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Review

Nonparametric hypothesis testing

Kolmogorov-Smirnov and Anderson-Darling tests. Wilcoxon-Mann-Whitney U-test.

Data visualisation

Box-and-whisker plots
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Jupyter demos

1 Download this Jupyter notebook.

2 Navigate to Colaboratory.

3 Sign in

4 Click on ”Upload” and upload the notebook you downloaded in step 1.
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Histogram

Also non-parametric, generates piecewise constant estimator of underlying density distribution.

Data of size N is placed into M bins of width h such that

f̂ (X) =
1

hN

N∑
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|Xi − Xb|

h
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)
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h
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where Xi are the data values, Xb the location of the bth bin, and I the Indicator Function.

Advantages: easy and quick to compute, does well for large N.

Disadvantages:
Location information for data degraded (location for all points in a bin is now center of bin).
Shape highly sensitive on bin width and bin edges.
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Histogram (contd.)

Effect of bin width.
Source: Applied Multivariate Statistical Analysis, Härdle &
Simar

Effect of bin location.
Source: AstroML book
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Histogram (contd.)

Effect of bin width.
Source: Applied Multivariate Statistical Analysis, Härdle &
Simar Effect of bin location.

Source: AstroML book
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Optimal bin width for a histogram

Frequentist methods
Find width that optimises some function of (estimated density − true density).
Requires assumptions about true density.

Scott’s rule (Scott 1979): h ≈ IQR N−1/3. Assumes normally-distributed data.

Freedman-Diaconis rule (Freedman & Diaconis 1981): h = 2 IQR N−1/3.

Allows some departure from normality.

Disadvantage of these methods: not sensitive to multimodal distributions.

Bayesian methods:

No assumptions required about underlying distribution.
Can form data likelihood and assume appropriate priors for the problem.
Bayesian method allows computation of means and standard deviations of bin heights.
Good multimodal/unimodal distinction!

Knuth (2006) used a multinomial likelihood and Jeffreys priors to find the optimal h.

Bayesian Blocks (e.g., Scargle et al. 2013, applied to time-series data):
designs a log-likelihood allowing for varying binsize.
The explanation by Jake VanderPlas here is worth a read! .
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Comparison of optimal widths

Source: AstroML book
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Bayesian methods: constant vs. variable bin width

Source: AstroML book

Fig. 2 from Mayer et al. 2013 ApJ Lett. 775, L37

Bayesian Blocks allow for more freedom in choice of bin width.
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Kernel density estimate

Non-parametric density estimate. Recall the histogram estimator equation:

f̂ (X ) =
1

hN

N∑
i=1

K(ui )︷ ︸︸ ︷
M∑
b=1

I
(
|Xi − Xb|

h
≤ 1

)
I
(
|X − Xb|

h
≤ 1

)

Generalisation: replace the inner sum with a function K(ui ) of ui =
( X − Xi

h

)
.

The function K(u) is called a kernel, with bandwidth h. It is evaluated at each data point Xi .

Histogram: each data value = delta function at its
location.

KDE: “influence” of each data point “spread out”
over “bin” of width h.

“Influence” = normalised function K(u).

Bins of data points allowed to overlap.

Estimated density = sum of overlapping functions. Credit: Wikipedia, User:Drleft, CC BY-SA 3.0
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Histogram vs. KDE

AstroML book, Fig. 6.1

Top: Histograms with shifted bin centres

Centre left: adaptive histogram (one bin for each value,
overlaps allowed).

Centre right, bottom: KDEs with Gaussian kernels of
increasing bandwidth.

Small h: large variance. Large h: large bias
(Bias-variance tradeoff).
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KDE (contd.)

There are many functions used for K(u).

Standard kernels: Gaussian, top hat, Epanechnikov (quadratic in u), exponential, linear, cosine.

Popular: Gaussian and Epanechnikov (minimises the mean square error).

For more, see here.

Influence of K(u) controlled by
bandwidth h, which must be
estimated.

Modern codes for computing KDEs
have built-in options for this.

KDE implemented in Python packages
such as Scikit-learn, Scipy, and
Statsmodels.

KDE can also be modified to handle
measurement errors (see Section 6.1.2
in AstroML book).

Summary table from Jake VanderPlas’ blog.
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Summary

1 If you’re only interested in the general trend in your data, use box/violin plots. They’ll
also immediately identify outliers!

2 Histograms are fast but bad for various reasons – their shapes depend on bin size and bin
location, and they degrade the information contained in the raw data.

3 There are ways to figure out the optimum bin size – both frequentist and Bayesian. The
Bayesian versions are more sensitive to multimodal distributions, and allow for the
computation of the optimum bin size without as few assumptions on the underlying
distribution as possible.

4 The Bayesian Blocks method allows for variable bin size! It is especially applicable for
small data sets.

5 If you’re really interested in generating a function that mimics the true population
distribution, use KDEs.
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