

Stellar Atmospheres: Lecture 8, 2020.05.15

Prof. Sundar Srinivasan

IRyA/UNAM

Prof. Sundar Srinivasan - IRvA/UNAM

Continuum opacities

References:

- Hubeny & Mihalas Chapter 5;
- Collins, The Fundamentals of Stellar Astrophysics, Chapter 13, 14;
- Rybicki & Lightman Chapter 3;
- Gray Chapter 8, 11.
- Aller Chapter 5, 6.

- Free-free transitions (Bremsstrahlung)
- Bound-free transitions (photoionisation)
- Hydride ion photodissociation
- Electron scattering
- Molecular dissociation

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト・西ト・ヨト・ヨー もんの

- Free-free transitions (Bremsstrahlung)
- Bound-free transitions (photoionisation)
- Hydride ion photodissociation
- Electron scattering
- Molecular dissociation

Dominant continuum absorption sources in stars of various types:

asan IRvA / UNAM

- Free-free transitions (Bremsstrahlung)
- Bound-free transitions (photoionisation)
- Hydride ion photodissociation
- Electron scattering
- Molecular dissociation

Dominant continuum absorption sources in stars of various types:

O stars: electron scattering, He photoionisation.

Prof. Sundar Srinivasan - IRyA/UNAM

- Free-free transitions (Bremsstrahlung)
- Bound-free transitions (photoionisation)
- Hydride ion photodissociation
- Electron scattering
- Molecular dissociation

Dominant continuum absorption sources in stars of various types:

- O stars: electron scattering, He photoionisation.
- A, B stars: H photoionisation, free-free.

- Free-free transitions (Bremsstrahlung)
- Bound-free transitions (photoionisation)
- Hydride ion photodissociation
- Electron scattering
- Molecular dissociation

Dominant continuum absorption sources in stars of various types:

- O stars: electron scattering, He photoionisation.
- A, B stars: H photoionisation, free-free.
- Sun-like stars: hydride ion.

(ロ > A B > A E > A E > A B > A (や

- Free-free transitions (Bremsstrahlung)
- Bound-free transitions (photoionisation)
- Hydride ion photodissociation
- Electron scattering
- Molecular dissociation

Dominant continuum absorption sources in stars of various types:

- O stars: electron scattering, He photoionisation.
- A, B stars: H photoionisation, free-free.
- Sun-like stars: hydride ion.
- Cooler stars: photodissociation of molecules, line blanketing.

- Free-free transitions (Bremsstrahlung)
- Bound-free transitions (photoionisation)
- Hydride ion photodissociation
- Electron scattering
- Molecular dissociation

Dominant continuum absorption sources in stars of various types:

- O stars: electron scattering, He photoionisation.
- A, B stars: H photoionisation, free-free.
- Sun-like stars: hydride ion.
- Cooler stars: photodissociation of molecules, line blanketing.

Hydrogen-related processes dominant source of absorption for B–K stars.

(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.

Prof. Sundar Srinivasan - IRyA/UNAM

▲ロ ▶ ▲ □ ▶ ▲ 三 ▶ ▲ 三 ● ● ● ●

(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.

Power spectrum of free-free emission if all electrons have same speed:

・ロット 4回ッ 4回ッ 4回ッ 4回ッ

(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.

Power spectrum of free-free emission if all electrons have same speed:

$$4\pi j_{\nu}^{ff} = \frac{dP(v,\nu)}{d\nu dV} = \frac{16\pi^2}{\sqrt{3}} \underbrace{\frac{e^2}{6\pi\epsilon_0 c^3} \left(\underbrace{\frac{ze^2}{4\pi\epsilon_0 m_e}}_{v} \right)^2}_{v} \times \frac{1}{v} \times n_e n_i \times g_{ff}(v,\nu). \qquad g_{ff} \text{ is the Gaunt Factor (QM correction).}}_{\infty \text{ accln. time}}$$

Larmor Power Formula

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト・日本・モート ヨー うえの

(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.

Power spectrum of free-free emission if all electrons have same speed:

$$4\pi j_{\nu}^{ff} = \frac{dP(v,\nu)}{d\nu dV} = \frac{16\pi^2}{\sqrt{3}} \underbrace{\frac{e^2}{6\pi\epsilon_0 c^3}}_{\text{Larmor Power Formula}} \begin{pmatrix} \frac{2e^2}{4\pi\epsilon_0 m_e} \\ \frac{v}{2} \\ \frac{v$$

Prof. Sundar Srinivasan - IRyA/UNAM

(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.

Power spectrum of free-free emission if all electrons have same speed:

$$4\pi j_{\nu}^{ff} = \frac{dP(v,\nu)}{d\nu dV} = \frac{16\pi^2}{\sqrt{3}} \underbrace{\frac{e^2}{6\pi\epsilon_0 c^3}}_{\text{Larmor Power Formula}} \underbrace{\left(\frac{2e^2}{4\pi\epsilon_0 m_e}\right)^2}_{\text{Carmor Power Formula}} \times n_e n_i \times g_{ff}(v,\nu). \qquad g_{ff} \text{ is the Gaunt Factor (QM correction).} \\ \text{For-rectaur Power Formula} \\ \text{Menzel & Pekeris 1935 MNRAS 96, 77: } g_{ff}(\nu,T) = 1 + 0.3456 \left(\frac{h\nu}{13.6\text{eV}}\right)^{1/3} \left[\frac{h\nu}{kT} + \frac{1}{2}\right] \\ \text{For-rectaur Power Formula} \\ \text{For the main Power Formula} \\ \text{For the formula} \\ \text{For t$$

Prof. Sundar Srinivasan - IRyA/UNAM

Stellar Atmospheres: Lecture 8, 2020.05.15

 $\lambda(\dot{A})$

(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.

Power spectrum of free-free emission if all electrons have same speed:

$$4\pi j_{\nu}^{ff} = \frac{dP(v,\nu)}{d\nu dV} = \frac{16\pi^2}{\sqrt{3}} \underbrace{\frac{e^2}{6\pi\epsilon_0 c^3}}_{\text{Larmor Power Formula}} \begin{pmatrix} \frac{zech}{2} \\ \frac{ze^2}{4\pi\epsilon_0 m_e} \end{pmatrix}^2 \times \underbrace{\frac{1}{v}}_{\infty} \times n_e n_i \times g_{ff}(v,\nu). \qquad g_{ff} \text{ is the Gaunt Factor (QM correction).} \\ \text{For th$$

 $\lambda(\dot{A})$

(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.

Power spectrum of free-free emission if all electrons have same speed:

$$4\pi j_{\nu}^{ff} = \frac{dP(v,\nu)}{d\nu dV} = \frac{16\pi^2}{\sqrt{3}} \underbrace{\frac{e^2}{6\pi\epsilon_0 c^3}}_{Larmor Power Formula} \begin{pmatrix} \frac{acch}{2e^2} \\ 4\pi\epsilon_0 m_e \end{pmatrix}^2 \times \underbrace{\frac{1}{v}}_{\infty} \times n_e n_i \times g_{ff}(v,\nu). \qquad g_{ff} \text{ is the Gaunt Factor (QM correction).} \\ \text{Dechead and the Power formula} \end{pmatrix}^{1/3} \begin{bmatrix} h\nu \\ kT \\ +1 \\ 2 \end{bmatrix}$$

Menzel & Pekeris 1935 MNRAS 96, 77: $g_{ff}(\nu, T) = 1 + 0.3456 \left(\frac{h\nu}{13.6\text{eV}}\right)^{1/3} \left[\frac{h\nu}{kT} + \frac{1}{2}\right]$

Electrons in thermal equilbrium, average over speed distribution.

Require minimum speed such that $\frac{1}{2}m_e v_{\min}^2 = h\nu$ (otherwise, no photon emitted):

Prof. Sundar Srinivasan - IRvA/UNAM

(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.

Power spectrum of free-free emission if all electrons have same speed:

$$4\pi j_{\nu}^{ff} = \frac{dP(v,\nu)}{d\nu dV} = \frac{16\pi^2}{\sqrt{3}} \underbrace{\frac{e^2}{6\pi\epsilon_0 c^3}}_{Larmor Power Formula} \underbrace{\left(\frac{Ze^2}{4\pi\epsilon_0 m_e}\right)^2}_{\textbf{x} \ accln. time} \underbrace{\frac{1}{v} \times n_e n_i \times g_{ff}(v,\nu)}_{\textbf{x} \ accln. time} \underbrace{\frac{F(v,\nu)}{Larmor Power Formula}}_{g_{ff}(v,\nu)} \underbrace{\frac{F(v,\nu)}{kT} + \frac{1}{2}}_{g_{ff}(v,\nu)} \underbrace{\frac{F(v,\nu)}{kT} + \frac{1}{2}}_{u_{\mu}(v,v)} \underbrace{\frac{F(v,\nu)}{kT} + \frac{1}{2}}_{u_{\mu}($$

^vmin

Prof. Sundar Srinivasan - IRyA/UNAN

(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.

Power spectrum of free-free emission if all electrons have same speed:

$$4\pi j_{\nu}^{ff} = \frac{dP(v,\nu)}{d\nu dV} = \frac{16\pi^2}{\sqrt{3}} \underbrace{\frac{e^2}{6\pi\epsilon_0 c^3}}_{V} \underbrace{\left(\frac{Ze^2}{4\pi\epsilon_0 m_e}\right)^2}_{\text{x accln. time}} \times n_e n_i \times g_{ff}(v,\nu). \qquad g_{ff} \text{ is the Gaunt Eactor (QM correction).}$$

$$Free Gaunt Decive (Manul & Pater 100)$$

$$Cauch time \\ Larmor Power Formula$$

$$Menzel \& Pekeris 1935 \text{ MNRAS 96, 77: } g_{ff}(\nu, T) = 1 + 0.3456 \left(\frac{h\nu}{13.6\text{eV}}\right)^{1/3} \left[\frac{h\nu}{kT} + \frac{1}{2}\right]$$

$$Fhermal Bremsstrahlung:$$
Electrons in thermal equilbrium, average over speed distribution.
Require minimum speed such that $\frac{1}{2}m_ev_{\min}^2 = h\nu$ (otherwise, no photon emitted):

$$\int_{v_{\min}}^{\infty} g_{ff}(v,\nu)v^{-1}4\pi \left(\frac{m_e}{2\pi kT}\right)^{3/2} v^2 \exp\left[-\frac{m_ev^2}{2kT}\right] dv \approx 2\sqrt{\frac{m_e}{2\pi kT}} \exp\left[-\frac{h\nu}{kT}\right] \overline{g_{ff}(T,\nu)}; \quad \overline{g_{ff}(T,\nu)} \sim 1-6.$$

$$f_{\nu}^{ff} = 4\frac{e^2}{6\pi\epsilon_0c^3} \left(\frac{Ze^2}{4\pi\epsilon_0m_e}\right)^2 \left(\frac{3kT}{2\pi m_e}\right)^{-1/2} e^{-h\nu/kT} n_e n_i \overline{g_{ff}(T,\nu)} = 5.4 \times 10^{-52} Z^2 n_e n_i T^{-1/2} e^{-h\nu/kT} \text{ W m}^{-3} \text{ Hz}^{-1}.$$

(Bremsstrahlung): Radiation from electron with speed v accelerated by ion.

Power spectrum of free-free emission if all electrons have same speed:

$$4\pi j_{\nu}^{\text{ff}} = \frac{dP(v,\nu)}{d\nu dV} = \frac{16\pi^2}{\sqrt{3}} \underbrace{e^2}_{6\pi\epsilon_0 c^3} \left(\underbrace{\frac{Ze^2}{4\pi\epsilon_0 m_e}}_{w_e target} \right)^2 \times \underbrace{\frac{1}{v}}_{v} \times n_e n_i \times g_{\text{ff}}(v,\nu). \qquad \text{gf} \text{ is the Gaut Factor (QM correction).} \\ \text{For an example to the set of the set o$$

Prof. Sundar Srinivasan - IRyA/UNAN

IRVA

(Inverse Bremsstrahlung): An electron in the field of an ion absorbs a photon and radiates.

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト・日本・山本・山本・ 日・ うらい

(Inverse Bremsstrahlung): An electron in the field of an ion absorbs a photon and radiates.

In thermal equilibrium, use Kirchhoff's Law: $j_{\nu} = \alpha_{\nu}B_{\nu}(T) \Longrightarrow$ for thermal Bremsstrahlung,

Prof. Sundar Srinivasan - IRyA/UNAM

(Inverse Bremsstrahlung): An electron in the field of an ion absorbs a photon and radiates.

In thermal equilibrium, use Kirchhoff's Law: $j_{\nu} = \alpha_{\nu} B_{\nu}(T) \Longrightarrow$ for thermal Bremsstrahlung, $\alpha_{\nu}^{ff} = \frac{j_{\nu}^{ff}}{B_{\nu}(T)} = 2 \frac{c^2}{h\nu^3} \frac{e^2}{6\pi\epsilon_0 c^3} \left(\frac{Ze^2}{4\pi\epsilon_0 m_e}\right)^2 \left(\frac{3kT}{2\pi m_e}\right)^{-1/2} \left(1 - e^{-h\nu/kT}\right) n_e n_i \overline{g_{ff}(T,\nu)}$

Prof. Sundar Srinivasan - IRyA/UNAM

(Inverse Bremsstrahlung): An electron in the field of an ion absorbs a photon and radiates.

In thermal equilibrium, use Kirchhoff's Law:
$$j_{\nu} = \alpha_{\nu} B_{\nu}(T) \Longrightarrow$$
 for thermal Bremsstrahlung,
 $\alpha_{\nu}^{\text{ff}} = \frac{j_{\nu}^{\text{ff}}}{B_{\nu}(T)} = 2 \frac{c^2}{h\nu^3} \frac{e^2}{6\pi\epsilon_0 c^3} \left(\frac{Ze^2}{4\pi\epsilon_0 m_e}\right)^2 \left(\frac{3kT}{2\pi m_e}\right)^{-1/2} \left(1 - e^{-h\nu/kT}\right) n_e n_i \overline{g_{\text{ff}}(T,\nu)}$
 $= 3.7 \times 10^{-2} T^{-1/2} Z^2 \underbrace{n_e n_i}_{\text{SI unitsl}} \nu^{-3} \left(1 - e^{-h\nu/kT}\right) \overline{g_{\text{ff}}(T,\nu)} \quad (\text{units: m}^{-1})$

Prof. Sundar Srinivasan - IRyA/UNAM

(Inverse Bremsstrahlung): An electron in the field of an ion absorbs a photon and radiates.

In thermal equilibrium, use Kirchhoff's Law:
$$j_{\nu} = \alpha_{\nu} B_{\nu}(T) \Longrightarrow$$
 for thermal Bremsstrahlung,
 $\alpha_{\nu}^{ff} = \frac{j_{\nu}^{ff}}{B_{\nu}(T)} = 2 \frac{c^2}{h\nu^3} \frac{e^2}{6\pi\epsilon_0 c^3} \left(\frac{Ze^2}{4\pi\epsilon_0 m_e}\right)^2 \left(\frac{3kT}{2\pi m_e}\right)^{-1/2} \left(1 - e^{-h\nu/kT}\right) n_e n_i \overline{g_{ff}(T,\nu)}$
 $= 3.7 \times 10^{-2} T^{-1/2} Z^2 \underbrace{n_e n_i}_{SI unitsl} \nu^{-3} \left(1 - e^{-h\nu/kT}\right) \overline{g_{ff}(T,\nu)}$ (units: m⁻¹)

Dominates over bound-free absorption when $h\nu \ll kT$

– either (a) $T\gtrsim 10^4$ K (so that $n_i>n_{
m neutral})$ or (b) low u (typically radio)

(Inverse Bremsstrahlung): An electron in the field of an ion absorbs a photon and radiates.

In thermal equilibrium, use Kirchhoff's Law:
$$j_{\nu} = \alpha_{\nu} B_{\nu}(T) \Longrightarrow$$
 for thermal Bremsstrahlung,
 $\alpha_{\nu}^{ff} = \frac{j_{\nu}^{ff}}{B_{\nu}(T)} = 2 \frac{c^2}{h\nu^3} \frac{e^2}{6\pi\epsilon_0 c^3} \left(\frac{Ze^2}{4\pi\epsilon_0 m_e}\right)^2 \left(\frac{3kT}{2\pi m_e}\right)^{-1/2} \left(1 - e^{-h\nu/kT}\right) n_e n_i \overline{g_{ff}(T,\nu)}$
 $= 3.7 \times 10^{-2} T^{-1/2} Z^2 \underbrace{n_e n_i}_{\text{SI units!}} \nu^{-3} \left(1 - e^{-h\nu/kT}\right) \overline{g_{ff}(T,\nu)} \quad (\text{units: m}^{-1})$

Dominates over bound-free absorption when $h\nu \ll kT$

– either (a) $T \gtrsim 10^4$ K (so that $n_i > n_{neutral}$) or (b) low ν (typically radio) In Rayleigh-Jeans regime, approximate relation:

$$1 - e^{-h\nu/kT} \approx \frac{h\nu}{kT} \Longrightarrow \alpha_{\nu}^{ff} \approx 1.8 \times 10^{-12} T^{-3/2} Z^2 \underbrace{\sum_{\substack{n_e n_i \ \nu \to \sigma}} e_{ff}(T, \nu)}_{\text{SI units!}}$$
(units: m⁻¹)

Electron in energy level *m* absorbs photon with $h\nu \ge h\nu_m \equiv IP_m = \frac{1}{2}\alpha^2 m_e c^2 \left(\frac{Z}{m}\right)^2$.

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト・日本・日本・日本・日本・今日で

Electron in energy level *m* absorbs photon with $h\nu \ge h\nu_m \equiv IP_m = \frac{1}{2}\alpha^2 m_e c^2 \left(\frac{Z}{m}\right)^2$.

$$\sigma_{\nu,m}^{bf} = \frac{64\pi}{3\sqrt{3}} \frac{m g_{bf}(\nu,m,\ell,Z)}{Z^2} \alpha a_0^2 \left(\frac{\nu_m}{\nu}\right)^3 \qquad (h\nu \ge h\nu_m)$$

 $\sigma^{bf}_{\nu,m}\sim Z^{-2}~m^{-5}~\nu^{-3};$ σ_{ν} is maximum at $\nu=\nu_m,$ maximum value $\propto mZ^{-2}$

Electron in energy level *m* absorbs photon with $h\nu \ge h\nu_m \equiv IP_m = \frac{1}{2}\alpha^2 m_e c^2 \left(\frac{Z}{m}\right)^2$.

$$\sigma_{\nu,m}^{bf} = \frac{64\pi}{3\sqrt{3}} \frac{m g_{bf}(\nu,m,\ell,Z)}{Z^2} \alpha a_0^2 \left(\frac{\nu_m}{\nu}\right)^3 \qquad (h\nu \ge h\nu_m)$$

 $\sigma^{bf}_{\nu,m}\sim Z^{-2}~m^{-5}~
u^{-3};$ $\sigma_{
u}$ is maximum at $u=
u_m$, maximum value $\propto mZ^{-2}$

From Menzel & Pekeris 1935 MNRAS 96, 77:

 $g_{bf,H}(\nu,m) = 1 - 0.3456 \left(\frac{h\nu}{lP_1}\right)^{1/3} \left[\frac{lP_m}{h\nu} - \frac{1}{2}\right]$

・ロット語・ (明マ) (日) (1)

Prof. Sundar Srinivasan - IRyA/UNAM

Electron in energy level *m* absorbs photon with $h\nu \ge h\nu_m \equiv IP_m = \frac{1}{2}\alpha^2 m_e c^2 \left(\frac{Z}{m}\right)^2$.

$$\sigma_{\nu,m}^{bf} = \frac{64\pi}{3\sqrt{3}} \frac{m g_{bf}(\nu, m, \ell, Z)}{Z^2} \alpha a_0^2 \left(\frac{\nu_m}{\nu}\right)^3 \qquad (h\nu \ge h\nu_m)$$

 $\sigma^{bf}_{\nu,m}\sim Z^{-2}~m^{-5}~
u^{-3};$ $\sigma_{
u}$ is maximum at $u=
u_m$, maximum value $\propto mZ^{-2}$

From Menzel & Pekeris 1935 MNRAS 96, 77:

$$g_{bf,H}(\nu,m) = 1 - 0.3456 \left(\frac{h\nu}{IP_1}\right)^{1/3} \left[\frac{IP_m}{h\nu} - \frac{1}{2}\right]$$

Bound-free contribution dominated by H and He due to abundance. H-poor stars: metals.

<ロ> < 団 > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < 〇へ〇</p>

Electron in energy level *m* absorbs photon with $h\nu \ge h\nu_m \equiv IP_m = \frac{1}{2}\alpha^2 m_e c^2 \left(\frac{Z}{m}\right)^2$.

$$\sigma_{\nu,m}^{bf} = \frac{64\pi}{3\sqrt{3}} \frac{m g_{bf}(\nu,m,\ell,Z)}{Z^2} \alpha a_0^2 \left(\frac{\nu_m}{\nu}\right)^3 \qquad (h\nu \ge h\nu_m)$$

 $\sigma^{bf}_{\nu,m} \sim Z^{-2} \ m^{-5} \ \nu^{-3}; \qquad \sigma_{\nu} \text{ is maximum at } \nu = \nu_m, \text{ maximum value} \propto mZ^{-2}$

From Menzel & Pekeris 1935 MNRAS 96, 77:

$$g_{bf,H}(\nu,m) = 1 - 0.3456 \left(\frac{h\nu}{lP_1}\right)^{1/3} \left[\frac{lP_m}{h\nu} - \frac{1}{2}\right]$$

Bound-free contribution dominated by H and He due to abundance. H-poor stars: metals.

Hydrogen-like species: HI, HeII, CVI, OVIII, \cdots tighter binding of e⁻ (energy levels $\propto Z^2$). Example: E(H, m = 1) = E(He, m = 2).

もくらう 加 ふかくがく 白マン

Photon emitted by free electron with KE E (speed v) when captured by ion. Excitation and deexcitation rates are connected by the Einstein Relations.

Photon emitted by free electron with KE E (speed v) when captured by ion. Excitation and deexcitation rates are connected by the Einstein Relations. Photoionisation and recombination rates \rightarrow Milne Relations.

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト・西・・川・・西・・日・

Photon emitted by free electron with KE E (speed v) when captured by ion. Excitation and deexcitation rates are connected by the Einstein Relations. Photoionisation and recombination rates \rightarrow Milne Relations.

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト・西・・川・・西・・日・

Photon emitted by free electron with KE E (speed v) when captured by ion. Excitation and deexcitation rates are connected by the Einstein Relations. Photoionisation and recombination rates \rightarrow Milne Relations.

Use detailed balance to connect the recombination and photoionisation rates (per unit volume):

$$\underset{n_i n_e}{\text{distr. of } e^{-} \text{ speeds}} \underbrace{\operatorname{corr. tor stim. recomb.}}_{p_i n_e \sigma_{\nu}^{fb} vf(v) dv} = \frac{4\pi}{h\nu} n_0 \sigma_{\nu}^{bf} \left(1 - \exp\left[-\frac{h\nu}{kT}\right] \right) B_{\nu}(T) d_{\nu}$$

Photon emitted by free electron with KE E (speed v) when captured by ion. Excitation and deexcitation rates are connected by the Einstein Relations. Photoionisation and recombination rates \rightarrow Milne Relations.

Use detailed balance to connect the recombination and photoionisation rates (per unit volume):

$$\begin{array}{l} \text{distr. of } e^{-} \text{ speeds} \\ n_i n_e \ \sigma_{\nu}^{fb} \ v f(v) dv = \frac{4\pi}{h\nu} n_0 \ \sigma_{\nu}^{bf} \left(1 - \exp\left[-\frac{h\nu}{kT}\right] \right) B_{\nu}(T) \ d_{\nu} \\ \\ \Longrightarrow \ \sigma_{\nu}^{fb} = \sigma_{\nu}^{bf} \left[\frac{m_e c^2}{h\nu} \left(\frac{v}{c} \right)^2 \frac{g_e g_i}{2g_0} \right]^{-1} \\ \end{array}$$
 Milne Relation (σ_{ν}^{bf} known).

Prof. Sundar Srinivasan - IRyA/UNAM

Photon emitted by free electron with KE E (speed v) when captured by ion. Excitation and deexcitation rates are connected by the Einstein Relations. Photoionisation and recombination rates \rightarrow Milne Relations.

Use detailed balance to connect the recombination and photoionisation rates (per unit volume):

$$m_{i}n_{e} \sigma_{\nu}^{fb} vf(v) dv = \frac{4\pi}{h\nu} n_{0} \sigma_{\nu}^{bf} \left(1 - \exp\left[-\frac{h\nu}{kT}\right]\right) B_{\nu}(T) d_{\nu}$$

$$\implies \sigma_{\nu}^{fb} = \sigma_{\nu}^{bf} \left[\frac{m_{e}c^{2}}{h\nu} \left(\frac{v}{c}\right)^{2} \frac{g_{e}g_{i}}{2g_{0}}\right]^{-1} \quad \text{Milne Relation } (\sigma_{\nu}^{bf} \text{ known}).$$

For $H \to p + e$, $g_{0,m} = 2m^2$, $g_e = 2$, $g_i = 1$. Use $h\nu = h\nu_m + \frac{1}{2}m_ev^2$ and $h\nu_m = \frac{m_ec^2}{2m^2}\alpha^2 Z^2$: $\sigma^{fb} = \sigma^{bf} m^2 - \frac{\nu}{m_e}$

Prof. Sundar Srinivasan - IRyA/UNAM

Photon emitted by free electron with KE E (speed v) when captured by ion. Excitation and deexcitation rates are connected by the Einstein Relations. Photoionisation and recombination rates \rightarrow Milne Relations.

Use detailed balance to connect the recombination and photoionisation rates (per unit volume):

$$\begin{array}{l} \text{distr. of } e^{-} \text{ speeds} \\ n_{i}n_{e} \sigma_{\nu}^{fb} vf(v) dv = \frac{4\pi}{h\nu} n_{0} \sigma_{\nu}^{bf} \left(1 - \exp\left[-\frac{h\nu}{kT}\right]\right) B_{\nu}(T) d_{\nu} \\ \implies \sigma_{\nu}^{fb} = \sigma_{\nu}^{bf} \left[\frac{m_{e}c^{2}}{h\nu} \left(\frac{v}{c}\right)^{2} \frac{g_{e}g_{i}}{2g_{0}}\right]^{-1} \\ \end{array}$$
 Milne Relation $(\sigma_{\nu}^{bf} \text{ known}).$

For H \rightarrow p + e, $g_{0,m} = 2m^2, g_e = 2, g_i = 1$. Use $h\nu = h\nu_m + \frac{1}{2}m_ev^2$ and $h\nu_m = \frac{m_ec^2}{2m^2}\alpha^2 Z^2$:

$$\sigma_{\nu}^{fb} = \sigma_{\nu}^{bf} m^2 \frac{\nu}{\nu - \nu_m}$$

For $\nu \gtrsim 10\nu_m$, $\sigma_{\nu}^{fb} \approx m^2 \sigma_{\nu}^{bf}$. Diverges near ν_m (electrons with almost zero energy are easily captured).

Free-free emission dominates at high T. As T \downarrow , He and then H become neutral and $n_e \downarrow$.

Prof. Sundar Srinivasan - IRyA/UNAM

・ロット語・・聞・・ 聞・ ろくの

Free-free emission dominates at high T. As $T\downarrow$, He and then H become neutral and $n_e \downarrow$. Bound-free contribution from metals \downarrow despite their lower IPs because # energetic photons \downarrow .

Prof. Sundar Srinivasan - IRyA/UNAM

・ロット語 ・ 山 ・ 山 ・ 人 日 ・ クタの

Free-free emission dominates at high T. As T \downarrow , He and then H become neutral and $n_e \downarrow$. Bound-free contribution from metals \downarrow despite their lower IPs because # energetic photons \downarrow .

So what is the source of the Sun's opacity??

Free-free emission dominates at high T. As T \downarrow , He and then H become neutral and $n_e \downarrow$. Bound-free contribution from metals \downarrow despite their lower IPs because # energetic photons \downarrow .

So what is the source of the Sun's opacity??

 H^- ion.

Ground state: 1s² (singlet state). No bound excited state. Binding energy of 2nd e⁻: 0.75 eV (λ = 1.64µm, E/k = 8750 K).

Free-free emission dominates at high T. As $T\downarrow$, He and then H become neutral and $n_e \downarrow$. Bound-free contribution from metals \downarrow despite their lower IPs because # energetic photons \downarrow .

So what is the source of the Sun's opacity??

 H^- ion.

Ground state: $1s^2$ (singlet state). No bound excited state. Binding energy of $2^{nd} e^-$: 0.75 eV ($\lambda = 1.64 \mu m$, E/k = 8750 K). Significant bound-free and free-free contributions to the overall opacity in relatively cool stars.

Free-free emission dominates at high T. As T \downarrow , He and then H become neutral and $n_e \downarrow$. Bound-free contribution from metals \downarrow despite their lower IPs because # energetic photons \downarrow .

So what is the source of the Sun's opacity??

 H^- ion.

Ground state: $1s^2$ (singlet state). No bound excited state. Binding energy of $2^{nd} e^-$: 0.75 eV ($\lambda = 1.64 \mu m$, E/k = 8750 K). Significant bound-free and free-free contributions to the overall opacity in relatively cool stars.

Next up: opacity of H^- .

