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Review

Poisson, Uniform, Exponential, and Normal distributions.

Central Limit Theorem. No matter which distribution X is drawn from, X̄ is approximately
normally distributed about the population mean of X with variance equal to that of X divided
by the sample size.

PDFs of functions:

Probability Integral Transform: Y = FX (X ) =⇒ Y ∼ Uniform(0, 1).

CDF, PDF, and convolution methods.

Some review questions.
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(Frequentist) Statistical inference
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Bayesian vs frequentist inference

Parameters: (frequentist) constants, not random.
Probabilistic aspect contained in likelihood of parameter value given the data.

(Bayesian) random variables modeled by a prior distribution.
Result of analysis is a posterior probability distribution for each parameter.

Estimators: (frequentist) an estimate for the constant parameter. Random variable.
Uncertainty in estimate based on functional form of likelihood.

(Bayesian) an estimate for the weighted average of the posterior distribution of
parameter values. Random variable.

Uncertainty in estimate computed from posterior PDF.
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Statistics (Wall & Jenkins Sec. 3.2)

Recall: Populations are summarised by parameters and samples are summarised by statistics.

A statistic is a function T (Xj ; j = 1, · · · ,N) of only the data.

Examples: max(Xj ; j = 1, · · · ,N), sample mean, sample median, sample variance, ...

Data Xj are random variables =⇒ a statistic also has a PMF/PDF – the sampling distribution.

Example: according to CLT, the sampling distribution of the sample mean is ≈ normal.
Statistics can be compared to parameters via expectation values. Some characteristics of a “good”

statistic:

1 Efficiency: reproduce parameter with as few samples as possible.

Sample mean more efficient than median (variance of mean → 0 as N−1).

2 Robustness: reproduce parameter accurately by being insensitive to outliers in the sample.
Sample median extremely robust (breakdown point of 50%); breakdown point of sample mean: 0%.

3 Lack of bias: expectation value of the statistic = true parameter value.

Asymptotically unbiased: bias → 0 as N → ∞. Sample mean always unbiased.

4 Consistency: reproduces true parameter value for very large sample size.
Sample standard deviation biased, but consistent.

“[S]tatistics of known usefulness are quite rare [most of them having been developed for
normally-distributed data].”

In practice useful statistics need to be derived for a specific research problem.
Common approach: Maximum Likelihood Estimation.
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Estimators

Parameter values can be guessed from finite samples by computing statistics called estimates.

The “rules” that specify how to compute these estimates are called estimators.

There are estimators for point as well as interval estimates (later).

Notation Parameter: θ. Estimator for θ: θ̂.

If X is a random variable, θ̂(X ) is a function of the variable; θ̂(X ) is the value of θ̂(X ) at X = X .

As with a single sample point, we can compare the estimate

– to the parameter being estimated using the (parameter) error:

e(x) = θ̂(x)− θ. We can estimate E[e] and E[e2]:

E[e] = E[θ̂(x)− θ] ≡ Bias.

E[e2] = E[
(
θ̂(x)− θ

)2
] ≡ Mean square error (MSE).

– or to the expectation value of the estimate using the (sampling) deviation:

d(x) = θ̂(x)− E[θ̂(x)]. E[d ] = 0, but we can estimate E[d2]:

E[d2] = E[
(
θ̂(x)− E[θ̂(x)]

)2
] ≡ Variance.

We can show that MSE(θ̂) = V (θ̂) + B(θ̂)2. Bias-Variance Tradeoff
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Bias-Variance Tradeoff

Source: Ivezić+ AstroML book.
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Point estimate: intuition

Outcome of N = 5 coin tosses:
X1 = 1,X2 = 0,X3 = 0,X4 = 1,X5 = 0.

Given this data, what is θ, the probability of obtaining a head on a single coin toss?
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Sample mean and sample variance

Let m̂ be a location estimate based on the data.

Examples: the largest data point, the 10th data point in ascending order, the sample mean, the
sample median.

Compare the data Xi to the population mean:

Error: deviation of data point from the population mean: Xi − µ (in general, called bias).
E[X̄ − µ] = 0 (CLT) =⇒ the sample mean is an unbiased estimator of µ.

Compare the data Xi to the location estimate:

Residual: deviation of data point from location estimate: Xi − m̂.

Estimate population variance using sum of squares of residues, SSR =
N∑
i=1

(
Xi − m̂

)2
.

The SSR is minimised if we choose m̂ = X̄ , biasing our variance estimate.

Bessel’s Correction compensates for this: choose S2
∧

=
SSR

N − 1
instead of S2

∧

=
SSR

N
.

While the sample mean has N degrees of freedom (it is based on N measurements), the #dof
for the variance depends on whether the population mean is known (#dof = N) or is estimated
from the data (#dof = N − 1).
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Bessel’s correction for sample variance

Recall: for any random variable X ∼ (µ, σ2), E[X 2] = µ2 + σ2.

Since X̄ ∼ (µ, σ2/N) (CLT), E[X̄ 2] = µ2 + σ2/N.

We now compute the expectation value of the sum of squares of residues:

E
[ N∑

i=1

(Xj − X̄ )2
]

= E
[ N∑

i=1

X 2
j − N X̄ 2

]
= N

(
E[X 2]− E[X̄ 2]

)
= N

((
��µ

2 + σ2
)
−
(
��µ

2 +
σ2

N

))
= (N − 1) σ2.

=⇒ E
[ 1

N − 1

N∑
i=1

(Xj − X̄ )2
]
≡ E[S2
∧

] = σ2.

Thus, the unbiased estimator for the population variance requires us to reduce #dof to N − 1.

Only required if population mean estimated using sample mean, or N small.
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(Xj − X̄ )2
]
≡ E[S2
∧

] = σ2.

Thus, the unbiased estimator for the population variance requires us to reduce #dof to N − 1.

Only required if population mean estimated using sample mean, or N small.
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Probability vs. likelihood

Experiment: ten coin tosses.
Model: Outcome of each toss ∼ Bernoulli(θ). Outcome of ten tosses ∼ Binomial(10, θ).

Probability: Predicting future outcomes

Predict what the data will look like given a
particular model.

Always normalised.

What is the probability that we obtain
eight heads in ten tosses?

P(data|model) = P(X = 8,N = 10 | θ)

=
(10

8

)
θ8 (1− θ)2

Likelihood: Explaining existing observations

Given a sample, gauge the plausibility
(believability) that it was drawn from a
particular model. Function of model alone.

When comparing models, only ratio matters.
Not always normalised.

Given that we obtain eight heads in ten tosses,
what is the likelihood of parameter value θ?

L (model|data) = P(X = 8,N = 10 | θ)

=
(10

8

)
θ8 (1− θ)2

“When two different models, or perhaps two variants of the same model differing only in the value of some adjustable
parameter(s), are to be compared as explanations for the same observed outcome, the probability of obtaining this particular
outcome can be calculated for each and is then known as the likelihood for the model or parameter value(s) given the data.’”

— A. W. F. Edwards, “Likelihood”
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Likelihood in the Bayesian interpretation

Definition (Bayes’ Theorem)

P(model|data)︸ ︷︷ ︸
“combined/posterior likelihood”

= P(data|model)
P(model)

P(data)

=

current knowledge︷ ︸︸ ︷
L (model)

“prior likelihood”︷ ︸︸ ︷
P(model)

P(data)

Bayesian inference: maximise posterior distribution.

If prior distribution is uninformative or diffuse, same as MLE.

When comparing two models given the same data, only the ratio of likelihoods matters.

So L (θ) is only known up to a multiplicative constant (not normalised).
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Likelihood as a function of parameter values

Observation: N = 10 coin tosses result in X = 8 heads.
What is the likelihood that the coin is fair?

L (θ) = P(X = 8,N = 10 | θ) =
(10

8

)
θ8 (1− θ)2

L (θ = 0.5) is quite small!

Likelihood = relative preference for various
parameter values.

While this particular L (θ) is a relatively sharply
peaked function, others may not be.

Important to investigate the entire range of
values for the function.

Loss of information if we restrict ourselves to
location of max(L )!
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	(Frequentist) Statistical inference

