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Pressure broadening

Collins, The Fundamentals of Stellar Astrophysics

Broadening of energy levels due to EM interactions with
neighbours.

Interaction energy (and splitting) ∝ b−n (b = impact
parameter). Lower n→ stronger interaction.

Stark Effect: Line splitting due to external electric field.
Depending on interaction strength, can be linear (n = 2)
or quadratic (n = 4).

Compare tcoll to trad ∼ 1/(intrinsic energy level separation).

tcoll � trad → largest effect in core regions of line (shift) → impact theory.

Applies to non-degenerate levels (energy levels well separated).
Reasonable models for electron collisions.

Emission ”interrupted” by near-instantaneous collision→ phase shift/transition in line or to another atomic level.

Start/stop =⇒ frequency spread and shift of line centre.

Resulting profile still Lorentzian, but with modified Γ!

Lifetime of state reduced: Aij −→ Aij + Ye , where Ye = ne
〈
σ(ve )ve

〉
is the collision rate.

The electron velocities are typically Maxwellian.

tcoll � trad → largest effect on the wings (broadening) → quasi-static approximation.

Required to treat degenerate levels (energy separation very small).
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Line formation

Emergent flux at frequency ν always from layer that is at τν = 2/3.

Lower flux observed in absorption line because photons of that
frequency emitted from higher (and therefore cooler) layers.

T lower⇒ Bν (T ) lower, hence flux lower.

Line centre and line wings receive photons from different layers
in the atmosphere. As τ at line centre ↑, photons come from
further up in the atmosphere.

Corollary: Absorption lines cannot originate from a layer where
T ↑ with height.

General procedure to analyse line profiles (typically
numerical/computational):

1 Solve for Iν from the RT equation.

2 Compute the emergent flux in the line and, from the
same equation, compute the emergent continuum flux
by setting line opacities to zero.

3 Compute the residual flux and (if required) the
equivalent width.

Instructive results can be obtained for some semi-analytical

models with simplifying assumptions.
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Line profiles from the Milne-Eddington Equation
Assumptions (see discussion on validity, Hubeny & Mihalas p. 607):

1. Cross sections independent of depth in line-forming layer.

2. Optically thin line→ Bν varies linearly in layer: Bν (τν ) = aν + bντc = aν + bν
σext
c

σext
c + φνσ

ext
`

τν ≡ aν + cντν .

Set ξν =
φνσ

abs
` + σabs

c

φνσ
ext
`

+ σext
c

and ξc =
σabs
c

σext
c

. Milne-Eddington Equation: µ
dIν

dτν
= Iν − ξνBν − (1− ξν )Jν .

Take moments of the above RT equation, apply Eddington Approximation to solve for emergent flux (line and continuum):

=⇒ Hν (0) =
1

3

√
3ξνaν + cν

1 +
√
ξν

=⇒ Hc (0) =
1

3

√
3ξcaν + bν

1 +
√
ξc

; Residual flux Rν (0) =

√
3ξνaν + cν

1 +
√
ξν

1 +
√
ξc

√
3ξcaν + bν

Case 1. No scattering in continuum, pure scattering in line: ξν = 0 and cν =
bν

1 + φνσ
sca
`

/σabs
c

.

Strong scattering⇒ σsca
` /σabs

c →∞⇒ Rν (0)→ 0. The core of a strong scattering line is dark.

Photons continually removed from the column under consideration, and none survive for σsca
` /σabs

c →∞.

Case 2. No scattering in continuum, pure absorption in line: ξν = 1 and cν =
bν

1 + φνσ
abs
`

/σabs
c

.

Strong abs. ⇒ σabs
` /σabs

c →∞⇒ Rν (0)→
1

1 + bν/
√

3aν
. Core residual flux of a strong abs. line stays finite.

If no temperature gradient, bν = 0 and Rν (0) = 1 (line disappears).
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Recall: equivalent width

Define residual flux and absorption depth in the
continuum-divided spectrum.

Aν � 1 – “optically thin” line. Aν ≈ 1 – “optically thick”.

Measured values changes with resolution of observed spectrum.

Equivalent width is less sensitive to resolution.

EQW [Hz] =

∫
dν Aν (or) EQW [Å] =

∫
dλ Aλ

EQW =

∫
dν

(
1−

Fν

Fcont

)
=

∫
dν

(
1−

Iν

Icont

)

Line profile construction difficult at low resolution/for faint sources.

Compute EQW for estimates of relative abundances, Teff , and g .

How does EQW vary with abundance?

Curve of Growth – can be determined theoretically or empirically.
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Theoretical Curve of Growth

To analyse the dependence of EQW on n, consider a simple but instructive model: Absorption by a thin cold slab.

Emergent intensity: Iν = I0e
−τν , where τν = N1σ12H(a, u). N1 is the column density of absorbing atoms, and

H(a, u) =
a

π

∫
e−y2

dy

(u − y)2 + a2
≈

core︷ ︸︸ ︷
e−u2

+

wings︷ ︸︸ ︷
a
√
πu2

; u =
ν − ν0

∆νD
, a =

Γ

4π∆νD
, ∆νD =

ν0

c

√
2kT

m

Aν = 1− Iν/I0 = 1− e−τν ; EQW =

∫
Aνdν = ∆νD

∫
Aνdu.

Case 1. τν � 1. Aν ≈ τν ⇒ EQW ∝ τ0 ∝ N1. Linear regime.

Case 2. τν > 1, aτν < 1. Contribution to the integral only from the core, where τν . 1, where Aν ≈ 1 (saturation).

Define u1 such that τν (u1) = τ0e
−u2

1 = 1 =⇒ u1 =
√

ln τ0.

EQW = ∆νD

u1∫
−u1

τ0Aνdu ≈ ∆νD

u1∫
−u1

τ0du = 2∆νDu1 = 2∆νD
√

ln τ0. Saturation regime.

Case 3. aτν > 1. Core contribution is frozen, only the wing contribution ↑ with N. In the wings, H(a, u) =
a
√
πu2

.

Contribution only from u ∈ (−∞,−u2]
⋃

[u2,∞) such that τν (u) = τ0
a
√
πu2
≈ 1 =⇒ u2 ≈

√
aτ0
√
π

.

EQW = EQWcore + 2

∞∫
u2

τ0a
√
πu2

du =
2τ0a
√
πu2

=
2τ0a
√
π

√√
π

τ0a
∝ √τ0a ∝

√
N1. Damping or square-root regime.
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−u1
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ln τ0. Saturation regime.

Case 3. aτν > 1. Core contribution is frozen, only the wing contribution ↑ with N. In the wings, H(a, u) =
a
√
πu2

.

Contribution only from u ∈ (−∞,−u2]
⋃

[u2,∞) such that τν (u) = τ0
a
√
πu2
≈ 1 =⇒ u2 ≈

√
aτ0
√
π

.
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u2
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√
πu2
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√
πu2

=
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√
π

√√
π

τ0a
∝ √τ0a ∝

√
N1. Damping or square-root regime.
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Theoretical Curve of Growth (Milne-Eddington Model)

from Hubeny & Mihalas Ch 17

Curve of growth depends on damping factor a.

Note that saturation sets in around W ≈ ∆νD ,
and that wings start contributing when
βν ∼ a−1.

As a ↑, wings dominate faster.
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Empirical Curve of Growth

τν = N1σ12; here,
N1

N
=

g1

u(T )
exp

[
−

E1

kT

]
and σ12 =

√
πrec

2

ν0

√
m

2kT
f12

=⇒
g1f12

ν0

= τν
u(T )

N
exp

[
E1

kT

]√
2kT

m

1
√
πrec2

unknowns: T and N.

EQW ∝ ∆ν =⇒
EQW

ν0

∝

√
2kT

m

Plot
EQW

ν0

vs.
g1f12

ν0

and compare to theoretical curve.

Y axis:
EQW

∆νD
(theoretical) vs.

EQW

ν0

(empirical).

Comparing the two gives us constraints on the most probable velocity and hence Tex.

X axis: τν (theoretical) vs.
g1f12

ν0

(experimental).

Since Tex is known, comparing the two abscissae gives us N.
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