?hpevx

Computes selected eigenvalues and, optionally, eigenvectors of a Hermitian matrix in packed storage.

Syntax

FORTRAN 77:

call chpevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhpevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

Fortran 95:

call hpevx(ap, w [,uplo] [,z] [,vl] [,vu] [,il] [,iu] [,m] [,ifail] [,abstol] [,info])

C:

lapack_int LAPACKE_chpevx( int matrix_order, char jobz, char range, char uplo, lapack_int n, lapack_complex_float* ap, float vl, float vu, lapack_int il, lapack_int iu, float abstol, lapack_int* m, float* w, lapack_complex_float* z, lapack_int ldz, lapack_int* ifail );

lapack_int LAPACKE_zhpevx( int matrix_order, char jobz, char range, char uplo, lapack_int n, lapack_complex_double* ap, double vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int* m, double* w, lapack_complex_double* z, lapack_int ldz, lapack_int* ifail );

Include Files

The FORTRAN 77 interfaces are specified in the mkl_lapack.fi and mkl_lapack.h include files, the Fortran 95 interfaces are specified in the lapack.f90 include file, and the C interfaces are specified in the mkl_lapacke.h include file.

Description

The routine computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed storage. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

Input Parameters

The data types are given for the Fortran interface. A <datatype> placeholder, if present, is used for the C interface data types in the C interface section above. See C Interface Conventions for the C interface principal conventions and type definitions.

jobz

CHARACTER*1. Must be 'N' or 'V'.

If job = 'N', then only eigenvalues are computed.

If job = 'V', then eigenvalues and eigenvectors are computed.

range

CHARACTER*1. Must be 'A' or 'V' or 'I'.

If range = 'A', the routine computes all eigenvalues.

If range = 'V', the routine computes eigenvalues lambda(i) in the half-open interval: vl<lambda(i) vu.

If range = 'I', the routine computes eigenvalues with indices il to iu.

uplo

CHARACTER*1. Must be 'U' or 'L'.

If uplo = 'U', ap stores the packed upper triangular part of A.

If uplo = 'L', ap stores the packed lower triangular part of A.

n

INTEGER. The order of the matrix A (n 0).

ap, work

COMPLEX for chpevx

DOUBLE COMPLEX for zhpevx

Arrays:

ap(*) contains the packed upper or lower triangle of the Hermitian matrix A, as specified by uplo.

The dimension of ap must be at least max(1, n*(n+1)/2).

work(*) is a workspace array, DIMENSION at least max(1, 2n).

vl, vu

REAL for chpevx

DOUBLE PRECISION for zhpevx

If range = 'V', the lower and upper bounds of the interval to be searched for eigenvalues.

Constraint: vl< vu.

If range = 'A' or 'I', vl and vu are not referenced.

il, iu

INTEGER.

If range = 'I', the indices in ascending order of the smallest and largest eigenvalues to be returned.

Constraint: 1 il iu n, if n > 0; il=1 and iu=0 if n = 0.

If range = 'A' or 'V', il and iu are not referenced.

abstol

REAL for chpevx

DOUBLE PRECISION for zhpevx

The absolute error tolerance to which each eigenvalue is required. See Application notes for details on error tolerance.

ldz

INTEGER. The leading dimension of the output array z.

Constraints:

if jobz = 'N', then ldz 1;

if jobz = 'V', then ldz max(1, n).

rwork

REAL for chpevx

DOUBLE PRECISION for zhpevx

Workspace array, DIMENSION at least max(1, 7n).

iwork

INTEGER. Workspace array, DIMENSION at least max(1, 5n).

Output Parameters

ap

On exit, this array is overwritten by the values generated during the reduction to tridiagonal form. The elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding elements of A.

m

INTEGER. The total number of eigenvalues found, 0 m n.

If range = 'A', m = n, and if range = 'I', m = iu-il+1.

w

REAL for chpevx

DOUBLE PRECISION for zhpevx

Array, DIMENSION at least max(1, n).

If info = 0, contains the selected eigenvalues of the matrix A in ascending order.

z

COMPLEX for chpevx

DOUBLE COMPLEX for zhpevx

Array z(ldz,*).

The second dimension of z must be at least max(1, m).

If jobz = 'V', then if info = 0, the first m columns of z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of z holding the eigenvector associated with w(i).

If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in ifail.

If jobz = 'N', then z is not referenced.

Note: you must ensure that at least max(1,m) columns are supplied in the array z; if range = 'V', the exact value of m is not known in advance and an upper bound must be used.

ifail

INTEGER.

Array, DIMENSION at least max(1, n).

If jobz = 'V', then if info = 0, the first m elements of ifail are zero; if info > 0, the ifail contains the indices the eigenvectors that failed to converge.

If jobz = 'N', then ifail is not referenced.

info

INTEGER.

If info = 0, the execution is successful.

If info = -i, the i-th parameter had an illegal value.

If info = i, then i eigenvectors failed to converge; their indices are stored in the array ifail.

Fortran 95 Interface Notes

Routines in Fortran 95 interface have fewer arguments in the calling sequence than their FORTRAN 77 counterparts. For general conventions applied to skip redundant or restorable arguments, see Fortran 95 Interface Conventions.

Specific details for the routine hpevx interface are the following:

ap

Holds the array A of size (n*(n+1)/2).

w

Holds the vector with the number of elements n.

z

Holds the matrix Z of size (n, n), where the values n and m are significant.

ifail

Holds the vector with the number of elements n.

uplo

Must be 'U' or 'L'. The default value is 'U'.

vl

Default value for this element is vl = -HUGE(vl).

vu

Default value for this element is vu = HUGE(vl).

il

Default value for this argument is il = 1.

iu

Default value for this argument is iu = n.

abstol

Default value for this element is abstol = 0.0_WP.

jobz

Restored based on the presence of the argument z as follows:

jobz = 'V', if z is present,

jobz = 'N', if z is omitted

Note that there will be an error condition if ifail is present and z is omitted.

range

Restored based on the presence of arguments vl, vu, il, iu as follows:

range = 'V', if one of or both vl and vu are present,

range = 'I', if one of or both il and iu are present,

range = 'A', if none of vl, vu, il, iu is present,

Note that there will be an error condition if one of or both vl and vu are present and at the same time one of or both il and iu are present.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to abstol+ε*max(|a|,|b|), where ε is the machine precision.

If abstol is less than or equal to zero, then ε*||T||1 will be used in its place, where T is the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold 2*?lamch('S'), not zero.

If this routine returns with info > 0, indicating that some eigenvectors did not converge, try setting abstol to 2*?lamch('S').


Submit feedback on this help topic

Copyright © 1994 - 2011, Intel Corporation. All rights reserved.