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Review

Frequentist statistical inference:
Parametric (specify model, compute likelihood) vs.

nonparametric (performed on rank-ordered data).

Estimation (point/interval) or hypothesis testing.

Bayesian vs frequentist inference.

Statistics and their desired properties.

Estimators, estimates. Bias-variance tradeoff.

Point estimates: likelihood.
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation (MLE)

A method of point estimation.

“[T]he most probable set of values for the [model parameters] will make [the likelihood] a
maximum.”
“The likelihood that [the parameters] should have [an assigned set of values] is proportional to
the probability that if this were so, the totality of observation should be that observed.”

— R. A. Fisher, quoted in Feigelsen & Babu

Procedure: For a vector of parameters ~θ, write down the functional form of the likelihood. Find

the value of ~θ at which this likelihood is maximum.

1D example: N = 10 coin tosses result in X = 8 heads. Estimate P(H).

L (θ) = P(X = 8,N = 10 | θ) =
(10

8

)
θ8 (1− θ)2, with 0 < θ < 1.

Use log-likelihood for convenience: `(θ) ≡ ln L (θ) = constant + 8 ln θ + 2 ln (1− θ).

∂

∂θ
ln L (θ) =

8

θ
−

2

1− θ
; vanishes at θ = θ̂MLE =⇒ θ̂MLE = 0.8.
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MLE for iid Gaussian random variables
~θ = (µ, σ2). N observations Xi (i = 1, · · · ,N) ∼ N (µ, σ2).

L (µ, σ2) =

N∏
i=1

(
1

2πσ2

)1/2

exp

[
−

1

2

(
Xi − µ
σ

)2]
=

(
1

2πσ2

)N/2

exp

[
−

1

2

N∑
i=1

(
Xi − µ
σ

)2]

=⇒ ` ≡ ln L (µ, σ2) = constant−
N

2
lnσ2 −

1

2

N∑
i=1

(
Xi − µ
σ

)2

∂`

∂µ
=

N∑
i=1

(
Xi − µ
σ2

)

@ MLE:

N∑
i=1

(
Xi − µ̂

σ2
∧

)
= 0

=⇒ µ̂ =
1

N

N∑
i=1

Xi ≡ X̄ .

MLE of µ is the sample mean!

∂`

∂σ
=

1

σ

(
− N +

N∑
i=1

(Xi − µ̂)2

σ2

)

@ MLE: −N +

N∑
i=1

(Xi − µ̂)2

σ2
∧ = 0

=⇒ σ2
∧

=
1

N

N∑
i=1

(Xi − µ̂)2 =
1

N

N∑
i=1

(Xi − X̄ )2

MLE of σ2 is the (biased) sample variance!
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What is the uncertainty on the MLE?

Coin-toss problem: assume that the true θ is θ0 = 0.8, unknown to observer.

Each round of ten tosses: different value of θ̂MLE (e.g., [0.9, 0.7, 0.9, 0.8, 1., 0.9, 1., 0.9, 0.9, 0.8]).

With finite # experiments, not enough to just quote θ̂MLE. What is the variance on the MLE?

C
o

d
e

fo
r

p
lo

t
a

va
il
a

b
le

h
er

e. Expand ln L around θ0:

ln

[
L (θ)

L (θ0)

]
=

(
∂2

∂θ2
ln L (θ)

)
θ0

(θ − θ0)2

2!
+ · · ·

ln L “regular” if we can ignore higher-order terms.

ln L quadratic =⇒ L Gaussian. Usually assumed.

Can describe ln L with location θ0 and curvature of ln L at θ0.

Curvature defined as the negative second derivative of ln L at location of maximum:

I (θ) ≡ −
∂2

∂θ2
log L (1-D) Iij (~θ) ≡ −

∂

∂θi

∂

∂θj
log L (N-D) Fisher information matrix.

Large curvature near ~θ0: less uncertainty (more information) about location of maximum.
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With finite # experiments, not enough to just quote θ̂MLE. What is the variance on the MLE?
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e. Expand ln L around θ0:

ln

[
L (θ)

L (θ0)

]
=

(
∂2

∂θ2
ln L (θ)

)
θ0

(θ − θ0)2

2!
+ · · ·

ln L “regular” if we can ignore higher-order terms.

ln L quadratic =⇒ L Gaussian. Usually assumed.

Can describe ln L with location θ0 and curvature of ln L at θ0.

Curvature defined as the negative second derivative of ln L at location of maximum:

I (θ) ≡ −
∂2

∂θ2
log L (1-D) Iij (~θ) ≡ −

∂

∂θi

∂

∂θj
log L (N-D) Fisher information matrix.

Large curvature near ~θ0: less uncertainty (more information) about location of maximum.
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What is the uncertainty on the MLE? (contd.)

N-D Taylor Expansion: ln

[
L (~θ)

L (~θ0)

]
= −

1

2
(~θ − ~θ0)

Fisher matrix︷ ︸︸ ︷[
−

∂

∂~θ

∂

∂~θ
ln L (θ)

]
θ0

(~θ − ~θ0)T

The observer produces estimates for the Fisher matrix (random variable!) with every experiment.

Observed Fisher information: Fisher matrix evaluated at θ̂MLE.

To compare with the true value, define:

Average/Expected Fisher information: I(~θ) ≡ E[I (~θ)] = E

[
−

∂

∂~θ

∂

∂~θ
log L

]
.

The MLE is distributed around its expected value (= true value if MLE is unbiased) with a
spread described by the Fisher matrix.

The inverse of the Expected Fisher matrix is the covariance matrix of the parameters:

Σ(~θ) = I−1(~θ)
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Fisher information for the ten coin-toss problem

Experiment: Ten coin tosses with unknown probability θ of obtaining a head.

L (θ) ∝ θX (1− θ)(N−X ), and E[X ] = Nθ.

The Fisher Information is

I(θ) = E

[
−

∂2

∂2θ
log L

]
=

N

θ(1− θ)
.

Information highest near θ = 0 and θ = 1.

Variance of Binomial(N, θ) = N θ (1− θ).

=
1

I(θ)
in this case!

C
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e.

Is this always true? Cramér-Rao Lower Bound.
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Variance of unbiased estimators: Cramér-Rao Lower Bound

If ~T(X ) is an unbiased estimator of a function ~g(~θ) of the parameters ~θ (i.e., E[~T(X )] = ~g(~θ)),

and I(~θ) is the expected Fisher information matrix, then

Var[~T(X )] ≥
(
∂~g(~θ)

∂~θ

)
I−1(~θ)

(
∂~g(~θ)

∂~θ

)T

Cramér-Rao Lower Bound (CRLB)

In particular, if we set g(~θ) = ~θ, so that ~T(X ) is an unbiased estimator for ~θ,

Var[~T(X )] ≥ I−1(~θ)

The inverse of the Fisher Information (≡ covariance) of a parameter is a lower bound on the
variance of any unbiased estimator of that parameter.

Does not tell us if the estimator ~T(X ) exists, or how we can find it.

We can compute the variance for various ~T(X ) and choose the one with variance closest to the
CRLB.

For biased estimators: If E[~T(X )− ~θ] = ~B(~θ) 6= 0, set ~g(~θ) = ~B(~θ) + ~θ and apply CRLB.
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Covariance matrix for MLE of Gaussian random variables

Recall:

∂`

∂µ
=

N∑
i=1

(
Xi − µ
σ2

)
∂`

∂σ
=

1

σ

(
− N +

N∑
i=1

(Xi − µ)2

σ2

)
E
[ N∑

i=1

(Xi − µ)2
]

= N σ2

Compute all three second derivatives:

∂2`

∂µ2
= −

N

σ2

∂2`

∂σ2
=

N

σ2
−

3

σ4

N∑
i=1

(Xi −µ)2 ∂2`

∂σ∂µ
= −

2

σ3

N∑
i=1

(Xi −µ)

Compute expectation values:

E

[
∂2`

∂µ2

]
= −

N

σ2
E

[
∂2`

∂σ2

]
=

N

σ2
−

3

σ2
N = −

2N

σ2
E

[
∂2`

∂σ∂µ

]
= 0 (uncorrelated!)

Expected Fisher matrix: I(~θ) ≡ −E
[
∂

∂~θ

∂

∂~θ
ln L

]
=

1

σ2

[
N 0
0 2N

]

Covariance matrix: Σ(~θ) ≡ I−1(~θ) =
σ2

N

[
1 0
0 2

]
Variances = CRBL!
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σ2

)
∂`

∂σ
=

1

σ

(
− N +

N∑
i=1

(Xi − µ)2

σ2

)
E
[ N∑

i=1

(Xi − µ)2
]

= N σ2

Compute all three second derivatives:

∂2`

∂µ2
= −

N

σ2

∂2`

∂σ2
=

N

σ2
−

3

σ4

N∑
i=1

(Xi −µ)2 ∂2`

∂σ∂µ
= −

2

σ3

N∑
i=1

(Xi −µ)

Compute expectation values:

E

[
∂2`

∂µ2

]
= −

N

σ2
E

[
∂2`

∂σ2

]
=

N

σ2
−

3

σ2
N = −

2N

σ2
E

[
∂2`

∂σ∂µ

]
= 0 (uncorrelated!)

Expected Fisher matrix: I(~θ) ≡ −E
[
∂

∂~θ

∂

∂~θ
ln L

]
=

1

σ2

[
N 0
0 2N

]

Covariance matrix: Σ(~θ) ≡ I−1(~θ) =
σ2

N

[
1 0
0 2

]
Variances = CRBL!
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Computational MLE

Log-likelihood is fed to routine by user.

Routine optimises this function using a variety of techniques.

The output will include the MLE as well as the covariance matrix.

Example: fitting a line to data with uncertainties.
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Point estimation: caveats (Feigelsen & Babu, ch. 3)

“It is worth checking any piece of remembered statistics, as it is almost certain to be based on
the Gaussian distribution.”

— Wall & Jenkins, Sec. 3.2

Point estimation requires two decisions:

1 Model specification: required to compute the likelihood. How do we know it is correct?

Model validation (goodness-of-fit).

Model selection.

2 Estimation method: which estimator do we pick?

The MLE is not always unbiased.

Minimum Variance Unbiased Estimator (MVUE) – among unbiased estimators,
pick the one with the least variance.
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