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Review

Confidence intervals

Asymmetric CIs: central, symmetric, shortest.
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The empirical distribution function (CDF from sample)

Given a dataset of N points Xi (i = 1, 2, · · · ,N) ∼ FX (X ) (unknown CDF),

Empirical distribution: F
∧

N(X ) =
1

N

N∑
i=1

IXi≤X (X ), with IXi≤X (X ) =

{
1 Xi ≤ X
0 otherwise

Probability mass increases by 1/N at each sample point.

For fixed X and for a given i , IXi≤X (X ) is a Bernoulli variable.

P(“success”) = P(Xi ≤ X ) = E
[
IXi≤X (X )

]
= FX (X ).

Variance: FX (X )
(

1− FX (X )
)

.

F
∧

N(X ) = mean of N Bernoulli variables=⇒ a binomial variable.

E
[
F
∧

N(X )
]

= FX (X ) (ECDF = unbiased estimator of CDF).

Var
[
F
∧

N(X )
]

=
F
∧

N(X )
(

1− F
∧

N(X )
)

N
→ 0 as N →∞

(The ECDF is a consistent estimator of the CDF).
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Empirical distribution function (contd.)

Draw N = [10, 100, 1000] values from the standard normal. Compare F
∧

N(X ) to Φ(X ).

In Python: statsmodels.distributions.empirical distribution.ECDF.
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Resampling: The Bootstrap
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Why resampling?

Sometimes we only have a (small) sample from an unknown distribution.

The sample is the best (only) information you have about the population.

Performing inference on this sample – point estimates, interval estimates, confidence intervals?

Resampling – using multiple subsets of the existing data to infer the underlying distribution.

Use the data alone – an example of nonparametric statistics/inference.

Some resampling methods: jackknife, bootstrap, cross-validation.
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Bootstrap

Introduction: here and here. (“Wild About Statistics”, Chris Wild, University of Auckland.)

Sampling (from dataset) with replacement.

No assumptions about the underlying distribution! Preserves characteristics of original data,
including selection effects such as truncation/censoring.

Can estimate sampling distribution of almost any statistic. Inference, hypothesis testing.

Maximum # distinct bootstrap samples from an N-point dataset: Bmax =

(
2N − 1

N

)
.

Increasing the number of bootstrap samples cannot increase the amount of information in the
original data; but reduces effects of random sampling errors which can arise from a bootstrap
procedure itself (suggested: B & 50).

Useful when one of the following is unknown: underlying distribution, statistical properties (e.g.,
machine learning classification, principal component analysis), or standard way to calculate
(e.g., 95% CI on correlation coefficient between two observables, or on slope/intercept of
regression line).

Requires: (a) iid sample (b) finite population variance (heavy-tailed distributions).

Statistics for Astronomers: Lecture 11, 2020.11.17

Prof. Sundar Srinivasan - IRyA/UNAM 7

https://www.youtube.com/watch?v=iN-77YVqLDw
https://www.youtube.com/watch?v=djsZg_iZNT0


Bootstrap

Introduction: here and here. (“Wild About Statistics”, Chris Wild, University of Auckland.)

Sampling (from dataset) with replacement.

No assumptions about the underlying distribution! Preserves characteristics of original data,
including selection effects such as truncation/censoring.

Can estimate sampling distribution of almost any statistic. Inference, hypothesis testing.

Maximum # distinct bootstrap samples from an N-point dataset: Bmax =

(
2N − 1

N

)
.

Increasing the number of bootstrap samples cannot increase the amount of information in the
original data; but reduces effects of random sampling errors which can arise from a bootstrap
procedure itself (suggested: B & 50).

Useful when one of the following is unknown: underlying distribution, statistical properties (e.g.,
machine learning classification, principal component analysis), or standard way to calculate
(e.g., 95% CI on correlation coefficient between two observables, or on slope/intercept of
regression line).

Requires: (a) iid sample (b) finite population variance (heavy-tailed distributions).

Statistics for Astronomers: Lecture 11, 2020.11.17

Prof. Sundar Srinivasan - IRyA/UNAM 7

https://www.youtube.com/watch?v=iN-77YVqLDw
https://www.youtube.com/watch?v=djsZg_iZNT0


Bootstrap

Introduction: here and here. (“Wild About Statistics”, Chris Wild, University of Auckland.)

Sampling (from dataset) with replacement.

No assumptions about the underlying distribution! Preserves characteristics of original data,
including selection effects such as truncation/censoring.

Can estimate sampling distribution of almost any statistic. Inference, hypothesis testing.

Maximum # distinct bootstrap samples from an N-point dataset: Bmax =

(
2N − 1

N

)
.

Increasing the number of bootstrap samples cannot increase the amount of information in the
original data; but reduces effects of random sampling errors which can arise from a bootstrap
procedure itself (suggested: B & 50).

Useful when one of the following is unknown: underlying distribution, statistical properties (e.g.,
machine learning classification, principal component analysis), or standard way to calculate
(e.g., 95% CI on correlation coefficient between two observables, or on slope/intercept of
regression line).

Requires: (a) iid sample (b) finite population variance (heavy-tailed distributions).

Statistics for Astronomers: Lecture 11, 2020.11.17

Prof. Sundar Srinivasan - IRyA/UNAM 7

https://www.youtube.com/watch?v=iN-77YVqLDw
https://www.youtube.com/watch?v=djsZg_iZNT0


Bootstrap

Introduction: here and here. (“Wild About Statistics”, Chris Wild, University of Auckland.)

Sampling (from dataset) with replacement.

No assumptions about the underlying distribution! Preserves characteristics of original data,
including selection effects such as truncation/censoring.

Can estimate sampling distribution of almost any statistic. Inference, hypothesis testing.

Maximum # distinct bootstrap samples from an N-point dataset: Bmax =

(
2N − 1

N

)
.

Increasing the number of bootstrap samples cannot increase the amount of information in the
original data; but reduces effects of random sampling errors which can arise from a bootstrap
procedure itself (suggested: B & 50).

Useful when one of the following is unknown: underlying distribution, statistical properties (e.g.,
machine learning classification, principal component analysis), or standard way to calculate
(e.g., 95% CI on correlation coefficient between two observables, or on slope/intercept of
regression line).

Requires: (a) iid sample (b) finite population variance (heavy-tailed distributions).

Statistics for Astronomers: Lecture 11, 2020.11.17

Prof. Sundar Srinivasan - IRyA/UNAM 7

https://www.youtube.com/watch?v=iN-77YVqLDw
https://www.youtube.com/watch?v=djsZg_iZNT0


Bootstrap

Introduction: here and here. (“Wild About Statistics”, Chris Wild, University of Auckland.)

Sampling (from dataset) with replacement.

No assumptions about the underlying distribution! Preserves characteristics of original data,
including selection effects such as truncation/censoring.

Can estimate sampling distribution of almost any statistic. Inference, hypothesis testing.

Maximum # distinct bootstrap samples from an N-point dataset: Bmax =

(
2N − 1

N

)
.

Increasing the number of bootstrap samples cannot increase the amount of information in the
original data; but reduces effects of random sampling errors which can arise from a bootstrap
procedure itself (suggested: B & 50).

Useful when one of the following is unknown: underlying distribution, statistical properties (e.g.,
machine learning classification, principal component analysis), or standard way to calculate
(e.g., 95% CI on correlation coefficient between two observables, or on slope/intercept of
regression line).

Requires: (a) iid sample (b) finite population variance (heavy-tailed distributions).

Statistics for Astronomers: Lecture 11, 2020.11.17

Prof. Sundar Srinivasan - IRyA/UNAM 7

https://www.youtube.com/watch?v=iN-77YVqLDw
https://www.youtube.com/watch?v=djsZg_iZNT0


Bootstrap

Introduction: here and here. (“Wild About Statistics”, Chris Wild, University of Auckland.)

Sampling (from dataset) with replacement.

No assumptions about the underlying distribution! Preserves characteristics of original data,
including selection effects such as truncation/censoring.

Can estimate sampling distribution of almost any statistic. Inference, hypothesis testing.

Maximum # distinct bootstrap samples from an N-point dataset: Bmax =

(
2N − 1

N

)
.

Increasing the number of bootstrap samples cannot increase the amount of information in the
original data; but reduces effects of random sampling errors which can arise from a bootstrap
procedure itself (suggested: B & 50).

Useful when one of the following is unknown: underlying distribution, statistical properties (e.g.,
machine learning classification, principal component analysis), or standard way to calculate
(e.g., 95% CI on correlation coefficient between two observables, or on slope/intercept of
regression line).

Requires: (a) iid sample (b) finite population variance (heavy-tailed distributions).

Statistics for Astronomers: Lecture 11, 2020.11.17

Prof. Sundar Srinivasan - IRyA/UNAM 7

https://www.youtube.com/watch?v=iN-77YVqLDw
https://www.youtube.com/watch?v=djsZg_iZNT0


Bootstrap

Introduction: here and here. (“Wild About Statistics”, Chris Wild, University of Auckland.)

Sampling (from dataset) with replacement.

No assumptions about the underlying distribution! Preserves characteristics of original data,
including selection effects such as truncation/censoring.

Can estimate sampling distribution of almost any statistic. Inference, hypothesis testing.

Maximum # distinct bootstrap samples from an N-point dataset: Bmax =

(
2N − 1

N

)
.

Increasing the number of bootstrap samples cannot increase the amount of information in the
original data; but reduces effects of random sampling errors which can arise from a bootstrap
procedure itself (suggested: B & 50).

Useful when one of the following is unknown: underlying distribution, statistical properties (e.g.,
machine learning classification, principal component analysis), or standard way to calculate
(e.g., 95% CI on correlation coefficient between two observables, or on slope/intercept of
regression line).

Requires: (a) iid sample (b) finite population variance (heavy-tailed distributions).

Statistics for Astronomers: Lecture 11, 2020.11.17

Prof. Sundar Srinivasan - IRyA/UNAM 7

https://www.youtube.com/watch?v=iN-77YVqLDw
https://www.youtube.com/watch?v=djsZg_iZNT0


Bootstrap: intuition

Let Xi (i = 1, · · · ,N) be iid variables drawn from an unknown distribution.

Suppose we want to compute a statistic θ̂ whose true value is θ.

Construct ECDF: F
∧

N(t) ≡ P(X ≤ t) =
1

N

N∑
i=1

IXi≤t =
(
Fraction of points ≤ t

)
.

Draw single value from F
∧

N(t):

each data point from original sample has probability
1

N
of being selected.

Generating a new size-N sample from ECDF ≡ resampling from original data with replacement.
(Xi are independent)

Procedure:

Generate B size-N samples from original dataset. (np.random.choice)

Compute θ̂ for each of the B samples.

Compute mean and variance of the B values of θ̂.

Central Limit Theorem: θ̂ ∼ N
(
E[θ̂],Var[θ̂]/B

)
. If θ̂ unbiased, θ̂ ∼ N

(
θ,Var[θ̂]/B

)
.
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Bootstrap example

You are given the following 10-point dataset:

[3.55875989, 6.02903508, 3.63978782, 5.1328453, 3.72245259, 4.21030686, 3.56197579, 4.96159969, 4.95257256, 4.43649666]

Your mission: use B = 100 bootstrap resamples on this dataset to plot the bootstrap resampled
distribution of the sample mean.

C
o

d
e

fo
r

p
lo

t
a

va
il
a

b
le

h
er

e.

From CLT, X ∼ N (µ, σ2/N) =⇒
mean(X ) = µ and σX = σ/

√
N.

Similarly, using the theoretical mean and
variance for the χ distribution, we can estimate
s and σs :

s =
σ

√
N − 1

χ(N − 1) =⇒

s̄ ≈ 0.99σ and σs ≈ 0.16σ.

Results from the simulation are consistent with
the above theoretical estimates.
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Bootstrap example, contd.

How to construct a 95% central CI for the same problem:

Resampling generates B values for the bootstrap mean and bootstrap standard deviation.

Generate ECDF for sample mean and sample standard deviation.

95% central CI on mean: [4.0, 4.9] 95% central CI on std: [0.4, 1.0]
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