

Statistics for Astronomers: Lecture 6, 2020.10.14

Prof. Sundar Srinivasan

IRyA/UNAM

Review

Frequentist statistical inference:
Parametric (specify model, compute likelihood) vs. nonparametric (performed on rank-ordered data).
Estimation (point/interval) or hypothesis testing.
Bayesian vs frequentist inference.
Statistics and their desired properties.
Estimators, estimates. Bias-variance tradeoff.
Point estimates: likelihood.

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE)

A method of point estimation.
"[T]he most probable set of values for the [model parameters] will make [the likelihood] a maximum."
"The likelihood that [the parameters] should have [an assigned set of values] is proportional to the probability that if this were so, the totality of observation should be that observed."

- R. A. Fisher, quoted in Feigelsen \& Babu

Maximum Likelihood Estimation (MLE)

A method of point estimation.
"[T]he most probable set of values for the [model parameters] will make [the likelihood] a maximum."
"The likelihood that [the parameters] should have [an assigned set of values] is proportional to the probability that if this were so, the totality of observation should be that observed."

- R. A. Fisher, quoted in Feigelsen \& Babu

Procedure: For a vector of parameters $\overrightarrow{\boldsymbol{\theta}}$, write down the functional form of the likelihood. Find the value of $\overrightarrow{\boldsymbol{\theta}}$ at which this likelihood is maximum.

Maximum Likelihood Estimation (MLE)

A method of point estimation.
"[T]he most probable set of values for the [model parameters] will make [the likelihood] a maximum."
"The likelihood that [the parameters] should have [an assigned set of values] is proportional to the probability that if this were so, the totality of observation should be that observed."

- R. A. Fisher, quoted in Feigelsen \& Babu

Procedure: For a vector of parameters $\overrightarrow{\boldsymbol{\theta}}$, write down the functional form of the likelihood. Find the value of $\overrightarrow{\boldsymbol{\theta}}$ at which this likelihood is maximum.

1D example: $N=10$ coin tosses result in $X=8$ heads. Estimate $P(H)$.

$$
\mathscr{L}(\theta)=P(X=8, N=10 \mid \theta)=\binom{10}{8} \theta^{8}(1-\theta)^{2}, \text { with } 0<\theta<1 .
$$

Maximum Likelihood Estimation (MLE)

A method of point estimation.
"[T]he most probable set of values for the [model parameters] will make [the likelihood] a maximum."
"The likelihood that [the parameters] should have [an assigned set of values] is proportional to the probability that if this were so, the totality of observation should be that observed."

- R. A. Fisher, quoted in Feigelsen \& Babu

Procedure: For a vector of parameters $\overrightarrow{\boldsymbol{\theta}}$, write down the functional form of the likelihood. Find the value of $\overrightarrow{\boldsymbol{\theta}}$ at which this likelihood is maximum.

1D example: $N=10$ coin tosses result in $X=8$ heads. Estimate $P(H)$.

$$
\mathscr{L}(\theta)=P(X=8, N=10 \mid \theta)=\binom{10}{8} \theta^{8}(1-\theta)^{2}, \text { with } 0<\theta<1 .
$$

Use log-likelihood for convenience: $\ell(\theta) \equiv \ln \mathscr{L}(\theta)=$ constant $+8 \ln \theta+2 \ln (1-\theta)$.

Maximum Likelihood Estimation (MLE)

A method of point estimation.
"[T]he most probable set of values for the [model parameters] will make [the likelihood] a maximum."
"The likelihood that [the parameters] should have [an assigned set of values] is proportional to the probability that if this were so, the totality of observation should be that observed."

- R. A. Fisher, quoted in Feigelsen \& Babu

Procedure: For a vector of parameters $\overrightarrow{\boldsymbol{\theta}}$, write down the functional form of the likelihood. Find the value of $\overrightarrow{\boldsymbol{\theta}}$ at which this likelihood is maximum.

1D example: $N=10$ coin tosses result in $X=8$ heads. Estimate $P(H)$.

$$
\mathscr{L}(\theta)=P(X=8, N=10 \mid \theta)=\binom{10}{8} \theta^{8}(1-\theta)^{2}, \text { with } 0<\theta<1 .
$$

Use log-likelihood for convenience: $\ell(\theta) \equiv \ln \mathscr{L}(\theta)=$ constant $+8 \ln \theta+2 \ln (1-\theta)$.

$$
\frac{\partial}{\partial \theta} \ln \mathscr{L}(\theta)=\frac{8}{\theta}-\frac{2}{1-\theta}
$$

Maximum Likelihood Estimation (MLE)

A method of point estimation.
"[T]he most probable set of values for the [model parameters] will make [the likelihood] a maximum."
"The likelihood that [the parameters] should have [an assigned set of values] is proportional to the probability that if this were so, the totality of observation should be that observed."

- R. A. Fisher, quoted in Feigelsen \& Babu

Procedure: For a vector of parameters $\overrightarrow{\boldsymbol{\theta}}$, write down the functional form of the likelihood. Find the value of $\overrightarrow{\boldsymbol{\theta}}$ at which this likelihood is maximum.

1D example: $N=10$ coin tosses result in $X=8$ heads. Estimate $P(H)$.

$$
\mathscr{L}(\theta)=P(X=8, N=10 \mid \theta)=\binom{10}{8} \theta^{8}(1-\theta)^{2}, \text { with } 0<\theta<1 .
$$

Use \log-likelihood for convenience: $\ell(\theta) \equiv \ln \mathscr{L}(\theta)=$ constant $+8 \ln \theta+2 \ln (1-\theta)$.

$$
\frac{\partial}{\partial \theta} \ln \mathscr{L}(\theta)=\frac{8}{\theta}-\frac{2}{1-\theta} ; \quad \quad \text { vanishes at } \theta=\hat{\theta}_{\mathrm{MLE}} \Longrightarrow \hat{\theta}_{\mathrm{MLE}}=0.8
$$

MLE for iid Gaussian random variables

$\overrightarrow{\boldsymbol{\theta}}=\left(\mu, \sigma^{2}\right) . N$ observations $X_{i}(i=1, \cdots, N) \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$.

MLE for iid Gaussian random variables

$$
\overrightarrow{\boldsymbol{\theta}}=\left(\mu, \sigma^{2}\right) . N \text { observations } X_{i}(i=1, \cdots, N) \sim \mathscr{N}\left(\mu, \sigma^{2}\right) .
$$

$$
\mathscr{L}\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{N}\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]
$$

MLE for iid Gaussian random variables

$\overrightarrow{\boldsymbol{\theta}}=\left(\mu, \sigma^{2}\right) . N$ observations $X_{i}(i=1, \cdots, N) \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$.
$\mathscr{L}\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{N}\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{N / 2} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]$

MLE for iid Gaussian random variables

$\overrightarrow{\boldsymbol{\theta}}=\left(\mu, \sigma^{2}\right) . N$ observations $X_{i}(i=1, \cdots, N) \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$.
$\mathscr{L}\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{N}\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{N / 2} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]$
$\Longrightarrow \ell \equiv \ln \mathscr{L}\left(\mu, \sigma^{2}\right)=\mathrm{constant}-\frac{N}{2} \ln \sigma^{2}-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}$

MLE for iid Gaussian random variables

$\overrightarrow{\boldsymbol{\theta}}=\left(\mu, \sigma^{2}\right) . N$ observations $X_{i}(i=1, \cdots, N) \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$.
$\mathscr{L}\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{N}\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{N / 2} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]$
$\Longrightarrow \ell \equiv \ln \mathscr{L}\left(\mu, \sigma^{2}\right)=\mathrm{constant}-\frac{N}{2} \ln \sigma^{2}-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}$
$\frac{\partial \ell}{\partial \mu}=\sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma^{2}}\right)$
© MLE: $\sum_{i=1}^{N}\left(\frac{x_{i}-\hat{\mu}}{\widehat{\sigma^{2}}}\right)=0$

MLE for iid Gaussian random variables

$$
\overrightarrow{\boldsymbol{\theta}}=\left(\mu, \sigma^{2}\right) . N \text { observations } X_{i}(i=1, \cdots, N) \sim \mathscr{N}\left(\mu, \sigma^{2}\right) .
$$

$$
\mathscr{L}\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{N}\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{N / 2} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]
$$

$$
\Longrightarrow \ell \equiv \ln \mathscr{L}\left(\mu, \sigma^{2}\right)=\mathrm{constant}-\frac{N}{2} \ln \sigma^{2}-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}
$$

$$
\frac{\partial \ell}{\partial \mu}=\sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma^{2}}\right)
$$

$$
\text { © MLE: } \sum_{i=1}^{N}\left(\frac{x_{i}-\hat{\mu}}{\widehat{\sigma^{2}}}\right)=0
$$

$$
\Longrightarrow \hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \equiv \bar{x} .
$$

MLE of μ is the sample mean!

MLE for iid Gaussian random variables

$$
\overrightarrow{\boldsymbol{\theta}}=\left(\mu, \sigma^{2}\right) . N \text { observations } X_{i}(i=1, \cdots, N) \sim \mathscr{N}\left(\mu, \sigma^{2}\right) .
$$

$$
\mathscr{L}\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{N}\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{N / 2} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]
$$

$$
\Longrightarrow \ell \equiv \ln \mathscr{L}\left(\mu, \sigma^{2}\right)=\mathrm{constant}-\frac{N}{2} \ln \sigma^{2}-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}
$$

$$
\frac{\partial \ell}{\partial \mu}=\sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma^{2}}\right)
$$

$$
\frac{\partial \ell}{\partial \sigma}=\frac{1}{\sigma}\left(-N+\sum_{i=1}^{N} \frac{\left(x_{i}-\hat{\mu}\right)^{2}}{\sigma^{2}}\right)
$$

$$
\text { © MLE: } \sum_{i=1}^{N}\left(\frac{x_{i}-\hat{\mu}}{\widehat{\sigma^{2}}}\right)=0
$$

$$
\text { @ MLE: }-N+\sum_{i=1}^{N} \frac{\left(x_{i}-\hat{\mu}\right)^{2}}{\widehat{\sigma^{2}}}=0
$$

$$
\Longrightarrow \hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \equiv \bar{x} .
$$

MLE of μ is the sample mean!

MLE for iid Gaussian random variables

$$
\overrightarrow{\boldsymbol{\theta}}=\left(\mu, \sigma^{2}\right) . N \text { observations } X_{i}(i=1, \cdots, N) \sim \mathscr{N}\left(\mu, \sigma^{2}\right) .
$$

$$
\mathscr{L}\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{N}\left(\frac{1}{2 \pi \sigma^{2}}\right)^{1 / 2} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{N / 2} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]
$$

$$
\Longrightarrow \ell \equiv \ln \mathscr{L}\left(\mu, \sigma^{2}\right)=\text { constant }-\frac{N}{2} \ln \sigma^{2}-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}
$$

$$
\frac{\partial \ell}{\partial \mu}=\sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma^{2}}\right)
$$

$$
\text { @ MLE: } \sum_{i=1}^{N}\left(\frac{x_{i}-\widehat{\mu}}{\widehat{\sigma^{2}}}\right)=0
$$

$$
\Longrightarrow \hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \equiv \bar{x} .
$$

MLE of μ is the sample mean!

$$
\begin{aligned}
& \frac{\partial \ell}{\partial \sigma}=\frac{1}{\sigma}\left(-N+\sum_{i=1}^{N} \frac{\left(x_{i}-\hat{\mu}\right)^{2}}{\sigma^{2}}\right) \\
& \text { @ MLE: }-N+\sum_{i=1}^{N} \frac{\left(x_{i}-\hat{\mu}\right)^{2}}{\widehat{\sigma^{2}}}=0 \\
& \Longrightarrow \widehat{\sigma^{2}}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\hat{\mu}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

What is the uncertainty on the MLE?

Coin-toss problem: assume that the true θ is $\theta_{0}=0.8$, unknown to observer.
Each round of ten tosses: different value of $\hat{\theta}_{\text {mLE }}(e . g .,[0.9,0.7,0.9,0.8,1 ., 0.9,1 ., 0.9,0.9,0.8])$. With finite \# experiments, not enough to just quote $\hat{\theta}_{\text {MLE }}$. What is the variance on the MLE?

What is the uncertainty on the MLE?

Coin-toss problem: assume that the true θ is $\theta_{0}=0.8$, unknown to observer.
Each round of ten tosses: different value of $\hat{\theta}_{\text {mLE }}(e . g .,[0.9,0.7,0.9,0.8,1 ., 0.9,1 ., 0.9,0.9,0.8])$. With finite \# experiments, not enough to just quote $\hat{\theta}_{\text {MLE }}$. What is the variance on the MLE?

Expand $\ln \mathscr{L}$ around θ_{0} :

$$
\ln \left[\frac{\mathscr{L}(\theta)}{\mathscr{L}\left(\theta_{0}\right)}\right]=\left(\frac{\partial^{2}}{\partial \theta^{2}} \ln \mathscr{L}(\theta)\right)_{\theta_{0}} \frac{\left(\theta-\theta_{0}\right)^{2}}{2!}+\cdots
$$

In \mathscr{L} "regular" if we can ignore higher-order terms.

What is the uncertainty on the MLE?

Coin-toss problem: assume that the true θ is $\theta_{0}=0.8$, unknown to observer.
Each round of ten tosses: different value of $\hat{\theta}_{\text {mLE }}$ (e.g., $[0.9,0.7,0.9,0.8,1 ., 0.9,1 ., 0.9,0.9,0.8]$). With finite \# experiments, not enough to just quote $\hat{\theta}_{\text {MLE }}$. What is the variance on the MLE?

Expand $\ln \mathscr{L}$ around θ_{0} :
$\ln \left[\frac{\mathscr{L}(\theta)}{\mathscr{L}\left(\theta_{0}\right)}\right]=\left(\frac{\partial^{2}}{\partial \theta^{2}} \ln \mathscr{L}(\theta)\right)_{\theta_{0}} \frac{\left(\theta-\theta_{0}\right)^{2}}{2!}+\cdots$
In \mathscr{L} "regular" if we can ignore higher-order terms.
In \mathscr{L} quadratic $\Longrightarrow \mathscr{L}$ Gaussian. Usually assumed.
Can describe $\ln \mathscr{L}$ with location θ_{0} and curvature of $\ln \mathscr{L}$ at θ_{0}.

What is the uncertainty on the MLE?

Coin-toss problem: assume that the true θ is $\theta_{0}=0.8$, unknown to observer.
Each round of ten tosses: different value of $\hat{\theta}_{\text {MLE }}(e . g .,[0.9,0.7,0.9,0.8,1 ., 0.9,1 ., 0.9,0.9,0.8])$. With finite \# experiments, not enough to just quote $\hat{\theta}_{\text {MLE }}$. What is the variance on the MLE?

Expand $\ln \mathscr{L}$ around θ_{0} :
$\ln \left[\frac{\mathscr{L}(\theta)}{\mathscr{L}\left(\theta_{0}\right)}\right]=\left(\frac{\partial^{2}}{\partial \theta^{2}} \ln \mathscr{L}(\theta)\right)_{\theta_{0}} \frac{\left(\theta-\theta_{0}\right)^{2}}{2!}+\cdots$
In \mathscr{L} "regular" if we can ignore higher-order terms.
In \mathscr{L} quadratic $\Longrightarrow \mathscr{L}$ Gaussian. Usually assumed.
Can describe $\ln \mathscr{L}$ with location θ_{0} and curvature of $\ln \mathscr{L}$ at θ_{0}.

Curvature defined as the negative second derivative of $\ln \mathscr{L}$ at location of maximum:

$$
I(\theta) \equiv-\frac{\partial^{2}}{\partial \theta^{2}} \log \mathscr{L}(1-\mathrm{D}) \quad I_{i j}(\vec{\theta}) \equiv-\frac{\partial}{\partial \theta_{i}} \frac{\partial}{\partial \theta_{j}} \log \mathscr{L}(\mathrm{~N}-\mathrm{D}) \quad \text { Fisher information matrix. }
$$

Large curvature near $\overrightarrow{\boldsymbol{\theta}}_{0}$: less uncertainty (more information) about location of maximum.

What is the uncertainty on the MLE? (contd.)

Fisher matrix

N-D Taylor Expansion: $\ln \left[\frac{\mathscr{L}(\overrightarrow{\boldsymbol{\theta}})}{\mathscr{L}\left(\overrightarrow{\boldsymbol{\theta}}_{0}\right)}\right]=-\frac{1}{2}\left(\overrightarrow{\boldsymbol{\theta}}-\overrightarrow{\boldsymbol{\theta}}_{0}\right) \overbrace{\left[-\frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \ln \mathscr{L}(\theta)\right]}^{\theta_{0}}\left(\overrightarrow{\boldsymbol{\theta}}-\overrightarrow{\boldsymbol{\theta}}_{0}\right)^{\mathrm{T}}$

What is the uncertainty on the MLE? (contd.)

Fisher matrix

N-D Taylor Expansion: $\ln \left[\frac{\mathscr{L}(\overrightarrow{\boldsymbol{\theta}})}{\mathscr{L}\left(\overrightarrow{\boldsymbol{\theta}}_{0}\right)}\right]=-\frac{1}{2}\left(\overrightarrow{\boldsymbol{\theta}}-\overrightarrow{\boldsymbol{\theta}}_{0}\right) \overbrace{\left[-\frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \ln \mathscr{L}(\theta)\right]}^{\theta_{0}}\left(\overrightarrow{\boldsymbol{\theta}}-\overrightarrow{\boldsymbol{\theta}}_{0}\right)^{\mathrm{T}}$

The observer produces estimates for the Fisher matrix (random variable!) with every experiment. Observed Fisher information: Fisher matrix evaluated at $\hat{\theta}_{\text {MLE }}$.

What is the uncertainty on the MLE? (contd.)

Fisher matrix
N-D Taylor Expansion: $\ln \left[\frac{\mathscr{L}(\overrightarrow{\boldsymbol{\theta}})}{\mathscr{L}\left(\overrightarrow{\boldsymbol{\theta}}_{0}\right)}\right]=-\frac{1}{2}\left(\overrightarrow{\boldsymbol{\theta}}-\overrightarrow{\boldsymbol{\theta}}_{0}\right) \overbrace{\left[-\frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \ln \mathscr{L}(\theta)\right]}^{\theta_{0}}\left(\overrightarrow{\boldsymbol{\theta}}-\overrightarrow{\boldsymbol{\theta}}_{0}\right)^{\mathrm{T}}$

The observer produces estimates for the Fisher matrix (random variable!) with every experiment. Observed Fisher information: Fisher matrix evaluated at $\hat{\theta}_{\text {MLE }}$.

To compare with the true value, define:
Average/Expected Fisher information: $\mathcal{I}(\overrightarrow{\boldsymbol{\theta}}) \equiv \mathbb{E}[/(\overrightarrow{\boldsymbol{\theta}})]=\mathbb{E}\left[-\frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \log \mathscr{L}\right]$.

What is the uncertainty on the MLE? (contd.)

Fisher matrix
N-D Taylor Expansion: $\ln \left[\frac{\mathscr{L}(\overrightarrow{\boldsymbol{\theta}})}{\mathscr{L}\left(\overrightarrow{\boldsymbol{\theta}}_{0}\right)}\right]=-\frac{1}{2}\left(\overrightarrow{\boldsymbol{\theta}}-\overrightarrow{\boldsymbol{\theta}}_{0}\right) \overbrace{\left[-\frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \ln \mathscr{L}(\theta)\right]}^{\theta_{0}}\left(\overrightarrow{\boldsymbol{\theta}}-\overrightarrow{\boldsymbol{\theta}}_{0}\right)^{\mathrm{T}}$

The observer produces estimates for the Fisher matrix (random variable!) with every experiment. Observed Fisher information: Fisher matrix evaluated at $\hat{\theta}_{\text {MLE }}$.

To compare with the true value, define:
Average/Expected Fisher information: $\mathcal{I}(\overrightarrow{\boldsymbol{\theta}}) \equiv \mathbb{E}[I(\overrightarrow{\boldsymbol{\theta}})]=\mathbb{E}\left[-\frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \log \mathscr{L}\right]$.

The MLE is distributed around its expected value (= true value if MLE is unbiased) with a spread described by the Fisher matrix.

What is the uncertainty on the MLE? (contd.)

The observer produces estimates for the Fisher matrix (random variable!) with every experiment. Observed Fisher information: Fisher matrix evaluated at $\hat{\theta}_{\text {MLE }}$.

To compare with the true value, define:
Average/Expected Fisher information: $\mathcal{I}(\overrightarrow{\boldsymbol{\theta}}) \equiv \mathbb{E}[I(\overrightarrow{\boldsymbol{\theta}})]=\mathbb{E}\left[-\frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \log \mathscr{L}\right]$.

The MLE is distributed around its expected value (= true value if MLE is unbiased) with a spread described by the Fisher matrix.

The inverse of the Expected Fisher matrix is the covariance matrix of the parameters:

$$
\Sigma(\vec{\theta})=\mathcal{I}^{-1}(\vec{\theta})
$$

Fisher information for the ten coin-toss problem

Experiment: Ten coin tosses with unknown probability θ of obtaining a head.
$\mathscr{L}(\theta) \propto \theta^{X}(1-\theta)^{(N-X)}$, and $\mathbb{E}[X]=N \theta$.

Fisher information for the ten coin-toss problem

Experiment: Ten coin tosses with unknown probability θ of obtaining a head.
$\mathscr{L}(\theta) \propto \theta^{X}(1-\theta)^{(N-X)}$, and $\mathbb{E}[X]=N \theta$.

The Fisher Information is
$\mathcal{I}(\theta)=\mathbb{E}\left[-\frac{\partial^{2}}{\partial^{2} \theta} \log \mathscr{L}\right]=\frac{N}{\theta(1-\theta)}$.

Fisher information for the ten coin-toss problem

Experiment: Ten coin tosses with unknown probability θ of obtaining a head.
$\mathscr{L}(\theta) \propto \theta^{X}(1-\theta)^{(N-X)}$, and $\mathbb{E}[X]=N \theta$.
The Fisher Information is
$\mathcal{I}(\theta)=\mathbb{E}\left[-\frac{\partial^{2}}{\partial^{2} \theta} \log \mathscr{L}\right]=\frac{N}{\theta(1-\theta)}$.
Information highest near $\theta=0$ and $\theta=1$.

Fisher information for the ten coin-toss problem

Experiment: Ten coin tosses with unknown probability θ of obtaining a head.
$\mathscr{L}(\theta) \propto \theta^{X}(1-\theta)^{(N-X)}$, and $\mathbb{E}[X]=N \theta$.
The Fisher Information is
$\mathcal{I}(\theta)=\mathbb{E}\left[-\frac{\partial^{2}}{\partial^{2} \theta} \log \mathscr{L}\right]=\frac{N}{\theta(1-\theta)}$.
Information highest near $\theta=0$ and $\theta=1$.

Variance of $\operatorname{Binomial}(N, \theta)=N \theta(1-\theta)$.

$$
=\frac{1}{\mathcal{I}(\theta)} \text { in this case! }
$$

Fisher information for the ten coin-toss problem

Experiment: Ten coin tosses with unknown probability θ of obtaining a head.
$\mathscr{L}(\theta) \propto \theta^{X}(1-\theta)^{(N-X)}$, and $\mathbb{E}[X]=N \theta$.
The Fisher Information is
$\mathcal{I}(\theta)=\mathbb{E}\left[-\frac{\partial^{2}}{\partial^{2} \theta} \log \mathscr{L}\right]=\frac{N}{\theta(1-\theta)}$.
Information highest near $\theta=0$ and $\theta=1$.

Variance of $\operatorname{Binomial}(N, \theta)=N \theta(1-\theta)$.

$$
=\frac{1}{\mathcal{I}(\theta)} \text { in this case! }
$$

Is this always true? Cramér-Rao Lower Bound.

Variance of unbiased estimators: Cramér-Rao Lower Bound

If $\overrightarrow{\mathbf{T}}(X)$ is an unbiased estimator of a function $\overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})$ of the parameters $\overrightarrow{\boldsymbol{\theta}}($ i.e., $\mathbb{E}[\overrightarrow{\mathbf{T}}(X)]=\overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}}))$, and $\mathcal{I}(\overrightarrow{\boldsymbol{\theta}})$ is the expected Fisher information matrix, then

Variance of unbiased estimators: Cramér-Rao Lower Bound

If $\overrightarrow{\mathbf{T}}(X)$ is an unbiased estimator of a function $\overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})$ of the parameters $\overrightarrow{\boldsymbol{\theta}}($ i.e., $\mathbb{E}[\overrightarrow{\mathbf{T}}(X)]=\overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})$), and $\mathcal{I}(\overrightarrow{\boldsymbol{\theta}})$ is the expected Fisher information matrix, then

$$
\operatorname{Var}[\overrightarrow{\mathbf{T}}(X)] \geq\left(\frac{\partial \overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})}{\partial \overrightarrow{\boldsymbol{\theta}}}\right) \mathcal{I}^{-1}(\overrightarrow{\boldsymbol{\theta}})\left(\frac{\partial \overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})}{\partial \overrightarrow{\boldsymbol{\theta}}}\right)^{\mathrm{T}} \quad \text { Cramér-Rao Lower Bound (CRLB) }
$$

Variance of unbiased estimators: Cramér-Rao Lower Bound

If $\overrightarrow{\mathbf{T}}(X)$ is an unbiased estimator of a function $\overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})$ of the parameters $\overrightarrow{\boldsymbol{\theta}}($ i.e., $\mathbb{E}[\overrightarrow{\mathbf{T}}(X)]=\overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})$), and $\mathcal{I}(\overrightarrow{\boldsymbol{\theta}})$ is the expected Fisher information matrix, then

$$
\operatorname{Var}[\overrightarrow{\mathbf{T}}(X)] \geq\left(\frac{\partial \overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})}{\partial \overrightarrow{\boldsymbol{\theta}}}\right) \mathcal{I}^{-1}(\overrightarrow{\boldsymbol{\theta}})\left(\frac{\partial \overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})}{\partial \overrightarrow{\boldsymbol{\theta}}}\right)^{\mathrm{T}} \quad \text { Cramér-Rao Lower Bound (CRLB) }
$$

In particular, if we set $g(\overrightarrow{\boldsymbol{\theta}})=\overrightarrow{\boldsymbol{\theta}}$, so that $\overrightarrow{\boldsymbol{\top}}(X)$ is an unbiased estimator for $\overrightarrow{\boldsymbol{\theta}}$,

$$
\operatorname{Var}[\overrightarrow{\mathbf{T}}(X)] \geq \mathcal{I}^{-1}(\overrightarrow{\boldsymbol{\theta}})
$$

The inverse of the Fisher Information (\equiv covariance) of a parameter is a lower bound on the variance of any unbiased estimator of that parameter.

Variance of unbiased estimators: Cramér-Rao Lower Bound

If $\overrightarrow{\mathbf{T}}(X)$ is an unbiased estimator of a function $\overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})$ of the parameters $\overrightarrow{\boldsymbol{\theta}}($ i.e., $\mathbb{E}[\overrightarrow{\mathbf{T}}(X)]=\overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})$), and $\mathcal{I}(\overrightarrow{\boldsymbol{\theta}})$ is the expected Fisher information matrix, then

$$
\operatorname{Var}[\overrightarrow{\mathbf{T}}(X)] \geq\left(\frac{\partial \overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})}{\partial \overrightarrow{\boldsymbol{\theta}}}\right) \mathcal{I}^{-1}(\overrightarrow{\boldsymbol{\theta}})\left(\frac{\partial \overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})}{\partial \overrightarrow{\boldsymbol{\theta}}}\right)^{\mathrm{T}} \quad \text { Cramér-Rao Lower Bound (CRLB) }
$$

In particular, if we set $g(\overrightarrow{\boldsymbol{\theta}})=\overrightarrow{\boldsymbol{\theta}}$, so that $\overrightarrow{\boldsymbol{\top}}(X)$ is an unbiased estimator for $\overrightarrow{\boldsymbol{\theta}}$,

$$
\operatorname{Var}[\overrightarrow{\mathbf{T}}(X)] \geq \mathcal{I}^{-1}(\overrightarrow{\boldsymbol{\theta}})
$$

The inverse of the Fisher Information (三 covariance) of a parameter is a lower bound on the variance of any unbiased estimator of that parameter.

Does not tell us if the estimator $\overrightarrow{\mathrm{T}}(X)$ exists, or how we can find it. We can compute the variance for various $\overrightarrow{\mathbf{T}}(X)$ and choose the one with variance closest to the CRLB.

Variance of unbiased estimators: Cramér-Rao Lower Bound

If $\overrightarrow{\mathbf{T}}(X)$ is an unbiased estimator of a function $\overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})$ of the parameters $\overrightarrow{\boldsymbol{\theta}}($ i.e., $\mathbb{E}[\overrightarrow{\mathbf{T}}(X)]=\overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})$), and $\mathcal{I}(\overrightarrow{\boldsymbol{\theta}})$ is the expected Fisher information matrix, then

$$
\operatorname{Var}[\overrightarrow{\mathbf{T}}(X)] \geq\left(\frac{\partial \overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})}{\partial \overrightarrow{\boldsymbol{\theta}}}\right) \mathcal{I}^{-1}(\overrightarrow{\boldsymbol{\theta}})\left(\frac{\partial \overrightarrow{\mathbf{g}}(\overrightarrow{\boldsymbol{\theta}})}{\partial \overrightarrow{\boldsymbol{\theta}}}\right)^{\mathrm{T}}
$$

Cramér-Rao Lower Bound (CRLB)

In particular, if we set $g(\overrightarrow{\boldsymbol{\theta}})=\overrightarrow{\boldsymbol{\theta}}$, so that $\overrightarrow{\boldsymbol{\top}}(X)$ is an unbiased estimator for $\overrightarrow{\boldsymbol{\theta}}$,

$$
\operatorname{Var}[\overrightarrow{\mathbf{T}}(X)] \geq \mathcal{I}^{-1}(\overrightarrow{\boldsymbol{\theta}})
$$

The inverse of the Fisher Information (三 covariance) of a parameter is a lower bound on the variance of any unbiased estimator of that parameter.

Does not tell us if the estimator $\overrightarrow{\mathbf{T}}(X)$ exists, or how we can find it.
We can compute the variance for various $\overrightarrow{\mathbf{T}}(X)$ and choose the one with variance closest to the CRLB.

For biased estimators: If $\mathbb{E}[\vec{\top}(X)-\overrightarrow{\boldsymbol{\theta}}]=\vec{B}(\overrightarrow{\boldsymbol{\theta}}) \neq 0$, set $\vec{g}(\overrightarrow{\boldsymbol{\theta}})=\vec{B}(\overrightarrow{\boldsymbol{\theta}})+\overrightarrow{\boldsymbol{\theta}}$ and apply CRLB.

Covariance matrix for MLE of Gaussian random variables

Recall:

$\frac{\partial \ell}{\partial \mu}=\sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma^{2}}\right) \quad \frac{\partial \ell}{\partial \sigma}=\frac{1}{\sigma}\left(-N+\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right) \quad \mathbb{E}\left[\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}\right]=N \sigma^{2}$

Covariance matrix for MLE of Gaussian random variables

Recall:
$\frac{\partial \ell}{\partial \mu}=\sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma^{2}}\right) \quad \frac{\partial \ell}{\partial \sigma}=\frac{1}{\sigma}\left(-N+\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right) \quad \mathbb{E}\left[\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}\right]=N \sigma^{2}$
Compute all three second derivatives:
$\frac{\partial^{2} \ell}{\partial \mu^{2}}=-\frac{N}{\sigma^{2}}$
$\frac{\partial^{2} \ell}{\partial \sigma^{2}}=\frac{N}{\sigma^{2}}-\frac{3}{\sigma^{4}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}$

$$
\frac{\partial^{2} \ell}{\partial \sigma \partial \mu}=-\frac{2}{\sigma^{3}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)
$$

Covariance matrix for MLE of Gaussian random variables

Recall:
$\frac{\partial \ell}{\partial \mu}=\sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma^{2}}\right) \quad \frac{\partial \ell}{\partial \sigma}=\frac{1}{\sigma}\left(-N+\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right) \quad \mathbb{E}\left[\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}\right]=N \sigma^{2}$
Compute all three second derivatives:
$\frac{\partial^{2} \ell}{\partial \mu^{2}}=-\frac{N}{\sigma^{2}}$

$$
\frac{\partial^{2} \ell}{\partial \sigma^{2}}=\frac{N}{\sigma^{2}}-\frac{3}{\sigma^{4}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}
$$

$$
\frac{\partial^{2} \ell}{\partial \sigma \partial \mu}=-\frac{2}{\sigma^{3}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)
$$

Compute expectation values:
$\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \mu^{2}}\right]=-\frac{N}{\sigma^{2}}$

$$
\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \sigma^{2}}\right]=\frac{N}{\sigma^{2}}-\frac{3}{\sigma^{2}} N=-\frac{2 N}{\sigma^{2}}
$$

$\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \sigma \partial \mu}\right]=0$ (uncorrelated!)

Covariance matrix for MLE of Gaussian random variables

Recall:
$\frac{\partial \ell}{\partial \mu}=\sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma^{2}}\right) \quad \frac{\partial \ell}{\partial \sigma}=\frac{1}{\sigma}\left(-N+\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right) \quad \mathbb{E}\left[\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}\right]=N \sigma^{2}$
Compute all three second derivatives:
$\frac{\partial^{2} \ell}{\partial \mu^{2}}=-\frac{N}{\sigma^{2}}$

$$
\frac{\partial^{2} \ell}{\partial \sigma^{2}}=\frac{N}{\sigma^{2}}-\frac{3}{\sigma^{4}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}
$$

$$
\frac{\partial^{2} \ell}{\partial \sigma \partial \mu}=-\frac{2}{\sigma^{3}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)
$$

Compute expectation values:
$\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \mu^{2}}\right]=-\frac{N}{\sigma^{2}}$

$$
\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \sigma^{2}}\right]=\frac{N}{\sigma^{2}}-\frac{3}{\sigma^{2}} N=-\frac{2 N}{\sigma^{2}}
$$

$\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \sigma \partial \mu}\right]=0$ (uncorrelated!)
Expected Fisher matrix: $\mathcal{I}(\overrightarrow{\boldsymbol{\theta}})=-\mathbb{E}\left[\frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \ln \mathscr{L}\right]=\frac{1}{\sigma^{2}}\left[\begin{array}{ll}N & 0 \\ 0 & 2 N\end{array}\right]$

Covariance matrix for MLE of Gaussian random variables

Recall:
$\frac{\partial \ell}{\partial \mu}=\sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma^{2}}\right) \quad \frac{\partial \ell}{\partial \sigma}=\frac{1}{\sigma}\left(-N+\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right) \quad \mathbb{E}\left[\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}\right]=N \sigma^{2}$
Compute all three second derivatives:
$\frac{\partial^{2} \ell}{\partial \mu^{2}}=-\frac{N}{\sigma^{2}}$

$$
\frac{\partial^{2} \ell}{\partial \sigma^{2}}=\frac{N}{\sigma^{2}}-\frac{3}{\sigma^{4}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}
$$

$$
\frac{\partial^{2} \ell}{\partial \sigma \partial \mu}=-\frac{2}{\sigma^{3}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)
$$

Compute expectation values:
$\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \mu^{2}}\right]=-\frac{N}{\sigma^{2}}$

$$
\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \sigma^{2}}\right]=\frac{N}{\sigma^{2}}-\frac{3}{\sigma^{2}} N=-\frac{2 N}{\sigma^{2}}
$$

$\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \sigma \partial \mu}\right]=0$ (uncorrelated!)
Expected Fisher matrix: $\mathcal{I}(\overrightarrow{\boldsymbol{\theta}}) \equiv-\mathbb{E}\left[\frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \ln \mathscr{L}\right]=\frac{1}{\sigma^{2}}\left[\begin{array}{ll}N & 0 \\ 0 & 2 N\end{array}\right]$
Covariance matrix: $\boldsymbol{\Sigma}(\overrightarrow{\boldsymbol{\theta}}) \equiv \mathcal{I}^{-1}(\overrightarrow{\boldsymbol{\theta}})=\frac{\sigma^{2}}{N}\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$

Covariance matrix for MLE of Gaussian random variables

Recall:
$\frac{\partial \ell}{\partial \mu}=\sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma^{2}}\right) \quad \frac{\partial \ell}{\partial \sigma}=\frac{1}{\sigma}\left(-N+\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right) \quad \mathbb{E}\left[\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}\right]=N \sigma^{2}$
Compute all three second derivatives:
$\frac{\partial^{2} \ell}{\partial \mu^{2}}=-\frac{N}{\sigma^{2}}$

$$
\frac{\partial^{2} \ell}{\partial \sigma^{2}}=\frac{N}{\sigma^{2}}-\frac{3}{\sigma^{4}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}
$$

$$
\frac{\partial^{2} \ell}{\partial \sigma \partial \mu}=-\frac{2}{\sigma^{3}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)
$$

Compute expectation values:
$\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \mu^{2}}\right]=-\frac{N}{\sigma^{2}}$

$$
\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \sigma^{2}}\right]=\frac{N}{\sigma^{2}}-\frac{3}{\sigma^{2}} N=-\frac{2 N}{\sigma^{2}}
$$

$$
\mathbb{E}\left[\frac{\partial^{2} \ell}{\partial \sigma \partial \mu}\right]=0 \text { (uncorrelated!) }
$$

Expected Fisher matrix: $\mathcal{I}(\overrightarrow{\boldsymbol{\theta}}) \equiv-\mathbb{E}\left[\frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \frac{\partial}{\partial \overrightarrow{\boldsymbol{\theta}}} \ln \mathscr{L}\right]=\frac{1}{\sigma^{2}}\left[\begin{array}{ll}N & 0 \\ 0 & 2 N\end{array}\right]$
Covariance matrix: $\boldsymbol{\Sigma}(\overrightarrow{\boldsymbol{\theta}}) \equiv \mathcal{I}^{-1}(\overrightarrow{\boldsymbol{\theta}})=\frac{\sigma^{2}}{N}\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
Variances $=$ CRBL!

Computational MLE

Log-likelihood is fed to routine by user.
Routine optimises this function using a variety of techniques.
The output will include the MLE as well as the covariance matrix.
Example: fitting a line to data with uncertainties.

Point estimation: caveats (Feigelsen \& Babu, ch. 3)

"It is worth checking any piece of remembered statistics, as it is almost certain to be based on the Gaussian distribution."
— Wall \& Jenkins, Sec. 3.2

Point estimation: caveats (Feigelsen \& Babu, ch. 3)

"It is worth checking any piece of remembered statistics, as it is almost certain to be based on the Gaussian distribution."
— Wall \& Jenkins, Sec. 3.2

Point estimation requires two decisions:

Point estimation: caveats (Feigelsen \& Babu, ch. 3)

"It is worth checking any piece of remembered statistics, as it is almost certain to be based on the Gaussian distribution."
— Wall \& Jenkins, Sec. 3.2

Point estimation requires two decisions:
(1) Model specification: required to compute the likelihood. How do we know it is correct?

Model validation (goodness-of-fit).
Model selection.

Point estimation: caveats (Feigelsen \& Babu, ch. 3)

"It is worth checking any piece of remembered statistics, as it is almost certain to be based on the Gaussian distribution."
— Wall \& Jenkins, Sec. 3.2

Point estimation requires two decisions:
(1) Model specification: required to compute the likelihood. How do we know it is correct?

Model validation (goodness-of-fit).
Model selection.
(2) Estimation method: which estimator do we pick?

The MLE is not always unbiased.
Minimum Variance Unbiased Estimator (MVUE) - among unbiased estimators, pick the one with the least variance.

