

Stellar Atmospheres: Lecture 11, 2020.06.01

Prof. Sundar Srinivasan

IRyA/UNAM

Prof. Sundar Srinivasan - IRyA/UNAM

Lamers & Casinelli, Introduction to Stellar Winds, Ch. 1-3

Gas outflow from stellar surface. Present across HR Diagram. Significant momentum/energy input needed to escape potential well.

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト・西ト・ヨト・ヨー ろくの

Gas outflow from stellar surface. Present across HR Diagram. Significant momentum/energy input needed to escape potential well.

Existence of solar wind suggested in the 1950s (Bierman 1951 ZfA, 29, 274). Theory developed by Parker (1958 ApJ, 128, 664; also see Böhm-Vitense Section 16.2.1).

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト・日下・山下・山下・ 白マの

Gas outflow from stellar surface. Present across HR Diagram. Significant momentum/energy input needed to escape potential well.

Existence of solar wind suggested in the 1950s (Bierman 1951 ZfA, 29, 274). Theory developed by Parker (1958 ApJ, 128, 664; also see Böhm-Vitense Section 16.2.1).

Most important observationally-derived parameters: MLR \dot{M} and terminal wind velocity $v(r \to \infty) \equiv v_{\infty}$. Depend on stellar parameters (L, T_{eff} , Z, M, \cdots) and on the mechanism driving the wind.

Gas outflow from stellar surface. Present across HR Diagram. Significant momentum/energy input needed to escape potential well.

Existence of solar wind suggested in the 1950s (Bierman 1951 ZfA, 29, 274). Theory developed by Parker (1958 ApJ, 128, 664; also see Böhm-Vitense Section 16.2.1).

Most important observationally-derived parameters: MLR \dot{M} and terminal wind velocity $v(r \to \infty) \equiv v_{\infty}$. Depend on stellar parameters (L, T_{eff} , Z, M, \cdots) and on the mechanism driving the wind.

Rate at which KE deposited into the ISM: $\frac{1}{2}\dot{M}v_{\infty}^2$. Momentum transfer rate: $\dot{M}v_{\infty}$. A massive star deposits way more KE/momentum than a Sun-like star, but fewer massive stars.

Prof. Sundar Srinivasan - IRyA/UNAM

Gas outflow from stellar surface. Present across HR Diagram. Significant momentum/energy input needed to escape potential well.

Existence of solar wind suggested in the 1950s (Bierman 1951 ZfA, 29, 274). Theory developed by Parker (1958 ApJ, 128, 664; also see Böhm-Vitense Section 16.2.1).

Most important observationally-derived parameters: MLR \dot{M} and terminal wind velocity $v(r \to \infty) \equiv v_{\infty}$. Depend on stellar parameters (L, $T_{\rm eff}$, Z, M, \cdots) and on the mechanism driving the wind.

Rate at which KE deposited into the ISM: $\frac{1}{2}\dot{M}v_{\infty}^2$. Momentum transfer rate: $\dot{M}v_{\infty}$. A massive star deposits way more KE/momentum than a Sun-like star, but fewer massive stars.

Solar MLR: $\dot{M} \approx 10^{-14}$ M $_{\odot}$ yr $^{-1} \ll$ nuclear burning rate $\approx 10^{-8}$ M $_{\odot}$ yr $^{-1}$. 0.1% of total mass lost in lifetime in solar wind.

のと(Morellian Alexandre A

Gas outflow from stellar surface. Present across HR Diagram Significant momentum/energy input needed to escape potential well.

Existence of solar wind suggested in the 1950s (Bierman 1951 ZfA, 29, 274), Theory developed by Parker (1958 ApJ, 128, 664; also see Böhm-Vitense Section 16.2.1).

Most important observationally-derived parameters: MLR \dot{M} and terminal wind velocity $v(r \to \infty) \equiv v_{\infty}$. Depend on stellar parameters (L, T_{eff} , Z, M, \cdots) and on the mechanism driving the wind.

Rate at which KE deposited into the ISM: $\frac{1}{2}\dot{M}v_{\infty}^2$. Momentum transfer rate: $\dot{M}v_{\infty}$. A massive star deposits way more KE/momentum than a Sun-like star, but fewer massive stars.

Solar MLR: $\dot{M} \approx 10^{-14}$ M_{\odot} yr⁻¹ \ll nuclear burning rate $\approx 10^{-8}$ M_{\odot} yr⁻¹. 0.1% of total mass lost in lifetime in solar wind. Significant mass loss for other stages:

AGB stars: $10^{-9} - 10^{-4} M_{\odot} \text{ yr}^{-1}$. Massive stars: $10^{-6} - 10^{-3} M_{\odot} \text{ yr}^{-1}$.

Can exceed nuclear burning rate (H \rightarrow He) \Longrightarrow drive further evolution.

Gas outflow from stellar surface. Present across HR Diagram. Significant momentum/energy input needed to escape potential well.

Existence of solar wind suggested in the 1950s (Bierman 1951 ZfA, 29, 274). Theory developed by Parker (1958 ApJ, 128, 664; also see Böhm-Vitense Section 16.2.1).

Most important observationally-derived parameters: MLR \dot{M} and terminal wind velocity $v(r \to \infty) \equiv v_{\infty}$. Depend on stellar parameters (L, $T_{\rm eff}$, Z, M, \cdots) and on the mechanism driving the wind.

Rate at which KE deposited into the ISM: $\frac{1}{2}\dot{M}v_{\infty}^2$. Momentum transfer rate: $\dot{M}v_{\infty}$. A massive star deposits way more KE/momentum than a Sun-like star, but fewer massive stars.

Solar MLR: $\dot{M} \approx 10^{-14} \text{ M}_{\odot} \text{ yr}^{-1} \ll$ nuclear burning rate $\approx 10^{-8} \text{ M}_{\odot} \text{ yr}^{-1}$. 0.1% of total mass lost in lifetime in solar wind. Significant mass loss for other stages:

AGB stars: $10^{-9} - 10^{-4} \text{ M}_{\odot} \text{ yr}^{-1}$. Massive stars: $10^{-6} - 10^{-3} \text{ M}_{\odot} \text{ yr}^{-1}$.

Can exceed nuclear burning rate (H \rightarrow He) \Longrightarrow drive further evolution.

Observational evidence for winds:

Sun - cometary tails, magnetosphere (van Allen Belts), aurorae · · ·

Hot stars – P Cygni profiles of highly-ionised species. P Cygni is a luminous blue variable (LBV) \sim 6 imes 10⁵ L $_{\odot}$.

Cool stars – expansion velocity → Doppler-shifted lines → asymmetric line profiles Infrared excess due to reprocessing of radiation by circumstellar dust. Parabolic or double-horned line profiles in the sub-mm/radio.

しょう ふゆ くゆ く ゆ く 自 く

Outflow speed as a function of distance from stellar surface. Depends on wind mechanism. Starts out small, increases drastically in the acceleration zone very close to surface, reaches a constant value (v_{∞}) at large radii.

Prof. Sundar Srinivasan - IRyA/UNAM

<ロ> < 団 > < 巨 > < 巨 > < 巨 > < 巨 < 〇 < 〇</p>

Outflow speed as a function of distance from stellar surface. Depends on wind mechanism. Starts out small, increases drastically in the acceleration zone very close to surface, reaches a constant value (v_{∞}) at large radii.

impirical velocity law:
$$v(r) pprox v_0 + (v_\infty - v_0) \left[1 - rac{R_*}{r}
ight]^eta$$

Outflow speed as a function of distance from stellar surface. Depends on wind mechanism. Starts out small, increases drastically in the acceleration zone very close to surface, reaches a constant value (v_{∞}) at large radii.

Empirical velocity law: $v(r) \approx v_0 + (v_\infty - v_0) \left[1 - \frac{R_*}{r}\right]^{\beta}$

OB stars: steep velocity law, $\beta \sim 0.8$. $v_{\infty} \sim 10^3$ km s⁻¹. Acceleration due to radiation pressure (can be line-driven) close to surface.

・ロト・日・・ヨ・・日・ つへの

Outflow speed as a function of distance from stellar surface. Depends on wind mechanism. Starts out small, increases drastically in the acceleration zone very close to surface, reaches a constant value (v_{∞}) at large radii.

Empirical velocity law: $v(r) \approx v_0 + (v_\infty - v_0) \left[1 - \frac{R_*}{r}\right]^{\beta}$

OB stars: steep velocity law, $\beta \sim 0.8$. $v_{\infty} \sim 10^3$ km s⁻¹. Acceleration due to radiation pressure (can be line-driven) close to surface.

Cool stars (AGB): shallower ($\beta \sim 1-2$). $v_{\infty} \sim 10$ km s⁻¹. Acceleration in the dust-formation zone ($\approx 2-5R_*$). Stellar SED peak $\approx 1 \ \mu m \approx$ size of dust grains.

Outflow speed as a function of distance from stellar surface. Depends on wind mechanism. Starts out small, increases drastically in the acceleration zone very close to surface, reaches a constant value (v_{∞}) at large radii.

Empirical velocity law: $v(r) \approx v_0 + (v_\infty - v_0) \left[1 - \frac{R_*}{r}\right]^{\beta}$

OB stars: steep velocity law, $\beta \sim 0.8$. $v_{\infty} \sim 10^3$ km s⁻¹. Acceleration due to radiation pressure (can be line-driven) close to surface.

Cool stars (AGB): shallower ($\beta \sim 1 - 2$). $v_{\infty} \sim 10$ km s⁻¹. Acceleration in the dust-formation zone ($\approx 2 - 5R_*$). Stellar SED peak $\approx 1 \ \mu m \approx$ size of dust grains.

 $\Psi =$ gas:dust mass ratio $\sim 10^2 - 10^3$, but grains drag molecules out with them via momentum coupling.

We need $v_{\text{gas}} > v_{\text{esc}} \equiv \left(\frac{2GM}{r}\right)^{1/2}$. The winds can be driven by radiation pressure, thermal pressure gradients, or waves.

Prof. Sundar Srinivasan - IRyA/UNAM

・ロ・・酉・・申・・酉・・ 白・

We need $v_{\rm gas} > v_{\rm esc} \equiv \left(\frac{2GM}{r}\right)^{1/2}$. The winds can be driven by radiation pressure, thermal pressure gradients, or waves.

Radiation-driven wind

Absorption of stellar photons \rightarrow radially outward recoil. Reemission isotropic, so average recoil = 0.

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト・母ト・ヨト・ヨー わえの

We need $v_{\rm gas} > v_{\rm esc} \equiv \left(\frac{2GM}{r}\right)^{1/2}$. The winds can be driven by radiation pressure, thermal pressure gradients, or waves.

Radiation-driven wind

Absorption of stellar photons \rightarrow radially outward recoil. Reemission isotropic, so average recoil = 0. solar wind: typical photons have $\lambda \approx 0.5 \ \mu\text{m}$ (Wien's Displacement Law), momentum $\approx 10^{-27} \text{ kg m s}^{-1}$ - same as a proton with $v \approx 1 \text{ m s}^{-1}$. Observed velocities of solar wind particles: $\approx 200 \text{ km s}^{-1}$ requires $\approx 10^6 \text{ photons particle}^{-1}$. Not efficient!

Most efficient method for stars with very high luminosities (10 5 – 10 6 L_{\odot}).

We need $v_{\rm gas} > v_{\rm esc} \equiv \left(\frac{2GM}{r}\right)^{1/2}$. The winds can be driven by radiation pressure, thermal pressure gradients, or waves.

Radiation-driven wind

Absorption of stellar photons \rightarrow radially outward recoil. Reemission isotropic, so average recoil = 0.

solar wind: typical photons have $\lambda \approx 0.5 \ \mu$ m (Wien's Displacement Law), momentum $\approx 10^{-27}$ kg m s⁻¹ – same as a proton with $v \approx 1$ m s⁻¹.

Observed velocities of solar wind particles: ≈ 200 km s⁻¹ requires $\approx 10^6$ photons particle⁻¹. Not efficient!

Most efficient method for stars with very high luminosities ($10^5 - 10^6 L_{\odot}$).

Line-driven winds: observed particle speeds $\implies \approx 10^6$ photons particle⁻¹, but can also observe central star \implies optically thin in continuum \implies many lines required.

We need $v_{\rm gas} > v_{\rm esc} \equiv \left(\frac{2GM}{r}\right)^{1/2}$. The winds can be driven by radiation pressure, thermal pressure gradients, or waves.

Radiation-driven wind

Absorption of stellar photons \rightarrow radially outward recoil. Reemission isotropic, so average recoil = 0.

solar wind: typical photons have $\lambda \approx 0.5 \ \mu$ m (Wien's Displacement Law), momentum $\approx 10^{-27}$ kg m s⁻¹ – same as a proton with $v \approx 1$ m s⁻¹.

Observed velocities of solar wind particles: \approx 200 km s⁻¹ requires \approx 10⁶ photons particle⁻¹. Not efficient!

Most efficient method for stars with very high luminosities (10⁵ - 10⁶ L $_{\odot}$).

Line-driven winds: observed particle speeds $\implies \approx 10^6$ photons particle⁻¹, but can also observe central star \implies optically thin in continuum \implies many lines required.

Dust-driven winds: photon wavelength comparable to grain size \implies efficient momentum transfer. Dust drags gas along with it.

We need $v_{\text{gas}} > v_{\text{esc}} \equiv \left(\frac{2GM}{r}\right)^{1/2}$. The winds can be driven by radiation pressure, thermal pressure gradients, or waves.

Radiation-driven wind

Absorption of stellar photons \rightarrow radially outward recoil. Reemission isotropic, so average recoil = 0.

solar wind: typical photons have $\lambda \approx 0.5 \ \mu$ m (Wien's Displacement Law), momentum $\approx 10^{-27}$ kg m s⁻¹ – same as a proton with $v \approx 1$ m s⁻¹.

Observed velocities of solar wind particles: \approx 200 km s⁻¹ requires \approx 10⁶ photons particle⁻¹. Not efficient!

Most efficient method for stars with very high luminosities (10⁵ - 10⁶ L $_{\odot}$).

Line-driven winds: observed particle speeds $\implies \approx 10^6$ photons particle⁻¹, but can also observe central star \implies optically thin in continuum \implies many lines required.

Dust-driven winds: photon wavelength comparable to grain size \implies efficient momentum transfer. Dust drags gas along with it.

Thermal wind

Hydrostatic equilibrium: gravitational force opposes pressure gradient. $g \propto r^{-2}$ weak at large r. solar wind – radiative heating of gas in the corona sets up high pressure gradient – coronal winds.

We need $v_{\rm gas} > v_{\rm esc} \equiv \left(\frac{2GM}{r}\right)^{1/2}$. The winds can be driven by radiation pressure, thermal pressure gradients, or waves.

Radiation-driven wind

Absorption of stellar photons \rightarrow radially outward recoil. Reemission isotropic, so average recoil = 0.

solar wind: typical photons have $\lambda \approx 0.5 \,\mu$ m (Wien's Displacement Law), momentum $\approx 10^{-27}$ kg m s⁻¹ - same as a proton with $v \approx 1 \text{ m s}^{-1}$.

Observed velocities of solar wind particles: ≈ 200 km s⁻¹ requires $\approx 10^6$ photons particle⁻¹. Not efficient!

Most efficient method for stars with very high luminosities $(10^5 - 10^6 L_{\odot})$.

Line-driven winds: observed particle speeds $\implies \approx 10^6$ photons particle⁻¹, but can also observe central star \implies optically thin in continuum \implies many lines required

Dust-driven winds: photon wavelength comparable to grain size \implies efficient momentum transfer. Dust drags gas along with it.

Thermal wind

Hydrostatic equilibrium: gravitational force opposes pressure gradient. $g \propto r^{-2}$ weak at large r. solar wind – radiative heating of gas in the corona sets up high pressure gradient - coronal winds.

Wave-driven wind

Shocks (e.g., due to pulsations), acoustic, MHD/magnetoacoustic waves. Inefficient on their own, but can heat up material to increase pressure or increase density of material to enhance interaction with radiation.

Rotation

Transfer of angular momentum in rotating systems – outflowing disks from rotating stars, magnetic rotators.

In the following, 1 < i < j, and orange = emission.

Prof. Sundar Srinivasan - IRyA/UNAM

In the following, 1 < i < j, and orange = emission.

Atoms in ground state

– Resonance line scattering $(1 \longrightarrow j \longrightarrow 1)$. "Scattered" photon has random direction. P Cygni profiles typically produced by this method.

Prof. Sundar Srinivasan - IRyA/UNAM

In the following, 1 < i < j, and orange = emission.

Atoms in ground state

- Resonance line scattering $(1 \longrightarrow j \longrightarrow 1)$. "Scattered" photon has random direction. P Cygni profiles typically produced by this method.
- Radiative excitation + radiative deexcitation to excited state (1 \longrightarrow *j* \longrightarrow *i*). Probability \ll resonance scattering.

In the following, 1 < i < j, and orange = emission.

Atoms in ground state

- Resonance line scattering $(1 \longrightarrow j \longrightarrow 1)$. "Scattered" photon has random direction. P Cygni profiles typically produced by this method.
- Radiative excitation + radiative deexcitation to excited state (1 $\longrightarrow j \longrightarrow i$). Probability \ll resonance scattering.
- Collisional excitation + radiative deexcitation to excited state $(1 \longrightarrow j \longrightarrow i)$. KE \longrightarrow photon energy. Efficient in hot plasmas (\uparrow collision rate, $\uparrow n_e$).

In the following, 1 < i < j, and orange = emission.

Atoms in ground state

- Resonance line scattering $(1 \longrightarrow j \longrightarrow 1)$. "Scattered" photon has random direction. P Cygni profiles typically produced by this method
- Radiative excitation + radiative deexcitation to excited state $(1 \rightarrow j \rightarrow i)$. Probability ≪ resonance scattering.
- Collisional excitation + radiative deexcitation to excited state $(1 \rightarrow j \rightarrow i)$. KE \rightarrow photon energy. Efficient in hot plasmas (\uparrow collision rate, $\uparrow n_e$).

Ionised species

- Collisional recombination (ion + e \rightarrow i \rightarrow 1 + h ν) $H\alpha$ in cool stars, infrared emission lines in hot stars

Prof. Sundar Srinivasan - IRyA/UNAM

In the following, 1 < i < j, and orange = emission.

Atoms in ground state

- Resonance line scattering $(1 \longrightarrow j \longrightarrow 1)$. "Scattered" photon has random direction. P Cygni profiles typically produced by this method.
- Radiative excitation + radiative deexcitation to excited state (1 $\longrightarrow j \longrightarrow i$). Probability \ll resonance scattering.
- Collisional excitation + radiative deexcitation to excited state $(1 \longrightarrow j \longrightarrow i)$. KE \longrightarrow photon energy. Efficient in hot plasmas (\uparrow collision rate, $\uparrow n_e$).

Ionised species

- Collisional recombination (ion + e \rightarrow *i* \rightarrow 1 + *h* ν). H α in cool stars, infrared emission lines in hot stars.

Atoms in excited state

- Pure absorption + spontaneous emission ($i \rightarrow j \rightarrow 1$).

Not important in stellar winds (atoms typically in ground state).

《 미 》 《 팀 》 《 팀 》 《 팀 》 《 팀 》 《 ()》

In the following, 1 < i < j, and orange = emission.

Atoms in ground state

– Resonance line scattering $(1 \longrightarrow j \longrightarrow 1)$. "Scattered" photon has random direction.

- P Cygni profiles typically produced by this method.
- Radiative excitation + radiative deexcitation to excited state (1 $\longrightarrow j \longrightarrow i$). Probability \ll resonance scattering.
- Collisional excitation + radiative deexcitation to excited state $(1 \longrightarrow j \longrightarrow i)$. KE \longrightarrow photon energy. Efficient in hot plasmas (\uparrow collision rate, $\uparrow n_e$).

Ionised species

- Collisional recombination (ion + e \rightarrow i \rightarrow 1 + h ν). H α in cool stars, infrared emission lines in hot stars.

Atoms in excited state

- Pure absorption + spontaneous emission $(i \rightarrow j \rightarrow 1)$. Not important in stellar winds (atoms typically in ground state).
- Stimulated emission ($i \rightarrow 1$). Emitted photon in same phase/direction/energy (coherent) as incoming photon. Progessively \uparrow number of photons - "masering".

In the following, 1 < i < j, and orange = emission.

Atoms in ground state

- Resonance line scattering $(1 \longrightarrow j \longrightarrow 1)$. "Scattered" photon has random direction. P Cygni profiles typically produced by this method.
- Radiative excitation + radiative deexcitation to excited state (1 $\longrightarrow j \longrightarrow i$). Probability \ll resonance scattering.
- Collisional excitation + radiative deexcitation to excited state $(1 \longrightarrow j \longrightarrow i)$. KE \longrightarrow photon energy. Efficient in hot plasmas (\uparrow collision rate, $\uparrow n_e$).

Ionised species

- Collisional recombination (ion + e \rightarrow *i* \rightarrow 1 + *h* ν). H α in cool stars, infrared emission lines in hot stars.

Atoms in excited state

- Pure absorption + spontaneous emission ($i \rightarrow j \rightarrow 1$).

Not important in stellar winds (atoms typically in ground state).

Stimulated emission (i → 1). Emitted photon in same phase/direction/energy (coherent) as incoming photon.
 Progessively ↑ number of photons - "masering".

Favourable conditions:

- (1) Transition that emits photon at same frequency as the stimulating photon,
- (2) ↑ number of atoms in excited state, and
- (3) No velocity gradient in direction of photon travel (Doppler shift counteracts masering process).

In the following, 1 < i < j, and orange = emission.

Atoms in ground state

- Resonance line scattering $(1 \longrightarrow j \longrightarrow 1)$. "Scattered" photon has random direction. P Cygni profiles typically produced by this method.
- Radiative excitation + radiative deexcitation to excited state (1 $\longrightarrow j \longrightarrow i$). Probability \ll resonance scattering.
- Collisional excitation + radiative deexcitation to excited state $(1 \longrightarrow j \longrightarrow i)$. KE \longrightarrow photon energy. Efficient in hot plasmas (\uparrow collision rate, $\uparrow n_e$).

Ionised species

- Collisional recombination (ion + e \rightarrow *i* \rightarrow 1 + *h* ν). H α in cool stars, infrared emission lines in hot stars.

Atoms in excited state

- Pure absorption + spontaneous emission ($i \rightarrow j \rightarrow 1$).

Not important in stellar winds (atoms typically in ground state).

- Stimulated emission ($i \rightarrow 1$). Emitted photon in same phase/direction/energy (coherent) as incoming photon. Progessively \uparrow number of photons - "masering".

Favourable conditions:

- (1) Transition that emits photon at same frequency as the stimulating photon,
- (2) ↑ number of atoms in excited state, and
- (3) No velocity gradient in direction of photon travel (Doppler shift counteracts masering process).

Masers seen in many astrophysical environments. Stellar outflows: massive AGB stars (OH/IR stars).

Continuity Equation for the material in the outflow:

$$\frac{d\rho(r)}{dt} = \frac{\partial\rho(r)}{\partial t} + \nabla \cdot (v(r)\rho(r)) = 0$$

Stationary state $\Longrightarrow \frac{\partial}{\partial t} = 0 \Longrightarrow \nabla \cdot (v(r)\rho(r)) = 0.$

Prof. Sundar Srinivasan - IRyA/UNAM

Continuity Equation for the material in the outflow:

$$\frac{d\rho(r)}{dt} = \frac{\partial\rho(r)}{\partial t} + \nabla \cdot (v(r)\rho(r)) = 0$$

Stationary state $\Longrightarrow \frac{\partial}{\partial t} = 0 \Longrightarrow \nabla \cdot (v(r)\rho(r)) = 0.$
For a spherical symmetric wind, $\nabla \cdot (v(r)\rho(r)) = \frac{1}{r^2} \frac{d}{dr} (r^2 v(r)\rho(r)) = 0$

 $\implies \dot{M} \equiv 4\pi r^2 v(r) \rho(r) = \text{constant.}$

Prof. Sundar Srinivasan - IRyA/UNAM

Stellar Atmospheres: Lecture 11, 2020.06.01

0

Continuity Equation for the material in the outflow:

$$\frac{d\rho(r)}{dt} = \frac{\partial\rho(r)}{\partial t} + \nabla \cdot (\overbrace{v(r)\rho(r)}^{\text{mass flux}}) = 0$$

Stationary state $\Longrightarrow \frac{\partial}{\partial t} = 0 \Longrightarrow \nabla \cdot (v(r)\rho(r)) = 0.$
For a spherical symmetric wind, $\nabla \cdot (v(r)\rho(r)) = \frac{1}{r^2} \frac{d}{dr} (r^2 v(r)\rho(r)) = 0$

 $\implies \dot{M} \equiv 4\pi r^2 v(r) \rho(r) = \text{constant.}$

The velocity dependence is usually such that the material is accelerated beyond the sonic speed and escape velocity within a small zone close to the star, and a terminal velocity v_{∞} is achieved. In this region, a stationary wind implies an inverse-square density profile.

Equation of motion for pressure-driven stationary wind

Relations to solve for v(r, t): equation of continuity, equation of motion (hydrostatic/hydrodynamic), and energy equation.

Prof. Sundar Srinivasan - IRyA/UNAM

<ロト < 回 > < 三 > < 三 > < 三 < つへの</p>

Equation of motion for pressure-driven stationary wind

Relations to solve for v(r, t): equation of continuity, equation of motion (hydrostatic/hydrodynamic), and energy equation.

Equation of state: Ideal Gas Law, $p = \frac{\rho kT}{\mu m_p}$

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト・日・・ヨ・・日・ うへの

Equation of motion for pressure-driven stationary wind

Relations to solve for v(r, t): equation of continuity, equation of motion (hydrostatic/hydrodynamic), and energy equation.

Equation of state: Ideal Gas Law, $p = \frac{\rho kT}{\mu m_p}$

Hydrostatic equation and boundary condition $p(r \rightarrow \infty) = p_{ISM}$ not simultaneously satisfied \Longrightarrow outward acceleration due to pressure gradient.

Acceleration $\frac{dv(r,t)}{dt} = \frac{\partial v(r,t)}{\partial t} + v(r,t)\frac{\partial v(r,t)}{\partial r}$

Prof. Sundar Srinivasan - IRyA/UNAM
Equation of motion for pressure-driven stationary wind

Relations to solve for v(r, t): equation of continuity, equation of motion (hydrostatic/hydrodynamic), and energy equation.

Equation of state: Ideal Gas Law, $p = \frac{\rho kT}{\mu m_p}$

Hydrostatic equation and boundary condition $p(r \rightarrow \infty) = p_{ISM}$ not simultaneously satisfied \Longrightarrow outward acceleration due to pressure gradient.

Acceleration $\frac{dv(r,t)}{dt} = \frac{\partial v(r,t)}{\partial t} + v(r,t) \frac{\partial v(r,t)}{\partial r}$

Stationary $\implies v(r, t)$ at fixed $r = v(r, t_0)$ (no explicit time dependence) $\implies \frac{\partial v(r, t)}{\partial t} = 0$, and $\frac{\partial}{\partial r} = \frac{d}{dr}$ $\frac{dv(r, t)}{dt} = \frac{\partial v(r, t)}{\partial t} + v(r, t) \frac{\partial v(r, t)}{\partial r}$

Equation of motion for pressure-driven stationary wind

Relations to solve for v(r, t): equation of continuity, equation of motion (hydrostatic/hydrodynamic), and energy equation.

Equation of state: Ideal Gas Law, $p = \frac{\rho kT}{\mu m_p}$

Hydrostatic equation and boundary condition $p(r \rightarrow \infty) = p_{ISM}$ not simultaneously satisfied \Longrightarrow outward acceleration due to pressure gradient.

Acceleration $\frac{dv(r,t)}{dt} = \frac{\partial v(r,t)}{\partial t} + v(r,t) \frac{\partial v(r,t)}{\partial r}$

Stationary $\implies v(r, t)$ at fixed $r = v(r, t_0)$ (no explicit time dependence) $\implies \frac{\partial v(r, t)}{\partial t} = 0$, and $\frac{\partial}{\partial r} = \frac{d}{dr}$ $\frac{dv(r, t)}{dt} = \frac{\partial v(r, t)}{\partial t} + v(r, t) \frac{\partial v(r, t)}{\partial r}$

Hydrodynamic eqn. of motion (aka momentum eqn.): $\frac{dv}{dt} = v\frac{dv}{dr} = -\frac{1}{\rho}\frac{dp}{dr} - \frac{GM}{r^2} \Longrightarrow v\frac{dv}{dr} + \frac{1}{\rho}\frac{dp}{dr} + \frac{GM}{r^2} = 0$

Equation of motion for pressure-driven stationary wind

Relations to solve for v(r, t): equation of continuity, equation of motion (hydrostatic/hydrodynamic), and energy equation.

Equation of state: Ideal Gas Law, $p = \frac{\rho kT}{\mu m_p}$

Hydrostatic equation and boundary condition $p(r \rightarrow \infty) = p_{ISM}$ not simultaneously satisfied \Longrightarrow outward acceleration due to pressure gradient.

Acceleration $\frac{dv(r,t)}{dt} = \frac{\partial v(r,t)}{\partial t} + v(r,t) \frac{\partial v(r,t)}{\partial r}$

Stationary $\implies v(r, t)$ at fixed $r = v(r, t_0)$ (no explicit time dependence) $\implies \frac{\partial v(r, t)}{\partial t} = 0$, and $\frac{\partial}{\partial r} = \frac{d}{dr}$ $\frac{dv(r, t)}{dt} = \frac{\partial v(r, t)}{\partial t} + v(r, t) \frac{\partial v(r, t)}{\partial r}$

Hydrodynamic eqn. of motion (aka momentum eqn.):

 $\frac{dv}{dt} = v \frac{dv}{dr} = -\frac{1}{\rho} \frac{dp}{dr} - \frac{GM}{r^2} \Longrightarrow v \frac{dv}{dr} + \frac{1}{\rho} \frac{dp}{dr} + \frac{GM}{r^2} = 0$

Energy equation: Simplest model is isothermal, T = constant.

Temperature constant in the wind layer, pressure gradient and gravity are only external forces on the gas. One of the simplest models. Easily solved. Can study how v_{∞} and ρ depend on the forces. MLR for stationary wind model uniquely determined by boundary conditions at $r = R_*$.

Prof. Sundar Srinivasan - IRyA/UNAM

<ロト < 回 > < 三 > < 三 > < 三 < つへの</p>

Temperature constant in the wind layer, pressure gradient and gravity are only external forces on the gas. One of the simplest models. Easily solved. Can study how v_{∞} and ρ depend on the forces. MLR for stationary wind model uniquely determined by boundary conditions at $r = R_*$.

Isothermal wind: $T = T_0$ in a region starting at $r = r_0$. Valid for solar corona.

 $\implies
ho =
ho c_s^2$ with $c_s \equiv \sqrt{\frac{kT}{\mu m_p}}$, the sound speed, independent of distance in the wind.

Prof. Sundar Srinivasan - IRyA/UNAM

▲日 > ▲ 国 > ▲ 国 > ▲ 国 > 200

Temperature constant in the wind layer, pressure gradient and gravity are only external forces on the gas. One of the simplest models. Easily solved. Can study how v_{∞} and ρ depend on the forces. MLR for stationary wind model uniquely determined by boundary conditions at $r = R_*$.

Isothermal wind: $T = T_0$ in a region starting at $r = r_0$. Valid for solar corona.

 $\implies
ho =
ho c_s^2$ with $c_s \equiv \sqrt{\frac{kT}{\mu m_p}}$, the sound speed, independent of distance in the wind.

Stationary, sph. symm. wind $\Longrightarrow \frac{d}{dr} 4\pi r^2 \rho v = 0 \Longrightarrow \frac{2}{r} + \frac{d \ln v}{dr} + \frac{d \ln \rho}{dr} = 0 \Longrightarrow$ Eliminate ρ from momentum equation:

Temperature constant in the wind layer, pressure gradient and gravity are only external forces on the gas. One of the simplest models. Easily solved. Can study how v_{∞} and ρ depend on the forces. MLR for stationary wind model uniquely determined by boundary conditions at $r = R_*$.

Isothermal wind: $T = T_0$ in a region starting at $r = r_0$. Valid for solar corona.

 $\implies
ho =
ho c_s^2$ with $c_s \equiv \sqrt{\frac{kT}{\mu m_p}}$, the sound speed, independent of distance in the wind.

Stationary, sph. symm. wind $\implies \frac{d}{dr} 4\pi r^2 \rho v = 0 \implies \frac{2}{r} + \frac{d \ln v}{dr} + \frac{d \ln \rho}{dr} = 0 \implies$ Eliminate ρ from momentum equation: $\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right] \equiv \frac{1}{2r} \frac{4c_s^2 - v_{esc}^2(r)}{v^2 - c_s^2}$. Boundary condition: at bottom of isothermal region, $v(r_0) = v_0$.

・ロト ・ 母 ト ・ 声 ・ ト ・ 声 ・ 今々 (?

Temperature constant in the wind layer, pressure gradient and gravity are only external forces on the gas. One of the simplest models. Easily solved. Can study how v_{∞} and ρ depend on the forces. MLR for stationary wind model uniquely determined by boundary conditions at $r = R_*$.

Isothermal wind: $T = T_0$ in a region starting at $r = r_0$. Valid for solar corona.

 $\implies
ho =
ho c_s^2$ with $c_s \equiv \sqrt{\frac{kT}{\mu m_p}}$, the sound speed, independent of distance in the wind.

Stationary, sph. symm. wind $\Longrightarrow \frac{d}{dr} 4\pi r^2 \rho v = 0 \Longrightarrow \frac{2}{r} + \frac{d \ln v}{dr} + \frac{d \ln \rho}{dr} = 0 \Longrightarrow$ Eliminate ρ from momentum equation: $\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right] \equiv \frac{1}{2r} \frac{4c_s^2 - v_{esc}^2(r)}{v^2 - c_s^2}$. Boundary condition: at bottom of isothermal region, $v(r_0) = v_0$.

Critical/singular point: $r = r_c$ such that denominator is zero. Sonic point: $v(r_5) = c_5$. Escape point: $v(r_{esc}) = v_{esc}(r)$. For an isothermal pressure-driven wind, critical point = sonic point.

Temperature constant in the wind layer, pressure gradient and gravity are only external forces on the gas. One of the simplest models. Easily solved. Can study how v_{∞} and ρ depend on the forces. MLR for stationary wind model uniquely determined by boundary conditions at $r = R_*$.

Isothermal wind: $T = T_0$ in a region starting at $r = r_0$. Valid for solar corona.

 $\implies
ho =
ho c_s^2$ with $c_s \equiv \sqrt{\frac{kT}{\mu m_p}}$, the sound speed, independent of distance in the wind.

Stationary, sph. symm. wind $\Longrightarrow \frac{d}{dr} 4\pi r^2 \rho v = 0 \Longrightarrow \frac{2}{r} + \frac{d \ln v}{dr} + \frac{d \ln \rho}{dr} = 0 \Longrightarrow$ Eliminate ρ from momentum equation: $\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right] \equiv \frac{1}{2r} \frac{4c_s^2 - v_{esc}^2(r)}{v^2 - c_s^2}$. Boundary condition: at bottom of isothermal region, $v(r_0) = v_0$.

Critical/singular point: $r = r_c$ such that denominator is zero. Sonic point: $v(r_s) = c_s$. Escape point: $v(r_{esc}) = v_{esc}(r)$. For an isothermal pressure-driven wind, critical point = sonic point.

To avoid singularity, numerator must also = 0 at $r_c \implies r_c = \frac{GM}{2c_c^2} = \frac{R_*}{4} \left[\frac{v_{\rm esc}(R_*)}{c_s}\right]^2$, and $v_{\rm esc}(r_c) = 2c_s$.

Temperature constant in the wind layer, pressure gradient and gravity are only external forces on the gas. One of the simplest models. Easily solved. Can study how v_{∞} and ρ depend on the forces. MLR for stationary wind model uniquely determined by boundary conditions at $r = R_*$.

Isothermal wind: $T = T_0$ in a region starting at $r = r_0$. Valid for solar corona.

 $\implies
ho=
ho c_s^2$ with $c_s\equiv\sqrt{rac{kT}{\mu m_p}}$, the sound speed, independent of distance in the wind.

Stationary, sph. symm. wind $\Longrightarrow \frac{d}{dr} 4\pi r^2 \rho v = 0 \Longrightarrow \frac{2}{r} + \frac{d \ln v}{dr} + \frac{d \ln \rho}{dr} = 0 \Longrightarrow$ Eliminate ρ from momentum equation: $\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right] \equiv \frac{1}{2r} \frac{4c_s^2 - v_{esc}^2(r)}{v^2 - c_s^2}$. Boundary condition: at bottom of isothermal region, $v(r_0) = v_0$.

Critical/singular point: $r = r_c$ such that denominator is zero. Sonic point: $v(r_s) = c_s$. Escape point: $v(r_{esc}) = v_{esc}(r)$. For an isothermal pressure-driven wind, critical point = sonic point.

To avoid singularity, numerator must also = 0 at $r_c \implies r_c = \frac{GM}{2c_s^2} = \frac{R_*}{4} \left[\frac{v_{\rm esc}(R_*)}{c_s}\right]^2$, and $v_{\rm esc}(r_c) = 2c_s$. Example: $T_{\rm corona} \approx 10^6$ K, $v_{\rm esc}(R_{\odot}) \approx 600$ km s⁻¹, $r_c = 3.5$ R_{\odot} . If no coronal heating: $T \approx 6000$ K, and $r_c > 1000$ R_{\odot} . Solar wind would still exist, but accelerated much slower (sonic point at ≈ 6 AU).

Temperature constant in the wind layer, pressure gradient and gravity are only external forces on the gas. One of the simplest models. Easily solved. Can study how v_{∞} and ρ depend on the forces. MLR for stationary wind model uniquely determined by boundary conditions at $r = R_*$.

Isothermal wind: $T = T_0$ in a region starting at $r = r_0$. Valid for solar corona.

 $\implies
ho=
ho c_s^2$ with $c_s\equiv\sqrt{rac{kT}{\mu m_p}}$, the sound speed, independent of distance in the wind.

Stationary, sph. symm. wind $\Longrightarrow \frac{d}{dr} 4\pi r^2 \rho v = 0 \Longrightarrow \frac{2}{r} + \frac{d \ln v}{dr} + \frac{d \ln \rho}{dr} = 0 \Longrightarrow$ Eliminate ρ from momentum equation: $\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right] \equiv \frac{1}{2r} \frac{4c_s^2 - v_{esc}^2(r)}{v^2 - c_s^2}$. Boundary condition: at bottom of isothermal region, $v(r_0) = v_0$.

Critical/singular point: $r = r_c$ such that denominator is zero. Sonic point: $v(r_s) = c_s$. Escape point: $v(r_{esc}) = v_{esc}(r)$. For an isothermal pressure-driven wind, critical point = sonic point.

To avoid singularity, numerator must also = 0 at $r_c \implies r_c = \frac{GM}{2c_s^2} = \frac{R_*}{4} \left[\frac{v_{\rm esc}(R_*)}{c_s}\right]^2$, and $v_{\rm esc}(r_c) = 2c_s$. Example: $T_{\rm corona} \approx 10^6$ K, $v_{\rm esc}(R_{\odot}) \approx 600$ km s⁻¹, $r_c = 3.5$ R_{\odot} . If no coronal heating: $T \approx 6000$ K, and $r_c > 1000$ R_{\odot} . Solar wind would still exist, but accelerated much slower (sonic point at ≈ 6 AU).

For an isothermal outflow, $r_c \ge r_0 \implies v_{esc}(r_c) \ge 2c_s$ (sonic point < escape point) and $\frac{d \ln v}{dr} \ge 0$. The critical solution is the only solution satisfying these criteria.

$$\frac{d\ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right]$$

Prof. Sundar Srinivasan - IRyA/UNAM

・ロット 中学 ・ ボット キャット しょうしょう

$$\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right]. \qquad \text{Set } r = r_c \xi \text{ and } v = c_s \eta: \ \frac{d \ln \eta}{d\xi} = \frac{2}{\eta^2 - 1} \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right]$$

Prof. Sundar Srinivasan - IRyA/UNAM

・ロト・西ト・西ト・西・ うろの

$$\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right]. \quad \text{Set } r = r_c \xi \text{ and } v = c_s \eta: \frac{d \ln \eta}{d\xi} = \frac{2}{\eta^2 - 1} \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right] \\ \implies \frac{d}{d\xi} \left[\frac{\eta^2}{2} - \ln \eta \right] = 2 \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right]$$

Prof. Sundar Srinivasan - IRyA/UNAM

ののの 前 エボト・ボット 雪マ ろんの

$$\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right]. \quad \text{Set } r = r_c \xi \text{ and } v = c_s \eta; \\ \frac{d \ln \eta}{d\xi} = \frac{2}{\eta^2 - 1} \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right] \\ \implies \frac{d}{d\xi} \left[\frac{\eta^2}{2} - \ln \eta \right] = 2 \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right] \quad \text{Integrate: } \eta^2 - \ln \eta^2 = 4 \left[\ln \xi + \frac{1}{\xi} \right] + C \quad (C \text{ depends on boundary condition}).$$

Prof. Sundar Srinivasan - IRyA/UNAM

<ロト < 団 > < 三 > < 三 > < 三 < つへで</p>

$$\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right]. \quad \text{Set } r = r_c \xi \text{ and } v = c_s \eta; \\ \frac{d \ln \eta}{d\xi} = \frac{2}{\eta^2 - 1} \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right] \\ \implies \frac{d}{d\xi} \left[\frac{\eta^2}{2} - \ln \eta \right] = 2 \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right] \quad \text{Integrate: } \eta^2 - \ln \eta^2 = 4 \left[\ln \xi + \frac{1}{\xi} \right] + C \quad (C \text{ depends on boundary condition}).$$

For the critical solution, at r_c we have $\xi = \eta = 1 \implies C = -3$. Can investigate solutions for different C values.

Prof. Sundar Srinivasan - IRyA/UNAM

$$\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right]. \quad \text{Set } r = r_c \xi \text{ and } v = c_s \eta; \quad \frac{d \ln \eta}{d\xi} = \frac{2}{\eta^2 - 1} \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right]$$
$$\implies \frac{d}{d\xi} \left[\frac{\eta^2}{2} - \ln \eta \right] = 2 \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right] \quad \text{Integrate: } \eta^2 - \ln \eta^2 = 4 \left[\ln \xi + \frac{1}{\xi} \right] + C \quad (C \text{ depends on boundary condition}).$$

For the critical solution, at r_c we have $\xi = \eta = 1 \implies C = -3$. Can investigate solutions for different C values.

Rai Chouduri, The Physics of Fluids and Plasmas

Solutions in families I and II are unphysical (non-monotonic).

Solutions in family III (C > -3) are always supersonic.

Solutions in family IV (C < -3)are always subsonic.

Solutions v and VI (C = -3) are transsonic – v starts out subsonic and becomes supersonic beyond r_c , while VI shows the opposite trend.

$$\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right]. \quad \text{Set } r = r_c \xi \text{ and } v = c_s \eta; \quad \frac{d \ln \eta}{d\xi} = \frac{2}{\eta^2 - 1} \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right]$$
$$\implies \frac{d}{d\xi} \left[\frac{\eta^2}{2} - \ln \eta \right] = 2 \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right] \quad \text{Integrate: } \eta^2 - \ln \eta^2 = 4 \left[\ln \xi + \frac{1}{\xi} \right] + C \quad (C \text{ depends on boundary condition}).$$

For the critical solution, at r_c we have $\xi = \eta = 1 \implies C = -3$. Can investigate solutions for different C values.

Rai Chouduri, The Physics of Fluids and Plasmas

Solutions in families I and II are unphysical (non-monotonic).

Solutions in family III (C > -3) are always supersonic.

Solutions in family IV (C < -3)are always subsonic.

Solutions V and VI (C = -3) are transsonic – V starts out subsonic and becomes supersonic beyond r_c , while VI shows the opposite trend.

 \implies v is the only physical transsonic solution with a positive velocity gradient.

$$\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right]. \quad \text{Set } r = r_c \xi \text{ and } v = c_s \eta; \quad \frac{d \ln \eta}{d\xi} = \frac{2}{\eta^2 - 1} \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right]$$
$$\implies \frac{d}{d\xi} \left[\frac{\eta^2}{2} - \ln \eta \right] = 2 \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right] \quad \text{Integrate: } \eta^2 - \ln \eta^2 = 4 \left[\ln \xi + \frac{1}{\xi} \right] + C \quad (C \text{ depends on boundary condition}).$$

For the critical solution, at r_c we have $\xi = \eta = 1 \implies C = -3$. Can investigate solutions for different C values.

Rai Chouduri, The Physics of Fluids and Plasmas

Solutions in families I and II are unphysical (non-monotonic).

Solutions in family III (C > -3) are always supersonic.

Solutions in family IV (C < -3)are always subsonic.

Solutions V and VI (C = -3) are transsonic – V starts out subsonic and becomes supersonic beyond r_c , while VI shows the opposite trend.

 \implies v is the only physical transsonic solution with a positive velocity gradient. C depends on $v(r_0)$ and only one value (C = -3) results in a transsonic wind \implies unique value of MLR for a transsonic solution for isothermal pressure-driven winds

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ● ● ●

$$\frac{d \ln v}{dr} = \frac{1}{v^2 - c_s^2} \left[\frac{2c_s^2}{r} - \frac{GM}{r^2} \right]. \quad \text{Set } r = r_c \xi \text{ and } v = c_s \eta; \quad \frac{d \ln \eta}{d\xi} = \frac{2}{\eta^2 - 1} \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right]$$
$$\implies \frac{d}{d\xi} \left[\frac{\eta^2}{2} - \ln \eta \right] = 2 \left[\frac{1}{\xi} - \frac{1}{\xi^2} \right] \quad \text{Integrate: } \eta^2 - \ln \eta^2 = 4 \left[\ln \xi + \frac{1}{\xi} \right] + C \quad (C \text{ depends on boundary condition}).$$

For the critical solution, at r_c we have $\xi = \eta = 1 \implies C = -3$. Can investigate solutions for different C values.

Rai Chouduri, The Physics of Fluids and Plasmas

Solutions in families I and II are unphysical (non-monotonic).

Solutions in family III (C > -3) are always supersonic.

Solutions in family IV (C < -3)are always subsonic.

Solutions V and VI (C = -3) are transsonic – V starts out subsonic and becomes supersonic beyond r_c , while VI shows the opposite trend.

 \implies v is the only physical transsonic solution with a positive velocity gradient. C depends on $v(r_0)$ and only one value (C = -3) results in a transsonic wind \implies unique value of MLR for a transsonic solution for isothermal pressure-driven winds

Near surface $(\xi < 1)$, $\eta \approx \xi^{-2} \exp \left[-2/\xi + 3/2\right]$. At large distances $(\xi \gg 1)$: $\eta \sim \sqrt{\ln \xi}$. The outflow velocity diverges, which is unphysical. True behaviour deviates from the isothermal model prediction (T drops, v becomes constant, ρ falloff steeper than hydrostatic solution beyond critical point).

Limitation of isothermal pressure-driven winds

Consider an O star: $T_{\rm eff} \approx 40\,000$ K, $M \approx 40$ M_{\odot}, $R \approx 20R_{\odot}$ (Carroll & Ostlie, Appendix G). Compute: $c_{\rm s} \approx 20$ km s⁻¹, $v_{\rm esc}(R_*) \approx 600$ km s⁻¹ $\Longrightarrow r_c \approx 220R_*$. Observed sonic point: very close to R_* .

 \implies additional force required to oppose strong gravitational pull (radiation pressure, magnetic fields).

Limitation of isothermal pressure-driven winds

Consider an O star: $T_{\rm eff} \approx 40\,000$ K, $M \approx 40$ M_{\odot}, $R \approx 20R_{\odot}$ (Carroll & Ostlie, Appendix G). Compute: $c_{\rm s} \approx 20$ km s⁻¹, $v_{\rm esc}(R_*) \approx 600$ km s⁻¹ $\Longrightarrow r_c \approx 220R_*$. Observed sonic point: very close to R_* .

 \implies additional force required to oppose strong gravitational pull (radiation pressure, magnetic fields).

Non-isothermal wind: temperature gradient will change c_s and hence location of critical point, and therefore MLR. Maintaining a temperature gradient requires higher pressure gradients which have to be sourced from other mechanisms.

Cool stars: continuum absorption by freshly-formed dust. Hot stars: resonance scattering from ionised metal lines.

of. Sundar Srinivasan - IRyA/UNAM

▲ロ > ▲ □ > ■ □ > ■ □ > ■ □ > ■ □ > ■ ○ < □ > ■ □ = □ > ■ □

Cool stars: continuum absorption by freshly-formed dust. Hot stars: resonance scattering from ionised metal lines.

Radiation pressure and the Eddington Limit

Prof. Sundar Srinivasan - IRyA/UNAM

<ロ> < 団 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Cool stars: continuum absorption by freshly-formed dust. Hot stars: resonance scattering from ionised metal lines.

Radiation pressure and the Eddington Limit

Momentum balance: momentum of the wind is obtained from photon absorption.

$$\dot{M}v_{\infty} = \frac{\hat{L}_{*}}{c} \quad (\overbrace{1-e^{-\tau}}^{\text{min}}) \Longrightarrow \frac{\dot{M}}{10^{-7}M_{\odot} \text{ yr}^{-1}} \approx 200 \left(\frac{L_{*}}{10^{4}L_{\odot}}\right) \left(\frac{v_{\infty}}{10 \text{ km s}^{-1}}\right)^{-1} (1-e^{-\tau}).$$

Prof. Sundar Srinivasan - IRyA/UNAM

Cool stars: continuum absorption by freshly-formed dust. Hot stars: resonance scattering from ionised metal lines.

Radiation pressure and the Eddington Limit

Momentum balance: momentum of the wind is obtained from photon absorption.

$$\dot{M}v_{\infty} = \frac{\dot{L}_{*}}{c} \quad (\overbrace{1-e^{-\tau}}^{*}) \Longrightarrow \frac{\dot{M}}{10^{-7}M_{\odot} \text{ yr}^{-1}} \approx 200 \left(\frac{L_{*}}{10^{4}L_{\odot}}\right) \left(\frac{v_{\infty}}{10 \text{ km s}^{-1}}\right)^{-1} (1-e^{-\tau}).$$

Example: $L = 5000 \text{ L}_{\odot}$, $v_{\infty} = 15 \text{ km s}^{-1}$, $\tau = 0.01 \Longrightarrow \dot{M} = 6.7 \times 10^{-8} \text{ M}_{\odot} \text{ yr}^{-1}$.

Cool stars: continuum absorption by freshly-formed dust. Hot stars: resonance scattering from ionised metal lines.

Radiation pressure and the Eddington Limit

Momentum balance: momentum of the wind is obtained from photon absorption.

$$\dot{M}_{v_{\infty}} = \frac{\widetilde{L_{*}}}{c} \quad (\widetilde{1 - e^{-\tau}}) \Longrightarrow \frac{\dot{M}}{10^{-7} M_{\odot} \text{ yr}^{-1}} \approx 200 \left(\frac{L_{*}}{10^{4} L_{\odot}}\right) \left(\frac{v_{\infty}}{10 \text{ km s}^{-1}}\right)^{-1} (1 - e^{-\tau}).$$

Example: $L = 5000 \text{ L}_{\odot}$, $v_{\infty} = 15 \text{ km s}^{-1}$, $\tau = 0.01 \Longrightarrow \dot{M} = 6.7 \times 10^{-8} \text{ M}_{\odot} \text{ yr}^{-1}$.

Optically thin: $\dot{M} \approx \frac{L_*}{c_{v_{\infty}}} \tau \propto \frac{L_*}{c_{v_{\infty}}} \kappa_{\rm dust}$. Optically thick: $\dot{M} \approx \frac{L_*}{c_{v_{\infty}}}$.

Prof. Sundar Srinivasan - IRyA/UNAM

Cool stars: continuum absorption by freshly-formed dust. Hot stars: resonance scattering from ionised metal lines.

Radiation pressure and the Eddington Limit

Momentum balance: momentum of the wind is obtained from photon absorption.

$$\dot{M}v_{\infty} = \frac{L_{*}}{c} \quad (1 - e^{-\tau}) \Longrightarrow \frac{\dot{M}}{10^{-7} M_{\odot} \text{ yr}^{-1}} \approx 200 \left(\frac{L_{*}}{10^{4} L_{\odot}}\right) \left(\frac{v_{\infty}}{10 \text{ km s}^{-1}}\right)^{-1} (1 - e^{-\tau}).$$

Example: $L = 5000 \text{ L}_{\odot}$, $v_{\infty} = 15 \text{ km s}^{-1}$, $\tau = 0.01 \Longrightarrow \dot{M} = 6.7 \times 10^{-8} \text{ M}_{\odot} \text{ yr}^{-1}$.

Optically thin: $\dot{M} \approx \frac{L_*}{c_{v_{\infty}}} \tau \propto \frac{L_*}{c_{v_{\infty}}} \kappa_{\rm dust}$. Optically thick: $\dot{M} \approx \frac{L_*}{c_{v_{\infty}}}$.

Pressure gradient in terms of moments of intensity:

$$\frac{d\rho_{\rm rad}}{dz} = \frac{4\pi}{c} \int \alpha_{\nu}^{\rm ext} \frac{dK_{\nu}}{d\tau_{\nu}} d\nu = \frac{1}{c} \int \alpha_{\nu}^{\rm ext} \frac{d}{d\tau_{\nu}} \left(4\pi K_{\nu} \right) d\nu = \frac{1}{c} \int \alpha_{\nu}^{\rm ext} F_{\nu} d\nu.$$

Cool stars: continuum absorption by freshly-formed dust. Hot stars: resonance scattering from ionised metal lines.

Radiation pressure and the Eddington Limit

Momentum balance: momentum of the wind is obtained from photon absorption.

$$\dot{M}v_{\infty} = \frac{L_{*}}{c} \quad (1 - e^{-\tau}) \Longrightarrow \frac{\dot{M}}{10^{-7} M_{\odot} \text{ yr}^{-1}} \approx 200 \left(\frac{L_{*}}{10^{4} L_{\odot}}\right) \left(\frac{v_{\infty}}{10 \text{ km s}^{-1}}\right)^{-1} (1 - e^{-\tau}).$$

Example: $L = 5000 \text{ L}_{\odot}$, $v_{\infty} = 15 \text{ km s}^{-1}$, $\tau = 0.01 \Longrightarrow \dot{M} = 6.7 \times 10^{-8} \text{ M}_{\odot} \text{ yr}^{-1}$.

Optically thin: $\dot{M} \approx \frac{L_*}{cv_{\infty}} \tau \propto \frac{L_*}{cv_{\infty}} \kappa_{\rm dust}$. Optically thick: $\dot{M} \approx \frac{L_*}{cv_{\infty}}$.

Pressure gradient in terms of moments of intensity:

$$\frac{d\rho_{\rm rad}}{dz} = \frac{4\pi}{c} \int \alpha_{\nu}^{\rm ext} \frac{dK_{\nu}}{d\tau_{\nu}} d\nu = \frac{1}{c} \int \alpha_{\nu}^{\rm ext} \frac{d}{d\tau_{\nu}} (4\pi K_{\nu}) d\nu = \frac{1}{c} \int \alpha_{\nu}^{\rm ext} F_{\nu} d\nu$$
Hydrostatic equilibrium:
$$\frac{GM}{r^2} = \frac{1}{\rho} \frac{d\rho_{\rm rad}}{dz} = \frac{1}{c} \int \kappa_{\nu}^{\rm ext} F_{\nu} d\nu \approx \frac{\overline{\kappa}}{c} F = \frac{\overline{\kappa}}{c} \frac{L_*}{4\pi r^2}.$$

Cool stars: continuum absorption by freshly-formed dust. Hot stars: resonance scattering from ionised metal lines.

Radiation pressure and the Eddington Limit

Momentum balance: momentum of the wind is obtained from photon absorption.

$$\dot{M}v_{\infty} = \frac{L_{*}}{c} \quad (1 - e^{-\tau}) \Longrightarrow \frac{\dot{M}}{10^{-7} M_{\odot} \text{ yr}^{-1}} \approx 200 \left(\frac{L_{*}}{10^{4} L_{\odot}}\right) \left(\frac{v_{\infty}}{10 \text{ km s}^{-1}}\right)^{-1} (1 - e^{-\tau}).$$

Example: $L = 5000 \text{ L}_{\odot}$, $v_{\infty} = 15 \text{ km s}^{-1}$, $\tau = 0.01 \Longrightarrow \dot{M} = 6.7 \times 10^{-8} \text{ M}_{\odot} \text{ yr}^{-1}$.

Optically thin: $\dot{M} \approx \frac{L_*}{c_{\nu_{\infty}}} \tau \propto \frac{L_*}{c_{\nu_{\infty}}} \kappa_{\rm dust}$. Optically thick: $\dot{M} \approx \frac{L_*}{c_{\nu_{\infty}}}$.

Pressure gradient in terms of moments of intensity:

 $\begin{aligned} \frac{d\rho_{\rm rad}}{dz} &= \frac{4\pi}{c} \int \alpha_{\nu}^{\rm ext} \frac{dK_{\nu}}{d\tau_{\nu}} d\nu = \frac{1}{c} \int \alpha_{\nu}^{\rm ext} \frac{d}{d\tau_{\nu}} \left(4\pi K_{\nu} \right) d\nu = \frac{1}{c} \int \alpha_{\nu}^{\rm ext} F_{\nu} d\nu. \\ \text{Hydrostatic equilibrium:} \quad \frac{GM}{r^2} &= \frac{1}{\rho} \frac{d\rho_{\rm rad}}{dz} = \frac{1}{c} \int \kappa_{\nu}^{\rm ext} F_{\nu} d\nu \approx \frac{\overline{\kappa}}{c} F = \frac{\overline{\kappa}}{c} \frac{L_*}{4\pi r^2}. \\ \text{Star blows away surface material if } L > L_{\rm Edd} \equiv \frac{4\pi GMc}{\overline{\kappa}} = 3.2 \times 10^4 \left(\frac{M}{M_{\odot}} \right) \left(\frac{\overline{\kappa}}{0.020 \text{ m}^2 \text{ km}^{-1}} \right)^{-1} L_{\odot}. \end{aligned}$

Star blows away surface matching in $L > L_{Edd} = \frac{1}{\kappa} - 3.2 \times 10 \left(\frac{1}{M_{\odot}}\right) \left(\frac{1}{0.039 \text{ m}^2 \text{ kg}^-}\right)$ Where $\kappa = 0.039 \text{ m}^2 \text{ kg}^{-1}$ is the Thomson opacity for fully ionised hydrogen.

Cool stars: continuum absorption by freshly-formed dust. Hot stars: resonance scattering from ionised metal lines.

Radiation pressure and the Eddington Limit

Momentum balance: momentum of the wind is obtained from photon absorption.

$$\dot{M}v_{\infty} = \frac{L_{*}}{c} \quad (1 - e^{-\tau}) \Longrightarrow \frac{\dot{M}}{10^{-7} M_{\odot} \text{ yr}^{-1}} \approx 200 \left(\frac{L_{*}}{10^{4} L_{\odot}}\right) \left(\frac{v_{\infty}}{10 \text{ km s}^{-1}}\right)^{-1} (1 - e^{-\tau}).$$

Example: $L = 5000 \text{ L}_{\odot}$, $v_{\infty} = 15 \text{ km s}^{-1}$, $\tau = 0.01 \Longrightarrow \dot{M} = 6.7 \times 10^{-8} \text{ M}_{\odot} \text{ yr}^{-1}$.

Optically thin: $\dot{M} \approx \frac{L_*}{c_{\nu_{\infty}}} \tau \propto \frac{L_*}{c_{\nu_{\infty}}} \kappa_{\rm dust}$. Optically thick: $\dot{M} \approx \frac{L_*}{c_{\nu_{\infty}}}$.

Pressure gradient in terms of moments of intensity:

 $\begin{aligned} \frac{d\rho_{\rm rad}}{dz} &= \frac{4\pi}{c} \int \alpha_{\nu}^{\rm ext} \frac{dK_{\nu}}{d\tau_{\nu}} d\nu = \frac{1}{c} \int \alpha_{\nu}^{\rm ext} \frac{d}{d\tau_{\nu}} (4\pi K_{\nu}) d\nu = \frac{1}{c} \int \alpha_{\nu}^{\rm ext} F_{\nu} d\nu. \end{aligned}$ Hydrostatic equilibrium: $\frac{GM}{r^2} &= \frac{1}{\rho} \frac{d\rho_{\rm rad}}{dz} = \frac{1}{c} \int \kappa_{\nu}^{\rm ext} F_{\nu} d\nu \approx \frac{\overline{\kappa}}{c} F = \frac{\overline{\kappa}}{c} \frac{L_*}{4\pi r^2}. \end{aligned}$ Star blows away surface material if $L > L_{\rm Edd} \equiv \frac{4\pi GMc}{\pi} = 3.2 \times 10^4 \left(\frac{M}{M_{\star}}\right) \left(\frac{\overline{\kappa}}{0.020 \, {\rm m}^2 \, {\rm km^{-1}}}\right)^{-1} L_{\odot}. \end{aligned}$

Where $\overline{\kappa}=0.039~\text{m}^2~\text{kg}^{-1}$ is the Thomson opacity for fully ionised hydrogen.

AGB and RSG stars have L \sim 0.1 - 0.3L $_{
m Edd}$. η Car is an example with L \sim L $_{
m Edd}$.

 $_{v_{\infty}} \sim 10-30 \ \text{km} \ \text{s}^{-1}, \ T_{\rm eff} \sim 2700-4000 \ \text{K}. \ \text{AGB} \ (1-5 \ \text{M}_{\odot}, \ 3000-10^5 \ \text{L}_{\odot})$ and RSG $(5-25 \ \text{M}_{\odot}, \ 10^5-10^6 \ \text{L}_{\odot}).$

Prof. Sundar Srinivasan - IRyA/UNAM

<ロ>

 $\textit{v}_{\infty} \sim 10-30 \text{ km s}^{-1}, \textit{T}_{\rm eff} \sim 2700-4000 \text{ K}. \text{ AGB } (1-5 \text{ M}_{\odot}, 3000-10^5 \text{ L}_{\odot}) \text{ and RSG } (5-25 \text{ M}_{\odot}, 10^5-10^6 \text{ L}_{\odot}).$

Pulsators. Semi-regular variables (small amplitude, P < 100 d), long-period variables (large amplitude, fundamental mode, $P \sim 100 - 300$ d). Mira-type stars are LPVs. Pulsations can also drive a weak wind.

 $v_{\infty} \sim 10-30 \text{ km s}^{-1}, T_{\mathrm{eff}} \sim 2700-4000 \text{ K}. \text{ AGB } (1-5 \text{ M}_{\odot}, 3000-10^5 \text{ L}_{\odot}) \text{ and RSG } (5-25 \text{ M}_{\odot}, 10^5-10^6 \text{ L}_{\odot}).$

Pulsators. Semi-regular variables (small amplitude, P < 100 d), long-period variables (large amplitude, fundamental mode, $P \sim 100 - 300$ d). Mira-type stars are LPVs. Pulsations can also drive a weak wind.

Nowotny et al. 2010 A&A 514, A35

Gas layers levitated by pulsations travel on ballistic trajectories to cooler regions ($R \sim 1.5 - 3R_{*}, T \lesssim 1300$ K) where condensation into solid particles (dust) occurs, which immediately drives a strong outflow. The dust drags the gas along with it.

Prof. Sundar Srinivasan - IRyA/UNAM

 $v_{\infty} \sim 10-30 \text{ km s}^{-1}, \ T_{\rm eff} \sim 2700-4000 \text{ K. AGB } (1-5 \text{ M}_{\odot}, 3000-10^5 \text{ L}_{\odot}) \text{ and RSG } (5-25 \text{ M}_{\odot}, 10^5-10^6 \text{ L}_{\odot}).$

Pulsators. Semi-regular variables (small amplitude, P < 100 d), long-period variables (large amplitude, fundamental mode, $P \sim 100 - 300$ d). Mira-type stars are LPVs. Pulsations can also drive a weak wind.

Gas layers levitated by pulsations travel on ballistic trajectories to cooler regions ($R \sim 1.5 - 3R_*$, $T \lesssim 1300$ K) where condensation into solid particles (dust) occurs, which immediately drives a strong outflow. The dust drags the gas along with it.

AGB star atmospheres start out oxygen-rich. Stars with masses $2 - 4 M_{\odot}$ become carbon-rich by the third dredge-up process. The chemistry of the molecules and dust in the envelope is regulated accordingly.

O-rich dust: refractory oxides (AI, Mg), amorphous silicates (olivine, pyroxene), crystalline silicates (enstatite).

C-rich dust: amorphous carbon, diamond/graphite, silicon carbide, MgS, hydrogenated amorphous carbons (HACs).

 $v_{\infty} \sim 10-30 \text{ km s}^{-1}, \ T_{\rm eff} \sim 2700-4000 \text{ K. AGB } (1-5 \text{ M}_{\odot}, 3000-10^5 \text{ L}_{\odot}) \text{ and RSG } (5-25 \text{ M}_{\odot}, 10^5-10^6 \text{ L}_{\odot}).$

Pulsators. Semi-regular variables (small amplitude, P < 100 d), long-period variables (large amplitude, fundamental mode, $P \sim 100 - 300$ d). Mira-type stars are LPVs. Pulsations can also drive a weak wind.

Gas layers levitated by pulsations travel on ballistic trajectories to cooler regions ($R \sim 1.5 - 3R_*$, $T \lesssim 1300$ K) where condensation into solid particles (dust) occurs, which immediately drives a strong outflow. The dust drags the gas along with it.

AGB star atmospheres start out oxygen-rich. Stars with masses $2 - 4 M_{\odot}$ become carbon-rich by the third dredge-up process. The chemistry of the molecules and dust in the envelope is regulated accordingly.

O-rich dust: refractory oxides (AI, Mg), amorphous silicates (olivine, pyroxene), crystalline silicates (enstatite).

C-rich dust: amorphous carbon, diamond/graphite, silicon carbide, MgS, hydrogenated amorphous carbons (HACs).

The MLR depends on the chemistry – in general, carbonaceous dust has higher κ and hence is more efficient in absorbing radiation. Silicate dust requires iron to enhance its opacity (e.g., Höfner 2007 ASPC 378, 145).

Prof. Sundar Srinivasan - IRvA/UNAM