

Statistics for Astronomers: Lecture 13, 2020.12.02

Prof. Sundar Srinivasan

IRyA/UNAM

Review

Hypothesis testing.
Null hypothesis, simple and composite hypotheses. One/two-tailed hypotheses.
Type I and II errors, p-value, statistical power.
Likelihood-ratio test.
One-sample Z- and t-tests.

2-sample tests: independent \& dependent/ paired samples

Independent samples $\operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]=\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right]$.

Dependent samples: $\left\{x_{1}, i\right\}$ and $\left\{x_{2, i}\right\}, i=1 \cdots N$, such that $x_{1, i}$ related to $x_{2, i}$.

$$
\operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]
$$

2-sample tests: independent \& dependent/ paired samples

Independent samples $\operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]=\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right]$.

Dependent samples: $\left\{x_{1}, i\right\}$ and $\left\{x_{2, i}\right\}, i=1 \cdots N$, such that $x_{1, i}$ related to $x_{2, i}$.

$$
\operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]=\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right]-2 \rho \sqrt{\operatorname{Var}\left[\overline{x_{1}}\right] \operatorname{Var}\left[\overline{x_{2}}\right]} .
$$

2-sample tests: independent \& dependent/paired samples

Independent samples $\operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]=\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right]$.

Dependent samples: $\left\{x_{1}, i\right\}$ and $\left\{x_{2, i}\right\}, i=1 \cdots N$, such that $x_{1, i}$ related to $x_{2, i}$.

$$
\operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]=\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right]-2 \rho \sqrt{\operatorname{Var}\left[\overline{x_{1}}\right] \operatorname{Var}\left[\overline{x_{2}}\right]} .
$$

$$
\text { If } \rho>0, \operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]<\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right] \text { and vice versa. }
$$

Also called paired/matched/correlated samples.

2-sample tests: independent \& dependent/paired samples

Independent samples $\operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]=\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right]$.

Dependent samples: $\left\{x_{1}, i\right\}$ and $\left\{x_{2, i}\right\}, i=1 \cdots N$, such that $x_{1, i}$ related to $x_{2, i}$.

$$
\begin{aligned}
& \operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]=\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right]-2 \rho \sqrt{\operatorname{Var}\left[\overline{x_{1}}\right] \operatorname{Var}\left[\overline{x_{2}}\right] .} \\
& \\
& \text { If } \rho>0, \operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]<\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right] \text { and vice versa. }
\end{aligned}
$$

Also called paired/matched/correlated samples.
Example: Flux in the pixels of an image before and after background subtraction.
$S_{2, i}=S_{1, i}-B_{i} \quad$ strong correlation, typically $\rho \approx 1$.
H_{0} : The mean flux per pixel is the same after background subtraction.
One way to reduce overall variance is to pair samples ("beating \sqrt{N} "; see Barlow).

2-sample tests: independent \& dependent/paired samples

Independent samples $\operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]=\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right]$.

Dependent samples: $\left\{x_{1, i}\right\}$ and $\left\{x_{2, i}\right\}, i=1 \cdots N$, such that $x_{1, i}$ related to $x_{2, i}$.

$$
\begin{aligned}
& \operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]=\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right]-2 \rho \sqrt{\operatorname{Var}\left[\overline{x_{1}}\right] \operatorname{Var}\left[\overline{x_{2}}\right] .} \\
& \text { If } \rho>0, \operatorname{Var}\left[\overline{x_{1}}-\overline{x_{2}}\right]<\operatorname{Var}\left[\overline{x_{1}}\right]+\operatorname{Var}\left[\overline{x_{2}}\right] \text { and vice versa. }
\end{aligned}
$$

Also called paired/matched/correlated samples.
Example: Flux in the pixels of an image before and after background subtraction.
$S_{2, i}=S_{1, i}-B_{i} \quad$ strong correlation, typically $\rho \approx 1$.
H_{0} : The mean flux per pixel is the same after background subtraction.
One way to reduce overall variance is to pair samples ("beating \sqrt{N} "; see Barlow).

Since we typically compute statistics in terms of the variance (e.g., by standardisation), the behaviour of the statistic changes for dependent samples.

As $\rho \uparrow, \operatorname{Var}[$ difference between means] \downarrow
For a fixed threshold/critical value, P (reject $H_{0} \mid H_{0}$ true) \downarrow, Type I error \downarrow, power \uparrow.

Two-sample Z-test

Independent samples $\left\{x_{1, i}\right\}$ (N_{1} points), $\left\{x_{2, i}\right\}$ (N_{2} points) with $X_{j} \sim \mathscr{N}\left(\mu_{j}, \sigma_{j}^{2}\right), j=1,2$. Question: is $\mu_{1}=\mu_{2}$? Convert to a one-sample problem:

Two-sample Z-test

Independent samples $\left\{x_{1, i}\right\}$ (N_{1} points), $\left\{x_{2, i}\right\}$ (N_{2} points) with $X_{j} \sim \mathscr{N}\left(\mu_{j}, \sigma_{j}^{2}\right), j=1,2$. Question: is $\mu_{1}=\mu_{2}$? Convert to a one-sample problem:

$$
\text { Define } Y=x_{1}-x_{2} \Longrightarrow \bar{y}=\overline{x_{1}}-\overline{x_{2}} ; \quad \mathbb{E}[\bar{y}]=
$$

Two-sample Z-test

Independent samples $\left\{x_{1, i}\right\}$ (N_{1} points), $\left\{x_{2, i}\right\}$ (N_{2} points) with $X_{j} \sim \mathscr{N}\left(\mu_{j}, \sigma_{j}^{2}\right), j=1,2$. Question: is $\mu_{1}=\mu_{2}$? Convert to a one-sample problem:

Define $Y=x_{1}-x_{2} \Longrightarrow \bar{y}=\overline{x_{1}}-\overline{x_{2}} ; \quad \mathbb{E}[\bar{y}]=\mu_{1}-\mu_{2} ; \quad \operatorname{Var}[\bar{y}]=$

Two-sample Z-test

Independent samples $\left\{x_{1, i}\right\}$ (N_{1} points), $\left\{x_{2, i}\right\}$ (N_{2} points) with $X_{j} \sim \mathscr{N}\left(\mu_{j}, \sigma_{j}^{2}\right), j=1,2$. Question: is $\mu_{1}=\mu_{2}$? Convert to a one-sample problem:

$$
\text { Define } Y=x_{1}-x_{2} \Longrightarrow \bar{y}=\overline{x_{1}}-\overline{x_{2}} ; \quad \mathbb{E}[\bar{y}]=\mu_{1}-\mu_{2} ; \quad \operatorname{Var}[\bar{y}]=\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}-2 \rho \frac{\sigma_{1} \sigma 2}{\sqrt{N_{1} N_{2}}} \text { (independence) }
$$

Two-sample Z-test

Independent samples $\left\{x_{1, i}\right\}$ (N_{1} points), $\left\{x_{2, i}\right\}$ (N_{2} points) with $X_{j} \sim \mathscr{N}\left(\mu_{j}, \sigma_{j}^{2}\right), j=1,2$. Question: is $\mu_{1}=\mu_{2}$? Convert to a one-sample problem:

$$
\begin{aligned}
& \text { Define } Y=x_{1}-x_{2} \Longrightarrow \bar{y}=\overline{x_{1}}-\overline{x_{2}} ; \quad \mathbb{E}[\bar{y}]=\mu_{1}-\mu_{2} ; \quad \operatorname{Var}[\bar{y}]=\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}-2 \rho \frac{\sigma_{1} \sigma_{2}}{\sqrt{N_{1} N_{2}}} \text { (independence) } \\
& \text { Standardise: } Z \equiv \frac{\bar{y}-\mathbb{E}[\bar{y}]}{\sqrt{\operatorname{Var}[\bar{y}]}}=\frac{\overline{x_{1}}-\overline{x_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}} \text { under } H_{0}: \mu_{1}=\mu_{2} .
\end{aligned}
$$

Two-sample Z-test

Independent samples $\left\{x_{1}, i\right\}$ (N_{1} points), $\left\{x_{2, i}\right\}$ (N_{2} points) with $X_{j} \sim \mathscr{N}\left(\mu_{j}, \sigma_{j}^{2}\right), j=1,2$. Question: is $\mu_{1}=\mu_{2}$? Convert to a one-sample problem:

Define $Y=x_{1}-x_{2} \Longrightarrow \bar{y}=\overline{x_{1}}-\overline{x_{2}} ; \quad \mathbb{E}[\bar{y}]=\mu_{1}-\mu_{2} ; \quad \operatorname{Var}[\bar{y}]=\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}-2 \rho \frac{\sigma_{1} \sigma z}{\sqrt{N_{1} N_{2}}}$ (independence)
Standardise: $Z \equiv \frac{\bar{y}-\mathbb{E}[\bar{y}]}{\sqrt{\operatorname{Var}[\bar{y}]}}=\frac{\overline{x_{1}}-\overline{x_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}}$ under $\mu_{0}: \mu_{1}=\mu_{2}$.

Example:

Sarah selects 50 AGN from a famous dataset of Type-I AGN and 45 AGN from her own dataset.
The population standard deviations of the SFRs of the samples are 1.8 and $0.95 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ respectively.
Sarah finds sample means of 2.2 and $3.2 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ respectively. At the 95% confidence level, does her dataset consist of AGN with systematically higher SFRs than those of the famous dataset?

Two-sample Z-test

Independent samples $\left\{x_{1}, i\right\}$ (N_{1} points), $\left\{x_{2, i}\right\}$ (N_{2} points) with $X_{j} \sim \mathscr{N}\left(\mu_{j}, \sigma_{j}^{2}\right), j=1,2$. Question: is $\mu_{1}=\mu_{2}$? Convert to a one-sample problem:

Define $Y=x_{1}-x_{2} \Longrightarrow \bar{y}=\overline{x_{1}}-\overline{x_{2}} ; \quad \mathbb{E}[\bar{y}]=\mu_{1}-\mu_{2} ; \quad \operatorname{Var}[\bar{y}]=\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}-2 \rho \frac{\sigma_{1} \sigma z}{\sqrt{N_{1} N_{2}}}$ (independence)
Standardise: $Z \equiv \frac{\bar{y}-\mathbb{E}[\bar{y}]}{\sqrt{\operatorname{Var}[\bar{y}]}}=\frac{\overline{x_{1}}-\overline{x_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}}$ under $\mu_{0}: \mu_{1}=\mu_{2}$.

Example:

Sarah selects 50 AGN from a famous dataset of Type-I AGN and 45 AGN from her own dataset.
The population standard deviations of the SFRs of the samples are 1.8 and $0.95 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ respectively.
Sarah finds sample means of 2.2 and $3.2 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ respectively. At the 95% confidence level, does her dataset consist of AGN with systematically higher SFRs than those of the famous dataset?

$$
H_{0}: \mu_{2}=\mu_{1} \cdot H_{A}: \mu_{2}>\mu_{1} \text { (right-tailed test). }
$$

Two-sample Z-test

Independent samples $\left\{x_{1}, i\right\}$ (N_{1} points), $\left\{x_{2, i}\right\}$ (N_{2} points) with $X_{j} \sim \mathscr{N}\left(\mu_{j}, \sigma_{j}^{2}\right), j=1,2$. Question: is $\mu_{1}=\mu_{2}$? Convert to a one-sample problem:

Define $Y=x_{1}-x_{2} \Longrightarrow \bar{y}=\overline{x_{1}}-\overline{x_{2}} ; \quad \mathbb{E}[\bar{y}]=\mu_{1}-\mu_{2} ; \quad \operatorname{Var}[\bar{y}]=\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}-2 \rho \frac{\sigma_{1} \sigma z}{\sqrt{N_{1} N_{2}}}$ (independence)
Standardise: $Z \equiv \frac{\bar{y}-\mathbb{E}[\bar{y}]}{\sqrt{\operatorname{Var}[\bar{y}]}}=\frac{\overline{x_{1}}-\overline{x_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}}$ under $H_{0}: \mu_{1}=\mu_{2}$.

Example:

Sarah selects 50 AGN from a famous dataset of Type-I AGN and 45 AGN from her own dataset.
The population standard deviations of the SFRs of the samples are 1.8 and $0.95 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ respectively.
Sarah finds sample means of 2.2 and $3.2 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ respectively. At the 95% confidence level, does her dataset consist of AGN with systematically higher SFRs than those of the famous dataset?
$H_{0}: \mu_{2}=\mu_{1} \cdot H_{A}: \mu_{2}>\mu_{1}$ (right-tailed test).
$\overline{x_{i}} \sim \mathscr{N}\left(\mu_{i}, \sigma_{i}^{2} / N_{i}\right)$, with $i=1,2 \Longrightarrow x_{2}-x_{1} \sim \mathscr{N}\left(\mu_{2}-\mu_{1}, \sigma_{2}^{2} / N_{1}+\sigma_{1}^{2} / N_{2}\right)$.

Two-sample Z-test

Independent samples $\left\{x_{1, i}\right\}$ (N_{1} points), $\left\{x_{2, i}\right\}$ (N_{2} points) with $X_{j} \sim \mathscr{N}\left(\mu_{j}, \sigma_{j}^{2}\right), j=1,2$. Question: is $\mu_{1}=\mu_{2}$? Convert to a one-sample problem:

Define $Y=x_{1}-x_{2} \Longrightarrow \bar{y}=\overline{x_{1}}-\overline{x_{2}} ; \quad \mathbb{E}[\bar{y}]=\mu_{1}-\mu_{2} ; \quad \operatorname{Var}[\bar{y}]=\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}-2 \rho \frac{\sigma_{1} \sigma z}{\sqrt{N_{1} N_{2}}}$ (independence)
Standardise: $Z \equiv \frac{\bar{y}-\mathbb{E}[\bar{y}]}{\sqrt{\operatorname{Var}[\bar{y}]}}=\frac{\overline{x_{1}}-\overline{x_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}}$ under $H_{0}: \mu_{1}=\mu_{2}$.

Example:

Sarah selects 50 AGN from a famous dataset of Type-I AGN and 45 AGN from her own dataset.
The population standard deviations of the SFRs of the samples are 1.8 and $0.95 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ respectively.
Sarah finds sample means of 2.2 and $3.2 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ respectively. At the 95% confidence level, does her dataset consist of AGN with systematically higher SFRs than those of the famous dataset?

$$
\begin{aligned}
& H_{0}: \mu_{2}=\mu_{1} . H_{A}: \mu_{2}>\mu_{1} \text { (right-tailed test). } \\
& \overline{x_{i}} \sim \mathscr{N}\left(\mu_{i}, \sigma_{i}^{2} / N_{i}\right), \text { with } i=1,2 \Longrightarrow x_{2}-x_{1} \sim \mathscr{N}\left(\mu_{2}-\mu_{1}, \sigma_{2}^{2} / N_{1}+\sigma_{1}^{2} / N_{2}\right) . \\
& Z \equiv \frac{\overline{x_{2}}-\overline{x_{1}}-\left(\mu_{2}-\mu_{1}\right)}{\sqrt{\sigma_{2}^{2} / N_{1}+\sigma_{1}^{2} / N_{2}}}=\frac{\overline{x_{2}}-\overline{x_{1}}}{\sqrt{\sigma_{2}^{2} / N_{1}+\sigma_{1}^{2} / N_{2}}}\left(\text { because } \mu_{2}=\mu_{1} \text { under } H_{0}\right) \approx 3.43 .
\end{aligned}
$$

Two-sample Z-test

Independent samples $\left\{x_{1, i}\right\}$ (N_{1} points), $\left\{x_{2, i}\right\}$ (N_{2} points) with $X_{j} \sim \mathscr{N}\left(\mu_{j}, \sigma_{j}^{2}\right), j=1,2$. Question: is $\mu_{1}=\mu_{2}$? Convert to a one-sample problem:

Define $Y=x_{1}-x_{2} \Longrightarrow \bar{y}=\overline{x_{1}}-\overline{x_{2}} ; \quad \mathbb{E}[\bar{y}]=\mu_{1}-\mu_{2} ; \quad \operatorname{Var}[\bar{y}]=\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}-2 \rho \frac{\sigma_{1} \sigma z}{\sqrt{N_{1} N_{2}}}$ (independence)
Standardise: $Z \equiv \frac{\bar{y}-\mathbb{E}[\bar{y}]}{\sqrt{\operatorname{Var}[\bar{y}]}}=\frac{\overline{x_{1}}-\overline{x_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}}$ under $H_{0}: \mu_{1}=\mu_{2}$.

Example:

Sarah selects 50 AGN from a famous dataset of Type-I AGN and 45 AGN from her own dataset.
The population standard deviations of the SFRs of the samples are 1.8 and $0.95 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ respectively.
Sarah finds sample means of 2.2 and $3.2 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ respectively. At the 95% confidence level, does her dataset consist of AGN with systematically higher SFRs than those of the famous dataset?
$H_{0}: \mu_{2}=\mu_{1} \cdot H_{A}: \mu_{2}>\mu_{1}$ (right-tailed test).
$\overline{x_{i}} \sim \mathscr{N}\left(\mu_{i}, \sigma_{i}^{2} / N_{i}\right)$, with $i=1,2 \Longrightarrow x_{2}-x_{1} \sim \mathscr{N}\left(\mu_{2}-\mu_{1}, \sigma_{2}^{2} / N_{1}+\sigma_{1}^{2} / N_{2}\right)$.
$Z \equiv \frac{\overline{x_{2}}-\overline{x_{1}}-\left(\mu_{2}-\mu_{1}\right)}{\sqrt{\sigma_{2}^{2} / N_{1}+\sigma_{1}^{2} / N_{2}}}=\frac{\overline{x_{2}}-\overline{x_{1}}}{\sqrt{\sigma_{2}^{2} / N_{1}+\sigma_{1}^{2} / N_{2}}}\left(\right.$ because $\mu_{2}=\mu_{1}$ under $\left.H_{0}\right) \approx 3.43$.
p-value: $P(Z>3.43) \approx 0.0003<\alpha=0.05$, therefore H_{0} can be rejected at 5% significance.

Two-sample t-tests: independent samples

If σ_{1}, σ_{2} unknown and $\sigma_{1}=\sigma_{2}$, can use "regular" t-test if $N_{1} \approx N_{2}$.
If $N_{1} \approx N_{2}$, can also use "regular" test when $\sigma_{1} \neq \sigma_{2}$.
If σ_{1}, σ_{2} unknown and $\sigma_{1} \neq \sigma_{2}$ or $N_{1} \neq N_{2}$, use Welch's t-test.
If we don't know σ_{1}, σ_{2}, how the hell can we know if they are (un)equal?! - F-test.

Two-sample t-tests: independent samples

If σ_{1}, σ_{2} unknown and $\sigma_{1}=\sigma_{2}$, can use "regular" t-test if $N_{1} \approx N_{2}$.
If $N_{1} \approx N_{2}$, can also use "regular" test when $\sigma_{1} \neq \sigma_{2}$.
If σ_{1}, σ_{2} unknown and $\sigma_{1} \neq \sigma_{2}$ or $N_{1} \neq N_{2}$, use Welch's t-test.
If we don't know σ_{1}, σ_{2}, how the hell can we know if they are (un)equal?! - F-test.

Once again, define \bar{y} as the difference in means $\overline{x_{1}}-\overline{x_{2}}$.
For the two-sample Z-test, we standardised \bar{y}.
For the two-sample t-test, we studentise instead:

Two-sample t-tests: independent samples

If σ_{1}, σ_{2} unknown and $\sigma_{1}=\sigma_{2}$, can use "regular" t-test if $N_{1} \approx N_{2}$.
If $N_{1} \approx N_{2}$, can also use "regular" test when $\sigma_{1} \neq \sigma_{2}$.
If σ_{1}, σ_{2} unknown and $\sigma_{1} \neq \sigma_{2}$ or $N_{1} \neq N_{2}$, use Welch's t-test.
If we don't know σ_{1}, σ_{2}, how the hell can we know if they are (un)equal?! - F-test.

Once again, define \bar{y} as the difference in means $\overline{x_{1}}-\overline{x_{2}}$.
For the two-sample Z-test, we standardised \bar{y}.
For the two-sample t-test, we studentise instead:

$$
t \equiv \frac{\bar{y}-\mathbb{E}[\bar{y}]}{\sqrt{\overline{\operatorname{Var}[\bar{y}]}}}=\frac{\overline{x_{1}}-\overline{x_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}}} \text { under } H_{0}: \mu_{1}=\mu_{2} \text {. }
$$

Two-sample t-tests: independent samples

If σ_{1}, σ_{2} unknown and $\sigma_{1}=\sigma_{2}$, can use "regular" t-test if $N_{1} \approx N_{2}$.
If $N_{1} \approx N_{2}$, can also use "regular" test when $\sigma_{1} \neq \sigma_{2}$.
If σ_{1}, σ_{2} unknown and $\sigma_{1} \neq \sigma_{2}$ or $N_{1} \neq N_{2}$, use Welch's t-test.
If we don't know σ_{1}, σ_{2}, how the hell can we know if they are (un)equal?! - F-test.

Once again, define \bar{y} as the difference in means $\overline{x_{1}}-\overline{x_{2}}$.
For the two-sample Z-test, we standardised \bar{y}.
For the two-sample t-test, we studentise instead:

$$
t \equiv \frac{\bar{y}-\mathbb{E}[\bar{y}]}{\sqrt{\overline{\operatorname{Var}[\bar{y}]}}}=\frac{\overline{x_{1}}-\overline{x_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}}} \text { under } H_{0}: \mu_{1}=\mu_{2} .
$$

s_{1} and s_{2} are the (unbiased) sample standard deviations for $\left\{x_{1, i}\right\}$ and $\left\{x_{2, i}\right\}$ respectively.
This t-statistic has \#dof $=\nu=\left(N_{1}-1\right)+\left(N_{2}-1\right)$ (2 means computed from pooled data).

Two-sample t-tests: independent samples

If σ_{1}, σ_{2} unknown and $\sigma_{1}=\sigma_{2}$, can use "regular" t-test if $N_{1} \approx N_{2}$.
If $N_{1} \approx N_{2}$, can also use "regular" test when $\sigma_{1} \neq \sigma_{2}$.
If σ_{1}, σ_{2} unknown and $\sigma_{1} \neq \sigma_{2}$ or $N_{1} \neq N_{2}$, use Welch's t-test.
If we don't know σ_{1}, σ_{2}, how the hell can we know if they are (un)equal?! $-F$-test.

Once again, define \bar{y} as the difference in means $\overline{x_{1}}-\overline{x_{2}}$.
For the two-sample Z-test, we standardised \bar{y}.
For the two-sample t-test, we studentise instead:

$$
t \equiv \frac{\bar{y}-\mathbb{E}[\bar{y}]}{\sqrt{\overline{\operatorname{Var}[\bar{y}]}}}=\frac{\overline{x_{1}}-\overline{x_{2}}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}^{2}}{N_{1}}+\frac{s_{2}^{2}}{N_{2}}}} \text { under } H_{0}: \mu_{1}=\mu_{2}
$$

s_{1} and s_{2} are the (unbiased) sample standard deviations for $\left\{x_{1, i}\right\}$ and $\left\{x_{2, i}\right\}$ respectively.
This t-statistic has $\# d o f=\nu=\left(N_{1}-1\right)+\left(N_{2}-1\right)$ (2 means computed from pooled data).

Implementation: scipy.stats.ttest_ind, more versatile than demonstrated here.

Two-sample t-tests: dependent/paired samples

$N_{1}=N_{2}=N$ means we can connect the $i^{\text {th }}$ elements of the two samples.
Once again, define $\bar{y}=\overline{x_{1}}-\overline{x_{2}}$, but now use the fact that the samples are paired:

Two-sample t-tests: dependent/paired samples

$N_{1}=N_{2}=N$ means we can connect the $i^{\text {th }}$ elements of the two samples.
Once again, define $\bar{y}=\overline{x_{1}}-\overline{x_{2}}$, but now use the fact that the samples are paired:

$$
\begin{aligned}
& \bar{y}=\overline{x_{1}}-\overline{x_{2}}=\frac{1}{N}\left(\sum_{i=1}^{N} x_{1, i}-\sum_{i=1}^{N} x_{2, i}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{1, i}-x_{2, i}\right) \equiv \frac{1}{N} \sum_{i=1}^{N} y_{i} . \\
& \text { (we can do this since } x_{1, i} \text { is correlated with } x_{2, i} \text {) }
\end{aligned}
$$

Two-sample t-tests: dependent/paired samples

$N_{1}=N_{2}=N$ means we can connect the $i^{\text {th }}$ elements of the two samples.
Once again, define $\bar{y}=\overline{x_{1}}-\overline{x_{2}}$, but now use the fact that the samples are paired:

$$
\begin{aligned}
& \begin{array}{l}
\bar{y}=\overline{x_{1}}-\overline{x_{2}}=\frac{1}{N}\left(\sum_{i=1}^{N} x_{1, i}-\sum_{i=1}^{N} x_{2, i}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{1, i}-x_{2, i}\right) \equiv \frac{1}{N} \sum_{i=1}^{N} y_{i} . \\
\text { (we can do this since } \left.x_{1, i} \text { is correlated with } x_{2, i}\right)
\end{array} \\
& \text { Unbiased sample std } s_{y} \equiv \sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}=\sqrt{\frac{1}{N-1}\left[\sum_{i=1}^{N} y_{i}^{2}-N \bar{y}^{2}\right]} \\
& \text { (Only one mean, } \left.\bar{y}, \text { is computed from the data }\left\{y_{i}\right\}\right)
\end{aligned}
$$

Two-sample t-tests: dependent/paired samples

$N_{1}=N_{2}=N$ means we can connect the $i^{\text {th }}$ elements of the two samples.
Once again, define $\bar{y}=\overline{x_{1}}-\overline{x_{2}}$, but now use the fact that the samples are paired:

$$
\begin{aligned}
\bar{y}=\overline{x_{1}}-\overline{x_{2}}=\frac{1}{N}\left(\sum_{i=1}^{N} x_{1, i}-\sum_{i=1}^{N} x_{2, i}\right)= & \left.\frac{1}{N} \sum_{\substack{i=1 \\
\\
\text { (we can do this since } x_{1, i} \\
\hline \\
\hline \\
\text { (w correlated with } x_{2, i} \\
\text {) }}} . x_{2, i}\right) \equiv \frac{1}{N} \sum_{i=1}^{N} y_{i} .
\end{aligned}
$$

Unbiased sample std $s y=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}=\sqrt{\frac{1}{N-1}\left[\sum_{i=1}^{N} y_{i}^{2}-N \bar{y}^{2}\right]}$
(Only one mean, \bar{y}, is computed from the data $\left\{y_{i}\right\}$)
Studentise $\bar{y}: t=\frac{\bar{y}-0}{s_{y} / \sqrt{N}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{s_{y} / \sqrt{N}}$ (if H_{0} is true).
This t-statistic has \#dof $=\nu=N-1$ (N data pairs, one mean computed).

Two-sample t-tests: dependent/paired samples

$N_{1}=N_{2}=N$ means we can connect the $i^{\text {th }}$ elements of the two samples.
Once again, define $\bar{y}=\overline{x_{1}}-\overline{x_{2}}$, but now use the fact that the samples are paired:

$$
\begin{aligned}
\bar{y}=\overline{x_{1}}-\overline{x_{2}}=\frac{1}{N}\left(\sum_{i=1}^{N} x_{1, i}-\sum_{i=1}^{N} x_{2, i}\right)= & \left.\frac{1}{N} \sum_{\substack{i=1 \\
\text { (we can do this since } x_{1, i} \\
\\
\\
\\
\text { (we correlated with } x_{2, i} \\
\text {) }}} . x_{2, i}\right) \equiv \frac{1}{N} \sum_{i=1}^{N} y_{i} .
\end{aligned}
$$

Unbiased sample std $s_{y} \equiv \sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}}=\sqrt{\frac{1}{N-1}\left[\sum_{i=1}^{N} y_{i}^{2}-N \bar{y}^{2}\right]}$
(Only one mean, \bar{y}, is computed from the data $\left\{y_{i}\right\}$)
Studentise $\bar{y}: t=\frac{\bar{y}-0}{s_{y} / \sqrt{N}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{s_{y} / \sqrt{N}}$ (if H_{0} is true).
This t-statistic has $\# d o f=\nu=N-1$ (N data pairs, one mean computed).

Implementation: scipy.stats.ttest_rel, more versatile than demonstrated here.

Trying out t-tests

(1) Download this Jupyter notebook.
(2) Navigate to Colaboratory.
(3) Sign in
© Click on "Upload" and upload the notebook you downloaded in step 1.

F-test

Recall: If $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$, the sample variance $S^{2} \sim \frac{\sigma^{2}}{N-1} \chi^{2}(N-1)$.

F-test

Recall: If $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$, the sample variance $S^{2} \sim \frac{\sigma^{2}}{N-1} \chi^{2}(N-1)$.
Consider two samples with sample variances $S_{1}^{2} \leq S_{2}^{2} . H_{0}: \sigma_{1}=\sigma_{2}=\sigma$.

F-test

Recall: If $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$, the sample variance $S^{2} \sim \frac{\sigma^{2}}{N-1} \chi^{2}(N-1)$.
Consider two samples with sample variances $S_{1}^{2} \leq S_{2}^{2}$. $H_{0}: \sigma_{1}=\sigma_{2}=\sigma$.
Under H_{0}, the ratio $F \equiv \frac{S_{2}^{2}}{S_{1}^{2}} \geq 1$ is a ratio of two reduced χ^{2} variables of the form $\frac{\chi_{\nu}^{2}}{\nu}$.
This ratio has the F-distribution with degrees of freedom $\left(\nu_{2}=N_{2}-1, \nu_{1}=N_{1}-1\right)$.

F-test

Recall: If $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$, the sample variance $S^{2} \sim \frac{\sigma^{2}}{N-1} \chi^{2}(N-1)$.
Consider two samples with sample variances $S_{1}^{2} \leq S_{2}^{2} . H_{0}: \sigma_{1}=\sigma_{2}=\sigma$.
Under H_{0}, the ratio $F \equiv \frac{S_{2}^{2}}{S_{1}^{2}} \geq 1$ is a ratio of two reduced χ^{2} variables of the form $\frac{\chi_{\nu}^{2}}{\nu}$.
This ratio has the F-distribution with degrees of freedom ($\nu_{2}=N_{2}-1, \nu_{1}=N_{1}-1$).
Asymptotic behaviour: for large N_{1}, N_{2},

$$
Z=\frac{1}{2} \ln F \text { is approximately distributed as } \mathscr{N}\left(\frac{1}{2}\left(1 / \nu_{1}-1 / \nu_{2}\right), \frac{1}{2}\left(1 / \nu_{1}+1 / \nu_{2}\right)\right) \text {. }
$$

F-test

Recall: If $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$, the sample variance $S^{2} \sim \frac{\sigma^{2}}{N-1} \chi^{2}(N-1)$.
Consider two samples with sample variances $S_{1}^{2} \leq S_{2}^{2} . H_{0}: \sigma_{1}=\sigma_{2}=\sigma$.
Under H_{0}, the ratio $F \equiv \frac{S_{2}^{2}}{S_{1}^{2}} \geq 1$ is a ratio of two reduced χ^{2} variables of the form $\frac{\chi_{\nu}^{2}}{\nu}$.
This ratio has the F-distribution with degrees of freedom $\left(\nu_{2}=N_{2}-1, \nu_{1}=N_{1}-1\right)$.
Asymptotic behaviour: for large N_{1}, N_{2},

$$
Z=\frac{1}{2} \ln F \text { is approximately distributed as } \mathscr{N}\left(\frac{1}{2}\left(1 / \nu_{1}-1 / \nu_{2}\right), \frac{1}{2}\left(1 / \nu_{1}+1 / \nu_{2}\right)\right) \text {. }
$$

Example (Barlow):
$N_{1}=12, S_{1}^{2}=10.9, N_{2}=7, S_{2}^{2}=6.5 \Longrightarrow F=\frac{S_{1}^{2}}{S_{2}^{2}}=1.68$.

F-test

Recall: If $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$, the sample variance $S^{2} \sim \frac{\sigma^{2}}{N-1} \chi^{2}(N-1)$.
Consider two samples with sample variances $S_{1}^{2} \leq S_{2}^{2} . H_{0}: \sigma_{1}=\sigma_{2}=\sigma$.
Under H_{0}, the ratio $F \equiv \frac{S_{2}^{2}}{S_{1}^{2}} \geq 1$ is a ratio of two reduced χ^{2} variables of the form $\frac{\chi_{\nu}^{2}}{\nu}$.
This ratio has the F-distribution with degrees of freedom ($\nu_{2}=N_{2}-1, \nu_{1}=N_{1}-1$).
Asymptotic behaviour: for large N_{1}, N_{2},

$$
Z=\frac{1}{2} \ln F \text { is approximately distributed as } \mathscr{N}\left(\frac{1}{2}\left(1 / \nu_{1}-1 / \nu_{2}\right), \frac{1}{2}\left(1 / \nu_{1}+1 / \nu_{2}\right)\right) \text {. }
$$

Example (Barlow):

$$
\begin{aligned}
& N_{1}=12, S_{1}^{2}=10.9, N_{2}=7, S_{2}^{2}=6.5 \Longrightarrow F=\frac{S_{1}^{2}}{S_{2}^{2}}=1.68 . \\
& p \text {-value }=P(F>1.68)=1-P(F \leq 1.68) \\
& =1-\text { scipy.stats.f.cdf }(1.68,12-1,7-1) \\
& \approx 0.27>\alpha=0.05 .
\end{aligned}
$$

F-test

Recall: If $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$, the sample variance $S^{2} \sim \frac{\sigma^{2}}{N-1} \chi^{2}(N-1)$.
Consider two samples with sample variances $S_{1}^{2} \leq S_{2}^{2} . H_{0}: \sigma_{1}=\sigma_{2}=\sigma$.
Under H_{0}, the ratio $F \equiv \frac{S_{2}^{2}}{S_{1}^{2}} \geq 1$ is a ratio of two reduced χ^{2} variables of the form $\frac{\chi_{\nu}^{2}}{\nu}$.
This ratio has the F-distribution with degrees of freedom ($\nu_{2}=N_{2}-1, \nu_{1}=N_{1}-1$).
Asymptotic behaviour: for large N_{1}, N_{2},

$$
Z=\frac{1}{2} \ln F \text { is approximately distributed as } \mathscr{N}\left(\frac{1}{2}\left(1 / \nu_{1}-1 / \nu_{2}\right), \frac{1}{2}\left(1 / \nu_{1}+1 / \nu_{2}\right)\right) \text {. }
$$

Example (Barlow):
$N_{1}=12, S_{1}^{2}=10.9, N_{2}=7, S_{2}^{2}=6.5 \Longrightarrow F=\frac{S_{1}^{2}}{S_{2}^{2}}=1.68$.
p-value $=P(F>1.68)=1-P(F \leq 1.68)$
$=1-$ scipy.stats.f.cdf(1.68, 12-1, 7-1)
$\approx 0.27>\alpha=0.05$.
No statistical evidence for difference in the variances.
Safe to use t-test on these data assuming that $\sigma_{1}=\sigma_{2}$.
See documentation for scipy.stats.f and Section 4.7.6 in the AstroML book.

F-test

Recall: If $X \sim \mathscr{N}\left(\mu, \sigma^{2}\right)$, the sample variance $S^{2} \sim \frac{\sigma^{2}}{N-1} \chi^{2}(N-1)$.
Consider two samples with sample variances $S_{1}^{2} \leq S_{2}^{2} . H_{0}: \sigma_{1}=\sigma_{2}=\sigma$.
Under H_{0}, the ratio $F \equiv \frac{S_{2}^{2}}{S_{1}^{2}} \geq 1$ is a ratio of two reduced χ^{2} variables of the form $\frac{\chi_{\nu}^{2}}{\nu}$.
This ratio has the F-distribution with degrees of freedom ($\nu_{2}=N_{2}-1, \nu_{1}=N_{1}-1$).
Asymptotic behaviour: for large N_{1}, N_{2},

$$
Z=\frac{1}{2} \ln F \text { is approximately distributed as } \mathscr{N}\left(\frac{1}{2}\left(1 / \nu_{1}-1 / \nu_{2}\right), \frac{1}{2}\left(1 / \nu_{1}+1 / \nu_{2}\right)\right) \text {. }
$$

Example (Barlow):

$N_{1}=12, S_{1}^{2}=10.9, N_{2}=7, S_{2}^{2}=6.5 \Longrightarrow F=\frac{S_{1}^{2}}{S_{2}^{2}}=1.68$.
p-value $=P(F>1.68)=1-P(F \leq 1.68)$
$=1-$ scipy.stats.f.cdf(1.68, 12-1, 7-1)
$\approx 0.27>\alpha=0.05$.
No statistical evidence for difference in the variances.
Safe to use t-test on these data assuming that $\sigma_{1}=\sigma_{2}$.
See documentation for scipy.stats.f and Section 4.7.6 in the AstroML book.

