Multiplies a general matrix by one of the orthogonal matrices from a reduction to bidiagonal form determined by p?gebrd.
call psormbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork, info)
call pdormbr(vect, side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork, info)
If vect = 'Q', the p?ormbr routine overwrites the general real distributed m-by-n matrix sub(C) = C(c:ic+m-1,jc:jc+n-1) with
side ='L' | side ='R' | |
trans = 'N': | Q sub(C) | sub(C) Q |
trans = 'T': | QT sub(C) | sub(C) QT |
If vect = 'P', the routine overwrites sub(C) with
side ='L' | side ='R' | |
trans = 'N': | P sub(C) | sub(C) P |
trans = 'T': | PT sub(C) | sub(C) PT |
Here Q and PT are the orthogonal distributed matrices determined by p?gebrd when reducing a real distributed matrix A(ia:*, ja:*) to bidiagonal form: A(ia:*,ja:*) = Q*B*PT. Q and PT are defined as products of elementary reflectors H(i) and G(i) respectively.
Let nq = m if side = 'L' and nq = n if side = 'R'. Thus nq is the order of the orthogonal matrix Q or PT that is applied.
If vect = 'Q', A(ia:*, ja:*) is assumed to have been an nq-by-k matrix:
If nq ≥ k, Q = H(1) H(2)...H(k);
If nq < k, Q = H(1) H(2)...H(nq-1).
If vect = 'P', A(ia:*, ja:*) is assumed to have been a k-by-nq matrix:
If k < nq, P = G(1) G(2)...G(k);
If k ≥ nq, P = G(1) G(2)...G(nq-1).
(global) CHARACTER.
If vect ='Q', then Q or QT is applied.
If vect ='P', then P or PT is applied.
(global) CHARACTER.
If side ='L', then Q or QT, P or PT is applied from the left.
If side ='R', then Q or QT, P or PT is applied from the right.
(global) CHARACTER.
If trans = 'N', no transpose, Q or P is applied.
If trans = 'T', then QT or PT is applied.
(global) INTEGER. The number of rows in the distributed matrix sub (C).
(global) INTEGER. The number of columns in the distributed matrix sub (C).
(global) INTEGER.
If vect = 'Q', the number of columns in the original distributed matrix reduced by p?gebrd;
If vect = 'P', the number of rows in the original distributed matrix reduced by p?gebrd.
Constraints: k ≥ 0.
(local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Pointer into the local memory to an array of dimension (lld_a, LOCc(ja+min(nq,k)-1))
If vect='Q', and (lld_a, LOCc(ja+nq-1))
If vect = 'P'.
nq = m if side = 'L', and nq = n otherwise.
The vectors which define the elementary reflectors H(i) and G(i), whose products determine the matrices Q and P, as returned by p?gebrd.
If vect = 'Q', lld_a≥max(1, LOCr(ia+nq-1));
If vect = 'P', lld_a≥max(1, LOCr(ia+min(nq, k)-1)).
(global) INTEGER. The row and column indices in the global array a indicating the first row and the first column of the submatrix A, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix A.
(local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Array, DIMENSION LOCc(ja+min(nq, k)-1), if vect = 'Q', and LOCr(ia+min(nq, k)-1), if vect = 'P'.
tau(i) must contain the scalar factor of the elementary reflector H(i) or G(i), which determines Q or P, as returned by pdgebrd in its array argument tauq or taup. tau is tied to the distributed matrix A.
(local) REAL for psormbr
DOUBLE PRECISION for pdormbr
Pointer into the local memory to an array of dimension (lld_a, LOCc (jc+n-1)).
Contains the local pieces of the distributed matrix sub (C).
(global) INTEGER. The row and column indices in the global array c indicating the first row and the first column of the submatrix C, respectively.
(global and local) INTEGER array, dimension (dlen_). The array descriptor for the distributed matrix C.
(local)
REAL for psormbr
DOUBLE PRECISION for pdormbr.
Workspace array of dimension lwork.
(local or global) INTEGER, dimension of work, must be at least:
If side = 'L'
nq = m;
if ((vect = 'Q' and nq≥k) or (vect is not equal to 'Q' and nq>k)), iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
else
iaa= ia+1; jaa=ja; mi=m-1; ni=n; icc=ic+1; jcc= jc;
end if
else
If side = 'R', nq = n;
if((vect = 'Q' and nq≥k) or (vect is not equal to 'Q' and nq>k)),
iaa=ia; jaa=ja; mi=m; ni=n; icc=ic; jcc=jc;
else
iaa= ia; jaa= ja+1; mi= m; ni= n-1; icc= ic; jcc= jc+1;
end if
end if
If vect = 'Q',
If side = 'L', lwork≥max((nb_a*(nb_a-1))/2, (nqc0 + mpc0)*nb_a) + nb_a * nb_a
else if side = 'R',
lwork≥max((nb_a*(nb_a-1))/2, (nqc0 + max(npa0 + numroc(numroc(ni+icoffc, nb_a, 0, 0, NPCOL), nb_a, 0, 0, lcmq), mpc0))*nb_a) + nb_a*nb_a
end if
else if vect is not equal to 'Q', if side = 'L',
lwork≥max((mb_a*(mb_a-1))/2, (mpc0 + max(mqa0 + numroc(numroc(mi+iroffc, mb_a, 0, 0, NPROW), mb_a, 0, 0, lcmp), nqc0))*mb_a) + mb_a*mb_a
else if side = 'R',
lwork≥max((mb_a*(mb_a-1))/2, (mpc0 + nqc0)*mb_a) + mb_a*mb_a
end if
end if
where lcmp = lcm/NPROW, lcmq = lcm/NPCOL, with lcm = ilcm(NPROW, NPCOL),
iroffa = mod(iaa-1, mb_a),
icoffa = mod(jaa-1, nb_a),
iarow = indxg2p(iaa, mb_a, MYROW, rsrc_a, NPROW),
iacol = indxg2p(jaa, nb_a, MYCOL, csrc_a, NPCOL),
mqa0 = numroc(mi+icoffa, nb_a, MYCOL, iacol, NPCOL),
npa0 = numroc(ni+iroffa, mb_a, MYROW, iarow, NPROW),
iroffc = mod(icc-1, mb_c),
icoffc = mod(jcc-1, nb_c),
icrow = indxg2p(icc, mb_c, MYROW, rsrc_c, NPROW),
iccol = indxg2p(jcc, nb_c, MYCOL, csrc_c, NPCOL),
mpc0 = numroc(mi+iroffc, mb_c, MYROW, icrow, NPROW),
nqc0 = numroc(ni+icoffc, nb_c, MYCOL, iccol, NPCOL),
indxg2p and numroc are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine blacs_gridinfo.
If lwork = -1, then lwork is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by pxerbla.
On exit, if vect='Q', sub(C) is overwritten by Q*sub(C), or Q'*sub(C), or sub(C)*Q', or sub(C)*Q; if vect='P', sub(C) is overwritten by P*sub(C), or P'*sub(C), or sub(C)*P, or sub(C)*P'.
On exit work(1) contains the minimum value of lwork required for optimum performance.
(global) INTEGER.
= 0: the execution is successful.
< 0: if the i-th argument is an array and the j-entry had an illegal value, then info = - (i* 100+j), if the i-th argument is a scalar and had an illegal value, then info = -i.
Copyright © 1994 - 2011, Intel Corporation. All rights reserved.