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Review

Sampling techniques. Inverse-transform sampling. Rejection sampling. Importance sampling.

Monte Carlo. Quadrature as an expectation value.

We use Monte Carlo methods in order to either sample from a distribution or compute an
expectation value of a function over a distribution.

Simple MC: E[f (X )] ≈
1

N

N∑
i=1

f (Xi ), where Xi ∼ pX (x).

Problem: pX (x) may be too complicated (esp. multidimensional), and/or difficult to sample
from.
Solution: rejection sampling, importance sampling – sample from a proposal distribution instead
of the target distribution.

Problem: “curse of high dimensionality” – the proposal needs to be as close as possible to the
target; as d increases, the discrepancy increases exponentially.
Solution: Markov Chain Monte Carlo (MCMC); explore multidimensional parameter space by
sampling (“travelling”) along regions/zones of high probability.
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Regression
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Motivation

We have observations of two random variables X and Y ,
possibly with uncertainties.

We want to investigate whether they are related, and
quantify this relationship (possibly in terms of
parameters).

The measurement/intrinsic uncertainties in the data
translate to uncertainties in the parameter estimates.

Data from Table 1 of Hogg et al. (2010)

We want point and interval estimates for the parameters to quantify the X -Y relationship.

Once we know the relationship, we can predict future values of Y for given values of X .
Given these data, what is the prediction for Y when X = 105?

Statistics for Astronomers: Lecture 20, 2021.01.26

Prof. Sundar Srinivasan - IRyA/UNAM 5



Terminology and general procedure

X variable(s): predictor, regressor, feature, independent†.

Y: outcome, response, target, dependent. Discrete: “classification”; continuous: “regression”.
†Independent variable fallacy (Hogg et al. 2010): pick the one with lower uncertainties.

Regression function: Y (X ) = E[Y |X = X ] Regression model: Y = f (X ) + ε; E[ε] = 0.

Randomness: ε – combination of measurement error and intrinsic variation. Typically ignore one w.r.t. the other.
Y random even if X isn’t, because of ε.

εi associated with yi drawn from distribution with identical/differing variances: homoskedastic/heteroskedastic uncertainties.

Typically, astronomical measurements are heteroskedastic. Example: magnitudes of stars of a large range of masses.

Procedure: (1) Dependent variable decision (2) Model choice(s) (3) Method of parameter

estimation (choice of objective function/goodness-of-fit). (4) Model

validation/selection (Occam’s Razor, odds ratios, information criteria).

Regression can be nonparametric (e.g., ML interpolation) or parametric (e.g., χ2 fitting, MLE).

“Linear” parametric regression: linear in parameters, not necessary in the regressor.

Linear: Y = mX + c, Y = α
√

X 2 + 1, Y = constant. Nonlinear: Y =
1

√
2πσ

exp

[
−

1

2

(
X − µ
σ

)2]
, Y =

A

X + B
.
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Objective function/goodness-of-fit

We want our model predictions for Y to be as close as possible to the observations for Y .

Typically, this means we want to minimise some function L(Ymod,Yobs).

L is variously called the loss function, objective function, or goodness-of-fit.

Example:

Model predictions ymod,i for N observations yi without uncertainties. We want to minimise the residue yi − ymod,i .

If magnitude irrelevant: minimise L = sum-of-squares of residues,
N∑
i=1

(yi − ymod,i )
2.

If we have uncertainties, we want yi − ymod,i small compared to uncertainty σy,i .

=⇒ L = weighted sum-of-squares of residues,
N∑
i=1

(yi − ymod,i )
2

σ2
y,i

= (y− ymod)T ·Σ−1 · (y− ymod) in matrix form,

with N × 1 column vectors y and ymod and Σ the N × N covariance matrix.

Σ stores information about correlations in the uncertainties.

If errors are homoskedastic, Σ−1 =
1

σ2
IN×N

ymod ∝ parameters θ =⇒, estimate by minimising L(θ).

This is done by setting the derivative w.r.t. each parameter to zero (similar to MLE!).
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Ordinary least-squares (OLS) – linear model

Homoskedastic errors: yobs = ymod,i + εi , with E[εi ] = 0, Var[εi ] = σ2.

Model linear in the regressor: ymod,i = mXi + b. (m, b) = slope and intercept.

L =
N∑
i=1

(
yi − ymod,i

)2
=

N∑
i=1

(
yi −mXi − b

)2
.

Optimisation:

∂L
∂m

∣∣∣
(m,b)=(m̂,b̂)

∝
N∑
i=1

(
yi − m̂Xi − b̂

)
· xi = 0 =⇒ m̂ =

N∑
i=1

(Xi − X̄ )(yi − ȳ)

N∑
i=1

(Xi − X̄ )2

≡
Sxy

Sxx
.

∂L
∂b

∣∣∣
(m,b)=(m̂,b̂)

∝
N∑
i=1

(
yi − m̂Xi − b̂

)
= 0 =⇒ b̂ = ȳ − m̂X̄ .

Gaussian errors: εi ∼ N (0, σ2),L ∼ χ2
N−2 (2 parameters estimated using data). “χ2 fitting”.

Estimate for the variance in y is then S2 =
L

N − 2
∼ σ2 χ

2
N−2

N − 2
. Reduced χ2.
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OLS linear model – parameter variances

Recall: Xi not random but yi random because of the uncertainties εi , which have variance σ2.

SXy =
1

N

N∑
i=1

(Xi − x̄)(yi − ȳ) =
1

N

N∑
i=1
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Var(SXy ) =
1

N2

N∑
i=1

X
2
i σ

2 − X̄
2 σ

2

N
= σ

2

(
1

N

N∑
i=1

X
2
i − X̄

2

)
= σ

2SXX .

=⇒ Var(m̂) = Var

(
SXy

SXX

)
=

1

S2
XX

Var(SXy ) =
σ2

SXX

=⇒ Var(b̂) = Var(ȳ − m̂X̄ ) = Var(ȳ) + X̄ 2Var(m̂) =
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OLS in matrix notation

For multivariate problems, it’s much easier to work with matrices.

In general, the regression relation becomes y = Ax.

Linear case: y =


y1

y2

· · ·
yN


N×1

A =


1 X1

1 X2

· · · · · ·
1 XN


N×2

x =

[
θ1

θ2

]
2×1

(θ1 = intercept, θ2 = slope)

Covariance matrix Σij = ρijσiσj , with ρij the correlation coefficient between σi and σj .

For uncorrelated uncertainties, Σ is diagonal: Σ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
· · ·
0 0 · · · σ2

N


N×N

L ∝ (y− Ax)TΣ−1(y− Ax), where Σ−1 =
1

σ2
I (homoskedastic uncorrelated uncertainties).

If L is minimized w.r.t. x, we get the matrix product version of the results obtained in the
previous slide: x̂ = (ATΣ−1A)−1ATΣ−1y = (ATA)−1AT y.

(ATΣ−1A)−1 is the covariance matrix for the parameters.
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To the Jupyter notebook!

Demonstration of Exercise 1 from Hogg et al. (2010)

1 Download this Jupyter notebook.

2 Navigate to Colaboratory.

3 Sign in

4 Click on “Upload” and upload the notebook you downloaded in step 1.
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OLS – comparison to MLE

If the uncertainties ε are normally distributed and homoskedastic, the associated likelihood is

L (m, b) =

N∏
i=1

exp

[
−

1

2

(
yi −mxi − b

σ

)2]
⇒ ln L = constant−

1

2

N∑
i=1

(
yi −mxi − b

σ

)2

.

= constant−
1

2
L.

The objective function L is related to ln L , so the results from optimising L are equivalent to
the maximum likelihood estimate for this problem.

For heteroskedastic uncertainties, we replace σ with N distinct values σi . The matrix product
version of the log-likelihood is

ln L = constant + (y− Ax)TΣ−1(y− Ax).
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Robust regression

A robust statistic is one whose value isn’t sensitive to outliers.
Examples: Median vs. mean, IQR or MADM vs. standard deviation.

Manual removal of outliers is neither objective nor reproducible.

“Robust statistics provide strategies to reduce the influence of outliers when scientific knowledge
of the identity of the discordant data points is not available.” – Feigelsen & Babu.

Outlier rejection can be done using a robust technique. Many such techniques exist (see
Feigelsen & Babu).

One example: Bayesian Outlier Rejection (Hogg et al. (2010); AstroML Sec. 8.9). Similar to
assuming a Gaussian mixture model for the data.
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Robust regression (Outlier rejection)

Core assumption: outliers are drawn from a different distribution than the “true data” values.

Data model: Gaussian mixture of “true data” distribution and outlier distribution.

True data is such that residue εi ≡ ydata,i − ymod,i ∼N (0, σ2
i ).

Outliers are such that residue εi ≡ ydata,i − ymod,i ∼N (Yb, Vb).

Probability that a given data point is an outlier ≡ Pb.

=⇒ p(yi | Xi ,m, b, σi , Pb, Vb) =
(1− Pb)√

2πσ2
i

exp

[
−

1

2

(
yi − mXi − b

σi

)2]
+

Pb√
2π(Vb + σ2

i )
exp

[
−

1

2

(yi − Yb)2

Vb + σ2
i

]

OR, equivalently, flag each point according to whether or not we think it is an outlier.

Each point then has an associated flag variable qi (qi = 0 if the point is “bad”, 1 if “good”).

Then, probability that a data point is “bad” = P(qi = 0) ≡ Pb = constant.

=⇒ p(yi | Xi ,m, b, σi , qi , Vb) =

{
exp

[
−

1

2

(
yi − mXi − b

σi

)2]}qi
{

1√
2π(Vb + σ2

i )
exp

[
−

1

2

(yi − Yb)2

Vb + σ2
i

]}1−qi

Total # parameters: 2 + (N + 3). The qi are nuisance parameters, can marginalise over them.

BUT for a given point j we could also marginalise over all other parameters except qj to see if it
was flagged as a true data point or an outlier! This is the strength of the Bayesian method.
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Bayesian outlier rejection: likelihood and priors

With ‘fg’ and ‘bg’ referring to the true data (“foreground”) and outliers (“background”),

L =

N∏
i=1

pfg (data|m, b)qi · pbg (data|Yb, Vb)1−qi (product of N Bernoulli terms)

=

N∏
i=1

{
1√

2πσ2
i

exp

[
−

1

2

(
yi − mXi − b

σi

)2]}qi
{

1√
2π(Vb + σ2

i )
exp

[
−

1

2

(yi − Yb)2

Vb + σ2
i

]}1−qi

In terms of Pb, instead,

L =

N∏
i=1

[
(1− Pb) · pfg (data|m, b) + Pb · pbg (data|Yb, Vb)

]

=

N∏
i=1

[
(1− Pb)√

2πσ2
i

exp

[
−

1

2

(
yi − mXi − b

σi

)2]
+

Pb√
2π(Vb + σ2

i )
exp

[
−

1

2

(yi − Yb)2

Vb + σ2
i

]]
.

Joint prior on the {qi}: p({qi}|Pb) =

N∏
i=1

(1− Pb)qi P
1−qi
b

.

For Pb,Yb, (“locations”) and Vb (“scale”), we can use prior information or uninformative priors.
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Bayesian outlier rejection: likelihood and priors

With ‘fg’ and ‘bg’ referring to the true data (“foreground”) and outliers (“background”),
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yi − mXi − b

σi
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2π(Vb + σ2

i )
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(yi − Yb)2

Vb + σ2
i

]}1−qi

In terms of Pb, instead,
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i

]]
.
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(1− Pb)qi P
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b

.

For Pb,Yb, (“locations”) and Vb (“scale”), we can use prior information or uninformative priors.
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Bayesian outlier rejection: marginalisation

The posterior is ∝ likelihood × the priors.

We can marginalise this posterior over the
nuisance parameters qi to obtain the joint
distribution of m and b.

Since the qi are discrete (value = 0 or 1),
marginalising over them means summing over
these possible values instead of integrations.

Once this is done, we also marginalise over
Pb,Vb, and Yb.

This is a multidimensional problem, perfect for
MCMC. The implementation is part of the
AstroML book (Section 8.9).

source: AstroML book Sections 5.6.7 and 8.9
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Parameter uncertainties

For the OLS setup, the parameter uncertainties were (ATΣ−1A)−1 =

[
σ2
b σbσm

σmσb σ2
m

]
.

For more complicated situations (which is most of the
time):

Frequentist version:
(1) generate the distributions for b and m using
bootstrap.

σ2
m =

1

B

N∑
j=1

(
mj −m

)2

(m is the estimate using all the data, mj is from partial
samples).
(2) use these distributions to compute CIs for b and m.

Bayesian version:
(1) generate the posterior distribution of b and m.
(2) use these to compute the MAP values and CrIs.

Correlated parameters
→ Nonzero off-diagonal terms.

from AstroML book Section 8.9
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