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Review: Bayesian inference

Prior selection: choose a prior as long as it isn’t a delta function.
Prior-dominated vs. evidence/data-dominated posterior.
Bayesian point estimates – maximum a posteriori (MAP) estimate.
Bayesian interval estimates – credible intervals; the highest posterior density interval.
Informative and non-informative priors. Improper priors.
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Prior and posterior predictive distributions
Prior predictive distribution: Before the experiment, given the prior probability distribution π(θ)
of the unknown parameter, what is the probability distribution of expected data values?

Discrete: P(X ) =
N∑
i=1

P(X |θi ) π(θi ) continuous: p(X ) =

∫
p(X |θ) π(θ) dθ.

Posterior probability distribution: Given the data, what is the probability distribution of the
unknown parameter?

Discrete: P(θi |X ) =
P(X |θi ) π(θi )

N∑
i=1

P(X |θi ) π(θi )

Continuous: p(θ|X ) =
p(X |θ) π(θ)∫
p(X |θ) π(θ) dθ

.

Posterior predictive distribution: Given the posterior probability distribution, what is the
probability distribution of data values in a future experiment?

Discrete: P(X̃ |X ) =
N∑
i=1

P(X̃ |θi , X ) P(θi |X ) =
N∑
i=1

P(X̃ |θi ) P(θi |X ) (given θ, X̃⊥X ).

Continuous: p(X̃ |X ) =

∫
p(X̃ |θ, X ) p(θ|X ) dθ =

∫
p(X̃ |θ) p(θ|X ) dθ
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Prior and posterior predictive distributions: example

A fair coin is tossed once. If the outcome is H, a red light is turned on. If not, the coin is tossed
again. If the outcome is H, the red light turns on. If not, a blue light turns on.
Given that a red light turned on, (1) what is the posterior distribution for outcomes of the first
toss? (2) what are the prior and posterior predictive distributions for the observations?

Unknown “parameter”: outcome of first flip, t ∈ {H, T}.

Prior distribution for t: P(t = H) = P(t = T) = 1/2.

Prior predictive distribution for data:

P(red) = P(red|t = H)P(t = H) + P(red|t = T)P(t = T) = 1 · 1/2 + 1/2 · 1/2 = 3/4; P(blue) = 1/4.

Likelihood that red light turns on: P(red|t = H) = 1,P(red|t = T) = 1/2.

Posterior distribution for t:

P(t = H|red) =
P(red|t = H)P(t = H)

P(red|t = H)P(t = H) + P(red|t = T)P(t = T)
=

1 · 1/2

1 · 1/2 + 1/2 · 1/2
= 2/3.

P(t = T|red) = 1/3.

Posterior predictive distribution for future data:

P(red|red) = P(red|t = H)P(t = H|red) + P(red|t = T)P(t = T|red) = 1 · 2/3 + 1/2 · 1/3 = 5/6.

P(blue|red) = 1/6.
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The Jeffreys Prior

Recall: The MLE of a parameter θ is θ̂MLE such that
∂ ln L

∂θ
= 0 at θ = θ̂MLE .

Cramér-Rao Bound: Var[θ̂MLE ] ≥ I(θ)−1, where I(θ) is the Fisher Information.

I(θ) = E
[(

∂ ln L

∂θ

)2]
= (under some conditions) = −E

[
∂2 ln L

∂θ2

]

Jeffreys Prior: a non-informative prior that is also invariant over transformation of the parameter.

π
J

(θ) ∝
√
I(θ). For multidimensional case, π

J
(~θ) ∝

√
Det I(~θ).

Invariance: If ψ is a function of θ (e.g., θ = P(Head) and ψ = P(Tail) = 1− θ),

π
J

(ψ) = π
J

(θ)

∣∣∣∣∣ dθdψ
∣∣∣∣∣ ∝

√
I(θ)

( dθ

dψ

)2
=

√√√√E
[(

∂ ln L

∂θ

)2]( dθ

dψ

)2
=

√√√√E
[(

dθ

dψ

∂ ln L

∂θ

)2]

=

√√√√E
[(

∂ ln L

∂ψ

)2]
=
√
I(ψ).
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Jeffreys prior example: coin toss (Bernoulli trial)

Let P(success) = θ. We perform one coin toss and obtain a value X = X .

Likelihood associated with this observation: L (θ) ∝ θX (1− θ)1−X = Beta(X + 1, 2− X )

=⇒ ln L = X ln θ + (1− X ) ln (1− θ) =⇒
∂ ln L

∂θ
=

X

θ
−

1− X

1− θ
=

X − θ
θ(1− θ)

.

Recall: for Bernoulli distribution, E[X ] = θ,Var[X ] ≡ E
[
(X − E[X ])2

]
= θ(1− θ).

I(θ) = E

[(
∂ ln L

∂θ

)2]
=

1

θ(1− θ)
=⇒ prior: π

J
(θ) ∝

1√
θ(1− θ)

= Beta(a, b) with

a = b = 1/2.

prior mean:
a

a + b
=

1/2

1/2 + 1/2
= 0.5 as expected.

Posterior: p(θ|data) ∝ L (θ) π
J

(θ) = Beta(X + 1, 2− X )×Beta
(1

2
,

1

2

)
= Beta

(
X +

1

2
,

3

2
− X
)

.

Posterior mean: 1
2

(
X + 1

2

)
= 1

2
(sample mean + prior mean). Effective sample size: 2.

Note that the posterior and prior are both Beta distributions. In such a case, we say that the
Beta distribution is the conjugate prior to a Bernoulli likelihood. The Beta distribution is also
conjugate to binomial likelihoods (cf. Lecture 17).
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Jeffreys prior example: coin toss (Bernoulli trial)

Let P(success) = θ. We perform one coin toss and obtain a value X = X .

Likelihood associated with this observation: L (θ) ∝ θX (1− θ)1−X = Beta(X + 1, 2− X )

=⇒ ln L = X ln θ + (1− X ) ln (1− θ) =⇒
∂ ln L

∂θ
=

X

θ
−

1− X

1− θ
=

X − θ
θ(1− θ)

.

Recall: for Bernoulli distribution, E[X ] = θ,Var[X ] ≡ E
[
(X − E[X ])2

]
= θ(1− θ).

I(θ) = E

[(
∂ ln L

∂θ

)2]
=

1

θ(1− θ)
=⇒ prior: π

J
(θ) ∝

1√
θ(1− θ)

= Beta(a, b) with

a = b = 1/2.

prior mean:
a

a + b
=

1/2

1/2 + 1/2
= 0.5 as expected.

Posterior: p(θ|data) ∝ L (θ) π
J

(θ) = Beta(X + 1, 2− X )×Beta
(1

2
,

1

2

)
= Beta

(
X +

1

2
,

3

2
− X
)

.

Posterior mean: 1
2

(
X + 1

2

)
= 1

2
(sample mean + prior mean). Effective sample size: 2.

Note that the posterior and prior are both Beta distributions. In such a case, we say that the
Beta distribution is the conjugate prior to a Bernoulli likelihood. The Beta distribution is also
conjugate to binomial likelihoods (cf. Lecture 17).
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Jeffreys prior for a Poisson distribution

Poisson problem with unknown rate parameter λ and observation X = X (say).

Recall: P(X = X ) =
λX e−λ

X !
;E[X ] = λ;Var[X ] = λ.

Likelihood: L (λ) =
λX e−λ

X !

Jeffreys prior:
∂ ln L (λ)

∂λ
=? I(λ) = E

[(
∂ ln L (λ)

∂λ

)2]
=? π

J
(λ) =

√
I(λ) =?

Prior predictive distribution?

Posterior?

Posterior predictive distribution?
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Jeffreys priors for a univariate normal distribution

Homework.
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More on priors

See Jaynes (1968) for a good discussion of the applicability of this
procedure to problems in fundamental physics.
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https://bayes.wustl.edu/etj/articles/prior.pdf

