

Stellar Atmospheres: Lecture 1, 2020.04.01

Prof. Sundar Srinivasan

IRyA/UNAM

Prof. Sundar Srinivasan - IRvA/UNAM

Hydrogen-burning phase ("Main Sequence") Core Nuclear fusion Energy production ~10 Gyr

Prof. Sundar Srinivasan - IRvA/UNAM

Prof. Sundar Srinivasan - IRyA/UNAM

Stellar Atmospheres: Lecture 1, 2020.04.01

Prof. Sundar Srinivasan - IRyA/UNAM

The "envelope" is mostly invisible to us (opaque).

Main Sequence: hydrostatic equilibrium (pressure gradient balances gravity).

Fusion energy transported outward by either radiation or convection, depending on which one dominates. In evolved giants, convection also transports products of fusion ("dredge-up" processes).

 $R_{\odot} \approx 7 \times 10^8$ m; $t_{\rm cross} \equiv ??$ light-seconds,

Stellar Atmospheres: Lecture 1, 2020.04.01

Prof. Sundar Srinivasan - IRyA/UNAM

The "envelope" is mostly invisible to us (opaque).

Main Sequence: hydrostatic equilibrium (pressure gradient balances gravity).

Fusion energy transported outward by either radiation or convection, depending on which one dominates. In evolved giants, convection also transports products of fusion ("dredge-up" processes).

 $\begin{array}{l} R_\odot\approx 7\times 10^8 \text{ m};\\ t_{\rm cross}\equiv \ref{eq:tross} \\ \text{but opaque interior means photon}\\ \text{mean free path (typical distance}\\ \text{between simultaneous interactions) is}\\ \text{small. Photons can spend} \sim Myr in\\ \text{the interior before they reach the}\\ \text{surface, if at all.} \end{array}$

Prof. Sundar Srinivasan - IRvA/UNAM

What is a stellar atmosphere?

Stellar atmosphere:

"[T]ransition from stellar interior to the interstellar medium" – Gray
"[L]ayers of the star from which we get radiation" – E. Böhm-Vitense
"[L]ayers... from which photons
escape freely into space, and can be measured by an outside observer" – I.
Hubeny & D. Mihalas

Photosphere: defined as the radius at which **optical depth** is approximately unity (transition from opaque to transparent), or where photon escape probability is 0.5.

Mean free path increases drastically. Last interaction with material before photons escape.

Prof. Sundar Srinivasan - IRvA/UNAM

What is a stellar atmosphere?

The temperature drops drastically in the photosphere (then rises again).

Knowing the temperature, pressure, density, etc. in the atmosphere, we can identify the regions from which we expect various species of material to emit/absorb.

We can also study the variation of chemical composition over the atmosphere, as well as the distribution of ions of a given species.

Prof. Sundar Srinivasan - IRyA/UNAM

 $R_\odot=7 imes 10^8$ m. Solar photosphere ~ 100 km thick (pprox 0.02%). Density also very low.

"Why... would anyone want to study stellar atmospheres? They contain only about 10^{-10} of the mass of a star. Surely such a negligible fraction of its mass cannot affect its overall structure and evolution!"

- E. Salpeter

Radiation major source of information in astronomy!! The atmosphere is the only region of a star from which we observe photons. Indirect information about interior. Stars are typically point objects!

For more discussion, see Hubeny & Mihalas pages 16-19.

Prof. Sundar Srinivasan - IRyA/UNAM

- Radiation major source of information in astronomy!! The atmosphere is the only region of a star from which we observe photons. Indirect information about interior. Stars are typically point objects!
- Radiation information allows comparison of observational proxies (magnitudes, colours, equivalent widths) to model parameters (luminosity, temperature, density, chemical composition). Can thus connect to evolutionary stage as well.

For more discussion, see Hubeny & Mihalas pages 16-19.

- Radiation major source of information in astronomy!! The atmosphere is the only region of a star from which we observe photons. Indirect information about interior. Stars are typically point objects!
- Radiation information allows comparison of observational proxies (magnitudes, colours, equivalent widths) to model parameters (luminosity, temperature, density, chemical composition). Can thus connect to evolutionary stage as well.
- In evolved giants (red supergiants, asymptotic giants), subsequent evolution of the star driven not by fusion but by rapid mass loss from atmosphere in stellar winds!

For more discussion, see Hubeny & Mihalas pages 16-19.

- Radiation major source of information in astronomy!! The atmosphere is the only region of a star from which we observe photons. Indirect information about interior. Stars are typically point objects!
- Radiation information allows comparison of observational proxies (magnitudes, colours, equivalent widths) to model parameters (luminosity, temperature, density, chemical composition). Can thus connect to evolutionary stage as well.
- In evolved giants (red supergiants, asymptotic giants), subsequent evolution of the star driven not by fusion but by rapid mass loss from atmosphere in stellar winds!

For more discussion, see Hubeny & Mihalas pages 16-19.

Before analysing stellar atmospheres, let's review some basic concepts...

The power output per unit area per unit frequency (or wavelength) interval is called the flux density. Confusingly, it is often abbreviated as "flux".

Depending on whether we are computing it per unit frequency or wavelength, it is represented by F_{ν} or F_{λ} respectively. Relation between them (due to relation between ν and λ): $\nu F_{\nu} = \lambda F_{\lambda}$.

The SI unit for F_{ν} is W m⁻² Hz⁻¹. A derived unit convenient to describe the observed stellar flux densities is the Jansky (Jy): 1 Jy = 10⁻²⁶ W m⁻² Hz⁻¹.

The integrated flux is the total amount of energy per unit area per unit time obtained over the entire range of frequencies (or wavelengths) from a given source: $F = \int_{0}^{\infty} F_{\nu} d\nu = \int_{0}^{\infty} F_{\lambda} d\lambda$

Energy content (e.g., brightness, flux density) as a function of either frequency or wavelength.

Credit: Fraknoi, Morrison, Wolff/OpenStax CNX, CC BY 4.0

Credit: SDSS SkyServer

Review: spectra

Energy content (e.g., brightness, flux density) as a function of either frequency or wavelength.

Astronomical spectra can contain a continuum overlaid with sharp lines or broad features in emission or absorption.

Credit: Fraknoi, Morrison, Wolff/OpenStax CNX, CC BY 4.0

Credit: SDSS SkyServer

Review: spectra

Energy content (e.g., brightness, flux density) as a function of either frequency or wavelength.

Astronomical spectra can contain a continuum overlaid with sharp lines or broad features in emission or absorption.

If $\Delta \lambda$ = difference in wavelength between two consecutive wavelengths in a spectrum, then the (wavelength) resolution at λ is $R(\lambda) = \lambda/\Delta \lambda$.

Credit: Fraknoi, Morrison, Wolff/OpenStax CNX, CC BY 4.0

Credit: SDSS SkyServer

Review: spectra

Energy content (e.g., brightness, flux density) as a function of either frequency or wavelength.

Astronomical spectra can contain a continuum overlaid with sharp lines or broad features in emission or absorption.

If $\Delta \lambda$ = difference in wavelength between two consecutive wavelengths in a spectrum, then the (wavelength) resolution at λ is $R(\lambda) = \lambda/\Delta \lambda$.

 $R(\lambda) \sim 10^4 - 10^5$ for high-resolution optical spectra (e.g., CRIRES on the VLT). Decreases in general with increasing λ (depends on instrumentation).

Credit: Fraknoi, Morrison, Wolff/OpenStax CNX, CC BY 4.0

Credit: SDSS SkyServer

Prof. Sundar Srinivasan - IRyA/UNAM

The spectrum for a blackbody at temperature T is specified by its intensity (power emitted per unit area per unit frequency per unit solid angle):

$$B_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{\exp\left[\frac{h\nu}{kT}\right] - 1} = \frac{2hc}{\lambda^3} \frac{1}{\exp\left[\frac{hc}{\lambda kT}\right] - 1}, \text{ and } B_{\lambda} = \nu B_{\nu}/\lambda = \frac{2hc}{\lambda^5} \frac{1}{\exp\left[\frac{hc}{\lambda kT}\right] - 1}$$

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト ・ 母 ト ・ 目 ト ・ 目 ・ りへの

The spectrum for a blackbody at temperature T is specified by its intensity (power emitted per unit area per unit frequency per unit solid angle):

$$B_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{\exp\left[\frac{h\nu}{kT}\right] - 1} = \frac{2hc}{\lambda^3} \frac{1}{\exp\left[\frac{hc}{\lambda kT}\right] - 1}, \text{ and } B_{\lambda} = \nu B_{\nu}/\lambda = \frac{2hc}{\lambda^5} \frac{1}{\exp\left[\frac{hc}{\lambda kT}\right] - 1}$$

Wien's Displacement Law: $\lambda_{\text{peak}} = b/T$ λ_{peak} depends only on T (hotter = bluer). $b = 2898 \ \mu\text{m K}$ for $\lambda_{\text{peak}}(B_{\lambda})$ $b = 5099 \ \mu\text{m K}$ for $\lambda_{\text{peak}}(B_{\nu})$

Prof. Sundar Srinivasan - IRyA/UNAM

▲日 → ▲団 → ▲目 > ▲目 > ▲目 > ▲目 >

The spectrum for a blackbody at temperature T is specified by its intensity (power emitted per unit area per unit frequency per unit solid angle):

$$B_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{\exp\left[\frac{h\nu}{kT}\right] - 1} = \frac{2hc}{\lambda^3} \frac{1}{\exp\left[\frac{hc}{\lambda kT}\right] - 1}, \text{ and } B_{\lambda} = \nu B_{\nu}/\lambda = \frac{2hc}{\lambda^5} \frac{1}{\exp\left[\frac{hc}{\lambda kT}\right] - 1}$$

Wien's Displacement Law: $\lambda_{\text{peak}} = b/T$ λ_{peak} depends only on T (hotter = bluer). $b = 2898 \ \mu\text{m K}$ for $\lambda_{\text{peak}}(B_{\lambda})$ $b = 5099 \ \mu\text{m K}$ for $\lambda_{\text{peak}}(B_{\nu})$

Example: For a 2400 K blackbody,

Prof. Sundar Srinivasan - IRyA/UNAM

・ロッ・雪・・雪・・ 雪・ うすう

The spectrum for a blackbody at temperature T is specified by its intensity (power emitted per unit area per unit frequency per unit solid angle):

$$B_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{\exp\left[\frac{h\nu}{kT}\right] - 1} = \frac{2hc}{\lambda^3} \frac{1}{\exp\left[\frac{hc}{\lambda kT}\right] - 1}, \text{ and } B_{\lambda} = \nu B_{\nu}/\lambda = \frac{2hc}{\lambda^5} \frac{1}{\exp\left[\frac{hc}{\lambda kT}\right] - 1}$$

Wien's Displacement Law: $\lambda_{\text{peak}} = b/T$ λ_{peak} depends only on T (hotter = bluer). $b = 2898 \ \mu\text{m}$ K for $\lambda_{\text{peak}}(B_{\lambda})$ $b = 5099 \ \mu\text{m}$ K for $\lambda_{\text{peak}}(B_{\nu})$ Example: For a 2400 K blackbody, $\lambda_{\text{peak}}(B_{\lambda}) = 2898/2400 = 1.21 \ \mu\text{m},$ $\lambda_{\text{peak}}(B_{\nu}) = 5099/2400 = 2.13 \ \mu\text{m}.$

Prof. Sundar Srinivasan - IRyA/UNAM

The spectrum for a blackbody at temperature T is specified by its intensity (power emitted per unit area per unit frequency per unit solid angle):

$$B_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{\exp\left[\frac{h\nu}{kT}\right] - 1} = \frac{2hc}{\lambda^3} \frac{1}{\exp\left[\frac{hc}{\lambda kT}\right] - 1}, \text{ and } B_{\lambda} = \nu B_{\nu}/\lambda = \frac{2hc}{\lambda^5} \frac{1}{\exp\left[\frac{hc}{\lambda kT}\right] - 1}$$

Wien's Displacement Law: $\lambda_{\text{peak}} = b/T$ λ_{peak} depends only on T (hotter = bluer). $b = 2898 \ \mu\text{m}$ K for $\lambda_{\text{peak}}(B_{\lambda})$ $b = 5099 \ \mu\text{m}$ K for $\lambda_{\text{peak}}(B_{\nu})$ Example: For a 2400 K blackbody, $\lambda_{\text{peak}}(B_{\lambda}) = 2898/2400 = 1.21 \ \mu\text{m},$ $\lambda_{\text{peak}}(B_{\nu}) = 5099/2400 = 2.13 \ \mu\text{m}.$

Stefan-Boltzmann Law

Integrated intensity (radiance) = $\int_{0}^{\infty} d\nu B_{\nu}(\nu) = \frac{\sigma}{\pi} T^{4}$,

 $(\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ is the Stefan-Boltzmann constant).

Integrated power for radius $R : 4\pi R^2 \sigma T^4$ (depends only on R and T).

Study spectral lines \Rightarrow Physical properties of sources. Need to remove continuum first.

Prof. Sundar Srinivasan - IRyA/UNAM

Study spectral lines \Rightarrow Physical properties of sources. Need to remove continuum first.

Wavelength resolution decreases \Rightarrow peak intensity reduces, feature broadens.

(also, increased uncertainty in location of peak intensity)

Study spectral lines \Rightarrow Physical properties of sources. Need to remove continuum first.

Wavelength resolution decreases \Rightarrow peak intensity reduces, feature broadens.

(also, increased uncertainty in location of peak intensity)

Less drastic effect on the total energy in the feature. Define a measure of the fraction of energy within the feature w.r.t. the continuum:

$$EQW = \int d\lambda \left(\frac{F_{\text{cont}} - F_{\lambda}}{F_{\text{cont}}}\right) = \int d\lambda \left(1 - \frac{F_{\lambda}}{F_{\text{cont}}}\right)$$

This is the equivalent width – the width that the line would have if it removed all the flux from the continuum. (What about emission?)

Study spectral lines \Rightarrow Physical properties of sources. Need to remove continuum first.

Wavelength resolution decreases \Rightarrow peak intensity reduces, feature broadens.

(also, increased uncertainty in location of peak intensity)

Less drastic effect on the total energy in the feature. Define a measure of the fraction of energy within the feature w.r.t. the continuum:

$$EQW = \int d\lambda \left(\frac{F_{\rm cont} - F_{\lambda}}{F_{\rm cont}}\right) = \int d\lambda \left(1 - \frac{F_{\lambda}}{F_{\rm cont}}\right)$$

This is the equivalent width – the width that the line would have if it removed all the flux from the continuum. (What about emission?)

When you have terrible resolution, use the equivalent width.

Note: determining the continuum is not always easy. Wrong guess for continuum \Rightarrow wrong estimate of line \Rightarrow wrong guess for physical parameters!

If we're only interested in a particular range $[\lambda_1, \lambda_2]$ of the spectrum, we can use a top-hat filter in our observational setup to only accept photons with $\lambda_1 \leq \lambda \leq \lambda_2$.

Prof. Sundar Srinivasan - IRyA/UNAM

If we're only interested in a particular range $[\lambda_1, \lambda_2]$ of the spectrum, we can use a top-hat filter in our observational setup to only accept photons with $\lambda_1 \leq \lambda \leq \lambda_2$.

The filter allows all photons with $\lambda_1 \leq \lambda \leq \lambda_2$ to pass through to the detector, which in turn returns either the total number of photons ("photon counter") or their total energy ("energy counter").

The total flux $F_{\rm total}$ thus obtained is a weighted average with weight 1 if λ inside $[\lambda_1,\lambda_2]$ and 0 if not. To convert $F_{\rm total}$ into a flux density, divide it by the bandwidth $\Delta\lambda=\lambda_2-\lambda_1$ of the filter.

If we're only interested in a particular range $[\lambda_1, \lambda_2]$ of the spectrum, we can use a top-hat filter in our observational setup to only accept photons with $\lambda_1 \leq \lambda \leq \lambda_2$.

The filter allows all photons with $\lambda_1 \leq \lambda \leq \lambda_2$ to pass through to the detector, which in turn returns either the total number of photons ("photon counter") or their total energy ("energy counter").

The total flux $F_{\rm total}$ thus obtained is a weighted average with weight 1 if λ inside $[\lambda_1,\lambda_2]$ and 0 if not. To convert $F_{\rm total}$ into a flux density, divide it by the bandwidth $\Delta\lambda=\lambda_2-\lambda_1$ of the filter.

Each F_{λ} in the spectrum is associated with a value of λ . The weighted-average flux density $F_{\lambda,top-hat}$ should be associated with a single λ value, a reference wavelength for the filter. For the top hat, we can set this to be the central wavelength.

If we're only interested in a particular range $[\lambda_1, \lambda_2]$ of the spectrum, we can use a top-hat filter in our observational setup to only accept photons with $\lambda_1 \leq \lambda \leq \lambda_2$.

The filter allows all photons with $\lambda_1 \leq \lambda \leq \lambda_2$ to pass through to the detector, which in turn returns either the total number of photons ("photon counter") or their total energy ("energy counter").

The total flux $F_{\rm total}$ thus obtained is a weighted average with weight 1 if λ inside $[\lambda_1,\lambda_2]$ and 0 if not. To convert $F_{\rm total}$ into a flux density, divide it by the bandwidth $\Delta\lambda=\lambda_2-\lambda_1$ of the filter.

Each F_{λ} in the spectrum is associated with a value of λ . The weighted-average flux density $F_{\lambda,top-hat}$ should be associated with a single λ value, a reference wavelength for the filter. For the top hat, we can set this to be the central wavelength.

We have just performed **photometry**! – we collected light over a range of wavelengths and computed a weighted-average flux density for that range.

A top-hat filter assigns equal weights to all photons with λ inside the filter's bandwidth. That is, it has a flat response within the bandwidth. In general, broadband filters used in astronomy and photography do not have flat responses.

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト ・ 母 ト ・ 目 ト ・ 目 ・ つへの

A top-hat filter assigns equal weights to all photons with λ inside the filter's bandwidth. That is, it has a flat response within the bandwidth. In general, broadband filters used in astronomy and photography do not have flat responses.

For instance, the responses for the popular Johnson *UBVRI* filters are shown to the left. *U*: "ultraviolet" *B*: "blue", *V*: "visual", *R*: "red", *I*: "infrared".

・ロ・・ 白・・ 川・・ 山・・ 白・ くりゃく

A top-hat filter assigns equal weights to all photons with λ inside the filter's bandwidth. That is, it has a flat response within the bandwidth. In general, broadband filters used in astronomy and photography do not have flat responses.

For instance, the responses for the popular Johnson *UBVRI* filters are shown to the left. *U*: "ultraviolet" *B*: "blue", *V*: "visual", *R*: "red", *I*: "infrared".

The "response" depends on the filter/detector combination.

If, e.g., it detects photons by generating an electric current, the response has units electrons photons⁻¹ (photon counter) or electrons energy⁻¹ (energy counter).

A top-hat filter assigns equal weights to all photons with λ inside the filter's bandwidth. That is, it has a flat response within the bandwidth. In general, broadband filters used in astronomy and photography do not have flat responses.

For instance, the responses for the popular Johnson *UBVRI* filters are shown to the left. *U*: "ultraviolet" *B*: "blue", *V*: "visual", *R*: "red", *I*: "infrared".

The "response" depends on the filter/detector combination.

If, e.g., it detects photons by generating an electric current, the response has units electrons photons⁻¹ (photon counter) or electrons energy⁻¹ (energy counter).

The response per photon R_N can be easily converted to response per unit energy R_E : $R_E = R_N/E$, where $E = hc/\lambda = h\nu$.

The general formula for the broadband flux in a filter A is then given by

$$F_{\lambda}^{(A)} = rac{\int d\lambda \ R_E^{(A)} \ F_{\lambda}}{\int d\lambda \ R_E^{(A)}}$$
, with $R_E^{(A)}$ a function of λ .

▲□ ▶ ▲□ ▶ ▲目 ▶ ▲目 ▶ ▲□ ● ● ● ●

The general formula for the broadband flux in a filter A is then given by

$$F_{\lambda}^{(A)} = rac{\int d\lambda \; R_E^{(A)} \; F_{\lambda}}{\int d\lambda \; R_E^{(A)}}$$
, with $R_E^{(A)}$ a function of λ .

A reference wavelength can be defined for each broadband filter in many ways. See <u>this document</u> for some definitions.

(日)(四)(四)(四)(四)(四)(四)

The general formula for the broadband flux in a filter A is then given by

$$F_{\lambda}^{(A)} = rac{\int d\lambda \ R_E^{(A)} \ F_{\lambda}}{\int d\lambda \ R_E^{(A)}}$$
, with $R_E^{(A)}$ a function of λ .

A reference wavelength can be defined for each broadband filter in many ways. See <u>this document</u> for some definitions.

For a source, we know the spectrum F_{λ} and we want to estimate the broadband flux in some filter \Rightarrow synthetic photometry.

Prof. Sundar Srinivasan - IRyA/UNAM

The general formula for the broadband flux in a filter A is then given by

$$F_{\lambda}^{(A)} = rac{\int d\lambda \ R_E^{(A)} \ F_{\lambda}}{\int d\lambda \ R_E^{(A)}}$$
, with $R_E^{(A)}$ a function of λ .

A reference wavelength can be defined for each broadband filter in many ways. See <u>this document</u> for some definitions.

For a source, we know the spectrum F_{λ} and we want to estimate the broadband flux in some filter \Rightarrow synthetic photometry.

Usually, we don't know the source spectrum and only have access to photometry! The filtering process reduces information. However, photometry in a large number of filters spectral energy distribution (SED), a *very* low resolution spectrum.

The flux observed by a terrestrial observed from a source at distance D falls off as $F_{\rm obs} = \frac{L}{4\pi D^2}$, where L is the total power emitted by the source (luminosity).

Prof. Sundar Srinivasan - IRyA/UNAM

▲日 > ▲団 > ▲目 > ▲目 > ▲回 > ▲回 > ▲回 > ▲回 > ▲回 > ▲

The flux observed by a terrestrial observed from a source at distance D falls off as $F_{\rm obs} = \frac{L}{4\pi D^2}$, where L is the total power emitted by the source (luminosity).

The response of the human eye is logarithmic (allowing input over a large dynamic range). Original classification of apparent brightnesses of the stars was therefore on a log scale.

The flux observed by a terrestrial observed from a source at distance D falls off as $F_{\rm obs} = \frac{L}{4\pi D^2}$, where L is the total power emitted by the source (luminosity).

The response of the human eye is logarithmic (allowing input over a large dynamic range). Original classification of apparent brightnesses of the stars was therefore on a log scale.

The apparent magnitude of a source in a broadband filter is defined as $m = -2.5 \log \left(\frac{F}{F_{\text{ref}}}\right)$, where F is the apparent flux density in that filter.

 F_{ref} is called the flux zero point for that filter, because m = 0 when $F = F_{ref}$. The value of F_{ref} depends on the choice of magnitude system.

The flux observed by a terrestrial observed from a source at distance D falls off as $F_{\rm obs} = \frac{L}{4\pi D^2}$, where L is the total power emitted by the source (luminosity).

The response of the human eye is logarithmic (allowing input over a large dynamic range). Original classification of apparent brightnesses of the stars was therefore on a log scale.

The apparent magnitude of a source in a broadband filter is defined as $m = -2.5 \log \left(\frac{F}{F_{\text{ref}}}\right)$, where F is the apparent flux density in that filter.

 F_{ref} is called the flux zero point for that filter, because m = 0 when $F = F_{ref}$. The value of F_{ref} depends on the choice of magnitude system.

In the Vega magnitude system, originally $F_{\rm ref}$ was set to the flux from Vega (α Lyr) in that filter. The modern definition uses the average flux from a large number of nearby Vega-like stars. Two other popular magnitude systems are the AB and STMAG systems.

For more information, refer to Section 3 in <u>this document</u> by Prof. Jane Arthur and to <u>this document</u>.

Review: absolute magnitude and distance modulus

In order to compare the intrinsic brightnesses of various sources, we must remove the distance dependence.

Prof. Sundar Srinivasan - IRyA/UNAM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In order to compare the intrinsic brightnesses of various sources, we must remove the distance dependence.

The absolute magnitude $M^{(A)}$ of a source in a filter A is defined as the magnitude measured in that filter when the source is placed at D = 10 pc.

Review: absolute magnitude and distance modulus

In order to compare the intrinsic brightnesses of various sources, we must remove the distance dependence.

The absolute magnitude $M^{(A)}$ of a source in a filter A is defined as the magnitude measured in that filter when the source is placed at D = 10 pc.

$$F_{\rm obs}^{(A)} = rac{L^{(A)}}{4\pi D^2} = rac{L^{(A)}}{4\pi (10 \ {
m pc})^2 \left(rac{D}{10 \ {
m pc}}
ight)^2}$$

Prof. Sundar Srinivasan - IRyA/UNAM

Review: absolute magnitude and distance modulus

In order to compare the intrinsic brightnesses of various sources, we must remove the distance dependence.

The absolute magnitude $M^{(A)}$ of a source in a filter A is defined as the magnitude measured in that filter when the source is placed at D = 10 pc.

$$\begin{aligned} F_{\rm obs}^{(A)} &= \frac{L^{(A)}}{4\pi D^2} = \frac{L^{(A)}}{4\pi (10 \text{ pc})^2 \left(\frac{D}{10 \text{ pc}}\right)^2} \\ m^{(A)} &= -2.5 \log\left(\frac{F_{\rm obs}^{(A)}}{F_{\rm ref}}\right) = -2.5 \log\left(\frac{L^{(A)}}{4\pi (10 \text{ pc})^2}\right) + 5 \log\left(\frac{D}{10 \text{ pc}}\right) \end{aligned}$$

In order to compare the intrinsic brightnesses of various sources, we must remove the distance dependence.

The absolute magnitude $M^{(A)}$ of a source in a filter A is defined as the magnitude measured in that filter when the source is placed at D = 10 pc.

$$\begin{split} F_{\rm obs}^{(A)} &= \frac{L^{(A)}}{4\pi D^2} = \frac{L^{(A)}}{4\pi (10 \text{ pc})^2 \left(\frac{D}{10 \text{ pc}}\right)^2} \\ m^{(A)} &= -2.5 \log \left(\frac{F_{\rm obs}^{(A)}}{F_{\rm ref}}\right) = -2.5 \log \left(\frac{L^{(A)}}{4\pi (10 \text{ pc})^2}\right) + 5 \log \left(\frac{D}{10 \text{ pc}}\right) \end{split}$$

 $m^{(A)} = M^{(A)} + \mu$, where μ is the distance modulus. $M^{(A)}$ depends only on the source properties, and μ depends only on its distance.

