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Review

The Empirical Rule for normal distributions, the z-score.

Student’s t-distribution, the t-score.

Interval estimates: the confidence interval.

Statistics for Astronomers: Lecture 9, 2020.10.28

Prof. Sundar Srinivasan - IRyA/UNAM 2



Confidence interval: frequentist interpretation

The true parameter value θ is fixed. Repeated observations generate a distribution pΘ̂(θ̂) of point estimates Θ̂ for θ.

Use this distribution to constrain the true value – interval estimate. Most common interval estimate: confidence interval (CI).

“The 100(1− α)% CI (for θ) is [a, b]” =⇒ P(a ≤ Θ̂ ≤ b) =

b∫
a

pΘ̂(θ̂) d θ̂ = 1− α

=⇒ P(Θ̂ < a) + P(Θ̂ > b) = α
(Note: definitions don’t contain θ, only its estimates θ̂!)

If number of parameters p > 1, confidence set or confidence region.

Frequentist interpretation of CI convoluted! Bayesian “credible interval” more straightforward.

“95% CI of [−1.3, 1.3]” = fixed (unknown) θ such that we observe Θ̂ outside [−1.3, 1.3] ≤ 5% of the time.

Equivalently, if CI computed N � 1 times using the same procedure, 95% of CIs will contain true value.

Since θ fixed, a single CI will either trap it (probability = 1) or it won’t (probability = 0).

“A 95% CI (for θ)” = “fraction of CIs generated in same fashion that trap true value θ is 0.95”.
6= “the probability that a single CI traps the true value is 0.95”.

Note: “A 95% CI” and not “the 95% CI” – for symmetric distributions, less ambiguous.

Perform an experiment each day, trap a parameter θj in a 95% CI on the jth day. As long as you use the same procedure to
construct the CI, it doesn’t even have to be the same experiment!!. In the long run, 95% of the intervals you constructed would
have trapped the true value of whatever parameter you were exploring.

BUT P(parameter trapped in today’s CI) ∈ {0, 1}.
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General procedure to compute confidence intervals

A CI makes a probabilistic statement about the likely range of point estimates for a parameter.
To construct CIs, we need the probability distribution of the point estimates.

In practice, depending on the problem, it might be difficult or impossible to obtain the full
distribution. In such a case, we can estimate the variance and then use, e.g., the Chebyshev
Inequality to compute an approximate CI.

Example: If θ̂0 is the mean of estimates for θ, and σ2(θ̂0) the variance around this mean,

a 100(1− α)% CI is such that, for some `α/2, P

(∣∣∣∣∣ θ − θ̂0

σ(θ̂0)

∣∣∣∣∣ ≥ `α/2

)
≤ α.

Comparing this to the Chebyshev Inequality: P

(∣∣∣∣∣ θ − θ̂0

σ(θ̂0)

∣∣∣∣∣ ≥ k

)
≤

1

k2
,

we get an approximate 100(1− α)% CI if we choose `α/2 = 1/
√
α.

The actual probability enclosed by this CI will be smaller than α
since the inequality provides an upper bound.

Example of a point estimate: MLE. Find θ̂MLE such that L (θ) is maximum. If L (θ) known for
all values allowed for θ, CI computation straightforward. If not, use the CRLB to at least find
lower bound on variance. Let’s look at some examples for CIs using MLE.
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Terminology

Consider X drawn from an unknown distribution with mean µ and variance σ2.

Perform a trial N times, obtain values {xi} (i = 1, · · · ,N).

Uncertainty associated with
each data point Xi : σ (“1σ uncertainty on a single observation”).

sample mean X , from Central Limit Theorem: σ/
√
N (“1σ uncertainty on sample mean”).

In this context, “1σ” is short for “one standard deviation”, not to the literal value σ.

In this particular example, the “1σ uncertainty” happens to have the value σ for a single

observation and the value σ/
√
N for the sample mean.

These results are true for any distribution. If σ unknown, estimate from data.
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Example: CI for mean of normal with known variance
Case 1: X ∼ N (µ, σ2). Single observation X . MLE for µ:

µ̂MLE = X .

L (µ) =
1

√
2πσ

exp

[
−

1

2

(
X − µ
σ

)2]
=

1
√

2πσ
exp

[
−

1

2

(
µ− X

σ

)2]

=⇒ L (µ) ∝N (µ̂MLE, σ
2(µ̂MLE)), with µ̂MLE = X and σ(µ̂MLE) = σ.

Case 2: X ∼ N (µ, σ2). N observations {Xi} (i = 1, · · · ,N). MLE for µ:

µ̂MLE = X .

L (µ) =

N∏
i=1

1
√

2πσ
exp

[
−

1

2

(
Xi − µ
σ

)2]
=

(
1

√
2πσ

)N

exp

[
−

1

2

N∑
i=1

(
Xi − µ
σ

)2]
.

Noting

N∑
i=1

(xi − µ)2 =

N∑
i=1

(xi − X )2 +

N∑
i=1

(X − µ)2 = N

(
1

N

N∑
i=1

(xi − X )2 + (X − µ)2

)
,

L (µ) ∝ exp

[
−

N

2

(
X − µ
σ

)2]
= exp

[
−

1

2

(
µ− X

σ/
√
N

)2]

=⇒ L (µ) ∝N (µ̂MLE, σ
2(µ̂MLE)), where µ̂MLE = X and σ(µ̂MLE) = σ/

√
N.

2σ CI (= 95% CI for Gaussian) centered at µ̂MLE with variance σ2(µ̂MLE) :
[
µ̂MLE − 2σ(µ̂MLE), µ̂MLE + 2σ(µ̂MLE)

]
.

=⇒ Case 1: [X − 2σ, X + 2σ]. Case 2:
[

X − 2
σ
√
N
, X + 2

σ
√
N

]
.
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Example: CI for Gaussian uncertainties

A single measurement of the mass of a rock results in a value of 0.2 kg.

The 1σ measurement uncertainty due to the resolution of the mass measuring device is 0.05 kg.

Construct a 99.7% CI on the true mass of the rock.

Using the Empirical Rule, 99.7% corresponds approx. to 3σ.

90.7% CI = [µ
∧
− 3σ, µ

∧
+ 3σ] = [0.2− 0.15, 0.2 + 0.15] = [0.05, 0.35] kg.

“The mass of the rock is (0.2± 0.15) kg (3σ)”.

Construct a 82% CI on the true mass of the rock.

100(1− α) = 82 =⇒ α = 0.18.

scipy.stats.norm.ppf(0.18/2) = -1.341

scipy.stats.norm.ppf(1-0.18/2) = 1.341 #“1.341 sigma confidence interval”

CI: [µ
∧
− 1.341σ, µ

∧
+ 1.341σ] = [0.2− 0.067, 0.2 + 0.067] ≈ [0.133, 0.267] kg.

What confidence is associated with the interval [0.00545, 0.3946] kg?

C
o

d
e

fo
r

p
lo

t
a

va
il
a

b
le

h
er

e.

We just said something probabilistic about a true parameter with only one data point!

Assumptions: uncertainties are Gaussian, we know the standard deviation.
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Example: CI for Gaussian uncertainties

A single measurement of the mass of a rock results in a value of 0.2 kg.

The 1σ measurement uncertainty due to the resolution of the mass measuring device is 0.05 kg.

Construct a 99.7% CI on the true mass of the rock.

Using the Empirical Rule, 99.7% corresponds approx. to 3σ.

90.7% CI = [µ
∧
− 3σ, µ

∧
+ 3σ] = [0.2− 0.15, 0.2 + 0.15] = [0.05, 0.35] kg.

“The mass of the rock is (0.2± 0.15) kg (3σ)”.

Construct a 82% CI on the true mass of the rock.

100(1− α) = 82 =⇒ α = 0.18.

scipy.stats.norm.ppf(0.18/2) = -1.341

scipy.stats.norm.ppf(1-0.18/2) = 1.341 #“1.341 sigma confidence interval”

CI: [µ
∧
− 1.341σ, µ

∧
+ 1.341σ] = [0.2− 0.067, 0.2 + 0.067] ≈ [0.133, 0.267] kg.

What confidence is associated with the interval [0.00545, 0.3946] kg?
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er

e.

We just said something probabilistic about a true parameter with only one data point!

Assumptions: uncertainties are Gaussian, we know the standard deviation.
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Example: CI for Gaussian uncertainties with unknown σ

Three measurements of the mass of a rock results in values of 0.2, 0.35, and 0.25 kg.

As usual, µ̂ = x .

σ unknown, estd. from data =⇒ functional form of L (µ): Student’s t-distribution around µ̂.

m = np.array([0.2, 0.35, 0.25]); m mean = m.mean(); m std = m.std(ddof = 1)

µ
∧

= x = 0.267 kg. #dof = N − 1 = 2. σ
∧

= 0.076 kg (Bessel-corrected).

Use methods in scipy.stats.t for the following:

Construct a 95% CI on the true mass of the rock.

Find value of t (Studentised) for which P(|T | ≤ t) = 0.95.

k95 = t.ppf((1-0.95)/2, df = 2) #number of std dev from mean

95% CI = [µ
∧
− k95 · σ

∧
, µ
∧

+ k95 · σ
∧

]

= [0.267− 4.303× 0.076, 0.267 + 4.303× 0.076] = [0.06, 0.59] kg.

In general, 95% CI for Student’s t wider than 95% CI for Gaussian.

What confidence is associated with the interval [−0.0484, 0.5824] kg?
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See Section 7.2 in Barlow for an interpretation of negative values in the CI in such cases!
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Example: CI for (normal approx of) Binomial distribution

Flip a coin N = 100 times. Observe: 75 heads, 25 tails.

What is P(Head)? What is the 95% CI for this estimate?

Recall: for a Binomial distribution with N trials and k successes, if θ = P(1 success),
E[k] = Nθ, and Var[k] = Nθ(1− θ).

Likelihood: L (θ) ∝ θk (1− θ)N−k – Beta distribution.

MLE (See Lecture 6, Slide 4): θ̂MLE =
k

N
= 0.75.

Var[θ̂MLE] = Var
[ k

N

]
=

1

N2
Var[k] =

θ̂MLE(1− θ̂MLE)

N
≈ 0.0019

=⇒ σ̂(θ̂MLE) ≈ 0.043.

asymmetric function, so CI needs to be constructed with care.
However, this problem satisfies conditions for a Gaussian approximation:

L (θ) ≈N
(
θ̂MLE, σ

2
∧

(θ̂MLE)
)

= N (0.75, (0.043)2). C
o

d
e

fo
r

p
lo

t
a

va
il
a

b
le

h
er

e.

A 95% CI for this problem is also a 2σ CI: [0.75− 2× 0.043, 0.75 + 2× 0.043] ≈ [0.66, 0.84].
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CIs for asymmetric distributions

Example: L (θ) = f N (µ1, σ
2
1) + (1− f )N (µ2, σ

2
2) with 0 < f < 1 (mixture of Gaussians).

Highly asymmetric: mean 6= median 6= mode!

Three different ways to specify a CI:

1 Central (“equal tail”) CI: equal areas rejected on
either side (therefore associated with median).

2 Shortest CI: interval chosen closest to region of
highest density (therefore usually contains mode).

3 Symmetric CI: upper and lower boundaries
equidistant from location parameter (in this case,
the MLE, = the mode).

Let’s construct 50% CIs of each type...

C
o

d
e
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r

p
lo
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er

e.
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Asymmetric distributions: Central (equal tail) CI

A 100(1− α)% central CI is [θ−, θ+] such that P(θ̂ ≤ θ−) = P(θ̂ ≥ θ+) = α/2.

Only one equal-tail CI is possible for a given α.

The central CI is the sensible choice in most cases.

In our specific Gaussian-mixture example,
the 50% central CI encloses the mean, median, and mode
of the distribution.

Verify: P(left) = P(right) = 50/2 = 25%.

Central CI width for this example: 0.53 + 0.68 = 1.21.

What happens to the central CI as its width shrinks?
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Asymmetric distributions: Shortest CI

The shortest 100(1− α)% CI is [θ−, θ+] such that, for that α, θ+ − θ− is minimum.

Only one shortest CI is possible for a given α.

The shortest CI picks out the densest (highest total probability per unit width) part of the
distribution.

Useful for multimodal distributions such as this example – selects the global maximum of the
distribution. Useful in multidimensional space.

Bayesian estimation: likelihood → posterior probability
distribution for the parameter. The shortest CI is called
the highest posterior density (HPD) interval.

Verify: P(left) + P(right) ≈ 0.45 + (1− 0.95) = 50%.

Shortest CI width for this example: 0.85− 0.09 = 0.76.

What happens to the central CI as its width shrinks?

Caution!

Sharply peaked, close local maxima – shortest CI may be
composed of disconnected regions. C

o
d

e
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Asymmetric distributions: Symmetric CI

Unlike the other two types of CI, symmetric CIs are not unique. They depend on the choice of
centre.

One possible choice is the mean value. In MLE, the more obvious choice is the ML estimate,
which is also the mode of the likelihood function.

A symmetric CI around a point estimate θ̂0 is [θ−, θ+] such that P(θ− ≤ θ̂ ≤ θ+) = 1− α
and θ̂0 − θ− = θ+ − θ̂0 (equal width on either side of θ̂0).

Verify: P(left) + P(right) ≈ 0.45 + (1− 0.95) = 50%.

Symmetric CI width for this example: 0.88− 0.11 = 0.77.

Caution!

Multimodal, (almost-)symmetric functions – MLE might
pick one peak over the other!

Highly asymmetric functions: if centre of the CI is very
far from median, not possible to define a symmetric CI
for small α (also in this example!).
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Example of an asymmetric distribution: Binomial

Flip a coin N = 5 times. Observe: 1 head, 4 tails.

What is P(Head)? What is the 95% central CI on this estimate?

Once again, E[k] = Nθ, and Var[k] = Nθ(1− θ). Likelihood: L (θ) ∝ θk (1− θ)N−k .

θ̂MLE =
k

N
= 0.2 σ̂(θ̂MLE) =

√
θ̂MLE(1− θ̂MLE)

N
≈ 0.179, but not as useful in this case.

Can’t use Gaussian approximation (e.g., mode close to zero, Gaussian will result
in non-negligible probability for negative values, unphysical!).

To compute CI, need to know CDF of normalised version of L (θ) – does it
resemble any standard PDF?

Beta distribution: Beta(α, β) ∝ Xα−1(1− X )β−1.

By comparison, α = k + 1 = 2, β = N − k + 1 = 5.

Python to the rescue:

scipy.stats.beta.ppf(0.025) = 0.043 #lower bound of interval

scipy.stats.beta.ppf(1-0.025) = 0.641 #upper bound of interval C
o

d
e

fo
r

p
lo

t
a

va
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a

b
le

h
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e.

95% CI: [0.043, 0.641].
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θ̂MLE =
k

N
= 0.2 σ̂(θ̂MLE) =

√
θ̂MLE(1− θ̂MLE)

N
≈ 0.179, but not as useful in this case.

Can’t use Gaussian approximation (e.g., mode close to zero, Gaussian will result
in non-negligible probability for negative values, unphysical!).

To compute CI, need to know CDF of normalised version of L (θ) – does it
resemble any standard PDF?

Beta distribution: Beta(α, β) ∝ Xα−1(1− X )β−1.

By comparison, α = k + 1 = 2, β = N − k + 1 = 5.

Python to the rescue:

scipy.stats.beta.ppf(0.025) = 0.043 #lower bound of interval

scipy.stats.beta.ppf(1-0.025) = 0.641 #upper bound of interval C
o

d
e

fo
r

p
lo

t
a

va
il
a

b
le

h
er

e.

95% CI: [0.043, 0.641].
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