{aligned}
$$

Illustration

3 balls are drawn (w/o replacement) from a box containing 2 red balls and 8 yellow balls.
Sketch the probability distribution for the colour of the third ball.
Sample space: $\Omega=\{\propto \bullet, \bullet \bullet \bullet\}$. State space: $S=\{0,1\}$.
Random variables: X_{1}, X_{2}, X_{3} (one for the colour of each ball), each draws values from S .
The PMF for X_{3} is obtained by marginalising over X_{1} and X_{2} :
$P_{x_{3}}\left(x_{3}\right)=\sum_{x_{2} \in S} \sum_{x_{1} \in S} P\left(X_{3}=x_{3} \mid X_{2}=x_{2}, X_{1}=x_{1}\right) P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) P\left(X_{1}=x_{1}\right)$
The state $X_{3}=0$ ("third ball is red") can be achieved in three ways (see Ω).

$$
\begin{aligned}
& P\left(X_{3}=0\right)=P\left(X_{3}=0 \mid X_{2}=1, X 1=0\right) P\left(X_{2}=1 \mid X_{1}=0\right) P\left(X_{1}=0\right) \\
&+P\left(X_{3}=0 \mid X_{2}=0, X 1=1\right) P\left(X_{2}=0 \mid X_{1}=1\right) P\left(X_{1}=1\right) \\
&+P\left(X_{3}=0 \mid X_{2}=1, X 1=1\right) P\left(X_{2}=1 \mid X_{1}=1\right) P\left(X_{1}=1\right) \\
&=\frac{2}{10} \cdot \frac{8}{9} \cdot \frac{1}{8}+\frac{8}{10} \cdot \frac{2}{9} \cdot \frac{1}{8}+\frac{8}{10} \cdot \frac{7}{9} \cdot \frac{2}{8}=\frac{1}{5} \\
& \Longrightarrow P\left(X_{3}=1\right)=1-P\left(X_{3}=0\right)=\frac{4}{5} .
\end{aligned}
$$

Illustration

3 balls are drawn (w/o replacement) from a box containing 2 red balls and 8 yellow balls.
Sketch the probability distribution for the colour of the third ball.

Random variables: X_{1}, X_{2}, X_{3} (one for the colour of each ball), each draws values from S .
The PMF for X_{3} is obtained by marginalising over X_{1} and X_{2} :
$P_{x_{3}}\left(x_{3}\right)=\sum_{x_{2} \in S} \sum_{x_{1} \in S} P\left(X_{3}=x_{3} \mid X_{2}=x_{2}, X_{1}=x_{1}\right) P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) P\left(X_{1}=x_{1}\right)$
The state $X_{3}=0$ ("third ball is red") can be achieved in three ways (see Ω).

$$
\begin{aligned}
& P\left(X_{3}=0\right)=P\left(X_{3}=0 \mid X_{2}=1, X 1=0\right) P\left(X_{2}=1 \mid X_{1}=0\right) P\left(X_{1}=0\right) \\
&+P\left(X_{3}=0 \mid X_{2}=0, X 1=1\right) P\left(X_{2}=0 \mid X_{1}=1\right) P\left(X_{1}=1\right) \\
&+P\left(X_{3}=0 \mid X_{2}=1, X 1=1\right) P\left(X_{2}=1 \mid X_{1}=1\right) P\left(X_{1}=1\right) \\
&=\frac{2}{10} \cdot \frac{8}{9} \cdot \frac{1}{8}+\frac{8}{10} \cdot \frac{2}{9} \cdot \frac{1}{8}+\frac{8}{10} \cdot \frac{7}{9} \cdot \frac{2}{8}=\frac{1}{5} \\
& \Longrightarrow P\left(X_{3}=1\right)=1-P\left(X_{3}=0\right)=\frac{4}{5} .
\end{aligned}
$$

Discrete and continuous probability distributions

Sum of numbers displayed on two dice after one throw (discrete distribution):

State space $=\{2,3, \ldots, 11,12\}$

Discrete and continuous probability distributions

Sum of numbers displayed on two dice after one throw (discrete distribution):

State space $=\{2,3, \ldots, 11,12\}$

(Tim Stellmach/Public Domain)

Discrete and continuous probability distributions

Sum of numbers displayed on two dice after one throw (discrete distribution):

State space $=\{2,3, \ldots, 11,12\}$

(Tim Stellmach/Public Domain)
$P(X=4)$ makes sense, is finite.
$P(4 \leq X \leq 7)=\sum_{i=4}^{7} P(X=i)=\frac{18}{36}=\frac{1}{2}$.

Discrete and continuous probability distributions

Sum of numbers displayed on two dice after one throw (discrete distribution):

State space $=\{2,3, \ldots, 11,12\}$

(Tim Stellmach/Public Domain)

Actual departure time of Flight 1522 (continuous distribution):

$$
\text { State space }=(5.4, \infty)
$$

Shaded region $=P(8: 00 \mathrm{AM}<T<8: 44 \mathrm{AM})$.
$P(X=8: 15 \mathrm{AM})$ is meaningless, zero.
$P(8: 00 \mathrm{AM}<T<8: 44 \mathrm{AM})=\int_{8: 00 \mathrm{AM}}^{8: 44} p_{x}(x) d x$ is finite.

Populations and samples

If a random variable X has probability distribution is $P_{X}(x)$ (discrete) or $p_{x}(x)$ (continuous), we say that X is drawn from the PMF/PDF: $X \sim P_{X}(x)$ or $X \sim p_{x}(x)$.

Populations and samples

If a random variable X has probability distribution is $P_{X}(x)$ (discrete) or $p_{x}(x)$ (continuous), we say that X is drawn from the PMF/PDF: $X \sim P_{X}(x)$ or $X \sim p_{x}(x)$.

Population: the underlying probability distribution.

Populations and samples

If a random variable X has probability distribution is $P_{X}(x)$ (discrete) or $p_{x}(x)$ (continuous), we say that X is drawn from the PMF/PDF: $X \sim P_{x}(x)$ or $X \sim p_{x}(x)$.

Population: the underlying probability distribution.
Sample: the results of a finite number of experiments/draws from the population (a subset).

Populations and samples

If a random variable X has probability distribution is $P_{x}(x)$ (discrete) or $p_{x}(x)$ (continuous), we say that X is drawn from the PMF/PDF: $X \sim P_{x}(x)$ or $X \sim p_{x}(x)$.

Population: the underlying probability distribution.
Sample: the results of a finite number of experiments/draws from the population (a subset).
Experiment performed a finite number of times; sample unable to faithfully reproduce the population - statistics (quantities derived from the sample) are only guesses at (estimates of) the corresponding parameters (values that describe the population).
Convention: Greek symbols for parameters (e.g., μ, σ), Latin symbols for statistics (e.g., \bar{x}, s).

Populations and samples

If a random variable X has probability distribution is $P_{x}(x)$ (discrete) or $p_{x}(x)$ (continuous), we say that X is drawn from the PMF/PDF: $X \sim P_{x}(x)$ or $X \sim p_{x}(x)$.

Population: the underlying probability distribution.
Sample: the results of a finite number of experiments/draws from the population (a subset).
Experiment performed a finite number of times; sample unable to faithfully reproduce the population - statistics (quantities derived from the sample) are only guesses at (estimates of) the corresponding parameters (values that describe the population).
Convention: Greek symbols for parameters (e.g., μ, σ), Latin symbols for statistics (e.g., \bar{x}, s).

"More data is required."

Populations and samples

If a random variable X has probability distribution is $P_{x}(x)$ (discrete) or $p_{x}(x)$ (continuous), we say that X is drawn from the PMF/PDF: $X \sim P_{x}(x)$ or $X \sim p_{x}(x)$.

Population: the underlying probability distribution.
Sample: the results of a finite number of experiments/draws from the population (a subset).
Experiment performed a finite number of times; sample unable to faithfully reproduce the population - statistics (quantities derived from the sample) are only guesses at (estimates of) the corresponding parameters (values that describe the population).
Convention: Greek symbols for parameters (e.g., μ, σ), Latin symbols for statistics (e.g., \bar{x}, s).

(Tim Stellmach/Public Domain)
Population: $\mu=7.00, \operatorname{Var}(X)=5.83$.

Sample of outcomes obtained from rolling two dice 14 times.
$\bar{x}=7.43$, sample variance (discussed later) $=6.67$

Populations and samples

If a random variable X has probability distribution is $P_{x}(x)$ (discrete) or $p_{x}(x)$ (continuous), we say that X is drawn from the PMF/PDF: $X \sim P_{x}(x)$ or $X \sim p_{x}(x)$.

Population: the underlying probability distribution.
Sample: the results of a finite number of experiments/draws from the population (a subset).
Experiment performed a finite number of times; sample unable to faithfully reproduce the population - statistics (quantities derived from the sample) are only guesses at (estimates of) the corresponding parameters (values that describe the population).
Convention: Greek symbols for parameters (e.g., μ, σ), Latin symbols for statistics (e.g., \bar{x}, s).

(Tim Stellmach/Public Domain)
Population: $\mu=7.00, \operatorname{Var}(X)=5.83$.

Sample of outcomes obtained from rolling two dice 14 times.
$\bar{x}=7.43$, sample variance (discussed later) $=6.67$

Sample distribution seems uniform, results in a larger sample mean/variance than the true (population) values.

Cumulative distribution function (CDF)

Definition (Cumulative distribution function)

A function $F_{X}(x)$ of a random variable X such that $F_{X}(x)$ is the probability that $X \leq x$. For a discrete PMF:

$$
F_{X}(x)=P(X \leq x)=\sum_{x_{i} \leq x} P\left(X=x_{i}\right) .
$$

For a continuous PDF:

$$
F_{x}(x)=P(X \leq x)=\int_{t=-\infty}^{t=x} p_{x}(t) d t .
$$

Cumulative distribution function (CDF)

Definition (Cumulative distribution function)

A function $F_{X}(x)$ of a random variable X such that $F_{X}(x)$ is the probability that $X \leq x$.

For a discrete PMF:

$$
F_{X}(x)=P(X \leq x)=\sum_{x_{i} \leq x} P\left(X=x_{i}\right) .
$$

From this definition, the probability of the variable ranging between two values a and b is $P(a<X \leq b)=F_{X}(x=b)-F_{X}(x=a)$. For a PDF, this is also equal to $\int_{t=a}^{t=b} p_{X}(t) d t$.

Cumulative distribution function (CDF)

Definition (Cumulative distribution function)

A function $F_{X}(x)$ of a random variable X such that $F_{X}(x)$ is the probability that $X \leq x$.

For a discrete PMF:

$$
F_{X}(x)=P(X \leq x)=\sum_{x_{i} \leq x} P\left(X=x_{i}\right)
$$

From this definition, the probability of the variable ranging between two values a and b is
$P(a<X \leq b)=F_{X}(x=b)-F_{X}(x=a)$. For a PDF, this is also equal to $\int_{t=a}^{t=b} p_{x}(t) d t$.

The CDF is a monotonically increasing function.
For a discrete random variable, it is constant in between values.
For the continuous case, the PDF is the derivative of the CDF w.r.t. x.

Cumulative distribution function (contd.)

Definition (Quantile function)

The inverse of the CDF, a function $Q(p)$ that returns the value of x such that $F_{X}(X \leq x)=p$.

Cumulative distribution function (contd.)

Definition (Quantile function)

The inverse of the CDF, a function $Q(p)$ that returns the value of x such that $F_{X}(X \leq x)=p$.
e.g., $Q(p=0.5)$ is the median (equal "mass" on either side of $x=Q(0.5)$). $Q(p=0.25)$ and $Q(p=0.75)$ are the first and third quartiles.

Cumulative distribution function (contd.)

Definition (Quantile function)

The inverse of the CDF, a function $Q(p)$ that returns the value of x such that $F_{X}(X \leq x)=p$.
e.g., $Q(p=0.5)$ is the median (equal "mass" on either side of $x=Q(0.5)$).
$Q(p=0.25)$ and $Q(p=0.75)$ are the first and third quartiles.

Definition (Independent and identically distributed variables)

Two random variables X and Y are said to be iid if and only if they are mutually independent and drawn from the same distribution:

$$
\begin{gathered}
F_{X, Y}(x, y)=F_{X}(x) \times F_{Y}(y) \\
F_{X}(x)=F_{Y}(x)
\end{gathered}
$$

Cumulative distribution function (contd.)

Definition (Quantile function)

The inverse of the CDF, a function $Q(p)$ that returns the value of x such that $F_{X}(X \leq x)=p$.
e.g., $Q(p=0.5)$ is the median (equal "mass" on either side of $x=Q(0.5)$).
$Q(p=0.25)$ and $Q(p=0.75)$ are the first and third quartiles.

Definition (Independent and identically distributed variables)

Two random variables X and Y are said to be iid if and only if they are mutually independent and drawn from the same distribution:

$$
\begin{gathered}
F_{X, Y}(x, y)=F_{X}(x) \times F_{Y}(y) \\
F_{X}(x)=F_{Y}(x)
\end{gathered}
$$

Heteroskedastic: originally iid observations + measurement errors that aren't identical.
Typical case in astronomy.

Expectation value

Definition (Expectation value)

The expectation value $E[g(X)]$ of a function $g(X)$ of a random variable X, is the weighted average of $g(X)$, with the weights being the associated probabilities:
Discrete: $E[g(X)]=\sum_{i=1}^{N} g\left(x_{i}\right) P\left(X=x_{i}\right)$.

$$
\text { Continuous: } E[g(X)]=\int_{t=-\infty}^{t=\infty} g(x) p_{x}(x) d x \text {. }
$$

Expectation value

Definition (Expectation value)

The expectation value $E[g(X)]$ of a function $g(X)$ of a random variable X, is the weighted average of $g(X)$, with the weights being the associated probabilities:
Discrete: $E[g(X)]=\sum_{i=1}^{N} g\left(x_{i}\right) P\left(X=x_{i}\right) . \quad$ Continuous: $E[g(X)]=\int_{t=-\infty}^{t=\infty} g(x) p_{x}(x) d x$.
Linearity: $E[\alpha g(X)+\beta h(X)]=\alpha E[g(X)]+\beta E[h(X)] . \quad$ (\sum and \int are linear operators!) Independence: $X \perp Y \Longrightarrow E[X Y]=E[X] E[Y]$.

Expectation value

Definition (Expectation value)

The expectation value $E[g(X)]$ of a function $g(X)$ of a random variable X, is the weighted average of $g(X)$, with the weights being the associated probabilities:
Discrete: $E[g(X)]=\sum_{i=1}^{N} g\left(x_{i}\right) P\left(X=x_{i}\right) . \quad$ Continuous: $E[g(X)]=\int_{t=-\infty}^{t=\infty} g(x) p_{x}(x) d x$.
Linearity: $E[\alpha g(X)+\beta h(X)]=\alpha E[g(X)]+\beta E[h(X)] . \quad\left(\sum\right.$ and \int are linear operators!) Independence: $X \perp Y \Longrightarrow E[X Y]=E[X] E[Y]$.

Mean $\equiv E[X]$. An estimate of the distribution's location or central tendency.
Variance, $\operatorname{Var}[X] \equiv E\left[(X-E[X])^{2}\right]=(\text { standard deviation })^{2}$. An estimate of spread.

Expectation value

Definition (Expectation value)

The expectation value $E[g(X)]$ of a function $g(X)$ of a random variable X, is the weighted average of $g(X)$, with the weights being the associated probabilities:
Discrete: $E[g(X)]=\sum_{i=1}^{N} g\left(x_{i}\right) P\left(X=x_{i}\right) . \quad$ Continuous: $E[g(X)]=\int_{t=-\infty}^{t=\infty} g(x) p_{x}(x) d x$.
Linearity: $E[\alpha g(X)+\beta h(X)]=\alpha E[g(X)]+\beta E[h(X)] . \quad$ (\sum and \int are linear operators!) Independence: $X \perp Y \Longrightarrow E[X Y]=E[X] E[Y]$.

Mean $\equiv E[X]$. An estimate of the distribution's location or central tendency.
Variance, $\operatorname{Var}[X] \equiv E\left[(X-E[X])^{2}\right]=(\text { standard deviation })^{2}$. An estimate of spread.
Why the square? What is $E[X-E(X)]$?

Expectation value

Definition (Expectation value)

The expectation value $E[g(X)]$ of a function $g(X)$ of a random variable X, is the weighted average of $g(X)$, with the weights being the associated probabilities:
Discrete: $E[g(X)]=\sum_{i=1}^{N} g\left(x_{i}\right) P\left(X=x_{i}\right) . \quad$ Continuous: $E[g(X)]=\int_{t=-\infty}^{t=\infty} g(x) p_{x}(x) d x$.
Linearity: $E[\alpha g(X)+\beta h(X)]=\alpha E[g(X)]+\beta E[h(X)] . \quad\left(\sum\right.$ and \int are linear operators!) Independence: $X \perp Y \Longrightarrow E[X Y]=E[X] E[Y]$.

Mean $\equiv E[X]$. An estimate of the distribution's location or central tendency.
Variance, $\operatorname{Var}[X] \equiv E\left[(X-E[X])^{2}\right]=(\text { standard deviation })^{2}$. An estimate of spread.
Why the square? What is $E[X-E(X)]$?
The expression for the variance can be simplified: $\operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}$.
Note: When no other function is specified, "expectation value" refers to the mean, $E(X)$.

Some properties of the variance of a random variable

(1) By definition, non-negative.

Some properties of the variance of a random variable

(1) By definition, non-negative.
(2) For any constant α :
$-\operatorname{Var}(\alpha)=0$, because $E[\alpha]=\alpha$.

- $\operatorname{Var}(X+\alpha)=\operatorname{Var}(X)$ - i.e., invariant w.r.t. a location parameter.
$-\operatorname{Var}(\alpha X)=\alpha^{2} \operatorname{Var}(X)$.

Some properties of the variance of a random variable

(1) By definition, non-negative.
(2) For any constant α :
$-\operatorname{Var}(\alpha)=0$, because $E[\alpha]=\alpha$.

- $\operatorname{Var}(X+\alpha)=\operatorname{Var}(X)$ - i.e., invariant w.r.t. a location parameter.
$-\operatorname{Var}(\alpha X)=\alpha^{2} \operatorname{Var}(X)$.
(3) For constants α, β and random variables X, Y,
$\operatorname{Var}(\alpha X+\beta Y)=? ?$
Evaluate this expression using the definition of variance in terms of expectation values.

Covariance

> interpretation?
$\operatorname{Var}(\alpha X+\beta Y)=\alpha^{2} \operatorname{Var}(X)+\beta^{2} \operatorname{Var}(Y)+2 \alpha \beta \overbrace{E[(X-E[X])(Y-E[Y])]}$

Covariance

interpretation?

$\operatorname{Var}(\alpha X+\beta Y)=\alpha^{2} \operatorname{Var}(X)+\beta^{2} \operatorname{Var}(Y)+2 \alpha \beta \overbrace{E[(X-E[X])(Y-E[Y])]}$

If $X \perp Y$, then $(Y-E[Y])$ independent of $(X-E[X])$ for any (X, Y) pair. \Longrightarrow the term quantifies a dependence between X and Y.

Covariance

$$
\begin{equation*}
\operatorname{Var}(\alpha X+\beta Y)=\alpha^{2} \operatorname{Var}(X)+\beta^{2} \operatorname{Var}(Y)+2 \alpha \beta \overbrace{E[(X-E[X])(Y-E[Y])]} \tag{1}
\end{equation*}
$$

If $X \perp Y$, then $(Y-E[Y])$ independent of $(X-E[X])$ for any (X, Y) pair. \Longrightarrow the term quantifies a dependence between X and Y.

If X and Y are not independent, then $(X-E[X])(Y-E[Y])>0$ if both deviations are in the same direction, and <0 if the variables deviate from their means in opposite directions.

Covariance

$$
\begin{equation*}
\operatorname{Var}(\alpha X+\beta Y)=\alpha^{2} \operatorname{Var}(X)+\beta^{2} \operatorname{Var}(Y)+2 \alpha \beta \overbrace{E[(X-E[X])(Y-E[Y])]} \tag{1}
\end{equation*}
$$

If $X \perp Y$, then $(Y-E[Y])$ independent of $(X-E[X])$ for any (X, Y) pair. \Longrightarrow the term quantifies a dependence between X and Y.

If X and Y are not independent, then $(X-E[X])(Y-E[Y])>0$ if both deviations are in the same direction, and <0 if the variables deviate from their means in opposite directions.
The third term in Eq (1) is the average of these products of X and Y deviations.

Covariance

interpretation?

$$
\begin{equation*}
\operatorname{Var}(\alpha X+\beta Y)=\alpha^{2} \operatorname{Var}(X)+\beta^{2} \operatorname{Var}(Y)+2 \alpha \beta \overbrace{E[(X-E[X])(Y-E[Y])]} \tag{1}
\end{equation*}
$$

If $X \perp Y$, then $(Y-E[Y])$ independent of $(X-E[X])$ for any (X, Y) pair. \Longrightarrow the term quantifies a dependence between X and Y.

If X and Y are not independent, then $(X-E[X])(Y-E[Y])>0$ if both deviations are in the same direction, and <0 if the variables deviate from their means in opposite directions.
The third term in Eq (1) is the average of these products of X and Y deviations.

Definition (Covariance)

The covariance is a measure of joint variability of two random variables: $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]$. By definition, $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.

Covariance

> interpretation?

$$
\begin{equation*}
\operatorname{Var}(\alpha X+\beta Y)=\alpha^{2} \operatorname{Var}(X)+\beta^{2} \operatorname{Var}(Y)+2 \alpha \beta E[(X-E[X])(Y-E[Y])] \tag{1}
\end{equation*}
$$

If $X \perp Y$, then $(Y-E[Y])$ independent of $(X-E[X])$ for any (X, Y) pair. \Longrightarrow the term quantifies a dependence between X and Y.

If X and Y are not independent, then $(X-E[X])(Y-E[Y])>0$ if both deviations are in the same direction, and <0 if the variables deviate from their means in opposite directions.
The third term in Eq (1) is the average of these products of X and Y deviations.

Definition (Covariance)

The covariance is a measure of joint variability of two random variables: $\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]$. By definition, $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.

Therefore, $\operatorname{Var}(\alpha X+\beta Y)=\alpha^{2} \operatorname{Var}(X)+\beta^{2} \operatorname{Var}(Y)+2 \alpha \beta \operatorname{Cov}(X, Y)$.
If the two variables are uncorrelated, then the third term vanishes.

Correlation coefficient

The sign of $\operatorname{Cov}(X, Y)$ probes a linear relationship between the two variables X and Y.

We can define a scale-invariant of $\operatorname{Cov}(X, Y)$ instead:

Correlation coefficient

The sign of $\operatorname{Cov}(X, Y)$ probes a linear relationship between the two variables X and Y.
However, the magnitude isn't as useful, as the covariance is not scale-invariant:
$\operatorname{Cov}(\alpha X, \beta Y)=\alpha \beta \operatorname{Cov}(X, Y)$.
We can define a scale-invariant of $\operatorname{Cov}(X, Y)$ instead:

Definition ((Pearson's) Correlation coefficient)

$\rho \times Y=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$

Correlation coefficient

The sign of $\operatorname{Cov}(X, Y)$ probes a linear relationship between the two variables X and Y.
However, the magnitude isn't as useful, as the covariance is not scale-invariant:
$\operatorname{Cov}(\alpha X, \beta Y)=\alpha \beta \operatorname{Cov}(X, Y)$.
We can define a scale-invariant of $\operatorname{Cov}(X, Y)$ instead:

Definition ((Pearson's) Correlation coefficient)

$\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}$

By definition, $\rho_{X X}=1$. "Perfect correlation". $\rho_{X X}=-1$: "perfect anticorrelation".

Uncorrelated random variables

If random variables X and Y are such that $\operatorname{Cov}(X, Y)=0$, then they are uncorrelated.

Uncorrelated random variables

If random variables X and Y are such that $\operatorname{Cov}(X, Y)=0$, then they are uncorrelated.
The variance of the sum of N uncorrelated variables is therefore the sum of their variances:
$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)$ (Bienaymé formula).

Uncorrelated random variables

If random variables X and Y are such that $\operatorname{Cov}(X, Y)=0$, then they are uncorrelated.
The variance of the sum of N uncorrelated variables is therefore the sum of their variances:
$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)$ (Bienaymé formula).
For N iid variables, $\operatorname{Var}(\bar{X})=\frac{1}{N^{2}} \operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)=\frac{1}{N^{2}} N \operatorname{Var}(X)=\frac{\operatorname{Var}(X)}{N}$

Uncorrelated random variables

If random variables X and Y are such that $\operatorname{Cov}(X, Y)=0$, then they are uncorrelated.
The variance of the sum of N uncorrelated variables is therefore the sum of their variances:
$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)$ (Bienaymé formula).
For N iid variables, $\operatorname{Var}(\bar{X})=\frac{1}{N^{2}} \operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)=\frac{1}{N^{2}} N \operatorname{Var}(X)=\frac{\operatorname{Var}(X)}{N}$

Two-dice example

(Tim Stellmach/Public Domain) $\mu=7.00, \operatorname{Var}(X)=5.83$.

Uncorrelated random variables

If random variables X and Y are such that $\operatorname{Cov}(X, Y)=0$, then they are uncorrelated.
The variance of the sum of N uncorrelated variables is therefore the sum of their variances:
$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)$ (Bienaymé formula).
For N iid variables, $\operatorname{Var}(\bar{X})=\frac{1}{N^{2}} \operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)=\frac{1}{N^{2}} N \operatorname{Var}(X)=\frac{\operatorname{Var}(X)}{N}$

Two-dice example

(Tim Stellmach/Public Domain) $\mu=7.00, \operatorname{Var}(X)=5.83$.

Uncorrelated random variables

If random variables X and Y are such that $\operatorname{Cov}(X, Y)=0$, then they are uncorrelated.
The variance of the sum of N uncorrelated variables is therefore the sum of their variances:
$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)$ (Bienaymé formula).
For N iid variables, $\operatorname{Var}(\bar{X})=\frac{1}{N^{2}} \operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)=\frac{1}{N^{2}} N \operatorname{Var}(X)=\frac{\operatorname{Var}(X)}{N}$

Two-dice example

X_{1}, X_{2} : random variables for the values on the $1^{\text {st }}$ and $2^{\text {nd }}$ die after each throw, we record $X_{1}+X_{2}$ each time.

Variance on a single measurement of this sum $=5.83$.
Variance on average of 10 measurements: $\frac{5.83}{10}=0.583$
(Tim Stellmach/Public Domain) $\mu=7.00, \operatorname{Var}(X)=5.83$.

Uncorrelated random variables

If random variables X and Y are such that $\operatorname{Cov}(X, Y)=0$, then they are uncorrelated.
The variance of the sum of N uncorrelated variables is therefore the sum of their variances:
$\operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)$ (Bienaymé formula).
For N iid variables, $\operatorname{Var}(\bar{X})=\frac{1}{N^{2}} \operatorname{Var}\left(\sum_{i=1}^{N} X_{i}\right)=\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)=\frac{1}{N^{2}} N \operatorname{Var}(X)=\frac{\operatorname{Var}(X)}{N}$

Two-dice example

(Tim Stellmach/Public Domain) $\mu=7.00, \operatorname{Var}(X)=5.83$.
X_{1}, X_{2} : random variables for the values on the $1^{\text {st }}$ and $2^{\text {nd }}$ die after each throw, we record $X_{1}+X_{2}$ each time.

Variance on a single measurement of this sum $=5.83$.
Variance on average of 10 measurements: $\frac{5.83}{10}=0.583$
As \# measurements $N \uparrow$, variance on the mean of N measurements \downarrow.
Sample mean approaches population mean.
See Law of Large Numbers.

Some common probability distributions

Attributes of probability distributions via Python/Scipy

(See documentation for each distribution in scipy.stats)

- rvs - random variates (sample from the distribution)
- pmf/pdf - PMF or PDF
- logpmf/logpdf - log of the PMF or PDF
- cdf - CDF
- logcdf - log of the CDF
- ppf - percent point function (inverse of cdf; percentiles)
- stats - Mean('m'), variance('v'), skew('s'), kurtosis('k')
(also see mean, median, var, std)
- expect - Compute expectation value of a function of this random variable
- interval - Confidence interval

Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question. State space: $\{0,1\}$. Probability distribution: $(1-p, p)$, where $p=$ probability of success.

Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question. State space: $\{0,1\}$. Probability distribution: $(1-p, p)$, where $p=$ probability of success.

Definition (Bernoulli Distribution)

$$
P(X=x)=p^{x}(1-p)^{1-x} \mathbb{I}_{x \in\{0,1\}}(x),
$$

with $\mathbb{I}(x)$ the Indicator (or Heaviside) function: $\mathbb{I}_{x \in\{0,1\}}(x)= \begin{cases}1, & \text { if } x \in\{0,1\} \\ 0, & \text { otherwise }\end{cases}$

Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question. State space: $\{0,1\}$. Probability distribution: $(1-p, p)$, where $p=$ probability of success.

Definition (Bernoulli Distribution)

$$
P(X=x)=p^{x}(1-p)^{1-x} \mathbb{I}_{x \in\{0,1\}}(x),
$$

with $\mathbb{I}(x)$ the Indicator (or Heaviside) function: $\mathbb{I}_{x \in\{0,1\}}(x)= \begin{cases}1, & \text { if } x \in\{0,1\} \\ 0, & \text { otherwise }\end{cases}$

Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question. State space: $\{0,1\}$. Probability distribution: $(1-p, p)$, where $p=$ probability of success.

Definition (Bernoulli Distribution)

$$
P(X=x)=p^{x}(1-p)^{1-x} \mathbb{I}_{x \in\{0,1\}}(x),
$$

with $\mathbb{I}(x)$ the Indicator (or Heaviside) function: $\mathbb{I}_{x \in\{0,1\}}(x)= \begin{cases}1, & \text { if } x \in\{0,1\} \\ 0, & \text { otherwise }\end{cases}$

Mean: $E[X]=1 \times P(X=1)+0 \times P(X=0)=1 \times p+0 \times(1-p)=p$

Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question. State space: $\{0,1\}$. Probability distribution: $(1-p, p)$, where $p=$ probability of success.

Definition (Bernoulli Distribution)

$$
P(X=x)=p^{x}(1-p)^{1-x} \mathbb{I}_{x \in\{0,1\}}(x),
$$

with $\mathbb{I}(x)$ the Indicator (or Heaviside) function: $\mathbb{I}_{x \in\{0,1\}}(x)= \begin{cases}1, & \text { if } x \in\{0,1\} \\ 0, & \text { otherwise }\end{cases}$

Mean: $E[X]=1 \times P(X=1)+0 \times P(X=0)=1 \times p+0 \times(1-p)=p$
Variance: First, $E\left[X^{2}\right]=1^{2} \times P(X=1)+0^{2} \times P(X=0)=1^{2} \times p+0^{2} \times(1-p)=p$

$$
\Rightarrow \operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=p-p^{2}=p(1-p)
$$

Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question. State space: $\{0,1\}$. Probability distribution: $(1-p, p)$, where $p=$ probability of success.

Definition (Bernoulli Distribution)

$$
P(X=x)=p^{x}(1-p)^{1-x} \mathbb{I}_{x \in\{0,1\}}(x),
$$

with $\mathbb{I}(x)$ the Indicator (or Heaviside) function: $\mathbb{I}_{x \in\{0,1\}}(x)= \begin{cases}1, & \text { if } x \in\{0,1\} \\ 0, & \text { otherwise }\end{cases}$
Mean: $E[X]=1 \times P(X=1)+0 \times P(X=0)=1 \times p+0 \times(1-p)=p$
Variance: First, $E\left[X^{2}\right]=1^{2} \times P(X=1)+0^{2} \times P(X=0)=1^{2} \times p+0^{2} \times(1-p)=p$

$$
\Rightarrow \operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=p-p^{2}=p(1-p)
$$

Example of a Bernoulli random variable: outcome of tossing a single (not necessarily fair) coin.

Bernoulli (discrete; scipy.stats.bernoulli)

A Bernoulli random variable is the result of an experiment that asks a single yes-no question. State space: $\{0,1\}$. Probability distribution: $(1-p, p)$, where $p=$ probability of success.

Definition (Bernoulli Distribution)

$$
P(X=x)=p^{x}(1-p)^{1-x} \mathbb{I}_{x \in\{0,1\}}(x),
$$

with $\mathbb{I}(x)$ the Indicator (or Heaviside) function: $\mathbb{I}_{x \in\{0,1\}}(x)= \begin{cases}1, & \text { if } x \in\{0,1\} \\ 0, & \text { otherwise }\end{cases}$
Mean: $E[X]=1 \times P(X=1)+0 \times P(X=0)=1 \times p+0 \times(1-p)=p$
Variance: First, $E\left[X^{2}\right]=1^{2} \times P(X=1)+0^{2} \times P(X=0)=1^{2} \times p+0^{2} \times(1-p)=p$

$$
\Rightarrow \operatorname{Var}[X]=E\left[X^{2}\right]-(E[X])^{2}=p-p^{2}=p(1-p)
$$

Example of a Bernoulli random variable: outcome of tossing a single (not necessarily fair) coin.
Generate 10 samples from scipy.stats.bernoulli:
from scipy.stats import bernoulli
$\mathrm{p}=0.25$ \#probability of success
print(bernoulli.rvs(p, size = 10)) \#10 random deviates
[0 $000 c 11000000]$ \#possible output

Binomial (discrete, scipy.stats.binom)

Distribution of \# successes in n independent experiments (n Bernoulli trials).

Binomial (discrete, scipy.stats.binom)

Distribution of \# successes in n independent experiments (n Bernoulli trials).
Distribution $=$ probability of k successes (and $n-k$ failures) in n trials:

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{(n-k)} \text { (Binomial distribution) }
$$

Binomial (discrete, scipy.stats.binom)

Distribution of \# successes in n independent experiments (n Bernoulli trials).
Distribution $=$ probability of k successes (and $n-k$ failures) in n trials:

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{(n-k)} \text { (Binomial distribution) }
$$

Examples:

The number of heads obtained in n tosses of a fair coin $=\operatorname{Binomial}\left(n, p=\frac{1}{2}\right)$.
The number of "point" masses in a volume fraction V_{1} / V of space with N points in volume V
$=\operatorname{Binomial}\left(N, p=\frac{V_{1}}{V}\right)($ Meszaros, A. 1997 A\&A 328, 1).

Binomial (discrete, scipy.stats.binom)

Distribution of \# successes in n independent experiments (n Bernoulli trials).
Distribution $=$ probability of k successes (and $n-k$ failures) in n trials:

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{(n-k)} \text { (Binomial distribution) }
$$

Examples:

The number of heads obtained in n tosses of a fair coin $=\operatorname{Binomial}\left(n, p=\frac{1}{2}\right)$.
The number of "point" masses in a volume fraction V_{1} / V of space with N points in volume V
$=\operatorname{Binomial}\left(N, p=\frac{V_{1}}{V}\right)($ Meszaros, A. 1997 A\&A 328, 1) .
Mean: $E[X]=n p$ (demonstrated on following slide)

Binomial (discrete, scipy.stats.binom)

Distribution of \# successes in n independent experiments (n Bernoulli trials).
Distribution $=$ probability of k successes (and $n-k$ failures) in n trials:

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{(n-k)} \text { (Binomial distribution) }
$$

Examples:

The number of heads obtained in n tosses of a fair coin $=\operatorname{Binomial}\left(n, p=\frac{1}{2}\right)$.
The number of "point" masses in a volume fraction V_{1} / V of space with N points in volume V
$=\operatorname{Binomial}\left(N, p=\frac{V_{1}}{V}\right)($ Meszaros, A. 1997 A\&A 328, 1) .
Mean: $E[X]=n p$ (demonstrated on following slide) \quad Variance: $\operatorname{Var}[X]=n p(1-p)$

Binomial (discrete, scipy.stats.binom)

Distribution of \# successes in n independent experiments (n Bernoulli trials).
Distribution $=$ probability of k successes (and $n-k$ failures) in n trials:

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{(n-k)} \text { (Binomial distribution) }
$$

Examples:

The number of heads obtained in n tosses of a fair coin $=\operatorname{Binomial}\left(n, p=\frac{1}{2}\right)$.
The number of "point" masses in a volume fraction V_{1} / V of space with N points in volume V
$=\operatorname{Binomial}\left(N, p=\frac{V_{1}}{V}\right)($ Meszaros, A. 1997 A\&A 328, 1).
Mean: $E[X]=n p$ (demonstrated on following slide) \quad Variance: $\operatorname{Var}[X]=n p(1-p)$ Both are n times the values for the Bernoulli distribution as expected (n independent Bernoulli trials).

Binomial (discrete, scipy.stats.binom)

Distribution of \# successes in n independent experiments (n Bernoulli trials).
Distribution $=$ probability of k successes (and $n-k$ failures) in n trials:

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{(n-k)} \text { (Binomial distribution) }
$$

Examples:

The number of heads obtained in n tosses of a fair coin $=\operatorname{Binomial}\left(n, p=\frac{1}{2}\right)$.
The number of "point" masses in a volume fraction V_{1} / V of space with N points in volume V
$=\operatorname{Binomial}\left(N, p=\frac{V_{1}}{V}\right)($ Meszaros, A. 1997 A\&A 328, 1).
Mean: $E[X]=n p$ (demonstrated on following slide) \quad Variance: $\operatorname{Var}[X]=n p(1-p)$ Both are n times the values for the Bernoulli distribution as expected (n independent Bernoulli trials).

Compute probability of 2 successes in 10 trials

```
from scipy.stats import binom
n, k, p = 10, 2, 0.25 #total trials, num successes, prob of 1 success
print(binom.pmf(k, n, p)) #prob of k successes in n trials
```

0.28156757354736334 \#output

Expectation value of a Binomial Distribution

Recall:

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
k\binom{n}{k}=n\binom{n-1}{k-1} \tag{3}
\end{equation*}
$$

Expectation value of a Binomial Distribution

Recall:

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{\star} y^{n-k} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
k\binom{n}{k}=n\binom{n-1}{k-1} \tag{3}
\end{equation*}
$$

Expectation value for the binomial distribution:
$E(X)=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}(k=0$ term vanishes $)$

Expectation value of a Binomial Distribution

Recall:

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
k\binom{n}{k}=n\binom{n-1}{k-1} \tag{3}
\end{equation*}
$$

Expectation value for the binomial distribution:

$$
\begin{align*}
E(X) & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}(k=0 \text { term vanishes }) \\
& =\sum_{k=1}^{n} n\binom{n-1}{k-1} p^{k}(1-p)^{n-k} \quad \text { using Eq. } \tag{3}
\end{align*}
$$

Expectation value of a Binomial Distribution

Recall:

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
k\binom{n}{k}=n\binom{n-1}{k-1} \tag{3}
\end{equation*}
$$

Expectation value for the binomial distribution:

$$
\begin{aligned}
E(X) & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}(k=0 \text { term vanishes) } \\
& =\sum_{k=1}^{n} n\binom{n-1}{k-1} p^{k}(1-p)^{n-k} \quad \text { using Eq. (3) } \\
& \left.=\sum_{s=0}^{n-1} n\binom{n-1}{s} p^{s+1}(1-p)^{n-s-1} \quad \text { (setting } s=k-1\right)
\end{aligned}
$$

Expectation value of a Binomial Distribution

Recall:

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
k\binom{n}{k}=n\binom{n-1}{k-1} \tag{3}
\end{equation*}
$$

Expectation value for the binomial distribution:

$$
\begin{aligned}
E(X) & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}(k=0 \text { term vanishes) } \\
& =\sum_{k=1}^{n} n\binom{n-1}{k-1} p^{k}(1-p)^{n-k} \quad \text { using Eq. (3) } \\
& \left.=\sum_{s=0}^{n-1} n\binom{n-1}{s} p^{s+1}(1-p)^{n-s-1} \quad \quad \text { (setting } s=k-1\right) \\
& =n p \sum_{s=0}^{n-1}\binom{n-1}{s} p^{s}(1-p)^{n-1-s}
\end{aligned}
$$

Expectation value of a Binomial Distribution

Recall:

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
k\binom{n}{k}=n\binom{n-1}{k-1} \tag{3}
\end{equation*}
$$

Expectation value for the binomial distribution:

$$
\begin{array}{rlr}
E(X) & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}(k=0 \text { term vanishes) } \\
& =\sum_{k=1}^{n} n\binom{n-1}{k-1} p^{k}(1-p)^{n-k} & \text { using Eq. (3) } \\
& =\sum_{s=0}^{n-1} n\binom{n-1}{s} p^{s+1}(1-p)^{n-s-1} & \text { (setting } s=k-1) \\
& =n p \sum_{s=0}^{n-1}\binom{n-1}{s} p^{s}(1-p)^{n-1-s}=n p & \text { using Eq. (2) }
\end{array}
$$

Expectation value of a Binomial Distribution

Recall:

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
k\binom{n}{k}=n\binom{n-1}{k-1} \tag{3}
\end{equation*}
$$

Expectation value for the binomial distribution:

$$
\begin{array}{rlr}
E(X) & =\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=\sum_{k=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}(k=0 \text { term vanishes) } \\
& =\sum_{k=1}^{n} n\binom{n-1}{k-1} p^{k}(1-p)^{n-k} & \text { using Eq. (3) } \\
& =\sum_{s=0}^{n-1} n\binom{n-1}{s} p^{s+1}(1-p)^{n-s-1} & \text { (setting } s=k-1) \\
& =n p \sum_{s=0}^{n-1}\binom{n-1}{s} p^{s}(1-p)^{n-1-s}=n p & \text { using Eq. (2) }
\end{array}
$$

Similarly, we can compute $\operatorname{Var}[X]$ using $k(k-1)\binom{n}{k}=n(n-1)\binom{n-2}{k-2}$

