p?tran

Transposes a real distributed matrix.

Syntax

call pstran(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

call pdtran(m, n, alpha, a, ia, ja, desca, beta, c, ic, jc, descc)

Include Files

The C interfaces for this function are specified in the mkl_pblas.h include file.

Description

The p?tran routines transpose a real distributed matrix. The operation is defined as sub(C):=beta*sub(C) + alpha*sub(A)',

where:

alpha and beta are scalars,

sub(C) is an m-by-n distributed matrix, sub(C)=C(ic:ic+m-1, jc:jc+n-1).

sub(A) is a distributed matrix, sub(A)=A(ia:ia+n-1, ja:ja+m-1).

Input Parameters

m

(global) INTEGER. Specifies the number of rows of the distributed matrix sub(C), m 0.

n

(global) INTEGER. Specifies the number of columns of the distributed matrix sub(C) , n 0.

alpha

(global) REAL for pstran

DOUBLE PRECISION for pdtran

Specifies the scalar alpha.

a

(local) REAL for pstran

DOUBLE PRECISION for pdtran

Array, DIMENSION (lld_a, LOCq(ja+m-1)). This array contains the local pieces of the distributed matrix sub(A).

ia, ja

(global) INTEGER. The row and column indices in the distributed matrix A indicating the first row and the first column of the submatrix sub(A), respectively.

desca

(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix A.

beta

(global) REAL for pstran

DOUBLE PRECISION for pdtran

Specifies the scalar beta.

When beta is equal to zero, then sub(C) need not be set on input.

c

(local) REAL for pstran

DOUBLE PRECISION for pdtran

Array, DIMENSION (lld_c, LOCq(jc+n-1)).

This array contains the local pieces of the distributed matrix sub(C).

ic, jc

(global) INTEGER. The row and column indices in the distributed matrix C indicating the first row and the first column of the submatrix sub(C), respectively.

descc

(global and local) INTEGER array of dimension 8. The array descriptor of the distributed matrix C.

Output Parameters

c

Overwritten by the updated submatrix.


Submit feedback on this help topic

Copyright © 1994 - 2011, Intel Corporation. All rights reserved.