

Statistics for Astronomers: Lecture 9, 2020.10.28

Prof. Sundar Srinivasan

IRyA/UNAM

Review

The Empirical Rule for normal distributions, the z-score.
Student's t-distribution, the t-score.
Interval estimates: the confidence interval.

Confidence interval: frequentist interpretation

The true parameter value θ is fixed. Repeated observations generate a distribution $p_{\hat{\ominus}}(\hat{\theta})$ of point estimates $\hat{\theta}$ for θ. Use this distribution to constrain the true value - interval estimate. Most common interval estimate: confidence interval (Cl).

Confidence interval: frequentist interpretation

The true parameter value θ is fixed. Repeated observations generate a distribution $p_{\hat{\theta}}(\hat{\theta})$ of point estimates $\hat{\theta}$ for θ. Use this distribution to constrain the true value - interval estimate. Most common interval estimate: confidence interval (Cl).
"The $100(1-\alpha) \% \mathrm{Cl}($ for $\theta)$ is $[a, b] " \Longrightarrow P(a \leq \hat{\Theta} \leq b)=\int_{a}^{b} p_{\hat{\theta}}(\hat{\theta}) d \hat{\theta}=1-\alpha$

$$
\Longrightarrow P(\hat{\Theta}<a)+P(\hat{\Theta}>b)=\alpha
$$

(Note: definitions don't contain θ, only its estimates $\hat{\theta}$!)

Confidence interval: frequentist interpretation

The true parameter value θ is fixed. Repeated observations generate a distribution $p_{\hat{\theta}}(\hat{\theta})$ of point estimates $\hat{\theta}$ for θ. Use this distribution to constrain the true value - interval estimate. Most common interval estimate: confidence interval (Cl).
"The $100(1-\alpha) \% \mathrm{Cl}($ for $\theta)$ is $[a, b] " \Longrightarrow P(a \leq \hat{\Theta} \leq b)=\int_{a}^{b} p_{\hat{\theta}}(\hat{\theta}) d \hat{\theta}=1-\alpha$

$$
\Longrightarrow P(\hat{\Theta}<a)+P(\hat{\Theta}>b)=\alpha
$$

(Note: definitions don't contain θ, only its estimates $\hat{\theta}$!)
If number of parameters $p>1$, confidence set or confidence region.

Confidence interval: frequentist interpretation

The true parameter value θ is fixed. Repeated observations generate a distribution $p_{\hat{\theta}}(\hat{\theta})$ of point estimates $\hat{\theta}$ for θ. Use this distribution to constrain the true value - interval estimate. Most common interval estimate: confidence interval (Cl).
"The $100(1-\alpha) \% \mathrm{Cl}($ for $\theta)$ is $[a, b] " \Longrightarrow P(a \leq \hat{\Theta} \leq b)=\int_{a}^{b} p_{\hat{\theta}}(\hat{\theta}) d \hat{\theta}=1-\alpha$ $\Longrightarrow P(\hat{\Theta}<a)+P(\hat{\Theta}>b)=\alpha$
(Note: definitions don't contain θ, only its estimates $\hat{\theta}$!)
If number of parameters $p>1$, confidence set or confidence region.
Frequentist interpretation of Cl convoluted! Bayesian "credible interval" more straightforward. " $95 \% \mathrm{Cl}$ of $[-1.3,1.3]$ " $=$ fixed (unknown) θ such that we observe $\hat{\Theta}$ outside $[-1.3,1.3] \leq 5 \%$ of the time. Equivalently, if Cl computed $N \gg 1$ times using the same procedure, 95% of Cls will contain true value. Since θ fixed, a single CI will either trap it (probability $=1$) or it won't (probability $=0$).

Confidence interval: frequentist interpretation

The true parameter value θ is fixed. Repeated observations generate a distribution $p_{\hat{\theta}}(\hat{\theta})$ of point estimates $\hat{\theta}$ for θ. Use this distribution to constrain the true value - interval estimate. Most common interval estimate: confidence interval (Cl).
"The $100(1-\alpha) \% \mathrm{Cl}($ for $\theta)$ is $[a, b] " \Longrightarrow P(a \leq \hat{\Theta} \leq b)=\int_{a}^{b} p_{\hat{\theta}}(\hat{\theta}) d \hat{\theta}=1-\alpha$

$$
\Longrightarrow P(\hat{\Theta}<a)+P(\hat{\Theta}>b)=\alpha
$$

(Note: definitions don't contain θ, only its estimates $\hat{\theta}$!)
If number of parameters $p>1$, confidence set or confidence region.
Frequentist interpretation of Cl convoluted! Bayesian "credible interval" more straightforward. " $95 \% \mathrm{Cl}$ of $[-1.3,1.3]$ " $=$ fixed (unknown) θ such that we observe $\hat{\Theta}$ outside $[-1.3,1.3] \leq 5 \%$ of the time. Equivalently, if Cl computed $N \gg 1$ times using the same procedure, 95% of Cls will contain true value. Since θ fixed, a single CI will either trap it (probability $=1$) or it won't (probability $=0$).
"A $95 \% \mathrm{Cl}$ (for θ)" $=$ "fraction of Cls generated in same fashion that trap true value θ is 0.95 ". \neq "the probability that a single Cl traps the true value is 0.95 ".
Note: "A 95\% CI" and not "the 95\% CI" - for symmetric distributions, less ambiguous.

Confidence interval: frequentist interpretation

The true parameter value θ is fixed. Repeated observations generate a distribution $p_{\hat{\theta}}(\hat{\theta})$ of point estimates $\hat{\theta}$ for θ. Use this distribution to constrain the true value - interval estimate. Most common interval estimate: confidence interval (Cl).
"The $100(1-\alpha) \% \mathrm{Cl}($ for $\theta)$ is $[a, b] " \Longrightarrow P(a \leq \hat{\Theta} \leq b)=\int_{a}^{b} p_{\hat{\theta}}(\hat{\theta}) d \hat{\theta}=1-\alpha$

$$
\Longrightarrow P(\hat{\Theta}<a)+P(\hat{\Theta}>b)=\alpha
$$

(Note: definitions don't contain θ, only its estimates $\hat{\theta}$!)
If number of parameters $p>1$, confidence set or confidence region.
Frequentist interpretation of Cl convoluted! Bayesian "credible interval" more straightforward. " $95 \% \mathrm{Cl}$ of $[-1.3,1.3]$ " $=$ fixed (unknown) θ such that we observe $\hat{\Theta}$ outside $[-1.3,1.3] \leq 5 \%$ of the time. Equivalently, if Cl computed $N \gg 1$ times using the same procedure, 95% of Cls will contain true value. Since θ fixed, a single CI will either trap it (probability $=1$) or it won't (probability $=0$).
"A $95 \% \mathrm{Cl}$ (for θ)" $=$ "fraction of Cls generated in same fashion that trap true value θ is 0.95 ". \neq "the probability that a single Cl traps the true value is 0.95 ".
Note: "A 95\% CI" and not "the 95\% CI" - for symmetric distributions, less ambiguous.

Perform an experiment each day, trap a parameter θ_{j} in a $95 \% \mathrm{Cl}$ on the $j^{\text {th }}$ day. As long as you use the same procedure to construct the CI , it doesn't even have to be the same experiment!!. In the long run, 95% of the intervals you constructed would have trapped the true value of whatever parameter you were exploring.
BUT P (parameter trapped in today's CI$) \in\{0,1\}$.

General procedure to compute confidence intervals

A Cl makes a probabilistic statement about the likely range of point estimates for a parameter. To construct Cls, we need the probability distribution of the point estimates.

General procedure to compute confidence intervals

A CI makes a probabilistic statement about the likely range of point estimates for a parameter. To construct Cls, we need the probability distribution of the point estimates.

In practice, depending on the problem, it might be difficult or impossible to obtain the full distribution. In such a case, we can estimate the variance and then use, e.g., the Chebyshev Inequality to compute an approximate CI .

General procedure to compute confidence intervals

A CI makes a probabilistic statement about the likely range of point estimates for a parameter. To construct Cls, we need the probability distribution of the point estimates.

In practice, depending on the problem, it might be difficult or impossible to obtain the full distribution. In such a case, we can estimate the variance and then use, e.g., the Chebyshev Inequality to compute an approximate CI .

Example: If $\hat{\theta}_{0}$ is the mean of estimates for θ, and $\sigma^{2}\left(\hat{\theta}_{0}\right)$ the variance around this mean,
a $100(1-\alpha) \% \mathrm{Cl}$ is such that, for some $\ell_{\alpha / 2}, P\left(\left|\frac{\theta-\hat{\theta}_{0}}{\sigma\left(\hat{\theta_{0}}\right)}\right| \geq \ell_{\alpha / 2}\right) \leq \alpha$.

General procedure to compute confidence intervals

A CI makes a probabilistic statement about the likely range of point estimates for a parameter. To construct Cls, we need the probability distribution of the point estimates.

In practice, depending on the problem, it might be difficult or impossible to obtain the full distribution. In such a case, we can estimate the variance and then use, e.g., the Chebyshev Inequality to compute an approximate CI .

Example: If $\hat{\theta}_{0}$ is the mean of estimates for θ, and $\sigma^{2}\left(\hat{\theta}_{0}\right)$ the variance around this mean,
a $100(1-\alpha) \% \mathrm{Cl}$ is such that, for some $\ell_{\alpha / 2}, P\left(\left|\frac{\theta-\hat{\theta}_{0}}{\sigma\left(\hat{\theta_{0}}\right)}\right| \geq \ell_{\alpha / 2}\right) \leq \alpha$.
Comparing this to the Chebyshev Inequality: $P\left(\left|\frac{\theta-\hat{\theta}_{0}}{\sigma\left(\hat{\theta}_{0}\right)}\right| \geq k\right) \leq \frac{1}{k^{2}}$,

General procedure to compute confidence intervals

A CI makes a probabilistic statement about the likely range of point estimates for a parameter. To construct Cls, we need the probability distribution of the point estimates.

In practice, depending on the problem, it might be difficult or impossible to obtain the full distribution. In such a case, we can estimate the variance and then use, e.g., the Chebyshev Inequality to compute an approximate CI .

Example: If $\hat{\theta}_{0}$ is the mean of estimates for θ, and $\sigma^{2}\left(\hat{\theta}_{0}\right)$ the variance around this mean, a $100(1-\alpha) \% \mathrm{Cl}$ is such that, for some $\ell_{\alpha / 2}, P\left(\left|\frac{\theta-\hat{\theta}_{0}}{\sigma\left(\hat{\theta}_{0}\right)}\right| \geq \ell_{\alpha / 2}\right) \leq \alpha$.
Comparing this to the Chebyshev Inequality: $P\left(\left|\frac{\theta-\hat{\theta}_{0}}{\sigma\left(\hat{\theta}_{0}\right)}\right| \geq k\right) \leq \frac{1}{k^{2}}$,
we get an approximate $100(1-\alpha) \% \mathrm{Cl}$ if we choose $\ell_{\alpha / 2}=1 / \sqrt{\alpha}$.
The actual probability enclosed by this CI will be smaller than α since the inequality provides an upper bound.

General procedure to compute confidence intervals

A CI makes a probabilistic statement about the likely range of point estimates for a parameter. To construct Cls, we need the probability distribution of the point estimates.

In practice, depending on the problem, it might be difficult or impossible to obtain the full distribution. In such a case, we can estimate the variance and then use, e.g., the Chebyshev Inequality to compute an approximate CI .

Example: If $\hat{\theta}_{0}$ is the mean of estimates for θ, and $\sigma^{2}\left(\hat{\theta}_{0}\right)$ the variance around this mean,
a $100(1-\alpha) \% \mathrm{Cl}$ is such that, for some $\ell_{\alpha / 2}, P\left(\left|\frac{\theta-\hat{\theta}_{0}}{\sigma\left(\hat{\theta}_{0}\right)}\right| \geq \ell_{\alpha / 2}\right) \leq \alpha$.
Comparing this to the Chebyshev Inequality: $P\left(\left|\frac{\theta-\hat{\theta}_{0}}{\sigma\left(\hat{\theta}_{0}\right)}\right| \geq k\right) \leq \frac{1}{k^{2}}$,
we get an approximate $100(1-\alpha) \% \mathrm{Cl}$ if we choose $\ell_{\alpha / 2}=1 / \sqrt{\alpha}$.
The actual probability enclosed by this CI will be smaller than α since the inequality provides an upper bound.

Example of a point estimate: MLE. Find $\hat{\theta}_{\text {MLE }}$ such that $\mathscr{L}(\theta)$ is maximum. If $\mathscr{L}(\theta)$ known for all values allowed for θ, Cl computation straightforward. If not, use the CRLB to at least find lower bound on variance. Let's look at some examples for Cls using MLE.

Terminology

Consider X drawn from an unknown distribution with mean μ and variance σ^{2}. Perform a trial N times, obtain values $\left\{x_{i}\right\}(i=1, \cdots, N)$.

Terminology

Consider X drawn from an unknown distribution with mean μ and variance σ^{2}. Perform a trial N times, obtain values $\left\{x_{i}\right\}(i=1, \cdots, N)$.

Uncertainty associated with
each data point $x_{i}: \sigma$ (" 1σ uncertainty on a single observation").
sample mean \bar{x}, from Central Limit Theorem: σ / \sqrt{N} (" 1σ uncertainty on sample mean").

Terminology

Consider X drawn from an unknown distribution with mean μ and variance σ^{2}. Perform a trial N times, obtain values $\left\{x_{i}\right\}(i=1, \cdots, N)$.

Uncertainty associated with
each data point $x_{i}: \sigma$ (" 1σ uncertainty on a single observation").
sample mean \bar{x}, from Central Limit Theorem: σ / \sqrt{N} (" 1σ uncertainty on sample mean").
In this context, " 1σ " is short for "one standard deviation", not to the literal value σ.

In this particular example, the " 1σ uncertainty" happens to have the value σ for a single observation and the value σ / \sqrt{N} for the sample mean.

These results are true for any distribution. If σ unknown, estimate from data.

Example: Cl for mean of normal with known variance

Case 1: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$. Single observation x. MLE for μ :

Case 2: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right) . N$ observations $\left\{x_{i}\right\}(i=1, \cdots, N)$. MLE for μ :

Example: Cl for mean of normal with known variance

Case 1: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$. Single observation x. MLE for $\mu: \hat{\mu}_{\text {MLE }}=x$.

Case 2: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right) . N$ observations $\left\{x_{i}\right\}(i=1, \cdots, N)$. MLE for μ :

Example: Cl for mean of normal with known variance

Case 1: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$. Single observation x. MLE for $\mu: \hat{\mu}_{\text {MLE }}=x$.

$$
\mathscr{L}(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\mu-x}{\sigma}\right)^{2}\right]
$$

Case 2: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right) . N$ observations $\left\{x_{i}\right\}(i=1, \cdots, N)$. MLE for μ :

Example: Cl for mean of normal with known variance

Case 1: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$. Single observation x. MLE for $\mu: \hat{\mu}_{\text {MLE }}=x$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\mu-x}{\sigma}\right)^{2}\right] \\
& \Longrightarrow \mathscr{L}(\mu) \propto \mathscr{N}\left(\hat{\mu}_{\mathrm{MLE}}, \sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right)\right) \text {, with } \hat{\mu}_{\mathrm{MLE}}=x \text { and } \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)=\sigma .
\end{aligned}
$$

Case 2: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right) . N$ observations $\left\{x_{i}\right\}(i=1, \cdots, N)$. MLE for μ :

Example: Cl for mean of normal with known variance

Case 1: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$. Single observation x. MLE for $\mu: \hat{\mu}_{\text {MLE }}=x$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\mu-x}{\sigma}\right)^{2}\right] \\
& \Longrightarrow \mathscr{L}(\mu) \propto \mathscr{N}\left(\hat{\mu}_{\mathrm{MLE}}, \sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right)\right), \text { with } \hat{\mu}_{\mathrm{MLE}}=x \text { and } \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)=\sigma .
\end{aligned}
$$

Case 2: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right) . N$ observations $\left\{x_{i}\right\}(i=1, \cdots, N)$. MLE for $\mu: \hat{\mu}_{\text {MLE }}=\bar{x}$.

Example: Cl for mean of normal with known variance

Case 1: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$. Single observation x. MLE for $\mu: \hat{\mu}_{\text {MLE }}=x$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\mu-x}{\sigma}\right)^{2}\right] \\
& \Longrightarrow \mathscr{L}(\mu) \propto \mathscr{N}\left(\hat{\mu}_{\mathrm{MLE}}, \sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right)\right) \text {, with } \hat{\mu}_{\mathrm{MLE}}=x \text { and } \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)=\sigma .
\end{aligned}
$$

Case 2: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right) . N$ observations $\left\{x_{i}\right\}(i=1, \cdots, N)$. MLE for $\mu: \hat{\mu}_{\mathrm{MLE}}=\bar{x}$.

$$
\mathscr{L}(\mu)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{N} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]
$$

Example: Cl for mean of normal with known variance

Case 1: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$. Single observation x. MLE for $\mu: \hat{\mu}_{\text {MLE }}=x$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\mu-x}{\sigma}\right)^{2}\right] \\
& \Longrightarrow \mathscr{L}(\mu) \propto \mathscr{N}\left(\hat{\mu}_{\mathrm{MLE}}, \sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right)\right), \text { with } \hat{\mu}_{\mathrm{MLE}}=x \text { and } \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)=\sigma .
\end{aligned}
$$

Case 2: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right) . N$ observations $\left\{x_{i}\right\}(i=1, \cdots, N)$. MLE for $\mu: \hat{\mu}_{\mathrm{MLE}}=\bar{x}$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{N} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right] \\
& \text { Noting } \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{N}(\bar{x}-\mu)^{2}=N\left(\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+(\bar{x}-\mu)^{2}\right),
\end{aligned}
$$

Example: Cl for mean of normal with known variance

Case 1: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$. Single observation x. MLE for $\mu: \hat{\mu}_{\text {MLE }}=x$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\mu-x}{\sigma}\right)^{2}\right] \\
& \Longrightarrow \mathscr{L}(\mu) \propto \mathscr{N}\left(\hat{\mu}_{\mathrm{MLE}}, \sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right)\right), \text { with } \hat{\mu}_{\mathrm{MLE}}=x \text { and } \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)=\sigma .
\end{aligned}
$$

Case 2: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right) . N$ observations $\left\{x_{i}\right\}(i=1, \cdots, N)$. MLE for $\mu: \hat{\mu}_{\mathrm{MLE}}=\bar{x}$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{N} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right] \\
& \text { Noting } \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{N}(\bar{x}-\mu)^{2}=N\left(\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+(\bar{x}-\mu)^{2}\right), \\
& \mathscr{L}(\mu) \propto \exp \left[-\frac{N}{2}\left(\frac{\bar{x}-\mu}{\sigma}\right)^{2}\right]=\exp \left[-\frac{1}{2}\left(\frac{\mu-\bar{x}}{\sigma / \sqrt{N}}\right)^{2}\right]
\end{aligned}
$$

Example: Cl for mean of normal with known variance

Case 1: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$. Single observation x. MLE for $\mu: \hat{\mu}_{\text {MLE }}=x$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\mu-x}{\sigma}\right)^{2}\right] \\
& \Longrightarrow \mathscr{L}(\mu) \propto \mathscr{N}\left(\hat{\mu}_{\mathrm{MLE}}, \sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right)\right) \text {, with } \hat{\mu}_{\mathrm{MLE}}=x \text { and } \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)=\sigma .
\end{aligned}
$$

Case 2: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right) . N$ observations $\left\{x_{i}\right\}(i=1, \cdots, N)$. MLE for $\mu: \hat{\mu}_{\mathrm{MLE}}=\bar{x}$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{N} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right] . \\
& \text { Noting } \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{N}(\bar{x}-\mu)^{2}=N\left(\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+(\bar{x}-\mu)^{2}\right), \\
& \mathscr{L}(\mu) \propto \exp \left[-\frac{N}{2}\left(\frac{\bar{x}-\mu}{\sigma}\right)^{2}\right]=\exp \left[-\frac{1}{2}\left(\frac{\mu-\bar{x}}{\sigma / \sqrt{N}}\right)^{2}\right] \\
& \Longrightarrow \mathscr{L}(\mu) \propto \mathscr{N}\left(\hat{\mu}_{\mathrm{MLE}}, \sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right)\right), \text { where } \hat{\mu}_{\mathrm{MLE}}=\bar{x} \text { and } \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)=\sigma / \sqrt{N} .
\end{aligned}
$$

Example: CI for mean of normal with known variance

Case 1: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$. Single observation x. MLE for $\mu: \hat{\mu}_{\text {MLE }}=x$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\mu-x}{\sigma}\right)^{2}\right] \\
& \Longrightarrow \mathscr{L}(\mu) \propto \mathscr{N}\left(\hat{\mu}_{\mathrm{MLE}}, \sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right)\right) \text {, with } \hat{\mu}_{\mathrm{MLE}}=x \text { and } \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)=\sigma .
\end{aligned}
$$

Case 2: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right) . N$ observations $\left\{x_{i}\right\}(i=1, \cdots, N)$. MLE for $\mu: \hat{\mu}_{\text {MLE }}=\bar{x}$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{N} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right] . \\
& \text { Noting } \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{N}(\bar{x}-\mu)^{2}=N\left(\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+(\bar{x}-\mu)^{2}\right), \\
& \mathscr{L}(\mu) \propto \exp \left[-\frac{N}{2}\left(\frac{\bar{x}-\mu}{\sigma}\right)^{2}\right]=\exp \left[-\frac{1}{2}\left(\frac{\mu-\bar{x}}{\sigma / \sqrt{N}}\right)^{2}\right] \\
& \Longrightarrow \mathscr{L}(\mu) \propto \mathscr{N}\left(\hat{\mu}_{\mathrm{MLE}}, \sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right)\right), \text { where } \hat{\mu}_{\mathrm{MLE}}=\bar{x} \text { and } \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)=\sigma / \sqrt{N} .
\end{aligned}
$$

$2 \sigma \mathrm{Cl}(=95 \% \mathrm{Cl}$ for Gaussian $)$ centered at $\hat{\mu}_{\mathrm{MLE}}$ with variance $\sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right):\left[\hat{\mu}_{\mathrm{MLE}}-2 \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right), \hat{\mu}_{\mathrm{MLE}}+2 \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)\right]$.

Example: CI for mean of normal with known variance

Case 1: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$. Single observation x. MLE for $\mu: \hat{\mu}_{\text {MLE }}=x$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{\mu-x}{\sigma}\right)^{2}\right] \\
& \Longrightarrow \mathscr{L}(\mu) \propto \mathscr{N}\left(\hat{\mu}_{\mathrm{MLE}}, \sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right)\right) \text {, with } \hat{\mu}_{\mathrm{MLE}}=x \text { and } \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)=\sigma .
\end{aligned}
$$

Case 2: $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right) . N$ observations $\left\{x_{i}\right\}(i=1, \cdots, N)$. MLE for $\mu: \hat{\mu}_{\text {MLE }}=\bar{x}$.

$$
\begin{aligned}
& \mathscr{L}(\mu)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right]=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{N} \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(\frac{x_{i}-\mu}{\sigma}\right)^{2}\right] . \\
& \text { Noting } \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{N}(\bar{x}-\mu)^{2}=N\left(\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+(\bar{x}-\mu)^{2}\right), \\
& \mathscr{L}(\mu) \propto \exp \left[-\frac{N}{2}\left(\frac{\bar{x}-\mu}{\sigma}\right)^{2}\right]=\exp \left[-\frac{1}{2}\left(\frac{\mu-\bar{x}}{\sigma / \sqrt{N}}\right)^{2}\right] \\
& \Longrightarrow \mathscr{L}(\mu) \propto \mathscr{N}\left(\hat{\mu}_{\mathrm{MLE}}, \sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right)\right), \text { where } \hat{\mu}_{\mathrm{MLE}}=\bar{x} \text { and } \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)=\sigma / \sqrt{N} .
\end{aligned}
$$

$2 \sigma \mathrm{Cl}\left(=95 \% \mathrm{Cl}\right.$ for Gaussian) centered at $\hat{\mu}_{\mathrm{MLE}}$ with variance $\sigma^{2}\left(\hat{\mu}_{\mathrm{MLE}}\right):\left[\hat{\mu}_{\mathrm{MLE}}-2 \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right), \hat{\mu}_{\mathrm{MLE}}+2 \sigma\left(\hat{\mu}_{\mathrm{MLE}}\right)\right]$.
\Longrightarrow Case 1: $[x-2 \sigma, x+2 \sigma]$. Case 2: $\left[\bar{x}-2 \frac{\sigma}{\sqrt{N}}, \bar{x}+2 \frac{\sigma}{\sqrt{N}}\right]$.

Example: CI for Gaussian uncertainties

A single measurement of the mass of a rock results in a value of 0.2 kg .
The 1σ measurement uncertainty due to the resolution of the mass measuring device is 0.05 kg .

Example: CI for Gaussian uncertainties

A single measurement of the mass of a rock results in a value of 0.2 kg .
The 1σ measurement uncertainty due to the resolution of the mass measuring device is 0.05 kg .

Construct a $99.7 \% \mathrm{Cl}$ on the true mass of the rock.
Using the Empirical Rule, 99.7% corresponds approx. to 3σ.
$90.7 \% \mathrm{Cl}=[\widehat{\mu}-3 \sigma, \widehat{\mu}+3 \sigma]=[0.2-0.15,0.2+0.15]=[0.05,0.35] \mathrm{kg}$.
"The mass of the rock is $(0.2 \pm 0.15) \mathrm{kg}(3 \sigma)$ ".

Example: CI for Gaussian uncertainties

A single measurement of the mass of a rock results in a value of 0.2 kg .
The 1σ measurement uncertainty due to the resolution of the mass measuring device is 0.05 kg .

Construct a $99.7 \% \mathrm{Cl}$ on the true mass of the rock.
Using the Empirical Rule, 99.7% corresponds approx. to 3σ.
$90.7 \% \mathrm{Cl}=[\widehat{\mu}-3 \sigma, \widehat{\mu}+3 \sigma]=[0.2-0.15,0.2+0.15]=[0.05,0.35] \mathrm{kg}$.
"The mass of the rock is $(0.2 \pm 0.15) \mathrm{kg}(3 \sigma)$ ".
Construct a $82 \% \mathrm{Cl}$ on the true mass of the rock.

$$
100(1-\alpha)=82 \Longrightarrow \alpha=0.18
$$

scipy.stats.norm.ppf(0.18/2) = -1.341
scipy.stats.norm.ppf(1-0.18/2) $=1.341$ \#"1.341 sigma confidence interval"
$\mathrm{Cl}:[\widehat{\mu}-1.341 \sigma, \widehat{\mu}+1.341 \sigma]=[0.2-0.067,0.2+0.067] \approx[0.133,0.267] \mathrm{kg}$.

Example: CI for Gaussian uncertainties

A single measurement of the mass of a rock results in a value of 0.2 kg .
The 1σ measurement uncertainty due to the resolution of the mass measuring device is 0.05 kg .

Construct a $99.7 \% \mathrm{CI}$ on the true mass of the rock.
Using the Empirical Rule, 99.7% corresponds approx. to 3σ.
$90.7 \% \mathrm{Cl}=[\widehat{\mu}-3 \sigma, \widehat{\mu}+3 \sigma]=[0.2-0.15,0.2+0.15]=[0.05,0.35] \mathrm{kg}$.
"The mass of the rock is $(0.2 \pm 0.15) \mathrm{kg}(3 \sigma)$ ".
Construct a $82 \% \mathrm{Cl}$ on the true mass of the rock.

$$
100(1-\alpha)=82 \Longrightarrow \alpha=0.18
$$

scipy.stats.norm.ppf(0.18/2) = -1.341
scipy.stats.norm.ppf(1-0.18/2) = 1.341 \#"1.341 sigma confidence interval"
$\mathrm{Cl}:[\widehat{\mu}-1.341 \sigma, \widehat{\mu}+1.341 \sigma]=[0.2-0.067,0.2+0.067] \approx[0.133,0.267] \mathrm{kg}$.
What confidence is associated with the interval $[0.00545,0.3946] \mathrm{kg}$?

Example: CI for Gaussian uncertainties

A single measurement of the mass of a rock results in a value of 0.2 kg .
The 1σ measurement uncertainty due to the resolution of the mass measuring device is 0.05 kg .

Construct a $99.7 \% \mathrm{Cl}$ on the true mass of the rock.
Using the Empirical Rule, 99.7% corresponds approx. to 3σ.
$90.7 \% \mathrm{Cl}=[\widehat{\mu}-3 \sigma, \widehat{\mu}+3 \sigma]=[0.2-0.15,0.2+0.15]=[0.05,0.35] \mathrm{kg}$.
"The mass of the rock is $(0.2 \pm 0.15) \mathrm{kg}(3 \sigma)$ ".
Construct a $82 \% \mathrm{Cl}$ on the true mass of the rock.

```
\[
100(1-\alpha)=82 \Longrightarrow \alpha=0.18
\]
scipy.stats.norm.ppf(0.18/2) \(=-1.341\)
scipy.stats.norm.ppf \((1-0.18 / 2)=1.341\) \#"1.341 sigma confidence interval"
\(\mathrm{Cl}:[\widehat{\mu}-1.341 \sigma, \widehat{\mu}+1.341 \sigma]=[0.2-0.067,0.2+0.067] \approx[0.133,0.267] \mathrm{kg}\).
```

What confidence is associated with the interval $[0.00545,0.3946] \mathrm{kg}$?

We just said something probabilistic about a true parameter with only one data point! Assumptions: uncertainties are Gaussian, we know the standard deviation.

Example: CI for Gaussian uncertainties with unknown σ

Three measurements of the mass of a rock results in values of $0.2,0.35$, and 0.25 kg . As usual, $\hat{\mu}=\bar{x}$.
σ unknown, estd. from data \Longrightarrow functional form of $\mathscr{L}(\mu)$: Student's t-distribution around $\hat{\mu}$.

$$
\begin{aligned}
& \mathrm{m}=\mathrm{np} . \operatorname{array}([0.2,0.35,0.25]) ; \mathrm{m} \text { mean }=\mathrm{m} . \mathrm{mean}() ; \mathrm{m} _ \text {std }=\mathrm{m} . \mathrm{std}(\mathrm{ddof}=1) \\
& \widehat{\mu}=\bar{x}=0.267 \mathrm{~kg} . \# \mathrm{dof}=N-1=2 . \widehat{\sigma}=0.076 \mathrm{~kg}(\text { Bessel-corrected }) .
\end{aligned}
$$

Example: CI for Gaussian uncertainties with unknown σ

Three measurements of the mass of a rock results in values of $0.2,0.35$, and 0.25 kg . As usual, $\hat{\mu}=\bar{x}$.
σ unknown, estd. from data \Longrightarrow functional form of $\mathscr{L}(\mu)$: Student's t-distribution around $\hat{\mu}$.

$$
\begin{aligned}
& \mathrm{m}=\mathrm{np} \cdot \operatorname{array}([0.2,0.35,0.25]) ; \text { m_mean }=\mathrm{m} \cdot \mathrm{mean}() ; \mathrm{m} _ \text {std }=\mathrm{m} . \operatorname{std}(\mathrm{ddof}=1) \\
& \widehat{\mu}=\bar{x}=0.267 \mathrm{~kg} . \# \mathrm{dof}=N-1=2 . \widehat{\sigma}=0.076 \mathrm{~kg} \text { (Bessel-corrected) } .
\end{aligned}
$$

Use methods in scipy.stats.t for the following:

Construct a $95 \% \mathrm{Cl}$ on the true mass of the rock.
Find value of t (Studentised) for which $P(|T| \leq t)=0.95$.

```
k95 = t.ppf((1-0.95)/2, df = 2) #number of std dev from mean
```

$95 \% \mathrm{Cl}=[\widehat{\mu}-k 95 \cdot \widehat{\sigma}, \widehat{\mu}+k 95 \cdot \widehat{\sigma}]$

$$
=[0.267-4.303 \times 0.076,0.267+4.303 \times 0.076]=[0.06,0.59] \mathrm{kg} .
$$

In general, $95 \% \mathrm{Cl}$ for Student's t wider than $95 \% \mathrm{Cl}$ for Gaussian.

Example: CI for Gaussian uncertainties with unknown σ

Three measurements of the mass of a rock results in values of $0.2,0.35$, and 0.25 kg . As usual, $\hat{\mu}=\bar{x}$.
σ unknown, estd. from data \Longrightarrow functional form of $\mathscr{L}(\mu)$: Student's t-distribution around $\hat{\mu}$.

$$
\begin{aligned}
& \mathrm{m}=\mathrm{np} . \operatorname{array}([0.2,0.35,0.25]) ; \mathrm{m} _ \text {mean }=\mathrm{m} \cdot \mathrm{mean}() ; \mathrm{m} _ \text {std }=\mathrm{m} . \mathrm{std}(\mathrm{ddof}=1) \\
& \widehat{\mu}=\bar{x}=0.267 \mathrm{~kg} . \# \mathrm{dof}=N-1=2 . \widehat{\sigma}=0.076 \mathrm{~kg}(\text { Bessel-corrected }) .
\end{aligned}
$$

Use methods in scipy.stats.t for the following:

Construct a $95 \% \mathrm{Cl}$ on the true mass of the rock.
Find value of t (Studentised) for which $P(|T| \leq t)=0.95$.
k95 = t.ppf((1-0.95)/2, df = 2) \#number of std dev from mean $95 \% \mathrm{Cl}=[\widehat{\mu}-k 95 \cdot \widehat{\sigma}, \widehat{\mu}+k 95 \cdot \widehat{\sigma}]$

$$
=[0.267-4.303 \times 0.076,0.267+4.303 \times 0.076]=[0.06,0.59] \mathrm{kg} .
$$

In general, $95 \% \mathrm{Cl}$ for Student's t wider than $95 \% \mathrm{Cl}$ for Gaussian.

What confidence is associated with the interval $[-0.0484,0.5824] \mathrm{kg}$?

Example: CI for Gaussian uncertainties with unknown σ

Three measurements of the mass of a rock results in values of $0.2,0.35$, and 0.25 kg . As usual, $\hat{\mu}=\bar{x}$.
σ unknown, estd. from data \Longrightarrow functional form of $\mathscr{L}(\mu)$: Student's t-distribution around $\hat{\mu}$.

$$
\begin{aligned}
& \mathrm{m}=\mathrm{np} . \operatorname{array}([0.2,0.35,0.25]) ; \mathrm{m} \text { _mean }=\mathrm{m} \cdot \mathrm{mean}() ; \mathrm{m} _ \text {std }=\mathrm{m} . \mathrm{std}(\text { ddof }=1) \\
& \widehat{\mu}=\bar{x}=0.267 \mathrm{~kg} . \# \mathrm{dof}=N-1=2 . \widehat{\sigma}=0.076 \mathrm{~kg}(\text { Bessel-corrected }) .
\end{aligned}
$$

Use methods in scipy.stats.t for the following:

Construct a $95 \% \mathrm{Cl}$ on the true mass of the rock.
Find value of t (Studentised) for which $P(|T| \leq t)=0.95$.
k95 = t.ppf((1-0.95)/2, df = 2) \#number of std dev from mean $95 \% \mathrm{Cl}=[\widehat{\mu}-k 95 \cdot \widehat{\sigma}, \widehat{\mu}+k 95 \cdot \widehat{\sigma}]$

$$
=[0.267-4.303 \times 0.076,0.267+4.303 \times 0.076]=[0.06,0.59] \mathrm{kg} .
$$

In general, $95 \% \mathrm{Cl}$ for Student's t wider than $95 \% \mathrm{Cl}$ for Gaussian.

What confidence is associated with the interval $[-0.0484,0.5824] \mathrm{kg}$?

See Section 7.2 in Barlow for an interpretation of negative values in the Cl in such cases!

Example: CI for (normal approx of) Binomial distribution

Flip a coin $N=100$ times. Observe: 75 heads, 25 tails.
What is P (Head)? What is the $95 \% \mathrm{Cl}$ for this estimate?

Example: CI for (normal approx of) Binomial distribution

Flip a coin $N=100$ times. Observe: 75 heads, 25 tails.
What is P (Head)? What is the $95 \% \mathrm{Cl}$ for this estimate?
Recall: for a Binomial distribution with N trials and k successes, if $\theta=P$ (1 success), $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$.

Example: CI for (normal approx of) Binomial distribution

Flip a coin $N=100$ times. Observe: 75 heads, 25 tails.
What is P (Head)? What is the $95 \% \mathrm{Cl}$ for this estimate?
Recall: for a Binomial distribution with N trials and k successes, if $\theta=P$ (1 success), $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$.

Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$ - Beta distribution.

Example: CI for (normal approx of) Binomial distribution

Flip a coin $N=100$ times. Observe: 75 heads, 25 tails.
What is P (Head)? What is the $95 \% \mathrm{Cl}$ for this estimate?
Recall: for a Binomial distribution with N trials and k successes, if $\theta=P$ (1 success), $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$.

Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$ - Beta distribution.
MLE (See Lecture 6, Slide 4): $\hat{\theta}_{\text {MLE }}=\frac{k}{N}=0.75$.

Example: CI for (normal approx of) Binomial distribution

Flip a coin $N=100$ times. Observe: 75 heads, 25 tails.
What is P (Head)? What is the $95 \% \mathrm{Cl}$ for this estimate?
Recall: for a Binomial distribution with N trials and k successes, if $\theta=P$ (1 success), $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$.

Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$ - Beta distribution.

$$
\begin{aligned}
& \text { MLE (See Lecture 6, Slide 4): } \hat{\theta}_{\text {MLE }}
\end{aligned}=\frac{k}{N}=0.75 . ~\left(\begin{array}{rl}
\operatorname{Var}\left[\hat{\theta}_{\mathrm{MLE}}\right]=\operatorname{Var}\left[\frac{k}{N}\right]=\frac{1}{N^{2}} \operatorname{Var}[k] & =\frac{\hat{\theta}_{\mathrm{MLE}}\left(1-\hat{\theta}_{\mathrm{MLE}}\right)}{N} \approx 0.0019 \\
& \Longrightarrow \hat{\sigma}\left(\hat{\theta}_{\mathrm{MLE}}\right) \approx 0.043 .
\end{array}\right.
$$

Example: CI for (normal approx of) Binomial distribution

Flip a coin $N=100$ times. Observe: 75 heads, 25 tails. What is P (Head)? What is the $95 \% \mathrm{Cl}$ for this estimate?

Recall: for a Binomial distribution with N trials and k successes, if $\theta=P$ (1 success), $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$.

Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$ - Beta distribution.
MLE (See Lecture 6, Slide 4): $\hat{\theta}_{\text {MLE }}=\frac{k}{N}=0.75$.
$\operatorname{Var}\left[\hat{\theta}_{\text {MLE }}\right]=\operatorname{Var}\left[\frac{k}{N}\right]=\frac{1}{N^{2}} \operatorname{Var}[k]=\frac{\hat{\theta}_{\text {MLE }}\left(1-\hat{\theta}_{\text {MLE }}\right)}{N} \approx 0.0019$

$$
\Longrightarrow \hat{\sigma}\left(\hat{\theta}_{\mathrm{MLE}}\right) \approx 0.043 .
$$

asymmetric function, so Cl needs to be constructed with care.
However, this problem satisfies conditions for a Gaussian approximation:

$$
\mathscr{L}(\theta) \approx \mathscr{N}\left(\hat{\theta}_{\mathrm{MLE}}, \widehat{\sigma^{2}}\left(\hat{\theta}_{\mathrm{MLE}}\right)\right)=\mathscr{N}\left(0.75,(0.043)^{2}\right)
$$

Example: CI for (normal approx of) Binomial distribution

Flip a coin $N=100$ times. Observe: 75 heads, 25 tails.
What is P (Head)? What is the $95 \% \mathrm{Cl}$ for this estimate?
Recall: for a Binomial distribution with N trials and k successes, if $\theta=P$ (1 success), $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$.

Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$ - Beta distribution.
MLE (See Lecture 6, Slide 4): $\hat{\theta}_{\text {MLE }}=\frac{k}{N}=0.75$.

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\theta}_{\mathrm{MLE}}\right]=\operatorname{Var}\left[\frac{k}{N}\right]=\frac{1}{N^{2}} \operatorname{Var}[k] & =\frac{\hat{\theta}_{\mathrm{MLE}}\left(1-\hat{\theta}_{\mathrm{MLE}}\right)}{N} \approx 0.0019 \\
& \Longrightarrow \hat{\sigma}\left(\hat{\theta}_{\mathrm{MLE}}\right) \approx 0.043
\end{aligned}
$$

asymmetric function, so Cl needs to be constructed with care.
However, this problem satisfies conditions for a Gaussian approximation:

$$
\mathscr{L}(\theta) \approx \mathscr{N}\left(\hat{\theta}_{\mathrm{MLE}}, \widehat{\sigma^{2}}\left(\hat{\theta}_{\mathrm{MLE}}\right)\right)=\mathscr{N}\left(0.75,(0.043)^{2}\right)
$$

A $95 \% \mathrm{Cl}$ for this problem is also a $2 \sigma \mathrm{Cl}:[0.75-2 \times 0.043,0.75+2 \times 0.043] \approx[0.66,0.84]$.

Cls for asymmetric distributions

Example: $\mathscr{L}(\theta)=f \mathscr{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-f) \mathscr{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ with $0<f<1$ (mixture of Gaussians).

Cls for asymmetric distributions

Example: $\mathscr{L}(\theta)=f \mathscr{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-f) \mathscr{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ with $0<f<1$ (mixture of Gaussians).
Highly asymmetric: mean \neq median \neq mode!

Cls for asymmetric distributions

Example: $\mathscr{L}(\theta)=f \mathscr{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-f) \mathscr{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ with $0<f<1$ (mixture of Gaussians).
Highly asymmetric: mean \neq median \neq mode!

Three different ways to specify a CI:

Cls for asymmetric distributions

Example: $\mathscr{L}(\theta)=f \mathscr{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-f) \mathscr{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ with $0<f<1$ (mixture of Gaussians).
Highly asymmetric: mean \neq median \neq mode!

Three different ways to specify a CI:
(1) Central ("equal tail") CI: equal areas rejected on either side (therefore associated with median).

Cls for asymmetric distributions

Example: $\mathscr{L}(\theta)=f \mathscr{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-f) \mathscr{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ with $0<f<1$ (mixture of Gaussians).
Highly asymmetric: mean \neq median \neq mode!

Three different ways to specify a CI:
(1) Central ("equal tail") CI: equal areas rejected on either side (therefore associated with median).
(2) Shortest CI: interval chosen closest to region of highest density (therefore usually contains mode).

Cls for asymmetric distributions

Example: $\mathscr{L}(\theta)=f \mathscr{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-f) \mathscr{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ with $0<f<1$ (mixture of Gaussians).
Highly asymmetric: mean \neq median \neq mode!

Three different ways to specify a CI:
(1) Central ("equal tail") CI: equal areas rejected on either side (therefore associated with median).Shortest CI: interval chosen closest to region of highest density (therefore usually contains mode).
(3) Symmetric CI: upper and lower boundaries equidistant from location parameter (in this case, the MLE, = the mode).

Cls for asymmetric distributions

Example: $\mathscr{L}(\theta)=f \mathscr{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-f) \mathscr{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ with $0<f<1$ (mixture of Gaussians).
Highly asymmetric: mean \neq median \neq mode!

Three different ways to specify a CI:
(1) Central ("equal tail") CI: equal areas rejected on either side (therefore associated with median).
(2) Shortest Cl: interval chosen closest to region of highest density (therefore usually contains mode).
(3) Symmetric CI: upper and lower boundaries equidistant from location parameter (in this case, the MLE, = the mode).

Let's construct 50% Cls of each type...

Asymmetric distributions: Central (equal tail) CI

A $100(1-\alpha) \%$ central Cl is $\left[\theta_{-}, \theta_{+}\right]$such that $P\left(\hat{\theta} \leq \theta_{-}\right)=P\left(\hat{\theta} \geq \theta_{+}\right)=\alpha / 2$.

Asymmetric distributions: Central (equal tail) Cl

A $100(1-\alpha) \%$ central Cl is $\left[\theta_{-}, \theta_{+}\right]$such that $P\left(\hat{\theta} \leq \theta_{-}\right)=P\left(\hat{\theta} \geq \theta_{+}\right)=\alpha / 2$.
Only one equal-tail Cl is possible for a given α.
The central Cl is the sensible choice in most cases.

Asymmetric distributions: Central (equal tail) CI

A $100(1-\alpha) \%$ central Cl is $\left[\theta_{-}, \theta_{+}\right]$such that $P\left(\hat{\theta} \leq \theta_{-}\right)=P\left(\hat{\theta} \geq \theta_{+}\right)=\alpha / 2$.
Only one equal-tail Cl is possible for a given α.
The central Cl is the sensible choice in most cases.

In our specific Gaussian-mixture example, the 50% central Cl encloses the mean, median, and mode of the distribution.

Verify: $P($ left $)=P($ right $)=50 / 2=25 \%$.
Central Cl width for this example: $0.53+0.68=1.21$.

Asymmetric distributions: Central (equal tail) CI

A $100(1-\alpha) \%$ central Cl is $\left[\theta_{-}, \theta_{+}\right]$such that $P\left(\hat{\theta} \leq \theta_{-}\right)=P\left(\hat{\theta} \geq \theta_{+}\right)=\alpha / 2$.
Only one equal-tail Cl is possible for a given α.
The central Cl is the sensible choice in most cases.

In our specific Gaussian-mixture example, the 50% central Cl encloses the mean, median, and mode of the distribution.

Verify: $P($ left $)=P($ right $)=50 / 2=25 \%$.
Central Cl width for this example: $0.53+0.68=1.21$.
What happens to the central Cl as its width shrinks?

Asymmetric distributions: Shortest Cl

The shortest $100(1-\alpha) \% \mathrm{Cl}$ is $\left[\theta_{-}, \theta_{+}\right]$such that, for that $\alpha, \theta_{+}-\theta_{-}$is minimum.

Asymmetric distributions: Shortest Cl

The shortest $100(1-\alpha) \% \mathrm{Cl}$ is $\left[\theta_{-}, \theta_{+}\right]$such that, for that $\alpha, \theta_{+}-\theta_{-}$is minimum.
Only one shortest Cl is possible for a given α.
The shortest Cl picks out the densest (highest total probability per unit width) part of the distribution.

Asymmetric distributions: Shortest Cl

The shortest $100(1-\alpha) \% \mathrm{Cl}$ is $\left[\theta_{-}, \theta_{+}\right]$such that, for that $\alpha, \theta_{+}-\theta_{-}$is minimum.
Only one shortest Cl is possible for a given α.
The shortest Cl picks out the densest (highest total probability per unit width) part of the distribution.

Useful for multimodal distributions such as this example - selects the global maximum of the distribution. Useful in multidimensional space.

Asymmetric distributions: Shortest Cl

The shortest $100(1-\alpha) \% \mathrm{Cl}$ is $\left[\theta_{-}, \theta_{+}\right]$such that, for that $\alpha, \theta_{+}-\theta_{-}$is minimum.
Only one shortest Cl is possible for a given α.
The shortest CI picks out the densest (highest total probability per unit width) part of the distribution.

Useful for multimodal distributions such as this example - selects the global maximum of the distribution. Useful in multidimensional space.

Bayesian estimation: likelihood \rightarrow posterior probability distribution for the parameter. The shortest Cl is called the highest posterior density (HPD) interval.

Asymmetric distributions: Shortest Cl

The shortest $100(1-\alpha) \% \mathrm{Cl}$ is $\left[\theta_{-}, \theta_{+}\right]$such that, for that $\alpha, \theta_{+}-\theta_{-}$is minimum.
Only one shortest Cl is possible for a given α.
The shortest Cl picks out the densest (highest total probability per unit width) part of the distribution.

Useful for multimodal distributions such as this example - selects the global maximum of the distribution. Useful in multidimensional space.

Bayesian estimation: likelihood \rightarrow posterior probability distribution for the parameter. The shortest Cl is called the highest posterior density (HPD) interval.

Verify: $P($ left $)+P($ right $) \approx 0.45+(1-0.95)=50 \%$.
Shortest Cl width for this example: $0.85-0.09=0.76$.

Asymmetric distributions: Shortest Cl

The shortest $100(1-\alpha) \% \mathrm{Cl}$ is $\left[\theta_{-}, \theta_{+}\right]$such that, for that $\alpha, \theta_{+}-\theta_{-}$is minimum.
Only one shortest Cl is possible for a given α.
The shortest Cl picks out the densest (highest total probability per unit width) part of the distribution.

Useful for multimodal distributions such as this example - selects the global maximum of the distribution. Useful in multidimensional space.

Bayesian estimation: likelihood \rightarrow posterior probability distribution for the parameter. The shortest Cl is called the highest posterior density (HPD) interval.

Verify: $P($ left $)+P($ right $) \approx 0.45+(1-0.95)=50 \%$.
Shortest Cl width for this example: $0.85-0.09=0.76$.
What happens to the central Cl as its width shrinks?

Asymmetric distributions: Shortest Cl

The shortest $100(1-\alpha) \% \mathrm{Cl}$ is $\left[\theta_{-}, \theta_{+}\right]$such that, for that $\alpha, \theta_{+}-\theta_{-}$is minimum.
Only one shortest Cl is possible for a given α.
The shortest Cl picks out the densest (highest total probability per unit width) part of the distribution.

Useful for multimodal distributions such as this example - selects the global maximum of the distribution. Useful in multidimensional space.

Bayesian estimation: likelihood \rightarrow posterior probability distribution for the parameter. The shortest Cl is called the highest posterior density (HPD) interval.

Verify: $P($ left $)+P($ right $) \approx 0.45+(1-0.95)=50 \%$.
Shortest Cl width for this example: $0.85-0.09=0.76$.
What happens to the central Cl as its width shrinks?

Caution!

Sharply peaked, close local maxima - shortest CI may be composed of disconnected regions.

Asymmetric distributions: Symmetric CI

Unlike the other two types of Cl , symmetric Cls are not unique. They depend on the choice of centre.

Asymmetric distributions: Symmetric Cl

Unlike the other two types of Cl , symmetric Cls are not unique. They depend on the choice of centre.
One possible choice is the mean value. In MLE, the more obvious choice is the ML estimate, which is also the mode of the likelihood function.

Asymmetric distributions: Symmetric Cl

Unlike the other two types of Cl , symmetric Cl are not unique. They depend on the choice of centre.
One possible choice is the mean value. In MLE, the more obvious choice is the ML estimate, which is also the mode of the likelihood function.
A symmetric Cl around a point estimate $\hat{\theta}_{0}$ is $\left[\theta_{-}, \theta_{+}\right]$such that $P\left(\theta_{-} \leq \hat{\theta} \leq \theta_{+}\right)=1-\alpha$ and $\hat{\theta}_{0}-\theta_{-}=\theta_{+}-\hat{\theta}_{0}$ (equal width on either side of $\hat{\theta}_{0}$).

Asymmetric distributions: Symmetric CI

Unlike the other two types of Cl , symmetric Cls are not unique. They depend on the choice of centre.
One possible choice is the mean value. In MLE, the more obvious choice is the ML estimate, which is also the mode of the likelihood function.
A symmetric Cl around a point estimate $\hat{\theta}_{0}$ is $\left[\theta_{-}, \theta_{+}\right]$such that $P\left(\theta_{-} \leq \hat{\theta} \leq \theta_{+}\right)=1-\alpha$ and $\hat{\theta}_{0}-\theta_{-}=\theta_{+}-\hat{\theta}_{0}$ (equal width on either side of $\hat{\theta}_{0}$).

Verify: $P($ left $)+P($ right $) \approx 0.45+(1-0.95)=50 \%$.
Symmetric Cl width for this example: $0.88-0.11=0.77$.

Asymmetric distributions: Symmetric CI

Unlike the other two types of CI , symmetric Cls are not unique. They depend on the choice of centre.
One possible choice is the mean value. In MLE, the more obvious choice is the ML estimate, which is also the mode of the likelihood function.
A symmetric Cl around a point estimate $\hat{\theta}_{0}$ is $\left[\theta_{-}, \theta_{+}\right]$such that $P\left(\theta_{-} \leq \hat{\theta} \leq \theta_{+}\right)=1-\alpha$ and $\hat{\theta}_{0}-\theta_{-}=\theta_{+}-\hat{\theta}_{0}$ (equal width on either side of $\hat{\theta}_{0}$).

Verify: $P($ left $)+P($ right $) \approx 0.45+(1-0.95)=50 \%$. Symmetric Cl width for this example: $0.88-0.11=0.77$.

Caution!

Multimodal, (almost-)symmetric functions - MLE might pick one peak over the other!
Highly asymmetric functions: if centre of the Cl is very far from median, not possible to define a symmetric Cl for small α (also in this example!).

Example of an asymmetric distribution: Binomial

Flip a coin $N=5$ times. Observe: 1 head, 4 tails.
What is P (Head)? What is the 95% central Cl on this estimate?

Example of an asymmetric distribution: Binomial

Flip a coin $N=5$ times. Observe: 1 head, 4 tails.
What is P (Head)? What is the 95% central Cl on this estimate?
Once again, $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$. Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$.

Example of an asymmetric distribution: Binomial

Flip a coin $N=5$ times. Observe: 1 head, 4 tails.
What is P (Head)? What is the 95% central Cl on this estimate?
Once again, $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$. Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$.
$\hat{\theta}_{\mathrm{MLE}}=\frac{k}{N}=0.2 \quad \hat{\sigma}\left(\hat{\theta}_{\mathrm{MLE}}\right)=\sqrt{\frac{\hat{\theta}_{\mathrm{MLE}}\left(1-\hat{\theta}_{\mathrm{MLE}}\right)}{N}} \approx 0.179$, but not as useful in this case.

Example of an asymmetric distribution: Binomial

Flip a coin $N=5$ times. Observe: 1 head, 4 tails.
What is P (Head)? What is the 95% central CI on this estimate?
Once again, $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$. Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$.
$\hat{\theta}_{\mathrm{MLE}}=\frac{k}{N}=0.2 \quad \hat{\sigma}\left(\hat{\theta}_{\mathrm{MLE}}\right)=\sqrt{\frac{\hat{\theta}_{\mathrm{MLE}}\left(1-\hat{\theta}_{\mathrm{MLE}}\right)}{N}} \approx 0.179$, but not as useful in this case.

Can't use Gaussian approximation (e.g., mode close to zero, Gaussian will result in non-negligible probability for negative values, unphysical!).

Example of an asymmetric distribution: Binomial

Flip a coin $N=5$ times. Observe: 1 head, 4 tails.
What is P (Head)? What is the 95% central CI on this estimate?
Once again, $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$. Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$.
$\hat{\theta}_{\mathrm{MLE}}=\frac{k}{N}=0.2 \quad \hat{\sigma}\left(\hat{\theta}_{\mathrm{MLE}}\right)=\sqrt{\frac{\hat{\theta}_{\mathrm{MLE}}\left(1-\hat{\theta}_{\mathrm{MLE}}\right)}{N}} \approx 0.179$, but not as useful in this case.

Can't use Gaussian approximation (e.g., mode close to zero, Gaussian will result in non-negligible probability for negative values, unphysical!).

To compute CI , need to know CDF of normalised version of $\mathscr{L}(\theta)$ - does it resemble any standard PDF?

Example of an asymmetric distribution: Binomial

Flip a coin $N=5$ times. Observe: 1 head, 4 tails.
What is P (Head)? What is the 95% central CI on this estimate?
Once again, $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$. Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$.
$\hat{\theta}_{\mathrm{MLE}}=\frac{k}{N}=0.2 \hat{\sigma}\left(\hat{\theta}_{\mathrm{MLE}}\right)=\sqrt{\frac{\hat{\theta}_{\mathrm{MLE}}\left(1-\hat{\theta}_{\mathrm{MLE}}\right)}{N}} \approx 0.179$, but not as useful in this case.

Can't use Gaussian approximation (e.g., mode close to zero, Gaussian will result in non-negligible probability for negative values, unphysical!).

To compute CI , need to know CDF of normalised version of $\mathscr{L}(\theta)$ - does it resemble any standard PDF?

Beta distribution: $\operatorname{Beta}(\alpha, \beta) \propto x^{\alpha-1}(1-x)^{\beta-1}$.
By comparison, $\alpha=k+1=2, \beta=N-k+1=5$.

Example of an asymmetric distribution: Binomial

Flip a coin $N=5$ times. Observe: 1 head, 4 tails.
What is P (Head)? What is the 95% central CI on this estimate?
Once again, $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$. Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$.
$\hat{\theta}_{\mathrm{MLE}}=\frac{k}{N}=0.2 \quad \hat{\sigma}\left(\hat{\theta}_{\mathrm{MLE}}\right)=\sqrt{\frac{\hat{\theta}_{\mathrm{MLE}}\left(1-\hat{\theta}_{\mathrm{MLE}}\right)}{N}} \approx 0.179$, but not as useful in this case.

Can't use Gaussian approximation (e.g., mode close to zero, Gaussian will result in non-negligible probability for negative values, unphysical!).

To compute CI , need to know CDF of normalised version of $\mathscr{L}(\theta)$ - does it resemble any standard PDF?

Beta distribution: $\operatorname{Beta}(\alpha, \beta) \propto x^{\alpha-1}(1-x)^{\beta-1}$.
By comparison, $\alpha=k+1=2, \beta=N-k+1=5$.
Python to the rescue:

```
scipy.stats.beta.ppf(0.025) = 0.043 #lower bound of interval
scipy.stats.beta.ppf(1-0.025) = 0.641 #upper bound of interval
```


Example of an asymmetric distribution: Binomial

Flip a coin $N=5$ times. Observe: 1 head, 4 tails.
What is P (Head)? What is the 95% central CI on this estimate?
Once again, $\mathbb{E}[k]=N \theta$, and $\operatorname{Var}[k]=N \theta(1-\theta)$. Likelihood: $\mathscr{L}(\theta) \propto \theta^{k}(1-\theta)^{N-k}$.
$\hat{\theta}_{\mathrm{MLE}}=\frac{k}{N}=0.2 \quad \hat{\sigma}\left(\hat{\theta}_{\mathrm{MLE}}\right)=\sqrt{\frac{\hat{\theta}_{\mathrm{MLE}}\left(1-\hat{\theta}_{\mathrm{MLE}}\right)}{N}} \approx 0.179$, but not as useful in this case.

Can't use Gaussian approximation (e.g., mode close to zero, Gaussian will result in non-negligible probability for negative values, unphysical!).

To compute CI , need to know CDF of normalised version of $\mathscr{L}(\theta)$ - does it resemble any standard PDF?

Beta distribution: $\operatorname{Beta}(\alpha, \beta) \propto x^{\alpha-1}(1-x)^{\beta-1}$.
By comparison, $\alpha=k+1=2, \beta=N-k+1=5$.
Python to the rescue:

```
scipy.stats.beta.ppf(0.025) = 0.043 #lower bound of interval
scipy.stats.beta.ppf(1-0.025) = 0.641 #upper bound of interval
```


$$
95 \% \mathrm{Cl}:[0.043,0.641] .
$$

