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Rosseland Mean Opacity

In stellar interiors, (a) Iν isotropic (b) mean free path is tiny (c) τν very high (d) radiative equilibrium (e) LTE.

In stellar atmospheres, (a), (b) not true, (c), (d) not always true, (e) mostly a good approximation.

Compute moments of the RT equation, use (a)–(e) (assume µ = 1 for simplicity):

Hν ∝ Fν = constant, Kν = Iν/3, Iν = Bν (T )⇒ 4π
dIν

dτν
= Fν =⇒ Fν = 4π

dBν

dτν
.

Use dτν = −ανdr and the Chain Rule of differentiation: Fν = −4π
1

αν

∂Bν

∂T

dT

dr

Bolometric flux: F =

∞∫
0

Fνdν = −
dT

dr

∞∫
0

4π
1

αν

∂Bν

∂T
dν ≡ −

4π

αR

dT

dr

∞∫
0

∂Bν

∂T
dν =⇒ F = −

“conductivity”︷ ︸︸ ︷
16

3

σT 3

αR

dT

dr
,

where
1

αR

≡

∞∫
0

1

αν

∂Bν

∂T
dν

∞∫
0

∂Bν

∂T
dν

is the Rosseland Mean Opacity. κR can be similarly defined (multiply above definition by ρ).

The Rosseland Mean is frequency independent. More relevant to stellar interiors.
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Kramers’ Opacity Law

An opacity law typically relates the Rosseland Mean opacity to the density and temperature of
the medium.

κν ∝ ρT−3.5 (Kramers’ Law for free-free absorption)

κν ∝ ρ3/4T−3.5 (Schwarzschild’s opacity)

κν = constant (electron scattering)

Homework: Kramers’ Opacity Law – Compute the Rosseland Mean of κff
ν .

Corollary: whenever σν ∝ ν−3T−1/2, κR follows Kramers’ Opacity Law.

Free-free and bound-free opacities result in Kramers’ Law. Free-free: homework problem.

Bound-free:
At temperature T , only the ionisation stage with IP ≈ kT contributes to the opacity.

If IP � kT , already ionised at T . If IP � kT , not enough energetic photons available to ionise.

=⇒ dominant contribution only around IP ≈ kT .

Effective behaviour of αν is Kramer-like (∝ T−1/2).
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Hydride

Free-free emission dominates at high T . As T ↓, He and then H become neutral and ne ↓.

Bound-free contribution from metals ↓ despite their lower IPs because # energetic photons ↓.

The hydride ion is the main source of opacity in this temperature range.

Ground state: 1s2 (singlet). No bound excited state.

Binding energy of 2nd electron: 0.754 eV (λ = 1.64µm, E/k = 8650 K).

Significant bound-free and free-free contributions to overall opacity in relatively cool stars:

H− + γ � H + e (bound-free)

H− + γ + e � H− + e (free-free)

Source of electrons for H−: abundant metals with lower ionisation potentials than H:

Na (5.1 eV), Mg (7.6 eV), Al (6 eV), Si (8.2 eV), Fe (7.9 eV)
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Hydride opacity

T ≤ 104 K – gas partially ionised, free electrons can bind with neutral H. As T ↓ further, fewer
free electrons available to absorb photons and hence opacity decreases.

Gray Ch. 8 p. 155

Gray Ch. 8 p. 157

Doughty & Fraser 1966 MNRAS 132 (255, 267)
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Opacity vs. temperature

Carroll & Ostlie, An Introduction to Modern Astrophysics

Absorption increases with density at a given T .

For fixed ρ, as T ↑:
1 ne ↑→ steep ↑ in κ.

2 ≈ Kramers’ Law falloff due to ff and bf.

3 He fully ionised at T & 40000 K → small
bump in opacity.

4 Metals like Fe full ionised at T & 105 K
→ bump in opacity.

5 Opacity flattens at high T (Thomson
scattering).

108 < T (K) < 104: Inverse Thermal Bremsstrahlung (free-free absorption) and radiative recombination (bound-free
absorption) dominate. Both processes “Kramer-like”.

As T →, enough internal energy to ionise without assistance from photons; opacity ↓.
For T > 108 K, Thomson Scattering. Coherent, but change photon direction → opacity.

At even higher energies (T & 109 K) Compton Scattering. Decrease in photon energy →
opacity.
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Metals

Bound-free: dominant contribution from most
abundant metals with IPs ∼ few eV.

(Plot only includes neutral species)

Note Lyman Jump.

Rayleight scattering contribution non-negligible.

Böhm-Vitense Ch. 7 p. 84
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Putting it all together

Gray Ch. 8 p. 160-162

At T = 5413 K,
H− bound-free absorption
dominates.
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Gray Ch. 8 p. 160-162

At T = 6429 K,
H− bound-free and free-free
absorption dominates.
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Putting it all together

Gray Ch. 8 p. 160-162

At T = 7715 K,
Hi contribution starts to
increase.
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Putting it all together

Gray Ch. 8 p. 160-162

At T = 11752 K,
Hi dominates – significant
increase in absorption.
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Putting it all together

Böhm-Vitense Ch. 7, p. 85.

T = 28300 K (Main Seq.
B0), log pe = 2.5

Mostly He contribution in
the UV, H in the optical.

Electron scattering filling in
at 1000–4000 Å.
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Line Broadening
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Broad classification

1 Natural broadening (Quantum mechanical, Uncertainty Principle)

Degeneracy in discrete energy levels ∼ uncertainty in level energy

=⇒ lifetime of level ∼
~

∆E
∼ A21.

2 Doppler broadening
Thermal, turbulent, rotation, pulsation, mass loss, stellar winds.

3 EM perturbations
Approximations at two extremes: Rapid (collisions) vs. quasistatic (mean field)
Pressure broadening.

Alternative classification: width of broadening compared to mean free path `mfp ≡
1

nσ
=

1

α
.

1 Microscopic: ∆λ < `mfp Must be accounted for prior to radiative transfer.
Natural, pressure, thermal, microturbulent (winds).
Broadening applies to αν , jν .

2 Macroscopic: ∆λ > `mfp

Doesn’t affect radiative transfer. Only enters into the calculation of observed flux.
Rotation, macroturbulent (winds).
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Natural broadening

Two-level system with energy separation Ei − Ef (decay from state i to state f ).

Compare to radioactive decay. Prob. of decay ∝ exp [−t/τ ], where τ = half life.

Einstein Aij coefficient for i → j transition: lifetime of state i ∝ A−1
ij , finite.

=⇒ by the Uncertainty Principle, transition can result in photons with energies in range
∆E ∝ Aij around Ei − Ef .

Radiative lifetimes

ti =
1∑

j′<i

Aij′

; tj =
1∑

j′<j

Ajj′

=⇒ ∆νij ∝
∑
j′<i

Aij′ +
∑
j′<j

Ajj′ .

Damped simple harmonic oscillator, with ~ω0 = Ei − Ef and Γ = 2π∆ν.

System with natural frequency ω0 radiating at frequencies ω close to ω0.

Therefore, we expect a Lorentz Profile (see notes from Lecture 6).

σij (ν) =
4π2re c

3

1

(Γ/2)
φL(x)fij , with fij the oscillator strength for the transition and

x =
ν − ν0

(Γ/4π)
.

Stellar Atmospheres: Lecture 8, 2020.05.18

Prof. Sundar Srinivasan - IRyA/UNAM 12



Natural broadening

Two-level system with energy separation Ei − Ef (decay from state i to state f ).

Compare to radioactive decay. Prob. of decay ∝ exp [−t/τ ], where τ = half life.

Einstein Aij coefficient for i → j transition: lifetime of state i ∝ A−1
ij , finite.

=⇒ by the Uncertainty Principle, transition can result in photons with energies in range
∆E ∝ Aij around Ei − Ef .

Radiative lifetimes

ti =
1∑

j′<i

Aij′

; tj =
1∑

j′<j

Ajj′

=⇒ ∆νij ∝
∑
j′<i

Aij′ +
∑
j′<j

Ajj′ .

Damped simple harmonic oscillator, with ~ω0 = Ei − Ef and Γ = 2π∆ν.

System with natural frequency ω0 radiating at frequencies ω close to ω0.

Therefore, we expect a Lorentz Profile (see notes from Lecture 6).

σij (ν) =
4π2re c

3

1

(Γ/2)
φL(x)fij , with fij the oscillator strength for the transition and

x =
ν − ν0

(Γ/4π)
.

Stellar Atmospheres: Lecture 8, 2020.05.18

Prof. Sundar Srinivasan - IRyA/UNAM 12



Natural broadening

Two-level system with energy separation Ei − Ef (decay from state i to state f ).

Compare to radioactive decay. Prob. of decay ∝ exp [−t/τ ], where τ = half life.

Einstein Aij coefficient for i → j transition: lifetime of state i ∝ A−1
ij , finite.

=⇒ by the Uncertainty Principle, transition can result in photons with energies in range
∆E ∝ Aij around Ei − Ef .

Radiative lifetimes

ti =
1∑

j′<i

Aij′

; tj =
1∑

j′<j

Ajj′

=⇒ ∆νij ∝
∑
j′<i

Aij′ +
∑
j′<j

Ajj′ .

Damped simple harmonic oscillator, with ~ω0 = Ei − Ef and Γ = 2π∆ν.

System with natural frequency ω0 radiating at frequencies ω close to ω0.

Therefore, we expect a Lorentz Profile (see notes from Lecture 6).

σij (ν) =
4π2re c

3

1

(Γ/2)
φL(x)fij , with fij the oscillator strength for the transition and

x =
ν − ν0

(Γ/4π)
.

Stellar Atmospheres: Lecture 8, 2020.05.18

Prof. Sundar Srinivasan - IRyA/UNAM 12



Natural broadening

Two-level system with energy separation Ei − Ef (decay from state i to state f ).

Compare to radioactive decay. Prob. of decay ∝ exp [−t/τ ], where τ = half life.

Einstein Aij coefficient for i → j transition: lifetime of state i ∝ A−1
ij , finite.

=⇒ by the Uncertainty Principle, transition can result in photons with energies in range
∆E ∝ Aij around Ei − Ef .

Radiative lifetimes

ti =
1∑

j′<i

Aij′

; tj =
1∑

j′<j

Ajj′

=⇒ ∆νij ∝
∑
j′<i

Aij′ +
∑
j′<j

Ajj′ .

Damped simple harmonic oscillator, with ~ω0 = Ei − Ef and Γ = 2π∆ν.

System with natural frequency ω0 radiating at frequencies ω close to ω0.

Therefore, we expect a Lorentz Profile (see notes from Lecture 6).

σij (ν) =
4π2re c

3

1

(Γ/2)
φL(x)fij , with fij the oscillator strength for the transition and

x =
ν − ν0

(Γ/4π)
.

Stellar Atmospheres: Lecture 8, 2020.05.18

Prof. Sundar Srinivasan - IRyA/UNAM 12



Natural broadening

Two-level system with energy separation Ei − Ef (decay from state i to state f ).

Compare to radioactive decay. Prob. of decay ∝ exp [−t/τ ], where τ = half life.

Einstein Aij coefficient for i → j transition: lifetime of state i ∝ A−1
ij , finite.

=⇒ by the Uncertainty Principle, transition can result in photons with energies in range
∆E ∝ Aij around Ei − Ef .

Radiative lifetimes

ti =
1∑

j′<i

Aij′

; tj =
1∑

j′<j

Ajj′

=⇒ ∆νij ∝
∑
j′<i

Aij′ +
∑
j′<j

Ajj′ .

Damped simple harmonic oscillator, with ~ω0 = Ei − Ef and Γ = 2π∆ν.

System with natural frequency ω0 radiating at frequencies ω close to ω0.

Therefore, we expect a Lorentz Profile (see notes from Lecture 6).

σij (ν) =
4π2re c

3

1

(Γ/2)
φL(x)fij , with fij the oscillator strength for the transition and

x =
ν − ν0

(Γ/4π)
.

Stellar Atmospheres: Lecture 8, 2020.05.18

Prof. Sundar Srinivasan - IRyA/UNAM 12



Natural broadening

Two-level system with energy separation Ei − Ef (decay from state i to state f ).

Compare to radioactive decay. Prob. of decay ∝ exp [−t/τ ], where τ = half life.

Einstein Aij coefficient for i → j transition: lifetime of state i ∝ A−1
ij , finite.

=⇒ by the Uncertainty Principle, transition can result in photons with energies in range
∆E ∝ Aij around Ei − Ef .

Radiative lifetimes

ti =
1∑

j′<i

Aij′

; tj =
1∑

j′<j

Ajj′

=⇒ ∆νij ∝
∑
j′<i

Aij′ +
∑
j′<j

Ajj′ .

Damped simple harmonic oscillator, with ~ω0 = Ei − Ef and Γ = 2π∆ν.

System with natural frequency ω0 radiating at frequencies ω close to ω0.

Therefore, we expect a Lorentz Profile (see notes from Lecture 6).

σij (ν) =
4π2re c

3

1

(Γ/2)
φL(x)fij , with fij the oscillator strength for the transition and

x =
ν − ν0

(Γ/4π)
.

Stellar Atmospheres: Lecture 8, 2020.05.18

Prof. Sundar Srinivasan - IRyA/UNAM 12



Natural broadening

Two-level system with energy separation Ei − Ef (decay from state i to state f ).

Compare to radioactive decay. Prob. of decay ∝ exp [−t/τ ], where τ = half life.

Einstein Aij coefficient for i → j transition: lifetime of state i ∝ A−1
ij , finite.

=⇒ by the Uncertainty Principle, transition can result in photons with energies in range
∆E ∝ Aij around Ei − Ef .

Radiative lifetimes

ti =
1∑

j′<i

Aij′

; tj =
1∑

j′<j

Ajj′

=⇒ ∆νij ∝
∑
j′<i

Aij′ +
∑
j′<j

Ajj′ .

Damped simple harmonic oscillator, with ~ω0 = Ei − Ef and Γ = 2π∆ν.

System with natural frequency ω0 radiating at frequencies ω close to ω0.

Therefore, we expect a Lorentz Profile (see notes from Lecture 6).

σij (ν) =
4π2re c

3

1

(Γ/2)
φL(x)fij , with fij the oscillator strength for the transition and

x =
ν − ν0

(Γ/4π)
.

Stellar Atmospheres: Lecture 8, 2020.05.18

Prof. Sundar Srinivasan - IRyA/UNAM 12



Doppler Broadening

Emission observed at νobs from atom with mass m at (non-relativisitc) velocity vR .

Rest frequency νrest = ν(1− vR /c).

If velocity distribution of material is Maxwellian → thermal broadening.

σij (νobs) =

∞∫
−∞

σij (νrest) f (vR )dvR , where f (vR ) =
1
√
π

( m

2kT

)1/2
exp

[
−

mv2
R

2kT

]

Can modify above expression for microturbulence (if it is also distributed as a Maxwellian):

2kT

m
−→

2kT

m
+ v2

turb
(add most probable velocities in quadrature).

If σij (νrest) naturally broadened, σij (νobs) = convolution of Lorentz and Doppler profiles

= Voigt Profile.
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Doppler Broadening
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Voigt Profile

Convolution of Lorentz (natural or pressure broadening) and Gaussian (Doppler, microturbulent)
profiles.

σij (νobs) =

√
πre c

∆νD
fij H(a, u), with ∆νD =

ν0

c

√
2kT

m
, a =

Γ

4π∆νD
, and u =

ν − ν0

∆νD
.

Typically, the ratio of natural-to-Doppler broadening a ∼ 10−6 − 10−2.

Shape: Gaussian centre with damping
wings. Can be described by

H(a, u) ≈ e−u2
+

a
√
πu2
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