

Statistics for Astronomers: Lecture 15, 2020.12.08

Prof. Sundar Srinivasan

IRyA/UNAM

Prof. Sundar Srinivasan - IRyA/UNAM

Hypothesis testing – *F*-test and one application.

Nonparametric statistics - the Kolmogorov-Smirnov test.

Prof. Sundar Srinivasan - IRyA/UNAM

Download this Jupyter notebook.

(2) Navigate to Colaboratory.

Sign in

Click on "Upload" and upload the notebook you downloaded in step 1.

Prof. Sundar Srinivasan - IRyA/UNAM

Kolmogorov-Smirnov test

One-sample test (implementation: scipy.stats.kstest):

Given: sample of size *N*. Question: Is the sample drawn from a particular distribution? H_0 : yes. H_A : No (two-sided) or greater/less than CDF of distribution (one-sided).

Two-sample test (implementation: scipy.stats.ks_2samp):

Given: samples of sizes N_1 , N_2 . Question: Are samples drawn from the same distribution? H_0 : yes. H_A : No (two-sided).

KS statistic: maximum distance between CDFs that are being compared. One-sample case: $D_{\rm KS} = \max \left| CDF_{\rm model}(x) - ECDF(x) \right|$ (two-sided). $D_{\rm KS} = \max \left(CDF_{\rm model}(x) - ECDF(x) \right)$ (one-sided).

Let's go to the Jupyter notebook again...

Advantages: No binning! Small samples! More powerful for intermediate-size samples! Can also work as a one-tailed test (see sscipy.stats.kstest).

Disadvantages: Not sensitive to differences in the tails. Doesn't care about #dof.

The Anderson-Darling test: an alternative to the KS test

 $\ensuremath{\mathsf{KS}}$ test less sensitive to relative deviations in the distribution tails

 $(F(x) \approx 0 \text{ or } F(x) \approx 1$, where F(x) is usually slowly-varying).

One alternative - consider deviation over entire range instead of just maximum deviation.

Anderson-Darling statistic: $A^2 \equiv \int_{0}^{1} dF(x) \left[\frac{\hat{F}_N(x) - F(x)}{\sqrt{\operatorname{Var}[\hat{F}_N(x)]}} \right]^2$ (

(A quadratic ECDF test).

Recall:
$$\mathbb{E}[\hat{F}_N(x)] = F(x); \quad \operatorname{Var}[\hat{F}_N(x)] = \frac{F(x)(1 - F(x))}{N}$$

 $F(x)(1 - F(x)) \approx 0$ when $F(x) \approx 0$ or $F(x) \approx 1$. \implies more weight on observations in tails of the distribution.

In most cases when applying the KS test, also use the AD test.

Wilcoxon-Mann-Whitney U-test

KS and AD tests: nonparametric version of F-test (tests whether scale parameters are similar).

The U-test is a nonparametric version of the two-sample (independent) t-test.
Tests for whether the samples have similar location parameters.
Ideal when the samples are drawn from a general unspecified distribution.
H₀: samples are drawn from distribution with the same location parameter.

Choose H_A carefully:

sample 1 has different location parameter from sample 2 (two-sided). sample 1 has location parameter smaller than sample 2 ("less"). sample 1 has location parameter larger than sample 2 ("greater").

Python implementation: scipy.stats.mannwhitneyu. Interpret carefully! ustat, pvalue = mannwhitneyu(sample1, sample2, alternative = 'less') If pvalue > α, since alternative = 'less', interpretation: not enough evidence that the mean of sample 1 < mean of sample 2.</p>

Visualising data

Statistics for Astronomers: Lecture 15, 2020.12

Prof. Sundar Srinivasan - IRyA/UNAN

Five number summary of a dataset of size N: $\chi_{(1)}$, q_{25} , q_{50} , q_{75} , $\chi_{(N)}$.

 q_{50} = median, a robust location measure.

Interquartile range, $IQR = q_{75} - q_{50}$ is a robust scale measure Encloses the central 50% of the sample. (for a normal distribution, $IQR \approx 1.349\sigma$).

Compare \bar{x} to q_{50} to check for asymmetric/skewness.

One way of visualising data, the box plot, uses the five-number summary.

Box plot, Box-and-whisker plot, or candlestick plot

A non-parametric way to visualise the data distribution, without binning.

- Identify median with a horizonal line. In addition, can show the mean with a dotted line. Compare the two → skewness.
- Oxides Am. Sil. Crys. Sil.
- Draw a box enclosing the central 50% of the data (the box edges are q_{25} and q_{75}).
- From each box edge, extend a "whisker" of length $\frac{3}{2}IQR$. These whiskers display the tails of the distribution.
- Any data outside the box-and-whisker region are outliers and can be displayed with individual symbols.

Comparing relative locations and sizes of boxes \rightarrow comparing distributions.

Variation on box plot: violin plot

https://en.wikipedia.org/wiki/Violin_plot

Prof. Sundar Srinivasan - IRyA/UNAM

▲□▶▲□▶▲≡▶▲≡▶ = めんの