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The Eddington-Milne Model, redux

Eddington-Barbier Relation for the emergent flux: Fν (0) = πS(τν = 2/3).
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It is common to set σsca
c = 0 in this model. Pure scattering line: σabs

` = 0. Pure absorption line: σsca
` = 0 .

The flux at every frequency in the line originates at the corresponding τν = 2/3 layer, so τc (ν) =
2/3

1 + βν

Line center: βν � 1⇒ τc (ν0)� 1. Lorentzian wings: βν � 1⇒ τc ≈ 2/3. τc ∈ [0, 2/3] over entire range.

In the line center, all of the continuum photons deeper than the τc ≈ 0 layer are absorbed/scattered.

In the wings, we can see deeper in the atmosphere, up to the τc = 2/3 layer. Procedure for determining curve of growth:

1 compute βν for each ν.

2 compute τc using βν .

3 compute Sν (τc = 2/3/(1 + βν )) and therefore the emergent line flux Fν .

4 compute Sν (τc = 2/3) and therefore the emergent continuum flux Fc .

5 compute EQW .
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Departure from Local Thermodynamic Equilibrium

Densities in the stellar interior high enough that photons and gas in equilibrium. Near surface – photons escape

⇒ distribution of photon energies departs from TDE value. Collision rate still high, so particles in TDE.

In uppermost atmosphere – low density means particles also not in TDE.

Populations no longer follow Maxwell-Boltzmann, Boltzmann, and Saha distributions.

Electrons are the last ingredients to be affected by departure from LTE – they undergo many more collisions than ions,
have much higher equilibrium speeds, and have much lower mfp than photons. ⇒ we can ignore atom-atom collisions in favour
of atom-electron collisions.

Statistical equilibrium still possible. However, need to know: rates of (de)excitation for each level in each species due to
radiation and collisions with itself as well as other species in the gas. Requires simplifying assumptions. Start with gas near LTE.

LTE: gas characterised by a single parameter (T ). Regardless of atomic properties, level populations constant in time and are
given by MB statistics. Ignoring scattering, Sν = Bν (T ).

In TDE, (a) net flow must be zero (applicable for any time-independent state) (b) net flow out of individual levels must be zero.
(b)→ detailed balancing.

Consider a (bound/ionised) state labelled by i . The Continuity Equation is
rate of change︷︸︸︷

dni

dt
+

spatial gradient of particle flux︷ ︸︸ ︷
∇ · (ni ~ui ) =

transitions into i︷ ︸︸ ︷∑
j 6=i

[j → i ] −

transitions out of i︷ ︸︸ ︷∑
j 6=i

[i → j] = 0 (rate equation for statistical equilibrium)

If we neglect advection due to particle flux, then we require # transitions into i = # transitions out of i .

Departure from LTE will affect both the line profile and the line strength.
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Recovering LTE

Photons are the first to depart from LTE. Can we ignore their effect in computing statistical equilibrium?

Electronic collisions alone cannot maintain LTE populations of atomic levels, except for the highest energy levels, and only for
high T , where collision rate > radiative (de)excitation rate (Böhm 1960).
⇒ for a time-independent atmosphere, the sum of all (collisional + radiative) transitions into and out of each level must be zero.

For radiative and collisional rates R and C , we have
∑
j 6=i

nj (Rji + neCji ) = ni

∑
j 6=i

(Rij + neCij ) Eqn. 1

In the above, Rij = Aij + Bij Jν if i > j (deexcitation), and Rij = Bij Jν if i < j (excitation).

Assuming ve ∼ fMB(v), Cij =
〈
σij ve

〉
T

.

Recovering LTE: let n∗i , R
∗
ij represent LTE values of the populations/rates. Invoking detailed balancing in LTE,

n∗i R
∗
ij = n∗j R

∗
ji and n∗i n

∗
e C
∗
ij = n∗j n

∗
e C
∗
ji ⇒ n∗i neC

∗
ij = n∗j neC

∗
ji , valid for each ij combination.

Since the electrons deviate least from LTE, their speeds are still Maxwellian⇒ C∗ij = Cij . Add the two equations to get

n∗i

∑
j 6=i

(R∗ij + neCij ) =
∑
j 6=i

n∗j (R∗ji + neC
∗
ji ) Eqn. 2

LTE condition: ni = n∗i for every i ⇒ LHS of Eqn. 1 = LHS of Eqn. 2: Rij + neCij = R∗ij + neCij for each ij combination.

If τν →∞, Rij = R∗ij ⇒ Jν = Bν , we recover LTE.

At low τν , the system must be collisionally dominated for LTE to apply: [Aij ] + Bij Jν � ne 〈σe ve〉T .
Possible either when Teff low (Jν low) or when g high (ne high)

⇒ LTE valid in dwarfs, sort of in hot stars or giants. Definitely not valid in the chromosphere, corona, or in stellar winds. m
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Collisions vs. photoionisations in the Solar spectrum

Collins Ch. 15
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Aside: The Redistribution Function

Probability that a photon with frequency ν′ emerging from a solid angle ~Ω′ is scattered into (ν, ~Ω).

For the general case of absorption + scattering, the source function is

Sν ≡ (1− aν )

∝ local conditions︷︸︸︷
Bν +

aν

4π

∝ radiation field only︷ ︸︸ ︷
∞∫
0

∮
4π

R(ν′, ν, ~Ω′, ~Ω)Iν′ (
~Ω′)d ~Ω′dν

Isotropic scattering: R(ν′, ν, ~Ω′, ~Ω) = g(ν, ν′). Coherent scattering: R(ν′, ν, ~Ω′, ~Ω) = h(~Ω′, ~Ω)δ(ν − ν′).

Fully noncoherent scattering (scattered photon completely uncorrelated with incident photon): R(ν′, ν, ~Ω′, ~Ω) = h(~Ω′, ~Ω).

Coherent + isotropic scattering⇒ Sν = (1− aν )Bν + aνJν .

If R independent of ν, ν′ (as in fully noncoherent scattering)→ complete redistribution.

Complete redistribution =⇒ a specific absorptive radiative transition is not correlated with a specific emissive radiative transition.

In what follows, we will assume complete redistribution.
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Two-level atom - I

Emitted photon has different (random) direction→ scattering.

Emission produces thermal radiation.

Absorption of photon into thermal pool of electrons.

No effect on radiation.
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Two-level atom - II

Assuming complete redistribution, RT equation: µ
dIν

dz
= −φν (αν Iν − jν ).

αν =
1

4π
(n1B12 − n2B21) hν21 φν ; jν =

1

4π
n2 A12 hν21 φν ⇒ Sν =

n2A21

n1B12 − n2B21

Recall:
B21g2

B12g1

= 1 and A21 =
2hν3

c2

g1

g2

B12. Eqn. 1

In statistical equilibrium, n1

(
B12

∫
dνφνJν + neC12

)
= n2

(
A21 + B21

∫
dνφνJν + neC21

)
In the absence of a radiation field, detailed balance⇒ n1C12 = n2C21.

If collisions driven by Maxwellian paricles,
n2

n1

=
g2

g1

exp

[
−

hν

kT

]
⇒

C12

C21

=
g2

g1

exp

[
−

hν

kT

]
. Eqn. 2

Since C depends only on atomic properties, this should be true even in the presence of a radiation field and outside of LTE.

Let aν =

[
1 +

neC21

A21

(
1− exp

[
−

hν

kT

])]−1

⇒ From Eqns. 1 and 2, Sν = (1− aν )Bν + aν

∫
dνφνJν Looks familiar!

aν measures relative contribution from collisions: aν → 1⇒ Sν → Bν (collision-dominated; LTE).

It also measures departure from LTE: aν → 0⇒

scattering-dominated; e.g., Lyα︷ ︸︸ ︷
Sν →

∫
dνφνJν (also need τν →∞).

Strong (resonance) lines: A21 � C21 + formation high in the atmosphere (ne small)⇒ severe deviation from LTE.
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Since C depends only on atomic properties, this should be true even in the presence of a radiation field and outside of LTE.
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])]−1

⇒ From Eqns. 1 and 2, Sν = (1− aν )Bν + aν

∫
dνφνJν Looks familiar!

aν measures relative contribution from collisions: aν → 1⇒ Sν → Bν (collision-dominated; LTE).

It also measures departure from LTE: aν → 0⇒

scattering-dominated; e.g., Lyα︷ ︸︸ ︷
Sν →

∫
dνφνJν (also need τν →∞).

Strong (resonance) lines: A21 � C21 + formation high in the atmosphere (ne small)⇒ severe deviation from LTE.
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Line formation in the upper atmosphere

The temperature inversion in the chromosphere introduces interesting effects in the line profile.

Case 1. τν � 1

Assuming LTE, Sν ≈ Bν ; the source function thus follows the temperature variation of Bν .

From the Eddington-Milne Model,
Fν

Fc
=

Sν (τν = 2/3)

Sν (τc = 2/3)
=

Sν (τc = 2/3/(1 + βν ))

Sν (τc = 2/3)
.

For τ � 1, in line centre,
Fν

Fc
≈

Sν (τc ≈ 0)

Sν (τc = 2/3)
> 1 if temperature inversion

⇒ optically thick lines originating in the chromosphere display emission in their cores.

T first hits minimum above photosphere, then rises⇒ lines dip below continuum value,

then rise in the centre.

This is the case for π1 UMa and ξ Boo A. CaII K lines centred at 3933
Å (Gray Ch 13)

Line formation at low τ

Case 2. τν < 1

n too low for LTE⇒ Sν < Bν . Line centre shows a local minimum.

This is the case for the Sun (see figure above).
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