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Quick Tips on How to Use this Online Manual

Click to display only the page.

Click to display both bookmark 
and the page.

Click to display both thumbnails 
and the page.

Click and drag to page to magnify 
the view. 

Click to go to the first page.

Click and drag to the page to select text. 

Click and drag to page to reduce the view. 

Click to go to the last page. 

Click to go back to the previous view and
page from which you jumped.

Click to return to the next view.

Click to view the page at 100% zoom.

Click to fit the entire page within the
window.

Click to fit the page width inside the
window.

Click to find part of a word, a complete
word, or multiple words in a active
document.

Double-click to jump to a topic
when the bookmarks are displayed.

Click to jump to a topic when the
bookmarks are displayed.

Click to go to the next page. 

Click to go back to the previous page 
from which you jumped. 

Click and use to drag the page in vertical
direction and to select items on the page.

Printing an online file: Select Print from the File menu to print an online file. The dialog box that opens allows you
to print full text, range of pages, or selection.

Important Note: The last blank page of each chapter (appearing in the hard copy documentation) has been deleted
from the on-line documentation causing a skip in page numbering before the first page of the next chapter, for
instance, Chapter 1 in the on-line documentation ends on page 317 and Chapter 2 begins on page 319.

Numbering Pages . When you refer to a page number in the PDF online documentation, be aware that the page
number in the PDF online documentation will not match the page number in the original document.  A PDF
publication always starts on page 1, and supports only one page-numbering sequence per file.

Copying text. Click the          button and drag to select and copy text.

Viewing Multiple Online Manuals: Select Open from the File menu, and open the .PDF file you need.
Select Cascade from the Window menu to view multiple files.

Resizing the Bookmark Area in Windows:  Drag the double-headed arrow that appears on the area’s border as you
pass over it.

Resizing the Bookmark Area in UNIX: Click and drag the button          that appears on the area’s border at the
bottom of the vertical bar.

Jumping to Topics: Throughout the text of this manual, links to chapters and other sections appear in green color
text to indicate that you can jump to them. To return to the page from which you jumped, click the return
back icon         on the toolbar. Note: If you zoomed in or out after jumping to a topic, you will return to the
previous zoom view(s) before returning to the page from which you jumped.

Let’s try it, click on the following green color text:  Chapter 11: Cluster Analysis

If you clicked on the green color in the example above, Chapter 11: Cluster Analysis opened.
To return to this page, click the         on the toolbar.
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Chapter 8: Time Series Analysis
and Forecasting

Routines
8.1. General Methodology

8.1.1 Transformation of Data
Box-Cox transformation ......................................................... BCTR 629
Nonseasonal and seasonal difference.....................................DIFF 633

8.1.2 Sample Correlation Function
Autocorrelation function ............................................................ACF 637
Partial autocorrelation function............................................... PACF 641
Cross-correlation function ........................................................ CCF 644
Multichannel cross-correlation function................................. MCCF 649

8.2. Time Domain Methodology

8.2.1 Nonseasonal Autoregressive Moving Average Model
Method of moments estimation of AR parameters .............ARMME 657
Method of moments estimation of MA parameters ............ MAMME 660
Preliminary estimation of parameters .................................... NSPE 664
Least-squares estimation of parameters ............................. NSLSE 669
Wiener forecast operator estimates ...................................... SPWF 677
Box-Jenkins forecast............................................................ NSBJF 680

8.2.2 Transfer Function Model
Estimation of impulse response and noise series................. IRNSE 685
Preliminary estimation of parameters .....................................TFPE 689

8.2.3 Multichannel Time Series
Least-squares estimation of parameters ............................... MLSE 694
Estimation of multichannel Wiener filter................................MWFE 700
Kalman filter .........................................................................KALMN 705

8.2.4 Diagnostics
Lack of fit test based on the correlation function ................. LOFCF 716
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8.3. Frequency Domain Methodology

8.3.1 Smoothing Functions
Dirichlet kernel function ..........................................................DIRIC 719
Fejér kernel function .............................................................FEJER 721

8.3.2 Spectral Density Estimation
Periodogram using fast Fourier transform.............................. PFFT 723
Using spectral window given data ........................................ SSWD 729
Using spectral window given periodogram............................SSWP 736
Using weight sequence given data....................................... SWED 741
Using weight sequence given periodogram...........................SWEP 747

8.3.3 Cross-Spectral Density Estimation
Cross periodogram using fast Fourier transform..................CPFFT 750
Using spectral window given data ......................................CSSWD 757
Using spectral window given cross periodogram ...............CSSWP 767
Using weight sequence given data.....................................CSWED 773
Using weight sequence given cross periodogram..............CSWEP 782

Usage Notes
The name of a time series routine is a combination of three sets of one or two
letters. The first set specifies the type of model. The second set identifies the
particular method. The final set specifies the general procedure. The table below
summarizes the naming convention of the time series analysis and forecasting
routines.

The names and meanings of arguments are consistent within a set of routines
pertaining to a particular topic. For example, XCNTR corresponds to the constant
used to center the time series X in all of the spectral analysis routines. Note that
IPRINT always represents the printing option, the values and possible choices of
output necessarily depend on the given routine. An option argument always
begins with the letter “I,” and a leading dimension argument always begins with
“LD.”

The routines in this chapter assume the time series does not contain any missing
observations. If missing values are present, they should be set to NaN (see the
routine AMACH, page 1334), and the routine will return an appropriate error
message. To enable fitting of the model, the missing values must be replaced by
appropriate estimates.
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Naming Conventions in Chapter 8

Meaning Abbreviation

Nonseasonal ARMA
Transfer Function
Multichannel
Periodogram
Cross Periodogram
Spectral Density
Cross-Spectral Density

NS*
TF*
M*
P*
CP*
S*
CS*

Preliminary
Method of Moments
Least-Squares
Box-Jenkins
Spectral Window
Weights

*P*
*MM*
*LS*
*BJ*
*SW*
*WE*

Estimation
Forecast
Fast Fourier Transform
Periodogram
Data

*E
*F
*FFT
*P
*D

The “*” represents one or more letters.

General Methodology

A major component of the model identification step concerns determining if a
given time series is stationary. The sample correlation functions computed by
routines ACF (page 637), PACF (page 641), CCF (page 644), and MCCF (page 649)
may be used to diagnose the presence of nonstationarity in the data, as well as to
indicate the type of transformation require to induce stationarity. The family of
power transformations provided by routine BCTR (page 629) coupled with the
ability to difference the transformed data using routine DIFF (page 633) affords a
convenient method of transforming a wide class of nonstationary time series to
stationarity.

The “raw” data, transformed data, and sample correlation functions also provide
insight into the nature of the underlying model. Typically, this information is
displayed in graphical form via time series plots, plots of the lagged data, and
various correlation function plots. The routines in Chapter 16, “Line Printer
Graphics,” provide the necessary tools to produce the visual displays of this
quantitative information.

The observed time series may also be compared with time series generated from
various theoretical models to help identify possible candidates for model fitting.
The routine RNARM (page 1232) in Chapter 18, “Random Number Generation”
may be used to generate a time series according to a specified autoregressive
moving average model.
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Time Domain Methodology

Once the data are transformed to stationarity, a tentative model in the time
domain is often proposed and parameter estimation, diagnostic checking and
forecasting are performed.

Autoregressive Moving Average Model

A parsimonious, yet comprehensive, class of stationary time series models
consists of the nonseasonal autoregressive moving average (ARMA) processes
defined by

φ(B)(WW − µ) = θ(B)AW t ∈ ZZ

where

ZZ = {…, −2, −1, 0, 1, 2, …}

denotes the set of integers, B is the backward shift operator defined by

BNWW = WW-N, µ is the mean of WW,

φ(B) = 1 − φ1B − φ2B2 − … − φSBS p ≥ 0

θ(B) = 1 − θ1B − θ2B2 − … − θTBT q ≥ 0

The model is of order (p, q) and is referred to as an ARMA(p, q) model.

An equivalent version of the ARMA(p, q) model is given by

φ(B)WW = θ0 + θ(B)AW t ∈ ZZ

where θ0 is an overall constant defined by

θ µ φ0
1

1= −
�
��

�
��=

∑ i
i

p

See Box and Jenkins (1976, pages 92–93) for a discussion of the meaning and
usefulness of the overall constant.

If the “raw” data {ZW} are homogeneous nonstationary, then differencing induces
stationarity and the model is called autoregressive integrated moving average
(ARIMA). Parameter estimation is performed on the stationary time series

WW = ∇GZW

where

∇G = (1 − B)G

is the backward difference operator with period 1 and order d, d > 0.

Typically, routine NSPE (page 664) is first applied to the transformed data to
provide preliminary parameter estimates. These estimates are used as initial
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values in an estimation procedure. In particular, routine NSLSE (page 669) may
be used to compute conditional or unconditional least-squares estimates of the
parameters, depending on the choice of the backcasting length. Parameter
estimates from either NSPE or NSLSE may be input to routine NSBJF (page 680)
to produce forecasts with associated probability limits. The routines for
preliminary parameter estimation, least squares parameter estimation, and
forecasting follow the approach of Box and Jenkins (1976, programs 2–4,
pages 498–509).

Transfer Function Model

Define {xW} and {yW} by

x
X d

X dt
t X
d

t
=

− =
∇ >

%&'
$µ 0

0

and

y
Y d

Y dt
t Y
d

t
=

− =
∇ >

%&'
$µ 0

0

where {XW} and {YW} for t = (−d + 1), K, n represent the undifferenced input and
undifferenced output series with

$ $µ µX Y and 

estimates of their respective means. The differenced input and differenced output
series may be obtained using the routine DIFF (page 633) following any
preliminary transformation of the data.

The transfer function model is defined by

YW = δ-1(B)ω(B)XW-E

or equivalently,

yW = δ-1(B)ω(B)xW-E + nW

where nW = ∇GNW for d ≥ 0, and the left-hand side and right-hand side transfer
function polynomial operators are, respectively,

δ(B) = 1 − δ1B − δ2B2 − … − δUBU

ω(B) = ω0 − ω1B − ω2B2 − … − ωVBV

with r ≥ 0, s ≥ 0, and b ≥ 0. The noise process {NW} and the input process {XW} are
assumed to be independent, with the noise process given by the ARIMA model

φ(B)nW = θ(B)AW
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where

φ(B) = 1 − φ1B − φ2B2 − … − φSBS

θ(B) = 1 − θ1B − θ2B2 − … − θTBT

with p ≥ 0 and q ≥ 0.

The impulse response weights {vN} of the transfer function

ν(B) = δ-1(B)ω(B) = ν0 + ν1B + ν2B2 + …

and the differenced noise series {nW} are estimated using routine IRNSE
(page 685). Preliminary estimates of the transfer function parameters and noise
model parameters are computed by routine TFPE (page 689).

Multichannel Time Series

A multichannel time series X is simply a multivariate time series whose channels
correspond to interrelated univariate time series. In this setting, the model-
building process is a logical extension of the procedures used to identify,
estimate, and forecast univariate time series. In particular, the multichannel cross-
correlation function computed by routine MCCF (page 649) may help identify a
tentative model. A particular regression model may be fit using routine MLSE
(page 694), with the Wiener filter estimated using routine MWFE (page 700). The
Wiener forecast function for a single channel may be obtained by routine SPWF
(page 677). The state space approach to fitting many time domain models is
available through routine KALMN (page 705).

Frequency Domain Methodology

An alternative method of time series analysis with much less emphasis on the
form of the model may be performed in the frequency domain.

Spectral Analysis

Let {X(t)} denote a continuous-parameter stationary process with mean

µ = E[X(t)]

and autocovariance function

σ(k) = cov{X(t), X(t + k)} = E{[X(t) − µ][X(t + k) − µ]} k ∈ R

Similarly, let {XW} denote a discrete-parameter stationary process with mean

µ = E[XW]

and autocovariance function

σ(k) = cov{XW, XW+N} = E{[XW − µ][XW+N − µ]} k ∈ ZZ

Note that σ(0) = σ2 is the variance of the process.
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The routines for the spectral analysis of time series are concerned with the
estimation of the spectral density of a stationary process given a finite realization
{XW} for t = 1, …, n where n = NOBS. This realization consists of values sampled
at equally spaced time intervals in the continuous-parameter case or of values
observed consecutively in the discrete-parameter case. Hence, we need only
develop methodology concerned with the spectral analysis of discrete-parameter
stationary processes and later account for the time sampling in the continuous-
parameter model.

The nonnormalized spectral density h(ω) and the autocovariance function σ(k) of
the stationary process form a Fourier transform pair. The relationship in the
continuous-parameter case is given by

h k e dk

k h e d

i k

i k

( ) ( )

( ) ( )

ω
π

σ

σ ω ω

ω

ω
π

π

=

=

−
−∞

∞

−

I
I
1

2

Similarly, the normalized spectral density f(ω) and the autocorrelation function ρ
(k) = σ(k)/σ(0) of the stationary process form a Fourier transform pair. The
relationship in the continuous-parameter case is given by

f
h

k e dk

k f e d

i k

i k

( )
( )

( )

( )

( ) ( )

ω ω
σ

π
ρ

ρ ω ω

ω

ω
π

π

=

=

=

−
−∞

∞

−

I
I

0

1

2

The discrete-parameter analogs of the above equations involve summation over k
instead of integration over dk. Also, the normalized spectral density f(ω) satisfies

f d( )ω ω
π

π

−I = 1

Discrete Fourier Transform. The discrete Fourier transform of the sequence
{ZW} for t = 1, K, N is defined by

ζ ω ω
( )p t

i t

t

N

Z e p= −

=
∑

1

over the discrete set of frequencies

ω π
p

p

N
p N= = ± ±2

0 1 2, , ,K

where the function r determines the greatest integer less than or equal to r. An
alternative representation of ζ(ωS) in terms of cosine and sine transforms is
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ζ(ωS) = α(ωS) − iβ(ωS)

where

α ω ω

β ω ω

( ) )

)

p t p
t

N

p t p
t

N

Z t

Z t

=

=

=

=

∑

∑

cos(

sin(

1

1
3 8

The fast Fourier transform algorithm implemented in the IMSL
MATH/LIBRARY routine FFTCF is used to compute the discrete Fourier
transform. All of the frequency domain routines that output a periodogram utilize
the fast Fourier transform algorithm.

Centering and Padding. Consider the centered and padded realization

{
~

}Xt

for t = 1, K, N defined by

~ $ , ,

( ), ,
X

X t n

t n Nt
t=

− =
= +

%&'
µ 1

0 1

K

K
(1)

where N = (n + n0) and

$µ = XCNTR

is

$µ
µ µ

µ=
%
&K
'K =

∑
known

unknown
1

1n
Xt

t

n
(2)

Centering the data simplifies the formulas for estimation of the periodogram and
spectral density. The addition of n0 = NPAD zeros to the end of the data is called
padding. This procedure increases the effective length of the data from n to N in
an effort to

• increase the computational efficiency of the Fourier transformation of the series
by providing a more suitable series length N (Priestley 1981, page 577).

• obtain the periodogram ordinates required to give the exact expression of the
sample autocovariances in terms of the inverse Fourier transformation of the
periodogram (Priestley 1981, page 579).

• produce periodogram ordinates over a more refined range of frequencies ωS.

Any desired filtering, prewhitening, or data tapering should be performed prior to
estimating the spectral density. The resulting estimate may be adjusted
accordingly.
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Periodogram. The periodogram of the sample sequence {XW}, t = 1, …, n
computed with the centered and padded sequence

{
~

}, , ,X t Nt = 1 K

is defined by

I K X e K
n N X p t

i t

t

N

X p
p

, ,
~ ~( )

~ω ζ ωω= =−

=
∑

1

2
23 8

where K is the scale factor

K n

n

=
%
&K
'K

2

1

2

for the usual periodogram

for the modified periodogram
π

The scale factor of the usual periodogram relates the ordinates to the sum of
squares of

Xt − $µ

(Fuller 1976, pages 276–277). If the first ordinate (corresponding to p = 0) is
replaced by one-half of its value, then if N is odd, the sum of the N/2 + 1
ordinates corresponding to p = 0, 1, …, N/2 is

N

n
Xt

t

n

( $ )−
=
∑

1

2µ

The modified periodogram is an asymptotically unbiased estimate of the
nonnormalized spectral density function at each frequency ωS (Priestley 1981,
page 417). The argument IPVER is used to specify the version of the
periodogram.

Spectral Density. The relationship between the sample autocovariance function
and estimate of the nonnormalized spectral density function is similar to the
theoretical situation previously discussed.

Define the sample autocovariance function of the XW process by

$ ( ) [ $ ][ $ ] , , , ( )σ µ µk
n

X X k nt t k
t

n k

= − − = ± ± −+
=

−

∑1
0 1 1

1
> C K

where

$µ
is given by Equation 2. Note that

$ ( ) $σ σ0 2=
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is the sample variance. The nonnormalized spectral density may be estimated
directly from the sample autocovariances by

$( ) ( ) $ ( )
( )

( )

h k k en
i k

k n

n

ω
π

λ σ ω= −

=− −

−

∑1

2 1

1

The sequence of weights {λQ(k)} called the lag window decreases at a rate

appropriate for consistent estimation of h(ω).

An algebraically equivalent method of estimating h(ω) consists of locally
smoothing the modified periodogram in a neighborhood of ω. Let

I
n N X, ,

~

denote the modified periodogram of the centered and padded realization

{
~

}Xt

defined in Equation 1. Then, an estimate of the nonnormalized spectral density is
given by

$( ) ( ) ( )
, ,

~h
N

I W
n N X

p N

N

p n pω π ω ω ω= −
=−
∑2

2

2

(3)

where

W k en n
i k

k n

n

( ) ( )
( )

( )

θ
π

λ θ= −

=− −

−

∑1

2 1

1

The spectral window WQ(θ) is the discrete Fourier transform of the lag window

λQ(k). We note that for N = 2n − 1, the modified periodogram and
autocovariances,

I k
n n X p, ,

~ $
2 1− ω σ3 8 0 5 and 

form the discrete Fourier transform pair

I k e p n

k
N

I e k n

n N X p
i k

k n

n

n N X
p n

n

p
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p

p
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~
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~
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1

2
0 1 1

2
0 1 1

1

1

1

1

K

K

This relationship is exact and recovers the (n − 1) sample autocovariances only
when n0 = (n − 1) zeros are padded, since then N/2 = (n − 1).

Another method of estimating h(ω) is given by
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$( ) ( )
, ,

~ ,h w Ij n N X p j
j

ω ω= ∑ (4)

where

ω
π ω

p j
p j

N,
( )

=
+2 : ?

and p(ω) is the integer such that ωS,0 is closest to ω. The sequence of m weights

{wM} for j = −[m/2], …, (m − [m/2] − 1) is fixed in the sense that they do not

depend on the frequency, ω, and satisfy ∑MwM = 1. Priestley (1981, page 581)
notes that if we write

w
N

Wj n p j= −2π ω ω( ),

then Equation 4 and Equation 3 are quite similar except that the weights {wM}
depend on ω. In fact, if p(ω) = 0 and m = N, these equations are equivalent.

Given estimates

$( ) $h ω σ and 00 5
the estimate of the normalized spectral density is given by

$( )
$( )
$ ( )

f
hω ω
σ

=
0

This follows directly from the definition of f(ω).

Spectral Window. The following spectral windows WQ(θ) are available in
routines containing the argument ISWVER.

Modified Bartlett

W
M

M
Fn M( )

/ )
( )θ

π
θ

θ
θ= %&'

()* =1

2

2
2

sin(

sin( / 2)

where F0 (θ) corresponds to the Fejér kernel of order M.

Daniell

W
M M M

n ( )θ
π π θ π

=
− ≤ ≤%&'

2

0 otherwise

Tukey

W aD
M

a D aD
Mn M M Mθ θ π θ θ π0 5 0 5 0 5= −�

�
�
� + − + +�

�
�
�1 2
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for 0 < a ≤ 0.25, where D0(θ) represents the Dirichlet kernel. The Tukey-
Hanning window is obtained when a = 0.23, and the Tukey-Hamming window is
obtained when a = 0.25.

Parzen

W
M

Fn M( ) ( ) ( / )/θ π θ θ= −%&'
()*

6
1

2

3
22

2
sin2

where M is even. If M is odd, then M + 1 is used instead of M in the above
formula.

Bartlett-Priestley
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The window parameter M is inversely proportional to the bandwidth of the
spectral window. Priestley (1981, pages 520–522) discusses a number of
definitions of bandwidth and concludes that the particular definition adopted is of
little significance. The choice of spectral window bandwidth, and hence, the
choice of M, is a more important problem. One practical choice for M is the last
lag at which the estimated autocorrelation function

$( )ρ k

is significantly different from zero, i.e.,

$( )ρ k k M≈ >0 for

The estimated autocorrelations and their associated estimated standard errors can
be computed using routine ACF (page 637). See Priestley (1981, pages 528–556)
for alternative strategies of determining the window parameter M.

Since the spectral window is the Fourier transform of the lag window, we estimate
the spectral density function by application of a particular spectral window to the
periodogram. Note that M is directly related to the rate of decay of the lag
window.

Time Interval. Consider the continuous-parameter stationary process {X(t)} and
let {XW} denote a realization of this process sampled at equal time intervals ∆t =

TINT. Although the spectral density of X(t) extends over the frequency range (−π, 
π), the spectral density of XW is unique over the restricted frequency range (−π/∆t, 

π/∆t). This problem of aliasing or spectrum folding is inherent to spectral
analysis, see Blackman and Tukey (1958) and Priestley (1981) for further
discussion.
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In practice, the {XW} realization is treated as a discrete parameter process with
spectral density

hX
† ( )ω

defined over the frequency range (−π, π). This corresponds to setting ∆t = 1. The
transformation of the spectral density to the restricted frequency range
(−π/∆t, π/∆t) is given by

h t h t tX X( ) ( ) /ω ω∆ ω π= ≤∆ ∆†

Priestley (1981, pages 507–508) considers a method of choosing ∆t. A similar
transformation is performed for the estimated spectral density.

Frequency Scale. The argument IFSCAL is used to specify the scale of the
frequencies at which to estimate the spectral density. The NF frequencies are
contained in the argument F.

Approximate Confidence Intervals for Spectral Ordinates. An approximate (1 
− α)100% confidence interval for the value of the nonnormalized spectral density
function h(ω) at a particular frequency ω is given by the formula (Priestley 1981,
page 468)

DF DF

DF - / DF

× ×�
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�
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$( )
,
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, /

h hω
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ω
χα α,1 2

2
2

2

Routine CHIIN (page 1132) using argument P = 1 − α/2 and P = α/2 can be used
to compute the percentage point

χDF P,
2

Also, routine CHIIN should be used with degrees of freedom (DF), which depend
upon the version of the spectral window (ISWVER), as given in the following table
(Priestley 1981, page 467).

ISWVER Window DF

1 Modified Bartlett 3n/M

2 Daniell 2n/M

3 Tukey-Hamming 2.5164n/M

4 Tukey-Hanning 2 2/3n/M

5 Parzen 3.708614n/M

6 Bartlett-Priestley 1.4n/M

If one of the windows above is not specified and the user provides relative
weights, such as with routine SWED (page 741), the weights are normalized to sum
to one in the actual computations. Given all m (m odd) normalized weights wM,
then for 2πm/2/n < ω < π(1 − 2m/2/n) the degrees of freedom for a
confidence interval on h(ω) are given by Fuller (1976, page 296)



626 • Chapter 8: Time Series Analysis and Forecasting IMSL STAT/LIBRARY

DF =

=-

2

2
2 2∑ j m

m
jw

Frequently, confidence intervals on the ln h(ω) are suggested because this
produces fixed width intervals. The interval is
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Cross-Spectral Analysis

The routines for cross-spectral analysis are concerned with the estimation of the
crossspectral density of two jointly stationary processes given finite realizations
{XW} and {YW} for t = 1, …, n. These realizations consist of values sampled at
equally spaced time intervals in the continuous-parameter case or of values
observed consecutively in the discreteparameter case. Again, we develop
methodology concerned with the cross-spectral analysis of discrete-parameter
stationary processes and later account for the time sampling in the continuous-
parameter model.

Let µ; and σ;;(k) denote the mean and autocovariance function of the XW process;

similarly, define µ< and σ<<(k), with respect to the YW process. Define the cross-
covariance function between XW and YW by

σ;<(k) = cov{[XW − µ;][YW+N − µ<]} k ∈ ZZ

Then, the nonnormalized cross-spectral density h;<(ω) and the cross-covariance

function σ;<(k) form a Fourier transform pair. The relationship in the continuous-
parameter case is given by

h k e dk
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Similarly, the normalized cross-spectral density f;<(ω) and the cross-correlation

function ρ;<(k) = σ;<(k)/[σ;;(0)σ<<(0)] form a Fourier transform pair. The
relationship in the continuous-parameter case is given by
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The discrete-parameter analogs of the above equations involve summation over k
instead of integration over dk.
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The cross-spectral density function is often written in terms of real and imaginary
components, since in general, the function is complex-valued. In particular,

h;<(ω) = c;<(ω) − iq;<(ω)

where the cospectrum and quadrature spectrum of the XW and YW process are
respectively defined by

c k k k dk

q k k k dk
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The polar form of h;<(ω) is defined by

h eXY XY
i XY( ) ( ) ( )ω α ω φ ω=

where the cross-amplitude spectrum is

α ω ω ω ωXY XY XY XYh c q( ) ( ) ( )= = +0 5 2 2 1 2

and the phase spectrum is

φ ω ω ωXY XY XYq c( ) [ ( ) / ( )]= −−tan 1

The coherency spectrum is defined by

w
h

h h
XY

XY

XX YY

( )
( )

[ ( ) ( )]
ω

ω
ω ω

= 1 2

For a given frequency ω, the coherency |w;<(ω)| lies between zero and one,
inclusive, and reflects the linear relationship between the random coefficients.
See Priestley (1981, pages 654–661) for additional information concerning the
interpretation of the components of the cross-spectral density.

Centering and Padding. The centered and padded realizations

~ ~
X Yt t= B = B and 

are defined as in Equation 1 with centering constants

$ $µ µX Y= =XCNTR and YCNTR

Any desired filtering, prewhitening, or data tapering should be performed prior to
estimating the crossspectral density. The resulting estimate may be adjusted
accordingly.

Cross Periodogram. The cross periodogram of the sample sequences {XW} and
{ YW}, t = 1, …, n computed with the padded sequences
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~ ~
X Yt t= B = B and 

t = 1, …, N is defined by
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where K is the scale factor
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for the usual cross periodogram

for the modified cross periodogram
π

The scale factor option is maintained for compatibility with the spectral routines.
The argument IPVER is used to specify the version of the periodogram used to
compute the cross periodogram.

Cross-Spectral Density Estimation. The relationship between the sample cross-
covariance function and estimate of the nonnormalized cross-spectral density
function is similar to the theoretical situation previously discussed.

Define the sample cross-covariance function between the XW and YW�process by
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The nonnormalized cross-spectral density may be estimated directly from the
sample cross-covariances by
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The sequence of weights {λQ(k)} called the lag window decreases at a rate

appropriate for consistent estimation of h;<(ω).

An algebraically equivalent method of estimating h;<(ω). consists of locally

smoothing the modified cross periodogram in a neighborhood of ω. Let

I
n N XY, ,

~~

denote the modified cross periodogram of the centered and padded realizations

{
~

} {
~

}X Yt tand

Then, an estimate of the nonnormalized cross-spectral density is given by
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where WQ(θ) is the spectral window.

Another method of estimating h;<(ω) is given by
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where ωS�M, p(ω), and the weights {wM} are as defined in the univariate setting.

Given estimates
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the estimate of the normalized cross-spectral density is given by
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This follows directly from the definition of f;< (ω).

BCTR/DBCTR (Single/Double precision)
Perform a forward or an inverse Box-Cox (power) transformation.

Usage
CALL BCTR (NOBS, Z, IPRINT, IDIR, POWER, SHIFT, X)

Arguments

NOBS — Number of observations in Z.   (Input)
NOBS must be greater than or equal to one.

Z — Vector of length NOBS containing the data.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print Z and the transformed data, X.

IDIR — Direction of transformation option.   (Input)

IDIR Action
0 Forward transformation.
1 Inverse transformation.

POWER — Exponent parameter in the power transformation.   (Input)
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SHIFT — Shift parameter in the power transformation.   (Input)
SHIFT must satisfy the relation min(Z(i)) + SHIFT > 0.

X — Vector of length NOBS containing the transformed data.   (Output)
If Z is not needed, then X and Z can occupy the same storage locations. In this
case, IPRINT = 1 will print two identical vectors.

Comments

1. Informational errors
Type Code

   4    1 For the specified forward transformation, the
minimum element of X will underflow.

   4    2 For the specified forward transformation, the
maximum element of X will overflow.

   4    3 For the specified inverse transformation, the maximum
element of X will overflow.

   4    4 For the specified inverse transformation, the minimum
element of X will underflow.

2. The forward transformation is performed prior to fitting a model.
Differencing of the data is done after the data are transformed.

3. The inverse transformation is performed on results such as forecasts and
their corresponding probability limits.

Algorithm

Routine BCTR performs a forward or inverse Box-Cox transformation of the
n = NOBS observations {ZW} for t = 1, 2, …, n.

The forward transformation is useful in the analysis of linear models or models
with nonnormal errors or nonconstant variance (Draper and Smith 1981,
page 222). In the time series setting, application of the appropriate transformation
and subsequent differencing of a series may enable model identification and
parameter estimation in the class of homogeneous stationary autoregressive-
moving average models. The inverse transformation may later be applied to
certain results of the analysis, such as forecasts and probability limits of forecasts,
in order to express the results in the scale of the original data. A brief note
concerning the choice of transformations in ARIMA models is given in Box and
Jenkins (1976, page 328). The class of power transformations discussed by Box
and Cox (1964) is defined by
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the family of power transformations is continuous.

Let λ = POWER and ξ = SHIFT; then, the computational formula utilized by
routine BCTR is given by
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ξ λ
ξ λ

λ 0

0ln (

where ZW+ ξ > 0 for all t. The computational and Box-Cox formulas differ only in
the scale and the origin of the transformed data. Consequently, the general
analysis of the data is unaffected (Draper and Smith 1981, page 225).

The inverse transformation is computed by
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where {ZW} now represents the result computed by BCTR for a forward

transformation of the original data using parameters λ and ξ.

Example 1

Consider the Airline Data (Box and Jenkins 1976, page 531) consisting of the
monthly total number of international airline passengers from January 1949
through December 1960. Routine BCTR is used to compute a forward Box-Cox
transformation of the first 12 observations. In the transformation SHIFT and
POWER are each set to zero, which corresponds to taking natural logarithms of the
data.

      INTEGER IPRINT, NOBS
      PARAMETER (IPRINT=1, NOBS=12)
C
      INTEGER    IDIR, NCOL, NROW
      REAL       POWER, SHIFT, X(NOBS), Z(144)
      EXTERNAL   BCTR, GDATA
C                                 Airline Data
      CALL GDATA (4, 0, NROW, NCOL, Z, 144, 1)
C                                 Forward direction
      IDIR = 0
C                                 Transformation parameters
      POWER = 0.0
      SHIFT = 0.0
C                                 Compute natural logarithms of
C                                 first 12 observations in Z
      CALL BCTR (NOBS, Z, IPRINT, IDIR, POWER, SHIFT, X)
C
      END

Output
Output from BCTR

 I        Z           X

 1      112.00      4.7185
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 2      118.00      4.7707
 3      132.00      4.8828
 4      129.00      4.8598
 5      121.00      4.7958
 6      135.00      4.9053
 7      148.00      4.9972
 8      148.00      4.9972
 9      136.00      4.9127
10      119.00      4.7791
11      104.00      4.6444
12      118.00      4.7707

Example 2

The estimated standard errors of forecasts (lead times 1 through 12 at origin July
1957) using the transformed Airline Data (Box and Jenkins 1976, page 311) may
be converted back to their original scale using routine BCTR. The backward Box-
Cox transformation with SHIFT and POWER each set to zero corresponds to using
the exponential function.

      INTEGER    NOBS
      PARAMETER  (NOBS=12)
C
      INTEGER    IDIR, IPRINT
      REAL       POWER, SD(NOBS), SHIFT, X(NOBS)
      EXTERNAL   BCTR, SSCAL
C                                Standard errors of forecasts
      DATA SD/3.7, 4.3, 4.8, 5.3, 5.8, 6.2, 6.6, 6.9, 7.2, 7.6, 8.0,
     &     8.2/
C
      CALL SSCAL (NOBS, 1.0E-02, SD, 1)
C                                 Backward direction
      IDIR = 1
C                                 Transformation parameters
      POWER = 0.0
      SHIFT = 0.0
C                                 Transform standard errors from
C                                 log scale to original scale
      IPRINT = 1
      CALL BCTR (NOBS, SD, IPRINT, IDIR, POWER, SHIFT, X)
C
      END

Output
 Output from BCTR

 I        Z           X
 1    0.037000      1.0377
 2    0.043000      1.0439
 3    0.048000      1.0492
 4    0.053000      1.0544
 5    0.058000      1.0597
 6    0.062000      1.0640
 7    0.066000      1.0682
 8    0.069000      1.0714
 9    0.072000      1.0747
10    0.076000      1.0790
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11    0.080000      1.0833
12    0.082000      1.0855

DIFF/DDIFF (Single/Double precision)
Difference a time series.

Usage
CALL DIFF (NOBSZ, Z, NDIFF, IPER, IORD, IPRINT,IMISS,
           NLOST, NOBSX, X)

Arguments

NOBSZ — Number of observations in the time series Z.   (Input)
NOBSZ must be greater than or equal to one.

Z — Vector of length NOBSZ containing the time series.   (Input)

NDIFF — Number of differences to perform.   (Input)
NDIFF must be greater than or equal to one.

IPER — Vector of length NDIFF containing the periods at which Z is to be
differenced.   (Input)
The elements of IPER must be greater than or equal to one.

IORD — Vector of length NDIFF containing the order of each difference given in
IPER.   (Input)
The elements of IORD must be greater than or equal to zero.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the number of observations lost because of differencing Z, the

number of observations in the differenced series X, and the differenced
series X.

IMISS — Missing value option.   (Input)

IMISS Action
0 Include missing values in X.
1 Exclude missing values from X.

NLOST — Number of observations lost because of differencing the time series Z.
(Output)
NLOST = IPER(1) * IORD(1) + … + IPER(NDIFF ) * IORD(NDIFF).

NOBSX — Number of observations in the differenced series X.   (Output)
NOBSX = NOBSZ − IMISS * NLOST.

X — Vector of length NOBSX containing the differenced series.   (Output)
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Comments

1. Automatic workspace usage is

DIFF NOBSZ units, or
DDIFF 2 * NOBSZ units.

Workspace may be explicitly provided, if desired, by use of
D2FF/DD2FF. The reference is

CALL D2FF (NOBSZ, Z, NDIFF, IPER, IORD, IPRINT,
           IMISS, NLOST, NOBSX, X, XWK)

The additional argument is

XWK — Work vector of length equal to NOBSZ.

2. A value is considered to be missing if it is not itself in the data set or if it
is the result of an operation involving missing value(s). In differencing,
missing values occur at the beginning of the differenced series since X(i)
= Z(i) − Z(i − k) is not defined for k greater than or equal to i.

Algorithm

Routine DIFF performs m = NDIFF successive backward differences of period sL=
IPER(i) and order dL = IORD(i) for i = 1, …, m on the n = NOBSZ observations
{ ZW} for t = 1, 2, …, n.

Consider the backward shift operator B given by

BNZW = ZW-N, for all k

Then, the backward difference operator with period s is defined by

∇VZW = (1 − BV)ZW = ZW − ZW-V, s ≥ 0

Note that BVZW and ∇VZW are defined only for t = (s + 1), …, n. Repeated
differencing with period s is simply

∇ = − =
−

−
=
∑s

d
t

s d
t

j sj
t

j

d

Z B Z
d

j d j
B Z( )

!

!( )!
( )1 1

0

where d ≥ 0 is the order of differencing. Note that

∇s
d

tZ

is defined only for t = (sd + 1), …, n.

The general difference formula used in routine DIFF is given by
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where n/ = NLOST represents the number of observations “lost” because of
differencing and NaN (not a number) represents the missing value code. See the
routine AMACH (page 1334) in the “Machine-Dependent Constants” section of the
Reference Material. Note that n/ = ∑MsMdM.

A homogeneous stationary time series may be arrived at by appropriately
differencing a homogeneous nonstationary time series (Box and Jenkins 1976,
page 85). Preliminary application of an appropriate transformation followed by
differencing of a series may enable model identification and parameter estimation
in the class of homogeneous stationary autoregressive-moving average models.

Example

Consider the Airline Data (Box and Jenkins 1976, page 531) consisting of the
monthly total number of international airline passengers from January 1949
through December 1960. Routine DIFF is used to compute

XW = ∇1∇12XW = (ZW − ZW-12) − (ZW-1 − ZW-13)

For the first invocation of DIFF with IMISS = 0, X1, X2, …, X13 are set to the
missing value code (NaN) and the equation is applied for t = 14, 15, …, 24. For
the second invocation of DIFF with IMISS = 1, the missing values are excluded
from the output array containing the differenced series.

      INTEGER    IPRINT, NDIFF, NOBSZ
      PARAMETER  (IPRINT=1, NDIFF=2, NOBSZ=24)
C
      INTEGER    IMISS, IORD(NDIFF), IPER(NDIFF), NCOL, NLOST, NOBSX,
     &           NROW
      REAL       X(NOBSZ), Z(144)
      EXTERNAL   DIFF, GDATA
C                                Periods of differencing
      DATA IPER/1, 12/
C                                Orders of differencing
      DATA IORD/1, 1/
C                                Airline Data
      CALL GDATA (4, 0, NROW, NCOL, Z, 144, 1)
C                                 Nonseasonal and seasonal difference
C                                 first 24 observations in Z
C
C                                 Include missing values in result X
      IMISS = 0
      CALL DIFF (NOBSZ, Z, NDIFF, IPER, IORD, IPRINT, IMISS, NLOST,
     &           NOBSX, X)
C                                 Exclude missing values in result X
      IMISS = 1
      CALL DIFF (NOBSZ, Z, NDIFF, IPER, IORD, IPRINT, IMISS, NLOST,
     &           NOBSX, X)
C
      END

Output
Output from DIFF/D2FF
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NLOST = 13
NOBSX = 24

 I     Z(I)     X(I)
 1   112.00      NaN
 2   118.00      NaN
 3   132.00      NaN
 4   129.00      NaN
 5   121.00      NaN
 6   135.00      NaN
 7   148.00      NaN
 8   148.00      NaN
 9   136.00      NaN
10   119.00      NaN
11   104.00      NaN
12   118.00      NaN
13   115.00      NaN
14   126.00    5.000
15   141.00    1.000
16   135.00   -3.000
17   125.00   -2.000
18   149.00   10.000
19   170.00    8.000
20   170.00    0.000
21   158.00    0.000
22   133.00   -8.000
23   114.00   -4.000
24   140.00   12.000

Output from DIFF/D2FF

NLOST = 13
NOBSX = 11

 I     Z(I)     X(I)
 1   112.00    5.000
 2   118.00    1.000
 3   132.00   -3.000
 4   129.00   -2.000
 5   121.00   10.000
 6   135.00    8.000
 7   148.00    0.000
 8   148.00    0.000
 9   136.00   -8.00
10   119.00   -4.000
11   104.00   12.000
12   118.00
13   115.00
14   126.00
15   141.00
16   135.00
17   125.00
18   149.00
19   170.00
20   170.00
21   158.00
22   133.00
23   114.00
24   140.00
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ACF/DACF (Single/Double precision)
Compute the sample autocorrelation function of a stationary time series.

Usage
CALL ACF (NOBS, X, IPRINT, ISEOPT, IMEAN, XMEAN, MAXLAG,
          ACV, AC, SEAC)

Arguments

NOBS — Number of observations in the time series X.   (Input)
NOBS must be greater than or equal to two.

X — Vector of length NOBS containing the time series.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the mean and variance.
2 Print the mean, variance, and autocovariances.
3 Print the mean, variance, autocovariances, autocorrelations, and standard

errors of autocorrelations.

ISEOPT — Option for computing standard errors of autocorrelations.   (Input)

ISEOPT Action
0 No standard errors of autocorrelations are computed.
1 Compute standard errors of autocorrelations using Bartlett’s formula.
2 Compute standard errors of autocorrelations using Moran’s formula.

IMEAN — Option for computing the mean.   (Input)

IMEAN Action
0 XMEAN is user specified.
1 XMEAN is set to the arithmetic mean of X.

XMEAN — Estimate of the mean of time series X.   (Input, if IMEAN = 0; output,
if IMEAN = 1)

MAXLAG — Maximum lag of autocovariances, autocorrelations, and standard
errors of autocorrelations to be computed.   (Input)
MAXLAG must be greater than or equal to one and less than NOBS.

ACV — Vector of length MAXLAG + 1 containing the variance and
autocovariances of the time series X.   (Output)
ACV(0) contains the variance of the series X. ACV(k) contains the autocovariance
of lag k where k = 1, …, MAXLAG.

AC — Vector of length MAXLAG + 1 containing the autocorrelations of the time
series X.   (Output)
AC(0) = 1. AC(k) contains the autocorrelation of lag k where k = 1, …, MAXLAG.
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SEAC — Vector of length MAXLAG containing the standard errors of the
autocorrelations of the time series X.   (Output)

The standard error of AC(k) is SEAC(k) where k = 1, …, MAXLAG. If ISEOPT = 0,
then SEAC may be dimensioned of length 1.

Algorithm

Routine ACF estimates the autocorrelation function of a stationary time series
given a sample of n = NOBS observations {XW} for t = 1, 2, …, n.

Let

$µ = XMEAN

be the estimate of the mean µ of the time series {XW} where

$

,

µ
µ µ

µ=
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'K =

∑
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1

1n
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t

n

The autocovariance function σ(k) is estimated by
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where K = MAXLAG. Note that

$σ 00 5
is an estimate of the sample variance. The autocorrelation function ρ(k) is
estimated by

$( )
$ ( )
$ ( )

, , , ,ρ σ
σ

k
k

k K= =
0

0 1 K

Note that

$ρ 0 10 5 ≡
by definition.

The standard errors of the sample autocorrelations may be optionally computed
according to argument ISEOPT. One method (Bartlett 1946) is based on a general
asymptotic expression for the variance of the sample autocorrelation coefficient
of a stationary time series with independent, identically distributed normal errors.
The theoretical formula is

var (k)$ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ρ ρ ρ ρ ρ ρ ρ ρ ρ; @ = + − + − − +
=−∞

∞

∑1
4 22 2 2

n
i i k i k i k i k i k

i

where
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$ρ( )k

assumes µ is unknown. For computational purposes, the autocorrelations ρ(k) are
replaced by their estimates

$ρ( )k

for |k| ≤ K, and the limits of summation are bounded because of the assumption
that ρ(k) = 0 for all k such that |k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the
sample autocorrelation coefficient of a random process with independent,
identically distributed normal errors. The theoretical formula is

var $ρ k
n k

n n
0 5; @ 0 5= −

+ 2

where µ is assumed to be equal to zero. Note that this formula does not depend on
the autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Routine ACF computes the estimated autocovariances, estimated
autocorrelations, and estimated standard errors of the autocorrelations.

      INTEGER    IPRINT, MAXLAG, NOBS
      PARAMETER  (IPRINT=3, MAXLAG=20, NOBS=100)
C
      INTEGER    IMEAN, ISEOPT, NCOL, NROW
      REAL       AC(0:MAXLAG), ACV(0:MAXLAG), RDATA(176,2),
     &           SEAC(MAXLAG), X(NOBS), XMEAN
      EXTERNAL   ACF, GDATA
C
      EQUIVALENCE (X(1), RDATA(22,2))
C                                 Wolfer Sunspot Data for
C                                 years 1770 through 1869
      CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
C                                 Compute standard errors
      ISEOPT = 1
C                                 Center on arithmetic mean
      IMEAN = 1
C                                 Compute sample ACF
      CALL ACF (NOBS, X, IPRINT, ISEOPT, IMEAN, XMEAN, MAXLAG, ACV,
     &          AC, SEAC)
C
      END

Output
Output from ACF/A2F

Mean     =     46.976
Variance =     1382.9
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Lag         ACV           AC          SEAC

 0         1382.9      1.00000
 1         1115.0      0.80629      0.03478
 2          592.0      0.42809      0.09624
 3           95.3      0.06891      0.15678
 4         -236.0     -0.17062      0.20577
 5         -370.0     -0.26756      0.23096
 6         -294.3     -0.21278      0.22899
 7          -60.4     -0.04371      0.20862
 8          227.6      0.16460      0.17848
 9          458.4      0.33146      0.14573
10          567.8      0.41061      0.13441
11          546.1      0.39491      0.15068
12          398.9      0.28848      0.17435
13          197.8      0.14300      0.19062
14           26.9      0.01945      0.19549
15          -77.3     -0.05588      0.19589
16         -143.7     -0.10394      0.19629
17         -202.0     -0.14610      0.19602
18         -245.4     -0.17743      0.19872
19         -230.8     -0.16691      0.20536
20         -142.9     -0.10332      0.20939

Figure 8-1   Sample Autocorrelation Function
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PACF/DPACF (Single/Double precision)
Compute the sample partial autocorrelation function of a stationary time series.

Usage
CALL PACF (MAXLAG, AC, PAC)

Arguments

MAXLAG — Maximum lag of partial autocorrelations to be computed.   (Input)

AC — Vector of length MAXLAG+ 1 containing the autocorrelations of the time
series X.   (Input)
AC(0) = 1. AC(k) contains the autocorrelation of lag k where k = 1, …, MAXLAG.

PAC — Vector of length MAXLAG containing the partial autocorrelations of the
time series X.   (Output)
The partial autocorrelation of lag k corresponds to PAC(k) where k = 1, …,
MAXLAG.

Comments

Automatic workspace storage is

PACF 2 * MAXLAG units, or
DPACF 4 * MAXLAG units.

Workspace may be explicitly provided, if desired, by use of P2CF/DP2CF. The
reference is

CALL P2CF (MAXLAG, AC, PAC, WK)

The additional argument is

WK — Work vector of length 2 * MAXLAG.

Algorithm

Routine PACF estimates the partial autocorrelations of a stationary time series
given the K = MAXLAG sample autocorrelations

$ρ k0 5
for k = 0, 1, …, K. Consider the AR(k) process defined by

X X X X At k t k t kk t k t= + + + +− − −φ φ φ1 1 2 2 L

where φNM denotes the j-th coefficient in the process. The set of estimates

$φkk> C
for k = 1, …, K is the sample partial autocorrelation function. The autoregressive
parameters
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$φkj> C
for j = 1, …, k are approximated by Yule-Walker estimates for successive AR(k)
models where k = 1, …, K. Based on the sample Yule-Walker equations

$( ) $ $( ) $ $( ) $ $( ), ,2, ,ρ φ ρ φ ρ φ ρj j j j k j kk k kk= − + − + + − =1 21 2 1L K

a recursive relationship for k = 1, …, K was developed by Durbin (1960). The
equations are given by
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This procedure is sensitive to rounding error and should not be used if the
parameters are near the nonstationarity boundary. A possible alternative would be
to estimate {φNN} for successive AR(k) models using least squares (IMSL routine
NSLSE, page 669) or maximum likelihood. Based on the hypothesis that the true
process is AR(p), Box and Jenkins (1976, page 65) note

var{$ } ~φkk n
k p− ≥ +1

1

See Box and Jenkins (1976, pages 82–84) for more information concerning the
partial autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Routine PACF to used to compute the estimated partial autocorrelations.

      INTEGER    IMEAN, IPRINT, ISEOPT, MAXLAG, NOBS
      PARAMETER  (IMEAN=1, IPRINT=0, ISEOPT=0, MAXLAG=20, NOBS=100)
C
      INTEGER    NCOL, NROW
      REAL       AC(0:MAXLAG), ACV(0:MAXLAG), PAC(MAXLAG),
     &           RDATA(176,2), SEAC(1), X(NOBS), XMEAN
      CHARACTER  CLABEL(2)*4, RLABEL(1)*6
      EXTERNAL   ACF, GDATA, PACF, WRRRL
C
      EQUIVALENCE (X(1), RDATA(22,2))
C
      DATA RLABEL/’NUMBER’/, CLABEL/’Lag ’, ’PACF’/
C                                 Wolfer Sunspot Data for
C                                 years 1770 through 1869
      CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
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C                                 Compute sample ACF
      CALL ACF (NOBS, X, IPRINT, ISEOPT, IMEAN, XMEAN, MAXLAG, ACV,
     &          AC, SEAC)
C                                 Compute sample PACF
      CALL PACF (MAXLAG, AC, PAC)
C                                 Print results
      CALL WRRRL (’ ’, 20, 1, PAC, 20, 0, ’(F8.3)’, RLABEL, CLABEL)
C
      END

Output
 Lag      PACF
 1     0.806
 2    -0.635
 3     0.078
 4    -0.059
 5    -0.001
 6     0.172
 7     0.109
 8     0.110
 9     0.079
10     0.079
11     0.069
12    -0.038
13     0.081
14     0.033
15    -0.035
16    -0.131
17    -0.155
18    -0.119
19    -0.016
20    -0.004
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Figure 8-2   Sample Partial Autocorrelation Function

CCF/DCCF (Single/Double precision)
Compute the sample cross-correlation function of two stationary time series.

Usage
CALL CCF (NOBS, X, Y, MAXLAG, IPRINT, ISEOPT, IMEAN, XMEAN,
          YMEAN, XVAR, YVAR, CCV, CC, SECC)

Arguments

NOBS — Number of observations in each time series.   (Input)
NOBS must be greater than or equal to two.

X — Vector of length NOBS containing the first time series.   (Input)

Y — Vector of length NOBS containing the second time series.   (Input)

MAXLAG — Maximum lag of cross-covariances and cross-correlations to be
computed.   (Input)
MAXLAG must be greater than or equal to one and less than NOBS.

IPRINT — Printing option.   (Input)

IPRINT Action
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0 No printing is performed.
1 Print the means and variances.
2 Print the means, variances, and cross-covariances.
3 Print the means, variances, cross-covariances, cross-correlations, and

standard errors of cross-correlations.

ISEOPT — Option for computing standard errors of cross correlations.   (Input)

ISEOPT Action
0 No standard errors of cross-correlations are computed.
1 Compute standard errors of cross-correlations using Bartlett’s formula.
2 Compute standard errors of cross-correlations using Bartlett’s formula

with the assumption of no cross-correlation.

IMEAN — Option for computing the mean.   (Input)

IMEAN Action
0 XMEAN and YMEAN are user specified.
1 XMEAN and YMEAN are set to the arithmetic means of X and Y.

XMEAN — Estimate of the mean of time series X.    (Input, if IMEAN = 0; output,
if IMEAN = 1)

YMEAN — Estimate of the mean of time series Y.    (Input, if IMEAN = 0; output,
if IMEAN = 1)

XVAR — Variance of the time series X.   (Output)

YVAR — Variance of the time series Y.   (Output)

CCV — Vector of length 2 * MAXLAG + 1 containing the cross-covariances
between the time series X and Y.   (Output)

The cross-covariance between X and Y at lag k corresponds to CCV(k) where
k = −MAXLAG, …, −1, 0, 1, …, MAXLAG.

CC — Vector of length 2 * MAXLAG + 1 containing the cross-correlations between
the time series X and Y.   (Output)
The cross-correlation between X and Y at lag k corresponds to CC(k) where
k = −MAXLAG, …, −1, 0, 1, …, MAXLAG.

SECC — Vector of length 2 * MAXLAG + 1 containing the standard errors of the
crosscorrelations between the time series X and Y.   (Output)
The standard error of CC(k) is SECC(k) where k = −MAXLAG, …, −1, 0, 1, …,
MAXLAG.

Comments

1. Automatic workspace usage is

CCF 2 * (MAXLAG + 1) units, or
DCCF 4 * (MAXLAG + 1) units.
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Workspace may be explicitly provided, if desired, by use of C2F/DC2F.
The reference is

CALL C2F (NOBS, X, Y, MAXLAG, IPRINT, ISEOPT, IMEAN,
          XMEAN, YMEAN, XVAR, YVAR, CCV, CC, SECC,
          ACX, ACY)

The additional arguments are as follows:

ACX — Work vector of length equal to MAXLAG + 1.

ACY — Work vector of length equal to MAXLAG + 1.

2. If ISEOPT = 0, then no workspace is needed and SECC, ACX, and ACY
can be dimensioned with length 1.

3. Autocovariances, autocorrelations, and standard errors of
autocorrelations may be obtained by setting the first and second time
series equal.

Algorithm

Routine CCF estimates the cross-correlation function of two jointly stationary time
series given a sample of n = NOBS observations {XW} and {YW} for t = 1, 2, …, n.

Let

$µ x = XMEAN

be the estimate of the mean µ; of the time series {XW} where
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The autocovariance function of {XW}, σ;(k), is estimated by
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where K = MAXLAG. Note that
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is equivalent to the sample variance XVAR. The autocorrelation function ρ;(k) is
estimated by
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by definition. Let

$ , $ , $µ σ ρY Y Yk k= YMEAN 0 5 0 5and

be similarly defined.

The cross-covariance function σ;<(k) is estimated by
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The cross-correlation function ρ;<(k) is estimated by
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The standard errors of the sample cross-correlations may be optionally computed
according to argument ISEOPT. One method is based on a general asymptotic
expression for the variance of the sample cross-correlation coefficient of two
jointly stationary time series with independent, identically distributed normal
errors given by Bartlett (1978, page 352). The theoretical formula is
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For computational purposes, the autocorrelations ρ;(k) and ρ<(k) and the cross-

correlations ρ;<(k) are replaced by their corresponding estimates for |k| ≤ K, and
the limits of summation are equal to zero for all k such that |k| > K.

A second method evaluates Bartlett’s formula under the additional assumption
that the two series have no cross-correlation. The theoretical formula is

var XY$ ( ) ( ) ( )ρ ρ ρk
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For additional special cases of Bartlett’s formula, see Box and Jenkins (1976,
page 377).

An important property of the cross-covariance coefficient is σ;<(k) = σ<;(−k) for

k ≥ 0. This result is used in the computation of the standard error of the sample
crosscorrelation for lag k < 0. In general, the cross-covariance function is not
symmetric about zero so both positive and negative lags are of interest.
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Example

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where X
is the input gas rate in cubic feet/minute and Y is the percent CO2 in the outlet
gas. Routine CCF is used to computed the cross-covariances and cross-
correlations between time series X and Y with lags from −MAXLAG = −10 through
lag MAXLAG = 10. In addition, the estimated standard errors of the estimated
cross-correlations are computed. In the first invocation with ISEOPT = 1, the
standard errors are based on the assumption that autocorrelations and cross-
correlations for lags greater than MAXLAG or less than −MAXLAG are zero. In the
second invocation with ISEOPT = 1, the standard errors are based on the
additional assumption that all cross-correlations for X and Y are zero.

C
      INTEGER    IPRINT, MAXLAG, NOBS
      PARAMETER  (IPRINT=3, MAXLAG=10, NOBS=296)
C
      INTEGER    IMEAN, ISEOPT, NCOL, NROW
      REAL       CC(-MAXLAG:MAXLAG), CCV(-MAXLAG:MAXLAG),
     &           RDATA(296,2), SECC(-MAXLAG:MAXLAG), X(NOBS), XMEAN,
     &           XVAR, Y(NOBS), YMEAN, YVAR
      EXTERNAL   CCF, GDATA
C
      EQUIVALENCE (X(1), RDATA(1,1)), (Y(1), RDATA(1,2))
C
      CALL GDATA (7, 0, NROW, NCOL, RDATA, 296, 2)
C                                 Option to estimate means.
      IMEAN = 1
C                                 Bartlett’s formula (general case)
      ISEOPT = 1
C                                 Compute cross correlation function
      CALL CCF (NOBS, X, Y, MAXLAG, IPRINT, ISEOPT, IMEAN, XMEAN,
     &          YMEAN, XVAR, YVAR, CCV, CC, SECC)
C                                 Bartlett’s formula (independent case)
      ISEOPT = 2
C                                 Compute cross correlation function
      CALL CCF (NOBS, X, Y, MAXLAG, IPRINT, ISEOPT, IMEAN, XMEAN,
     &          YMEAN, XVAR, YVAR, CCV, CC, SECC)
C
      END

Output
Output from CCF/C2F

Mean of series X     =  -0.056834
Variance of series X =     1.1469

Mean of series Y     =     53.509
Variance of series Y =     10.219

Lag          CCV           CC         SECC

-10      -0.40450     -0.11815     0.158148
 -9      -0.50849     -0.14853     0.155750
 -8      -0.61437     -0.17946     0.152735
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 -7      -0.70548     -0.20607     0.149087
 -6      -0.77617     -0.22672     0.145055
 -5      -0.83147     -0.24287     0.141300
 -4      -0.89132     -0.26035     0.138421
 -3      -0.98060     -0.28643     0.136074
 -2      -1.12477     -0.32854     0.132159
 -1      -1.34704     -0.39347     0.123531
  0      -1.65853     -0.48445     0.107879
  1      -2.04865     -0.59841     0.087341
  2      -2.48217     -0.72503     0.064141
  3      -2.88541     -0.84282     0.046946
  4      -3.16536     -0.92459     0.044097
  5      -3.25344     -0.95032     0.048234
  6      -3.13113     -0.91459     0.049155
  7      -2.83919     -0.82932     0.047562
  8      -2.45302     -0.71652     0.053478
  9      -2.05269     -0.59958     0.071566
 10      -1.69466     -0.49500     0.093933

Output from CCF/C2F

Mean of series X     =  -0.056834
Variance of series X =     1.1469

Mean of series Y     =     53.509
Variance of series Y =     10.219

Lag          CCV           CC         SECC

-10      -0.40450     -0.11815      0.16275
 -9      -0.50849     -0.14853      0.16247
 -8      -0.61437     -0.17946      0.16219
 -7      -0.70548     -0.20607      0.16191
 -6      -0.77617     -0.22672      0.16163
 -5      -0.83147     -0.24287      0.16135
 -4      -0.89132     -0.26035      0.16107
 -3      -0.98060     -0.28643      0.16080
 -2      -1.12477     -0.32854      0.16052
 -1      -1.34704     -0.39347      0.16025
  0      -1.65853     -0.48445      0.15998
  1      -2.04865     -0.59841      0.16025
  2      -2.48217     -0.72503      0.16052
  3      -2.88541     -0.84282      0.16080
  4      -3.16536     -0.92459      0.16107
  5      -3.25344     -0.95032      0.16135
  6      -3.13113     -0.91459      0.16163
  7      -2.83919     -0.82932      0.16191
  8      -2.45302     -0.71652      0.16219
  9      -2.05269     -0.59958      0.16247
 10      -1.69466     -0.49500      0.16275

MCCF/DMCCF (Single/Double precision)
Compute the multichannel cross-correlation function of two mutually stationary
multichannel time series.
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Usage
CALL MCCF (NOBSX, NCHANX, X, LDX, NOBSY, NCHANY, Y, LDY,
           MAXLAG, IPRINT, IMEAN, XMEAN, YMEAN, XVAR, YVAR,
           CCV, LDCCV, MDCCV, CC, LDCC, MDCC)

Arguments

NOBSX — Number of observations in each channel of the first time series X.
(Input)
NOBSX must be greater than or equal to two.

NCHANX — Number of channels in the first time series X.   (Input)
NCHANX must be greater than or equal to one.

X — NOBSX by NCHANX matrix containing the first time series.   (Input)
Each row of X corresponds to an observation of a multivariate time series and
each column of X corresponds to a univariate time series.

LDX — Leading dimension of X exactly as specified in the dimension statement
of the calling program.   (Input)
LDX must be greater than or equal to NOBSX.

NOBSY — Number of observations in each channel of the second time series Y.
(Input)
NOBSY must be greater than or equal to two.

NCHANY — Number of channels in the second time series Y.   (Input)
NCHANY must be greater than or equal to one.

Y — NOBSY by NCHANY matrix containing the second time series.   (Input)
Each row of Y corresponds to an observation of a multivariate time series and
each column of Y corresponds to a univariate time series.

LDY — Leading dimension of Y exactly as specified in the dimension statement
of the calling program.   (Input)
LDY must be greater than or equal to NOBSY.

MAXLAG — Maximum lag of cross-covariances and cross-correlations to be
computed.   (Input)
MAXLAG must be greater than or equal to one and less than the minimum of NOBSX

and NOBSY.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the means and variances.
2 Print the means, variances, and cross-covariances.
3 Print the means, variances, cross-covariances, and cross-correlations.

IMEAN — Option for computing the means.   (Input)

IMEAN Action
0 XMEAN and YMEAN are user-specified.
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1 XMEAN and YMEAN are set to the arithmetic means of their respective
channels.

XMEAN — Vector of length NCHANX containing the means of the channels of X.
(Input, if IMEAN = 0; output, if IMEAN = 1)

YMEAN — Vector of length NCHANY containing the means of the channels of Y.
(Input, if IMEAN = 0; output, if IMEAN = 1)

XVAR — Vector of length NCHANX containing the variances of the channels of X.
(Output)

YVAR — Vector of length NCHANY containing the variances of the channels of Y.
(Output)

CCV — Array of size NCHANX by NCHANY by 2 * MAXLAG + 1 containing the
cross-covariances between the channels of X and Y.   (Output)
The cross-covariance between channel i of the X series and channel j of the Y
series at lag k corresponds to CCV(i, j, k) where i = 1, …, NCHANX, j = 1, …,
NCHANY, and k = −MAXLAG, …, −1, 0, 1, …, MAXLAG.

LDCCV — Leading dimension of CCV exactly as specified in the dimension
statement in the calling program.   (Input)
LDCCV must be greater than or equal to NCHANX.

MDCCV — Middle dimension of CCV exactly as specified in the dimension
statement in the calling program.   (Input)
MDCCV must be greater than or equal to NCHANY.

CC — Array of size NCHANX by NCHANY by 2 * MAXLAG + 1 containing the cross-
correlations between the channels of X and Y.   (Output)
The cross-correlation between channel i of the X series and channel j of the Y
series at lag k corresponds to CC(i, j, k) where i = 1, …, NCHANX, j = 1, …,
NCHANY, and k = −MAXLAG, …, −1, 0, 1, …, MAXLAG.

LDCC — Leading dimension of CC exactly as specified in the dimension
statement in the calling program.   (Input)
LDCC must be greater than or equal to NCHANX.

MDCC — Middle dimension of CC exactly as specified in the dimension
statement in the calling program.   (Input)
MDCC must be greater than or equal to NCHANY.

Comments

1. For a given lag k, the multichannel cross-covariance coefficient is
defined as the array of dimension NCHANX by NCHANY whose
components are the single-channel cross-covariance coefficients CCV(i, j,
k). A similar definition holds for the multichannel cross-correlation
coefficient.

2. Multichannel autocovariances and autocorrelations may be obtained by
setting the first and second time series equal.
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Algorithm

Routine MCCF estimates the multichannel cross-correlation function of two
mutually stationary multichannel time series. Define the multichannel time series
X by

X = (X1, X2, …, XS)

where

XM = (X1M, X2M, …, XQM)7, j = 1, 2, …, p

with n = NOBSX and p = NCHANX. Similarly, define the multichannel time series Y
by

Y = (Y1, Y2, …, YT)

where

YM = (Y1M, Y2M, …, YPM)7, j = 1, 2, …, q

with m = NOBSY and q = NCHANY. The columns of X and Y correspond to
individual channels of multichannel time series and may be examined from a
univariate perspective. The rows of X and Y correspond to observations of
p-variate and q-variate time series, respectively, and may be examined from a
multivariate perspective. Note that an alternative characterization of a
multivariate time series X considers the columns to be observations of the
multivariate time series while the rows contain univariate time series. For
example, see Priestley (1981, page 692) and Fuller (1976, page 14).

Let

$µ X = XMEAN

be the row vector containing the means of the channels of X. In particular,

$ $ , $ , , $µ µ µ µX X X Xp
=

1 2
K4 9

where for j = 1, 2, …, p

$µ

µ µ
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X X
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j j

jn
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=
%
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'K =

∑

known

unknown
1

1

Let

$µY = YMEAN

be similarly defined. The cross-covariance of lag k between channel i of X and
channel j of Y is estimated by
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where i = 1, …, p, j = 1, …, q, and K = MAXLAG. The summation on t extends
over all possible cross-products with N equal to the number of cross-products in
the sum.

Let

$σ X 00 5 = XVAR

be the row vector consisting of the estimated variances of the channels of X. In
particular,

$ ( ) ( $ ( ), $ ( ), , $ ( ))σ σ σ σX X X Xp
0 0 0 0

1 2
= K

where

$ ( ) $ ) , , ,σ µX tj X
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Let

$ ( )σY 0 = YVAR

be similarly defined. The cross-correlation of lag k between channel i of X and
channel j of Y is estimated by
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Example

Consider the Wolfer Sunspot Data (Y ) (Box and Jenkins 1976, page 530) along
with data on northern light activity (X1) and earthquake activity (X2) (Robinson
1967, page 204) to be a three-channel time series. Routine MCCF is used to
computed the cross-covariances and cross-correlations between X1 and Y and
between X2 and Y with lags from −MAXLAG = −10 through lag MAXLAG = 10:

      INTEGER    IPRINT, LDCC, LDCCV, LDX, LDY, MAXLAG, MDCC, MDCCV,
     &           NCHANX, NCHANY, NOBSX, NOBSY
      PARAMETER  (IPRINT=3, MAXLAG=10, NCHANX=2, NCHANY=1, NOBSX=100,
     &           NOBSY=100, LDCC=NCHANX, LDCCV=NCHANX, LDX=NOBSX,
     &           LDY=NOBSY, MDCC=NCHANY, MDCCV=NCHANY)
C
      INTEGER    IMEAN, NCOL, NROW
      REAL       CC(LDCC,MDCC,-MAXLAG:MAXLAG), CCV(LDCCV,MDCCV,-
     &           MAXLAG:MAXLAG), RDATA(100,4), X(LDX,NCHANX),
     &           XMEAN(NCHANX), XVAR(NCHANX), Y(LDY,NCHANY),
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     &           YMEAN(NCHANY), YVAR(NCHANY)
      EXTERNAL   GDATA, MCCF
C
      EQUIVALENCE (X(1,1), RDATA(1,3)), (X(1,2), RDATA(1,4))
      EQUIVALENCE (Y(1,1), RDATA(1,2))
C
      CALL GDATA (8, 0, NROW, NCOL, RDATA, 100, 4)
C                                 Option to estimate channel means
      IMEAN = 1
C                                 Compute multichannel CCVF and CCF
      CALL MCCF (NOBSX, NCHANX, X, LDX, NOBSY, NCHANY, Y, LDY, MAXLAG,
     &           IPRINT, IMEAN, XMEAN, YMEAN, XVAR, YVAR, CCV, LDCCV,
     &           MDCCV, CC, LDCC, MDCC)
C
      END

Output
Channel means of X from MCCF
             1       2
         63.43   97.97

Channel variances of X
          1        2
     2643.7   1978.4

Channel means of Y from MCCF
             46.94

Channel variances of Y
          1383.8

Multichannel cross-covariance between X and Y from MCCF

Lag K =     -10
    1  -20.51
    2   70.71

Lag K =      -9
    1   65.02
    2   38.14

Lag K =      -8
    1   216.6
    2   135.6

Lag K =      -7
    1   246.8
    2   100.4

Lag K =      -6
    1   142.1
    2    45.0

Lag K =      -5
    1   50.70
    2  -11.81

Lag K =      -4
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    1   72.68
    2   32.69

Lag K =      -3
    1   217.9
    2   -40.1

Lag K =      -2
    1   355.8
    2  -152.6

Lag K =      -1
    1   579.7
    2  -213.0

Lag K =       0
    1   821.6
    2  -104.8

Lag K =       1
    1   810.1
    2    55.2

Lag K =       2
    1   628.4
    2    84.8

Lag K =       3
    1   438.3
    2    76.0

Lag K =       4
    1   238.8
    2   200.4

Lag K =       5
    1   143.6
    2   283.0

Lag K =       6
    1   253.0
    2   234.4

Lag K =       7
    1   479.5
    2   223.0

Lag K =       8
    1   724.9
    2   124.5

Lag K =       9
    1   925.0
    2   -79.5

Lag K =      10
    1   922.8
    2  -279.3



656 • Chapter 8: Time Series Analysis and Forecasting IMSL STAT/LIBRARY

Multichannel cross-correlation between X and Y from MCCF

Lag K =     -10
   1  -0.01072
   2   0.04274

Lag K =      -9
   1   0.03400
   2   0.02305

Lag K =      -8
   1   0.1133
   2   0.0819

Lag K =      -7
   1   0.1290
   2   0.0607

Lag K =      -6
   1   0.07431
   2   0.02718

Lag K =      -5
   1   0.02651
   2  -0.00714

Lag K =      -4
   1   0.03800
   2   0.01976

Lag K =      -3
  1   0.1139
  2  -0.0242

Lag K =      -2
  1   0.1860
  2  -0.0923

Lag K =      -1
  1   0.3031
  2  -0.1287

Lag K =       0
  1   0.4296
  2  -0.0633

Lag K =       1
  1   0.4236
  2   0.0333

Lag K =       2
  1   0.3285
  2   0.0512

Lag K =       3
  1   0.2291
  2   0.0459

Lag K =       4
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  1   0.1248
  2   0.1211

Lag K =       5
  1   0.0751
  2   0.1710

Lag K =       6
  1   0.1323
  2   0.1417

Lag K =       7
  1   0.2507
  2   0.1348

Lag K =       8
  1   0.3790
  2   0.0752

Lag K =       9
  1   0.4836
  2  -0.0481

Lag K =      10
  1   0.4825
  2  -0.1688

ARMME/DARMME (Single/Double precision)
Compute method of moments estimates of the autoregressive parameters of an
ARMA model.

Usage
CALL ARMME (MAXLAG, ACV, IPRINT, NPMA, NPAR, PAR)

Arguments

MAXLAG — Maximum lag of the sample autocovariances of the time series W.
(Input)
MAXLAG must be greater than or equal to NPAR + NPMA.

ACV — Vector of length MAXLAG + 1 containing the sample autocovariances of
W.   (Input)
The k-th sample autocovariance of W is denoted by ACV(k), k = 0, 1, …, MAXLAG.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the estimates of the autoregressive parameters.

NPMA — Number of moving average parameters.   (Input)
NPMA must be greater than or equal to zero.
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NPAR — Number of autoregressive parameters.   (Input)
NPAR must be greater than or equal to one.

PAR — Vector of length NPAR containing the estimates of the autoregressive
parameters.   (Output)

Comments

1. Automatic workspace usage is

ARMME 2 * NPAR * (NPAR + 1) units, or
DARMME NPAR * (4 * NPAR+ 3) units.

Workspace may be explicitly provided, if desired, by use of
A2MME/DA2MME. The reference is

CALL A2MME (MAXLAG, ACV, IPRINT, NPMA, NPAR, PAR, A,
            FAC, IPVT, WK)

The additional arguments are as follows:

A — Work vector of length equal to NPAR2.

FAC — Work vector of length equal to NPAR2.

IPVT — Work vector of length equal to NPAR.

WK — Work vector of length equal to NPAR.

2. Informational error
Type Code
   4    1 The problem is ill-conditioned. Transformation of the

data or increased precision in the calculations may be
appropriate.

3. The sample autocovariance function may be obtained using the routine
ACF (page 637).

4. The first element of ACV must be the sample variance of the time series.

Algorithm

Routine ARMME determines the autoregressive parameters of an ARMA process
using the extended Yule-Walker equations given the K = MAXLAG
autocovariances σ(k) for k = 1, …, K.

Suppose the time series {WW} is generated by an ARMA(p, q) model

WW= θ0 + φ1WW�� + … + φSWW�S + AW − θ1AW�� − … − θTAW�T, t ∈{0, ± 1, ±2, K}

where p = NPAR and q = NPMA. Since WW depends only on the innovations AW that
have occurred up through time t, the p autoregressive parameters are related to
the autocovariances of lags k = q + 1, …, q + p by the set of equations

σ(q + 1) = φ1σ(q) + φ2σ(q − 1) + … + φSσ(q − p + 1)
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σ(q + 2) = φ1σ(q + 1) + φ2σ(q) + … + φSσ(q − p + 2)

      .
      .
      .

σ(q + p) = φ1σ(q + p − 1) + φ2σ(q + p − 2) + … + φSσ(q)

This general system of linear equations is called the extended Yule-Walker
equations. For q = 0, the system is referred to as the Yule-Walker equations. The
equivalent matrix version is given by

Σφ = σ

where

φ φ φ
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σ σ
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= + =
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The overall constant θ0 is defined by
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p

pi
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where µ is the mean of WW.

In practice, the autocovariance function is estimated by the sample
autocovariances

$σ k0 5
for k = 1, …, K. The solution of the extended Yule-Walker equations using these
sample moments yields the method of moments estimates of the autoregressive
parameters. The overall constant may then be estimated given an estimate of µ.
Note that the extended Yule-Walker equations may be analogously defined in
terms of autocorrelations instead of autocovariances. See Box and Jenkins (1976,
pages 189–191) for some comments concerning the initial estimation of
autoregressive parameters using the Yule-Walker equations.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Routine ARMME is invoked first to compute the method of moments
estimates for the autoregressive parameters of an ARMA(2, 0) model given the
sample autocovariances computed from routine ACF (page 637). Then, ARMME is
invoked a second time to compute estimated autoregressive parameters for an
ARMA(2, 1) model.

      INTEGER    IMEAN, IPRINT, ISEOPT, MAXLAG, NOBS
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      PARAMETER  (IMEAN=1, IPRINT=1, ISEOPT=0, MAXLAG=4, NOBS=100)
C
      INTEGER    NCOL, NOUT, NPAR, NPMA, NROW
      REAL       AC(0:MAXLAG), ACV(0:MAXLAG), PAR(2), RDATA(176,2),
     &           SEAC(1), W(100), WMEAN
      EXTERNAL   ACF, ARMME, GDATA, UMACH
C
      EQUIVALENCE (W(1), RDATA(22,2))
C
      CALL UMACH (2, NOUT)
C                                 Wolfer Sunspot Data for
C                                 years 1770 through 1869
      CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
C                                 Compute sample ACV
      CALL ACF (NOBS, W, 0, ISEOPT, IMEAN, WMEAN, MAXLAG, ACV, AC,
     &          SEAC)
C                                 Compute estimates of autoregressive
C                                 parameters for ARMA(2,0) model
C                                 (Box and Jenkins, page 83)
      WRITE (NOUT,*) ’ARMA(2,0) Model’
      NPAR = 2
      NPMA = 0
      CALL ARMME (MAXLAG, ACV, IPRINT, NPMA, NPAR, PAR)
C                                 Compute estimates of autoregressive
C                                 parameters for ARMA(2,1) model
      WRITE (NOUT,*) ’ ’
      WRITE (NOUT,*) ’ARMA(2,1) Model’
      NPMA = 1
      CALL ARMME (MAXLAG, ACV, IPRINT, NPMA, NPAR, PAR)
C
      END

Output
ARMA(2,0) Model

  Output PAR
    1       2
1.318  -0.635

ARMA(2,1) Model

  Output PAR
    1       2
1.244  -0.575

MAMME/DMAMME (Single/Double precision)
Compute method of moments estimates of the moving average parameters of an
ARMA model.

Usage
CALL MAMME (MAXLAG, ACV, IPRINT, NPAR, PAR, RELERR, MAXIT,
            NPMA, PMA)
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Arguments

MAXLAG — Maximum lag of the sample autocovariances of the time series W.
(Input)
MAXLAG must be greater than or equal to NPAR + NPMA.

ACV — Vector of length MAXLAG + 1 containing the sample autocovariances of
W.   (Input)
The k-th sample autocovariance of W is denoted by ACV(k), k = 0, 1, …, MAXLAG.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the estimates of the moving average parameters.

NPAR — Number of autoregressive parameters.   (Input)
NPAR must be greater than or equal to zero.

PAR — Vector of length NPAR containing the estimates of the autoregressive
parameters.   (Input)

RELERR — Stopping criterion for use in the nonlinear equation solver.   (Input)
If RELERR = 0.0, then the default value RELERR = 100.0 * AMACH(4) is used. See
the documentation for routine AMACH (page 1334).

MAXIT — The maximum number of iterations allowed in the nonlinear equation
solver.   (Input)
If MAXIT = 0, then the default value MAXIT = 200 is used.

NPMA — Number of moving average parameters.   (Input)
NPMA must be greater than or equal to one.

PMA — Vector of length NPMA containing the estimates of the moving average
parameters.   (Output)

Comments

1. Automatic workspace usage is

MAMME NPAR + 1 + (NPMA + 1) * (12 + 1.5 * NPMA) units, or

DMAMME 2 * (NPAR + 1 + (NPMA + 1) * (12 + 1.5 * NPMA)) units.

Workspace may be explicitly provided, if desired, by use of
M2MME/DM2MME. The reference is

CALL M2MME (MAXLAG, ACV, IPRINT, NPAR, PAR, RELERR,
            MAXIT, NPMA, PMA, PARWK, ACVMOD, TAUINI,
            TAU, FVEC, FJAC, R, QTF, WKNLN)

The additional arguments are as follows:

PARWK — Work vector of length equal to NPAR + 1.
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ACVMOD — Work vector of length equal to NPMA + 1.

TAUINI — Work vector of length equal to NPMA + 1.

TAU — Work vector of length equal to NPMA + 1.

FVEC — Work vector of length equal to NPMA + 1.

FJAC — Work vector of length equal to (NPMA + 1)2.

R — Work vector of length equal to (NPMA + 1) * (NPMA + 2)/2.

QTF — Work vector of length equal to NPMA + 1.

WKNLN — Work vector of length equal to 5 * (NPMA + 1).

2. Informational error
Type Code
   4    1 The nonlinear equation solver did not converge to

RELERR within MAXIT iterations.

3. The sample autocovariance function may be computed using the routine
ACF (page 637).

4. The autoregressive parameter estimates may be computed using the
routine ARMME (page 657).

Algorithm

Routine MAMME estimates the moving average parameters of an ARMA process
based on a system of nonlinear equations given K = MAXLAG autocovariances σ(k)
for k = 1, …, K and p = NPAR autoregressive parameters φL for i = 1, …, p.

Suppose the time series {WW} is generated by an ARMA(p,q) model

φ(B)WW= θ0 + θ(B)AW, t ∈ 2 {0, ±1, ±2,K}

where p = NPAR and q = NPMA Let

W B Wt t
’ ( )= φ

then the autocovariances of the derived moving average process WW = θ(B)AW are
given by
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=
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where σ(k) denotes the autocovariance function of the original WW process. The
iterative procedure for determining the moving average parameters is based on
the relation
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Let τ = (τ0, τ1, …, τT)7 and f = (f0, f1, …, fT)7 where
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Then, the value of τ at the (i + 1)-th iteration is determined by

τL+1 = τL −(TL)-1 fL

The estimation procedure begins with the initial value

τ σ0 0 0 0= ′( ( ), , , )K T

and terminates at iteration i when either ||f L|| is less than RELERR or i equals
MAXIT. The moving average parameters are determined from the final estimate of
τ by setting θM = −τM/τ0 for j = 1, …, q. The random shock variance is determined
according to
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In practice, both the autocovariances and the autoregressive parameters are
estimated. The solution of the system of nonlinear equations using these sample
moments yields the method of moments estimates of the moving average
parameters and the random shock variance. Note that autocorrelations ρ(k) may
be used instead of autocovariances σ(k) to compute σ′(k) for k = 1, …, K. See
Box and Jenkins (1976, pages 203–204) for additional motivation concerning the
initial estimation of moving average parameters using a Newton-Raphson
algorithm.

Example

Consider the Wölfer Sunspot Data (Box and Jenkins 1976, page 530) consisting
of the number of sunspots observed each year from 1770 through 1869. Routine
MAMME is invoked to compute the method of moments estimates for the moving
average parameter of an ARMA(2,1) model given the sample autocovariances
computed from routine ACF (page 637) and given the estimated autoregressive
parameters computed from routine ARMME (page 657).

      INTEGER    IMEAN, IPRINT, ISEOPT, LDX, MAXLAG, NDX, NOBS,
     &           NOPRIN, NPAR, NPMA
      PARAMETER  (IMEAN=1, IPRINT=1, ISEOPT=0, LDX=176, MAXLAG=4,
     &           NDX=2, NOBS=100, NOPRIN=0, NPAR=2, NPMA=1)
C
      INTEGER    MAXIT, NCOL, NROW
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      REAL       AC(0:MAXLAG), ACV(0:MAXLAG), PAR(2), PMA(1),
     &           RDATA(LDX,NDX), RELERR, SEAC(1), W(100), WMEAN
      EXTERNAL   ACF, ARMME, GDATA, MAMME
C
      EQUIVALENCE (W(1), RDATA(22,2))
C                                 Wolfer Sunspot Data for
C                                 years 1770 through 1869
      CALL GDATA (2, NOPRIN, NROW, NCOL, RDATA, LDX, NDX)
C                                 Compute sample ACV
      CALL ACF (NOBS, W, NOPRIN, ISEOPT, IMEAN, WMEAN, MAXLAG, ACV,
     &          AC, SEAC)
C                                 Compute estimates of autoregressive
C                                 parameters for ARMA(2,1) model
      CALL ARMME (MAXLAG, ACV, NOPRIN, NPMA, NPAR, PAR)
C                                 Convergence parameters
      MAXIT  = 0
      RELERR = 0.0
C                                 Compute estimate of moving average
C                                 parameter for ARMA(2,1) model
      CALL MAMME (MAXLAG, ACV, IPRINT, NPAR, PAR, RELERR, MAXIT, NPMA,
     &            PMA)
C
      END

Output
Output PMA from MAMME/M2MME
-0.1241

NSPE/DNSPE (Single/Double precision)
Compute preliminary estimates of the autoregressive and moving average
parameters of an ARMA model.

Usage
CALL NSPE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, NPMA,
           RELERR, MAXIT, CONST, PAR, PMA, AVAR)

Arguments

NOBS — Number of observations in the stationary time series W.   (Input)
NOBS must be greater than NPAR + NPMA + 1.

W — Vector of length NOBS containing the stationary time series.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the mean of the time series, the estimate of the overall constant, the

estimates of the autoregressive parameters, the estimates of the moving
average parameters, and the estimate of the random shock variance.

IMEAN — Option for centering the time series X.   (Input)
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IMEAN Action
0 WMEAN is user specified.
1 WMEAN is set to the arithmetic mean of X.

WMEAN — Constant used to center the time series X.   (Input, if IMEAN = 0;
output, if IMEAN = 1)

NPAR — Number of autoregressive parameters.   (Input)
NPAR must be greater than or equal to zero.

NPMA — Number of moving average parameters.   (Input)
NPMA must be greater than or equal to zero.

RELERR — Stopping criterion for use in the nonlinear equation solver.   (Input)
If RELERR = 0.0, then the default value RELERR = 100.0 * AMACH(4) is used. See
the documentation for routine AMACH (page 1334).

MAXIT — The maximum number of iterations allowed in the nonlinear equation
solver.   (Input)
If MAXIT = 0, then the default value MAXIT = 200 is used.

CONST — Estimate of the overall constant.   (Output)

PAR — Vector of length NPAR containing the autoregressive parameter estimates.
(Output)

PMA — Vector of length NPMA containing the moving average parameter
estimates.   (Output)

AVAR — Estimate of the random shock variance.   (Output)

Comments

1. Automatic workspace usage is

NSPE 14 + NPMA * (14.5 + 1.5 * NPMA) + 2 * NPAR * (NPAR + 2)
units, or

DNSPE 28 + NPMA * (14 + 3 * NPMA) + NPAR * (4 * NPAR + 7) units.

Workspace may be explicitly provided, if desired, by use of
N2PE/DN2PE. The reference is

CALL N2PE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR,
           NPMA, RELERR, MAXIT, CONST,  PAR, PMA,
           AVAR, ACV, PARWK, ACVMOD, TAUINI, TAU,
           FVEC, FJAC, R, QTF, WKNLN, A, FAC, IPVT,
           WKARMM)

The additional arguments are as follows:

ACV — Work vector of length equal to NPAR + NPMA + 1.

PARWK — Work vector of length equal to NPAR + 1.

ACVMOD — Work vector of length equal to NPMA + 1.
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TAUINI — Work vector of length equal to NPMA + 1.

TAU — Work vector of length equal to NPMA + 1.

FVEC — Work vector of length equal to NPMA + 1.

FJAC — Work vector of length equal to (NPMA + 1)2.

R — Work vector of length equal to (NPMA + 1) * (NPMA + 2)/2.

QTF — Work vector of length equal to NPMA + 1.

WKNLN — Work vector of length equal to 5 * (NPMA + 1).

A — Work vector of length equal to NPAR2.

FAC — Work vector of length equal to NPAR2.

IPVT — Work vector of length equal to NPAR.

WKARMM — Work vector of length equal to NPAR.

2. Informational error
Type Code
   4    1 The nonlinear equation solver did not converge to

RELERR within MAXIT iterations.

3. The value of WMEAN is used in the computation of the sample
autocovariances of W in the process of obtaining the preliminary
autoregressive parameter estimates. Also, WMEAN is used to obtain the
value of CONST.

Algorithm

Routine NSPE computes preliminary estimates of the parameters of an ARMA
process given a sample of n = NOBS observations {WW} for t = 1, 2, …, n.

Suppose the time series {WW} is generated by an ARMA(p,q) model of the form

φ(B)WW= θ0 + θ(B)AW t ∈ {0, ±1, ±2, …}

where B is the backward shift operator,

φ(B) = 1 − φ1(B) − φ2(B)2 − … − φS(B)S

θ(B) = 1 − θ1(B) − θ2(B)2 − … − θT(B)T

p = NPAR and q = NPMA. Let

$µ = WMEAN

be the estimate of the mean of the time series {WW} where
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The autocovariance function σ(k) is estimated by
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where K = p + q. Note that

$ ( )σ 0

is an estimate of the sample variance.

Given the sample autocovariances, the routine ARMME (page 657) is used to
compute the method of moments estimates of the autoregressive parameters using
the extended Yule-Walker equations

$ $ $∑ =φ σ
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The overall constant θ0 is estimated by
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The moving average parameters are estimated using the routine MAMME
(page 660). Let

′ =W B Wt tφ( )

then the autocovariances of the derived moving average process

′ =W B At tθ( )

are estimated by
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The iterative procedure for determining the moving average parameters is based
on the relation
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where σ(k) denotes the autocovariance function of the original WW process.

Let τ = (τ0, τ1, …, τT)7 and f = (f0, f1, …, fT)7 where

τ
σ

θ τj
A

j

j

j q
=

=
− =
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0
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and

f j j qj i i j
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K

Then, the value of τ at the (i + 1)-th iteration is determined by

τ τi i i iT f+ −= −1 1( )

The estimation procedure begins with the initial value

τ σ0 0 0 0= ′( $ ( ), , , )K T

and terminates at iteration i when either ||f L|| is less than RELERR or i equals
MAXIT. The moving average parameter estimates are obtained from the final
estimate of τ by setting

$ / , ,θ τ τj j j q= − =0 1for K

The random shock variance is estimated by

$
$ ( ) $ $ ( )σ σ φ σ
τA

i
p

i i q

q
2 1

0
2

0 0

0
= − ∑ =

≥

%&'
=

See Box and Jenkins (1976, pages 498–500) for a description of a similar routine.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Routine NSPE (page 664) is used to compute preliminary estimates

$ )θ0  (output in CONST

$ , ,φ φ1 2 (output in PAR)

$θ1 (output in PMA)
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$σ A
2 (output in AVAR)

for the following ARMA (2, 1) model

w w w A At t t t t= + + − +− − −θ φ φ θ0 1 1 2 2 1 1

where the errors AW are independently distributed each normal with mean zero and
variance

σ A
2

      INTEGER    IPRINT, LDX, NDX, NOBS, NOPRIN, NPAR, NPMA
      PARAMETER  (IPRINT=1, LDX=176, NDX=2, NOBS=100, NOPRIN=0, NPAR=2,
     &           NPMA=1)
C
      INTEGER    IMEAN, MAXIT, NCOL, NROW
      REAL       AVAR, CONST, PAR(NPAR), PMA(NPMA), RDATA(LDX,NDX),
     &           RELERR, W(NOBS), WMEAN
      EXTERNAL   GDATA, NSPE
C
      EQUIVALENCE (W(1), RDATA(22,2))
C                                  Wolfer Sunspot Data for
C                                  years 1770 through 1869
      CALL GDATA (2, NOPRIN, NROW, NCOL, RDATA, LDX, NDX)
C                                 Convergence parameters
      MAXIT  = 0
      RELERR = 0.0
C                                 Compute preliminary parameter
C                                 estimates for ARMA(2,1) model
      IMEAN = 1
      CALL NSPE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, NPMA, RELERR,
     &           MAXIT, CONST, PAR, PMA, AVAR)
C
      END

Output
Results from NSPE/N2PE

WMEAN =     46.9760
CONST =     15.5440
AVAR  =     287.242

      PAR
     1       2
 1.244  -0.575

  PMA
-0.1241

NSLSE/DNSLSE (Single/Double precision)
Compute least-squares estimates of parameters for a nonseasonal ARMA model.
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Usage
CALL NSLSE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, PAR,
            LAGAR, NPMA, PMA, LAGMA, MAXBC, TOLBC, TOLSS,
            CONST, COV, LDCOV, NA, A, AVAR)

Arguments

NOBS — Number of observations in the stationary time series W.   (Input)
NOBS must be greater than IARDEG + IMADEG where IARDEG = max(LAGAR(i))
and IMADEG = max(LAGMA(j)).

W — Vector of length NOBS containing the stationary time series.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the least-squares estimates of the parameters, their associated

standard errors, and the residual sum of squares at the final iteration.
2 Print the least-squares estimates of the parameters and the residual sum

of squares at each iteration and at the final iteration. Print the standard
errors of the parameters at the final iteration.

IMEAN — Option for centering the time series W.   (Input)

IMEAN Action
0 W is not centered.
1 W is centered about WMEAN. Centering the time series W about WMEAN is

equivalent to inclusion of the overall constant in the model.

WMEAN — Estimate of the mean of the time series W.    (Input/Output, if IMEAN
= 1; not used if IMEAN = 0)
For IMEAN = 1, on input, WMEAN contains the preliminary estimate, on output,
WMEAN contains the final estimate.

NPAR — Number of autoregressive parameters.   (Input)
NPAR must be greater than or equal to zero.

PAR — Vector of length NPAR containing the autoregressive parameters.(Input/
Output)

On input, PAR contains the preliminary estimate. On output, PAR contains the
final estimate.

LAGAR — Vector of length NPAR containing the order of the autoregressive
parameters.   (Input)
The elements of LAGAR must be greater than or equal to one.

NPMA — Number of moving average parameters.   (Input)
NPMA must be greater than or equal to zero.

PMA — Vector of length NPMA containing the moving average
parameters.(Input/Output)



IMSL STAT/LIBRARY Chapter 8: Time Series Analysis and Forecasting • 671

On input, PMA contains the preliminary estimate. On output, PMA contains the
final estimate.

LAGMA — Vector of length NPMA containing the order of the moving average
parameters.   (Input)
The elements of LAGMA must be greater than or equal to one.

MAXBC — Maximum length of backcasting.   (Input)
MAXBC must be greater than or equal to zero.

TOLBC — Tolerance level used to determine convergence of the backcast
algorithm.   (Input)
Backcasting terminates when the absolute value of a backcast is less than TOLBC.
Typically, TOLBC is set to a fraction of WSTDEV where WSTDEV is an estimate of
the standard deviation of the time series. If TOLBC = 0.0, then TOLBC = 0.01 *
WSTDEV is used.

TOLSS — Tolerance level used to determine convergence of the nonlinear least-
squares algorithm.   (Input)
TOLSS represents the minimum relative decrease in sum of squares between two
iterations required to determine convergence. Hence, TOLSS must be greater than
or equal to zero and less than one where TOLSS = 0.0 specifies the default value
is to be used. The default value is

max{10-10, EPS2/3} for single precision and

max{10-20, EPS2/3} for double precision

where EPS = AMACH(4) for single precision and EPS = DMACH(4) for double
precision. See the documentation for routine AMACH (page 1334).

CONST — Estimate of the overall constant.   (Output)
For IMEAN = 0, CONST is set to zero. For IMEAN = 1, CONST = WMEAN *
(1 − PAR(1) − PAR(2) − … − PAR(NPAR)).

COV — NP by NP variance-covariance matrix of the estimates of the parameters
where NP = IMEAN + NPAR + NPMA.   (Output)
The ordering of variables in COV is WMEAN (if defined), PAR, and PMA. NP must 1
or more.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

NA — Number of residuals computed (including backcasts).   (Output)
If NB values of the time series are backcast, then NA = NOBS − IARDEG + NB.

A — Vector of length NOBS − IARDEG + MAXBC containing the residuals
(including backcasts) at the final parameter estimate point in the first NA

locations.   (Output)

AVAR — Estimate of the random shock variance.   (Output)

AVAR = (A(1)2 + … + A(NA)2)/(NOBS − IMEAN − NPAR − NPMA).
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Comments

1. Automatic workspace usage is

NSLSE (14 + M) * NP + 4M + NOBS + 2 * MAXBC + IMADEG − 1 units, or

DNSLSE 2 * ((13+M) * NP + 4M + NOBS + 2 * MAXBC + IMADEG −1) + NP
units where NP = NPAR + NPMA + IMEAN and M = NOBS −
IARDEG + MAXBC.

Workspace may be explicitly provided, if desired, by use of
N2LSE/DN2LSE. The reference is

CALL N2LSE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR,
            PAR, LAGAR, NPMA, PMA, LAGMA, MAXBC,
            TOLBC, TOLSS, CONST, COV, LDCOV, NA, A,
            AVAR, XGUESS, XSCALE, FSCALE, X, FVEC,
            FJAC, LDFJAC, RWKUNL, IWKUNL, WKNSRE,
            AI, FCST)

The additional arguments are as follows:

XGUESS — Work vector of length NP.

XSCALE — Work vector of length NP.

FSCALE — Work vector of length M.

X — Work vector of length NP.

FVEC — Work vector of length M.

FJAC — Work vector of length M * NP.

LDFJAC — Integer scalar equal to M.

RWKUNL — Work vector of length 10 * NP + 2 * M − 1.

IWKUNL — Work vector of length NP.

WKNSRE — Work vector of length NOBS + MAXBC.

AI — Work vector of length IMADEG.

FCST — Work vector of length MAXBC.

2 Informational error
Type Code
   3    1 Least-squares estimation of the parameters has failed

to converge. Increase MAXBC and/or TOLBC and/or
TOLSS. The estimates of the parameters at the last
iteration may be used as new starting values.
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Algorithm

Routine NSLSE computes least-squares estimates of parameters for a nonseasonal
ARMA model given a sample of n = NOBS observations {WW} for t = 1, 2, …, n.

Suppose the time series {WW} is generated by a nonseasonal ARMA model of the
form

φ µ θ( )( ) ( ) { , , , }B W B A tt t− = ∈ ± ±0 1 2 K

where B is the backward shift operator, µ is the mean of WW,

φ φ φ φ

θ θ θ θ
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with p = NPAR and q = NPMA. Without loss of generality, we assume
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so that the nonseasonal ARMA model is of order (p′, q′) where p′ = lf(p) and
q′ = lq(q). Note that the usual hierarchal model assumes
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Consider the sum of squares function

ST
T

n

( , , )µ φ θ =
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1

where

[ ] [ | , , , ]A E A Wt t= µ φ θ
and T is the backward origin. The random shocks {AW} are assumed to be
independent and identically distributed

N A( , )0 2σ
random variables. Hence, the log-likelihood function is given by

l f n
S

A A
T

A

( , , , ) ( , , )
( , , )

µ φ θ σ µ φ θ σ
µ φ θ
σ

= − −ln
2 2

where f(,µ, φ,θ ) is a function of µ, φ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both WW
and AW required to initialize the model. The method of selecting these initial
values usually introduces transient bias into the model (Box and Jenkins 1976,
pages 210–211). For T = ∞, this dependency vanishes, and the estimation
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problem concerns maximization of the unconditional log-likelihood function.
Box and Jenkins (1976, page 213) argue that

S A∞ µ φ θ σ, , /0 5 2 2

dominates

l A( , , , )µ φ θ σ2

The parameter estimates that minimize the sum of squares function are called
least-squares estimates. For large n, the unconditional least-squares estimates are
approximately equal to the maximum likelihood estimates.

In practice, a finite value of T will enable sufficient approximation of the
unconditional sum of squares function. The values of [AW] needed to compute the
unconditional sum of squares are computed iteratively with initial values of WW
obtained by back-forecasting. The residuals (including backcasts), estimate of
random shock variance, and covariance matrix of the final parameter estimates
are also computed. Note that application of an appropriate transformation using
routine BCTR (page 629) followed by differencing using routine DIFF (page 633)
allows for fitting of nonseasonal ARIMA models. The algorithm for nonseasonal
ARIMA models is developed in Chapter 7 of Box and Jenkins (1976). The
extension to multiplicative seasonal ARIMA models is given in Box and Jenkins
(1976, pages 500–504).

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Routine NSPE (page 664) is first invoked to compute preliminary estimates
for an ARMA(2, 1) model. Then, NSLSE is invoked with the preliminary
estimates as input in order to compute the least-squares estimates

$ )θ0  (output in CONST

$ , $ ,φ φ1 2 (output in PAR)

$θ1 (output in PMA)

$σ A
2 (output in AVAR)

for the ARMA(2, 1) model

w w w A At t t t t= + + − +− − −θ φ φ θ0 1 1 2 2 1 1

where the errors AW are independently distributed each normal with mean zero and
variance

σ A
2



IMSL STAT/LIBRARY Chapter 8: Time Series Analysis and Forecasting • 675

Note at the end of the output a warning error appears. Most of the time this error
message can be ignored. There are three general reasons this error can occur.

1. Convergence was declared using the criterion based on TOLSS, but the
gradient of the residual sum of squares function was nonzero. This
occurred in this example. Either the message can be ignored or TOLSS
can be reduced to allow more iterations and a slightly more accurate
solution.

2. Convergence is declared based on the fact that a very small step was
taken, but the gradient of the residual sum of squares function was
nonzero. The message can usually be ignored. However, sometimes the
algorithm is making very slow progress and is not near a minimum.

3. Convergence is not declared after 100 iterations.

Examination of the history of iterations using IPRINT = 2 and trying a smaller
value for TOLSS can help you determine what caused the error message.

      INTEGER    IARDEG, IMEAN, LDCOV, LDX, MAXBC, MDX, NOBS, NP,
     &           NPAR, NPMA
      PARAMETER  (IARDEG=2, IMEAN=1, LDX=176, MAXBC=10, MDX=2,
     &           NOBS=100, NPAR=2, NPMA=1, NP=NPAR+NPMA+IMEAN,
     &           LDCOV=NP)
C
      INTEGER    IPRINT, LAGAR(NPAR), LAGMA(NPMA), MAXIT, NA, NCOL,
     &           NROW
      REAL       A(NOBS-IARDEG+MAXBC), AVAR, CONST, COV(LDCOV,NP),
     &           PAR(NPAR), PMA(NPMA), RELERR, TOLBC, TOLSS, W(NOBS),
     &           WMEAN, X(LDX,MDX)
      EXTERNAL   GDATA, NSLSE, NSPE
C
      EQUIVALENCE (W(1), X(22,2))
C
      DATA LAGAR/1, 2/, LAGMA/1/
C                                  Wolfer Sunspot Data for
C                                  years 1770 through 1869
      IPRINT = 0
      CALL GDATA (2, IPRINT, NROW, NCOL, X, LDX, MDX)
C                                 Convergence parameters
      MAXIT  = 0
      RELERR = 0.0
C                                 Compute preliminary parameter
C                                 estimates for ARMA(2,1) model
      IPRINT = 1
      CALL NSPE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, NPMA, RELERR,
     &           MAXIT, CONST, PAR, PMA, AVAR)
C
      TOLBC  = 0.0
      TOLSS  = 0.125
      IPRINT = 2
C
      CALL NSLSE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, PAR, LAGAR,
     &            NPMA, PMA, LAGMA, MAXBC, TOLBC, TOLSS, CONST, COV,
     &            LDCOV, NA, A, AVAR)
C
      END
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Output
Results from NSPE/N2PE

WMEAN =     46.9760
CONST =     15.5440
AVAR  =     287.242

     PAR
    1       2
1.244  -0.575

PMA
-0.1241
----------------------------------------------------------------------
Iteration       1

WMEAN =   52.638233185

     PAR
    1       2
1.264  -0.606

  PMA
-0.1731

Residual SS (including backcasts) =  23908.66210937500
Number of residuals               =     108
Number of backcasts               =      10
----------------------------------------------------------------------
Iteration       2

WMEAN =   54.756504059

     PAR
    1       2
1.360  -0.688

  PMA
-0.1411

Residual SS (including backcasts) =  23520.71484375000
Number of residuals               =     108
Number of backcasts               =      10
----------------------------------------------------------------------
Final Results, Iteration       3

Parameter         Estimate            Std. Error            t-ratio

WMEAN             53.9187279            5.5178852            9.7716293

                                 PAR
1                 1.3925704            0.0960639           14.4962845
2                -0.7329484            0.0866115           -8.4624796

                                 PMA
1                -0.1375125            0.1223797           -1.1236545

CONST =         18.3527489
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AVAR  =        243.4830170

Residual SS (including backcasts) =      23374.3691406
Number of residuals               =        108

Residual SS (excluding backcasts) =      20931.7519531
Number of residuals               =         98

*** WARNING  ERROR 1 from NSLSE.  Least squares estimation of the parameters
***          has failed to converge.  Increase MAXBC and/or TOLBC and/or
***          TOLSS.  The estimates of the parameters at the last iteration
***          may be used as new starting values.

SPWF/DSPWF (Single/Double precision)
Compute the Wiener forecast operator for a stationary stochastic process.

Usage
CALL SPWF (NOBS, W, IWMEAN, WMEAN, WNADJ, EPS, MLFOP, LFOP,
           FOP)

Arguments

NOBS — Number of observations in the stationary time series W.   (Input)
NOBS must be greater than or equal to two.

W — Vector of length NOBS containing the stationary time series.   (Input)

IWMEAN — Option for estimation of the mean of W.   (Input)

IWMEAN Action
0 WMEAN is user specified.
1 WMEAN is set equal to the arithmetic mean of W.

WMEAN — Estimate of the mean of the time series W.   (Input, if IWMEAN = 0;
output, if IWMEAN = 1)
WMEAN is used to center the time series W prior to estimation of the forecast
operator.

WNADJ — White noise adjustment factor.   (Input)
WNADJ must be greater than or equal to zero.

EPS — Bound on the normalized mean square error.   (Input)
EPS must be in the range (0, 1) inclusive.

MLFOP — Maximum length of the forecast operator.   (Input)
MLFOP must be greater than or equal to one and less than NOBS.

LFOP — Length of the estimated forecast operator.   (Output)

FOP — Vector of length LFOP containing the estimated forecast operator
coefficients.   (Output)
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Comments

1. Automatic workspace storage is

SPWF NOBS + 2 * MLFOP + 1 units, or
DSPWF 2 * (NOBS + 2 * MLFOP + 1) units.

Workspace may be explicitly provided, if desired, by use of
S2WF/DS2WF. The reference is

CALL S2WF (NOBS, W, IWMEAN, WMEAN, WNADJ, EPS,
           MLFOP, LFOP, FOP, CW, WK)

The additional arguments are as follows:

CW — Vector of length NOBS containing the centered time series W.
(Output)

WK — Vector of length 2 * MLFOP + 1.   (Output)

2. Informational error

Type Code
   3    5 No operator could be found of length less than or

equal to MLFOP that produced a normalized mean
square error less than EPS.

3 The length of the forecast operator is determined by the arguments EPS

and MLFOP. Iteration to a longer forecast operator stops when either the
normalized mean square error is less than EPS, or the operator reaches
the maximum allowable length, MLFOP.

4. The white noise adjustment factor, WNADJ, is used to modify the the
estimate of the variance of the time series W used in the computation of
the autocorrelation function of W. In the absence of white noise, WNADJ

should be set to zero.

Algorithm

Routine SPWF performs least-squares estimation of parameters for successive
autoregressive models of a stationary stochastic process given a sample of
n = NOBS observations {WW} for t = 1, …, n.

Let

$µ = WMEAN

be the estimate of the mean µ of the stochastic process {WW} where

$µ
µ µ

µ=
%
&K
'K =

∑
known

1
unknown

n
Wt

t

n

1

Consider the autoregressive model of order k defined by



IMSL STAT/LIBRARY Chapter 8: Time Series Analysis and Forecasting • 679

φk t tB W A k( )
~ = ≥ 0

where
~ $W Wt t= − µ

and

φ φ φ φk k k kk
kB B B B k( ) = − − − − ≥1 11 2

2 L

Successive AR(k) models are fit to the centered data using Durbin’s algorithm
(1960) based on the sample autocovariances

$ ( ) ( $ )( $ )σ µ µk
n

W W kt t k
t

n k

= − − ≥+
=

−

∑1
0

1

Note that the variance

$ ( )σ∗ 0

used in the fitting algorithm is adjusted by the amount δ = WNADJ according to

$ ( ) ( ) $ ( )σ δ σ∗ = +0 1 0

See Robinson (1967, page 96).

Iteration to the next higher order model terminates when either the expected mean
square error of the model is less than EPS or when k = MLFOP. The forecast

operator φ = (φ1, φ2, …, φN*)7 for k* = LFOP is contained in FOP. See also
Craddock (1969).

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Application of routine SPWF to these data produces the following results:

      INTEGER    MLFOP, NOBS
      PARAMETER  (MLFOP=1, NOBS=100)
C     INTEGER    I, IMEAN, LFOP, NCOL, NOUT, NROW

      REAL       EPS, FOP(MLFOP), RDATA(176,2), W(NOBS), WMEAN, WNADJ
      EXTERNAL   GDATA, SPWF, UMACH
C
      EQUIVALENCE (W(1), RDATA(22,2))
C                                 Wolfer Sunspot Data for
C                                 years 1770 through 1869
      CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
C                                 Center on arithmetic mean
      IMEAN = 0
      WMEAN = 46.976
C                                 White noise adjustment
      WNADJ = 0.0
C                                 Bound on normalized MSE
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      EPS = 0.1
C                                 Determine autoregressive model
      CALL SPWF (NOBS, W, IMEAN, WMEAN, WNADJ, EPS, MLFOP, LFOP, FOP)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99997) LFOP
99997 FORMAT (/, 1X, ’Forecast operator length, LFOP = ’, I2)
      WRITE (NOUT,99998)
99998 FORMAT (/, 1X, ’ I           FOP(I)’)
      DO 10  I=1, LFOP
         WRITE (NOUT,99999) I, FOP
99999    FORMAT (1X, I2, 2X, F12.4)
   10 CONTINUE
C
      END

Output
*** WARNING  ERROR 5 from SPWF.  No operator could be found of length less
***          than or equal to 1 which produced a normalized mean square
***          error less than 1.000000E-01.

Forecast operator length, LFOP =  1

I           FOP(I)
1        0.8063

NSBJF/DNSBJF (Single/Double precision)
Compute Box-Jenkins forecasts and their associated probability limits for a
nonseasonal ARMA model.

Usage
CALL NSBJF (NOBS, W, IPRINT, NPAR, PAR, LAGAR, NPMA, PMA,
            LAGMA, ICONST, CONST, AVAR, ALPHA, MXBKOR,
            MXLEAD, FCST, LDFCST)

Arguments

NOBS — Number of observations in the time series W.   (Input)
NOBS must be greater than ICONST + max(LAGAR(i)) + max(LAGMA(j)).

W — Vector of length NOBS containing the time series.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the forecasts for lead times l = 1, …, MXLEAD at each origin

t = (NOBS − MXBKOR ), …, NOBS, the 100(1 − ALPHA)% probability limit
deviations, and the psi weights.

NPAR — Number of autoregressive parameters.   (Input)
NPAR must be greater than or equal to zero.
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PAR — Vector of length NPAR containing the autoregressive parameters.   (Input)

LAGAR — Vector of length NPAR containing the order of the autoregressive
parameters.   (Input)
The elements of LAGAR must be greater than zero.

NPMA — Number of moving average parameters.   (Input)
NPMA must be greater than or equal to zero.

PMA — Vector of length NPMA containing the moving average parameters.
(Input)

LAGMA — Vector of length NPMA containing the order of the moving average
parameters.   (Input)
The elements of LAGMA must be greater than zero.

ICONST — Option for including the overall constant in the model.   (Input)

ICONST Action
0 No overall constant is included.
1 The overall constant is included.

CONST — Estimate of the overall constant.   (Input)

AVAR — Estimate of the random shock variance.   (Input)
AVAR must be greater than 0.

ALPHA — Value in the exclusive interval (0, 1) used to specify the
100(1 − ALPHA)% probability limits of the forecasts.   (Input)
Typical choices for ALPHA are 0.10, 0.05, and 0.01.

MXBKOR — Maximum backward origin.   (Input)
MXBKOR must be greater than or equal to zero and less than or equal to
NOBS − max(MAXAR, MAXMA) where MAXAR = max(LAGAR(i)) and
MAXMA = max(LAGMA(j)). Forecasts at origins NOBS − MXBKOR through NOBS are
generated.

MXLEAD — Maximum lead time for forecasts.   (Input)
MXLEAD must be greater than zero.

FCST — MXLEAD by (MXBKOR + 3) matrix defined below.   (Output)

Column Content
j            Forecasts for lead times l = 1, …, MXLEAD at origins

NOBS − MXBKOR − 1 + j, j = 1, …, MXBKOR + 1.
MXBKOR + 2 Deviations from each forecast that give the 100(1 − ALPHA)%

probability limits.
MXBKOR + 3 Psi weights of the infinite order moving average form of the

model.

LDFCST — Leading dimension of FCST exactly as specified in the dimension
statement in the calling program.   (Input)
LDFCST must be greater than or equal to MXLEAD.
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Comments

1. Automatic workspace usage is

NSBJF 5 + IARDEG + IMADEG + 3 * MXLEAD units, or

DNSBJF 7 + 2 * IARDEG + 2 * IMADEG + 5 * MXLEAD units, where
IARDEG = max(LAGAR(i)) and IMADEG = max(LAGMA(j)).

Workspace may be explicitly provided, if desired, by use of
N2BJF/DN2BJF. The reference is

CALL N2BJF (NOBS, W, IPRINT, NPAR, PAR, LAGAR, NPMA,
            PMA, LAGMA, ICONST, CONST, AVAR, ALPHA,
            MXBKOR, MXLEAD, FCST, LDFCST, PARH,
            PMAH, PSIH, PSI, LAGPSI)

The additional arguments are as follows:

PARH — Work vector of length equal to IARDEG + 1.

PMAH — Work vector of length equal to IMADEG + 1.

PSIH — Work vector of length equal to MXLEAD + 1.

PSI — Work vector of length equal to MXLEAD + 1.

LAGPSI — Work vector of length equal to MXLEAD + 1.

2. If the W series has been transformed using a Box-Cox transformation
with parameters POWER and SHIFT, the forecasts and probability limits
for the original series may be obtained by application of routine BCTR

(page 629) with the same parameters and argument IDIR set equal to
one.

Algorithm

Routine NSBJF computes Box-Jenkins forecasts and their associated probability
limits for a nonseasonal ARMA model given a sample of n = NOBS observations
{ WW} for t = 1, 2, …, n.

Suppose the time series {WW} is generated by a nonseasonal ARMA model of the
form

φ θ θ( ) ( ) { , , , }B W B A tt t= + ∈ ± ±0 0 1 2 K

where B is the backward shift operator, θ0 = CONST,

φ φ φ φ

θ θ φ θ

φ φ φ

θ θ θ

( )
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( ) ( ) ( )

( ) ( ) ( )

B B B B

B B B B
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l q

= − − − −

= − − − −

1

1

1
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2
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p = NPAR and q = NPMA. Without loss of generality, we assume
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so that the nonseasonal ARMA model is of order (p′, q′) where p′ = lf(p) and 
q′ = lq(q). Note that the usual hierarchal model assumes
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The Box-Jenkins forecast at origin t for lead time l of WW+O�is defined in terms of
the difference equation
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The 100(1 − α)% probability limits for WW+O are given by
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where z(1-a/2) is the 100(1 − α/2) percentile of the standard normal distribution,

σ A
2 = AVAR

and {ψM} are the parameters of the random shock form of the difference equation.
Note that the forecasts are computed for lead times l = 1, 2, …, L at origins t = (n
− b), (n − b + 1), …, n where L = MXLEAD and b = MXBKOR.

The Box-Jenkins forecasts minimize the mean square error

E W W lt l t[ $ ( )]+ − 2

Also, the forecasts may be easily updated according to the equation

$ ( ) $ ( )W l W l At t l t+ += + +1 11 ψ (7)

This approach and others are given in Chapter 5 of Box and Jenkins (1976).
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Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Routine NSBJF is used to computed forecasts and 95% probability limits
for the forecasts for an ARMA(2, 1) model fit using routine NSPE (page 664). With
MXBKOR = 3, columns one through four of FCST give forecasts given the data
through 1866, 1867, 1868, and 1869, respectively. Column 5 gives the deviations
from the forecast for computing probability limits, and column six gives the psi
weights, which can be used to update forecasts once more data is available. For
example, the forecast for the 102-nd observation (year 1871) given the data
through the 100-th observation (year 1869) is 77.21, and 95% probability limits
are given by 77.21 m  56.30. After observation 101 (W101 for year 1870) is
available, the forecast can be updated by using equation 7 with the psi weight (ψ1
= 1.37) and the one-step-ahead forecast error for observation 101 (W101 − 83.72)
to give

77.21 + 1.37 (W101 − 83.72)

Since this updated forecast is one step ahead, the 95% probability limits are now
given by the forecast m33.22.

      INTEGER    LDFCST, MXBKOR, MXLEAD, NOBS, NPAR, NPMA
      PARAMETER  (MXBKOR=3, MXLEAD=12, NOBS=100, NPAR=2, NPMA=1,
     &           LDFCST=MXLEAD)
C
      INTEGER    ICONST, IMEAN, IPRINT, LAGAR(NPAR), LAGMA(NPMA),
     &           MAXIT, NCOL, NROW
      REAL       ALPHA, AVAR, CONST, FCST(LDFCST,MXBKOR+3), PAR(NPAR),
     &           PMA(NPMA), RDATA(176,2), RELERR, W(NOBS), WMEAN
      CHARACTER  CLABEL(MXBKOR+4)*40, RLABEL(1)*6
      EXTERNAL   GDATA, NSBJF, NSPE, WRRRL
C
      EQUIVALENCE (W(1), RDATA(22,2))
C
      DATA LAGAR(1), LAGAR(2)/1, 2/
      DATA LAGMA(1)/1/
      DATA RLABEL/’NUMBER’/, CLABEL/’%/Lead%/Time’,
     &     ’%/Forecast%/From 1866’, ’%/Forecast%/From 1867’,
     &     ’%/Forecast%/From 1868’, ’%/Forecast%/From 1869’,
     &     ’ Deviation %/  for 95%  %/Prob. Limits’, ’%/%/Psi’/
C                                  Wolfer Sunspot Data for
C                                  years 1770 through 1869
      CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
C                                 Compute preliminary parameter
C                                 estimates for ARMA(2,1) model
      IMEAN  = 1
      MAXIT  = 0
      RELERR = 0.0
      IPRINT = 0
      CALL NSPE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, NPMA, RELERR,
     &           MAXIT, CONST, PAR, PMA, AVAR)
C
C                                 Include constant in forecast model
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      ICONST = 1
C                                 Specify 95 percent probability
C                                 limits for forecasts
      ALPHA = 0.05
C                                 Compute forecasts
      IPRINT = 0
      CALL NSBJF (NOBS, W, IPRINT, NPAR, PAR, LAGAR, NPMA, PMA, LAGMA,
     &            ICONST, CONST, AVAR, ALPHA, MXBKOR, MXLEAD, FCST,
     &            LDFCST)
C                                 Print results
      CALL WRRRL (’FCST’, MXLEAD, MXBKOR+3, FCST, LDFCST, 0,
     &            ’(5F9.2,F6.3)’, RLABEL, CLABEL)
C
      END

Output
                               FCST
                                                   Deviation
Lead   Forecast   Forecast   Forecast   Forecast     for 95%
Time  From 1866  From 1867  From 1868  From 1869  Prob. Limits    Psi
 1      18.28      16.62      55.19      83.72         33.22   1.368
 2      28.92      32.02      62.76      77.21         56.30   1.127
 3      41.01      45.83      61.89      63.46         67.62   0.616
 4      49.94      54.15      56.46      50.10         70.64   0.118
 5      54.09      56.56      50.19      41.38         70.75  -0.208
 6      54.13      54.78      45.53      38.22         71.09  -0.326
 7      51.78      51.17      43.32      39.30         71.91  -0.286
 8      48.84      47.71      43.26      42.46         72.53  -0.169
 9      46.53      45.47      44.46      45.77         72.75  -0.045
10      45.35      44.69      45.98      48.08         72.77   0.041
11      45.21      44.99      47.18      49.04         72.78   0.077
12      45.71      45.82      47.81      48.91         72.82   0.072

IRNSE/DIRNSE (Single/Double precision)
Compute estimates of the impulse response weights and noise series of a
univariate transfer function model.

Usage
CALL IRNSE (NOBS, X, Y, IPRINT, NPAR, PAR, NPMA, PMA,
            MWTIR, MWTSN, WTIR, SNOISE, XPW, YPW)

Arguments

NOBS — Number of observations in each time series.   (Input)
NOBS must be greater than or equal to two.

X — Vector of length NOBS containing the input time series.   (Input)

Y — Vector of length NOBS containing the output time series.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
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1 Print the estimates of the impulse response weights and the noise series.

NPAR — Number of prewhitening autoregressive parameters.   (Input)
NPAR must be greater than or equal to zero.

PAR — Vector of length NPAR containing the prewhitening autoregressive
parameters.   (Input)

NPMA — Number of prewhitening moving average parameters.   (Input)
NPMA must be greater than or equal to zero.

PMA — Vector of length NPMA containing the prewhitening moving average
parameters.   (Input)

MWTIR  — Maximum index of the impulse response weights.   (Input)
MWTIR must be greater than or equal to zero and less than or equal to NOBS − 1.

MWTSN — Maximum index of the impulse response weights used to compute
the noise series.   (Input)
MWTSN must be greater than or equal to zero and less than or equal to MWTIR.

WTIR — Vector of length MWTIR + 1 containing the impulse response weight
estimates.   (Output)
The impulse response weight estimate of index k is given by WTIR(k) for k = 0, 1,
…, MWTIR.

SNOISE — Vector of length NOBS − MWTSN containing the noise series based on
the impulse response weight estimates.   (Output)

XPW — Vector of length NOBS − NPAR containing the prewhitened input time
series X.   (Output)

YPW — Vector of length NOBS − NPAR containing the prewhitened output time
series Y.   (Output)

Comments

1. Automatic workspace usage is

IRNSE 3 + 4 * MWTIR units, or
DIRNSE 6 + 8 * MWTIR units.

Workspace may be explicitly provided, if desired, by use of
I2NSE/DI2NSE. The reference is

CALL I2NSE (NOBS, X, Y, IPRINT, NPAR, PAR, NPMA,
            PMA, MWTIR, MWTSN, WTIR, SNOISE, XPW,
            YPW, ACPWX, ACPWY, CCPW)

The additional arguments are as follows:

ACPWX — Vector of length MWTIR + 1 containing the estimated
autocorrelation function of PWX.   (Output)

ACPWY — Vector of length MWTIR + 1 containing the estimated
autocorrelation function of PWY.   (Output)
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CCPW — Vector of length 2 * MWTIR + 1 containing the estimated
cross-correlation function of PWX and PWY.   (Output)

2. The input series X and output series Y are assumed to be the result of
transforming and differencing the raw input and output series. The
routines BCTR (page 629) and DIFF (page 633) may be used,
respectively, to perform a Box-Cox transformation and difference the
raw input and output series.

3. Note that the prewhitened input and output are computed at time
t = NPAR + 1 through t = NOBS. Also, the noise series is computed at
time t = MWTSN + 1 through t = NOBS.

Algorithm

Routine IRNSE estimates the impulse response weights and noise series of a
transfer function model given a sample of n = NOBS observations of the input {xW}
and output {yW} for t = 1, 2, …, n. Define {xW} and {yW}, respectively, by

x
X d

X dt
t X
d

t
=

− =
∇ >

%&'
$µ 0

0

and

y
Y d

Y dt
t Y
d

t
=

− =
∇ >

%&'
$µ 0

0

where {XW} and {YW} for t = (−d + 1), …, n represent the undifferenced input and
output series with

$ $µ µX Yand

estimates of their respective means. The differenced input and output series may
be obtained using the routine DIFF (page 633) following any preliminary
transformation of the data.

The transfer function model is defined by

YW = ν(B)XW + NW

or, equivalently,

yW = ν(B)xW + nW

with transfer function

ν(B) = ν0 + ν1B + ν2B2 + …

and differenced noise series nW = ∇GNW.

The prewhitened input and output series are computed for t = (p + 1), …, n
according to
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αW = φ(B)xW + θ1(B)αW
βW = φ(B)yW + θ1(B)βW

where

φ(B) = 1 − φ1B − φ2B2 − … − φSBS

θ(B) = θ1B + θ2B2 + … + θTBT

The parameters of the prewhitening transformation may be estimated roughly
using the routine NSPE (page 664) or more precisely using the routine NSLSE
(page 669). The correlation relationship between {αW}, {βW}, and {nW} may be
further examined using the routines ACF (page 637), PACF (page 641), and CCF
(page 644).

The impulse response weights {νN} are estimated by

$
$

$
$ ( ) , , ,ν

σ

σ
ρβ

α
αβk k k K= = 0 1 K

where K = MWTIR,

$ $σ σα βand

denote the standard deviation of {αW} and {βW};

$ ( ) , , ,ραβ k k Kfor = 0 1 K

represents the cross-correlation function between {αW} and {βW}. The differenced

noise series {nW} for t = (K′ + 1), …, n is reconstructed using the model

n y x x xt t t t K t K= − − − −− ′ − ′$ $ $ν ν ν0 1 1 L

where K′ = MWTSN.

Example

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where X
is the input gas rate in cubic feet/minute and Y is the percent CO2 in the outlet
gas. Application of routine IRNSE to these data produces the following results:

      INTEGER    IPRINT, LDX, MWTIR, MWTSN, NDX, NOBS, NOPRIN, NPAR,
     &           NPMA
      PARAMETER  (IPRINT=0, LDX=296, MWTIR=10, NDX=2, NOBS=296,
     &           NOPRIN=0, NPAR=3, NPMA=0, MWTSN=MWTIR)
C
      INTEGER    NCOL, NROW
      REAL       PAR(NPAR), PMA(1), RDATA(296,2), SNOISE(NOBS-MWTSN),
     &           WTIR(MWTIR+1), X(NOBS), XPW(NOBS-NPAR), Y(NOBS),
     &           YPW(NOBS-NPAR)
      EXTERNAL   GDATA, IRNSE, WRRRN
C
      EQUIVALENCE (X(1), RDATA(1,1)), (Y(1), RDATA(1,2))
C                                 Gas Furnace Data
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      CALL GDATA (7, NOPRIN, NROW, NCOL, RDATA, LDX, NDX)
C                                 Specify AR parameters for
C                                 prewhitening transformation
      PAR(1) = 1.97
      PAR(2) = -1.37
      PAR(3) = 0.34
C                                 Compute estimates of impulse
C                                 response weights and noise series
      CALL IRNSE (NOBS, X, Y, IPRINT, NPAR, PAR, NPMA, PMA, MWTIR,
     &            MWTSN, WTIR, SNOISE, XPW, YPW)
C                                 Print results
      CALL WRRRN (’WTIR’, 1, 11, WTIR, 1, 0)
      CALL WRRRN (’SNOISE’, 1, 20, SNOISE, 1, 0)
C
      END

Output
                                WTIR
      1        2        3        4        5        6        7        8
-0.0355   0.0716  -0.0764  -0.5655  -0.6549  -0.8936  -0.5358  -0.3482

      9       10       11
-0.0782   0.0277  -0.1364

                                SNOISE
    1      2      3       4       5       6       7       8       9      10
53.21  53.49  53.72   54.05   53.98   53.95   53.69   53.02   52.56   52.33

   11     12     13      14      15      16      17      18      19      20
52.47  52.69  52.57   52.63   52.81   53.14   53.21   53.20   53.05   52.88

TFPE/DTFPE (Single/Double precision)
Compute preliminary estimates of parameters for a univariate transfer function
model.

Usage
CALL TFPE (IPRINT, NPLHS, NPRHS, NPNAR, NPNMA, NDELAY,
           MWTIR, WTIR, NSNOIS, SNOISE, RELERR, MAXIT,
           PLHS, PRHS, PNAR, PNMA, AVAR)

Arguments

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print estimates of transfer function parameters, estimates of noise model

parameters, and an of the random shock variance.

NPLHS — Number of left-hand side transfer function parameters.   (Input)
NPLHS must be greater than or equal to zero.
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NPRHS — Number of right-hand side transfer function parameters (excluding
the index 0 parameter).   (Input)
NPRHS must be greater than or equal to zero.

NPNAR — Number of noise autoregressive parameters.   (Input)
NPNAR must be greater than or equal to zero.

NPNMA — Number of noise moving average parameters.   (Input)
NPNMA must be greater than or equal to zero.

NDELAY — Time delay parameter.   (Input)
NDELAY must be greater than or equal to zero.

MWTIR — Maximum index of the impulse response weights.   (Input)
MWTIR must be greater than or equal to NPLHS + NPRHS + NDELAY.

WTIR — Vector of length MWTIR + 1 containing the impulse response weight
estimates.   (Input)
The impulse response weight estimate of index k is given by WTIR(k) for k = 0, 1,
…, MWTIR.

NSNOIS — Number of elements in the noise series.   (Input)
NSNOIS must be greater than or equal to NPNAR + NPNMA + 1.

SNOISE — Vector of length NSNOIS containing the noise series.   (Input)

RELERR — Stopping criterion for use in the nonlinear equation solver.   (Input)
If RELERR = 0.0, then the default value RELERR = 100.0 * AMACH(4) is used. See
the documentation for routine AMACH (page 1334).

MAXIT — The maximum number of iterations allowed in the nonlinear equation
solver.   (Input)
If MAXIT = 0, then the default value MAXIT = 200 is used.

PLHS — Vector of length NPLHS containing the estimates of the left-hand side
transfer function parameters.   (Output)
The LHS weight estimates are PLHS(k), k = 1, …, NPLHS.

PRHS — Vector of length NPRHS + 1 containing the estimates of the right-hand
side transfer function parameters.   (Output)
The RHS weight estimates are PRHS(k), k = 0, …, NPRHS.

PNAR — Vector of length NPNAR containing the estimates of the noise
autoregressive parameters.   (Output)

PNMA — Vector of length NPNMA containing the estimates of the noise moving
average parameters.   (Output)

AVAR — Estimate of the random shock variance.   (Output)

Comments

1. Automatic workspace usage is
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TFPE 2 * max(NPLHS, NPNAR) * (max(NPLHS, NPNAR) + 1) + 2 *
NPNAR + 1 + (NPNMA + 1) * (13 + 1.5 * NPNMA) + NPLHS units,
or

DTFPE 2 * (2 * max(NPLHS, NPNAR) * (max(NPLHS, NPNAR) + .75) +
2 * NPNAR + 1 + (NPNMA + 1) * (13 + 1.5 * NPNMA) + NPLHS)
units.

Workspace may be explicitly provided, if desired, by use of
T2PE/DT2PE. The reference is

CALL T2PE (IPRINT, NPLHS, NPRHS, NPNAR, NPNMA,
           NDELAY, MWTIR, WTIR, NSNOIS, SNOISE,
           RELERR, MAXIT, PLHS, PRHS, PNAR, PNMA,
           AVAR, A, FAC, IPVT, WK, ACV, PARWK,
           ACVMOD, TAUINI, TAU, FVEC, FJAC, R, QTF,
           WKNLN, H)

The additional arguments are as follows:

A — Work vector of length (max(NPLHS, NPNAR))2.

FAC — Work vector of length (max(NPLHS, NPNAR))2.

IPVT — Work vector of length max(NPLHS, NPNAR).

WK — Work vector of length max(NPLHS, NPNAR).

ACV — Work vector of length NPNAR + NPNMA + 1.

PARWK — Work vector of length NPNAR + 1.

ACVMOD — Work vector of length NPNMA + 1.

TAUINI — Work vector of length NPNMA + 1.

TAU — Work vector of length NPNMA + 1.

FVEC — Work vector of length NPNMA + 1.

FJAC — Work vector of length (NPNMA + 1)2.

R — Work vector of length (NPNMA + 1) * (NPNMA + 2)/2.

QTF — Work vector of length NPNMA + 1.

WKNLN — Work vector of length 5 * (NPNMA + 1).

H — Work vector of length NPLHS.

2. Informational error
Type Code
   4    1 The nonlinear equation solver did not converge to

RELERR within MAXIT iterations.

3. The impulse response weight estimates and the noise series may be
computed using routine IRNSE (page 685).
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Algorithm

Routine TFPE computes preliminary estimates of the parameters of a transfer
function model given a sample of n = NOBS observations of the differenced input
{xW} and differenced output {yW} for t = 1, 2, …, n.

Define {xW} and {yW}, respectively, by

x
X d

X dt
t X
d

t
=

− =
∇ >

%&'
$µ 0

0

and

y
Y d

Y dt
t Y
d

t
=

− =
∇ >

%&'
$µ 0

0

where {XW} and {YW} for t = (−d + 1), …, n represent the undifferenced input and
output series with

$ $µ µX Yand

estimates of their respective means. The differenced input and output series may
be obtained using the routine DIFF (page 633) following any preliminary
transformation of the data.

The transfer function model is defined by

YW = δ-1(B)ω(B)XW-E + NW

or, equivalently,

yW = δ-1(B)ω(B)xW-E + nW

where nW = ∇GNW and the left-hand side and right-hand side transfer function
polynomial operators are

δ(B) = 1 − δ1B − δ2B2 − … − δU BU

ω(B) = ω0 − ω1B − ω2B2 − … − ωV BV

with r = NPLHS, s = NPRHS, and b = NDELAY. The noise process {NW} and the
input process {XW} are assumed to be independent with the noise process given by
the ARIMA model

φ(B)nW = θ(B)AW

where

φ(B) = 1 − φ1B − φ2B2 − … − φS BS

θ(B) = 1 − θ1B − θ2B2 − … − θT BT

with p = NPNAR and q = NPNMA.



IMSL STAT/LIBRARY Chapter 8: Time Series Analysis and Forecasting • 693

The impulse response weights and the transfer function parameters are related by
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See Abraham and Ledolter (1983, page 341). The r left-hand side transfer
function parameters are estimated using the difference equation given as the last
case above. The resulting estimates

$ , , $δ δ1 K r

are then substituted into the middle two cases to determine the s + 1 estimates

$ , $ , , $ω ω ω0 1 K s

The noise series parameters are estimated using the routine NSPE (page 664). The
impulse response weights {νN} and differenced noise series{nW} may be computed
using the routine IRNSE (page 685). See Box and Jenkins (1976, pages 511–513).

Example

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where X
is the input gas rate in cubic feet/minute and Y is the percent CO2 in the outlet
gas. The data is retrieved by routine GDATA (page 1302). Routine IRNSE
(page 685) computes the impulse response weights. Application of routine TFPE

to these weights produces the following results:
      INTEGER    MWTIR, MWTSN, NDELAY, NOBS, NPAR, NPLHS, NPMA, NPNAR,
     &           NPNMA, NPRHS, NSNOIS
      PARAMETER  (MWTIR=10, NDELAY=3, NOBS=100, NPAR=3, NPLHS=2,
     &           NPMA=0, NPNAR=2, NPNMA=0, NPRHS=2, MWTSN=MWTIR,
     &           NSNOIS=NOBS-MWTSN)
C
      INTEGER    IPRINT, MAXIT, NCOL, NROW
      REAL       AVAR, PAR(NPAR), PLHS(NPLHS), PMA(1), PNAR(NPNAR),
     &           PNMA(1), PRHS(NPRHS+1), RDATA(296,2), RELERR,
     &           SNOISE(NOBS-MWTSN), WTIR(MWTIR+1), X(NOBS),
     &           XPW(NOBS-NPAR), Y(NOBS), YPW(NOBS-NPAR)
      EXTERNAL   GDATA, IRNSE, TFPE, WROPT
C
      EQUIVALENCE (X(1), RDATA(1,1)), (Y(1), RDATA(1,2))
C                                 Gas Furnace Data
      CALL GDATA (7, 0, NROW, NCOL, RDATA, 296, 2)
C                                 Specify AR parameters for
C                                 prewhitening transformation
      PAR(1) = 1.97
      PAR(2) = -1.37
      PAR(3) = 0.34
C                                 Compute estimates of impulse
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C                                 response weights and noise series
      IPRINT = 0
      CALL IRNSE (NOBS, X, Y, IPRINT, NPAR, PAR, NPMA, PMA, MWTIR,
     &            MWTSN, WTIR, SNOISE, XPW, YPW)
C                                 Convergence parameters
      RELERR = 0.0
      MAXIT  = 0
C                                 Compute preliminary estimates of
C                                 transfer function parameters
      CALL WROPT (-6, 1, 1)
      IPRINT = 1
      CALL TFPE (IPRINT, NPLHS, NPRHS, NPNAR, NPNMA, NDELAY, MWTIR,
     &           WTIR, NSNOIS, SNOISE, RELERR, MAXIT, PLHS, PRHS,
     &           PNAR, PNMA, AVAR)
C
      END

Output
PLHS from TFPE/T2PE
       1             2
0.120342      0.326149

        PRHS from TFPE/T2PE
        1             2             3
-0.623240      0.318698      0.362488

PNAR from TFPE/T2PE
      1             2
1.64679      -0.70916

PNMA is not written since NPNMA = 0

AVAR from TFPE/T2PE =     2.85408E-02

MLSE/DMLSE (Single/Double precision)
Compute least-squares estimates of a linear regression model for a multichannel
time series with a specified base channel.

Usage
CALL MLSE (NOBSX, NCHANX, X, LDX, IMEAN, XMEAN, NDIFF,
           NDPREG, LAG, CONST, NPREG, PREG)

Arguments

NOBSX — Number of observations in each channel of the time series X.   (Input)
NOBSX must be less than or equal LDX and greater than max(NDPREG(i) + LAG(i))
for i = 1, 2, …, NCHANX.

NCHANX — Number of channels in the time series X.   (Input)
NCHANX must be greater than or equal to one.



IMSL STAT/LIBRARY Chapter 8: Time Series Analysis and Forecasting • 695

X — NOBSX by NCHANX matrix containing the time series.   (Input)
Each row of X corresponds to an observation of a multivariate time series, and
each column of X corresponds to a univariate time series. The base time series or
output channel is contained in the first column.

LDX — Leading dimension of X exactly as specified in the dimension statement
of the calling program.   (Input)

IMEAN — Option for computation of the means of the channels of X.   (Input)

IMEAN Action
0 XMEAN is user specified.
1 XMEAN is set to the vector of arithmetic means of the channels of X.

XMEAN — Vector of length NCHANX containing the means of the channels of X.
(Input, if IMEAN = 0; output, if IMEAN = 1)

NDIFF — Vector of length NCHANX containing the order of differencing for each
channel of X.   (Input)
The elements of NDIFF must be greater than or equal to zero.

NDPREG — Vector of length NCHANX containing the number of regression
parameters in the differenced form of the model for each channel of X.   (Input)
The elements of NDPREG must be greater than or equal to zero.

LAG — Vector of length NCHANX containing the amount of time that each
channel of X is to lag the base series.   (Input)
The elements of LAG must be greater than or equal to zero.

CONST — Estimate of the overall constant.   (Output)

NPREG — Number of regression parameters in the undifferenced model.
(Output)

NPREG = IADD + (NDPREG(1) + NDIFF(1)) + … + (NDPREG(NCHANX) +
NDIFF(NCHANX)

where

IADD = NDIFF(1), if NDPREG(1) = 0
IADD = max (0, min(LAG(1) − 1, NDIFF(1))), if NDPREG(1) > 0.

PREG — Vector of length NPREG containing the regression parameters in the
undifferenced model.   (Output)
The parameter estimates are concatenated as follows.

Channel 1: REG(i), i = 1, 2, …, IADD + NDPREG(1) + NDIFF(1)
Channel j: PREG(i), i = I(j) + 1, I(j) + 2, …, I(j) + NDPREG(j) + NDIFF(j)

where

I(j) = IADD + NDPREG(1) + NDIFF(1) + … + NDPREG(j − 1) + NDIFF(j − 1)
for j = 2, 3, …, NCHANX.
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Comments

1. Automatic workspace storage is

MLSE NOBSX * NCHANX + 2 * NSUM2 + NSUM + max(IADD, NCHANX +
NSUM) units, or

DMLSE 2 * (NOBSX * NCHANX + 2 * NSUM2 + max(IADD, NCHANX +
NSUM)) + NSUM units.

Workspace may be explicitly provided, if desired, by use of
M2SE/DM2SE. The reference is

CALL M2SE (NOBSX, NCHANX, X, LDX, IMEAN, XMEAN,
           NDIFF, NDPREG, LAG, CONST, NPREG, PREG,
           XWK, IWK)

The additional arguments are as follows:

XWK — Work vector of length NOBSX * NCHANX+ 2 * NSUM2+
max(IADD, NCHANX + NSUM), where NSUM = NDPREG(1) + … +
NDPREG(NCHANX).

IWK — Work vector of length NSUM.

2. Prior to parameter estimation, the channels of X are centered and/or
differenced according to XMEAN and NDIFF, respectively.

3. The undifferenced predictive form of the model is

X(t, 1) = CONST + PREG(1) * X(t − 1, 1) + … + PREG(IADD) * X(t −
IADD, 1) + PREG(IADD + 1) * X(t − LAG(1), 1) + … +
PREG(IADD + NDPREG(1) + NDIFF(1)) * X(t − LAG(1) + 1 −
NDPREG(1) − NDIFF(1), 1) + … + PREG(I(j) + 1) * X(t −
LAG(j), j) + … + PREG(I(j)+NDPREG(j)+NDIFF(j)) * X(t −
LAG(j) + 1 − NDPREG(j) − NDIFF(j), j) + …

where

I(j) = IADD + NDPREG(1) + NDIFF(1) + … + NDPREG(j − 1) +
NDIFF(j − 1)

for j = 2, 3, …, NCHANX.

Algorithm

Routine MLSE performs least-squares estimation of a linear regression model for a
multichannel time series with a specified base channel.

Define the multichannel time series X by

X = (X1, X2, …, XP)

where

XM = (X1M, X2M, …, XQM)7 j = 1, 2, …, m
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with n = NOBSX and m = NCHANX. The columns of X correspond to individual
channels of a multichannel time series and may be examined from a univariate
perspective. The rows of X correspond to observations of an m-variate time series
and may be examined from a multivariate perspective. Note that an alternative
characterization of the multivariate time series X considers the columns of X to be
observations of an m-variate time series with the rows of X containing univariate
time series. For example, see Priestley (1981, page 692) and Fuller (1976, page
14).

The model is formed by regressing the base series X1 on its previous values and
on the remaining channels X2, K, XP. The differenced form of the model is given
by

X B B X B B X

B B X

t
d l

t
d l

t

m
d l
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m m

1 0 1 1 2 2
1 1 2 2= + ∇ + ∇

+ + ∇
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where θ0 = CONST is the overall constant, dN = NDIFF(k) is the order of
differencing XN, lN = LAG(k) is the amount XN�lags X1,

φ φ φ φk k k p k
pB B B

k
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and pN = NDPREG(k) for k = 1, 2, …, m.

The undifferenced form of the model is given by
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where the undifferenced parameters ϕN = PREG(k) are defined by
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for k = 1, 2, …, m. Note that if l1 ≥ d1 ≥ 0, the base series terms XW-M,1 at lags j = 1,

…, (l1 − 1) are omitted from the right-hand side of the above model when d1 ≥ 1.
In the actual computations, these terms are included.

Example 1

Consider the Wölfer Sunspot Data (Box and Jenkins 1976, page 530) along with
data on northern light activity and earthquake activity (Robinson 1967, page 204)
to be a three-channel time series. Routine MLSE is applied to these data to
examine the regressive relationship between the channels.

      INTEGER    LDX, NCHANX, NOBSX
      PARAMETER  (NCHANX=3, NOBSX=100, LDX=NOBSX)
C
      INTEGER    I, IMEAN, LAG(NCHANX), NCOL, NDIFF(NCHANX),
     &           NDPREG(NCHANX), NOUT, NPREG, NROW
      REAL       CONST, PREG(20), RDATA(100,4), X(LDX,NCHANX),
     &           XMEAN(NCHANX)
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      EXTERNAL   GDATA, MLSE, UMACH
C
      EQUIVALENCE (X(1,1), RDATA(1,2)), (X(1,2), RDATA(1,3)),
     &           (X(1,3), RDATA(1,4))
C
      DATA NDIFF(1), NDIFF(2), NDIFF(3)/1, 1, 0/
      DATA LAG(1), LAG(2), LAG(3)/1, 2, 1/
      DATA NDPREG(1), NDPREG(2), NDPREG(3)/2, 1, 3/
C
      CALL GDATA (8, 0, NROW, NCOL, RDATA, 100, 4)
C                                 Option to estimate channel means
      IMEAN = 1
C                                 Compute regression parameters
      CALL MLSE (NOBSX, NCHANX, X, LDX, IMEAN, XMEAN, NDIFF, NDPREG,
     &           LAG, CONST, NPREG, PREG)
C
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99993)
99993 FORMAT (//, 1X, ’     Results of MLSE/M2SE’)
      WRITE (NOUT,99994)
99994 FORMAT (1X, ’  I   NDIFF(I)  LAG(I)  NDPREG(I)     XMEAN(I)’)
      DO 10  I=1, NCHANX
         WRITE (NOUT,99995) I, NDIFF(I), LAG(I), NDPREG(I), XMEAN(I)
99995    FORMAT (1X, 4(I3,6X), F12.4)
   10 CONTINUE
      WRITE (NOUT,99996) CONST
99996 FORMAT (1X, ’Overall constant, CONST = ’, F12.4)
      WRITE (NOUT,99997) NPREG
99997 FORMAT (//, 1X, ’Total number of parameters, NPREG = ’, I2)
      WRITE (NOUT,99998)
99998 FORMAT (//, 1X, ’ I          PREG(I)’)
      DO 20  I=1, NPREG
         WRITE (NOUT,99999) I, PREG(I)
99999    FORMAT (1X, I2, 5X, F12.4)
   20 CONTINUE
C
      END

Output
Results of MLSE/M2SE
I   NDIFF(I)  LAG(I)  NDPREG(I)     XMEAN(I)
1        1        1        2           46.9400
2        1        2        1           63.4300
3        0        1        3           97.9700
Overall constant, CONST =      -7.2698

Total number of parameters, NPREG =  8

I          PREG(I)
1          -0.1481
2          -1.3444
3           0.4925
4          -0.0302
5           0.0302
6          -0.0210
7           0.0187
8           0.0765
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Example 2

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where X1
is the percent CO2 in the outlet gas and X2 is the input gas rate in cubic
feet/minute. Application of routine MLSE to these data produces the following
results:

      INTEGER    LDX, NCHANX, NOBSX
      PARAMETER  (NCHANX=2, NOBSX=296, LDX=NOBSX)
C
      INTEGER    I, IMEAN, LAG(NCHANX), NCOL, NDIFF(NCHANX),
     &           NDPREG(NCHANX), NOUT, NPREG, NROW
      REAL       CONST, PREG(20), RDATA(296,2), X(LDX,NCHANX),
     &           XMEAN(NCHANX)
      EXTERNAL   GDATA, MLSE, SCOPY, UMACH
C
      DATA NDIFF(1), NDIFF(2)/0, 0/
      DATA LAG(1), LAG(2)/1, 3/
      DATA NDPREG(1), NDPREG(2)/2, 3/
C                                 Gas Furnace Data
      CALL GDATA (7, 0, NROW, NCOL, RDATA, 296, 2)
C                                 Multichannel X consists of
C                                 Column 1: Output percent CO2
C                                 Column 2: Input gas rate
      CALL SCOPY (NOBSX, RDATA(1,2), 1, X(1,1), 1)
      CALL SCOPY (NOBSX, RDATA(1,1), 1, X(1,2), 1)
C                                 Option to estimate channel means
      IMEAN = 1
C                                 Compute regression parameters
      CALL MLSE (NOBSX, NCHANX, X, LDX, IMEAN, XMEAN, NDIFF, NDPREG,
     &           LAG, CONST, NPREG, PREG)
C
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99993)
99993 FORMAT (1X, ’Results of MLSE/M2SE on Gas Furnace Data’)
      WRITE (NOUT,99994)
99994 FORMAT (1X, ’  I   NDIFF(I)  LAG(I)  NDPREG(I)       XMEAN(I)’)
      DO 10  I=1, NCHANX
         WRITE (NOUT,99995) I, NDIFF(I), LAG(I), NDPREG(I), XMEAN(I)
99995    FORMAT (1X, 4(I3,6X), F12.4)
   10 CONTINUE
      WRITE (NOUT,99996) CONST
99996 FORMAT (1X, ’Overall constant, CONST = ’, F12.4)
      WRITE (NOUT,99997) NPREG
99997 FORMAT (1X, ’Total number of parameters, NPREG = ’, I2)
      WRITE (NOUT,99998)
99998 FORMAT (1X, ’ I          PREG(I)’)
      DO 20  I=1, NPREG
         WRITE (NOUT,99999) I, PREG(I)
99999    FORMAT (1X, I2, 5X, F12.4)
   20 CONTINUE
C
      END

Output
Results of MLSE/M2SE on Gas Furnace Data
I   NDIFF(I)  LAG(I)  NDPREG(I)       XMEAN(I)
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1        0        1        2           53.5091
2        0        3        3           -0.0568
Overall constant, CONST =       2.6562
Total number of parameters, NPREG =  5
I          PREG(I)
1           1.6063
2          -0.6561
3          -0.4837
4          -0.1653
5           0.5052

MWFE/DMWFE (Single/Double precision)
Compute least-squares estimates of the multichannel Wiener filter coefficients for
two mutually stationary multichannel time series.

Usage
CALL MWFE (NCHX, MLFIL, CXX, LDCXX, MDCXX, NCHZ, CZX,
           LDCZX, MDCZX, EPS, TRACE, LFIL, FIL, LDFIL,
           MDFIL ENMS)

Arguments

NCHX — Number of input channels.   (Input)
NCHX must be greater than or equal to one.

MLFIL — Maximum length of the Wiener filter.   (Input)
MLFIL must be greater than or equal to one.

CXX — Array of size NCHX by NCHX by MLFIL containing the autocovariances of
the input time series X.   (Input)

LDCXX — Leading dimension of CXX exactly as specified in the dimension
statement of the calling program.   (Input)
LDCXX must be greater than or equal to NCHX.

MDCXX — Middle dimension of CXX exactly as specified in the dimension
statement of the calling program.   (Input)
MDCXX must be greater than or equal to NCHX.

NCHZ — Number of channels in desired output time series.   (Input)
NCHZ must be greater than or equal to one.

CZX — Array of size NCHZ by NCHX by MLFIL containing the cross-covariances
between the desired output time series Z and the input time series X.   (Input)

LDCZX — Leading dimension of CZX exactly as specified in the dimension
statement of the calling program.   (Input)
LDCZX must be greater than or equal to NCHZ.

MDCZX — Middle dimension of CZX exactly as specified in the dimension
statement of the calling program.   (Input)
MDCZX must be greater than or equal to NCHX.
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EPS — Lower bound for the normalized mean square error.   (Input)

TRACE — Trace of the autocovariance matrix of the desired output time series Z

at time lag zero.   (Input)

LFIL — Length of the Wiener filter.   (Output)

FIL — Array of size NCHZ by NCHX by MLFIL containing the multichannel
Wiener filter coefficients.   (Output)

LDFIL — Leading dimension of FIL exactly as specified in the dimension
statement of the calling program.   (Input)
LDFIL must be greater than or equal to NCHZ.

MDFIL — Middle dimension of FIL exactly as specified in the dimension
statement of the calling program.   (Input)
MDFIL must be greater than or equal to NCHX.

ENMS — Vector of length MLFIL containing the normalized mean square error
corresponding to each filter length.   (Output)

Comments

1. Automatic workspace usage is

MFFE NCHX * NCHX * (2 * MLFIL + 12) + NCHZ + NCHX units,
DMWFE 2 * (NCHX * NCHX * (2 * MLFIL + 12) + NCHZ) + NCHX units

Workspace may be explicitly provided, if desired, by use of
M2FE/DM2FE. The reference is

CALL M2FE (NCHX, MLFIL, CXX, LDCXX, MDCXX, NCHZ,
           CZX, LDCZX, MDCZX, EPS, TRACE, LFIL, FIL,
           LDFIL, MDFIL, ENMS, IWK, WK)

The additional arguments are as follows:

IWK — Work vector of length NCHX.

WK — Work vector of length NCHX * NCHX * (2 * MLFIL + 12) + NCHZ.

2. The length of the filter is determined by the arguments EPS and MLFIL.
Iteration to a longer filter stops when either the normalized mean square
error ENMS is less than EPS, or the filter reaches the maximum allowable
length, MLFIL.

3. The routine MCCF (page 649) may be used to obtain the input arguments
CXX, CZX, and TRACE. For TRACE, routine MCCF may be used to obtain
the autocovariances of the desired output series Z. In particular, TRACE =
ZVAR(1) + … + ZVAR(NCHZ).

4. For a given lag k, the multichannel cross-covariance coefficient between
Z and X is defined as the array of size NCHZ by NCHX whose elements are
the single-channel crosscovariance coefficients CZX(i, j, k).
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Algorithm

Routine MFFE computes least-squares estimates of the multichannel Wiener filter
coefficients for two mutually stationary multichannel time series.

Define the multichannel time series X by

X = (X1, X2, …, XS)

where

XM = (X1M, X2M, …, XQM)7 j = 1, 2, …, p

with p = NCHX. Similarly, define the multichannel time series Z by

Z = (Z1, Z2, …, ZT)

where

ZM = (Z1M, Z2M, …, ZPM)7 j = 1, 2, …, q

with q = NCHZ. The columns of X and Z correspond to individual channels of
multichannel time series and may be examined from a univariate perspective. The
rows of X and Z correspond to observations of p-variate and q-variate time series
and may be examined from a multivariate perspective. Note that an alternative
characterization of a multivariate time series X considers the columns of X to be
observations of a p-variate time series with the rows of X containing univariate
time series. For example, see Priestley (1981, page 692) and Fuller (1976, page
14).

Let

$µ X

be the row vector containing the means of the channels of X. In particular,

$ ( $ , $ , , $ )µ µ µ µX X X Xp
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Let

$µ Z

be similarly defined. In what follows, assume the channels of both X and Z have
been centered about their respective means

$ $µ µX Z and 

Suppose the desired output is the multichannel time series Z defined by the
model
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and φN�is the array of dimension p × q containing the Wiener filter coefficients
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for k = 1, …, K. The array φN is the (k + 1)-st level of the 3-dimensional array
FIL.

The filter coefficients are computed by solving a set of normal equations. The
algorithm utilizes the block Toeplitz (or Töplitz) matrix structure of these
equations and is given by Robinson (1967, pages 238–246). In particular, the
required input consists of the multichannel autocovariance matrices Σ;, Σ=, and
the multichannel cross-covariance matrix Σ=;. The routine MCCF (page 649) may
be used to estimate these covariance matrices.

Note that successively longer filters are estimated until either the normalized
mean square error is less than EPS or the filter length K = LFIL equals MLFIL.
The normalized mean square error is defined by

Q
k

k
k
K

ZX k

Z
= −

∑ ∑
∑

1
0

tr

tr
=0 ( )

( )

φ

where trΣ=(0) = TRACE is the trace of the multichannel autocorrelation coefficient
of the desired output at lag zero. The values of QN for the successive filters of
length k = 1, 2, …, K are contained in ENMS.

Example

Consider the Wölfer Sunspot Data (Box and Jenkins 1976, page 530) along with
data on northern light activity and earthquake activity (Robinson 1967, page 204)
to be a three-channel time series. Routine MWFE applied to these data determines
the following Wiener filter:

C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    IMEAN, IPRINT, LDCXX, LDCZX, LDFIL, LDX, LDZ, MAXLAG,
     &           MDCXX, MDCZX, MDFIL, MLFIL, NCHANX, NCHANZ, NOBSX,
     &           NOBSZ
      PARAMETER  (IMEAN=1, IPRINT=0, MLFIL=3, NCHANX=3, NCHANZ=3,
     &           NOBSX=99, NOBSZ=99, LDCXX=NCHANX, LDCZX=NCHANZ,
     &           LDFIL=NCHANX, LDX=NOBSX, LDZ=NOBSZ, MAXLAG=MLFIL-1,
     &           MDCXX=NCHANX, MDCZX=NCHANX, MDFIL=NCHANZ)
C
      INTEGER    I, J, K, LFIL, NCOL, NOUT, NROW
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      REAL       CVXX(LDCXX,MDCXX,-MAXLAG:MAXLAG), CVXX1(3,3,3),
     &           CVZX(LDCZX,MDCZX,-MAXLAG:MAXLAG), CVZX1(3,3,3),
     &           CXX(LDCXX,MDCXX,-MAXLAG:MAXLAG),
     &           CZX(LDCZX,MDCZX,-MAXLAG:MAXLAG), ENMS(MLFIL), EPS,
     &           FIL(LDFIL,MDFIL,MLFIL), R(0:2), RDATA(100,4), SSUM,
     &           TRACE, X(LDX,NCHANX), XMEAN(NCHANX), XVAR(NCHANX),
     &           YMEAN, YVAR, Z(LDZ,NCHANZ), ZMEAN(NCHANZ),
     &           ZVAR(NCHANZ)
      EXTERNAL   GDATA, MCCF, MWFE, SCOPY, SSUM, UMACH
C
      EQUIVALENCE (CVXX(1,1,0), CVXX1(1,1,1)), (CVZX(1,1,0), CVZX1(1,1,
     &           1))
C                                 Wolfer sunspot numbers
C                                 Northern lights activity
C                                 Earthquake activity
      CALL GDATA (8, 0, NROW, NCOL, RDATA, 100, 4)
C
      CALL SCOPY (NOBSX, RDATA(1,2), 1, X(1,1), 1)
      CALL SCOPY (NOBSX, RDATA(1,3), 1, X(1,2), 1)
      CALL SCOPY (NOBSX, RDATA(1,4), 1, X(1,3), 1)
C
      CALL SCOPY (NOBSZ, RDATA(2,2), 1, Z(1,1), 1)
      CALL SCOPY (NOBSZ, RDATA(2,3), 1, Z(1,2), 1)
      CALL SCOPY (NOBSZ, RDATA(2,4), 1, Z(1,3), 1)
C                                 Compute multichannel ACF of Z
      CALL MCCF (NOBSZ, NCHANZ, Z, LDZ, NOBSZ, NCHANZ, Z, LDZ, MAXLAG,
     &           IPRINT, IMEAN, XMEAN, YMEAN, XVAR, YVAR, CVXX, LDCXX,
     &           MDCXX, CXX, LDCXX, MDCXX)
C                                 Compute TRACE
      TRACE = SSUM(NCHANZ,XVAR,1)
C                                 Compute multichannel ACF of X
      CALL MCCF (NOBSX, NCHANX, X, LDX, NOBSX, NCHANX, X, LDX, MAXLAG,
     &           IPRINT, IMEAN, XMEAN, ZMEAN, XVAR, ZVAR, CVXX, LDCXX,
     &           LDCXX, CXX, LDCXX, LDCXX)
C                                 Compute multichannel CCF of Z and X
      CALL MCCF (NOBSZ, NCHANZ, Z, LDZ, NOBSX, NCHANX, X, LDX, MAXLAG,
     &           IPRINT, IMEAN, XMEAN, ZMEAN, XVAR, ZVAR, CVZX, LDCZX,
     &           MDCZX, CZX, LDCZX, MDCZX)
C                                 Bound normalized MSE to be positive
      EPS = 0.0
C                                 Reverse the LAG direction and scale
C                                 to agree with Robinson (1967)
      R(0)  = 99.D0
      R(1)  = 98.D0
      R(2)  = 97.D0
      TRACE = TRACE*R(0)
      DO 10  K=0, MAXLAG
         DO 10  J=1, NCHANX
            DO 10  I=1, NCHANX
               CVXX(I,J,K) = CVXX(I,J,-K)*R(K)
               CVZX(I,J,K) = CVZX(I,J,-K)*R(K)
   10 CONTINUE
C                                 Compute multichannel Wiener filter
      CALL MWFE (NCHANX, MLFIL, CVXX1, LDCXX, MDCXX, NCHANZ, CVZX1,
     &           LDCZX, MDCZX, EPS, TRACE, LFIL, FIL, LDFIL, MDFIL,
     &           ENMS)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99994) LFIL
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99994 FORMAT (1X, ’Number of filter coefficients, LFIL = ’, I3)
      DO 30  K=1, LFIL
         WRITE (NOUT,99995) K
99995    FORMAT (//, 1X, ’Wiener filter coefficient of index K = ’, I3)
         DO 20  I=1, NCHANX
            WRITE (NOUT,99996) (FIL(I,J,K),J=1,NCHANZ)
99996       FORMAT (1X, 3F12.4)
   20    CONTINUE
   30 CONTINUE
      WRITE (NOUT,99997)
99997 FORMAT (//, 1X, ’Normalized mean square error’)
      WRITE (NOUT,99998)
99998 FORMAT (1X, ’ K          ENMS(K)’)
      DO 40  K=1, LFIL
         WRITE (NOUT,99999) K, ENMS(K)
99999    FORMAT (1X, I2, 5X, F12.4)
   40 CONTINUE
C
      END

Output
Number of filter coefficients, LFIL =   3

Wiener filter coefficient of index K =   1
 1.3834      0.0348      0.0158
 0.0599      0.8266      0.0629
-0.1710     -0.0332     -0.1205

Wiener filter coefficient of index K =   2
 -0.7719     -0.0183     -0.0318
-0.0040     -0.2328      0.0484
-0.2170      0.1912     -0.0667

Wiener filter coefficient of index K =   3
 0.0516      0.0563     -0.0138
-0.0568      0.1084     -0.1731
 0.0007      0.2177     -0.0152

Normalized mean square error
 K          ENMS(K)
 1           0.6042
 2           0.5389
 3           0.5174

KALMN/DKALMN (Single/Double precision)
Perform Kalman filtering and evaluate the likelihood function for the state-space
model.

Usage
CALL KALMN (NY, Y, NB, Z, LDZ, R, LDR, IT, T, LDT, IQ, Q,
            LDQ, TOL, B, COVB, LDCOVB, N, SS, ALNDET, V,
            COVV, LDCOVV)
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Arguments

NY — Number of observations for current update.   (Input)
If NY = 0, no update is performed.

Y — Vector of length NY containing the observations.   (Input)

NB — Number of elements in the state vector.   (Input)

Z — NY by NB matrix relating the observations to the state vector in the
observation equation.   (Input)

LDZ — Leading dimension of Z exactly as specified in the dimension statement
in the calling program.   (Input)

R — NY by NY matrix such that R * σ2 is the variance-covariance matrix of errors
in the observation equation.   (Input)

σ2 is a positive unknown scalar. Only elements in the upper triangle of R are
referenced.

LDR — Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

IT — Transition matrix option.   (Input)

IT Action
0 T is the transition matrix in the state equation.
1 The identity is the transition matrix in the state equation.

T — NB by NB transition matrix in the state equation.   (Input, if IT = 0)
If IT = 1, then T is not referenced and can be a vector of length one.

LDT — Leading dimension of T exactly as specified in the dimension statement
in the calling program.   (Input)

IQ — State equation error option.   (Input)

IQ Action
0 There is an error term in the state equation.
1 There is no error term in the state equation.

Q — NB by NB matrix such that Q * σ2 is the variance-covariance matrix of the
error vector in the state equation.   (Input, if IQ = 0)

σ2 is a positive unknown scalar. If IQ = 1, then Q is not referenced and can be a
vector of length one. If IQ = 0, only the elements in the upper triangle of Q are
referenced.

LDQ — Leading dimension of Q exactly as specified in the dimension statement
in the calling program.   (Input)

TOL — Tolerance used in determining linear dependence.   (Input)
For KALMN, TOL = 100.0 * AMACH(4) is a common choice. For DKALMN,
TOL = 100.0 * DMACH(4) is a common choice. See the documentation for routine
AMACH/DMACH (Reference Material).



IMSL STAT/LIBRARY Chapter 8: Time Series Analysis and Forecasting • 707

B — Estimated state vector of length NB.   (Input/Output)
The input is the estimated state vector at time k given the observations thru time k
− 1. The output is the estimated state vector at time k + 1 given the observations
thru time k. On the first call to KALMN, the input B must be the prior mean of the
state vector at time 1.

COVB — NB by NB matrix such that COVB * σ2 is the mean squared error matrix
for B.   (Input/Output)

Before the first call to KALMN, COVB * σ2 must equal the variance-covariance
matrix of the state vector.

LDCOVB — Leading dimension of COVB exactly as specified in the dimension
statement in the calling program.   (Input)

N — Rank of the variance-covariance matrix for all the observations.
(Input/Output)
N must be initialized to zero before the first call to KALMN. In the usual case when
the variance-covariance matrix is nonsingular, N equals the sum of the NY’s from
the invocations to KALMN.

SS — Generalized sum of squares.    (Input/Output)

SS must be initialized to zero before the first call to KALMN. The estimate of σ2 is
given by SS/N.

ALNDET — Natural log of the product of the nonzero eigenvalues of P where

P * σ2 is the variance-covariance matrix of the observations.   (Input/Output)
Although ALNDET is computed, KALMN avoids the explicit computation of P.
ALNDET must be initialized to zero before the first call to KALMN. In the usual case
when P is nonsingular, ALNDET is the natural log of the determinant of P.

V — Vector of length NY containing the one-step-ahead prediction error.
(Output)
If Y is not needed, then V and Y can occupy the same storage locations.

COVV — NY by NY matrix such that COVV * σ2 is the variance-covariance matrix
of V.   (Output)
If R is not needed, then COVV and R can occupy the same storage locations.

LDCOVV — Leading dimension of COVV exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

KALMN NY2 + NB2 + NB * NY + max(NB, NY) units, or

DKALMN 2 * (NY2 + NB2+ NB * NY + max(NB, NY)) units.

Workspace may be explicitly provided, if desired, by use of
K2LMN/DK2LMN. The reference is
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CALL K2LMN (NY, Y, NB, Z, LDZ, R, LDR, IT, T, LDT,
            IQ, Q, LDQ, TOL, B, COVB, LDCOVB, N, SS,
            ALNDET, V, COVV, LDCOVV, COVVCH, WK1,
            WK2)

The additional arguments are as follows.

COVVCH — Work vector of length NY * NY containing the Cholesky
factor of the COVV matrix. If R and COVV are not needed, COVVCH, R, and
COVV can occupy the same storage locations and LDR must equal
LDCOVV.

WK1 — Work vector of length NB * NB.

WK2 — Work vector of length NB * NY + max(NB, NY).

2. Informational errors
Type Code

   4    1 R + Z * COVB * Z7 is not nonnegative definite within
the tolerance defined by TOL. Either TOL is too small,
or R or COVB is not nonnegative definite.

   4    2 The system of equations COVVCH7 * x = V is
inconsistent. The variance-covariance matrix of the
observations is inconsistent with the observations
input in Y.

   4    3 The system of equations COVVCH7 * x = Z * COVB is
inconsistent. The Cholesky factorization to compute
COVVCH may be based on too large a value for TOL.
The input of a smaller value for TOL may be
appropriate.

3. If R, Q, and T are known functions of unknown parameters, KALMN can
be used in conjunction with routine UMINF (IMSL MATH/LIBRARY)
to perform maximum likelihood estimation of these unknown
parameters. UMINF should be used to minimize the function

N * ALOG(SS/N) + ALNDET:

4. In order to maintain acceptable numerical accuracy, the double precision
routine, DKALMN, is usually required.

Algorithm

Routine KALMN is based on a recursive algorithm given by Kalman (1960), which
has come to be known as the Kalman filter. The underlying model is known as the
state-space model. The model is specified stage by stage where the stages
generally correspond to time points at which the observations become available.
The routine KALMN avoids many of the computations and storage requirements
that would be necessary if one were to process all the data at the end of each stage
in order to estimate the state vector. This is accomplished by using previous
computations and retaining in storage only those items essential for processing of
future observations.
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The notation used here follows that of Sallas and Harville (1981). Let yN (input in
Y) be the nN × 1 vector of observations that become available at time k. The
subscript k is used here rather than t, which is more customary in time series, to
emphasize that the model is expressed in stages k = 1, 2, … and that these stages
need not correspond to equally spaced time points. In fact, they need not
correspond to time points of any kind. The observation equation for the state-
space model is

yN = ZNbN + eN k = 1, 2, …

Here, ZN (input in Z) is an nN × q known matrix and bN is the q × 1 state vector.
The state vector bN is allowed to change with time in accordance with the state
equation

bN+1 = TN+1bN + wN+1 k = 1, 2, …

starting with b1 = µ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the
transition matrix TN+�(input in T), which is assumed known. It is assumed that the
q-dimensional wN’s (k = 1, 2, K).are independently distributed multivariate

normal with mean vector 0 and variance-covariance matrix σ2QN, that the nN-
dimensional eN’s (k = 1, 2,K).are independently distributed multivariate normal

with mean vector 0 and variance-covariance matrix σ2RN, and that the wN’s and

eN’s are independent of each other. Here, µ1is the mean of b1 and is assumed

known, σ2 is an unknown positive scalar. QN��(input in Q) and RN (input in R) are
assumed known.

Denote the estimator of the realization of the state vector bN given the
observations y1, y2, …, yM by

$
|βk j

By definition, the mean squared error matrix for

$
|βk j

is

σ β β2C E b bk j k j k k j k
T= − −( $ )( $ )

At the time of the k-th invocation, we have

$βk k−1

and CN_N-1, which were computed from the (k− 1)-st invocation, input in B and
COVB, respectively. During the k-th invocation, routine KALMN computes the
filtered estimate
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$
|βk k

along with CN_N. These quantities are given by the update equations:

$ $β βk k k k k k k
T

k k

k k k k k k k
T

k k k k

C Z H v

C C C Z H Z C

= +

= −

− −
−

− −
−

−

1 1
1

1 1
1

1

where

v y Zk k k k k= − −
$β 1

and where

H R Z C Zk k k k k k
T= + −1

Here, vN (stored in V) is the one-step-ahead prediction error, and σ2HN is the
variance-covariance matrix for vN. HN is stored in COVV. The “start-up values”
needed on the first invocation of KALMN are

$β µ1 0 1=

and C1|0 = Q1 input via B and COVB, respectively. Computations for the k-th
invocation are completed by KALMN computing the one-step-ahead estimate

$βk k+1

along with CN+1_N given by the prediction equations:

$ $β βk k k k k

k k k k k k
T

k

T

C T C T Q

+ +

+ + + +

=

= +

1 1

1 1 1 1

If both the filtered estimates and one-step-ahead estimates are needed by the user
at each time point, KALMN can be invoked twice for each time point—first with IT

= 1 and IQ = 1 to produce

$βk k

and CN_N, and second with NY = 0 to produce

$βk k+1

and CN+1_N (With IT = 1 and IQ = 1, the prediction equations are skipped. With
NY = 0, the update equations are skipped.)

Often, one desires the estimate of the state vector more than one-step-ahead, i.e.,
an estimate of
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$βk j

is needed where k > j + 1. At time j, KALMN is invoked to compute

$β j j+1

Subsequent invocations of KALMN with NY = 0 can compute

$ , $ , , $β β βj j j j k j+ +2 3 K

Computations for

$βk j

and CN|M assume the variance-covariance matrices of the errors in the observation
equation and state equation are known up to an unknown positive scalar

multiplier, σ2. The maximum likelihood estimate of σ2 based on the observations
y1, y2, …, yP, is given by

$ /σ2 = SS N

where

N n SS v H vk
m

k k
m

k
T

k k= ∑ = ∑= =
−

1 1
1and

If σ2 is known, the RN’s and QN’s can be input as the variance-covariance matrices

exactly. The earlier discussion is then simplified by letting σ2 = 1.

In practice, the matrices TN, QN, and RN are generally not completely known. They

may be known functions of an unknown parameter vector θ. In this case, KALMN
can be used in conjunction with an optimization program (see routine UMINF,
(IMSL MATH/LIBRARY) to obtain a maximum likelihood estimate of θ. The
natural logarithm of the likelihood function for y1, y2, …, yP differs by no more
than an additive constant from

L y y y N

H v H v

m

k k
T

k k
k

m

k

m

( , ; , , , )

)]

θ σ σ

σ

2
1 2

2 1

11

1

2

1

2

1

2

K = −

− − − −

==
∑∑

ln

ln[det(

2

(Harvey 1981, page 14, equation 2.21). Here,

∑k
m

kH=1 ln[det( )]

(stored in ALNDET) is the natural logarithm of the determinant of V where σ2V is
the variance-covariance matrix of the observations.

Minimization of −2L(θ, σ2; y1, y2, …, yP) over all θ and σ2 produces maximum

likelihood estimates. Equivalently, minimization of −2LF(θ; y1, y2, …, yP) where
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L y y y N
SS

N
Hc m k

k

m

( ; , , , ) )]θ 1 2
1

1

2

1

2
K = − �

�
�
� −

=
∑ln ln[det(

produces maximum likelihood estimates

$ $ /θ σ and 2 = SS N

The minimization of −2LF(θ; y1, y2, …, yP) instead of −2L(θ, σ2; y1, y2, …, yP),
reduces the dimension of the minimization problem by one. The two optimization
problems are equivalent since

$ ( ) ( ) /σ θ θ2 = SS N

minimizes −2L(θ, σ2; y1, y2, …, yP) for all θ, consequently,

$ ( )σ θ2

can be substituted for σ2 in L(θ, σ2; y1, y2, …, yP) to give a function that differs

by no more than an additive constant from LF(θ; y1, y2, …, yP).

The earlier discussion assumed HN to be nonsingular. If HN is singular, a
modification for singular distributions described by Rao (1973, pages 527–528) is
used. The necessary changes in the preceding discussion are as follows:

1. Replace

Hk
−1

by a generalized inverse.

2. Replace det(HN) by the product of the nonzero eigenvalues of HN.

3. Replace N by

rank Hkk

m 1 6=∑ 1

Maximum likelihood estimation of parameters in the Kalman filter is discussed by
Sallas and Harville (1988) and Harvey (1981, pages 111–113).

Example 1

Routine KALMN is used to compute the filtered estimates and one-step-ahead
estimates for a scalar problem discussed by Harvey (1981, pages 116–117). The
observation equation and state equation are given by

y b e

b b w k
k k k

k k k

= +
= + =+ +1 1 1 2 3 4, , ,

where the eN’s are identically and independently distributed normal with mean 0

and variance σ2, the wN’s are identically and independently distributed normal

with mean 0 and variance 4σ2, and b1is distributed normal with mean 4 and
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variance 16σ2. Two invocations of KALMN are needed for each time point in order
to compute the filtered estimate and the one-step-ahead estimate. The first
invocation uses IQ = 1 and IT = 1 so that the prediction equations are skipped in
the computations. The second invocation uses NY = 0 so that the update equations
are skipped in the computations.

This example also computes the one-step-ahead prediction errors. Harvey (1981,
page 117) contains a misprint for the value v4 that he gives as 1.197. The correct
value of v4 = 1:003 is computed by KALMN.

      INTEGER    LDCOVB, LDCOVV, LDQ, LDR, LDT, LDZ, NB, NOBS, NY
      PARAMETER  (NB=1, NOBS=4, NY=1, LDCOVB=NB, LDCOVV=NY, LDQ=NB,
     &           LDR=NY, LDT=NB, LDZ=NY)
C

      INTEGER    I, IQ, IT, N, NOUT
      REAL       ALNDET, AMACH, B(NB), COVB(LDCOVB,NB),
     &           COVV(LDCOVV,NY), Q(LDQ,NB), R(LDR,NY), SS, T(LDT,NB),
     &           TOL, V(NY), Y(NY), YDATA(NOBS), Z(LDZ,NB)
      EXTERNAL   AMACH, KALMN, UMACH
C
      DATA YDATA/4.4, 4.0, 3.5, 4.6/, Z/1.0/, R/1.0/, Q/4.0/, T/1.0/
C
      TOL = 100.*AMACH(4)
      CALL UMACH (2, NOUT)
C                                 Initial estimates for state vector
C                                 and variance-covariance matrix.
C                                 Initialize SS and ALNDET.
      B(1)      = 4.0
      COVB(1,1) = 16.0
      N         = 0
      SS        = 0.0
      ALNDET    = 0.0
      WRITE (NOUT,99998)
C
      DO 10  I=1, NOBS
C                                 Update
         Y(1) = YDATA(I)
         IQ   = 1
         IT   = 1
         CALL KALMN (NY, Y, NB, Z, LDZ, R, LDR, IT, T, LDT, IQ, Q,
     &               LDQ, TOL, B, COVB, LDCOVB, N, SS, ALNDET, V,
     &               COVV, LDCOVV)
         WRITE (NOUT,99999) I, I, B(1), COVB(1,1), N, SS, ALNDET,
     &                     V(1), COVV(1,1)
C                                 Prediction
         IQ = 0
         IT = 0
         CALL KALMN (0, Y, NB, Z, LDZ, R, LDR, IT, T, LDT, IQ, Q, LDQ,
     &               TOL, B, COVB, LDCOVB, N, SS, ALNDET, V, COVV,
     &               LDCOVV)
         WRITE (NOUT,99999) I + 1, I, B(1), COVB(1,1), N, SS, ALNDET,
     &                     V(1), COVV(1,1)
   10 CONTINUE

99998 FORMAT (’ k/j’, ’   B    ’, ’  COVB  ’, ’ N’, ’   SS   ’,
     &       ’ ALNDET ’, ’   V    ’, ’  COVV  ’)
99999 FORMAT (I2, ’/’, I1, 2F8.3, I2, 4F8.3)
      END
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Output
k/j   B      COVB   N   SS    ALNDET    V      COVV
1/1   4.376   0.941 1   0.009   2.833   0.400  17.000
2/1   4.376   4.941 1   0.009   2.833   0.400  17.000
2/2   4.063   0.832 2   0.033   4.615  -0.376   5.941
3/2   4.063   4.832 2   0.033   4.615  -0.376   5.941
3/3   3.597   0.829 3   0.088   6.378  -0.563   5.832
4/3   3.597   4.829 3   0.088   6.378  -0.563   5.832
4/4   4.428   0.828 4   0.260   8.141   1.003   5.829
5/4   4.428   4.828 4   0.260   8.141   1.003   5.829

Example 2

Routine KALMN is used with routine UMINF (IMSL MATH/LIBRARY) to find a
maximum likelihood estimate of the parameter θ in a MA(1) time series
represented by yN = εN − θεN-1. Routine RNARM (page 1232) is used to generate

200 random observations from an MA(1) time series with θ = 0.5 and σ2 = 1.

The MA(1) time series is cast as a state-space model of the following form (see
Harvey 1981, pages 103–104, 112):
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The warning error that is printed as part of the output is not serious and indicates
that UMINF is generally used for multi-parameter minimization.

      INTEGER    NOBS, NTHETA
      PARAMETER  (NOBS=200, NTHETA=1)
C
      INTEGER    IADIST, IPARAM(7), ISEED, LAGAR(1), LAGMA(1), NOUT,
     &           NPAR, NPMA
      REAL       A(NOBS+1), AVAR, CONST, FSCALE, FVALUE, PAR(1),
     &           PMA(1), RPARAM(7), THETA(NTHETA), WI(1), XGUESS(1),
     &           XSCALE(1), YDATA(NOBS), SNRM2
      COMMON     /MA1/ YDATA
      EXTERNAL   FCN, RNARM, RNSET, UMACH, UMINF, SNRM2
C
      ISEED = 123457
      CALL RNSET (ISEED)
      PMA(1)   = 0.5
      LAGMA(1) = 1
      CONST    = 0.0
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      NPAR     = 0
      NPMA     = 1
      IADIST   = 0
      AVAR     = 1.0
      CALL RNARM (NOBS, CONST, NPAR, PAR, LAGAR, NPMA, PMA, LAGMA,
     &            IADIST, AVAR, A, WI, YDATA)
C                                 Use UMINF to find maximum likelihood
C                                 estimate of the MA parameter THETA.
      XGUESS(1) = 0.0
      XSCALE(1) = 1.0
      FSCALE    = 1.0
      IPARAM(1) = 0
      CALL UMINF (FCN, NTHETA, XGUESS, XSCALE, FSCALE, IPARAM, RPARAM,
     &            THETA, FVALUE)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ ’
      WRITE (NOUT,*) ’* * * Final Estimate for THETA * * *’
      WRITE (NOUT,*) ’Maximum likelihood estimate, THETA = ’, THETA(1)
      END
C                                Use KALMN to evaluate the likelihood.
      SUBROUTINE FCN (NTHETA, THETA, FUNC)
      INTEGER    NTHETA
      REAL       THETA(NTHETA), FUNC
C
      INTEGER    LDCOVB, LDCOVV, LDQ, LDR, LDT, LDZ, NB, NOBS, NY
      PARAMETER  (NB=2, NOBS=200, NY=1, LDCOVB=NB, LDCOVV=NY, LDQ=NB,
     &           LDR=NY, LDT=NB, LDZ=NY)
C
      INTEGER    I, IQ, IT, N
      REAL       ABS, ALNDET, ALOG, AMACH, B(NB), COVB(LDCOVB,NB),
     &           COVV(LDCOVV,NY), Q(LDQ,NB), R(LDR,NY), SS, T(LDT,NB),
     &           TOL, V(NY), Y(NY), YDATA(NOBS), Z(LDZ,NB)
      COMMON     /MA1/ YDATA
      INTRINSIC  ABS, ALOG
      EXTERNAL   AMACH, KALMN
C
      DATA T/0.0, 0.0, 1.0, 0.0/, Z/1.0, 0.0/
C
      IF (ABS(THETA(1)) .GT. 1.0) THEN
C                                 Estimate out of parameter space.
C                                 Set function to a large number.
         FUNC = 1.E10
         RETURN
      END IF
      TOL    = 100.*AMACH(4)
      IQ     = 0
      Q(1,1) = 1.0
      Q(1,2) = -THETA(1)
      Q(2,1) = -THETA(1)
      Q(2,2) = THETA(1)**2
      IT     = 0
C                                 No error in the
C                                 observation equation.
      R(1,1) = 0.0
C                                 Initial estimates for state vector
C                                 and variance-covariance matrix.
C                                 Initialize SS and ALNDET.
      B(1)      = 0.0
      B(2)      = 0.0
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      COVB(1,1) = 1.0 + THETA(1)**2
      COVB(1,2) = -THETA(1)
      COVB(2,1) = -THETA(1)
      COVB(2,2) = THETA(1)**2
      N         = 0
      SS        = 0.0
      ALNDET    = 0.0
C
      DO 10  I=1, NOBS
         Y(1) = YDATA(I)
         CALL KALMN (NY, Y, NB, Z, LDZ, R, LDR, IT, T, LDT, IQ, Q,
     &               LDQ, TOL, B, COVB, LDCOVB, N, SS, ALNDET, V,
     &               COVV, LDCOVV)
   10 CONTINUE
      FUNC = N*ALOG(SS/N) + ALNDET
      RETURN
      END

Output
*** WARNING  ERROR 1 from U5INF.  This routine may be inefficient for a
***          problem of size N = 1.
  Here is a traceback of subprogram calls in reverse order:
  Routine name                    Error type  Error code
  ------------                    ----------  ----------
   U5INF                               6           1    (Called internally)
   U3INF                               0           0    (Called internally)
   U2INF                               0           0    (Called internally)
   UMINF                               0           0
   USER                                0           0
* * * Final Estimate for THETA * * *
Maximum likelihood estimate, THETA =    0.452842

LOFCF/DLOFCF (Single/Double precision)
Perform lack-of-fit test for a univariate time series or transfer function given the
appropriate correlation function.

Usage
CALL LOFCF (NOBS, LAGMIN, LAGMAX, CF, NPFREE, Q, PVALUE)

Arguments

NOBS — Number of observations in the stationary time series.   (Input)
NOBS must be greater than or equal to two.

LAGMIN — Minimum lag of the correlation function.   (Input)
LAGMIN corresponds to the lower bound of summation in the lack of fit test
statistic. Generally, LAGMIN is set to one if CF is an autocorrelation function and
is set to zero if CF is a cross correlation function.

LAGMAX — Maximum lag of the correlation function.   (Input)
LAGMAX corresponds to the upper bound of summation in the lack of fit test
statistic. LAGMAX must be greater than or equal to LAGMIN and less than NOBS.
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CF — Vector of length LAGMAX + 1 containing the correlation function.   (Input)
The correlation coefficient for lag k is given by CF(k + 1), k = LAGMIN, LAGMIN +
1, …, LAGMAX.

NPFREE — Number of free parameters in the formulation of the time series
model.   (Input)
NPFREE must be greater than or equal to zero and less than LAGMAX.

Q — Lack of fit test statistic.   (Output)

PVALUE — p-value of the test statistic Q.   (Output)
Under the null hypothesis, Q has an approximate chi-squared distribution with
LAGMAX − LAGMIN + 1 − NPFREE degrees of freedom.

Comments

Routine LOFCF may be used to diagnose lack of fit in both ARMA and transfer
function models. Typical arguments for these situations are

Model LAGMIN LAGMAX NPFREE

ARMA(p, q) 1 NOBS p + q

Transfer function 0 NOBS r + s

See the “Algorithm” section for further information.

Algorithm

Routine LOFCF performs a portmanteau lack of fit test for a time series or transfer
function containing n observations given the appropriate sample correlation
function

$( )ρ k

for k = L, L + 1, …, K where L = LAGMIN and K = LAGMAX.

The basic form of the test statistic Q is

Q n n n k k
k L

K

= + − −

=
∑( ) ( ) $( )2 1ρ

with L = 1 if

$ρ k0 5
is an autocorrelation function and L = 0 if

$ρ k0 5
is a cross-correlation function. Given that the model is adequate, Q has a chi-
squared distribution with K − L + 1 − m degrees of freedom where m = NPFREE
is the number of parameters estimated in the model. If the mean of the time
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series is estimated, Woodfield (1990) recommends not including this in the count
of the parameters estimated in the model. Thus, for an ARMA(p, q) model set
NPFREE = p + q regardless of whether the mean is estimated or not. The original
derivation for time series models is due to Box and Pierce (1970) with the above
modified version discussed by Ljung and Box (1978). The extension of the test to
transfer function models is discussed by Box and Jenkins (1976, pages 394–395).

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. An ARMA(2,1) with nonzero mean is fitted using routine NSLSE

(page 669). The autocorrelations of the residuals are estimated using routine ACF

(page 637). A portmanteau lack of fit test is computed using 10 lags with LOFCF.

The warning message from NSLSE in the output can be ignored. (See the example
for routine NSLSE for a full explanation of the warning message.)

      INTEGER    IARDEG, IMEAN, IPRINT, ISEOPT, LAGMAX, LAGMIN, LDCOV,
     &           LDX, MAXBC, MDX, NOBS, NP, NPAR, NPFREE, NPMA
      PARAMETER  (IARDEG=2, IMEAN=1, IPRINT=0, ISEOPT=0, LAGMAX=10,
     &           LAGMIN=1, LDX=176, MAXBC=10, MDX=2, NOBS=100, NPAR=2,
     &           NPFREE=4, NPMA=1, NP=NPAR+NPMA+IMEAN, LDCOV=NP)
C
      INTEGER    LAGAR(NPAR), LAGMA(NPMA), MAXIT, NA, NCOL, NOUT, NROW
      REAL       A(NOBS-IARDEG+MAXBC), ACV(LAGMAX+1), AVAR,
     &           CF(LAGMAX+1), CONST, COV(LDCOV,NP), PAR(NPAR),
     &           PMA(NPMA), PVALUE, Q, RELERR, SEAC(LAGMAX), TOLBC,
     &           TOLSS, W(NOBS), WMEAN, X(LDX,MDX)
      EXTERNAL   ACF, GDATA, LOFCF, NSLSE, NSPE, UMACH
C
      EQUIVALENCE (W(1), X(22,2))
C
      DATA LAGAR/1, 2/, LAGMA/1/
C
      CALL UMACH (2, NOUT)
C                                 Wolfer Sunspot Data for
C                                 years 1770 through 1869
      CALL GDATA (2, IPRINT, NROW, NCOL, X, LDX, MDX)
C                                 Convergence parameters
      MAXIT  = 0
      RELERR = 0.0
C                                 Compute preliminary parameter
C                                 estimates for ARMA(2,1) model
      CALL NSPE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, NPMA, RELERR,
     &           MAXIT, CONST, PAR, PMA, AVAR)
C                                 Compute least squares estimates
C                                 for model
      TOLBC = 0.0
      TOLSS = 0.125
C
      CALL NSLSE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, PAR, LAGAR,
     &            NPMA, PMA, LAGMA, MAXBC, TOLBC, TOLSS, CONST, COV,
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     &            LDCOV, NA, A, AVAR)
C                                 Compute autocorrelations of the
C                                 residuals
      CALL ACF (NOBS-IARDEG+MAXBC, A, IPRINT, ISEOPT, IMEAN, WMEAN,
     &          LAGMAX, ACV, CF, SEAC)
C
      CALL LOFCF (NOBS, LAGMIN, LAGMAX, CF, NPFREE, Q, PVALUE)
C
      WRITE (NOUT,99998) Q
      WRITE (NOUT,99999) LAGMAX - LAGMIN + 1 - NPFREE, PVALUE
C
99998 FORMAT (/4X, ’Lack of Fit statistic (Q) = ’, F12.3)
99999 FORMAT (/4X, ’Degrees of freedom (LAGMAX-LAGMIN+1-NPFREE) = ’,
     &       I8/4X, ’P-value (PVALUE) = ’, F12.4)
      END

Output
***WARNING  ERROR 1 from NSLSE.  Least squares estimation of the parameters
***         has failed to converge.  Increase MAXBC and/or TOLBC and/or
***         TOLSS.  The estimates of the parameters at the last iteration
***         may be used as new starting values.

Lack of Fit statistic (Q) =       14.572

Degrees of freedom (LAGMAX-LAGMIN+1-NPFREE) =        6
P-value (PVALUE) =       0.9761

DIRIC/DDIRIC (Single/Double precision)
Compute the Dirichlet kernel.

Usage
DIRIC(M, RANGLE, EPS)

Arguments

M — Spectral window parameter.   (Input)

RANGLE — Angle in radians.   (Input)

EPS — Positive bound on |RANGLE| that determines when an approximation to
the Dirichlet kernel is appropriate.   (Input)
EPS must be between 0 and π inclusive. The approximation is used when
|RANGLE| is less than EPS.

DIRIC — Function value.   (Output)

Comments

1. The Dirichlet kernel is equivalent to the truncated periodogram spectral
window. The spectral window parameter denotes the truncation point in
the weighted sum of sample autocovariances used to estimate the
spectral density.
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2. The Dirichlet kernel produces negative values for certain values of
RANGLE. Thus, spectral windows that use the Dirichlet kernel may also
take on negative values.

3. The Dirichlet kernel is defined between −π and π, inclusive, and is zero
otherwise.

Algorithm

Routine DIRIC evaluates the Dirichlet kernel, D0(θ), for a given parameter M,

angle θ = RANGLE, and tolerance ε = EPS. The computational form of the function
is given by

D

M M

M

M
M θ

π

θ

θ
θ ε

π

θ

θ
ε θ π

θ π

0 5

0 5 2 7
2 7

2 7
0 5=

+ +

+

�
�
��

�
�
�� <

+�
�
��

�
�
�� ≤ ≤

>

%

&

KKKKK

'

KKKKK

2 1

2

1

2 2

0

1
2

1
2

1
2

sin

sin

sin /

The first case is an approximation to D0(θ) for small θ, and the second case is the
usual theoretical definition.

In spectral analysis, the Dirichlet kernel corresponds to the truncated periodogram
spectral window, and M is called the spectral window parameter. Since the
Dirichlet kernel may be negative for certain values of θ, the truncated
periodogram estimate of the spectral density may also be negative. This is an
undesirable property since the true spectral density is a nonnegative function. See
Priestley (1981, pages 437–438) and Anderson (1971, pages 508–511) for further
discussion.

Example

In this example, DIRIC is used to compute the Dirichlet kernel at
θ = ± kπ/(2M + 1) for k = 0, 1, …, (2M + 1) where M = 5 and ε = 0.01.

C                                 SPECIFICATIONS FOR LOCAL VARIABLES
      INTEGER    K, M, NOUT
      REAL       DIRIC, EPS, PI, REAL, THETA, WT
      INTRINSIC  REAL
      EXTERNAL   DIRIC, UMACH
C
      M   = 5
      EPS = .01
      PI  = 3.14159
C
      CALL UMACH (2, NOUT)
C
      WRITE (NOUT,99998)
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99998 FORMAT (’  K     THETA     WEIGHT ’)
      DO 10  K=0, 2*M + 1
         THETA = (PI*REAL(K))/REAL(2*M+1)
         WT    = DIRIC(M,THETA,EPS)
         WRITE (NOUT,99999) K, THETA, WT
99999    FORMAT (1X, I2, 2(3X,F8.5))
   10 CONTINUE
C
      RETURN
      END

Output
 K     THETA     WEIGHT
 0    0.00000    1.75070
 1    0.28560    1.11833
 2    0.57120    0.00000
 3    0.85680   -0.38312
 4    1.14240    0.00000
 5    1.42800    0.24304
 6    1.71359    0.00000
 7    1.99919   -0.18919
 8    2.28479    0.00000
 9    2.57039    0.16587
10    2.85599    0.00000
11    3.14159   -0.15915

FEJER/DFEJER (Single/Double precision)
Compute the Fejér kernel.

Usage
FEJER(M, RANGLE, EPS)

Arguments

M — Spectral window parameter.   (Input)

RANGLE — Angle in radians.   (Input)

EPS — Positive bound on |RANGLE| that determines when an approximation to
the Fejér kernel is appropriate.   (Input)
EPS must be between 0 and π inclusive. The approximation is used when
|RANGLE| is less than EPS.

FEJER — Function value.   (Output)

Comments

1. The Fejér kernel is equivalent to the modified Bartlett spectral window.
The spectral window parameter denotes the truncation point in the
weighted sum of sample autocovariances used to estimate the spectral
density.
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2. The Fejér kernel produces nonnegative values for all values of RANGLE.
Thus, spectral windows based on the Fejér kernel are always
nonnegative.

3. The Fejér kernel is defined between −π and π, inclusive, and is zero
otherwise.

Algorithm

Routine FEJER evaluates the Fejér kernel, F0(θ), for a given parameter M, angle 

θ = RANGLE, and tolerance ε = EPS. The computational form of the function is
given by
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The first case is an approximation to F0(θ) for small θ, and the second case is the
usual theoretical definition.

In spectral analysis, the Fejér kernel corresponds to the modified Bartlett spectral
window, and M is called the spectral window parameter. Since the Fejér kernel is
nonnegative for all values of θ, the modified Bartlett estimate of the spectral
density is also nonnegative. This is a desirable property since the true spectral
density is a nonnegative function. See Priestley (1981, pages 439–440) and
Anderson (1971, pages 508–511) for further discussion.

Example

In this example, FEJER is used to compute the Fejér kernel at θ = ±kπ/M for
k = 0, 1, …, M where M = 11 and ε = 0.01.

C
      INTEGER    K, M, NOUT
      REAL       EPS, FEJER, PI, REAL, THETA, WT
      INTRINSIC  REAL
      EXTERNAL   FEJER, UMACH
C
      M   = 11
      EPS = .01
      PI = 3.14159265
      CALL UMACH (2, NOUT)
C
      WRITE (NOUT,99998)
99998 FORMAT (’  K     THETA      WEIGHT ’)
      DO 10  K=0, M
         THETA = (PI*REAL(K))/REAL(M)
         WT    = FEJER(M,THETA,EPS)
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         WRITE (NOUT,99999) K, THETA, WT
99999    FORMAT (1X, I2, 2(3X,F8.5))
   10 CONTINUE
C
      RETURN
      END

Output
 K     THETA     WEIGHT
 0    0.00000    1.75070
 1    0.28560    0.71438
 2    0.57120    0.00000
 3    0.85680    0.08384
 4    1.14240    0.00000
 5    1.42800    0.03374
 6    1.71360    0.00000
 7    1.99920    0.02044
 8    2.28479    0.00000
 9    2.57039    0.01572
10    2.85599    0.00000
11    3.14159    0.00000

PFFT/DPFFT (Single/Double precision)
Compute the periodogram of a stationary time series using a fast Fourier
transform.

Usage
CALL PFFT (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, IPVER, PM,
           LDPM)

Arguments

NOBS — Number of observations in the stationary time series X.   (Input)
NOBS must be greater than or equal to two.

X — Vector of length NOBS containing the stationary time series.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the periodogram, and the cosine and sine transformations of the

centered and padded time series.

XCNTR — Constant used to center the time series X.   (Input)

NPAD — Number of zeroes used to pad the centered time series.   (Input)
NPAD must be greater than or equal to zero. The length of the centered and
padded time series is N = NOBS + NPAD.

IFSCAL — Option for frequency scale.   (Input)
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IFSCAL Action
0 Frequency in radians per unit time
1 Frequency in cycles per unit time

IPVER — Option for version of the periodogram.   (Input)

IPVER Action
0 Compute usual periodogram.
1 Compute modified periodogram.

Refer to the algorithm section for further details.

PM — (N/2 + 1) by 5 matrix that contains a summarization of the periodogram
analysis.   (Output)
For k = 0, 1, …, N/2, the (k + 1)-st element of the j-th column of PM is defined
as

Col. Description
1 Frequency, ωN where ωN = 2πN/N for IFSCAL = 0 and ωN = k/N for

IFSCAL = 1.
2 Period, pN where pN = 2π/ωN for IFSCAL = 0 and pN = 1/ωN for

IFSCAL = 1. If ωN�= 0, pN is set to missing.

3 Periodogram ordinate, I(ωN).
4 Cosine transformation coefficient, A(ωN).
5 Sine transformation coefficient, B(ωN).

LDPM — Leading dimension of PM exactly as specified in the dimension
statement of the calling program.   (Input)
LDPM must be greater than or equal to N/2 + 1.

Comments

1. Automatic workspace storage is

PFFT 10N + 15 units, or
DPFFT 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
P2FT/DP2FT. The reference is

CALL P2FT (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL,
           IPVER, PM, LDPM, CX, COEF, WFFTC, CPY)

The additional arguments are as follows:

CX — Complex work vector of length N.

COEF — Complex work vector of length N.

WFFTC — Work vector of length 4N + 15.

CPY — Work vector of length 2N.
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2. The centered and padded time series is defined by
CX(j) = X(j) − XCNTR for j = 1, …, NOBS
CX(j) = 0            for j = NOBS + 1, …, N
where N = NOBS + NPAD.

3. The periodogram I(ω) is an even function of the frequency ω. The
relation I(−ω) = I(ω) for ω > 0.0 recovers the periodogram for negative
frequencies.

4. Since cos(ω) is an even function of ω and sin(ω) is an odd function of ω,
the cosine and sine transformations, respectively, satisfy
A(−ω) = A(ω) and B(−ω) = −B(ω) for ω > 0.0. Similarly, the complex
Fourier coefficients, stored in COEF, satisfy COEF(−ω) = conj(COEF(ω)).

5. Computation of the 2 * NOBS − 1 autocovariances of X using the inverse
Fourier transform of the periodogram requires
NPAD = NOBS − 1.

Algorithm

Routine PFFT computes the periodogram of a stationary time series given a
sample of n = NOBS observations {XW} for t = 1, 2, …, n.

Let
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The fast Fourier transform algorithm is used to compute the discrete Fourier
transform. The periodogram of the sample sequence {XW}, t = 1, …, n computed
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=
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For N even, if the first ordinate (corresponding to k = 0) and the last ordinate
(corresponding to k = N/2) are each replaced by one-half of their values, then the
same relationship holds. The modified periodogram is an asymptotically unbiased
estimate of the nonnormalized spectral density function at each frequency ωN
(Priestley 1981, page 417). The argument IPVER is used to specify the version of
the periodogram.

The alternative representation of the discrete Fourier transform implies

I A B
n N X k X k X k, ,

~ ~ ~( ) ( ) ( )ω ω ω= +2 2

where

A K
X k X k~ ~( ) ( )ω α ω= 1 2

and

B K
X k X k~ ~( ) ( )ω β ω= 1 2

represent the (scaled) cosine and sine transforms, respectively. Since the
periodogram is an even function of the frequency, it is sufficient to estimate the
periodogram at the discrete set of nonnegative frequencies

ω π
k

k

N
k N= =2

0 1 2, , ,K

Use of the centered data

{
~

}Xt

(without padding) instead of the original data {XW} for t = 1, …, n does not affect
the asymptotic sampling properties of the periodogram. In fact,
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reflect the mean of the data. See Priestley (1981, page 417) for further discussion.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
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for this example consists of the number of sunspots observed from 1770 through
1869. Application of routine PFFT to these data produces the following results.

      INTEGER    IPRINT, LDPM, NOBS
      PARAMETER  (IPRINT=0, LDPM=100, NOBS=100)
C
      INTEGER    IFSCAL, IPVER, NCOL, NPAD, NROW
      REAL       PM(LDPM,5), RDATA(176,2), REAL, SSUM, X(NOBS), XCNTR
      CHARACTER  CLABEL(6)*9, FMT*20, RLABEL(1)*6
      INTRINSIC  REAL
      EXTERNAL   GDATA, PFFT, SSUM, WRRRL
C
      EQUIVALENCE (X(1), RDATA(22,2))
C
      DATA RLABEL/’NONE’/, CLABEL/’ ’, ’Frequency’, ’Period’,
     &     ’I(w(k))’, ’A(w(k))’, ’B(w(k))’/
C                                 Wolfer Sunspot Data for
C                                 years 1770 through 1869
      CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
C                                 Center on arithmetic mean
      XCNTR = SSUM(NOBS,X,1)/REAL(NOBS)
C                                 Pad standard amount
      NPAD = NOBS - 1
C                                 Frequency in radians per unit time
      IFSCAL = 0
C                                 Modified periodogram version
      IPVER = 1
C                                 Compute the periodogram
      CALL PFFT (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, IPVER, PM, LDPM)
C                                 Print results
      FMT = ’(F9.4, F6.2, 3F10.2)’
      CALL WRRRL (’ ’, 20, 5, PM, LDPM, 0, FMT, RLABEL, CLABEL)
C
      END

Output
Frequency  Period     I(w(k))     A(w(k))     B(w(k))
   0.0000     NaN        0.00        0.00        0.00
   0.0316  199.00      183.97        3.72      -13.04
   0.0631   99.50     1363.37       35.45      -10.32
   0.0947   66.33     2427.09       29.31       39.60
   0.1263   49.75     1346.64      -21.74       29.56
   0.1579   39.80      139.74      -11.69       -1.79
   0.1894   33.17       44.67       -4.65        4.80
   0.2210   28.43      123.47      -11.11       -0.33
   0.2526   24.88      176.04       -4.79      -12.37
   0.2842   22.11      143.06        9.92       -6.69
   0.3157   19.90       44.17        6.43        1.68
   0.3473   18.09       38.95        5.40        3.13
   0.3789   16.58       63.20        7.14        3.49
   0.4105   15.31      537.64        0.89       23.17
   0.4420   14.21      944.68      -30.73       -0.75
   0.4736   13.27      162.02       -0.95      -12.69
   0.5052   12.44      908.09      -24.51      -17.53
   0.5368   11.71     3197.84       34.84      -44.54
   0.5683   11.06     1253.82       19.69       29.43
   0.5999   10.47      850.45       -8.75      -27.82
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SSWD/DSSWD (Single/Double precision)
Estimate the nonnormalized spectral density of a stationary time series using a
spectral window given the time series data.

Usage
CALL SSWD (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF, F,
           TINT, ISWVER, NM, M, PM, LDPM, SM, LDSM)

Arguments

NOBS — Number of observations in the stationary time series X.   (Input)
NOBS must be greater than or equal to two.

X — Vector of length NOBS containing the stationary time series.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the periodogram, cosine transform and sine transform of the

centered and padded time series, and the spectral density estimate based
on a specified version of a spectral window for a given set of spectral
window parameters.

XCNTR — Constant used to center the time series X.   (Input)

NPAD — Number of zeroes used to pad the centered time series.   (Input)
NPAD must be greater than or equal to zero.

IFSCAL — Option for frequency scale.   (Input)

IFSCAL Action
0 Frequency in radians per unit time.
1 Frequency in cycles per unit time.

NF — Number of frequencies at which to evaluate the spectral density estimate.
(Input)

F — Vector of length NF containing the frequencies at which to evaluate the
spectral density estimate.   (Input)
The units of F correspond to the scale specified by IFSCAL. The elements of F
must be in the range (−π/TINT, π/TINT), inclusive for IFSCAL = 0 and
(−1/(2 * TINT), 1/(2 * TINT)) inclusive for IFSCAL = 1.

TINT — Time interval at which the series is sampled.   (Input)
For a discrete parameter process, usually TINT = 1. For a continuous parameter
process, TINT > 0. TINT is used to adjust the spectral density estimate.

ISWVER — Option for version of the spectral window.   (Input)

ISWVER Action
1 Modified Bartlett
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2 Daniell
3 Tukey-Hamming
4 Tukey-Hanning
5 Parzen
6 Bartlett-Priestley

Refer to the “Algorithm” section for further details.

NM — Number of spectral window parameters M used to compute the spectral
density estimate for a given spectral window version.   (Input)
NM must be greater than or equal to one.

M — Vector of length NM containing the values of the spectral window
parameters M.   (Input)
For the Parzen spectral window (ISWVER = 5), all values of the spectral window
parameters M must be even.

PM — (N/2 + 1) by 5 matrix that contains a summarization of the periodogram
analysis.   (Output)
For k = 0, 1, …, N/2, the (k + 1)-st element of the j-th column of PM is defined
as

Col. Description
1 Frequency, ωN where ωN = 2πk/N for IFSCAL = 0 or ωN = k/N for

IFSCAL = 1.
2 Period, pN where pN = 2π/ωN for IFSCAL = 0 and pN = 1/ωN�for

IFSCAL = 1. If ωN�= 0, pN is set to missing.

3 Periodogram ordinate, I(ωN).
4 Cosine transformation coefficient, A(ωN).
5 Sine transformation coefficient, B(ωN).

Note N = NOBS + NPAD.

LDPM — Leading dimension of PM exactly as specified in the dimension
statement of the calling program.   (Input)
LDPM must be greater than or equal to N/2 + 1.

SM — NF by NM + 2 matrix containing a summarization of the spectral analysis.
(Output)
The k-th element of the j-th column of SM is defined as

Col. Description
1 Frequency, F(k).
2 Period, pN where pN = 2π/F(k) for IFSCAL = 0 and pN = 1/F(k) for

IFSCAL = 1. If F(k) = 0, pN is set to missing.
3 Spectral density estimate at F(k) using the spectral window parameter

M(1).
NM + 2 Spectral density estimate at F(k) using the spectral window parameter

M(NM).

where k = 1, …, NF.
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LDSM — Leading dimension of SM exactly as specified in the dimension
statement of the calling program.   (Input)
LDSM must be greater than or equal to NF.

Comments

1. Automatic workspace storage is

SSWD 10N + 15 units, or
DSSWD 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
S2WD/DS2WD. The reference is

CALL S2WD (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF,
           F, TINT, ISWVER, NM, M, PM, LDPM, SM,
           LDSM, CX, COEF, WFFTC, CPY)

The additional arguments are as follows:

CX — Complex vector of length N containing the centered and padded
time series X.   (Output)

COEF — Complex vector of length N containing the Fourier
coefficients of the finite Fourier transform of CX.   (Output)
Note that COEF(k) is the appropriately scaled Fourier coefficient at
frequency ωN, k = 0, 1, …, N − 1.

WFFTC — Vector of length 4N + 15.

CPY — Vector of length 2N.

2. The normalized spectral density estimate is obtained by dividing the
nonnormalized spectral density estimate in matrix SM by an estimate of
the variance of X.

Algorithm

Routine SSWD estimates the nonnormalized spectral density function of a
stationary time series using a spectral window given a sample of n = NOBS
observations {XW} for t = 1, 2, …, n.

Let

{
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}Xt

for t = 1, …, N represent the centered and padded data where N = NOBS + NPAD,
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is determined by
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The modified periodogram of
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for t = 1, …, N is estimated by
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cosine and sine transforms, respectively, and K is the scale factor equal to
1/(2πn). Since the periodogram is an even function of the frequency, it is
sufficient to estimate the periodogram over the discrete set of nonnegative
frequencies
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The routine PFFT (page 723) is used to compute the modified periodogram of

~
Xt

The estimate of the nonnormalized spectral density h; (ω) is computed according
to
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where the spectral window WQ(θ) is specified by argument ISWVER. The

following spectral windows WQ(θ) are available.
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Modified Bartlett
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where D0(θ) represents the Dirichlet kernel. The Tukey-Hamming window is
obtained when a = 0.23 and the Tukey-Hanning window is obtained when
a = 0.25.

Parzen
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where M is even. If M is odd, then M + 1 is used instead of M in the above
formula.

Bartlett-Priestley

W
M M

M

M
n ( )

/

/

θ π
θ

π
θ π

θ π
= − �

�
�
�

%&'
()*

≤

>

%
&K
'K

3

4
1

0

2

The argument NM specifies the number of window parameters M and corresponds
to the number of spectral density estimates to be computed for a given spectral
window. The nonnormalized spectral density is estimated over the set of
frequencies

ω = fL i = 1, …, nI

where nI = NF. These frequencies are in the scale specified by the argument
IFSCAL but are transformed to the scale of radians per unit time for
computational purposes.

The above formula for
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$ ( )hX ω
assumes the data {XW} correspond to a realization of a discrete-parameter
stationary process observed consecutively in time. In this case, the observations
are equally spaced in time with interval ∆t = TINT equivalent to one. However, if
the data correspond to a realization of a continuous-parameter stationary process
recorded at equal time intervals, then the estimate of the nonnormalized spectral
density must be adjusted for the effect of aliasing. In general, the estimate of h;(ω
) is given by

$ ( ) $ ( ) /h t h tX Xω ω ω π= ≤∆ ∆

Note that the frequency ω of the desired spectral estimate is assumed to be input
in a form already adjusted for the time interval ∆t. Approximate confidence
intervals for h(ω) can be computed using formulas given in the introduction.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Application of routine SSWD to these data produces the following results:

      INTEGER    IPRINT, LDPM, LDSM, NF, NM, NOBS
      REAL       PI
      PARAMETER  (IPRINT=0, NF=20, NM=3, NOBS=100, PI=3.141592654,
     &           LDPM=NOBS, LDSM=NF)
C
      INTEGER    I, IFSCAL, ISWVER, M(NM), NCOL, NPAD, NROW
      REAL       F(NF), PM(LDPM,5), RDATA(176,2), FLOAT, SM(LDSM,5),
     &           SSUM, TINT, X(NOBS), XCNTR
      CHARACTER  CLABEL(6)*9, FMT*20, RLABEL(1)*6, TITLE*60
      INTRINSIC  REAL
      EXTERNAL   GDATA, SSUM, SSWD, WRRRL
C
      EQUIVALENCE (X(1), RDATA(22,2))
C
      DATA RLABEL/’NONE’/, CLABEL/’ ’, ’Frequency’, ’Period’,
     &     ’M = 10’, ’M = 20’, ’M = 30’/
C                                 Wolfer Sunspot Data for
C                                 years 1770 through 1869
      CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
C                                 Center on arithmetic mean
      XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)
C                                 Pad standard amount
      NPAD = NOBS - 1
C                                 Frequency in radians per unit time
      IFSCAL = 0
C                                 Determine frequencies at which
C                                 to evaluate spectral density
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
   10 CONTINUE
C                                 Time interval for discrete data
      TINT = 1.0
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C                                 Spectral window parameters
      M(1) = 10
      M(2) = 20
      M(3) = 30
C                                 Compute spectral density using
C                                 the Parzen window
      ISWVER = 5
      CALL SSWD (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF, F, TINT,
     &           ISWVER, NM, M, PM, LDPM, SM, LDSM)
C                                 Print results
      TITLE = ’Spectral Density Using the Parzen Window’
      FMT   = ’(F9.4, F6.2, 3F10.2)’
      CALL WRRRL (TITLE, NF, 5, SM, LDSM, 0, FMT, RLABEL, CLABEL)
C                                 Compute spectral density using
C                                 the Bartlett-Priestley window
      ISWVER = 6
      CALL SSWD (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF, F, TINT,
     &           ISWVER, NM, M, PM, LDPM, SM, LDSM)
C                                 Print results
      TITLE = ’%/Spectral Density Using the Bartlett-Priestley ’//
     &        ’Window’
      CALL WRRRL (TITLE, NF, 5, SM, LDSM, 0, FMT, RLABEL, CLABEL)
C
      END

Output
      Spectral Density Using the Parzen Window
Frequency  Period      M = 10      M = 20      M = 30
   0.1571   40.00      659.64      617.42      619.73
   0.3142   20.00      666.95      554.70      339.61
   0.4712   13.33      653.73      770.64      860.49
   0.6283   10.00      598.77      857.80     1046.13
   0.7854    8.00      497.47      582.85      550.77
   0.9425    6.67      367.72      266.33      186.98
   1.0996    5.71      240.65      121.46      104.79
   1.2566    5.00      142.41       76.17       76.74
   1.4137    4.44       81.28       54.20       47.19
   1.5708    4.00       49.13       40.16       41.39
   1.7279    3.64       32.57       27.58       26.46
   1.8850    3.33       22.44       16.52       14.40
   2.0420    3.08       15.53       10.93        9.87
   2.1991    2.86       11.19        8.30        8.32
   2.3562    2.67        8.66        6.18        5.86
   2.5133    2.50        6.93        4.75        4.22
   2.6704    2.35        5.51        4.62        4.35
   2.8274    2.22        4.47        4.91        5.24
   2.9845    2.11        3.61        4.23        4.75
   3.1416    2.00        2.62        2.44        2.27

 Spectral Density Using the Bartlett-Priestley Window
Frequency  Period      M = 10      M = 20      M = 30
   0.1571   40.00      604.34      712.73      757.61
   0.3142   20.00      564.28      176.81      107.08
   0.4712   13.33      767.63      927.14      981.10
   0.6283   10.00      900.32     1190.30     1172.23
   0.7854    8.00      607.45      494.85      571.65
   0.9425    6.67      237.16      127.65       87.36
   1.0996    5.71      103.34      113.93      135.34
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   1.2566    5.00       75.74       74.88       57.57
   1.4137    4.44       52.64       44.98       38.59
   1.5708    4.00       38.50       44.56       50.59
   1.7279    3.64       27.35       25.28       21.76
   1.8850    3.33       15.68       13.84       13.10
   2.0420    3.08       10.33        9.79        7.41
   2.1991    2.86        7.95        8.31        8.67
   2.3562    2.67        6.04        5.86        7.08
   2.5133    2.50        4.56        3.67        2.90
   2.6704    2.35        4.44        4.38        4.06
   2.8274    2.22        4.99        5.62        5.40
   2.9845    2.11        4.31        5.07        5.08
   3.1416    2.00        2.43        2.23        2.44

SSWP/DSSWP (Single/Double precision)
Estimate the nonnormalized spectral density of a stationary time series using a
spectral window given the periodogram.

Usage
CALL SSWP (N, PX, NF, F, ISWVER, M, SX)

Arguments

N — Number of observations in the centered and padded time series X.   (Input)
N must be greater than or equal to two.

PX — Vector of length N/2 + 1 containing the (modified) periodogram of X.
(Input)
The periodogram ordinate evaluated at (angular) frequency wN = 2πk/N is given

by PX(k + 1), k = 0, 1, …, N/2.

NF — Number of (angular) frequencies.   (Input)
NF must be greater than or equal to one.

F — Vector of length NF containing the (angular) frequencies at which the
spectral density is estimated.   (Input)
The elements of F must be in the range (−π, π) inclusive.

ISWVER — Option for version of the spectral window.   (Input)

ISWVER Action
1 Modified Bartlett
2 Daniell
3 Tukey-Hamming
4 Tukey-Hanning
5 Parzen
6 Bartlett-Priestley

Refer to the “Algorithm” section for further details.
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M — Spectral window parameter.   (Input)
M must be greater than or equal to one and less than N.

SX — Vector of length NF containing the estimate of the spectral density of the
time series X.   (Output)

Comments

1. The periodogram of X may be computed using the routine PFFT

(page 723). Estimation of the spectral density of X using the modified
periodogram preserves the scale of the spectral density up to adjustment
for the time sampling interval.

2. The time sampling interval, TINT, is assumed to be equal to one. This
assumption is appropriate for discrete parameter processes. The
adjustment for continuous parameter processes (TINT > 0.0) involves
multiplication of the frequency vector F by 1/TINT and multiplication of
the spectral density estimate by TINT.

3. To convert the frequency scale from radians per unit time to cycles per
unit time, multiply F by 1/(2π).

Algorithm

Routine SSWP estimates the nonnormalized spectral density function of a
stationary time series using a spectral window given the modified periodogram of
the appropriately centered and padded data
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The routine PFFT (page 723) may be used to obtain the modified periodogram
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The symmetry of the periodogram is used to recover the ordinates at negative
frequencies.

The estimate of the nonnormalized spectral density h;(ω) is computed according
to
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where the spectral window WQ(θ) is specified by argument ISWVER. The

following spectral windows WQ(θ) are available.
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Modified Bartlett
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where D0(θ) represents the Dirichlet kernel. The Tukey-Hamming window is
obtained when a = 0.23, and the Tukey-Hanning window is obtained when
a = 0.25.

Parzen

W
M

Fn M( ) ( ) ( / )/θ π θ θ= −%&'
()*

6
1

2

3
22

2
sin2

where M is even. If M is odd, then M + 1 is used instead of M in the above
formula.

Bartlett-Priestley
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Only one window parameter M may be specified so that only one estimate of
h;(ω) is computed. The nonnormalized spectral density is estimated over the set
of frequencies

ω = ƒL,     i = 1, …, n�

where n� = NF. These frequencies are in the scale of radians per unit time. The
time sampling interval ∆t is assumed to be equal to one.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
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for this example consists of the number of sunspots observed from 1770 through
1869. Application of routine SSWP to these data produces the following results:

      INTEGER    IPRINT, LDPM, LDSM, NF, NM, NOBS
      REAL       PI
      PARAMETER  (IPRINT=0, NF=20, NM=3, NOBS=100, PI=3.141592654,
     &           LDPM=NOBS, LDSM=NF)
C
      INTEGER    I, IFSCAL, IPVER, ISWVER, J, M(NM), N, NCOL, NPAD,
     &           NROW
      REAL       F(NF), PM(LDPM,5), PX(LDPM), RDATA(176,2), FLOAT,
     &           SM(NF,5), SSUM, SX(NF), X(NOBS), XCNTR
      CHARACTER  CLABEL(6)*9, FMT*20, RLABEL(1)*6, TITLE*60
      INTRINSIC  FLOAT
      EXTERNAL   GDATA, PFFT, SCOPY, SSUM, SSWP, WRRRL
C
      EQUIVALENCE (PX(1), PM(1,3)), (F(1), SM(1,1))
      EQUIVALENCE (X(1), RDATA(22,2))
C
      DATA RLABEL/’NONE’/, CLABEL/’ ’, ’Frequency’, ’Period’,
     &     ’M = 10’, ’M = 20’, ’M = 30’/
C                                 Wolfer Sunspot Data for
C                                 years 1770 through 1869
      CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
C                                 Center on arithmetic mean
      XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)
C                                 Pad standard amount
      NPAD = NOBS - 1
C                                 Frequency in radians per unit time
      IFSCAL = 0
C                                 Modified periodogram version
      IPVER = 1
C                                 Compute periodogram
      CALL PFFT (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, IPVER, PM, LDPM)
C                                 Number of observations used to
C                                 compute the periodogram
      N = NOBS + NPAD
C                                 Determine frequency and period
C                                 at which to evaluate the spectral
C                                 density
      DO 10  I=1, NF
         SM(I,1) = PI*FLOAT(I)/FLOAT(NF)
         SM(I,2) = 2.0*FLOAT(NF)/FLOAT(I)
   10 CONTINUE
C                                 Spectral window parameters
      M(1) = 10
      M(2) = 20
      M(3) = 30
C                                 Compute spectral density using
C                                 the Parzen window
      ISWVER = 5
      DO 20  J=1, NM
         CALL SSWP (N, PX, NF, F, ISWVER, M(J), SX)
C                                 Copy into SM
         CALL SCOPY (NF, SX, 1, SM(1,2+J), 1)
   20 CONTINUE
C                                 Print results
      TITLE = ’Spectral Density Using the Parzen Window’
      FMT   = ’(F9.4, F6.2, 3F10.2)’
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      CALL WRRRL (TITLE, NF, 5, SM, LDSM, 0, FMT, RLABEL, CLABEL)
C                                 Compute spectral density using
C                                 the Bartlett-Priestley window
      ISWVER = 6
      DO 30  J=1, NM
         CALL SSWP (N, PX, NF, F, ISWVER, M(J), SX)
C                                 Copy into SM
         CALL SCOPY (NF, SX, 1, SM(1,2+J), 1)
   30 CONTINUE
C                                 Print results
      TITLE = ’%/Spectral Density Using the Bartlett-Priestley ’//
     &        ’Window’
      CALL WRRRL (TITLE, NF, 5, SM, LDSM, 0, FMT, RLABEL, CLABEL)
C
      END

Output
      Spectral Density Using the Parzen Window
Frequency  Period      M = 10      M = 20      M = 30
   0.1571   40.00      659.64      617.42      619.73
   0.3142   20.00      666.95      554.70      339.61
   0.4712   13.33      653.73      770.64      860.49
   0.6283   10.00      598.77      857.80     1046.13
   0.7854    8.00      497.47      582.85      550.77
   0.9425    6.67      367.72      266.33      186.98
   1.0996    5.71      240.65      121.46      104.79
   1.2566    5.00      142.41       76.17       76.74
   1.4137    4.44       81.28       54.20       47.19
   1.5708    4.00       49.13       40.16       41.39
   1.7279    3.64       32.57       27.58       26.46
   1.8850    3.33       22.44       16.52       14.40
   2.0420    3.08       15.53       10.93        9.87
   2.1991    2.86       11.19        8.30        8.32
   2.3562    2.67        8.66        6.18        5.86
   2.5133    2.50        6.93        4.75        4.22
   2.6704    2.35        5.51        4.62        4.35
   2.8274    2.22        4.47        4.91        5.24
   2.9845    2.11        3.61        4.23        4.75
   3.1416    2.00        2.62        2.44        2.27

Spectral Density Using the Bartlett-Priestley Window
Frequency  Period      M = 10      M = 20      M = 30
   0.1571   40.00      604.34      712.73      757.61
   0.3142   20.00      564.28      176.81      107.08
   0.4712   13.33      767.63      927.14      981.10
   0.6283   10.00      900.32     1190.30     1172.23
   0.7854    8.00      607.45      494.85      571.65
   0.9425    6.67      237.16      127.65       87.36
   1.0996    5.71      103.34      113.93      135.34
   1.2566    5.00       75.74       74.88       57.57
   1.4137    4.44       52.64       44.98       38.59
   1.5708    4.00       38.50       44.56       50.59
   1.7279    3.64       27.35       25.28       21.76
   1.8850    3.33       15.68       13.84       13.10
   2.0420    3.08       10.33        9.79        7.41
   2.1991    2.86        7.95        8.31        8.67
   2.3562    2.67        6.04        5.86        7.08
   2.5133    2.50        4.56        3.67        2.90
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   2.6704    2.35        4.44        4.38        4.06
   2.8274    2.22        4.99        5.62        5.40
   2.9845    2.11        4.31        5.07        5.08
   3.1416    2.00        2.43        2.23        2.44

SWED/DSWED (Single/Double precision)
Estimation of the nonnormalized spectral density of a stationary time series based
on specified periodogram weights given the time series data.

Usage
CALL SWED (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF, F,
           TINT, NWT, WT, PM, LDPM, SM, LDSM)

Arguments

NOBS — Number of observations in the stationary time series X.   (Input)
NOBS must be greater than or equal to two.

X — Vector of length NOBS containing the stationary time series.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the periodogram, cosine and sine transforms of the centered and

padded time series, and the spectral density estimate based on a
specified weight sequence.

XCNTR — Constant used to center the time series X.   (Input)

NPAD — Number of zeroes used to pad the centered time series.   (Input)
NPAD must be greater than or equal to zero. The length of the centered and
padded time series is N = NOBS + NPAD.

IFSCAL — Option for frequency scale.   (Input)

IFSCAL Action
0 Frequency in radians per unit time.
1 Frequency in cycles per unit time.

NF — Number of frequencies at which to evaluate the spectral density estimate.
(Input)
NF must be greater than zero.

F — Vector of length NF containing the frequencies at which to evaluate the
spectral density estimate.   (Input)
The units of F correspond to the scale specified by IFSCAL. The elements of F
must be in the range (−π/TINT, π/TINT), inclusive, for IFSCAL = 0 and
(−1/(2 * TINT), 1/(2 * TINT)), inclusive, for IFSCAL = 1.
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TINT — Time interval at which the series is sampled.   (Input)
For a discrete parameter process, usually TINT = 1.0. For a continuous parameter
process, TINT > 0.0. TINT is used to adjust the spectral density estimate.

NWT — Number of weights.   (Input)
NWT must be greater than or equal to one.

WT — Vector of length NWT containing the weights used to smooth the
periodogram.   (Input)
The actual weights are the values in WT normalized to sum to 1 with the current
periodogram ordinate taking the middle weight for NWT odd or the weight to the
right of the middle for NWT even.

PM — (N/2 + 1) by 5 matrix that contains a summarization of the periodogram
analysis.   (Output)
For k = 0, 1, …, N/2, the (k + 1)-st element of the j-th column of PM is defined
as

Col. Description
1 Frequency, ωN�where ωN = 2πk/N for IFSCAL = 0 or ωN = k/N for

IFSCAL = 1.
2 Period, pN where pN = 2π/ωN for IFSCAL = 0 and pN = 1/ωN�for IFSCAL =

1. If ωN = 0, pN is set to the missing value or NaN (not a number).

3 Periodogram ordinate, I(ωN).
4 Cosine transformation coefficient, A(ωN).
5 Sine transformation coefficient, B(ωN).

LDPM — Leading dimension of PM exactly as specified in the dimension
statement in the calling program.   (Input)
LDPM must be greater than or equal to N/2 + 1.

SM — NF by 3 matrix containing a summarization of the spectral analysis.
(Output)
The k-th element of the j-th column of SM is defined as

Col. Description
1 Frequency, F(k).
2 Period, pN where pN = 2π/F(k) for IFSCAL = 0 and pN = 1/F(k) for

IFSCAL = 1. If F(k) = 0, pN is set to missing.
3 Spectral density estimate at F(k) using the specified weights WT.
where k = 1, …, NF.

LDSM — Leading dimension of SM exactly as specified in the dimension
statement in the calling program.   (Input)
LDSM must be greater than or equal to NF.
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Comments

1. Automatic workspace storage is

SWED 10N + 15 or
DSWED 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
S2ED/DS2ED. The reference is

CALL S2ED (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL,
           NF, F, TINT, NWT, WT, PM, LDPM, SM, LDSM,
           CX, COEF, WFFTC, CPY)

The additional arguments are as follows:

CX — Complex vector of length N containing the centered and padded
time series X.   (Output)

COEF — Complex vector of length N containing the Fourier
coefficients of the finite Fourier transform of CX.   (Output)
Note that COEF(k + 1) is the appropriately scaled Fourier coefficient at
frequency ωN, k = 0, 1, …, N − 1.

WFFTC — Work vector of length 4N + 15.

CPY — Work vector of length 2N.

2. The centered and padded time series is defined by
CX(j) = X(j) − XCNTR for j = 1, …, NOBS
CX(j) = 0       for j = NOBS + 1, …, N
where N = NOBS + NPAD.

3. The normalized spectral density estimate is obtained by dividing the
nonnormalized spectral density estimate in matrix SM by an estimate of
the variance of X.

Algorithm

Routine SWED estimates the nonnormalized spectral density function of a
stationary time series using a fixed sequence of weights, given a sample of
n = NOBS observations {XW}, for t = 1, 2, …, n.
Let

{
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represent the centered and padded data where N = NOBS + NPAD,
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is determined by
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cosine and sine transforms, respectively, and K is the scale factor equal to
1/(2πn). Since the periodogram is an even function of the frequency, it is
sufficient to estimate the periodogram at the discrete set of nonnegative
frequencies

ω π
k

k

N
k N= =2
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(Here, a means the greatest integer less than or equal to a.) The routine PFFT
(page 723) is used to compute the modified periodogram of

{
~

}Xt

Consider the sequence of m = NWT weights

{wM} for j = − m/2, …, (m − m/2 − 1)

where

∑MwM = 1

These weights are fixed in the sense that they do not depend on the frequency ω
at which to estimate the nonnormalized spectral density h;(ω). The estimate of
the nonnormalized spectral density is computed according to
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and k(ω) is the integer such that ωN�� is closest to ω. The weights specified by
argument WT may be relative since they are normalized to sum to one in the actual
computation of

$ ( )hX ω

Usually, m is odd with the weights symmetric about the middle weight w0. If m is
even, the weight to the right of the middle is considered w0. Note that
periodogram ordinate

I
n N X, ,

~ ( )0

is replaced by

I
n N X, ,

~ ω11 6
and the sum reflects at each end. The nonnormalized spectral density is estimated
over the set of frequencies

ω = fL, i = 1, …, nI

where nI = NF. These frequencies are in the scale specified by the argument
IFSCAL but are transformed to the scale of radians per unit time for
computational purposes.

The above formula for

$ ( )hX ω
assumes the data {XW} correspond to a realization of a discrete-parameter
stationary process observed consecutively in time. In this case, the observations
are equally spaced in time with interval ∆t = TINT equivalent to one. However, if
the data correspond to a realization of a continuous-parameter stationary process
recorded at equal time intervals, then the estimate of the nonnormalized spectral
density must be adjusted for the effect of aliasing. In general, the estimate of h;(ω
) is given by

$ ( ) $ ( ), /h t h tX Xω ω ω π= ≤∆ ∆

Note that the frequency ω of the desired spectral estimate is assumed to be input
in a form already adjusted for the time interval ∆t.

Approximate confidence intervals for h(ω) can be computed using formulas given
in the introduction.
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Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Application of routine SWED to these data produces the following results:

      INTEGER    LDPM, LDRDAT, LDSM, NDRDAT, NF, NOBS, NPAD, NWT
      PARAMETER  (LDRDAT=176, NDRDAT=2, NF=20, NOBS=100, NWT=7,
     &           LDSM=NF, NPAD=NOBS-1, LDPM=(NOBS+NPAD)/2+1)
C
      INTEGER    I, IFSCAL, IPRINT, NROW, NVAR
      REAL       ASIN, F(NF), PI, PM(LDPM,5), RDATA(LDRDAT,NDRDAT),
     &           REAL, SM(LDSM,3), SSUM, TINT, WT(NWT), X(NOBS), XCNTR
      CHARACTER  CLABEL(4)*20, FMT*20, RLABEL(1)*4, TITLE*28
      INTRINSIC  ASIN, FLOAT
      EXTERNAL   GDATA, SSUM, SWED, WRRRL
C
      EQUIVALENCE (X(1), RDATA(22,2))
C
      DATA WT/1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0/
      DATA IPRINT/0/, IFSCAL/0/, TINT/1.0/
      DATA FMT/’(F9.4, F6.2, F9.4)’/
      DATA RLABEL/’NONE’/
      DATA CLABEL/’ ’, ’%/Frequency’, ’%/Period’, ’Spectral%/Estimates’
     &     /
      DATA TITLE/’Results of Spectral Analysis’/
C                                 Initializations
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
   10 CONTINUE
C                                 Wolfer Sunspot Data for years
C                                 1770 through 1869
      CALL GDATA (2, 0, NROW, NVAR, RDATA, LDRDAT, NDRDAT)
C                                 Center on arithmetic mean
      XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)
C                                 Spectral density
      CALL SWED (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF, F, TINT,
     &           NWT, WT, PM, LDPM, SM, LDSM)
C                                 Print Results
      CALL WRRRL (TITLE, NF, 3, SM, LDSM, 0, FMT, RLABEL, CLABEL)
C
      END

Output
Results of Spectral Analysis
                    Spectral
Frequency  Period  Estimates
   0.1571   40.00   710.8386
   0.3142   20.00   116.3940
   0.4712   13.33   937.1508
   0.6283   10.00  1209.8268
   0.7854    8.00   538.9236
   0.9425    6.67    84.9561
   1.0996    5.71   128.0791
   1.2566    5.00    55.0304
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   1.4137    4.44    40.2022
   1.5708    4.00    46.4240
   1.7279    3.64    21.0053
   1.8850    3.33    12.1449
   2.0420    3.08     8.8654
   2.1991    2.86     7.2589
   2.3562    2.67     6.8078
   2.5133    2.50     3.3873
   2.6704    2.35     3.9504
   2.8274    2.22     5.7418
   2.9845    2.11     4.4652
   3.1416    2.00     4.1216

SWEP/DSWEP (Single/Double precision)
Estimation of the nonnormalized spectral density of a stationary time series based
on specified periodogram weights given the periodogram.

Usage
CALL SWEP (N, PX, NF, F, NWT, WT, SX)

Arguments

N — Number of observations in the appropriately centered and padded time
series X.   (Input)
N must be greater than or equal to two.

PX — Vector of length N/2 + 1 containing the (modified) periodogram of X.
(Input)
The periodogram ordinate evaluated at (angular) frequency ωN�= 2πk/N is given

by PX(k + 1), k = 0, 1, …, N/2.

NF — Number of (angular) frequencies.   (Input)
NF must be greater than or equal to one.

F — Vector of length NF containing the (angular) frequencies at which the
spectral density is estimated.   (Input)
The elements of F must be in the range (−π, π) inclusive.

NWT — Number of weights.   (Input)
NWT must be greater than or equal to one.

WT — Vector of length NWT containing the weights used to smooth the
periodogram.   (Input)
The actual weights are the values in WT normalized to sum to 1 with the current
periodogram ordinate taking the middle weight for NWT odd or the weight to the
right of the middle for NWT even.

SX — Vector of length NF containing the estimate of the spectral density of the
time series X.   (Output)
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Comments

1. The periodogram of X may be computed using the routine PFFT
(page 723). Estimation of the spectral density of X using the modified
periodogram preserves the scale of the spectral density up to adjustment
for the time sampling interval.

2 The time sampling interval, TINT, is assumed to be equal to one. This
assumption is appropriate for discrete parameter processes. The
adjustment for continuous parameter processes (TINT > 0) involves
multiplication of the frequency vector F by 1/TINT and multiplication of
the spectral density estimate by TINT.

3. To convert the frequency scale from radians per unit time to cycles per
unit time, multiply F by 1/(2π).

Algorithm

Routine SWEP estimates the nonnormalized spectral density function of a
stationary time series using a fixed sequence of weights given the modified
periodogram of the appropriately centered and padded data

{
~

} , ,X t Nt  for = 1 K

The routine PFFT (page 723) may be used to obtain the modified periodogram

I
n N X k, ,
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over the discrete set of nonnegative frequencies
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(Here, a means the greatest integer less than or equal to a.) The symmetry of the
periodogram is used to recover the ordinates at negative frequencies.

Consider the sequence of m = NWT weights {wM} for j = −m/2, …, (m − m/2 − 1)

where ∑MwM = 1. These weights are fixed in the sense that they do not depend on

the frequency ω at which to estimate the nonnormalized spectral density h;(ω).
The estimate of the nonnormalized spectral density is computed according to
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and k(ω) is the integer such that ωN,0 is closest to ω. The weights specified by
argument WT may be relative since they are normalized to sum to one in the actual
computation of
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$ ( )hX ω

Usually, m is odd with the weights symmetric about the middle weight w0. If m is
even, the weight to the right of the middle is considered w0. Note that
periodogram ordinate

I
n N X, ,

~ ( )0

is replaced by

I
n N X, ,

~ ω11 6
and the sum reflects at each end.

The nonnormalized spectral density estimate is computed over the set of
frequencies

ω = ƒL, i = 1, …, n�
where nI = NF. These frequencies are in the scale of radians per unit time. The

time sampling interval ∆t is assumed to be equal to one.

Approximate confidence intervals for h(ω) can be computed using formulas given
in the introduction.

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Application of routine SWEP to these data produces the following results:

      INTEGER    LDPM, LDRDAT, N, NDRDAT, NF, NOBS, NPAD, NWT
      PARAMETER  (LDRDAT=176, NDRDAT=2, NF=20, NOBS=100, NWT=7,
     &           NPAD=NOBS-1, LDPM=(NOBS+NPAD)/2+1, N=NOBS+NPAD)
C
      INTEGER    I, IFSCAL, IPRINT, IPVER, NROW, NVAR
      REAL       ASIN, F(NF), PI, PM(LDPM,5), RDATA(LDRDAT,NDRDAT),
     &           FLOAT, SM(NF,2), SSUM, SX(NF), TINT, WT(NWT), X(NOBS),
     &           XCNTR
      CHARACTER  CLABEL(3)*30, FMT*20, RLABEL(1)*4, TITLE*28
      INTRINSIC  ASIN, FLOAT
      EXTERNAL   GDATA, PFFT, SCOPY, SSUM, SWEP, WRRRL
C
      EQUIVALENCE (X(1), RDATA(22,2))
C
      DATA WT/1., 2., 3., 4., 3., 2., 1./
      DATA IPRINT/0/, TINT/1.0/, IPVER/1/, IFSCAL/0/
      DATA FMT/’(F9.4)’/
      DATA CLABEL/’     ’, ’%/Frequency’, ’Spectral%/Estimates’/
      DATA RLABEL/’NONE’/
      DATA TITLE/’Results of Spectral Analysis’/
C                                 Initialization
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
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   10 CONTINUE
C                                 Wolfer Sunspot Data for years
C                                 1770 through 1869
      CALL GDATA (2, 0, NROW, NVAR, RDATA, LDRDAT, NDRDAT)
C                                 Compute mean
      XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)
C                                 Compute modified periodogram
      CALL PFFT (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, IPVER, PM, LDPM)
C
C                                 Compute spectral density
      CALL SWEP (N, PM(1,3), NF, F, NWT, WT, SX)
C
C                                 Print results
C
C                                 Copy the frequencies to the output
C                                 matrix
      CALL SCOPY (NF, F, 1, SM(1,1), 1)
C                                 Copy the spectral estimates to the
C                                 output matrix
      CALL SCOPY (NF, SX, 1, SM(1,2), 1)
C                                 Call printing routine
      CALL WRRRL (TITLE, NF, 2, SM, NF, 0, FMT, RLABEL, CLABEL)
C
      END

Output
Results of Spectral Analysis
            Spectral
Frequency  Estimates
   0.1571   710.8386
   0.3142   116.3940
   0.4712   937.1508
   0.6283  1209.8268
   0.7854   538.9236
   0.9425    84.9561
   1.0996   128.0791
   1.2566    55.0304
   1.4137    40.2022
   1.5708    46.4240
   1.7279    21.0053
   1.8850    12.1449
   2.0420     8.8654
   2.1991     7.2589
   2.3562     6.8078
   2.5133     3.3873
   2.6704     3.9504
   2.8274     5.7418
   2.9845     4.4652
   3.1416     4.1216

CPFFT/DCPFFT (Single/Double precision)
Compute the cross periodogram of two stationary time series using a fast Fourier
transform.
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Usage
CALL CPFFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL,
            IPVER, CPM, LDCPM)

Arguments

NOBS — Number of observations in each stationary time series X and Y.   (Input)
NOBS must be greater than or equal to two.

X — Vector of length NOBS containing the first stationary time series.   (Input)

Y — Vector of length NOBS containing the second stationary time series.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the periodogram, cosine and sine series, and the real and imaginary

components of the cross periodogram.

XCNTR — Constant used to center the time series X.   (Input)

YCNTR — Constant used to center the time series Y.   (Input)

NPAD — Number of zeroes used to pad each centered time series.   (Input)
NPAD must be greater than or equal to zero. The length of each centered and
padded time series is N = NOBS + NPAD.

IFSCAL — Option for frequency scale.   (Input)

IFSCAL Action
0 Frequency in radians per unit time
1 Frequency in cycles per unit time

IPVER — Option for version of the periodogram.   (Input)

IPVER Action
0 Compute usual periodogram.
1 Compute modified periodogram.

Refer to the algorithm section for further details.

CPM — (N/2 + 1) by 10 matrix containing a summarization of the results of the
cross periodogram analysis.   (Output)
For k = 0, 1, …, N/2, the (k + 1)-st element of the j-th column of CPM is defined
as

Col. Description
1 Frequency, ωN where ωN = 2πk/N for IFSCAL = 0 or ωN = k/N for

IFSCAL = 1.
2 Period, pN where pN = 2π/ωN for IFSCAL = 0 and pN = 1/ωN�for IFSCAL =

1. If ωN = 0, pN is set to missing.
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3 X periodogram ordinate, I;(ωN)
4 X cosine transformation coefficient, A;(ωN)
5 X sine transformation coefficient, B;(ωN)
6 Y periodogram ordinate, I<(ωN)
7 Y cosine transformation coefficient, A<(ωN)
8 Y sine transformation coefficient, B<(ωN)
9 Real part of the XY cross periodogram ordinate I;<(ωN).
10 Imaginary part of the XY cross periodogram ordinate I;<(ωN).

LDCPM — Leading dimension of CPM exactly as specified in the dimension
statement of the calling program.   (Input)
LDCPM must be greater than or equal to N/2 + 1.

Comments

1. Automatic workspace storage is

CPFFT 10N + 15 units, or
DCPFFT 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
C2FFT/DC2FFT. The reference is

CALL C2FFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD,
            IFSCAL, IPVER, CPM, LDCPM, CX, COEF,
            WFFTC, CPY)

The additional arguments are as follows:

CX — Complex work vector of length N.

COEF — Complex work vector of length N.

WFFTC — Work vector of length 4N + 15.

CPY — Work vector of length 2N.
2. The centered and padded time series are defined by

CX(j) = X(j) − XCNTR for j = 1, …, NOBS
CX(j) = 0       for j = NOBS + 1, …, N
and
CY(j) = Y(j) − YCNTR for j = 1, …, NOBS
CY (j) = 0      for j = NOBS + 1, …, N
where N = NOBS + NPAD.

3. The cross periodogram I;<(ω) is complex valued in general. The relation

I;<(−ω) = conj(I;<(ω)) for w > 0.0 recovers the cross periodogram for

negative frequencies since real(I;<(−ω)) = real(I;<(ω)) and imag(I;<(−
ω)) = −imag(I;<(ω)). The periodogram I(ω) is an even function of the

frequency ω. The relation I(−ω) = I(ω) for ω > 0.0 recovers the
periodogram for negative frequencies.
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4. Since cos(ω) is an even function of ω and sin(ω) is an odd function of ω,
the cosine and sine transformations, respectively, satisfy
A(−ω) = A(ω) and B(−ω) = −B(ω) for ω > 0.0. Similarly, the complex
Fourier coefficients, stored in COEF, satisfy COEF(−ω) = conj(COEF(ω)).

5. Computation of the 2 * NOBS − 1 cross-covariances of X and Y using the
inverse Fourier transform of the cross periodogram requires
NPAD = NOBS − 1.

Algorithm

Routine CPFFT computes the cross periodogram of two jointly stationary time
series given a sample of n = NOBS observations {XW} and {YW} for t = 1, 2, …, n.

Let

{
~
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represent the centered and padded data where

~ $ , ,

( ), ,
Y

Y t n

t n Nt
t Y=

− =
= +

%&'
µ 1

0 1

K

K

and

$µY = YCNTR

is determined by

$µ
µ µ

µY

Y Y

t
t

n

Yn
Y=

%
&K
'K =

∑
known

1
unknown

1



754 • Chapter 8: Time Series Analysis and Forecasting IMSL STAT/LIBRARY

The periodogram of the sample sequence {XW}, t = 1, …, n computed with the
padded sequence

{
~

} , ,X t Nt  for = 1 K

is defined by

I A B
n N X k X k X k, ,

~ ~ ~( ) ( ) ( )ω ω ω= +2 2
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~
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~
)ω ω=

=
∑1 2

1
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represent the
~
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cosine and sine transforms, respectively, and K is the scale factor

K n

n

=
%
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'K

2

1

2

for the usual periodogram,

for the modified periodogram
π

The periodogram of the sample sequence {YW}, t = 1, …, n computed with the
padded sequence

{
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is defined by
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cosine and sine transforms, respectively. Since the periodogram is an even
function of the frequency, it is sufficient to estimate the periodogram at the
discrete set of nonnegative frequencies

ω π
k

k

N
k N= =2

0 1 2, , ,K

(Here, a means the greatest integer less than or equal to a). The routine PFFT
(page 723) is used to compute the periodograms of both

{
~

} {
~

}X Yt t and 

according to the version specified by the argument IPVER. The computational
formula for the cross periodogram is given by

I I i I
n N XY k n N XY k n N XY k, ,

~~
, ,

~~
, ,

~~( ) ( ) ( )ω ω ω= ℜ + ℑJ L J L
where

ℜ = +I A A B B
n N XY k X k Y k X k Y k, ,

~~ ~ ~ ~ ~( ) ( ) ( ) ( ) ( )ω ω ω ω ωJ L
and

ℑ = −I A B B A
n N XY k X k Y k X k Y k, ,

~~ ~ ~ ~ ~( ) ( ) ( ) ( ) ( )ω ω ω ω ωJ L
The real part of the (modified) cross periodogram represents the ’raw’ sample
cospectrum and the negative of the imaginary part of the (modified) cross
periodogram represents the ‘raw’ sample quadrature spectrum (Priestley 1981,
page 695). The relationship between the cross periodogram and its complex
conjugate is given by

I I
n N XY k n N XY k k, ,

~~
, ,

~~( ) ( ),− ≡ ≤ ≤∗ω ω ω π0

and may be used to recover the cross periodogram at negative frequencies.

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967,
page 204) where X is the Wölfer sunspot number and Y is the northern light
activity for the time period from 1770 through 1869. Application of routine
CPFFT to these data produces the following results. Note that CPFFT sets CPM (1,
2) to the missing value code via routine AMACH (page 1334). The printing of CPM
(1, 2) depends on the computer.

      INTEGER    IPRINT, LDCPM, LDRDAT, NDRDAT, NOBS, NPAD
      PARAMETER  (IPRINT=0, LDRDAT=100, NDRDAT=4, NOBS=100,
     &           NPAD=NOBS-1, LDCPM=(NOBS+NPAD)/2+1)
C
      INTEGER    IFSCAL, IPVER, NRCOL, NRROW
      REAL       CPM(LDCPM,10), FLOAT, RDATA(LDRDAT,NDRDAT), SSUM,
     &           X(NOBS), XCNTR, Y(NOBS), YCNTR
      CHARACTER  CLABEL1(6)*9, CLABEL2(6)*9, FMT*7, RLABEL(1)*6,
     &           TITLE*41
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      INTRINSIC  FLOAT
      EXTERNAL   CPFFT, GDATA, SSUM, WRRRL
C
      EQUIVALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))
C
      DATA TITLE/’Results of the Cross Periodogram Analysis’/
      DATA FMT/’(F10.3)’/
      DATA CLABEL1/’k+1’, ’w(k)’, ’p(k)’, ’IX(w(k))’, ’AX(w(k))’,
     &     ’BX(w(k))’/
      DATA CLABEL2/’k+1’, ’IY(w(k))’, ’AY(w(k))’, ’BY(w(k))’,
     &     ’Real IXY’, ’Imag. IXY’/
      DATA RLABEL/’NUMBER’/
C
C                                 Robinson Data
      CALL GDATA (8, 0, NRROW, NRCOL, RDATA, LDRDAT, NDRDAT)
C                                 Center on arithmetic means
      XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)
      YCNTR = SSUM(NOBS,Y,1)/FLOAT(NOBS)
C                                 Frequency in radians per unit time
      IFSCAL = 0
C                                 Modified periodogram version
      IPVER = 1
C                                 Compute the cross periodogram
      CALL CPFFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL,
     &            IPVER, CPM, LDCPM)
C
C                                 Print results (First 10 rows)
      CALL WRRRL (TITLE, 10, 5, CPM, LDCPM, 0, FMT, RLABEL, CLABEL1)
      CALL WRRRL (’%/’, 10, 5, CPM(1,6), LDCPM, 0, FMT, RLABEL,
     &            CLABEL2)
C
      END

Output
          Results of the Cross Periodogram Analysis
k+1        w(k)        p(k)    IX(w(k))    AX(w(k))    BX(w(k))
  1       0.000         NaN       0.000       0.000       0.000
  2       0.032     199.000     184.159       3.742     -13.044
  3       0.063      99.500    1364.408      35.457     -10.354
  4       0.095      66.333    2433.933      29.411      39.610
  5       0.126      49.750    1351.002     -21.749      29.631
  6       0.158      39.800     140.421     -11.716      -1.773
  7       0.189      33.167      44.117      -4.671       4.722
  8       0.221      28.429     121.186     -11.003      -0.343
  9       0.253      24.875     176.275      -4.782     -12.386
 10       0.284      22.111     144.867      10.038      -6.642

k+1    IY(w(k))    AY(w(k))    BY(w(k))    Real IXY   Imag. IXY
  1       0.000       0.000       0.000       0.000       0.000
  2    1689.212     -37.480     -16.866      79.776    -552.014
  3    4113.003      41.232     -49.122    1970.577   -1314.779
  4    3255.785      44.214      36.068    2729.031    -690.474
  5    1757.663      -8.162      41.122    1396.006    -652.513
  6    1002.050     -30.107       9.778     335.410    -167.954
  7      62.360      -6.825       3.972      50.636      13.678
  8    1481.396     -38.096       5.487     417.288     -73.451
  9    1274.161     -17.176     -31.291     469.704     -63.095
 10     488.479     -12.442     -18.267      -3.570    -265.992
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CSSWD/DCSSWD (Single/Double precision)
Estimate the nonnormalized cross-spectral density of two stationary time series
using a spectral window given the time series data.

Usage
CALL CSSWD (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL,
            NF, F, TINT, ISWVER, NM, M, CPM, LDCPM, CSM,
            LDCSM)

Arguments

NOBS — Number of observations in each stationary time series X and Y.   (Input)
NOBS must be greater than or equal to two.

X — Vector of length NOBS containing the first stationary time series.   (Input)

Y — Vector of length NOBS containing the second stationary time series.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the cross periodogram and cross-spectral density estimate based on

a specified version of a spectral window for a given set of spectral
window parameters.

XCNTR — Constant used to center the time series X.   (Input)

YCNTR — Constant used to center the time series Y.   (Input)

NPAD — Number of zeroes used to pad each centered time series.   (Input)
NPAD must be greater than or equal to zero. The length of each centered and
padded time series is N = NOBS + NPAD.

IFSCAL — Option for frequency scale.   (Input)

IFSCAL Action
0 Frequency in radians per unit time.
1 Frequency in cycles per unit time.

NF — Number of frequencies at which to evaluate the cross-spectral density
estimate.   (Input)

F — Vector of length NF containing the frequencies at which to evaluate the
cross-spectral density estimate.   (Input)
The units of F correspond to the scale specified by IFSCAL. The elements of F
must be in the range (−π/TINT, π/TINT), inclusive, for IFSCAL = 0 and
(−1/(2 * TINT), 1/(2 * TINT)), inclusive, for IFSCAL = 1.
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TINT — Time interval at which the series are sampled.   (Input)
For a discrete parameter process, usually TINT = 1. For a continuous parameter
process, TINT > 0. TINT is used to adjust the cross-spectral density estimate.

ISWVER — Option for version of the spectral window.   (Input)

ISWVER Action
1 Modified Bartlett
2 Daniell
3 Tukey-Hamming
4 Tukey-Hanning
5 Parzen
6 Bartlett-Priestley

Refer to the “Algorithm” section for further details.

NM — Number of spectral window parameters M used to compute the cross-
spectral density estimate for a given spectral window version.   (Input)
NM must be greater than or equal to one.

M — Vector of length NM containing the values of the spectral window parameter
M.   (Input)
For the Parzen spectral window (ISWVER = 5), all values of the spectral window
parameters M must be even.

CPM — (N/2 + 1) by 10 matrix containing a summarization of the cross
periodogram analysis.   (Output)
For k = 0, 1, …, N/2, the (k + 1)-st element of the j-th column of CPM is defined
as

Col. Description
1 Frequency, ωN�where ωN�= 2πk/N for IFSCAL = 0 or ωN�= k/N for

IFSCAL = 1.
2 Period, pN where pN = 2π/ωN�for IFSCAL = 0 and pN = 1/ωN�for IFSCAL =

1. If ωN�= 0, pN is set to missing.

3 X periodogram ordinate, I;(ωk)

4 X cosine transformation coefficient, A;(ωN)
5 X sine transformation coefficient, B;(ωN)
6 Y periodogram ordinate, I<(ωN)
7 Y cosine transformation coefficient, A<(ωN)
8 Y sine transformation coefficient, B<(ωN)
9 Real part of the XY cross periodogram ordinate I;<(ωN).
10 Imaginary part of the XY cross periodogram ordinate I;<(ωN).

Note N = NOBS + NPAD.

LDCPM — Leading dimension of CPM exactly as specified in the dimension
statement of the calling program.   (Input)
LDCPM must be greater than or equal to N/2, + 1.
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CSM — NF by (NM * 7 + 2) matrix containing a summarization of the cross-
spectral analysis.   (Output)
The k-th element of the j-th column of CSM is defined as

Col. Description
1 Frequency, F(k).
2 Period, pN where pN = 2π/F(k) for IFSCAL = 0 and pN = 1/F(k) for

IFSCAL = 1. If F(k) = 0, pN is set to missing.
3 X spectral density estimate at F(k) using the spectral window parameter

M(1).
4 Y spectral density estimate at F(k) using the spectral window parameter

M(1).
5 Cospectrum estimate at F(k) using the spectral window parameter M(1).
6 Quadrature spectrum estimate at F(k) using the spectral window

parameter M(1).
7 Cross-amplitude spectrum estimate at F(k) using the spectral window

parameter M(1).
8 Phase spectrum estimate at F(k) using the spectral window parameter

M(1).
9 Coherence estimate at F(k) using the spectral window parameter M(1).

.

.

.

NM * 7 + 2 Coherence estimate at F(k) using the spectral window parameter
M(NM).

where k = 1, …, NF.

LDCSM — Leading dimension of CSM exactly as specified in the dimension
statement of the calling program.   (Input)
LDCSM must be greater than or equal to NF.

Comments

1. Automatic workspace storage is

CSSWD 10N + 15 units, or
DCSSWD 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
C2SWD/DC2SWD. The reference is

CALL C2SWD (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD,
            IFSCAL, NF, F, TINT, ISWVER, NM, M, CPM,
            LDCPM, CSM, LDCSM, CX, COEF, WFFTC, CPY)

The additional arguments are as follows:

CX — Complex work vector of length N.   (Output)

COEF — Complex work vector of length N.   (Output)
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WFFTC — Vector of length 4N + 15.

CPY — Vector of length 2N.

2. The centered and padded time series are defined by
CX(j) = X(j)XCNTR for j = 1, …, NOBS
CX(j) = 0       for j = NOBS + 1, …, N
and
CY(j) = Y(j)YCNTR for j = 1, …, NOBS
CY(j) = 0       for j = NOBS + 1, …, N

where N = NOBS + NPAD.

3. The normalized cross-spectral density estimate is obtained by dividing
the nonnormalized cross-spectral density estimate in matrix CSM by the
product of the estimated standard deviation of X and the estimated
standard deviation of Y.

Algorithm

Routine CSSWD estimates the nonnormalized cross-spectral density function of
two jointly stationary time series using a spectral window given a sample of
n = NOBS observations {XW} and {YW} for t = 1, 2, …, n.

Let
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$µY = YCNTR

is determined by
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The modified periodogram of
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cosine and sine transforms, respectively, and K is the scale factor equal to
1/(2πn). The modified periodogram of
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~
Yt

cosine and sine transforms, respectively. Since the periodogram is an even
function of the frequency, it is sufficient to estimate the periodogram at the
discrete set of nonnegative frequencies

ω π
k

k

N
k N= =2

0 1 2, , , ,K

The routine PFFT (page 723) is used to compute the modified periodograms of
both

{
~

} {
~

}X Yt t and 

The computational formula for the cross periodogram is given by
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The routine CPFFT (page 750) is used to compute the modified cross
periodogram between
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}X Yt t and 

The nonnormalized spectral density of XW is estimated by
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and the nonnormalized spectral density of YW is estimated by
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where the spectral window WQ(θ) is specified by argument ISWVER. The

following spectral windows WQ(θ) are available.

Modified Bartlett
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where F0(θ) corresponds to the Fejér kernel of order M.
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Daniell
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0 otherwise

Tukey
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where D0(θ) represents the Dirichlet kernel. The Tukey-Hamming window is
obtained when a = 0.23, and the Tukey-Hanning window is obtained when
a = 0.25.

Parzen
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where M is even. If M is odd, then M + 1 is used instead of M in the above
formula.

Bartlett-Priestley
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The argument NM specifies the number of window parameters M and, hence,
corresponds to the number of spectral density estimates to be computed for a
given spectral window. Note that the same spectral window WQ(θ) and set of
parameters M are used to obtain both

$ ( ) $ ( )h hX Yω ωand

The above spectral density formulas assume the data {XW} and {YW} correspond to
a realization of a bivariate discrete-parameter stationary process observed
consecutively in time. In this case, the observations are equally spaced in time
with interval ∆t = TINT equal to one. However, if the data correspond to a
realization of a bivariate continuous-parameter stationary process recorded at
equal time intervals, then the spectral density estimates must be adjusted for the
effect of aliasing. In general, the estimate of h;(ω) is given by

$ ( ) $ ( ), /h t h tX Xω ω ω π= ≤∆ ∆

and the estimate of h<(ω) is given by

$ ( ) $ ( ), /h t h tY Yω ω ω π= ≤∆ ∆
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The nonnormalized spectral density is estimated over the set of frequencies

ω = fL, i = 1, …, nI

where nI = NF. These frequencies are in the scale specified by the argument
IFSCAL but are transformed to the scale of radians per unit time for
computational purposes. The frequency ω of the desired spectral estimate is
assumed to be input in a form already adjusted for the time interval ∆t.

The cross-spectral density function is complex-valued in general and may be
written in the following form:

h c iqXY XY XY( ) ( ) ( )ω ω ω= −
The cospectrum is estimated by
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and the quadrature spectrum is estimated by
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Note that the same spectral window WQ(θ) and window parameter M used to
derive

$ ( ) $ ( )h hX Yω ωand

are also used to compute

$hXY ω0 5
The nonnormalized cross-spectral density estimate is computed over the same set
of frequencies as the nonnormalized spectral density estimates with a similar
adjustment for ∆t.

An equivalent representation of h;<(ω) is the polar form defined by

h eXY XY
i XY( ) ( ) ( )ω α ω φ ω=

The cross-amplitude spectrum is estimated by

$ ( ) $ ( ) $ ( )α ω ω ωXY XY XYc q= +2 2 1 2= B
and the phase spectrum is estimated by

$ ( ) $ ( ) / $ ( )φ ω ω ωXY XY XYq c= −tan-1; @
Finally, the coherency spectrum is estimated by
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The coherence or squared coherency is output.

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967,
page 204) where X is the Wölfer sunspot number and Y is the northern light
activity for the time period from 1770 through 1869. Application of routine
CSSWD to these data produces the following results:

      INTEGER    IPRINT, LDCPM, LDCSM, LDRDAT, N, NDRDAT, NF, NM,
     &           NOBS, NPAD
      PARAMETER  (IPRINT=0, LDRDAT=100, NDRDAT=4, NF=10, NM=2,
     &           NOBS=100, LDCSM=NF, NPAD=NOBS-1, N=NOBS+NPAD,
     &           LDCPM=N/2+1)
C
      INTEGER    I, IFSCAL, ISWVER, J, JPT, M(NM), NOUT, NRCOL, NRROW
      REAL       ASIN, CPM(LDCPM,10), CSM(LDCSM,NM*7+2), F(NF), FLOAT,
     &           PI, RDATA(LDRDAT,NDRDAT), SSUM, TINT, X(NOBS), XCNTR,
     &           Y(NOBS), YCNTR
      CHARACTER  CLABEL1(3)*9, CLABEL2(6)*16, FMT*7, RLABEL(1)*6,
     &           TITLE*80
      INTRINSIC  ASIN, FLOAT
      EXTERNAL   CSSWD, GDATA, SSUM, UMACH, WRRRL
C
      EQUIVALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))
C
      DATA FMT/’(F10.4)’/
      DATA CLABEL1/’ k’, ’Frequency’, ’Period’/
      DATA CLABEL2/’%/ k’, ’%/Cospectrum’, ’%/Quadrature’,
     &     ’Cross%/Amplitude’, ’%/Phase’, ’%/Coherence’/
      DATA RLABEL/’NUMBER’/
C                                 Initialization
      CALL UMACH (2, NOUT)
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
   10 CONTINUE
C                                 Robinson Data
      CALL GDATA (8, 0, NRROW, NRCOL, RDATA, LDRDAT, NDRDAT)
C                                 Center on arithmetic means
      XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)
      YCNTR = SSUM(NOBS,Y,1)/FLOAT(NOBS)
C                                 Frequency in radians per unit time
      IFSCAL = 0
C                                 Spectral window parameters
      M(1) = 10
      M(2) = 30
C                                 Time interval for discrete data
      TINT = 1.0
C                                 Compute cross-spectral density
C                                 using the Parzen window
      ISWVER = 5
      CALL CSSWD (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL, NF,
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     &            F, TINT, ISWVER, NM, M, CPM, LDCPM, CSM, LDCSM)
C                                 Print results
      TITLE = ’Cross-Spectral Analysis Using Parzen Window’
      CALL WRRRL (TITLE, NF, 2, CSM, LDCSM, 0, FMT, RLABEL, CLABEL1)
      DO 20  J=1, NM
         JPT   = 7*(J-1) + 5
         TITLE = ’%/Results of the Cross-Spectral Analysis With ’//
     &           ’Spectral Window Parameter M = ’
         WRITE (TITLE(77:78),’(I2)’) M(J)
         CALL WRRRL (TITLE, NF, 5, CSM(1,JPT), LDCSM, 0, FMT, RLABEL,
     &               CLABEL2)
   20 CONTINUE
C
      END

Output
Cross-Spectral Analysis Using Parzen Window
         k   Frequency      Period
         1      0.3142     20.0000
         2      0.6283     10.0000
         3      0.9425      6.6667
         4      1.2566      5.0000
         5      1.5708      4.0000
         6      1.8850      3.3333
         7      2.1991      2.8571
         8      2.5133      2.5000
         9      2.8274      2.2222
        10      3.1416      2.0000

Results of the Cross-Spectral Analysis With Spectral Window Parameter M = 10
                                         Cross
         k  Cospectrum  Quadrature   Amplitude       Phase   Coherence
         1    463.5888    -65.9763    468.2600      0.1414      0.2570
         2    286.5450    -75.0209    296.2029      0.2561      0.1710
         3    150.1073    -57.8263    160.8604      0.3677      0.1438
         4     52.9840    -32.3642     62.0866      0.5483      0.0998
         5     21.5435    -15.0888     26.3020      0.6110      0.0794
         6     21.4228     -9.8188     23.5658      0.4298      0.1716
         7     15.7005     -5.3704     16.5936      0.3296      0.2112
         8      8.0118     -1.8887      8.2314      0.2315      0.1272
         9      2.7682      0.2007      2.7754     -0.0724      0.0446
        10      0.5777      0.1008      0.5864     -0.1727      0.0091

Results of the Cross-Spectral Analysis With Spectral Window Parameter M = 30
                                         Cross
         k  Cospectrum  Quadrature   Amplitude       Phase   Coherence
         1    169.7542   -193.4384    257.3615      0.8505      0.1620
         2    452.6187     32.3813    453.7755     -0.0714      0.2213
         3     94.5221    -90.8159    131.0800      0.7654      0.2629
         4     -0.2096     -6.1127      6.1163      1.6051      0.0019
         5     27.4711    -22.1946     35.3166      0.6796      0.2492
         6     29.1329     -4.0128     29.4080      0.1369      0.3170
         7     11.2058     -9.3403     14.5881      0.6948      0.2594
         8      8.0017      0.8813      8.0501     -0.1097      0.1928
         9     -0.4199      2.2893      2.3275     -1.7522      0.0468
        10      0.5570     -1.0767      1.2123      1.0934      0.0678
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CSSWP/DCSSWP (Single/Double precision)
Estimate the nonnormalized cross-spectral density of two stationary time series
using a spectral window given the spectral densities and cross periodogram.

Usage
CALL CSSWP (N, SX, SY, CPREAL, CPIMAG, NF, F, ISWVER, M,
            COSPEC, QUADRA, CRAMPL, PHASE, COHERE)

Arguments

N — Number of observations in each of the appropriately centered and padded
time series X and Y.   (Input)
N must be greater than or equal to two.

SX — Vector of length NF containing the estimate of the spectral density of the
first time series X.   (Input)

SY — Vector of length NF containing the estimate of the spectral density of the
second time series Y.   (Input)

CPREAL — Vector of length N/2 + 1 containing the real part of the cross
periodogram between X and Y.   (Input)
The real part of the cross periodogram evaluated at (angular) frequency
wN = 2πk/N is given by CPREAL(k + 1), k = 0, 1, …, N/2.

CPIMAG — Vector of length N/2 + 1 containing the imaginary part of the
cross periodogram between X and Y.   (Input)
The imaginary part of the cross periodogram evaluated at (angular) frequency
wN = 2πk/N is given by CPIMAG(k + 1), k = 0, 1, …, N/2.

NF — Number of (angular) frequencies.   (Input) NF must be greater than or
equal to one.

F — Vector of length NF containing the (angular) frequencies at which the
spectral and cross-spectral densities are estimated.   (Input)
The elements of F must be in the range (−π, π) inclusive.

ISWVER — Option for version of the spectral window.   (Input)

SWVER Action
1 Modified Bartlett
2 Daniell
3 Tukey-Hamming
4 Tukey-Hanning
5 Parzen
6 Bartlett-Priestley

Refer to the “Algorithm” section for further details.
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M — Spectral window parameter.   (Input)
M must be greater than or equal to one and less than N. For the Parzen spectral
window (ISWVER = 5), the spectral window parameter M must be even.

COSPEC — Vector of length NF containing the estimate of the cospectrum.
(Output)

QUADRA — Vector of length NF containing the estimate of the quadrature
spectrum.   (Output)

CRAMPL — Vector of length NF containing the estimate of the cross-amplitude
spectrum.   (Output)

PHASE — Vector of length NF containing the estimate of the phase spectrum.
(Output)

COHERE — Vector of length NF containing the estimate of the coherence or
squared coherency.   (Output)

Comments

1. The periodograms of X and Y and cross periodogram between X and Y
may be computed using the routine CPFFT (page 750). The spectral
densities of X and Y may then be estimated using any of the routines
SSWD (page 729), SWED (page 741), SSWP (page 736), or SWEP

(page 747). Thus, different window types and/or weight sequences may
be used to estimate the spectral and cross-spectral densities given either
the series or their periodograms. Note that use of the modified
periodograms and modified cross periodogram ensures that the scale of
the spectral and cross-spectral densities and their estimates is equivalent.

2 The time sampling interval, TINT , is assumed to be equal to one. This
assumption is appropriate for discrete parameter processes. The
adjustment for continuous parameter processes (TINT  > 0.0) involves
multiplication of the frequency vector F by 1/TINT  and multiplication of
the spectral and cross-spectral density estimates by TINT .

3. To convert the frequency scale from radians per unit time to cycles per
unit time, multiply F by 1/(2π).

Algorithm

Routine CSSWP estimates the nonnormalized cross-spectral density function of
two jointly stationary time series using a spectral window given the modified
cross-periodogram and spectral densities of the appropriately centered and
padded data

{
~

} {
~

}X Yt t and 

for t = 1, …, N.
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The routine CPFFT (page 750) may be used to compute the modified
periodograms

I I
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~
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and cross periodogram

I
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over the discrete set of nonnegative frequencies

ω π
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N
k N= =2
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(Here, a means the greatest integer less than or equal to a.) Either routine SSWP
(page 736) or routine SWEP (page 747) may be applied to the periodograms to
obtain nonnormalized spectral density estimates

$ $h hX Yω ω0 5 0 5 and 

over the set of frequencies

ω = fL, i = 1, …, nI

where nI = NF. These frequencies are in the scale of radians per unit time. The

time sampling interval ∆t is assumed to be equal to one. Note that the spectral
window or weight sequence used to compute

$ ( )hX ω
may differ from that used to compute

$ ( )hY ω
The cross-spectral density function is complex-valued in general and may be
written as
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The cospectrum is estimated by
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and the quadrature spectrum is estimated by
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where the spectral window WQ(θ) is specified by argument ISWVER. The

following spectral windows WQ(θ) are available.
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Modified Bartlett
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where D0(θ) represents the Dirichlet kernel. The Tukey-Hamming window is
obtained when a = 0.23, and the Tukey-Hanning window is obtained when
a = 0.25.

Parzen
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where M is even. If M is odd, then M + 1 is used instead of M in the above
formula.

Bartlett-Priestley
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Only one window parameter M may be specified so that only one estimate of
h;< (ω) is computed. The nonnormalized cross-spectral density estimate is
computed over the same set of frequencies as the nonnormalized spectral density
estimates discussed above. However, the particular spectral window used to
compute

$hXY ω0 5
need not correspond to either the spectral window or the weight sequence used to
compute either

$ $h hX Yω ω0 5 0 5 or 
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An equivalent representation of h;<(ω) is the polar form defined by

h eXY XY
i XY( ) ( ) ( )ω α ω φ ω=

The cross-amplitude spectrum is estimated by

$ ( ) $ ( ) $ ( )α ω ω ωXY XY XYc q= +2 2 1 2= B
and the phase spectrum is estimated by

$ ( ) $ ( ) / $ ( )φ ω ω ωXY XY XYq c= −tan-1; @
Finally, the coherency spectrum is estimated by
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The coherence or squared coherency is output.

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967,
page 204) where X is the Wölfer sunspot number and Y is the northern light
activity for the years 1770 through 1869. Application of routine CSSWP to these
data produces the following results.

      INTEGER    IPRINT, LDCPM, LDCSM, LDRDAT, N, NDRDAT, NF, NM,
     &           NOBS, NPAD
      PARAMETER  (IPRINT=0, LDRDAT=100, NDRDAT=4, NF=10, NM=2,
     &           NOBS=100, LDCSM=NF, NPAD=NOBS-1, N=NOBS+NPAD,
     &           LDCPM=N/2+1)
C
      INTEGER    I, IFSCAL, IPVER, ISWVER, J, JPT, JST, M(NM), NRCOL,
     &           NRROW
      REAL       ASIN, COHERE(NF), COSPEC(NF), CPIMAG(LDCPM),
     &           CPM(LDCPM,10), CPREAL(LDCPM), CRAMPL(NF),
     &           CSM(LDCSM,7*NM+2), F(NF), FLOAT, P(NF), PHASE(NF),
     &           PI, PX(LDCPM), PY(LDCPM), QUADRA(NF),
     &           RDATA(LDRDAT,NDRDAT), SSUM, SX(NF), SY(NF), X(NOBS),
     &           XCNTR, Y(NOBS), YCNTR
      CHARACTER  CLABEL1(3)*9, CLABEL2(6)*16, FMT*8, RLABEL(1)*6,
     &           TITLE*80
      INTRINSIC  ASIN, FLOAT
      EXTERNAL   CPFFT, CSSWP, GDATA, SCOPY, SSUM, SSWP, WRRRL
C
      EQUIVALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))
      EQUIVALENCE (PX(1), CPM(1,3)), (PY(1), CPM(1,6))
      EQUIVALENCE (CPREAL(1), CPM(1,9)), (CPIMAG(1), CPM(1,10))
      EQUIVALENCE (CSM(1,1), F(1)), (CSM(1,2), P(1))
C
      DATA FMT/’(F12.4)’/
      DATA CLABEL1/’ k’, ’Frequency’, ’Period’/
      DATA CLABEL2/’%/ k’, ’%/Cospectrum’, ’%/Quadrature’,
     &     ’Cross%/Amplitude’, ’%/Phase’, ’%/Coherence’/
      DATA RLABEL/’NUMBER’/
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C                                 Initialization
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
         P(I) = 2.0*FLOAT(NF)/FLOAT(I)
   10 CONTINUE
C                                 Robinson Data
      CALL GDATA (8, 0, NRROW, NRCOL, RDATA, LDRDAT, NDRDAT)
C                                 Center on arithmetic means
      XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)
      YCNTR = SSUM(NOBS,Y,1)/FLOAT(NOBS)
C                                 Frequency in radians per unit time
      IFSCAL = 0
C                                 Modified periodogram version
      IPVER = 1
C                                 Compute cross periodogram
      CALL CPFFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL,
     &            IPVER, CPM, LDCPM)
C                                 Spectral window parameters
      M(1) = 10
      M(2) = 30
C                                 Compute cross-spectral density
C                                 using the Parzen window
C
C                                 Print frequency and period
      TITLE = ’Cross-Spectral Analysis Using Parzen Window’
      CALL WRRRL (TITLE, NF, 2, CSM, LDCSM, 0, FMT, RLABEL, CLABEL1)
      ISWVER = 5
      DO 20  J=1, NM
C                                 Estimate the spectral densities
         CALL SSWP (N, PX, NF, F, ISWVER, M(J), SX)
         CALL SSWP (N, PY, NF, F, ISWVER, M(J), SY)
C                                 Estimate the cross-spectral density
         CALL CSSWP (N, SX, SY, CPREAL, CPIMAG, NF, F, ISWVER, M(J),
     &               COSPEC, QUADRA, CRAMPL, PHASE, COHERE)
C                                 Copy results to output matrices
         JPT = 7*(J-1) + 2
         JST = 7*(J-1) + 5
         CALL SCOPY (NF, SX, 1, CSM(1,JPT+1), 1)
         CALL SCOPY (NF, SY, 1, CSM(1,JPT+2), 1)
         CALL SCOPY (NF, COSPEC, 1, CSM(1,JPT+3), 1)
         CALL SCOPY (NF, QUADRA, 1, CSM(1,JPT+4), 1)
         CALL SCOPY (NF, CRAMPL, 1, CSM(1,JPT+5), 1)
         CALL SCOPY (NF, PHASE, 1, CSM(1,JPT+6), 1)
         CALL SCOPY (NF, COHERE, 1, CSM(1,JPT+7), 1)
C                                 Print results
         TITLE = ’%/Results of the Cross-Spectral Analysis With ’//
     &           ’Spectral Window Parameter M = ’
         WRITE (TITLE(77:78),’(I2)’) M(J)
         CALL WRRRL (TITLE, NF, 5, CSM(1,JST), LDCSM, 0, FMT, RLABEL,
     &               CLABEL2)
   20 CONTINUE
C
      END

Output
Cross-Spectral Analysis Using Parzen Window
       k     Frequency        Period
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       1        0.3142       20.0000
       2        0.6283       10.0000
       3        0.9425        6.6667
       4        1.2566        5.0000
       5        1.5708        4.0000
       6        1.8850        3.3333
       7        2.1991        2.8571
       8        2.5133        2.5000
       9        2.8274        2.2222
      10        3.1416        2.0000

Results of the Cross-Spectral Analysis With Spectral Window Parameter M = 10
                                         Cross
   k    Cospectrum    Quadrature     Amplitude         Phase     Coherence
   1      463.5888      -65.9763      468.2600        0.1414        0.2570
   2      286.5450      -75.0209      296.2029        0.2561        0.1710
   3      150.1073      -57.8263      160.8604        0.3677        0.1438
   4       52.9840      -32.3642       62.0866        0.5483        0.0998
   5       21.5435      -15.0888       26.3020        0.6110        0.0794
   6       21.4228       -9.8188       23.5658        0.4298        0.1716
   7       15.7005       -5.3704       16.5936        0.3296        0.2112
   8        8.0118       -1.8887        8.2314        0.2315        0.1272
   9        2.7682        0.2007        2.7754       -0.0724        0.0446
  10        0.5777        0.1008        0.5864       -0.1727        0.0091

Results of the Cross-Spectral Analysis With Spectral Window Parameter M = 30
                                         Cross
   k    Cospectrum    Quadrature     Amplitude         Phase     Coherence
   1      169.7542     -193.4384      257.3615        0.8505        0.1620
   2      452.6187       32.3813      453.7755       -0.0714        0.2213
   3       94.5221      -90.8159      131.0800        0.7654        0.2629
   4       -0.2096       -6.1127        6.1163        1.6051        0.0019
   5       27.4711      -22.1946       35.3166        0.6796        0.2492
   6       29.1329       -4.0128       29.4080        0.1369        0.3170
   7       11.2058       -9.3403       14.5881        0.6948        0.2594
   8        8.0017        0.8813        8.0501       -0.1097        0.1928
   9       -0.4199        2.2893        2.3275       -1.7522        0.0468
  10        0.5570       -1.0767        1.2123        1.0934        0.0678

CSWED/DCSWED (Single/Double precision)
Estimate the nonnormalized cross-spectral density of two stationary time series
using a weighted cross periodogram given the time series data.

Usage
CALL CSWED (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL,
            NF, F, TINT, NWT, WT, CPM, LDCPM, CSM, LDCSM)

Arguments

NOBS — Number of observations in each stationary time series X and Y.   (Input)
NOBS must be greater than or equal to two.
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X — Vector of length NOBS containing the first stationary time series.   (Input)

Y — Vector of length NOBS containing the second stationary time series.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Print the periodogram, cosine and sine transformations of each centered

and padded time series, the real and imaginary components of the cross
periodogram, and the cross-spectral density estimate based on a
specified weight sequence.

XCNTR — Constant used to center the time series X.   (Input)

YCNTR — Constant used to center the time series Y.   (Input)

NPAD — Number of zeroes used to pad each centered time series.   (Input)
NPAD must be greater than or equal to zero. The length of each centered and
padded time series is N = NOBS + NPAD.

IFSCAL — Option for frequency scale.   (Input)

IFSCAL Action
0 Frequency in radians per unit time.
1 Frequency in cycles per unit time.

NF — Number of frequencies at which to evaluate the cross-spectral density
estimate.   (Input)

F — Vector of length NF containing the frequencies at which to evaluate the
cross-spectral density estimate.   (Input)
The units of F correspond to the scale specified by IFSCAL. The elements of F
must be in the range (−π/TINT, π/TINT) inclusive, for IFSCAL = 0 and (−1/(2 *
TINT), 1/(2 * TINT)) inclusive, for IFSCAL = 1.

TINT — Time interval at which the series are sampled.   (Input)
For a discrete parameter process, usually TINT = 1.0. For a continuous parameter
process, TINT > 0.0. TINT is used to adjust the cross-spectral density estimate.

NWT — Number of weights.   (Input)
NWT must be greater than or equal to one.

WT — Vector of length NWT containing the weights used to smooth the
periodogram.   (Input)
The actual weights are the values in WT normalized to sum to 1 with the current
periodogram ordinate taking the middle weight for NWT odd or the weight to the
right of the middle for NWT even.

CPM — (N/2 + 1) by 10 matrix containing a summarization of the cross
periodogram analysis.   (Output)
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For k = 0, 1, …, N/2, the (k + 1)-st element of the j-th column of CPM is defined
as

Col. Description
1 Frequency, ωN where ωN = 2πk/N for IFSCAL = 0 or ωN = k/N for

IFSCAL = 1
2 Period, pN where pN = 2π/ωk for IFSCAL = 0 and pN = 1/ωN for IFSCAL =

1. If ωN = 0, pN is set to missing.

3 X periodogram ordinate, I;(ωN)
4 X cosine transformation coefficient, A;(ωN)
5 X sine transformation coefficient, B;(ωN)
6 Y periodogram ordinate, I<(ωN)
7 Y cosine transformation coefficient, A<(ωN)
8 Y sine transformation coefficient, B<(ωN)
9 Real part of the XY cross periodogram ordinate I;<(ωN).
10 Imaginary part of the XY cross periodogram ordinate I;<(ωN).

LDCPM — Leading dimension of CPM exactly as specified in the dimension
statement of the calling program.   (Input)
LDCPM must be greater than or equal to N/2 + 1.

CSM — NF by 9 matrix containing a summarization of the cross-spectral analysis.
(Output)
The k-th element of the j-th column of CSM is defined as

Col. Description
1 Frequency, F(k).
2 Period, pN where pN = 2π/F(k) for IFSCAL = 0 and pN = 1/F(k) for

IFSCAL = 1. If F(k) = 0, pN is set to missing.
3 X spectral density estimate at F(k) using the specified relative weights

contained in WT.
4 Y spectral density estimate at F(k) using the specified relative weights

contained in WT.
5 Co-spectrum estimate at F(k) using the specified relative weights

contained in WT.
6 Quadrature spectrum estimate at F(k) using the specified relative weights

contained in WT.
7 Cross-amplitude spectrum estimate at F(k).
8 Phase spectrum estimate at F(k).
9 Coherence estimate at F(k).

where k = 1, …, NF.

LDCSM — Leading dimension of CSM exactly as specified in the dimension
statement of the calling program.   (Input)
LDCSM must be greater than or equal to NF.
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Comments

1. Automatic workspace storage is

CSWED 10N + 15 units, or
DCSWED 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
C2WED/DC2WED. The reference is

CALL C2WED (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD,
            IFSCAL, NF, F, TINT, NWT, WT, CPM,
            LDCPM, CSM, LDCSM, CWK, COEFWK, WFFTC,
            CPY)

The additional arguments are as follows:

CWK — Complex work vector of length N.   (Output)

COEFWK — Complex work vector of length N.   (Output)

WFFTC — Vector of length 4N + 15.

CPY — Vector of length 2N.

2. The normalized cross-spectral density estimate is obtained by dividing
the nonnormalized cross-spectral density estimate in matrix CSM by the
product of the estimated standard deviation of X and the estimated
standard deviation of Y.

Algorithm

Routine CSWED estimates the nonnormalized cross-spectral density function of
two jointly stationary time series using a fixed sequence of weights given a
sample of n = NOBS observations {XW} and {YW} for t = 1, 2, …, n. Let

~
Xt= B

for t = 1, …, N represent the centered and padded data where N = NOBS + NPAD,

~ $ , ,

( ), ,
X

X t n

t n Nt
t X=

− =
= +

%&'
µ 1

0 1

K

K

and

$µ X = XCNTR

is determined by

$
,

,
µ

µ µ

µX

X X

t
t

n

Xn
X

=
%
&K
'K =

∑
known

1
unknown

1

Similarly, let
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{
~

}Yt

for t = 1, …, N represent the centered and padded data where

~ $ , , ,

, ( ), ,
,Y

Y t n

t n Nt
t Y=

− =
= +

%&'
µ 1

0 1

K

K

and

$µY =  YCNTR

is determined by

$
,

,
µ

µ µ

µY

Y Y

t
t

n

Yn
Y

=
%
&K
'K =

∑
known

1
unknown

1

The modified periodogram of

{
~

}Xt

for t = 1, …, N is estimated by

I A B
n N X k X k X k, ,

~ ~ ~( ) ( ) ( )ω ω ω= +2 2

where

A K X t
X k t k

t

N

~ ( )
~

)ω ω=
=
∑1 2

1

cos(

and

B K X t
X k t k

t

N

~ ( )
~

)ω ω=
=
∑1 2

1

sin(

represent the
~
Xt

cosine and sine transforms, respectively, and K is the scale factor equal to
1/(2πn). The modified periodogram of {YW} for t = 1, …, N is estimated by

I A B
n N Y k Y k Y k, ,

~ ~ ~( ) ( ) ( )ω ω ω= +2 2

where

A K Y t
Y k t k

t

N

~ ( )
~

)ω ω=
=
∑1 2

1

cos(

and
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B K Y t
Y k t k

t

N

~ ( )
~

)ω ω=
=
∑1 2

1

sin(

represent the
~
Yt

cosine and sine transforms, respectively. Since the periodogram is an even
function of the frequency, it is sufficient to estimate the periodogram at the
discrete set of nonnegative frequencies

ω π
k

k

N
k N= =2

0 1 2, , , ,K

(Here, a means the greatest integer less than or equal to a). The routine PFFT
(page 723) is used to compute the modified periodograms of both

{
~

} {
~

}X Yt t and 

The computational formula for the cross periodogram is given by

I I i I
n N XY k n N XY k n N XY k, ,

~~
, ,

~~
, ,

~~( ) ( ) ( )ω ω ω= ℜ + ℑJ L J L
where

ℜ = +I A A B B
n N XY k X k Y k X k Y k, ,

~~ ~ ~ ~ ~( ) ( ) ( ) ( ) ( )ω ω ω ω ωJ L
and

ℑ = −I A B B A
n N XY k X k Y k X k Y k, ,

~~ ~ ~ ~ ~( ) ( ) ( ) ( ) ( )ω ω ω ω ωJ L
The routine CPFFT (page 750) is used to compute the modified cross
periodogram between

{
~

} {
~

}X Yt t and 

The nonnormalized spectral density of XW is estimated by

$ ( ) ( )
, ,

~ ,h IX j n N X k j
j

ω ω ω= ∑

and the nonnormalized spectral density of YW is estimated by

$ ( ) ( )
, ,

~ ,h IY j n N Y k j
j

ω ω ω= ∑

where

ω
π ω

k j
k j

N,
( )

=
+2 : ?
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and k(ω) is the integer such that ωN���is closest to ω. The sequence of m = NWT

weights {wM} for j = −m/2, …, (m − m/2 −1) satisfies ∑MwM = 1. These weights

are fixed in the sense that they do not depend on the frequency ω at which to
estimate the spectral density. Usually, m is odd with the weights symmetric about
the middle weight w0. If m is even, the weight to the right of the middle is
considered w0. The argument WT may contain relative weights since they are
normalized to sum to one in the actual computations. The above spectral density
formulas assume the data {XW} and {YW} correspond to a realization of a bivariate
discrete-parameter stationary process observed consecutively in time. In this case,
the observations are equally spaced in time with interval ∆t = TINT equivalent to
one. However, if the data correspond to a realization of a bivariate continuous-
parameter stationary process recorded at equal time intervals, then the spectral
density estimates must be adjusted for the effect of aliasing. In general, the
estimate of h;(ω) is given by

$ ( ) $ ( ), /h t h tX Xω ω ω π= ≤∆ ∆

and the estimate of h<(ω) is given by

$ ( ) $ ( ), /h t h tY Yω ω ω π= ≤∆ ∆ .

The nonnormalized spectral density is estimated over the set of frequencies

ω = ƒL, i = 1, …, n�

where nf = NF. These frequencies are in the scale specified by the argument
IFSCAL but are transformed to the scale of radians per unit time for
computational purposes. The frequency ω of the desired spectral estimate is
assumed to be input in a form already adjusted for the time interval ∆t. The cross-
spectral density function is complex-valued in general and may be written as

h;<(ω) = c;< (ω) − iq;<(ω)

The cospectrum is estimated by

$ ( ) ( )
, ,

~~ ,c w IXY j n N XY k j
j

ω ω= ℜ∑ J L
and the quadrature spectrum is estimated by

$ ( ) ( )
, ,

~~ ,q w IXY j n N XY k j
j

ω ω= ℑ∑ J L
Note that the same sequence of weights {wM} used to estimate

$ ( ) $ ( )h hX Yω ωand

is used to estimate

$ ( ) $ ( )c qXY XYω ωand
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The nonnormalized cross-spectral density estimate is computed over the same set
of frequencies as the nonnormalized spectral density estimates discussed above
with a similar adjustment for ∆t. An equivalent representation of h;<(ω) is the
polar form defined by

h eXY XY
i XY( ) ( ) ( )ω α ω φ ω=

The cross-amplitude spectrum is estimated by

$ ( ) $ ( ) $ ( )α ω ω ωXY XY XYc q= +2 2 1 2= B
and the phase spectrum is estimated by

$ ( ) $ ( ) / $ ( )φ ω ω ωXY XY XYq c= −tan-1> C
Finally, the coherency spectrum is estimated by

$ ( )
$ ( ) $ ( )
$ ( ) $ ( )

w
c w q

h h
XY

XY XY

X Y

ω
ω

ω ω
=

+%&K'K
()K*K

2 2 1 2

The coherence or squared coherency is output.

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967,
page 204) where X is the Wölfer sunspot number and Y is the northern light
activity for the years 1770 through 1869. Application of routine CSWED to these
data produces the following results.

      INTEGER    IPRINT, LDCPM, LDCSM, LDRDAT, N, NDRDAT, NF, NOBS,
     &           NPAD, NWT
      PARAMETER  (IPRINT=0, LDRDAT=100, NDRDAT=4, NF=10, NOBS=100,
     &           NWT=7, LDCSM=NF, NPAD=NOBS-1, N=NPAD+NOBS,
     &           LDCPM=N/2+1)
C
      INTEGER    I, IFSCAL, NRCOL, NRROW
      REAL       ASIN, CPM(LDCPM,10), CSM(LDCSM,9), F(NF), FLOAT, PI,
     &           RDATA(LDRDAT,NDRDAT), SSUM, TINT, WT(NWT), X(NOBS),
     &           XCNTR, Y(NOBS), YCNTR
      CHARACTER  CLABEL1(5)*24, CLABEL2(6)*16, FMT*7, RLABEL(1)*6,
     &           TITLE1*32, TITLE2*40
      INTRINSIC  ASIN, FLOAT
      EXTERNAL   CSWED, GDATA, SSUM, WRRRL
C
      EQUIVALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))
C
      DATA WT/1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0/
      DATA FMT/’(F12.4)’/
      DATA CLABEL1/’%/%/ k’, ’%/%/Frequency’, ’%/%/Period’,
     &     ’Spectral%/Estimate%/of X’, ’Spectral%/Estimate%/of Y’/
      DATA CLABEL2/’%/ k’, ’%/Cospectrum’, ’%/Quadrature’,
     &     ’Cross%/Amplitude’, ’%/Phase’, ’%/Coherence’/
      DATA RLABEL/’NUMBER’/
      DATA TITLE1/’Results of the Spectral Analyses’/
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      DATA TITLE2/’%/Results of the Cross-Spectral Analysis’/
C                                 Initialization
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
   10 CONTINUE
C                                 Robinson data
      CALL GDATA (8, 0, NRROW, NRCOL, RDATA, LDRDAT, NDRDAT)
C                                 Center on arithmetic means
      XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)
      YCNTR = SSUM(NOBS,Y,1)/FLOAT(NOBS)
C                                 Frequency in radians per unit time
      IFSCAL = 0
C                                 Time interval for discrete data
      TINT = 1.0
C                                 Compute the cross periodogram
      CALL CSWED (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL, NF,
     &            F, TINT, NWT, WT, CPM, LDCPM, CSM, LDCSM)
C                                 Print results
      CALL WRRRL (TITLE1, NF, 4, CSM, LDCSM, 0, FMT, RLABEL, CLABEL1)
      CALL WRRRL (TITLE2, NF, 5, CSM(1,5), LDCSM, 0, FMT, RLABEL,
     &            CLABEL2)
C
      END

Output
             Results of the Spectral Analyses
                                    Spectral      Spectral
                                    Estimate      Estimate
 k     Frequency        Period          of X          of Y
 1        0.3142       20.0000      116.9550     1315.8370
 2        0.6283       10.0000     1206.6086     1005.1219
 3        0.9425        6.6667       84.8369      317.2589
 4        1.2566        5.0000       55.2120      270.2111
 5        1.5708        4.0000       46.5748      115.6768
 6        1.8850        3.3333       12.4050      250.0125
 7        2.1991        2.8571        7.0934       82.6773
 8        2.5133        2.5000        3.4091       62.3267
 9        2.8274        2.2222        5.6828       12.8970
10        3.1416        2.0000        4.0346       17.6441

                 Results of the Cross-Spectral Analysis
                                       Cross
 k    Cospectrum    Quadrature     Amplitude         Phase     Coherence
 1       94.0531     -254.0125      270.8659        1.2162        0.4767
 2      702.5118       21.9823      702.8557       -0.0313        0.4073
 3       70.2379      -31.4431       76.9547        0.4209        0.2200
 4       -1.8715      -36.1639       36.2123        1.6225        0.0879
 5       36.6366      -18.5925       41.0843        0.4696        0.3133
 6       32.7071       -6.6569       33.3776        0.2008        0.3592
 7        9.4887       -9.1692       13.1950        0.7683        0.2969
 8        9.2534       -0.3000        9.2583        0.0324        0.4034
 9       -0.5568        2.9455        2.9977       -1.7576        0.1226
10        1.7640       -1.8321        2.5433        0.8043        0.0909
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CSWEP/DCSWEP (Single/Double precision)
Estimate the nonnormalized cross-spectral density of two stationary time series
using a weighted cross periodogram given the spectral densities and cross
periodogram.

Usage
CALL CSWEP (N, SX, SY, CPREAL, CPIMAG, NF, F, NWT, WT,
            COSPEC, QUADRA, CRAMPL, PHASE, COHERE)

Arguments

N — Number of observations in each of the appropriately centered and padded
time series X and Y.   (Input)
N must be greater than or equal to two.

SX — Vector of length NF containing the estimate of the spectral density of the
first time series X.   (Input)

SY — Vector of length NF containing the estimate of the spectral density of the
second time series Y.   (Input)

CPREAL — Vector of length N/2 +1 containing the real part of the cross
periodogram between X and Y.   (Input)
The real part of the cross periodogram evaluated at (angular) frequency
ωN = 2πk/N is given by CPREAL(k + 1), k = 0, 1, …, N/2.

CPIMAG — Vector of length N/2. + 1 containing the imaginary part of the
cross periodogram between X and Y.   (Input)
The imaginary part of the cross periodogram evaluated at (angular) frequency
ωN = 2πk/N is given by CPIMAG(k + 1), k = 0, 1, …, N/2.

NF — Number of (angular) frequencies.   (Input)
F must be greater than or equal to one.

F — Vector of length NF containing the (angular) frequencies at which the
spectral density is estimated.   (Input)
The elements of F must be in the range (−π, π) inclusive.

NWT — Number of weights.   (Input)
NWT must be greater than or equal to one.

WT — Vector of length NWT containing the weights used to smooth the
periodogram.   (Input)
The actual weights are the values in WT normalized to sum to 1 with the current
periodogram ordinate taking the middle weight for NWT odd or the weight to the
right of the middle for NWT even.

COSPEC — Vector of length NF containing the estimate of the cospectrum.
(Output)
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QUADRA — Vector of length NF containing the estimate of the quadrature
spectrum.   (Output)

CRAMPL — Vector of length NF containing the estimate of the cross-amplitude
spectrum.   (Output)

PHASE — Vector of length NF containing the estimate of the phase spectrum.
(Output)

COHERE — Vector of length NF containing the estimate of the coherence.
(Output)

Comments

1. The periodograms of X and Y and cross periodogram between X and Y
may be computed via the routine CPFFT (page 750). The spectral
densities of X and Y may then be estimated using any of the routines
SSWD (page 729), SWED (page 741), SSWP (page 736), or SWEP
(page 747). Thus, different window types and/or weight sequences may
be used to estimate the spectral and cross-spectral densities given either
the series or their periodograms. Note that use of the modified
periodograms and modified cross periodogram ensures that the scales of
the spectral and cross-spectral densities and their estimates are
equivalent.

2 The time sampling interval, TINT, is assumed to be equal to one. This
assumption is appropriate for discrete parameter processes. The
adjustment for continuous parameter processes (TINT > 0.0) involves
multipication of the frequency vector F by 1/TINT and multiplication of
the spectral and cross-spectral density estimates by TINT.

3. To convert the frequency scale from radians per unit time to cycles per
unit time, multiply F by 1/(2π).

Algorithm

Routine CSWEP estimates the nonnormalized cross-spectral density function of
two jointly stationary time series using a fixed sequence of weights given the
modified cross-periodogram and spectral densities of the appropriately centered
and padded data

{
~

}Xt

and

{
~

}Yt

for t = 1, …, N. The routine CPFFT (page 750) may be used to compute the
modified periodograms

I I
n N X k n N Y k, ,

~
, ,

~( ) ( )ω ωand

and cross-periodogram
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I
n N XY k, ,

~~ ( )ω

over the discrete set of nonnegative frequencies

ω π
k

k

N
k N= =2

0 1 2, , , ,K

(Here, a means the greatest integer less than or equal to a.) Either routine SSWP
(page 736) or routine SWEP (page 747) may be applied to the periodograms to
obtain nonnormalized spectral density estimates

$ ( ) $ ( )h hX Yω ωand

over the set of frequencies

ω = ƒL, i = 1, …, n�

where nI = NF. These frequencies are in the scale of radians per unit time. The

time sampling interval ∆t is assumed to be equal to one. Note that the spectral
window or weight sequence used to compute

$hX ω0 5
may differ from that used to compute

$hY ω0 5
The cross-spectral density function is complex-valued in general and may be
written as

h c iqXY XY XY( ) ( ) ( )ω ω ω= −
The cospectrum is estimated by

$ ( ) ( )
, ,

~~ ,c w IXY j n N XY k j
j

ω ω= ℜ∑ J L
and the quadrature spectrum is estimated by

$ ( ) ( )
, ,

~~ ,q w IXY j n N XY k j
j

ω ω= ℑ∑ J L
where

ω
π ω

k j
k j

N,
( )

=
+2 : ?

and k(ω) is the integer such that ωN�� is closest to ω. The sequence of m = NWT

weights {wM} for j = − m/2, …, (m − m/2 − 1) satisfies ∑MwM = 1. These

weights are fixed in the sense that they do not depend on the frequency ω at
which to estimate h;<(ω). Usually, m is odd with the weights symmetric about
the middle weight w0. If m is even, the weight to the right of the middle is
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considered w0. The argument WT may contain relative weights since they are
normalized to sum to one in the actual computations. The nonnormalized cross-
spectral density estimate is computed over the same set of frequencies as the
nonnormalized spectral density estimates. However, the particular weight
sequence used to compute

$ ( )hXY ω
need not correspond to either the weight sequence or spectral window used to
compute either

$ ( ) $ ( )h r hX Yω ωo

An equivalent representation of h;<(ω) is the polar form defined by

h eXY XY
i XY( ) ( ) ( )ω α ω φ ω=

The cross-amplitude spectrum is estimated by

$ ( ) $ ( ) $ ( )α ω ω ωXY XY XYc q= +2 2 1 2= B
and the phase spectrum is estimated by

$ ( ) $ ( ) / $ ( )φ ω ω ωXY XY XYq c= −tan-1> C
Finally, the coherency spectrum is estimated by

$ ( )
$ ( ) $ ( )
$ ( ) $ ( )

w
c q

h h
XY

XY XY

X Y

ω
ω ω

ω ω
=

+%&K'K
()K*K

2 2 1 2

The coherence or squared coherency is output.

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967,
page 204) where X is the Wölfer sunspot number and Y is the northern light
activity for the years 1770 through 1869. Application of routine CSWEP to these
data produces the following results.

      INTEGER    IPRINT, LDCPM, LDCSM, LDRDAT, N, NDRDAT, NF, NOBS,
     &           NPAD, NWT
      PARAMETER  (IPRINT=0, LDRDAT=100, NDRDAT=4, NF=10, NOBS=100,
     &           NWT=7, LDCSM=NF, NPAD=NOBS-1, N=NOBS+NPAD,
     &           LDCPM=N/2+1)
C
      INTEGER    I, IFSCAL, IPVER, NROW, NVAR
      REAL       ASIN, COHERE(NF), COSPEC(NF), CPIMAG(LDCPM),
     &           CPM(LDCPM,10), CPREAL(LDCPM), CRAMPL(NF),
     &           CSM(LDCSM,9), F(NF), FLOAT, PHASE(NF), PI, PX(LDCPM),
     &           PY(LDCPM), QUADRA(NF), RDATA(LDRDAT,NDRDAT), SSUM,
     &           SX(NF), SY(NF), WT(NWT), X(NOBS), XCNTR, Y(NOBS),
     &           YCNTR
      CHARACTER  CLABEL1(5)*24, CLABEL2(6)*16, FMT*8, RLABEL(1)*6,
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     &           TITLE1*32, TITLE2*40
      INTRINSIC  ASIN, FLOAT
      EXTERNAL   CPFFT, CSWEP, GDATA, SCOPY, SSUM, SWEP, WRRRL
C
      EQUIVALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))
      EQUIVALENCE (PX(1), CPM(1,3)), (PY(1), CPM(1,6))
      EQUIVALENCE (CPREAL(1), CPM(1,9)), (CPIMAG(1), CPM(1,10))
C
      DATA WT/1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0/
      DATA FMT/’(F12.4)’/
      DATA CLABEL1/’%/%/ k’, ’%/%/Frequency’, ’%/%/Period’,
     &     ’Spectral%/Estimate%/of X’, ’Spectral%/Estimate%/of Y’/
      DATA CLABEL2/’%/ k’, ’%/Cospectrum’, ’%/Quadrature’,
     &     ’Cross%/Amplitude’, ’%/Phase’, ’%/Coherence’/
      DATA RLABEL/’NUMBER’/
      DATA TITLE1/’Results of the Spectral Analyses’/
      DATA TITLE2/’%/Results of the Cross-Spectral Analysis’/
C                                 Initialization
      PI = 2.0*ASIN(1.0)
      DO 10  I=1, NF
         F(I) = PI*FLOAT(I)/FLOAT(NF)
         CALL SCOPY (NF, F, 1, CSM(1,1), 1)
         CSM(I,2) = 2.0*FLOAT(NF)/FLOAT(I)
   10 CONTINUE
C                                 Robinson data
      CALL GDATA (8, 0, NROW, NVAR, RDATA, LDRDAT, NDRDAT)
C                                 Center on arithmetic means
      XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)
      YCNTR = SSUM(NOBS,Y,1)/FLOAT(NOBS)
C                                 Frequency in radians per unit time
      IFSCAL = 0
C                                 Modified periodogram version
      IPVER = 1
C                                 Compute the cross periodogram
      CALL CPFFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL,
     &            IPVER, CPM, LDCPM)
C                                 Estimate the spectral densities
      CALL SWEP (N, PX, NF, F, NWT, WT, SX)
      CALL SWEP (N, PY, NF, F, NWT, WT, SY)
C                                 Estimate the cross-spectral density
      CALL CSWEP (N, SX, SY, CPREAL, CPIMAG, NF, F, NWT, WT, COSPEC,
     &            QUADRA, CRAMPL, PHASE, COHERE)
C                                 Print results
C
C                                 Copy results to output matrices
      CALL SCOPY (NF, SX, 1, CSM(1,3), 1)
      CALL SCOPY (NF, SY, 1, CSM(1,4), 1)
      CALL SCOPY (NF, COSPEC, 1, CSM(1,5), 1)
      CALL SCOPY (NF, QUADRA, 1, CSM(1,6), 1)
      CALL SCOPY (NF, CRAMPL, 1, CSM(1,7), 1)
      CALL SCOPY (NF, PHASE, 1, CSM(1,8), 1)
      CALL SCOPY (NF, COHERE, 1, CSM(1,9), 1)
C                                 Call printing routines
      CALL WRRRL (TITLE1, NF, 4, CSM, NF, 0, FMT, RLABEL, CLABEL1)
      CALL WRRRL (TITLE2, NF, 5, CSM(1,5), NF, 0, FMT, RLABEL, CLABEL2)
C
      END
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Output
             Results of the Spectral Analyses
                                    Spectral      Spectral
                                    Estimate      Estimate
 k     Frequency        Period          of X          of Y
 1        0.3142       20.0000      116.9550     1315.8370
 2        0.6283       10.0000     1206.6086     1005.1219
 3        0.9425        6.6667       84.8369      317.2589
 4        1.2566        5.0000       55.2120      270.2111
 5        1.5708        4.0000       46.5748      115.6768
 6        1.8850        3.3333       12.4050      250.0125
 7        2.1991        2.8571        7.0934       82.6773
 8        2.5133        2.5000        3.4091       62.3267
 9        2.8274        2.2222        5.6828       12.8970
10        3.1416        2.0000        4.0346       17.6441

                Results of the Cross-Spectral Analysis
                                      Cross
 k    Cospectrum    Quadrature     Amplitude         Phase     Coherence
 1       94.0531     -254.0125      270.8659        1.2162        0.4767
 2      702.5118       21.9823      702.8557       -0.0313        0.4073
 3       70.2379      -31.4431       76.9547        0.4209        0.2200
 4       -1.8715      -36.1639       36.2123        1.6225        0.0879
 5       36.6366      -18.5925       41.0843        0.4696        0.3133
 6       32.7071       -6.6569       33.3776        0.2008        0.3592
 7        9.4887       -9.1692       13.1950        0.7683        0.2969
 8        9.2534       -0.3000        9.2583        0.0324        0.4034
 9       -0.5568        2.9455        2.9977       -1.7576        0.1226
10        1.7640       -1.8321        2.5433        0.8043        0.0909
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Usage Notes
Notation that is consistently used throughout this chapter is given in the following
table. The FORTRAN equivalent of the symbols used are also given.

Notation Used

Symbol FORTRAN
Symbol

Meaning

p NVAR Number of variables in the
observed variables

k NF Number of factors

Σ COV Population (or sample)
covariance (correlation) matrix

A A Unrotated factor loadings

B B Rotated factor loadings

T T Factor rotation matrix

TI Image transformation matrix

β SCOEF Factor score coefficients

The routines in this chapter can generally be used for one or more of several
purposes. Among these purposes are the following:

1. Data description: The information in the data is summarized by the factor
loadings or by the eigenvectors and eigenvalues.

2. Data reduction: The information in a multivariate sample is reduced to a much
smaller number of factors or principal components.

3. Variable clustering: The principal component coefficients or factor loadings lead
to a grouping (clustering) of the variables.

4. Model building: Linear models relating the variables to the factors or principal
components are estimated. Hypothesis tests may be used to obtain parsimonious
and/or other descriptions of the data.

Principal Components

The idea in principal components is to find a small number of linear combinations
of the original variables that maximize the variance accounted for in the original
data. This amounts to an eigensystem analysis of the covariance (or correlation)
matrix. In addition to the eigensystem analysis, routine PRINC (page 793)
computes standard errors for the eigenvalues. Correlations of the original
variables with the principal component scores are also computed.

The computation of common principal components via routine KPRIN (page 797)
is equivalent to finding the “eigenvectors” that best simultaneously
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diagonalize one or more variance-covariance matrices. For only one input
variance-covariance matrix, the vectors computed actually are the eigenvectors of
the matrix.

Factor Analysis

Factor analysis and principal component analysis, while quite different in
assumptions, often serve the same ends. Unlike principal components in which
linear combinations yielding the highest possible variances are obtained, factor
analysis generally obtains linear combinations of the observed variables
according to a model relating the observed variables to hypothesized underlying
factors, plus a random error term called the unique error or uniqueness. In factor
analysis, the unique errors associated with each variable are usually assumed to
be independent of the factors. In addition, in the common factor model, the
unique errors are assumed to be mutually independent. The factor analysis model
is

x − µ = Λf + e

where x is the p vector of observed variables, µ is the p vector of variable means, 
Λ is the p × k matrix of factor loadings, f is the k vector of hypothesized
underlying random factors, and e is the p vector of hypothesized unique random
errors.

Because much of the computation in factor analysis was originally done by hand
or was expensive on early computers, quick (but dirty) algorithms that made the
calculations possible were developed. One result is the many factor extraction
methods available today. Generally speaking, in the exploratory or model
building phase of a factor analysis, a method of factor extraction that is not
computationally intensive (such as principal components, principal factor, or
image analysis) is used. If desired, a computationally intensive method is then
used to obtain (what is hoped will be) the final factors.

In exploratory factor analysis, the unrotated factor loadings obtained from the
factor extraction are generally transformed (rotated) to simplify the interpretation
of the factors. Rotation is possible because of the overparameterization in the
factor analysis model. The method used for rotation may result in factors that are
independent (orthogonal rotations) or correlated (oblique rotations). Prior
information may be available (or hypothesized) in which case a Procrustes
rotation could be used. When no prior information is available, an analytic
rotation can be performed.

Once the factor loadings have been extracted and rotated (if desired), estimates
for the hypothesized underlying factors can be computed. First, one of several
available methods in routine FCOEF (page 833) is used to compute the factor
score coefficients. Routine FSCOR (page 838) is then called with these factor
score coefficients to compute the factor scores.

The steps generally used in a factor analysis are summarized as follows:
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Steps in a Factor Analysis

Step 1

Calculate Covariance (Correlation) Matrix

IMSL routine CORVC (page 314)

Step 2

Initial Factor Extraction

FACTR, page 801

Step 3

Factor Rotation

Orthogonal Oblique

No Prior Info.

FROTA, page 809

Prior Info.

FOPCS, page 812

No Prior Info.

FPRMX, page 818
FDOBL, page 815
FHARR, page 822
FGCRF, page 825

Prior Info.

FPRMX, page 818

Step 3a

Image Analysis

FIMAG, page 829

Step 3b

Factor Variances

FRVAR, page 831

Step 4

Factor Coefficients

FCOEF, page 833

Step 5

Factor Scores

FSCOR, page 838
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Independence of Sets of Variables and Canonical Correlation
Analysis

Routine MVIND (page 842) computes the Wilks likelihood-ratio test of
independence among several sets of variables. Routines CANCR (page 844) and
CANVC (page 857) compute some other tests of independence between exactly
two sets of variables. Routine CANCR uses the raw data as input while CANVC uses
the sample variance-covariance matrix. Furthermore, CANCR and CANVC perform
a canonical correlation analysis. Since CANCR uses a better algorithm in terms of
numerical stability (it does not compute the covariance matrix), CANCR should be
used if possible. However, if the raw data is not available, or if there is too much
data for all of it to reside in memory at the same time, or if multiple canonical
correlation analyses are to be performed based on the same pre-computed sample
variance-covariance matrix, then the use of CANVC may be necessary. Canonical
correlation analysis is useful for characterizing the independent linear statistical
relationships that exist between the two sets of variables. This involves computing
linear combinations of the variables in the two separate sets and their associated
correlation. The coefficients of the variables in the linear combinations are called
the “canonical coefficients,” and the correlations are called “canonical
correlations.” Evaluation of the linear combinations using the canonical
coefficients gives the “canonical scores.” Routine CANCR computes the canonical
scores for the observed data. Routine FSCOR can be used to compute the
canonical scores for new data or for the observed data if CANVC is used.

PRINC/DPRINC (Single/Double precision)
Compute principal components from a variance-covariance matrix or a
correlation matrix.

Usage
CALL PRINC (NDF, NVAR, COV, LDCOV, ICOV, EVAL, PCT, STD,
            EVEC, LDEVEC, A, LDA)

Arguments

NDF — Number of degrees of freedom in COV.   (Input)
If NDF is less than or equal to 0, 100 degrees of freedom are assumed.

NVAR — Order of matrix COV.   (Input)

COV — NVAR by NVAR matrix containing the covariance or correlation matrix.
(Input)
Only the upper triangular part of COV is referenced.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)
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ICOV — Covariance/Correlation matrix option parameter.   (Input)
ICOV = 0 means that a covariance matrix is input. Otherwise, a correlation matrix
is input.

EVAL — Vector of length NVAR containing the eigenvalues from matrix COV

ordered from largest to smallest.   (Output)

PCT — Vector of length NVAR containing the cumulative percent of the total
variance explained by each principal component.   (Output)

STD — Vector of length NVAR containing the estimated asymptotic standard
errors of the eigenvalues.   (Output)

EVEC — NVAR by NVAR matrix containing the eigenvectors of COV, stored
columnwise.   (Output)
Each vector is normalized to have Euclidean length equal to the value one. Also,
the sign of each vector is set so that the largest component in magnitude (the first
of the largest if there are ties) is made positive.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program.   (Input)

A — NVAR by NVAR matrix containing the correlations of the principal
components (the columns) with the observed/standardized variables (the rows).
(Output)
If ICOV = 0, then the correlations are with the observed variables. Otherwise, the
correlations are with the standardized (to a variance of 1.0) variables. In the
principal component model for factor analysis, matrix A is the matrix of unrotated
factor loadings.

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

Comments

Informational errors
Type Code
   3    1 Because NDF is zero or less, 100 degrees of freedom will be

used.
   3    2 One or more eigenvalues much less than zero are computed.

The matrix COV is not nonnegative definite. In order to continue
computations of STD and A, these eigenvalues are treated as
zero.

Algorithm

Routine PRINC finds the principal components of a set of variables from a sample
covariance or correlation matrix. The characteristic roots, characteristic vectors,
standard errors for the characteristic roots, and the correlations of the principal
component scores with the original variables are computed. Principal components
obtained from correlation matrices are the same as principal components obtained
from standardized (to unit variance) variables.
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The principal component scores are the elements of the vector y = Γ7x where Γ is
the matrix whose columns are the characteristic vectors (eigenvectors) of the
sample covariance (or correlation) matrix and x is the vector of observed (or
standardized) random variables. The variances of the principal component scores
are the characteristic roots (eigenvalues) of the the covariance (correlation)
matrix.

Asymptotic variances for the characteristic roots were first obtained by Girshick
(1939) and are given more recently by Kendall, Stuart, and Ord (1983, page 331).
These variances are computed either for covariance matrices (ICOV = 0) or for
correlation matrices (ICOV ≠ 0).

The correlations of the principal components with the observed (or standardized)
variables are given in the matrix A. When the principal components are obtained
from a correlation matrix, A is the same as the matrix of unrotated factor loadings
obtained for the principal components model for factor analysis.

Example

Principal components are computed for a nine-variable matrix.
      INTEGER    ICOV, LDA, LDCOV, LDEVEC, NDF, NVAR
      PARAMETER  (ICOV=1, LDA=9, LDCOV=9, LDEVEC=9, NDF=100, NVAR=9)
C
      REAL       A(LDA,NVAR), COV(LDCOV,NVAR), EVAL(NVAR),
     &           EVEC(LDEVEC,NVAR), PCT(NVAR), STD(NVAR)
      EXTERNAL   PRINC, WRRRN
C
      DATA COV/
     &  1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
     &  0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
     &  0.395, 0.479, 1.000, 0.355, 0.270, 0.254, 0.452, 0.219, 0.504,
     &  0.471, 0.506, 0.355, 1.000, 0.691, 0.791, 0.443, 0.285, 0.505,
     &  0.346, 0.418, 0.270, 0.691, 1.000, 0.679, 0.383, 0.149, 0.409,
     &  0.426, 0.462, 0.254, 0.791, 0.679, 1.000, 0.372, 0.314, 0.472,
     &  0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680,
     &  0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470,
     &  0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470, 1.000/
C
      CALL PRINC (NDF, NVAR, COV, LDCOV, ICOV, EVAL, PCT, STD, EVEC,
     &            LDEVEC, A, LDA)
C
      CALL WRRRN (’EVAL’, 1, NVAR, EVAL, 1, 0)
      CALL WRRRN (’PCT’, 1, NVAR, PCT, 1, 0)
      CALL WRRRN (’STD’, 1, NVAR, STD, 1, 0)
      CALL WRRRN (’EVEC’, NVAR, NVAR, EVEC, LDEVEC, 0)
      CALL WRRRN (’A’, NVAR, NVAR, A, LDA, 0)
      END

Output
                                EVAL
    1       2       3       4       5       6       7       8       9
4.677   1.264   0.844   0.555   0.447   0.429   0.310   0.277   0.196
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                                 PCT
    1       2       3       4       5       6       7       8       9
0.520   0.660   0.754   0.816   0.865   0.913   0.947   0.978   1.000

                                 STD
     1        2        3        4        5        6        7        8
0.6498   0.1771   0.0986   0.0879   0.0882   0.0890   0.0944   0.0994

     9
0.1113

                                  EVEC
         1        2        3        4        5        6        7        8
1   0.3462  -0.2354   0.1386  -0.3317  -0.1088   0.7974   0.1735  -0.1240
2   0.3526  -0.1108  -0.2795  -0.2161   0.7664  -0.2002   0.1386  -0.3032
3   0.2754  -0.2697  -0.5585   0.6939  -0.1531   0.1511   0.0099  -0.0406
4   0.3664   0.4031   0.0406   0.1196   0.0017   0.1152  -0.4022  -0.1178
5   0.3144   0.5022  -0.0733  -0.0207  -0.2804  -0.1796   0.7295   0.0075
6   0.3455   0.4553   0.1825   0.1114   0.1202   0.0696  -0.3742   0.0925
7   0.3487  -0.2714  -0.0725  -0.3545  -0.5242  -0.4355  -0.2854  -0.3408
8   0.2407  -0.3159   0.7383   0.4329   0.0861  -0.1969   0.1862  -0.1623
9   0.3847  -0.2533  -0.0078  -0.1468   0.0459  -0.1498  -0.0251   0.8521

         9
1  -0.0488
2  -0.0079
3  -0.0997
4   0.7060
5   0.0046
6  -0.6780
7  -0.1089
8   0.0505
9   0.1225

                                    A
         1        2        3        4        5        6        7        8
1   0.7487  -0.2646   0.1274  -0.2471  -0.0728   0.5224   0.0966  -0.0652
2   0.7625  -0.1245  -0.2568  -0.1610   0.5124  -0.1312   0.0772  -0.1596
3   0.5956  -0.3032  -0.5133   0.5170  -0.1024   0.0990   0.0055  -0.0214
4   0.7923   0.4532   0.0373   0.0891   0.0012   0.0755  -0.2240  -0.0620
5   0.6799   0.5646  -0.0674  -0.0154  -0.1875  -0.1177   0.4063   0.0039
6   0.7472   0.5119   0.1677   0.0830   0.0804   0.0456  -0.2084   0.0487
7   0.7542  -0.3051  -0.0666  -0.2641  -0.3505  -0.2853  -0.1589  -0.1794
8   0.5206  -0.3552   0.6784   0.3225   0.0576  -0.1290   0.1037  -0.0854
9   0.8319  -0.2848  -0.0072  -0.1094   0.0307  -0.0981  -0.0140   0.4485

         9
1  -0.0216
2  -0.0035
3  -0.0442
4   0.3127
5   0.0021
6  -0.3003
7  -0.0482
8   0.0224
9   0.0543



IMSL STAT/LIBRARY Chapter 9: Covariance Structures and Factor Analysis • 797

KPRIN/DKPRIN (Single/Double precision)
Maximum likelihood or least-squares estimates for principal components from
one or more matrices.

Usage
CALL KPRIN (NVAR, NMAT, COV, LDCOV, ANI, IMETH, EVEC,
            LDEVEC)

Arguments

NVAR — Number of variables in each matrix.   (Input)
NVAR must be 2 or greater.

NMAT — Number of matrices.   (Input)

COV — NVAR by NVAR by NMAT array containing the NMAT covariance or
correlation matrices.   (Input)
Only the upper triangular elements of each matrix are referenced.

LDCOV — Leading and second dimensions of COV exactly as specified in the
dimension statement of the calling program.   (Input)
The first two dimensions of COV must be equal.

ANI — Vector of length NMAT containing the number of observations in each of
the covariance matrices.   (Input)
For least-squares estimation, the square root of ANI(I) is the weight to be used
for the I-th covariance matrix. Since the elements of ANI are used as weights,
they need not be integers.

IMETH — Method to be used for extracting the estimated principal components.
(Input)
For IMETH = 0, maximum likelihood estimation is used. For IMETH = 1, least-
squares estimation is used.

EVEC — NVAR by NVAR matrix containing the estimated principal components.
(Output)
Each column of EVEC contains a principal component vector (an “eigenvector”).
The ordering of the eigenvectors is such that the sum of the corresponding
eigenvalues are ordered from largest to smallest. Each vector is normalized to
have Euclidean length equal to the value one.

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

KPRIN NVAR2 * (NMAT + 1) + 2 * NVAR + 4 * NMAT +

max(3 * NMAT, NVAR2) units, or
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DKPRIN 2 * (NVAR2 * (NMAT + 1) + 2 * NVAR + 4 * NMAT +

max(3 * NMAT, NVAR2)) units.

Workspace may be explicitly provided, if desired, by use of
K2RIN/DK2RIN. The reference is

CALL K2RIN (NVAR, NMAT, COV, LDCOV, ANI, IMETH,
            EVEC, LDEVEC, H, AUX, BOLD, G, T)

The additional arguments are as follows:

H — Work vector of length NVAR2 * NMAT. On return from K2RIN, H
may be treated as an array dimensioned as H(NVAR, NVAR, NMAT). Each

NVAR by NVAR matrix in H is computed as (EVEC)7 * COV(I) * EVEC,
i.e., H contains the “eigenvalues” and the “residuals” for each covariance
matrix. Here, COV(I) is the I-th covariance matrix.

AUX — Work vector of length max(3 * NMAT, NVAR2).

BOLD — Work vector of length NVAR2.

G — Work vector of length 2 * NVAR.

T — Work vector of length 4 * NMAT.

2. Informational errors
Type Code
   3    1 Convergence did not occur within 50 iterations.

Convergence is assumed.
   4    2 An input matrix is singular. Singular input matrices are

not allowed in maximum likelihood estimation.

3. If user specified initial estimates for EVEC are desired (and argument
error checking is not needed), then the routine K3RIN (DK3RIN) may be
used. The calling sequence is

CALL K3RIN (NVAR, NMAT, COV, LDCOV, ANI, IMETH,
            EVEC, LDEVEC, AUX, BOLD, G, T)

On input, EVEC contains the initial estimates of the common principal
components (EVEC must be an orthogonal matrix). On output, COV

contains the NMAT matrices (EVEC )7 * COV (I) * EVEC. The user should
be wary of stationary points in the likelihood if K3RIN is used.

Algorithm

Routine KPRIN is the IMSL version of the F-G diagonalization routine of Flury
and Constantine (1985) with modifications as discussed by Clarkson (1988a,
1988b). Let k = NMAT. Routine KPRIN computes the common principal
components of k ≥ 1 covariance (or correlation) matrices using either a least-
squares or a maximum likelihood criterion. Computing common principal
components is equivalent to finding the “eigenvectors” that best simultaneously
diagonalize k symmetric matrices. (Note that when k = 1, both least-squares and
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maximum likelihood estimation yield the eigenvectors of the input matrix.) See
Flury (1988) for applications of common principal components.

The algorithm proceeds by accumulating simple rotations as follows: Initial
estimates of the diagonalizing principal components are found as the eigenvectors
of the summed covariance matrices (unless K3RIN is used, see Comment 3
above). The covariance matrices are then pre- and post-multiplied by the initial
estimates to obtain approximately diagonal matrices. Let

wl
ij

denote the l-th 2 × 2 matrix obtained from the (i, j), (i, i), and (j, j) elements of SO,
where SO is the l-th covariance matrix in COV. Then, for each i and j, a Jacobi
rotation is found and applied such that the least-squares or maximum likelihood
criterion is optimized over all k matrices in

wl
ij

An iteration consists of computing and applying a Jacobi rotation for all
p(p − 1)/2 possible off-diagonal elements (i, j) where p = NVAR. A maximum of
50 iterations are allowed before convergence. Convergence is assumed when the
maximum change in the any element in the eigenvectors from one iteration to the
next is less than 0.0001.

Let Γ denote the current estimates of the optimizing principal components. Then,
maximizing the multivariate normal likelihood is equivalent to minimizing the
criterion

L
S

i

ii

k
ni

=
∑�
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�
��=

∏ det

det

$

1

where SL is the i-th covariance matrix, nL is its degrees of freedom, and

$∑ i

is the estimate of the covariance matrix under the common principal components
model.

During each Jacobi iteration, an optimal orthogonal matrix TLM is found that

rotates the two vectors in columns i and j of Γ. When restricted to TLM, the criterion
above becomes
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diag( Γ Γ
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Γ is updated as ΓTLM. When convergence has been reached (the maximum change

in Γ is less than 0.0001), Γ contains the optimizing principal components.
Initially, Γ is taken as the eigenvectors of the matrix  ∑LSL.



800 • Chapter 9: Covariance Structures and Factor Analysis IMSL STAT/LIBRARY

In least-squares estimation, the matrices TLM are found such that the sum of the
squared off-diagonal elements in the resulting “diagonalized” matrices are
minimized. That is, TLM is found to minimize

v vij
T

ij

where vLM is the vector of length k containing the off-diagonal elements in the
matrices

wl
ij

See Flury and Gautschi (1986) for further details on the general algorithm,
especially in maximum likelihood estimation. See Clarkson (1988b) for details of
the least-squares algorithm.

If the “residual” matrices Γ7SLΓ are desired, they may be obtained in the work
vector H returned from K2RIN or from the matrix COV returned from K3RIN. If the
least-squares criterion is needed, it is easily computed as the sum of the squared
off-diagonal elements in H (or COV). To compute the likelihood ratio criterion, the
eigenvalues of each matrix in COV first need to be computed. Denote the
eigenvalues from the l-th matrix by λOM , and let

$λ l j

be the eigenvalues obtained under the common principal component model (and
returned as the diagonal elements of H or, from K3RIN, COV). Then, the log-
likelihood-ratio statistic for testing,

Ho
T

l:Γ Γ∑

is diagonal, l = 1, …, k, is computed as:

l =
==
∑∑ nl

lj

ljj

p

l

k

log
$λ
λ11

The distribution of l  under H0 is asymptotically χ2 with (k − 1)p(p − 1)/2
degrees of freedom (see Flury 1984).

Example

The following example is taken from Flury and Constantine (1985). It involves
two 4 by 4 covariance matrices. The two covariance matrices are given as:

13 0 3 0 6 0

0 3 2 1 0 0 6

0 6 0 2 9 0 3

0 0 6 0 3 3 7

. . .

. . .

. . .

. . .

− −
− −
− −

− −

�

�

����

�

�

����
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1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

�

�

����

�

�

����
C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    IMETH, LDCOV, LDEVEC, NGROUP, NVAR
      PARAMETER  (IMETH=0, LDCOV=4, LDEVEC=4, NGROUP=2, NVAR=4)
C
      REAL       ANI(NGROUP), COV(LDCOV,LDCOV,NGROUP),
     &           EVEC(LDEVEC,NVAR)
      EXTERNAL   KPRIN, WRRRN
C
      DATA COV/1.3, -0.3, -0.6, 0, -0.3, 2.1, 0, -0.6, -0.6, 0, 2.9,
     &     -0.3, 0, -0.6, -0.3, 3.7, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3,
     &     0, 0, 0, 0, 4/
C
      ANI(1) = 1
      ANI(2) = 1
C
      CALL KPRIN (NVAR, NGROUP, COV, LDCOV, ANI, IMETH, EVEC, LDEVEC)
C
      CALL WRRRN (’EVEC’, NVAR, NVAR, EVEC, LDEVEC, 0)
C
      END

Output
                EVEC
         1        2        3        4
1   0.9743  -0.1581  -0.1581   0.0257
2   0.1581   0.9743  -0.0257  -0.1581
3   0.1581  -0.0257   0.9743  -0.1581
4   0.0257   0.1581   0.1581   0.9743

FACTR/DFACTR (Single/Double precision)
Extract initial factor loading estimates in factor analysis.

Usage
CALL FACTR (NVAR, COV, LDCOV, NF, IMTH, NDF, INIT, MAXIT,
            MAXSTP, EPS, EPSE, IPRINT, UNIQ, A, LDA, EVAL,
            STAT, DER)

Arguments

NVAR — Number of variables.   (Input)

COV — NVAR by NVAR matrix containing the variance-covariance or correlation
matrix.   (Input)

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)
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NF — Number of factors in the model.   (Input)

IMTH — Method used to obtain the estimates.   (Input)

IMTH Method
0 Principal component (principal component model) or principal factor

(common factor model). If INIT = 1 and UNIQ contains zeros, then this
option results in the principal component method. Otherwise, the
principal factor method is used.

1 Unweighted least squares (common factor model).
2 Generalized least squares (common factor model).
3 Maximum likelihood (common factor model).
4 Image factor analysis (common factor model).
5 Alpha factor analysis (common factor model).

NDF — Number of degrees of freedom in COV.   (Input)
NDF is not required when IMTH = 0, 1, or 4. NDF defaults to 100 if NDF = 0.

INIT — Method used to obtain initial estimates of the unique variances.   (Input)

INIT Method
0 Initial estimates are taken as the constant 1 − NF/(2 * NVAR) divided by

the diagonal elements of the inverse of COV.
1 Initial estimates are input in vector UNIQ.

MAXIT — Maximum number of iterations in the iterative procedure.   (Input)
Typical for methods 1 to 3 is 30, while 60 is typical for method 5. MAXIT is not
referenced when IMTH = 0 or 4.

MAXSTP — Maximum number of step halvings allowed during any one
iteration.   (Input)
Typical is 8. MAXSTP is not referenced when IMTH = 0, 4, or 5.

EPS — Convergence criterion used to terminate the iterations.   (Input)
For methods 1 to 3, convergence is assumed when the relative change in the
criterion is less than EPS. For method 5, convergence is assumed when the
maximum change (relative to the variance) of a uniqueness is less than EPS. EPS
is not referenced when IMTH = 0 or 4. EPS = 0.0001 is typical.

EPSE — Convergence criterion used to switch to exact second derivatives.
(Input)
When the largest relative change in the unique standard deviation vector is less
than EPSE, exact second derivative vectors are used. Typical is 0.1. EPSE is not
referenced when IMTH = 0, 4, or 5.

IPRINT — Printing option.   (Input)
If IPRINT = 0, then no printing is performed. If IPRINT = 1, then printing of the
final results is performed. If IPRINT = 2, then printing of an iteration summary
and the final results is performed.
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UNIQ — Vector of length NVAR containing the unique variances.   (Input/Output,
if INIT = 1; output, otherwise)
If INIT = 1, UNIQ contains the initial estimates of these variances on input. On
output, UNIQ contains the estimated unique variances. For IMTH = 0, the unique
variances are assumed to be known and are not changed from the input values
when INIT = 1.

A — NVAR by NF matrix of unrotated factor loadings.   (Output)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program.   (Input)

EVAL —  Vector of length NVAR containing the eigenvalues of the matrix from
which the factors were extracted.   (Output)
If IMTH = 5, then the first NF positions of EVAL contain the ALPHA coefficients.
Note that EVAL does not usually contain eigenvalues for matrix COV.

STAT — Vector of length 6 containing some output statistics.   (Output)

I STAT(I)
1 Value of the function minimum.
2 Tucker reliability coefficient.
3 Chi-squared test statistic for testing that NF common factors are adequate

for the data.

4 Degrees of freedom in chi-squared. This is computed as ((NVAR − NF)2 −
NVAR − NF)/2.

5 Probability of a greater chi-squared statistic.
6 Number of iterations.
STAT is not used when IMTH = 0, 4, or 5.

DER — Vector of length NVAR containing the parameter updates when
convergence was reached (or the iterations terminated).   (Output)

Comments

1. Automatic workspace usage is

FACTR 3 * NVAR + 3 * NVAR2 units, or

DFACTR 5 * NVAR + 6 * NVAR2 units.

Workspace may be explicitly provided, if desired, by use of
F2CTR/DF2CTR. The reference is

CALL F2CTR (NVAR, COV, LDCOV, NF, IMTH, NDF, INIT,
            MAXIT, MAXSTP, EPS, EPSE, IPRINT, UNIQ,
            A, LDA, EVAL, STAT, DER, IS, COVI, WK,
            OLD, EVEC, HESS)

The additional arguments are as follows:

IS — Integer work vector of length equal to NVAR.

COVI — Real work vector of length equal to NVAR2.
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WK — Real work vector of length equal to NVAR.

OLD — Real work vector of length equal to NVAR.

EVEC — Real work vector of length equal to NVAR2.

HESS — Real work vector of length equal to NVAR2.

2. Informational errors
Type Code
   3    1 Too many iterations. Convergence is assumed.
   3    2 Too many step halvings. Convergence is assumed.
   3    4 There are no degrees of freedom for the significance

testing.

Algorithm

Routine FACTR computes unrotated factor loadings in exploratory factor analysis
models. Models available in FACTR are the principal component model for factor
analysis and the common factor model with additions to the common factor
model in alpha factor analysis and image analysis. Methods of estimation include
principal components, principal factor, image analysis, unweighted least squares,
generalized least squares, and maximum likelihood.

In the factor analysis model used for factor extraction, the basic model is given as 

∑ = ΛΛ7 + Ψ where Σ is the p × p population covariance matrix, Λ is the p × k
matrix of factor loadings relating the factors ƒ to the observed variables x, and Ψ
is the p × p matrix of covariances of the unique errors e. Here, p = NVAR and
k = NF. The relationship between the factors, the unique errors, and the observed
variables is given as x = Λƒ + e where, in addition, it is assumed that the expected
values of e, f, and x are zero. (The sample means can be subtracted from x if the
expected value of x is not zero.) It is also assumed that each factor has unit
variance, the factors are independent of each other, and that the factors and the
unique errors are mutually independent. In the common factor model, the
elements of the vector of unique errors e are also assumed to be independent of
one another so that the matrix Ψ is diagonal. This is not the case in the principal
component model in which the errors may be correlated.

Further differences between the various methods concern the criterion that is
optimized and the amount of computer effort required to obtain estimates.
Generally speaking, the least-squares and maximum likelihood methods, which
use iterative algorithms, require the most computer time with the principal factor,
principal component and the image methods requiring much less time since the
algorithms in these methods are not iterative. The algorithm in alpha factor
analysis is also iterative, but the estimates in this method generally require
somewhat less computer effort than the least-squares and maximum
likelihood estimates. In all algorithms, one eigensystem analysis is required on
each iteration.
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The Principal Component and Principal Factor Methods

Both the principal component and the principal factor methods compute the factor
loading  estimates as

$ $Γ∆−1 2

where Γ and the diagonal matrix ∆ are the eigenvectors and eigenvalues of a
matrix. In the principal component model, the eigensystem analysis is performed
on the sample covariance (correlation) matrix S while in the principal factor
model the matrix (S − Ψ) is used. If the unique error variances Ψ are not known
(i.e., if INIT = 0) in the principal factor model, then FACTR obtains estimates for
them as discussed in Comment 3. If the principal components model is to be used,
then the INIT = 1 option should be set, and the vector UNIQ should be set so that
all elements are zero. If UNIQ is not set, principal factor model estimates are
computed.

The basic idea in the principal component method is to find factors that maximize
the variance in the original data that is explained by the factors. Because this
method allows the unique errors to be correlated, some factor analysts insist that
the principal component method is not a factor analytic method. Usually however,
the estimates obtained via the principal component model and other models in
factor analysis will be quite similar.

It should be noted that both the principal component and the principal factor
methods give different results when the correlation matrix is used in place of the
covariance matrix. Indeed, any rescaling of the sample covariance matrix can lead
to different estimates with either of these methods. A further difficulty with the
principal factor method is the problem of estimating the unique error variances.
Theoretically, these must be known in advance and passed to FACTR through
UNIQ. In practice, the estimates of these parameters produced via the INIT = 0
option in FACTR are often used. In either case, the resulting adjusted covariance
(correlation) matrix

( $ )S − Ψ
may not yield the NF positive eigenvalues required for NF factors to be obtained.
If this occurs, the user must either lower the number of factors to be estimated or
give new unique error variance values.

The Least-Squares and Maximum Likelihood Methods

Unlike the previous two methods, the algorithm used to compute estimates in this
section is iterative (see Joreskog 1977). As with the principal factor model, the
user may either initialize UNIQ or allow FACTR to compute initial estimates for
the unique error variances. Unlike the principal factor method, FACTR then
optimizes the criterion function with respect to both Ψ and Γ. (In the principal
factor method, Ψ is assumed to be known. Given Ψ, estimates for Λ may be
obtained.)
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The major differences between the methods discussed in this section are in the
criterion function that is optimized. Let S denote the sample covariance
(correlation) matrix, and let Σ denote the covariance matrix that is to be estimated
by the factor model. In the unweighted least-squares method, also called the
iterated principal factor method or the minres method (see Harman 1976, page
177), the function minimized is the sum of the squared differences between S and 

Σ. This is written as ΦXO = .5 trace((S − Σ)2).

Generalized least-squares and maximum likelihood estimates are asymptotically
equivalent methods. Maximum likelihood estimates maximize the (normal theory)

likelihood {ΦPO = trace(Σ-1S) − log (|Σ-1S|)} while generalized least squares

optimizes the function ΦJV = trace(ΣS-1 − I)2).

In all three methods, a two-stage optimization procedure is used. This proceeds
by first solving the likelihood equations for Λ in terms of Ψ and substituting the
solution into the likelihood. This gives a criterion φ(Ψ, Λ(Ψ)), which is optimized
with respect to Ψ. In the second stage, the estimates

$Λ
are obtained from the estimates for Ψ.

The generalized least-squares and the maximum likelihood methods allow for the
computation of a statistic (STAT(3)) for testing that NF common factors are
adequate to fit the model. This is a chi-squared test that all remaining parameters
associated with additional factors are zero. If the probability of a larger chi-
squared is small (see STAT(5)) so that the null hypothesis is rejected, then
additional factors are needed (although these factors may not be of any practical
importance). Failure to reject does not legitimize the model. The statistic STAT(3)
is a likelihood ratio statistic in maximum likelihood estimation. As such, it
asymptotically follows a chi-squared distribution with degrees of freedom given
in STAT(4).

The Tucker and Lewis (1973) reliability coefficient, ρ, is returned in STAT(2)
when the maximum likelihood or generalized least-squares methods are used.
This coefficient is an estimate of the ratio of explained to the total variation in the
data. It is computed as follows:

ρ =
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where |S| is determinant of COV, p = NVAR,k = NVAR, φ is the optimized criterion,
and d = NDF.

Image Analysis

The term “image analysis” is used here to denote the noniterative image method
of Kaiser (1963). It is not the image factor analysis discussed by Harman (1976,
page 226). The image method (as well as the alpha factor analysis method) begins
with the notion that only a finite number from an infinite number of possible
variables have been measured. The image factor pattern is calculated under the
assumption that the ratio of the number of factors to the number of observed
variables is near zero so that a very good estimate for the unique error variances
(for standardized variables) is given as one minus the squared multiple correlation
of the variable under consideration with all variables in the covariance matrix.

First, the matrix D2 = (diag(S-1))-1 is computed where the operator “diag” results
in a matrix consisting of the diagonal elements of its argument, and S is the
sample covariance (correlation) matrix. Then, the eigenvalues Λ and eigenvectors 

Γ of the matrix D-1S D-1 are computed. Finally, the unrotated image factor

pattern matrix is computed as A = DΓ[(Λ− I)2Λ-1]1/2.

Alpha Factor Analysis

The alpha factor analysis method of Kaiser and Caffrey (1965) finds factor-
loading estimates to maximize the correlation between the factors and the
complete universe of variables of interest. The basic idea in this method is as
follows: only a finite number of variables out of a much larger set of possible
variables is observed. The population factors are linearly related to this larger set
while the observed factors are linearly related to the observed variables. Let ƒ
denote the factors obtainable from a finite set of observed random variables, and
let ξ denote the factors obtainable from the universe of observable variables.
Then, the alpha method attempts to find factor-loading estimates so as to
maximize the correlation between ƒ and ξ. In order to obtain these estimates, the
iterative algorithm of Kaiser and Caffrey (1965) is used.

Comments

1. FACTR makes no attempt to solve for NF, the number of factors. In
general, if NF is not known in advance, several different values of NF

should be used, and the most reasonable value kept in the final solution.

2. The iterative methods are generally thought to be superior from a
theoretical point of view but, in practice, often lead to solutions which
differ little from the noniterative methods. For this reason, it is usually
suggested that a non-iterative method be used in the initial stages of the
factor analysis, and that the iterative methods be used when issues such
as the number of factors have been resolved.
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3. Initial estimates for the unique variances are input when INIT = 1. If the
iterative methods fail for these values, new initial estimates should be
tried. These may be obtained by use of another factoring method (use the
final estimates from the new method as initial estimates in the old
method).

Another alternative is to let FACTR compute initial estimates of the
unique error variances. When INIT = 0, the initial estimates are taken as
a constant

1
2

−
�
��

�
��

k

p

divided by the diagonal elements of the

$∑−1

matrix. When the correlation matrix is factor analyzed, this is a constant
times one minus the squared multiple correlation coefficient.

Example

The following data were originally analyzed by Emmett (1949). There are 211
observations on 9 variables. Following Lawley and Maxwell (1971), three factors
will be obtained by the method of maximum likelihood.

      INTEGER    IMTH, INIT, IPRINT, LDA, LDCOV, MAXIT, MAXSTP, NDF,
     &           NF, NVAR
      REAL       EPS, EPSE
      PARAMETER  (EPS=0.000001, EPSE=0.01, IMTH=3, INIT=0, IPRINT=1,
     &           LDA=9, LDCOV=9, MAXIT=30, MAXSTP=10, NDF=210, NF=3,
     &           NVAR=9)
C
      REAL       A(LDA,NF), COV(LDCOV,NVAR), DER(NVAR), EVAL(NVAR),
     &           STAT(6), UNIQ(NVAR)
      EXTERNAL   FACTR
C
      DATA COV/
     &  1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
     &  0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
     &  0.395, 0.479, 1.000, 0.355, 0.270, 0.254, 0.452, 0.219, 0.504,
     &  0.471, 0.506, 0.355, 1.000, 0.691, 0.791, 0.443, 0.285, 0.505,
     &  0.346, 0.418, 0.270, 0.691, 1.000, 0.679, 0.383, 0.149, 0.409,
     &  0.426, 0.462, 0.254, 0.791, 0.679, 1.000, 0.372, 0.314, 0.472,
     &  0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680,
     &  0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470,
     &  0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470, 1.000/
C
      CALL FACTR (NVAR, COV, LDCOV, NF, IMTH, NDF, INIT, MAXIT,
     &            MAXSTP, EPS, EPSE, IPRINT, UNIQ, A, LDA, EVAL, STAT,
     &            DER)
      END
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Output
                        Unique Error Variances
     1        2        3        4        5        6        7        8
0.4505   0.4271   0.6166   0.2123   0.3805   0.1769   0.3995   0.4615

     9
0.2309

     Unrotated Loadings
         1        2        3
1   0.6642  -0.3209   0.0735
2   0.6888  -0.2471  -0.1933
3   0.4926  -0.3022  -0.2224
4   0.8372   0.2924  -0.0354
5   0.7050   0.3148  -0.1528
6   0.8187   0.3767   0.1045
7   0.6615  -0.3960  -0.0777
8   0.4579  -0.2955   0.4913
9   0.7657  -0.4274  -0.0117

                             Eigenvalues
    1       2       3       4       5       6       7       8       9
0.063   0.229   0.541   0.865   0.894   0.974   1.080   1.117   1.140

                             STAT
     1             2             3             4             5
0.0350        1.0000        7.1494       12.0000        0.8476

     6
5.0000

                      Final Parameter Updates
          1             2             3             4             5
2.02042E-07   2.95010E-07   1.80908E-07   6.38808E-08   2.00809E-07

          6             7             8             9
1.48762E-07   1.73797E-08   3.95484E-07   1.42415E-07

FROTA/DFROTA (Single/Double precision)
Compute an orthogonal rotation of a factor loading matrix using a generalized
orthomax criterion, including quartimax, varimax, and equamax rotations.

Usage
CALL FROTA (NVAR, NF, A, LDA, NORM, MAXIT, W, EPS, B, LDB,
            T, LDT)

Arguments

NVAR — Number of variables.   (Input)

NF — Number of factors.   (Input)

A — NVAR by NF matrix of unrotated factor loadings.   (Input)
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LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

NORM — Row normalization option.   (Input)
If NORM = 1, then row (i.e., Kaiser) normalization is performed. Otherwise, row
normalization is not performed.

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 30 is typical. MAXIT ≤ 30 defaults to 30 iterations.

W — Nonnegative constant used to define the rotation.   (Input)
W = 0.0 results in quartimax rotations, W = 1.0 results in varimax rotations, and
W = NF/2.0 results in equamax rotations. Other nonnegative values of W may also
be used, but the best values for W are in the range (0.0, 5 * NF).

EPS — Convergence constant.   (Input)
When the relative change in the criterion function is less than EPS from one
iteration to the next, convergence is assumed. EPS = 0.0001 is typical. EPS ≤ 0.0
defaults to 0.0001.

B — NVAR by NF matrix of rotated factor loadings.   (Output)
If A is not needed, A and B may share the same storage locations.

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program.   (Input)

T — NF by NF matrix containing the rotation transformation matrix.   (Output)

LDT — Leading dimension of T exactly as specified in the dimension statement
in the calling program.   (Input)

Comments

Automatic workspace usage is

FROTA NVAR units, or
DFROTA 2 * NVAR units.

Workspace may be explicitly provided, if desired, by use of F2OTA/DF2OTA. The
reference is

CALL F2OTA (NVAR, NF, A, LDA, NORM, MAXIT, W, EPS, B, LDB,
            T, LDT, WORK)

The additional argument is

WORK — Real work vector of length equal to NVAR.

Algorithm

Routine FROTA performs an orthogonal rotation according to an orthomax
criterion. In this analytic method of rotation, the criterion function
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is minimized by finding an orthogonal rotation matrix T such that (λLM) = Λ = AT

where A is the matrix of unrotated factor loadings. Here, γ ≥ 0 is a user-specified
constant (W) yielding a family of rotations, and p is the number of variables.

Kaiser (row) normalization can be performed on the factor loadings prior to
rotation via the option parameter NORM. In Kaiser normalization, the rows of A are
first “normalized” by dividing each row by the square root of the sum of its
squared elements (Harman 1976). After the rotation is complete, each row of B is
“denormalized” by multiplication by its initial normalizing constant.

The method for optimizing Q proceeds by accumulating simple rotations where a
simple rotation is defined to be one in which Q is optimized for two columns in Λ
and for which the requirement that T be orthogonal is satisfied. A single iteration
is defined to be such that each of the NF(NF − 1)/2 possible simple rotations is
performed where NF is the number of factors. When the relative change in Q from
one iteration to the next is less than EPS (the user-specified convergence
criterion), the algorithm stops. EPS = 0.0001 is usually sufficient. Alternatively,
the algorithm stops when the user-specified maximum number of iterations,
MAXIT, is reached. MAXIT = 30 is usually sufficient.

The parameter in the rotation, γ, is used to provide a family of rotations. When
γ = 0.0, a direct quartimax rotation results. Other values of γ yield other rotations.

Example

The example is taken from Emmett (1949) and involves factors derived from nine
variables. In this example, the varimax method is chosen with row normalization
by using W = 1.0 and NORM = 1, respectively. The results correspond to those
given by Lawley and Maxwell (1971, page 84).

      INTEGER    LDA, LDB, LDT, MAXIT, NF, NORM, NVAR
      REAL       EPS, W
      PARAMETER  (EPS=0.0, LDA=9, LDB=9, LDT=3, MAXIT=30, NF=3,
     &           NORM=1, NVAR=9, W=1.0)
C
      REAL       A(LDA,NF), B(LDB,NF), T(LDT,NF)
      EXTERNAL   FROTA, WRRRN
C
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
     &     .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
     &     -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
     &     .1045, -.0778, .4914, -.0117/
C
      CALL FROTA (NVAR, NF, A, LDA, NORM, MAXIT, W, EPS, B, LDB, T,
     &            LDT)
C
      CALL WRRRN (’B’, NVAR, NF, B, LDB, 0)
      CALL WRRRN (’T’, NF, NF, T, LDT, 0)
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      END

Output
              B
         1        2        3
1   0.2638  -0.5734   0.3888
2   0.3423  -0.6610   0.1370
3   0.1625  -0.5943   0.0622
4   0.8124  -0.3197   0.1594
5   0.7356  -0.2800   0.0036
6   0.8510  -0.1890   0.2513
7   0.2164  -0.6906   0.2768
8   0.1144  -0.2431   0.6828
9   0.2687  -0.7431   0.3804

              T
         1        2        3
1   0.7307  -0.5939   0.3367
2   0.6816   0.6623  -0.3112
3  -0.0382   0.4569   0.8887

FOPCS/DFOPCS (Single/Double precision)
Compute an orthogonal Procrustes rotation of a factor-loading matrix using a
target matrix.

Usage
CALL FOPCS (NVAR, NF, A, LDA, X, LDX, B, LDB, T, LDT)

Arguments

NVAR — Number of variables.   (Input)

NF — Number of factors.   (Input)

A — NVAR by NF matrix of unrotated factor loadings.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

X — NVAR by NF target matrix of the rotation.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

B — NVAR by NF matrix of rotated factor loadings.   (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program.   (Input)

T — NF by NF factor rotation matrix.   (Output)

LDT — Leading dimension of T exactly as specified in the dimension statement
in the calling program.   (Input)
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Comments

1. Automatic workspace usage is

FOPCS (NF * (3 * NF + 4)) − 1 units, or
DFOPCS (NF * (6 * NF + 8)) − 2 units.

Workspace may be explicitly provided, if desired, by use of
F2PCS/DF2PCS. The reference is

CALL F2PCS (NVAR, NF, A, LDA, X, LDX, B, LDB, T,
            LDT, WK, S)

The additional arguments are as follows:

WK — Work vector of length NF * (2 * NF + 3) − 1.

S — Work vector of length NF * (NF + 1).

2. Informational errors
Type Code
   4    1 NF = 1. No rotation is possible.

   4    2 The rank of A7 * X is less than NF.

3. The target matrix is a hypothesized rotated factor loading matrix with
loadings chosen (based on prior knowledge) to enhance interpretability.
A simple structure solution will have most of the elements in X near zero
or one (for correlation matrix loadings).

4. This routine may also be used to refine a solution obtained by analytic
rotation in routine FROTA (page 809). Choose the target matrix so that it
closely resembles the analytic solution but modified to have a simple
structure.

Algorithm

Routine FOPCS performs orthogonal Procrustes rotation according to a method
proposed by Schöneman (1966). Let k = NF denote the number of factors,
p = NVAR denote the number of variables, A denote the p × k matrix of unrotated
factor loadings, T denote the k × k orthogonal rotation matrix (orthogonality

requires that T7�T be a k × k identity matrix), and let X denote the target matrix.
The basic idea in orthogonal Procrustes rotation is to find an orthogonal rotation
matrix T such that B = AT and T provides a least-squares fit between the target
matrix X and the rotated loading matrix B. Schöneman’s algorithm proceeds by

finding the singular value decomposition of the matrix A7�X = UΣV7. The

rotation matrix is computed as T = UV7.

Example

The following example is taken from Harman (1976, page 355). It involves the
orthogonal Procrustes rotation of an 8 × 2 unrotated factor loading matrix. The
original variables are measures of physical features (“lankiness” and
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“stockiness”). The target matrix X is also printed. Note that because different
methods are used, Harman (1976) gets slightly different results.

      INTEGER    LDA, LDB, LDT, LDX, NF, NVAR
      PARAMETER  (LDA=8, LDB=8, LDT=2, LDX=8, NF=2, NVAR=8)
C
      REAL       A(LDA,NF), B(LDB,NF), T(LDT,NF), X(LDX,NF)
      EXTERNAL   FOPCS, WRRRN
C
      DATA A/0.856, 0.848, 0.808, 0.831, 0.750, 0.631, 0.569, 0.607,
     &     -0.324, -0.412, -0.409, -0.342, 0.571, 0.492, 0.510, 0.351/
      DATA X/0.9, 0.9, 0.9, 0.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
     &     0.0, 0.9, 0.9, 0.9, 0.9/
C
      CALL FOPCS (NVAR, NF, A, LDA, X, LDX, B, LDB, T, LDT)
C
      CALL WRRRN (’A’, NVAR, NF, A, LDA, 0)
      CALL WRRRN (’X’, NVAR, NF, X, LDX, 0)
      CALL WRRRN (’B’, NVAR, NF, B, LDB, 0)
      CALL WRRRN (’T’, NF, NF, T, LDT, 0)
      END

Output
         A
         1        2
1   0.8560  -0.3240
2   0.8480  -0.4120
3   0.8080  -0.4090
4   0.8310  -0.3420
5   0.7500   0.5710
6   0.6310   0.4920
7   0.5690   0.5100
8   0.6070   0.3510

         X
         1        2
1   0.9000   0.0000
2   0.9000   0.0000
3   0.9000   0.0000
4   0.9000   0.0000
5   0.0000   0.9000
6   0.0000   0.9000
7   0.0000   0.9000
8   0.0000   0.9000

         B
1        2
1   0.8763   0.264
2   0.9235   0.1896
3   0.8900   0.1677
4   0.8674   0.2348
5   0.2471   0.9096
6   0.2009   0.7745
7   0.1407   0.7510
8   0.2677   0.6481

         T
         1        2
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1   0.7932   0.6090
2  -0.6090   0.7932

FDOBL/DFDOBL (Single/Double precision)
Compute a direct oblimin rotation of a factor loading matrix.

Usage
CALL FDOBL (NVAR, NF, A, LDA, NORM, W, MAXIT, EPS, B, LDB,
            T, LDT, FCOR, LDFCOR)

Arguments

NVAR — Number of variables.   (Input)

NF — Number of factors.   (Input)

A — NVAR by NF matrix of unrotated factor loadings.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

NORM — Row normalization option.   (Input)
If NORM = 1, then row (i.e., Kaiser) normalization is performed. Otherwise, row
normalization is not performed.

W — Nonpositive constant used to define the rotation.   (Input)

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 30 is typical. MAXIT = 0 defaults to 30 iterations.

EPS — Convergence constant.   (Input)
When the relative change in the criterion function is less than EPS from one
iteration to the next, convergence is assumed. EPS = 0.0001 is typical. EPS = 0
defaults to 0.0001.

B — NVAR by NF matrix of rotated factor loadings.   (Output)
If A is not needed, A and B may share the same storage locations.

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program.   (Input)

T — NF by NF matrix containing the rotation transformation matrix.   (Output)

LDT — Leading dimension of T exactly as specified in the dimension statement
in the calling program.   (Input)

FCOR — NF by NF matrix of factor correlations.   (Output)

LDFCOR — Leading dimension of FCOR exactly as specified in the dimension
statement in the calling program.   (Input)
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Comments

1. Automatic workspace usage is

FDOBL NF + 2 * NVAR units, or
DFDOBL 2 * NF + 4 * NVAR units.

Workspace may be explicitly provided, if desired, by use of
F2OBL/DF2OBL. The reference is

CALL F2OBL (NVAR, NF, A, LDA, NORM, W, MAXIT, EPS,
            B, LDB, T, LDT, FCOR, LDFCOR, WK1, WK2,
            WK3)

The additional arguments are as follows:

WK1 — Real work vector of length equal to NVAR.

WK2 — Real work vector of length equal to NF.

WK3 — Real work vector of length equal to NVAR.

2 Informational errors
Type Code
   3    1 The algorithm did not converge within MAXIT

iterations.
   4    1 NF = 1. No rotation is possible.

3. The parameter W determines the type of direct OBLIMIN rotation to be
performed. In general, W must be negative. W = 0.0 yields direct
quartimin rotation. As W approaches negative infinity, the orthogonality
among the factors will increase.

Algorithm

Routine FDOBL performs direct oblimin rotation. In this analytic method of
rotation, the criterion function

Q
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is minimized by finding a rotation matrix T such that (λLU) = Λ = AT and (T7�T )-1
is a correlation matrix. Here, γ ≤ 0 is a user-specified constant (W) yielding a
family of rotations, and p is the number of variables. The rotation is said to be
direct because it minimizes Q with respect to the factor loadings directly, ignoring
the reference structure.

Kaiser normalization can be performed on the factor loadings prior to rotation via
the option parameter NORM. In Kaiser normalization (see Harman 1976), the rows
of A are first “normalized” by dividing each row by the square root of the sum of
its squared elements. After the rotation is complete, each row of B is
“denormalized” by multiplication by its initial normalizing constant.
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The method for optimizing Q is essentially the method first proposed by Jennrich
and Sampson (1966). It proceeds by accumulating simple rotations where a
simple rotation is defined to be one in which Q is optimized for a given factor in
the plane of a second factor, and for which the requirement that

(T7T)-1 be a correlation matrix is satisfied. An iteration is defined to be such that
each of the NF(NF − 1) possible simple rotations is performed, where NF is the
number of factors. When the relative change in Q from one iteration to the next is
less than EPS (the user-specified convergence criterion), the algorithm stops.
EPS = .0001 is usually sufficient. Alternatively, the algorithm stops when the
user-specified maximum number of iterations, MAXIT, is reached. MAXIT = 30 is
usually sufficient.

The parameter in the rotation, γ, is used to provide a family of rotations. Harman
(1976) recommends that γ be strictly less than or equal to zero. When
γ = 0.0, a direct quartimin rotation results. Other values of γ yield other rotations.
Harman (1976) suggests that the direct quartimin rotations yield the most highly
correlated factors while more orthogonal factors result as γ approaches −∞.

Example

The example is a continuation of the example given in routine FACTR. It involves
factors derived from nine variables and uses γ = −1.

      INTEGER    LDA, LDB, LDFCOR, LDT, MAXIT, NF, NORM, NVAR
      REAL       EPS, W
      PARAMETER  (EPS=0.00001, LDA=9, LDB=9, LDFCOR=3, LDT=3,
     &           MAXIT=30, NF=3, NORM=1, NVAR=9, W=-1.0)
C
      REAL       A(LDA,NF), B(LDB,NF), FCOR(LDFCOR,NF), T(LDT,NF)
      EXTERNAL   FDOBL, WRRRN
C
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
     &     .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
     &     -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
     &     .1045, -.0778, .4914, -.0117/
C
      CALL FDOBL (NVAR, NF, A, LDA, NORM, W, MAXIT, EPS, B, LDB, T,
     &            LDT, FCOR, LDFCOR)
C
      CALL WRRRN (’B’, NVAR, NF, B, LDA, 0)
      CALL WRRRN (’T’, NF, NF, T, LDT, 0)
      CALL WRRRN (’FCOR’, NF, NF, FCOR, LDFCOR, 0)
      END

Output
              B
         1        2        3
1   0.1127  -0.5145   0.2917
2   0.1847  -0.6602  -0.0019
3   0.0128  -0.6354  -0.0585
4   0.7797  -0.1751   0.0598
5   0.7147  -0.1813  -0.0959
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6   0.8520   0.0038   0.1820
7   0.0355  -0.6845   0.1509
8   0.0276  -0.0941   0.6824
9   0.0729  -0.7100   0.2493

        T
        1       2       3
1   0.611  -0.462   0.203
2   0.923   0.813  -0.249
3   0.042   0.728   1.050

          FCOR
        1       2       3
1   1.000  -0.427   0.217
2  -0.427   1.000  -0.411
3   0.217  -0.411   1.000

FPRMX/DFPRMX (Single/Double precision)
Compute an oblique Promax or Procrustes rotation of a factor loading matrix
using a target matrix, including pivot and power vector options.

Usage
CALL FPRMX (NVAR, NF, A, LDA, IMTH, NORM, W, MAXIT, EPS, F,
            X, LDX, B, LDB, T, LDT, FCOR, LDFCOR)

Arguments

NVAR — Number of variables.   (Input)
NVAR must be greater than or equal to 2.

NF — Number of factors.   (Input)
NF must be greater than or equal to 2.

A — NVAR by NF matrix of unrotated factor loadings.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

IMTH — Method used for rotation.   (Input)

IMTH Method
1 The Promax method.
2 The pivotal Promax method.
3 Oblique Procrustes method.

NORM — Normalization option parameter.   (Input)
NORM = 0 indicates that no row (Kaiser) normalization is to be performed in the
orthomax orthogonal rotation. Otherwise, row normalization is performed. Not
used when IMTH = 3.
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W — Constant used to define the orthomax orthogonal rotation.   (Input)
Values for W are discussed in the Comments. W must be nonnegative. Not used if
IMTH = 3.

MAXIT — Maximum number of iterations.   (Input)
Thirty is typical. Not used if IMTH = 3.

EPS — Convergence constant for the orthogonal rotation.   (Input)
When the relative change in the orthomax criterion function is less than EPS from
one iteration to the next, convergence is assumed. EPS = 0.0001 is typical. EPS
nonpositive defaults to EPS = 0.0001.

F — Vector of length NF containing the power vector or the pivot constants
depending upon whether IMTH = 1 or IMTH = 2, respectively.   (Input)
Not used if IMTH = 3.

X — NVAR by NF target matrix for the rotation.   (Output, if IMTH = 1 or 2; input,
if IMTH = 3)
For IMTH = 1 or 2, X is the target matrix derived from the orthomax rotation. For
IMTH = 3, X is input.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

B — NVAR by NF matrix of rotated factor loadings.   (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program.   (Input)

T — NF by NF factor rotation matrix.   (Output)

LDT — Leading dimension of T exactly as specified in the dimension statement
in the calling program.   (Input)

FCOR — NF by NF matrix of factor correlations.   (Output)

LDFCOR — Leading dimension of FCOR exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

FPRMX (NVAR + 4) * NF units, or
DFPRMX (2 * NVAR + 7) * NF units.

Workspace may be explicitly provided, if desired, by use of
F2RMX/DF2RMX. The reference is

CALL F2RMX (NVAR, NF, A, LDA, IMTH, NORM, W, MAXIT,
            EPS, F, X, LDX, B, LDB, T, LDT, FCOR,
            LDFCOR, QR, QRAUX, IPVT, WORK)

The additional arguments are as follows:

QR — Work vector of length NVAR * NF.
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QRAUX — Work vector of length NF.

IPVT — Work vector of length NF.

WORK — Work vector of length 2 * NF.

2. Arguments W, EPS, and NORM are input arguments to routine FROTA

(page 809) when IMTH = 1 or 2. (They are not used when IMTH = 3.) See
FROTA for common values of W. Generally, W can be any positive real
number, but the best values lie in the range (1.0, 5.0 * NF). Generally,
the variances accounted for by the factors approach the same value as W

increases.

3. For IMTH = 1, all F(j) should be greater than 1.0, typically 4.0.
Generally, the larger the values of F(j), the more oblique the solution
will be. For IMTH = 2, F(j) should be in the interval (0.0, 1.0).

4. When IMTH = 3, the target matrix, X, is a hypothesized rotated factor
loading matrix based upon prior knowledge with loadings chosen to
enhance interpretability. A simple structure solution will have most of
the weights X(i, j) either zero or large in magnitude. Note that the two
options IMTH = 1 or 2 attempt to achieve this simple structure based
upon an initial orthogonal rotation.

Algorithm

Routine FPRMX performs oblique rotations via the Promax, the pivotal Promax, or
the oblique Procrustes methods. In all of these methods, a target matrix X is first
either computed or specified by the user. The differences in the methods relate to
how the target matrix is first obtained.

Given a p × k target matrix, X, and a p × k orthogonal matrix of unrotated factor
loadings, A, compute the rotation matrix T as follows: First regress each column

of A on X yielding a k × k matrix β. Then, let γ = diag(β7 β) where diag denotes
the diagonal matrix obtained from the diagonal of the square matrix. Standardize 

β to obtain T = γ-1/2 β. The rotated loadings are computed as B = AT while the

factor correlations can be computed as the inverse of the T 7T matrix.

In the Promax method, the unrotated factor loadings are first rotated according to
an orthomax criterion via routine FROTA (page 809). The target matrix X is taken
as the elements of the B raised to a power greater than one but retaining the same
sign as the original loadings. In FPRMX, column i of the rotated matrix B is raised
to the power F(i). A power of four is commonly used. Generally, the larger the
power, the more oblique the solution.

In the pivotal Promax method, the unrotated matrix is first rotated to an orthomax
orthogonal solution as in the Promax case. Then, rather than raising the i-th
column in B to the power F(i), the elements xLM of X are obtained from the
elements bLM of B by raising the ij  element of B to the power F(i)/bLM. This has
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the effects of greatly increasing in X those elements in B that are greater in
magnitude than the pivot elements F(i), and of greatly decreasing those elements
that are less than F(i).

In the oblique Procrustes method, the elements of X are specified by the user as
input to the FPRMX routine. No orthogonal rotation is performed in the oblique
Procrustes method.

Example

The following example is a continuation of the example in the FACTR (page 801)
procedure. It involves nine variables and three factors. The pivotal Promax
method is illustrated.

      INTEGER    IMTH, LDA, LDB, LDFCOR, LDT, LDX, MAXIT, NF, NORM,
     &           NVAR
      REAL       EPS, W
      PARAMETER  (EPS=0.0, IMTH=2, LDA=9, LDB=9, LDFCOR=3, LDT=3,
     &           LDX=9, MAXIT=30, NF=3, NORM=1, NVAR=9, W=1.0)
C
      REAL       A(LDA,NF), B(LDB,NF), F(NF), FCOR(LDFCOR,NF),
     &           T(LDT,NF), X(LDX,NF)
      EXTERNAL   FPRMX, WRRRN
C
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
     &     .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
     &     -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
     &     .1045, -.0778, .4914, -.0117/
C
      DATA F/0.5, 0.5, 0.5/
C
      CALL FPRMX (NVAR, NF, A, LDA, IMTH, NORM, W, MAXIT, EPS, F, X,
     &            LDX, B, LDB, T, LDT, FCOR, LDFCOR)
C
      CALL WRRRN (’X’, NVAR, NF, X, LDX, 0)
      CALL WRRRN (’B’, NVAR, NF, B, LDB, 0)
      CALL WRRRN (’T’, NF, NF, T, LDT, 0)
      CALL WRRRN (’FCOR’, NF, NF, FCOR, LDFCOR, 0)
      END

Output
               X
         1        2        3
1   0.0800  -0.6157   0.2967
2   0.2089  -0.7311   0.0007
3   0.0037  -0.6454   0.0000
4   0.8800  -0.1681   0.0032
5   0.8116  -0.1030   0.0000
6   0.9096  -0.0122   0.0640
7   0.0291  -0.7649   0.0982
8   0.0001  -0.0546   0.7563
9   0.0866  -0.8189   0.2807

             B
         1        2        3
1   0.0997  -0.5089   0.3038
2   0.1900  -0.6463   0.0077
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3   0.0163  -0.6270  -0.0421
4   0.7991  -0.1469   0.0285
5   0.7408  -0.1531  -0.1256
6   0.8668   0.0308   0.1436
7   0.0280  -0.6777   0.1699
8  -0.0094  -0.1017   0.6911
9   0.0611  -0.7031   0.2683

            T
        1       2       3
1   0.617  -0.439   0.189
2   0.963   0.839  -0.318
3  -0.015   0.707   1.039

           FCOR
        1       2       3
1   1.000  -0.464   0.316
2  -0.464   1.000  -0.395
3   0.316  -0.395   1.000

FHARR/DFHARR (Single/Double precision)
Compute an oblique rotation of an unrotated factor loading matrix using the
Harris-Kaiser method.

Usage
CALL FHARR (NVAR, NF, A, LDA, NORM, MAXIT, W, C, EPS,
            SCALE, B, LDB, T, LDT, FCOR, LDFCOR)

Arguments

NVAR — Number of variables.   (Input)

NF — Number of factors.   (Input)

A — NVAR by NF matrix of unrotated factor loadings.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

NORM — Row normalization option.   (Input)
If NORM = 1, then row (i.e., Kaiser) normalization is performed. Otherwise, row
normalization is not performed.

MAXIT — Maximum number of iterations.   (Input)
A typical value is 30.

W — Constant used to define the rotation.   (Input)
The value of W must be nonnegative. See Comments.

C — Constant between zero and one used to define the rotation.   (Input)
See Comments.
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EPS — Convergence constant for the rotation angle.   (Input)
EPS = 0.0001 is typical. If EPS is less that or equal to 0.0, then EPS = 0.0001 is
used.

SCALE — Vector of length NVAR containing a scaling vector.   (Input)
All elements in SCALE should be set to one if principal components or
unweighted least squares was used to obtain the unrotated factor loadings. The
elements of SCALE should be set to the unique error variances (vector UNIQ in
subroutine FACTR) if the principal factor, generalized least squares, maximum
likelihood, or the image method was used. Finally, in alpha factor analysis, the
elements of SCALE should be set to the communalities (one minus the
uniquenesses in standardized data).

B — NVAR by NF matrix containing the rotated factor loadings.   (Output)

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program.   (Input)

T — NF by NF factor rotation matrix.   (Output)

LDT — Leading dimension of T exactly as specified in the dimension statement
in the calling program.   (Input)

FCOR — NF by NF matrix containing the factor correlations.   (Output)

LDFCOR — Leading dimension of FCOR exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

FHARR 2 * NF + NVAR units, or
DFHARR 4 * NF + 2 * NVAR units.

Workspace may be explicitly provided, if desired, by use of
F2ARR/DF2ARR. The reference is

CALL F2ARR (NVAR, NF, A, LDA, NORM, MAXIT, W, C,
            EPS, SCALE, B, LDB, T, LDT, FCOR,
            LDFCOR, RWK1, RWK2)

The additional arguments are as follows:

RWK1 — Real work vector of length equal to 2 * NF.

RWK2 — Real work vector of length equal to NVAR.

2. Argument C must be between 0.0 and 1.0. The larger C is, the more
orthogonal the rotated factors are. Rarely, should C be greater than 0.5.

3. Arguments W, EPS, and NORM are arguments to routine FROTA

(page 809). See FROTA for common values of W in orthogonal rotations.
For FHARR, the best values of W are in the range (0.0, 5.0 * NF).
Generally, the variances of the factors converge to the same value as W

increases.
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Algorithm

Routine FHARR performs an oblique analytic rotation of unrotated factor loadings
via a method proposed by Harris and Kaiser (1964). In this method of rotation,

the eigenvectors obtained from the factor extraction are weighted by a factor ∆F��
where ∆ is the diagonal matrix of eigenvalues obtained in the factor extraction
and c is a specified constant. These transformed eigenvectors are then rotated
according to an orthomax criterion.

The transformation used to obtain the weighted eigenvectors, Γ�*, from the

unrotated loadings, A, is given as Γ�* = Ψ-1/2 A∆(F-1)/2 where Ψ is the matrix of
unique error variances output by routine FACTR (page 801). The matrix should be
set to an identity matrix if the principal component, unweighted least squares, or
alpha factor analysis method is used in routine FACTR to obtain the unrotated
factor loadings (IMTH = 0,1, or 5). This is required because in these methods of
factor analysis, the eigenvectors are not premultiplied by a diagonal matrix when
obtaining the unrotated factor loadings.

After Γ�* has been computed, it is rotated according to a user-selected orthomax
criterion. The member of the orthomax family to be used is selected via a constant

W. (See the description of routine FROTA, page 809.) Because Γ�* is used in place
of A (the unrotated factor loadings in routine FROTA), the matrix resulting from
the rotation is (after standardizing by preand postmultiplication by the diagonal

matrices U-1 and ∆1-F) a matrix of obliquely rotated loadings.

Note that the effect of W is less pronounced than the effect of C. Using c = 1.0
yields an orthogonal orthomax rotation while c = 0.0 yields the most oblique
factors. A common choice for c is given by c = 0.5. One good choice for W is 1.0.
W = 1.0 yields a varimax rotation on the weighted eigenvectors.

Example

The example is a continuation of the example in routine FACTR (page 801). It
involves 9 variables. A rotation with row normalization and 3 factors is
performed.

      INTEGER    LDA, LDB, LDFCOR, LDT, MAXIT, NF, NORM, NVAR
      REAL       C, EPS, W
      PARAMETER  (C=0.5, EPS=0.0001, LDA=9, LDB=9, LDFCOR=3, LDT=3,
     &           MAXIT=30, NF=3, NORM=1, NVAR=9, W=1.0)
C
      REAL       A(LDA,NF), B(LDB,NF), FCOR(LDFCOR,NF), SCALE(NVAR),
     &           T(LDT,NF)
      EXTERNAL   FHARR, WRRRN
C
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
     &     .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
     &     -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
     &     .1045, -.0778, .4914, -.0117/
C
      DATA SCALE/.4505, .4271, .6165, .2123, .3805, .1769, .3995,
     &     .4616, .2309/
C
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      CALL FHARR (NVAR, NF, A, LDA, NORM, MAXIT, W, C, EPS, SCALE, B,
     &            LDB, T, LDT, FCOR, LDFCOR)
C
      CALL WRRRN (’B’, NVAR, NF, B, LDB, 0)
      CALL WRRRN (’T’, NF, NF, T, LDT, 0)
      CALL WRRRN (’FCOR’, NF, NF, FCOR, LDFCOR, 0)
      END

Output
              B
         1        2        3
1   0.1542  -0.5103   0.2749
2   0.2470  -0.6477  -0.0233
3   0.0744  -0.6185  -0.0750
4   0.7934  -0.1897   0.0363
5   0.7329  -0.1909  -0.1175
6   0.8456  -0.0194   0.1610
7   0.0966  -0.6713   0.1320
8   0.0198  -0.1067   0.6773
9   0.1340  -0.6991   0.2285

            T
        1       2       3
1   0.649  -0.469   0.175
2   0.850   0.777  -0.249
3  -0.053   0.687   1.065

          FCOR
        1       2       3
1   1.000  -0.335   0.250
2  -0.335   1.000  -0.413
3   0.250  -0.413   1.000

FGCRF/DFGCRF (Single/Double precision)
Compute direct oblique rotation according to a generalized fourth-degree
polynomial criterion.

Usage
CALL FGCRF (NVAR, NF, A, LDA, NORM, W, MAXIT, EPS, B, LDB,
            T, LDT, FCOR, LDFCOR)

Arguments

NVAR — Number of variables.   (Input)

NF — Number of factors.   (Input)

A — NVAR by NF matrix of unrotated factor loadings.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)
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NORM — Row normalization option.   (Input)
If NORM = 1, then row (i.e., Kaiser) normalization is performed. If NORM = 0, row
normalization is not performed.

W — Vector of length 4 containing the constants ω1, ω2, ω3, ω4 necessary to
define the rotation.   (Input)

Some common rotations are

Rotation W(1) W(2) W(3) W(4)

Quartimin 0 1 0 −1

Covarimin −1/NVAR 1 1/NVAR −1

Oblimin −γ/NVAR 1 γ/NVAR −1

Crawford-Ferguson 0 K1 K2 −K1 − K2

where K1, K2, and γ are constants (determined by the user).

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 30 is typical. MAXIT ≤ 30 defaults to 30 iterations.

EPS — Convergence constant.   (Input)
When the relative change in the criterion function is less than EPS from one
iteration to the next, convergence is assumed. EPS = 0.0001 is typical. EPS ≤ 0.0
defaults to 0.0001.

B — NVAR by NF matrix of rotated factor loadings.   (Output)
If A is not needed, A and B can share the same storage locations.

LDB — Leading dimension of B exactly as specified in the dimension statement
in the calling program.   (Input)

T — NF by NF matrix containing the rotation transformation matrix.   (Output)

LDT — Leading dimension of T exactly as specified in the dimension statement
in the calling program.   (Input)

FCOR — NF by NF matrix of factor correlations.   (Output)

LDFCOR — Leading dimension of FCOR exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

FGCRF NVAR * (NF + 2) + NF2 units, or
DFGCRF 2 * (NVAR * (NF + 2) + NF2) units.

Workspace may be explicitly provided, if desired, by use of
F2CRF/DF2CRF. The reference is
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CALL F2CRF (NVAR, NF, A, LDA, NORM, W, MAXIT, EPS,
            B, LDB, T, LDT, FCOR, LDFCOR, RWK1,
            RWK2, RWK3)

The additional arguments are as follows:

RWK1 — Work vector of length NVAR.

RWK2 — Work vector of length NVAR * (NF + 1).

RWK3 — Work vector of length NF2.

2. Informational error
Type Code
   3    1 The algorithm did not converge within MAXIT

iterations.

Algorithm

Routine FGCRF performs direct oblique factor rotation for an arbitrary fourth-
degree polynomial criterion function. Let p = NVAR denote the number of
variables, and let k = NF denote the number of factors. Then, the criterion
function
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is minimized by finding a rotation matrix T such that (λLM) = Λ = AT and

T-1 (T-1)7 is a correlation matrix. Here, ωL= W(i), i = 1, …, 4 are user specified
constants. The rotation is said to be direct because it minimizes Q with respect to
the factor loadings directly, ignoring the reference structure (see, e.g., Harman,
1976).

Kaiser normalization (Harman, 1976) is specified when option parameter
NORM = 1. When Kaiser normalization is performed, the rows of A are first
“normalized” by dividing each row by the square root of the sum of its squared
elements. The rotation is then performed. The rows of B are then “denormalized”
by multiplying each row by the initial row normalizing constant.

The criterion function Q was first proposed by Jennrich (1973). It generalizes
the oblimin criterion function and the criterion function proposed by Crawford
and Ferguson (1970) to an arbitrary fourth degree criterion. Q is optimized by
accumulating simple rotations where a simple rotation is defined to be an
optimal factor rotation (with respect to Q) for two columns of Λ, and for which

the requirement that T�-1 (T�-1)7 be a correlation matrix is satisfied. FGCRF
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determines the optimal simple rotation by finding the roots of a cubic polynomial
equation. The details are contained in Clarkson and Jennrich (1988).

Table 1: Specific Criteria in the General Symmetric Family

Criterion ω1 ω2 ω3 ω4

Quartimin 0 1 0 −1

Covarimin −1/p 1 1/p −1

Oblimin −γ/p 1 γ/p −1

Crawford-Ferguson 0 K1 K2 −K1 − K2

An iteration is complete after all possible k(k −  1) simple rotations have been
performed. When the relative change in Q from one iteration to the next is less
than EPS, the algorithm stops. EPS = .0001 is usually sufficient. Alternatively, the
algorithm stops when the user specified maximum number of iterations, MAXIT, is
reached. MAXIT = 30 is typical.

Notes

The parameters in the rotation, ω1, provide for a two-dimensional family of
rotations. When ω1 = −γ/p, ω2 = 1, ω3 = γ/p, and ω4 = −1, then a direct oblimin
rotation with parameter γ is performed. Direct oblimin rotations are also
performed by routine FDOBL (page 815), which is somewhat faster. For ω1 = 0, ω
2 = K1,
ω3 = K2, and ω4 = −(K1 + K2) direct Crawford-Ferguson rotation with parameters
K1 and K2 results (see Crawford and Ferguson 1970, or Clarkson and Jennrich
1988). Other values of ω yield other rotations. Common values for ω are as in
Table 1.

Example

The example is a continuation of the example in routine FACTR (page 801). It
involves nine variables. A Crawford-Ferguson rotation with row normalization
and 3 factors is performed.

      INTEGER    LDA, LDB, LDFCOR, LDT, MAXIT, NF, NORM, NVAR
      REAL       EPS
      PARAMETER  (EPS=0.0001, LDA=9, LDB=9, LDFCOR=3, LDT=3, MAXIT=30,
     &           NF=3, NORM=1, NVAR=9)
C
      REAL       A(LDA,NF), B(LDB,NF), FCOR(LDFCOR,NF), T(LDT,NF), W(4)
      EXTERNAL   FGCRF, WRRRN
C
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
     &     .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
     &     -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
     &     .1045, -.0778, .4914, -.0117/
      DATA W/0.0, 7.0, 1.0, -8.0/
C
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      CALL FGCRF (NVAR, NF, A, LDA, NORM, W, MAXIT, EPS, B, LDB, T,
     &            LDT, FCOR, LDFCOR)
C
      CALL WRRRN (’B’, NVAR, NF, B, LDA, 0)
      CALL WRRRN (’T’, NF, NF, T, LDT, 0)
      CALL WRRRN (’FCOR’, NF, NF, FCOR, LDFCOR, 0)
      END

Output
              B
         1        2        3
1   0.1156  -0.3875   0.3992
2   0.2164  -0.5829   0.0924
3   0.0426  -0.5858   0.0263
4   0.8052  -0.0903   0.0887
5   0.7497  -0.1370  -0.0838
6   0.8638   0.1047   0.1990
7   0.0529  -0.5792   0.2670
8  -0.0166   0.0776   0.7748
9   0.0854  -0.5765   0.3803

            T
        1       2       3
1   0.633  -0.327   0.290
2   0.935   0.738  -0.399
3  -0.061   0.907   1.066

          FCOR
        1       2       3
1   1.000  -0.434   0.366
2  -0.434   1.000  -0.498
3   0.366  -0.498   1.000

FIMAG/DFIMAG (Single/Double precision)
Compute the image transformation matrix.

Usage
CALL FIMAG (NF, T, LDT, TI, LDTI)

Arguments

NF — Number of factors.   (Input)

T — NF by NF transformation matrix.   (Input)

LDT — Leading dimension of T exactly as specified in the dimension statement
in the calling program.   (Input)

TI — NF by NF image transformation matrix.   (Output)

LDTI — Leading dimension of TI exactly as specified in the dimension
statement in the calling program.   (Input)
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Comments

1. Automatic workspace usage is

FIMAG 2 * NF + NF(NF − 1)/2 units, or
DFIMAG 3 * NF + NF(NF − 1) units.

Workspace may be explicitly provided, if desired, by use of
F2MAG/DF2MAG. The reference is

CALL F2MAG (NF, T, LDT, TI, LDTI, RWK, IWK)

The additional arguments are as follows:

RWK — Real work vector of length NF + NF(NF − 1)/2.

IWK — Integer work vector of length NF.

2. Informational Error
Type  Code
   3    1 T is ill-conditioned. The solution may not be accurate.

Algorithm

Routine FIMAG computes the image transformation matrix TI from the factor
rotation matrix (T). The image transformation matrix takes the unrotated factor
loadings into the factor structure matrix when the unrotated loadings are
computed from a correlation matrix. It is computed as the inverse of the transpose

of the factor rotation matrix T. When orthogonal rotations are used, (T7)-1 = T so
there is no reason to compute the image transformation matrix.

Example

This example is a continuation of the example contained in the manual document
for routine FROTA (page 809). The image transformation matrix is obtained from
the orthogonal rotation matrix. Some small differences between the matrix TI

when compared with the matrix T computed via routine FROTA can be seen.
These differences are because of roundoff error since for orthogonal rotations, the
image transformation matrix is the same as the rotation matrix.

      INTEGER    LDT, LDTI, NF
      PARAMETER  (LDT=3, LDTI=3, NF=3)
C
      REAL       T(LDT,NF), TI(LDTI,NF)
      EXTERNAL   FIMAG, WRRRN
C
      DATA T/.7307, .6816, -.0382, -.5939, .6623, .4569, .3367,
     &     -.3112, .8887/
C
      CALL FIMAG (NF, T, LDT, TI, LDTI)
C
      CALL WRRRN (’TI’, NF, NF, TI, LDTI, 0)
      END
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Output
              TI
         1        2        3
1   0.7307  -0.5938   0.3367
2   0.6816   0.6622  -0.3112
3  -0.0382   0.4569   0.8887

FRVAR/DFRVAR (Single/Double precision)
Compute the factor structure and the variance explained by each factor.

Usage
CALL FRVAR (NVAR, NF, A, LDA, T, LDT, VAR, S, LDS, FVAR)

Arguments

NVAR — Number of variables.   (Input)

NF — Number of factors.   (Input)

A — NVAR by NF matrix of unrotated factor loadings.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

T — NF by NF factor rotation matrix.   (Input)

LDT — Leading dimension of T exactly as specified in the dimension statement
in the calling program.   (Input)

VAR — Vector of length NVAR containing the variances of the original variables.
(Input)
If standardized variables were used (i.e., the loadings are from a correlation
matrix), then set VAR(1) to any negative number. In this case, VAR may be
dimensioned of length one.

S — NVAR by NF factor structure matrix.   (Output)

LDS — Leading dimension of S exactly as specified in the dimension statement
in the calling program.   (Input)

FVAR — Vector of length NF containing the variance accounted for by each of
the NF rotated factors.   (Output)

Comments

Automatic workspace usage is

FRVAR NF2 + NF * (1 + NVAR) + NF units, or

DFRVAR 2 * NF2 + 2 * NF * (1 + NVAR) + NF units.

Workspace may be explicitly provided, if desired, by use of F2VAR/DF2VAR. The
reference is
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CALL F2VAR (NVAR, NF, A, LDA, T, LDT, VAR, S, LDS, FVAR,
            TINV, WK, IWK)

The additional arguments are as follows:

TINV — Work vector of length NF2.

WK — Work vector of NF * (1 + NVAR).

IWK — Work vector of length NF.

Algorithm

Routine FRVAR computes the factor structure matrix (the matrix of correlations
between the observed variables and the hypothesized factors) and the variance
explained by each of the factors (for orthogonal rotations). For oblique rotations,
FRVAR computes a measure of the importance of the factors, the sum of the
squared elements in each column.

Let ∆ denote the diagonal matrix containing the elements of the vector VAR along
its diagonal. The estimated factor structure matrix S is computed as

S A T T= − −∆
1
2 1( )

while the elements of FVAR are computed as the diagonal elements of

S ATT ∆
1
2

If the factors were obtained from a correlation matrix (or the factor variances for
standardized variables are desired), then the elements of the vector VAR should
either all be 1.0, or the first element of VAR should be set to any negative number.
In either case, variances of 1.0 are used.

The user should be careful to input the unrotated loadings. When obliquely
rotated loadings are input, the output vector FVAR contains a measure of each
factors importance, but it does not contain the variance of each factor.

Example

The following example illustrates the use of routine FRVAR when the structure
and and an index of factor importance for obliquely rotated loadings (obtained
from routine FDOBL, page 815) are desired. Note in this example that the
elements of FVAR are not variances since the rotation is oblique.

      INTEGER    LDA, LDS, LDT, NF, NVAR
      PARAMETER  (LDA=9, LDS=9, LDT=3, NF=3, NVAR=9)
C
      REAL       A(LDA,NF), FVAR(NF), S(LDS,NF), T(LDT,NF), VAR(NVAR)
      EXTERNAL   FRVAR, WRRRN
C
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
     &     .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
     &     -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
     &     .1045, -.0778, .4914, -.0117/
C
      DATA T/0.611, 0.923, 0.042, -0.462, 0.813, 0.728, 0.203, -0.249,
     &     1.050/
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C
      DATA VAR/9*1.0/
C
      CALL FRVAR (NVAR, NF, A, LDA, T, LDT, VAR, S, LDS, FVAR)
C
      CALL WRRRN (’S’, NVAR, NF, S, LDS, 0)
      CALL WRRRN (’FVAR’, 1, NF, FVAR, 1, 0)
      END

Output
               S
         1        2        3
1   0.3958  -0.6825   0.5274
2   0.4662  -0.7385   0.3093
3   0.2715  -0.6171   0.2052
4   0.8673  -0.5328   0.3010
5   0.7712  -0.4473   0.1338
6   0.8897  -0.4348   0.3654
7   0.3606  -0.7618   0.4397
8   0.2160  -0.3860   0.7270
9   0.4303  -0.8437   0.5566

        FVAR
    1       2       3
2.170   2.559   0.915

FCOEF/DFCOEF (Single/Double precision)
Compute a matrix of factor score coefficients for input to the routine FSCOR.

Usage
CALL FCOEF (NVAR, NF, A, LDA, IMTH, COV, LDCOV, T,
            LDT, SCOEF, LDSCOE)

Arguments

NVAR — Number of variables.   (Input)

NF — Number of factors.   (Input)

A — NVAR by NF matrix of unrotated factor loadings.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

IMTH — Method to be used to obtain the factor scores.   (Input)

IMTH Method
1 Regression method
2 Least squares method
3 Bartlett method
4 Anderson and Rubin method
5 Image score for image analysis
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See the Comments for a table of the methods that are appropriate for a given type
of factor extraction and rotation.

COV — The variance-covariance or correlation matrix of order NVAR from which
the factor loadings were obtained.   (Input)
COV is not used and may be dimensioned of length 1 if IMTH = 2 or 5.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

T — NF by NF factor rotation matrix or transformation matrix.   (Input)
If the image method is being used, then routine FIMAG (page 829) needs to be
called after the rotation routine to obtain the image transformation matrix. TI is
then input for T in FCOEF. If factor score coefficients for the unrotated loadings
are desired, T should be set to the identity matrix prior to calling FCOEF.

LDT — Leading dimension of T exactly as specified in the dimension statement
in the calling program.   (Input)

SCOEF — NVAR by NF factor score coefficient matrix.   (Output)

LDSCOE — Leading dimension of SCOEF exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1 Automatic workspace usage for FCOEF depends on IMTH.

IMTH Usage
1 NVAR * (NVAR + NF) + NF + 2 units
2,3 NF * (NVAR + NF) + NVAR + NF + 1 units
4 NVAR * (NVAR + 2 * NF + 1) + NF * (NF + 1) units
5 NVAR * NF + 4 units

Workspace for DFCOEF is twice the workspace required for FCOEF.
Workspace may be explicitly provided, if desired, by use of
F2OEF/DF2OEF. The reference is

CALL F2OEF (NVAR, NF, A, LDA, IMTH, COV, LDCOV, T,
            LDT, SCOEF, LDSCOE, B, RWK1, S, UNIQ,
            RWK2)

The additional arguments are as follows:

B — Real work vector of length 2 * NVAR * NF if IMTH = 4, and of
length NVAR * NF otherwise.

RWK1 — Real work vector of length NVAR2 if IMTH = 1 or 4, and of

length NF2 if IMTH = 2 or 3. Otherwise, RWK1 is of length 1.

S — Real work vector of length NF2 if IMTH = 4. Otherwise, S is
dimensioned of length 1.

UNIQ — Real work vector of length NVAR if IMTH = 2, 3, or 4.
Otherwise, UNIQ is dimensioned of length 1.
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RWK2 — Real work vector of length NF if IMTH is not 5. If IMTH = 5,
then RWK2 is of length 1.

2. The method used for computing the factor score coefficients depends
both upon the method used to extract the factor loadings in routine
FACTR (page 801) and whether the factor loadings were orthogonally or
obliquely rotated. In the following table, the numbers in parentheses
refer to IMTH in routine FACTR and the numbers in the cells refer to
IMTH in FCOEF.

FACTR

Method (IMTH)
No
Rotation

Orthogonal
Rotation

Oblique
Rotation

Component (0) 1, 2 1, 2 1, 2

Image (4) 5 5 5

Common Factor

ULS (1) 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4

GLS (2) 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4

ML (3) 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4

Alpha (5) 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4

Algorithm

Routine FCOEF computes factor score coefficients that may subsequently be used
in computing the factor scores in routine FSCOR (page 838). Five options for
computing the coefficients are available according to the input parameter IMTH.
The method that should be used depends upon the method used in extracting the
factor loadings. See the Comments section above for values to use for IMTH when
various methods of factor extraction are used.

Let S denote the covariance (or correlation) matrix from which the factors were

obtained, let β denote the factor score coefficients, let U2 = diag(S − AA7) denote
the unique error variances, and let B = AT denote the rotated factor loadings (if
coefficients for the unrotated loadings are desired, then B = A). The various
methods for computing the factor score coefficients are discussed in detail in
Harman (1976, Chapter 16) and are given as follows:

1. The regression method may be used with any method of factor extraction
and rotation (but not with image analysis). The coefficients are
computed as follows:

$ ( )β = − −S B T TT1 1

2. The least-squares method may also be used with any method of factor
extraction and rotation (but not in image analysis). The factor score
coefficients are computed as

$ ( )β = −B B BT 1
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Note that estimated coefficients in the least-squares method yield
different factor scores depending upon the scale of the observed
variables. In particular, factor scores computed from standardized data
(i.e., for the correlation matrix) will be different from factor scores
computed from the raw data (i.e., from a covariance matrix). Generally,
the differences will not be great. These differences are not observed in
any of the other methods.

3. The Bartlett (1937) method may be used with common factor models
only. The coefficients are computed as

$ ( )β = − − −U B B U BT2 2 1

4. The Anderson and Rubin (1956) method may also be used with common
factor models only. It is a modification of the Bartlett method where the
modification is used to insure that the factors obtained are orthogonal.
The factor score coefficients are computed as

$ ( )β = − − − −
U B B U SU BT2 2 2

1
2

5. The image method is appropriate for image analysis. In this method, the
coefficients are computed as

$ ( ) ( )β = = − −B T A T TI I
T T1 1

where B, is the image score coefficient matrix, and T, is the image
transformation matrix (the matrix TI in routine FIMAG, page 829).

Harman (1976, pages 385-387) discusses choosing a method for computing factor
score coefficients. According to Harman, the most desirable properties of any of
the methods can be summarized as follows.

• Validity—The estimated factor scores should have high correlation with the
population factor scores.

• Orthogonality—The estimated factor scores should not correlate highly with one
another.

• Univocal—The estimated factor scores should correlate only with the
corresponding true factor scores.

With these criteria in mind, Harman states that:

1. The regression method yields factor scores which usually have the highest
correlation with the true factor scores.

2. The Bartlett and least-squares methods are univocal but not orthogonal.

3. The Anderson and Rubin method is orthogonal but not univocal.

4. Univocality is of more significance than orthogonality.
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Example

In the following example, the regression method is used to obtain estimated factor
score coefficients for a 9-variable problem with 3 factors. An oblique rotation
method was used with the maximum likelihood common factor model to obtain
the factor loadings. Routine FDOBL (page 815) was used to obtain the oblique
factor loadings.

      INTEGER    IMTH, LDA, LDCOV, LDSCOE, LDT, NF, NVAR
      PARAMETER  (IMTH=1, LDA=9, LDCOV=9, LDSCOE=9, LDT=3, NF=3,
     &           NVAR=9)
C
      REAL       A(LDA,NF), COV(LDCOV,NVAR), SCOEF(LDSCOE,NF),
     &           T(LDT,NF)
      EXTERNAL   FCOEF, WRRRN
C
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
     &     .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
     &     -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
     &     .1045, -.0778, .4914, -.0117/
C
      DATA T/0.611, 0.923, 0.042, -0.462, 0.813, 0.728, 0.203, -0.249,
     &     1.050/
C
      DATA COV/1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434,
     &     0.639, 0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547,
     &     0.283, 0.645, 0.395, 0.479, 1.000, 0.355, 0.270, 0.254,
     &     0.452, 0.219, 0.504, 0.471, 0.506, 0.355, 1.000, 0.691,
     &     0.791, 0.443, 0.285, 0.505, 0.346, 0.418, 0.270, 0.691,
     &     1.000, 0.679, 0.383, 0.149, 0.409, 0.426, 0.462, 0.254,
     &     0.791, 0.679, 1.000, 0.372, 0.314, 0.472, 0.576, 0.547,
     &     0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680, 0.434,
     &     0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470,
     &     0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470,
     &     1.000/
C
      CALL FCOEF (NVAR, NF, A, LDA, IMTH, COV, LDCOV, T, LDT, SCOEF,
     &            LDSCOE)
C
      CALL WRRRN (’SCOEF’, NVAR, NF, SCOEF, LDSCOE, 0)
      END

Output
            SCOEF
         1        2        3
1  -0.0102  -0.1350   0.1781
2   0.0269  -0.2191  -0.0825
3  -0.0080  -0.1536  -0.0791
4   0.3788  -0.0597  -0.0596
5   0.2067  -0.0554  -0.1768
6   0.4885   0.1103   0.2084
7  -0.0258  -0.2317   0.0612
8  -0.0474   0.0345   0.5269
9  -0.0431  -0.3967   0.2507
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FSCOR/DFSCOR (Single/Double precision)
Compute a set of factor scores given the factor score coefficient matrix.

Usage
CALL FSCOR (NVAR, NF, SCOEF, LDSCOE, NOBS, X, LDX, XBAR,
            STD, SCOR, LDSCOR)

Arguments

NVAR — Number of variables.   (Input)

NF — Number of factors.   (Input)

SCOEF — NVAR by NF matrix containing the factor score coefficients as output
from routine FCOEF (page 833).   (Input)

LDSCOE — Leading dimension of SCOEF exactly as specified in the dimension
statement in the calling program.   (Input)

NOBS — Number of observations for which factor scores are to be computed.
(Input)

X — NOBS by NVAR data matrix for which factor scores are to be computed.
(Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

XBAR — Vector of length NVAR containing the means of the NVAR variables.
(Input)

STD — Vector of length NVAR containing the standard deviations of the NVAR

variables.   (Input)
If STD(1) is not positive, then it is assumed that the factor score coefficients are
from a covariance matrix and the observed variables are not standardized to unit
variance.

SCOR — NOBS by NF matrix containing the factor scores.   (Output)
If X is not needed, X and SCOR can share the same memory locations.

LDSCOR — Leading dimension of SCOR exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

Automatic workspace usage is

FSCOR NVAR units, or
DFSCOR 2 * NVAR units.

Workspace may be explicitly provided, if desired, by use of F2COR/DF2COR. The
reference is
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CALL F2COR (NVAR, NF, SCOEF, LDSCOE, NOBS, X, LDX, XBAR,
            STD, SCOR, LDSCOR, WK)

The additional argument is

WK — Work vector of length NVAR.

Algorithm

Routine FSCOR computes the factor scores from the factor score coefficient
matrix. In FSCOR, the data are input as originally observed, and standardization is
performed as required according to the value of STD(1). When the factor loadings
are computed from the correlation matrix, the observed data must be standardized
to a mean of zero and a variance of one prior to computing the factor scores. This
requires that STD contain the observed standard deviations of the observed data
and that XBAR contain the means. On the other hand, if the factor loadings are
computed from the covariance matrix, then the observed data must be
standardized to a mean of zero, but the variance must be left unchanged in
computing the factor scores. In this case, STD(1) must be negative or zero.

After standardizing the observed data, the factor scores are computed as the
product of the factor score coefficient matrix times the standardized data. If factor
scores are computed from the same data from which the covariance matrix was
computed, then the sample variance (using weights and frequencies as required)
of the resulting factor scores will be 1.0.

Example

The following example is a continuation of the example given in the manual
document for routine FACTR (page 801). The rotated loadings are those obtained
from the manual document for routine FROTA (page 809), and the factor score
coefficients are as described in the manual document for routine FCOEF

(page 833).
      INTEGER    LDSCOE, LDSCOR, LDX, NF, NOBS, NVAR
      PARAMETER  (LDSCOE=2, LDSCOR=5, LDX=5, NF=1, NOBS=5, NVAR=2)
C
      REAL       SCOEF(NVAR,NF), SCOR(LDSCOR,NF), STD(NVAR),
     &           X(LDX,NVAR), XBAR(NVAR)
      EXTERNAL   FSCOR, WRRRN
C
      DATA X/40.0, 60.0, 30.0, 15.0, 45.0, 3.0, 9.0, 2.0, 0.0, 4.0/
      DATA SCOEF/0.33563, 0.33562/
      DATA XBAR/38.0, 3.6/, STD/16.80774, 3.361547/
C
      CALL FSCOR (NVAR, NF, SCOEF, LDSCOE, NOBS, X, LDX, XBAR, STD,
     &            SCOR, LDSCOR)
C
      CALL WRRRN (’Factor Scores’, NOBS, NF, SCOR, LDSCOR, 0)
      END

Output
Factor Scores
1  -0.0200
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2   0.9785
3  -0.3195
4  -0.8187
5   0.1797

FRESI/DFRESI (Single/Double precision)
Compute communalities and the standardized factor residual correlation matrix.

Usage
CALL FRESI (NVAR, COV, LDCOV, NF, A, LDA, Y, RESID, LDRESI)

Arguments

NVAR — Number of variables.   (Input)

COV — NVAR by NVAR matrix containing the variance-covariance or correlation
matrix.   (Input)
Only the upper triangular part of COV is referenced.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

NF — Number of factors.   (Input)

A — NVAR by NF orthogonal factor-loading matrix.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

Y — Vector of length NVAR containing the communalities.   (Output)

RESID — NVAR by NVAR matrix containing the normalized residual variance-
covariance or correlation matrix.   (Output)

LDRESI — Leading dimension of RESID exactly as specified in the dimension
statement in the calling program.   (Input)

Algorithm

Routine FRESI computes the communalities and a standardized residual
covariance/correlation matrix for input covariance/correlation matrix COV. The
user must also input the orthogonal (unrotated) factor loadings, A, obtained from
the matrix COV. Let aL denote the i-th row of matrix A. Then, the communalities
are given as

y a ai i i
T=

where yL is the i-th communality. The residual covariance/correlation matrix is
given by

r s a aij ij i j
T= −
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where sLM denotes an element of the covariance/correlation matrix and R = (rLM)
denotes the residual matrix. Standardization is performed by dividing the rLM by

u ui j

where uL= sLL −yL is the unique error variance for the i-th variable. If uL is zero (or
slightly less than zero due to roundoff error), uL = 1.0 is assumed and division by
zero is avoided.

Example

The following example computes the residual correlation matrix with
communalities in a 9-factor problem. The resulting residual correlations do not
seem to exhibit any pattern.

      INTEGER    LDA, LDCOV, LDRESI, NF, NVAR
      PARAMETER  (LDA=9, LDCOV=9, LDRESI=9, NF=3, NVAR=9)
C
      REAL       A(9,3), COV(9,9), RESID(9,9), Y(9)
      EXTERNAL   FRESI, WRRRN
C
      DATA COV/1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434,
     &     0.639, 0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547,
     &     0.283, 0.645, 0.395, 0.479, 1.000, 0.355, 0.270, 0.254,
     &     0.452, 0.219, 0.504, 0.471, 0.506, 0.355, 1.000, 0.691,
     &     0.791, 0.443, 0.285, 0.505, 0.346, 0.418, 0.270, 0.691,
     &     1.000, 0.679, 0.383, 0.149, 0.409, 0.426, 0.462, 0.254,
     &     0.791, 0.679, 1.000, 0.372, 0.314, 0.472, 0.576, 0.547,
     &     0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680, 0.434,
     &     0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470,
     &     0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470,
     &     1.000/
C
      DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
     &     .7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
     &     -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
     &     .1045, -.0778, .4914, -.0117/
C
      CALL FRESI (NVAR, COV, LDCOV, NF, A, LDA, Y, RESID, LDRESI)
C
      CALL WRRRN (’Communalities’, 1, NVAR, Y, 1, 0)
      CALL WRRRN (’Residuals’, NVAR, NVAR, RESID, LDRESI, 0)
      END

Output
                            Communalities
     1        2        3        4        5        6        7        8
0.5495   0.5729   0.3834   0.7877   0.6195   0.8231   0.6005   0.5385

     9
0.7691

                                Residuals
        1       2       3       4       5       6       7       8       9
1   1.000   0.001  -0.024   0.037  -0.024  -0.016   0.036  -0.002  -0.018
2   0.001   1.000   0.043  -0.017  -0.048   0.041  -0.052  -0.023   0.031
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3  -0.024   0.043   1.000   0.064  -0.033  -0.037  -0.022   0.025  -0.013
4   0.037  -0.017   0.064   1.000   0.012  -0.004   0.008   0.017  -0.052
5  -0.024  -0.048  -0.033   0.012   1.000  -0.003   0.075  -0.014   0.007
6  -0.016   0.041  -0.037  -0.004  -0.003   1.000  -0.046  -0.003   0.036
7   0.036  -0.052  -0.022   0.008   0.075  -0.046   1.000   0.008   0.011
8  -0.002  -0.023   0.025   0.017  -0.014  -0.003   0.008   1.000  -0.004
9  -0.018   0.031  -0.013  -0.052   0.007   0.036   0.011  -0.004   1.000

MVIND/DMVIND (Single/Double precision)
Compute a test for the independence of k sets of multivariate normal variables.

Usage
CALL MVIND (NDF, NVAR, COV, LDCOV, NGROUP, NVSET, STAT)

Arguments

NDF — Number of degrees of freedom in COV.   (Input)

NVAR — Number of variables in the covariance matrix.   (Input)

COV — NVAR by NVAR variance-covariance matrix.   (Input)

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

NGROUP — Number of sets of variables to be tested for independence.   (Input)

NVSET — Index vector of length NGROUP.   (Input)
NVSET(i) gives the number of variables in the i-th set of variables. The first
NVSET(1) variables in COV define the first set of covariates, the next NVSET(2)
variables define the second set of covariates, etc.
STAT — Vector of length 4 containing the output statistics.   (Output)

I STAT(I)
1 Statistic V for testing the hypothesis of independence of the NGROUP sets

of variables.
2 Chi-squared statistic associated with V.
3 Degrees of freedom for STAT(2).
4 Probability of exceeding STAT(2) under the null hypothesis of

independence.

Comments

1. Automatic workspace usage is

MVIND NVAR * (NVAR + 2) units, or
DMVIND NVAR * (2 * NVAR + 3) units.

Workspace may be explicitly provided, if desired, by use of
M2IND/DM2IND. The reference is
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CALL M2IND (NDF, NVAR, COV, LD COV, NGROUP, NVSET,
            STAT, FAC, WK, IPVT)

The additional arguments are as follows:

FAC — Work vector of length NVAR2.

WK — Work vector of length NVAR.

IPVT — Work vector of length NVAR.

2. Informational errors
Type Code
   4    1 A covariance matrix for a subset of the variables is

singular.
   4    2 The covariance matrix for all variables is singular.

Algorithm

Routine MVIND computes a likelihood ratio test statistic proposed by Wilks
(1935) for testing the independence of NGROUP sets of multivariate normal
variates. The likelihood ratio statistic is computed as the ratio of the determinant
|S| of the sample covariance matrix to the product of the determinants |S1|…|S.| of
the covariance matrices of each of the k = NGROUP sets of variates. An asymptotic
chi-squared statistic obtained from the likelihood ratio, along with corresponding
p-value, is computed according to formulas given by Morrison (1976, pages 258-
259). The chi-squared statistic is computed as:

χ2 = − n

C
Vln( )

where n = NDF,
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where |SLL| is the determinant of the i-th covariance matrix, k = NGROUP, and
pL = NVSET(i), and |S| is the determinant of COV.

Because determinants appear in both the numerator and denominator of the
likelihood ratio, the test statistic is unchanged when correlation matrices are
substituted for covariance matrices as input to MVIND.

In using MVIND, the covariance matrix must first be computed (possibly via
routine CORVC, page 314). The covariance matrix may then need to be rearranged
(possible via routine RORDM, page 1268) so that the NVSET(1) variables in the first
set correspond to the first NVSET(1) columns (and rows) of the covariance matrix,
with the next NVSET(2) columns and rows containing the variables for the second
set of variables, etc. With this special arrangement of the covariance matrix,
routine MVIND may then be called.

Example

The example is taken from Morrison (1976, page 258). It involves two sets of
covariates, with each set having two covariates. The null hypothesis of no
relationship is rejected.

      INTEGER    LDCOV, NDF, NGROUP, NVAR
      PARAMETER  (NDF=932, NGROUP=2, NVAR=4, LDCOV=NVAR)
C
      INTEGER    NOUT, NVSET(NGROUP)
      REAL       COV(NVAR,NVAR), STAT(4)
      EXTERNAL   MVIND, UMACH
C
      DATA COV/1.00, 0.45, -0.19, 0.43, 0.45, 1.00, -0.02, 0.62,
     &     -0.19, -0.02, 1.00, -0.29, 0.43, 0.62, -0.29, 1.00/
C
      DATA NVSET/2, 2/
C
      CALL MVIND (NDF, NVAR, COV, LDCOV, NGROUP, NVSET, STAT)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
99999 FORMAT (’ Likelihood ratio ........... ’, F12.4, /, ’ ’,
     &       ’Chi-squared ................ ’, F9.1, /, ’ Degrees of ’
     &       , ’freedom ......... ’, F9.1, /, ’ p-value ’,
     &       ’.................... ’, F12.4)
      END

Output
Likelihood ratio ...........       0.5497
Chi-squared ................     556.2
Degrees of freedom .........       4.0
p-value ....................       0.0000

CANCR/DCANCR (Single/Double precision)
Perform canonical correlation analysis from a data matrix.
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Usage
CALL CANCR (NOBS, NVAR1, NVAR2, NCOL, X, LDX, IFRQ,
            IWT, IND1, IND2, TOL, IPRINT, XX, LDXX,
            CORR, LDCORR, COEF1, LDCOF1, COEF2, LDCOF2,
            COEFR1, LDCFR1, COEFR2, LDCFR2, STAT, LDSTAT)

Arguments

NOBS — Number of observations.   (Input)

NVAR1 — Number of variables in group 1.   (Input)

NVAR2 — Number of variables in group 2.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NVAR1 + NVAR2 + m data matrix where m is 0, 1, or 2 depending
on whether any columns of X correspond to frequencies or weights.   (Input)
Each row of X contains an observation of the NVAR1 + NVAR2 variables for
which canonical correlations are desired (plus a weight and/or a frequency
variable if IFRQ and/or IWT(see below) are not zero). If both IWT and IFRQ are
zero, m is 0; 1, if one of IFRQ or IWT is positive; and 2, otherwise. X may not
have any missing values (NaN, not a number).

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IFRQ — Frequency option.   (Input)
If IFRQ = 0, then all frequencies are 1. If IFRQ is positive, then column number
IFRQ of X contains the nonnegative frequencies.

IWT — Weighting option.   (Input)
If IWT = 0, then there is no weighting, i.e., all weights are 1. If IWT is positive,
then column number IWTof X contains the nonnegative weights.

IND1 — Vector of length NVAR1 containing the column numbers in X of the
group 1 variables.   (Input)

IND2 — Vector of length NVAR2 containing the column numbers in X of the
group 2 variables.   (Input)

TOL — Constant used for determining linear dependence.   (Input)
If the squared multiple correlation coefficient of a variable with its predecessors
in IND1 (or IND2) is greater than 1 − TOL, then the variable is considered to be
linearly dependent upon the previous variables; it is excluded from the analysis.
TOL = .001 is a typical value. TOL must be in the exclusive range of 0.0 to 1.0.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing.
1 Print CORR, COEF1, COEF2, COEFR1, COEFR2, and STAT.
2 Print all output.
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XX — NOBS by NVAR1 + NVAR2 + m matrix containing the canonical scores.
(Output)
m is defined in the description for X. X and XX may occupy the same storage
locations. Canonical scores are returned in the first NVAR1 + NVAR2 columns of
XX. Scores for the NVAR1 variables come first. If one of IFRQ or IWT are not zero,
then the last column of XX contains the weight or frequency. If both IFRQ and
IWT are not zero, then the frequencies and weights are in the second to last and
last column of XX, respectively.

LDXX — Leading dimension of XX exactly as specified in the dimension
statement in the calling program.   (Input)

CORR — NV by 6 matrix of output statistics.   (Output)
NV is the minimum of NVAR1 and NVAR2. CORR has the following statistics.

Col. Statistic
1 Canonical correlations sorted from the largest to the smallest.
2 Wilks’ lambda for testing that the current and all smaller canonical

correlations are zero.
3 Rao’s F corresponding to Wilks’ lambda. If the canonical correlation is

greater than 0.99999, then F is set to 9999.99.
4 Numerator degrees of freedom for F.
5 Denominator degrees of freedom for F.
6 Probability of a larger F statistic.

If an F statistic is negative, then CORR(i, 6) is set to one. If either CORR(i, 4) or
CORR(i, 5) is not positive, then CORR(i, 6) is set to the missing value code (NaN).

LDCORR — Leading dimension of CORR exactly as specified in the dimension
statement in the calling program.   (Input)

COEF1 — NVAR1 by NVAR1 matrix containing the group 1 canonical
coefficients.   (Output)
The columns of COEF1 contain the vectors of canonical coefficients for group 1.

LDCOF1 — Leading dimension of COEF1 exactly as specified in the dimension
statement in the calling program.   (Input)

COEF2 — NVAR2 by NVAR2 matrix containing the group 2 canonical
coefficients.   (Output)
The columns of COEF2 contain the vectors of canonical coefficients for group 2.

LDCOF2 — Leading dimension of COEF2 exactly as specified in the dimension
statement in the calling program.   (Input)

COEFR1 — NVAR1 by NV matrix containing the correlations between the group 1
variables and the group 1 canonical scores.   (Output)
NV is the minimum of NVAR1 and NVAR2.

LDCFR1 — Leading dimension of COEFR1 exactly as specified in the dimension
statement in the calling program.   (Input)
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COEFR2 — NVAR2 by NV matrix containing the correlations between the group 2
variables and the group 2 canonical scores.   (Output)
NV is the minimum of NVAR1 and NVAR2.

LDCFR2 — Leading dimension of COEFR2 exactly as specified in the dimension
statement in the calling program.   (Input)

STAT — 15 by NVAR1 + NVAR2 matrix containing statistics on all of the
variables.   (Output)
The first NVAR1 columns of STAT correspond to the group one variables with the
last NVAR2 columns corresponding to the group two variables.

Row Statistic
1 Means
2 Variances
3 Standard deviations
4 Coefficients of skewness
5 Coefficients of excess (kurtosis)
6 Minima
7 Maxima
8 Ranges
9 Coefficients of variation, when defined, 0.0 otherwise
10 Numbers of nonmissing observations
11 Lower endpoints of 95% confidence interval for the means
12 Upper endpoints of 95% confidence interval for the means
13 Lower endpoints of 95% confidence interval for the variances
14 Upper endpoints of 95% confidence interval for the variances
15 Sums of the weights if IWT greater than zero, 0.0 otherwise

LDSTAT — Leading dimension of STAT exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

CANCR NVAR12 + NVAR22 + NVAR1 + NVAR2 + 1 + max(NOBS, 2 *

(NVAR1 + NVAR2)) + (max (NVAR1, NVAR2))2 + 3 *
max(NVAR1, NVAR2) units, or

DCANCR 2 * (NVAR12 + NVAR22) + NVAR1 + NVAR2 + 2 * (max(NOBS, 2

* (NVAR1 + NVAR2 ))) + 2 * (max(NVAR1, NVAR2))2 + 6 *
max(NVAR1, NVAR2) units.

Workspace may be explicitly provided, if desired, by use of
C2NCR/DC2NCR. The reference is

CALL C2NCR (NOBS, NVAR1, NVAR2, NCOL, X, LDX, IFRQ,
            IWT, IND1, IND2, TOL, IPRINT, XX, LDXX,
            CORR,LDCORR, COEF1, LDCOF1, COEF2,
            LDCOF2, COEFR1, LDCFR1, COEFR2, LDCFR2,
            STAT, LDSTAT, R, S, IND, WORK, WKA, WK)
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The additional arguments are as follows:

R — Work vector of length NVAR12.

S — Work vector of length NVAR22.

IND — Work vector of length NVAR1 + NVAR2 + 2.

WORK — Work vector of length max(NOBS, 2 * (NVAR1 + NVAR2))

WKA — Work vector of length (max (NVAR1, NVAR2))2.

WK — Work vector of length 3 * max(NVAR1, NVAR2) − 1.

2. Informational errors
Type Code
   3    1 The standardized cross covariance matrix is not of full

rank or is very ill-conditioned. Small canonical
correlations may not be accurate.

   3    2 One or more variables is linearly dependent upon the
proceeding variables in its group.

   4    3 The sum of the frequencies is equal to zero. The sum
of the frequencies must be positive.

   4    4 The sum of the weights is equal to zero. The sum of
the weights must be positive.

Algorithm

Routine CANCR computes the canonical correlations, the canonical coefficients,
the canonical scores, Wilks’ lambda for testing the independence of two sets of
variates, and a series of Bartlett’s tests of the hypothesis that the k-th largest and
all larger canonical correlations are simultaneously zero. A matrix of observations
is used in these computations.

Let xLM denote the j-th variable on the i-th observation, wL denote the observation

weight, fL denote the observation frequency, Γ11 denote the upper triangular

Cholesky (R7�R) factorization of the sample covariance matrix of the group 1

variables, Γ22 denote the upper triangular Cholesky (R7�R) factorization of the
group 2 variables sample covariance matrix, and

Γ Γ Σ Γ12 11
1

12 22= − −1 6 1 6$ T

where

$∑12

is the sample estimate of the matrix of covariances between the group 1 and the
group 2 variables. Then, the computational procedure in obtaining the canonical
correlations is as follows:
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1. The weighted mean of each variable is computed via the standard
formula (see UVSTA, page 16). The means are then subtracted from the
observations.

2. Each element in the i-th row of X is multiplied by

w fi i1 6
3. Gram-Schmidt orthogonalization is used on X to obtain Y1 and Y2, where

Y1 and Y2 are the results of the Gram-Schmidt orthogonalization of the
group 1 and the group 2 variables, respectively. The matrices
Γ11and Γ22 are obtained as a by-product of the orthogonalization.
Compute

Γ12 1 2= Y YT

4. The canonical correlations are obtained as the singular values of the
matrix Γ12. Denote the left and right orthogonal matrices obtained as a
by-product of this decomposition by L and R, respectively.

5. The canonical coefficients are obtained from L and R by multiplying L
and R by the inverses of Γ11and Γ22, respectively (see Golub 1969).

6. The correlations of the original variables with the canonical variables are
obtained by multiplying L and R by Γ11and Γ22, respectively.

7. The canonical scores are obtained by multiplying the matrices Y1 and Y2
by the matrices L and R, respectively, and then dividing each row of Y1
and Y2 by

( )w fi i

8. Wilks’ lambda, the Bartlett’s tests, Rao’s F corresponding to these tests,
the numerator and denominator degrees of freedom of F, and the
significance level of F are computed as in Rao (1973, page 556).
Bartlett’s tests are computed as

Λ i j
j

q

= −
=

∏ ( )1 2

1

ρ

where q = NVAR2 is the number of canonical correlations, the canonical
correlations are ordered from largest to smallest, and ρM denotes the j-th

largest canonical correlation. Wilks’ lambda is given as Λ1. The degrees
of freedom in the numerator of the corresponding Rao’s F statistic is
given as

d1 = pu

where p = v1 − i + 1, u = v2 − i + 1, v1 = NVAR2, and v2 = NVAR1. Let
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m t
p u= − + + 1

2

where t is the degrees of freedom in COV(∑L�fL − 1), and let

s
p u

p u
= −

+ −

2 2

2 2

4

5

if p2 + u2 − 5 ≠ 0, and let s = 2 otherwise. Then, Rao’s F corresponding
to Bartlett’s test is computed as

F ms pu pui
i

i

s

s

=
−

− +
1

2 1

1

1

Λ

Λ
( / ) /

Rao’s F has numerator degrees of freedom d2 = ms − pu/2 + 1. The
significance level of F is obtained from the standard F distribution.

Example 1

The following example is taken from Levin and Marascuilo (1983), pages 191–
197. It is examining the relationship between the performance of individuals in a
sociology course and predictor variables. The measures of performance in the
sociology course are two midterms examinations, a final examination, and a
course evaluation, the predictor variables are social class, sex, grade point
average, college board test score, whether the student has previously taken a
course in sociology, and the student’s score on a pretest.

      INTEGER    IFRQ, IPRINT, IWT, LDCFR1, LDCFR2, LDCOF1, LDCOF2,
     &           LDCORR, LDSTAT, LDX, LDXX, NCOL, NOBS, NV, NVAR1,
     &           NVAR2
      REAL       TOL
      PARAMETER  (IFRQ=0, IPRINT=1, IWT=0, LDSTAT=15, NCOL=10,
     &           NOBS=40, NVAR1=6, NVAR2=4, TOL=0.0001, LDCFR1=NVAR1,
     &           LDCFR2=NVAR2, LDCOF1=NVAR1, LDCOF2=NVAR2, LDX=NOBS,
     &           LDXX=NOBS, NV=NVAR2, LDCORR=NV)
C
      INTEGER    IND1(NVAR1), IND2(NVAR2)
      REAL       COEF1(LDCOF1,NVAR1), COEF2(LDCOF2,NVAR2),
     &           COEFR1(LDCFR1,NV), COEFR2(LDCFR2,NV), CORR(LDCORR,6),
     &           STAT(LDSTAT,NVAR1+NVAR2), X(LDX,NCOL), XX(LDXX,NCOL)
      CHARACTER  FMT*35, NUMBER*6, XLAB(11)*25
      EXTERNAL   CANCR, WRRRL
C
      DATA IND1/1, 2, 3, 4, 5, 6/, IND2/7, 8, 9, 10/
      DATA (X(I,1),I=1,NOBS)/3*2.0, 3.0, 2.0, 3.0, 1.0, 2.0, 3.0,
     &     2*2.0, 3.0, 1.0, 4*2.0, 3.0, 3*2.0, 1.0, 3*2.0, 1.0, 2.0,
     &     1.0, 2.0, 3.0, 2*2.0, 2*1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0/
      DATA (X(I,2),I=1,NOBS)/6*1.0, 0.0, 2*1.0, 3*0.0, 3*1.0, 3*0.0,
     &     1.0, 0.0, 3*1.0, 3*0.0, 4*1.0, 0.0, 8*1.0, 0.0/
      DATA (X(I,3),I=1,NOBS)/3.55, 2.70, 3.50, 2.91, 3.10, 3.49, 3.17,
     &     3.57, 3.76, 3.81, 3.60, 3.10, 3.08, 3.50, 3.43, 3.39, 3.76,
     &     3.71, 3.00, 3.47, 3.69, 3.24, 3.46, 3.39, 3.90, 2.76, 2.70,
     &     3.77, 4.00, 3.40, 3.09, 3.80, 3.28, 3.70, 3.42, 3.09, 3.70,
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     &     2.69, 3.40, 2.95/
      DATA (X(I,4),I=1,NOBS)/410.0, 390.0, 510.0, 430.0, 600.0,
     &     2*610.0, 560.0, 700.0, 460.0, 590.0, 500.0, 410.0, 470.0,
     &     210.0, 610.0, 510.0, 600.0, 470.0, 460.0, 800.0, 610.0,
     &     490.0, 470.0, 610.0, 580.0, 410.0, 630.0, 790.0, 490.0,
     &     400.0, 2*610.0, 500.0, 430.0, 540.0, 610.0, 400.0, 390.0,
     &     490.0/
      DATA (X(I,5),I=1,NOBS)/8*0.0, 4*1.0, 0.0, 2*1.0, 0.0, 1.0, 0.0,
     &     1.0, 0.0, 1.0, 3*0.0, 1.0, 2*0.0, 2*1.0, 2*0.0, 4*1.0,
     &     5*0.0/
      DATA (X(I,6),I=1,NOBS)/17.0, 20.0, 22.0, 13.0, 16.0, 28.0, 14.0,
     &     10.0, 28.0, 30.0, 28.0, 15.0, 24.0, 15.0, 26.0, 16.0, 25.0,
     &     3.0, 5.0, 16.0, 28.0, 13.0, 9.0, 13.0, 30.0, 10.0, 13.0,
     &     8.0, 29.0, 17.0, 15.0, 16.0, 13.0, 30.0, 2*17.0, 25.0,
     &     10.0, 23.0, 18.0/
      DATA (X(I,7),I=1,NOBS)/43.0, 50.0, 47.0, 24.0, 47.0, 57.0,
     &     2*42.0, 69.0, 48.0, 59.0, 21.0, 52.0, 2*35.0, 59.0, 68.0,
     &     38.0, 45.0, 37.0, 54.0, 45.0, 31.0, 39.0, 67.0, 30.0, 19.0,
     &     71.0, 80.0, 47.0, 46.0, 59.0, 48.0, 68.0, 43.0, 31.0, 64.0,
     &     19.0, 43.0, 20.0/
      DATA (X(I,8),I=1,NOBS)/61.0, 47.0, 79.0, 40.0, 60.0, 59.0, 61.0,
     &     79.0, 83.0, 67.0, 74.0, 40.0, 71.0, 40.0, 57.0, 58.0, 66.0,
     &     58.0, 24.0, 48.0, 100.0, 83.0, 70.0, 48.0, 85.0, 14.0,
     &     55.0, 100.0, 94.0, 45.0, 58.0, 90.0, 84.0, 81.0, 49.0,
     &     54.0, 87.0, 36.0, 51.0, 59.0/
      DATA (X(I,9),I=1,NOBS)/129.0, 60.0, 119.0, 100.0, 79.0, 99.0,
     &     92.0, 107.0, 156.0, 110.0, 116.0, 49.0, 107.0, 125.0, 64.0,
     &     100.0, 138.0, 63.0, 82.0, 73.0, 132.0, 87.0, 89.0, 99.0,
     &     119.0, 100.0, 84.0, 166.0, 111.0, 110.0, 93.0, 141.0, 99.0,
     &     114.0, 96.0, 39.0, 149.0, 53.0, 39.0, 91.0/
      DATA (X(I,10),I=1,NOBS)/3.0, 3*1.0, 2.0, 1.0, 3.0, 2.0, 4*1.0,
     &     5.0, 1.0, 5.0, 1.0, 2.0, 1.0, 2*3.0, 3*2.0, 1.0, 2.0, 1.0,
     &     2.0, 3.0, 2.0, 2*1.0, 2*2.0, 5.0, 2*1.0, 4.0, 3.0, 2*1.0/
C
      DATA XLAB/’ ’, ’Social%/Class’, ’%/Sex’, ’%/GPA’,
     &     ’College%/Boards’, ’H.S.%/Soc.’, ’Pretest%/Score’,
     &     ’%/Exam 1’, ’%/Exam 2’, ’Final%/Exam’, ’Course%/Eval.’/
      DATA NUMBER/’NUMBER’/, FMT/’(2W3.1,W5.3,W4.1,W3.1,4W5.1,W3.1)’/
C
      CALL WRRRL (’First 10 Observations’, 10, NCOL, X, LDX, 0, FMT,
     &            NUMBER, XLAB)
C
      CALL CANCR (NOBS, NVAR1, NVAR2, NCOL, X, LDX, IFRQ, IWT, IND1,
     &            IND2, TOL, IPRINT, XX, LDXX, CORR, LDCORR, COEF1,
     &            LDCOF1, COEF2, LDCOF2, COEFR1, LDCFR1, COEFR2,
     &            LDCFR2, STAT, LDSTAT)
C
      END

Output
                            First 10 Observations
    Social              College  H.S.  Pretest                 Final Course
     Class   Sex   GPA   Boards  Soc.    Score  Exam 1  Exam 2  Exam   Eval
 1       2    1   3.55      410    0      17      43      61    129      3
 2       2    1   2.70      390    0      20      50      47     60      1
 3       2    1   3.50      510    0      22      47      79    119      1
 4       3    1   2.91      430    0      13      24      40    100      1
 5       2    1   3.10      600    0      16      47      60     79      2
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 6       3    1   3.49      610    0      28      57      59     99      1
 7       1    0   3.17      610    0      14      42      61     92      3
 8       2    1   3.57      560    0      10      42      79    107      2
 9       3    1   3.76      700    1      28      69      83    156      1
10       2    0   3.81      460    1      30      48      67    110      1

               *** Canonical Correlations Statistics ***
      Canonical                                               Prob. of
   Correlations  Wilks Lambda      Raos F  Num. df  Denom. df  Larger F
1        0.9242        0.0612       5.412       24      105.9    0.0000
2        0.7184        0.4201       2.116       15       86.0    0.0162
3        0.2893        0.8683       0.586        8       64.0    0.7861
4        0.2290        0.9476       0.609        3       33.0    0.6142

        Group One Canonical Coefficients
        1       2       3       4       5       6
1  -0.622   1.158  -0.285  -0.179   0.601  -0.423
2   0.558  -0.739   0.231  -1.278   1.391  -0.024
3   1.796  -0.432   0.765   0.185  -0.643  -3.314
4   0.002   0.006   0.004  -0.002   0.000   0.006
5  -0.059  -0.043  -0.456   1.671   1.463   0.774
6   0.031   0.018  -0.121  -0.058  -0.042   0.056

  Group Two Canonical Coefficients
         1        2        3        4
1   0.0233  -0.0365   0.0845  -0.0176
2   0.0257  -0.0057  -0.0352   0.0555
3   0.0073   0.0110  -0.0259  -0.0341
4   0.1034   0.8089   0.2828   0.0260

Correlations Between the Group One Variables
and the Group One Canonical Scores
         1        2        3        4
1  -0.3685   0.6795  -0.2291  -0.1854
2   0.2157  -0.3252   0.0521  -0.5985
3   0.8153   0.2770  -0.0692   0.2123
4   0.6144   0.5681   0.4151  -0.0050
5   0.4661   0.0603  -0.3034   0.6530
6   0.5461   0.1768  -0.7915  -0.1375

Correlations Between the Group Two Variables
and the Group Two Canonical Scores
         1        2        3        4
1   0.8713  -0.2406   0.3864  -0.1835
2   0.9174  -0.0557  -0.2068   0.3355
3   0.7707   0.0293  -0.3146  -0.5533
4   0.3490   0.8765   0.3077   0.1240

               *** Statistics for Group One Variables ***
                    Univariate Statistics from UVSTA

Variable          Mean      Variance     Std. Dev.      Skewness   Kurtosis
    1           1.9750        0.4353        0.6597       0.02476    -0.6452
    2           0.6750        0.2250        0.4743      -0.74726    -1.4416
    3           3.3758        0.1247        0.3532      -0.37911    -0.7521
    4         524.2499    13148.1377      114.6653       0.09897     0.6494
    5           0.4000        0.2462        0.4961       0.40825    -1.8333
    6          18.1250       55.1378        7.4255       0.10633    -0.9358
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Variable       Minimum       Maximum         Range    Coef. Var.      Count
    1           1.0000        3.0000        2.0000        0.3340    40.0000
    2           0.0000        1.0000        1.0000        0.7027    40.0000
    3           2.6900        4.0000        1.3100        0.1046    40.0000
    4         210.0000      800.0000      590.0000        0.2187    40.0000
    5           0.0000        1.0000        1.0000        1.2403    40.0000
    6           3.0000       30.0000       27.0000        0.4097    40.0000

Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
    1           1.7640        2.1860       0.29207        0.7176
    2           0.5233        0.8267       0.15098        0.3710
    3           3.2628        3.4887       0.08369        0.2056
    4         487.5782      560.9217    8822.72168    21677.9590
    5           0.2413        0.5587       0.16518        0.4058
    6          15.7502       20.4998      36.99883       90.9083

                 *** Statistics for Group Two Variables ***
                      Univariate Statistics from UVSTA

Variable       Mean      Variance     Std. Dev.      Skewness      Kurtosis
    1       46.0500      237.0231       15.3956       0.08762       -0.5505
    2       62.8750      403.4967       20.0872      -0.10762       -0.3642
    3       99.4750      919.4864       30.3230      -0.03483       -0.2533
    4        1.9500        1.4333        1.1972       1.27704        0.8407

Variable    Minimum       Maximum         Range    Coef. Var.         Count
    1       19.0000       80.0000       61.0000        0.3343       40.0000
    2       14.0000      100.0000       86.0000        0.3195       40.0000
    3       39.0000      166.0000      127.0000        0.3048       40.0000
    4        1.0000        5.0000        4.0000        0.6140       40.0000

Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
    1          41.1263       50.9737      159.0483      390.7912
    2          56.4508       69.2992      270.7562      665.2642
    3          89.7772      109.1728      616.9979     1516.0009
    4           1.5671        2.3329        0.9618        2.3632

Example 2

Correspondence analysis is an interesting application of canonical correlation in
the analysis of contingency tables. The example is taken from Kendall and Stuart
(1979, pages 595–599) and involves finding the optimal scores for the values of
two categorical variables to maximize the correlation between the two variables.
The contingency table is given below, along with the more traditional matrix X of
“observations” for which canonical correlations are desired.

821 112 85 35

116 494 145 27

72 151 583 87

43 34 106 331

�

�

����

�

�

����
The data matrix X is given as:
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Group 1 Var. Group 2 Var. Frequencies

1 0 0 0 1 0 0 0 821

1 0 0 0 0 1 0 0 112

1 0 0 0 0 0 1 0 85

1 0 0 0 0 0 0 1 35

0 1 0 0 1 0 0 0 116

0 1 0 0 0 1 0 0 494

0 1 0 0 0 0 1 0 145

0 1 0 0 0 0 0 1 27

0 0 1 0 1 0 0 0 72

0 0 1 0 0 1 0 0 151

0 0 1 0 0 0 1 0 583

0 0 1 0 0 0 0 1 87

0 0 0 1 1 0 0 0 43

0 0 0 1 0 1 0 0 34

0 0 0 1 0 0 1 0 106

0 0 0 1 0 0 0 1 331

For this table, the optimal correlation turns out to be 0.70 when scores of 2.67,
1.34, 0.62, and 0.00 (see Column 1 of COEF1) are assigned to the variable 1
categories, and scores of 2.72, 1.37, 0.68, and 0.00 are assigned to the variable 2
categories. These scores are obtained as the canonical scores when canonical
correlations are computed between the the row and column variable indicator
variables (variables 1-4 and variables 5-8 in X, respectively). The warning error
appears in the output because the covariance matrix is not of full rank (indeed,
neither the group 1 or the group 2 covariance matrices are of full rank).

      INTEGER    IFRQ, IPRINT, IWT, LDCFR1, LDCFR2, LDCOF1, LDCOF2,
     &           LDCORR, LDSTAT, LDX, LDXX, NCOL, NOBS, NV, NVAR1,
     &           NVAR2
      REAL       TOL
      PARAMETER  (IFRQ=9, IPRINT=2, IWT=0, LDCFR1=4, LDCFR2=4,
     &           LDCOF1=4, LDCOF2=4, LDCORR=4, LDSTAT=15, LDX=16,
     &           LDXX=16, NCOL=9, NOBS=16, NV=4, NVAR1=4, NVAR2=4,
     &           TOL=0.0001)
C
      INTEGER    IND1(NVAR1), IND2(NVAR2)
      REAL       COEF1(LDCOF1,NVAR1), COEF2(LDCOF2,NVAR2),
     &           COEFR1(LDCFR1,NV), COEFR2(LDCFR2,NV), CORR(LDCORR,6),
     &           STAT(LDSTAT,8), X(LDX,NCOL), XX(LDXX,NCOL)
      EXTERNAL   CANCR
C
      DATA IND1/1, 2, 3, 4/, IND2/5, 6, 7, 8/
      DATA X/4*1.0, 16*0.0, 4*1.0, 16*0.0, 4*1.0, 16*0.0, 5*1.0,
     &     3*0.0, 1.0, 3*0.0, 1.0, 3*0.0, 1.0, 4*0.0, 1.0, 3*0.0, 1.0,
     &     3*0.0, 1.0, 3*0.0, 1.0, 4*0.0, 1.0, 3*0.0, 1.0, 3*0.0, 1.0,
     &     3*0.0, 1.0, 4*0.0, 1.0, 3*0.0, 1.0, 3*0.0, 1.0, 3*0.0, 1.0,
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     &     821.0, 112.0, 85.0, 35.0, 116.0, 494.0, 145.0, 27.0, 72.0,
     &     151.0, 583.0, 87.0, 43.0, 34.0, 106.0, 331.0/
C
      CALL CANCR (NOBS, NVAR1, NVAR2, NCOL, X, LDX, IFRQ, IWT, IND1,
     &            IND2, TOL, IPRINT, XX, LDXX, CORR, LDCORR, COEF1,
     &            LDCOF1, COEF2, LDCOF2, COEFR1, LDCFR1, COEFR2,
     &            LDCFR2, STAT, LDSTAT)
C
      END

Output
*** WARNING  ERROR 2 from C2NCR.  One or more Group 1 variables is linearly
***          dependent on the proceeding variables in Group 1.
Here is a traceback of subprogram calls in reverse order:
Routine name                    Error type  Error code
------------                    ----------  ----------
C2NCR                               6           2    (Called internally)
CANCR                               0           0
USER                                0           0

*** WARNING  ERROR 3 from C2NCR.  One or more Group 2 variables is linearly
***          dependent on the proceeding variables in Group 2.
Here is a traceback of subprogram calls in reverse order:
Routine name                    Error type  Error code
------------                    ----------  ----------
C2NCR                               6           3    (Called internally)
CANCR                               0           0
USER                                0           0

          *** Canonical Correlations Statistics ***
      Canonical                                                Prob. of
   Correlations  Wilks Lambda      Raos F  Num. df  Denom. df  Larger F
1        0.6965        0.2734     615.925        9     7875.7    0.0000
2        0.5883        0.5310     602.598        4     6474.0    0.0000
3        0.4336        0.8120     749.823        1     3238.0    0.0000
4        0.0000        0.0000       0.000        0        0.0    0.0000

Group One Canonical Coefficients
        1       2       3       4
1   2.670   1.100   1.023   0.000
2   1.341   2.905  -0.460   0.000
3   0.624   2.222   2.147   0.000
4   0.000   0.000   0.000   0.000

Group Two Canonical Coefficients
        1       2       3       4
1   2.715   1.164   1.053   0.000
2   1.366   2.972  -0.393   0.000
3   0.676   2.250   2.182   0.000
4   0.000   0.000   0.000   0.000

Correlations Between the Group One Variables
     and the Group One Canonical Scores
         1        2        3        4
1   0.9068  -0.3954   0.1459   0.0000
2  -0.0121   0.6965  -0.7175   0.0000
3  -0.4555   0.3404   0.8226   0.0000
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4   0.0000   0.0000   0.0000   0.0000

Correlations Between the Group Two Variables
     and the Group Two Canonical Scores
         1        2        3        4
1   0.9072  -0.3997   0.1310   0.0000
2  -0.0227   0.6995  -0.7143   0.0000
3  -0.4590   0.3205   0.8287   0.0000
4   0.0000   0.0000   0.0000   0.0000

                  *** Statistics for Group One Variables ***
                      Univariate Statistics from UVSTA

Variable          Mean      Variance    Std. Dev.     Skewness     Kurtosis
    1           0.3248        0.2194       0.4684       0.7482      -1.4401
    2           0.2412        0.1831       0.4279       1.2098      -0.5363
    3           0.2754        0.1996       0.4468       1.0053      -0.9894
    4           0.1585        0.0000       0.0000       1.8697       1.4958
Variable       Minimum       Maximum        Range   Coef. Var.        Count
    1           0.0000        1.0000       1.0000       1.4420    3242.0000
    2           0.0000        1.0000       1.0000       1.7739    3242.0000
    3           0.0000        1.0000       1.0000       1.6221    3242.0000
    4           0.0000        1.0000       1.0000       2.3041    3242.0000

Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
    1           0.3087        0.3409        0.2091        0.2305
    2           0.2265        0.2559        0.1745        0.1923
    3           0.2601        0.2908        0.1903        0.2097
    4           0.1460        0.1711        0.1272        0.1402

Canonical Scores for Group One
         1       2       3       4
 1   1.307  -0.570   0.210   0.000
 2   1.307  -0.570   0.210   0.000
 3   1.307  -0.570   0.210   0.000
 4   1.307  -0.570   0.210   0.000
 5  -0.021   1.235  -1.272   0.000
 6  -0.021   1.235  -1.272   0.000
 7  -0.021   1.235  -1.272   0.000
 8  -0.021   1.235  -1.272   0.000
 9  -0.739   0.552   1.334   0.000
10  -0.739   0.552   1.334   0.000
11  -0.739   0.552   1.334   0.000
12  -0.739   0.552   1.334   0.000
13  -1.362  -1.670  -0.813   0.000
14  -1.362  -1.670  -0.813   0.000
15  -1.362  -1.670  -0.813   0.000
16  -1.362  -1.670  -0.813   0.000

                 *** Statistics for Group Two Variables ***
                      Univariate Statistics from UVSTA

Variable        Mean      Variance     Std. Dev.      Skewness     Kurtosis
    1         0.3245        0.2193        0.4683        0.7497      -1.4379
    2         0.2440        0.1845        0.4296        1.1922      -0.5787
    3         0.2835        0.2032        0.4508        0.9609      -1.0766
    4         0.1481        0.0000        0.0000        1.9819       1.9280

Variable     Minimum       Maximum         Range    Coef. Var.        Count
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    1         0.0000        1.0000        1.0000        1.4430    3242.0000
    2         0.0000        1.0000        1.0000        1.7606    3242.0000
    3         0.0000        1.0000        1.0000        1.5901    3242.0000
    4         0.0000        1.0000        1.0000        2.3992    3242.0000

Variable     Lower CLM     Upper CLM     Lower CLV     Upper CLV
    1           0.3084        0.3406        0.2090        0.2303
    2           0.2292        0.2588        0.1758        0.1938
    3           0.2679        0.2990        0.1936        0.2134
    4           0.1358        0.1603        0.1203        0.1326

  Canonical Scores for Group Two
         1       2       3       4
 1   1.309  -0.577   0.189   0.000
 2  -0.040   1.231  -1.257   0.000
 3  -0.730   0.509   1.317   0.000
 4  -1.406  -1.740  -0.864   0.000
 5   1.309  -0.577   0.189   0.000
 6  -0.040   1.231  -1.257   0.000
 7  -0.730   0.509   1.317   0.000
 8  -1.406  -1.740  -0.864   0.000
 9   1.309  -0.577   0.189   0.000
10  -0.040   1.231  -1.257   0.000
11  -0.730   0.509   1.317   0.000
12  -1.406  -1.740  -0.864   0.000
13   1.309  -0.577   0.189   0.000
14  -0.040   1.231  -1.257   0.000
15  -0.730   0.509   1.317   0.000
16  -1.406  -1.740  -0.864   0.000

*** WARNING  ERROR 1 from CANCR.  The standardized cross covariance matrix
***          is not of full rank or is very ill-conditioned.  Small
***          canonical correlations may not be accurate.

CANVC/DCANVC (Single/Double precision)
Perform canonical correlation analysis from a variance-covariance matrix or a
correlation matrix.

Usage
CALL CANVC (NDF, NVAR1, NVAR2, COV, LDCOV, IND1, IND2,
            IPRINT, CORR, LDCORR, COEF1, LDCOF1, COEF2,
            LDCOF2, COEFR1, LDCFR1, COEFR2, LDCFR2)

Arguments

NDF — Number of degrees of freedom in the covariance or correlation
matrix.   (Input)
If NDF is unknown, an estimate of NDF = 100 is suggested in which case the last
four columns of CORR are meaningless.

NVAR1 — Number of variables in group 1.   (Input)

NVAR2 — Number of variables in group 2.   (Input)
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COV — NVAR1 + NVAR2 by NVAR1 + NVAR2 matrix containing the covariance or
correlation matrix.   (Input)
Routines COVPL (page 322), RBCOV (page 331), or CORVC (page 314) may be used
to calculate COV from a data matrix. COV must be nonnegative definite within a
tolerance of 100.0 * AMACH(4). Only the upper triangle of COV is referenced.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

IND1 — Vector of length NVAR1 containing the column and row numbers in
COVfor the group 1 variables.   (Input)

IND2 — Vector of length NVAR2 containing the column and row numbers in COV

for the group 2 variables.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing.
1 Printing of CORR, COEF1, COEF2, COEFR1, and COEFR2 is performed.

CORR — NV by 6 matrix containing the output statistics.   (Output)
NV is the minimum of NVAR1 and NVAR2.

Col. Statistic
1 Canonical correlations sorted from the largest to the smallest.
2 Wilks’ lambda for testing that the current and all smaller canonical

correlations are zero.
3 Rao’s F corresponding to Wilks’ lambda. If the canonical correlation is

greater than 0.99999, F is set to 9999.99.
4 Numerator degrees of freedom for the F.
5 Denominator degrees of freedom for the F.
6 Probability of a larger F statistic.

If an F statistic is negative, then CORR(i, 6) is set to one. If either CORR(i, 4) or
CORR(i, 5) is not positive, then CORR(i, 6) is set to the missing value code (NaN).

LDCORR — Leading dimension of CORR exactly as specified in the dimension
statement in the calling program.   (Input)

COEF1 — NVAR1 by NVAR1 matrix containing the group 1 canonical
coefficients.   (Output)
The columns of COEF1 contain the vectors of canonical coefficients for group 1.

LDCOF1 — Leading dimension of COEF1 exactly as specified in the dimension
statement in the calling program.   (Input)

COEF2 — NVAR2 by NVAR2 matrix containing the group 2 canonical
coefficients.   (Output)
The columns of COEF2 contain the vectors of canonical coefficients for group 2.

LDCOF2 — Leading dimension of COEF2 exactly as specified in the dimension
statement in the calling program.   (Input)
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COEFR1 — NVAR1 by NV matrix containing the correlations between the group 1
variables and the group 1 canonical scores.   (Output)
NV is the minimum of NVAR1 and NVAR2.

LDCFR1 — Leading dimension of COEFR1 exactly as specified in the dimension
statement in the calling program.   (Input)

COEFR2 — NVAR2 by NV matrix containing the correlations between the group 2
variables and the group 2 canonical scores.   (Output)
NV is the minimum of NVAR1 and NVAR2.

LDCFR2 — Leading dimension of COEFR2 exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

CANVC NVAR12 + NVAR22 + (NVAR1 + NVAR2)2 + NVAR1 +  NVAR2 + 3
* max(NVAR1, NVAR2) units, or

DCANVC 2 * (NVAR12 + NVAR22 + (NVAR1 + NVAR2)2 + NVAR1 + NVAR2
+ 3 * max(NVAR1, NVAR2)) units.

Workspace may be explicitly provided, if desired, by use of
C2NVC/DC2NVC. The reference is

CALL C2NVC (NDF, NVAR1, NVAR2, COV, LDCOV, IND1,
            IND2, IPRINT, CORR, LDCORR, COEF1,
            LDCOF1, COEF2, LDCOF2, COEFR1, LDCFR1,
            COEFR2, LDCFR2, R, S, STD1, STD2, WKA,
            WK)

The additional arguments are as follows:

R — Work vector of length NVAR12.

S — Work vector of length NVAR22.

STD1 — Work vector of length NVAR1.

STD2 — Work vector of length NVAR2.

WKA — Work vector of length (NVAR1 + NVAR2)2.

WK — Work vector of length 3 * max(NVAR1, NVAR2).

2. Informational errors
Type  Code
   3    1 The standardized cross covariance matrix is not of full

rank or is very ill-conditioned. Small canonical
correlations may not be accurate.

   4    2 COV is not nonnegative definite.
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Algorithm

Routine CANVC computes the canonical correlations, the canonical coefficients,
Wilks’ lambda (for testing the independence of two sets of variates), and a series
of tests due to Bartlett for testing that all canonical correlations greater than or
equal to the k-th largest are simultaneously zero. The covariance matrix is used in
these computations.

The group 1 variables covariance matrix is first extracted from COV and placed in
the matrix S11. Similarly, the group 2 variables covariance matrix is placed in S22.
The “standardized” cross covariance matrix is then computed as:

C S S S
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11 12 22
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2
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2

where S12 is the NVAR1 × NVAR2 matrix of covariances between the group 1 and

group 2 variables, and S1/2denotes the upper triangular Cholesky (R7�R)
factorization of S. In the computation of C and in the following, it is assumed that
NVAR1 is greater than NVAR2. The group 1 and group 2 variables should be
interchanged in the following if this is not the case.

The canonical correlations are computed as the singular values of the matrix C.
The canonical coefficients are obtained from the left and right orthogonal
matrices resulting from the singular value decomposition of C. In particular, for
Γ1 = COEF1.

Γ1 11

1
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−
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where L is the left orthogonal matrix from the singular value decomposition.

Similarly, the correlations between the original variables and the canonical
variables, R1 = COEFR1, are obtained for the group 1 variables as:
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where ∆11is a diagonal matrix containing the diagonal of S11 along its diagonal.

Wilks’ lambda, the Bartlett’s tests, Rao’s F corresponding to these tests, the
numerator and denominator degrees of freedom of F , and the significance level
of F are computed as in Rao (1973, page 556). Bartlett’s tests are computed as

Λ i j
j i

q

= −
=

∏ 1 2ρ3 8
where q = NVAR2 is the number of canonical correlations, the canonical
correlations are ordered from largest to smallest, and ρM denotes the j-th largest

canonical correlation. Wilks’ lambda is given as Λ1. The degrees of freedom in
the numerator of the corresponding Rao’s F statistic is given as
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d1 = pu

where p = v1 − i + 1, u = v2 − i + 1, v1 = NVAR2, and v2 = NVAR1. Let

m t
p u= − + + 1

2
where t is the degrees of freedom in COV, and let

s
p u

p u
= −

+ −

2 2
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5

if p2 + u2 − 5 ≠ 0, and let s = 2 otherwise. Then, Rao’s F corresponding to
Bartlett’s test is computed as

F
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Rao’s F has numerator degrees of freedom d2 = ms − pu/2 + 1. The significance
level of F is obtained from the standard F distribution.

Example

The following example is taken from Van de Geer (1971). There are six group 1
variables and two group 2 variables. The maximum correlation turns out to be
0.609.

      INTEGER    IPRINT, LDCFR1, LDCFR2, LDCOF1, LDCOF2, LDCORR,
     &           LDCOV, NDF, NV, NVAR1, NVAR2
      PARAMETER  (IPRINT=1, LDCFR1=6, LDCFR2=2, LDCOF1=6, LDCOF2=2,
     &           LDCORR=2, LDCOV=8, NDF=100, NV=2, NVAR1=6, NVAR2=2)
C
      INTEGER    IND1(NVAR1), IND2(NVAR2)
      REAL       COEF1(NVAR1,NVAR1), COEF2(NVAR2,NVAR2),
     &           COEFR1(NVAR1,NVAR2), COEFR2(NVAR2,NVAR2),
     &           CORR(NVAR2,NVAR1), COV(LDCOV,NVAR1+NVAR2)
      EXTERNAL   CANVC
C
      DATA COV/1.0000, 0.1839, 0.0489, 0.0186, 0.0782, 0.1147, 0.2137,
     &     0.2742, 0.1839, 1.0000, 0.2220, 0.1861, 0.3355, 0.1021,
     &     0.4105, 0.4043, 0.0489, 0.2220, 1.0000, 0.2707, 0.2302,
     &     0.0931, 0.3240, 0.4047, 0.0186, 0.1861, 0.2707, 1.0000,
     &     0.2950, -0.0438, 0.2930, 0.2407, 0.0782, 0.3355, 0.2302,
     &     0.2950, 1.0000, 0.2087, 0.2995, 0.2863, 0.1147, 0.1021,
     &     0.0931, -0.0438, 0.2087, 1.0000, 0.0760, 0.0702, 0.2137,
     &     0.4105, 0.3240, 0.2930, 0.2995, 0.0760, 1.0000, 0.6247,
     &     0.2742, 0.4043, 0.4047, 0.2407, 0.2863, 0.0702, 0.6247,
     &     1.0000/
C
      DATA IND1/1, 2, 3, 4, 5, 6/, IND2/7, 8/
C
      CALL CANVC (NDF, NVAR1, NVAR2, COV, LDCOV, IND1, IND2, IPRINT,
     &            CORR, LDCORR, COEF1, LDCOF1, COEF2, LDCOF2, COEFR1,
     &            LDCFR1, COEFR2, LDCFR2)
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C
C
      END

Output
                *** Canonical Correlations Statistics ***
      Canonical                                               Prob. of
   Correlations  Wilks Lambda      Raos F  Num. df  Denom. df  Larger F
1        0.6093        0.6159       4.250       12        186    0.0000
2        0.1431        0.9795       0.393        5         94    0.8524

        Group One Canonical Coefficients
        1       2       3       4       5       6
1   0.326   0.411  -0.799   0.358  -0.032   0.053
2   0.481  -0.340  -0.083  -0.766  -0.484  -0.139
3   0.456   0.718   0.625   0.134  -0.056   0.038
4   0.202  -0.689   0.060   0.732  -0.335   0.080
5   0.184  -0.125  -0.064  -0.045   1.079  -0.225
6  -0.027  -0.174   0.054  -0.086  -0.021   1.017

Group Two Canonical Coefficients
        1       2
1   0.464   1.194
2   0.642  -1.108

Correlations Between the Group One Variables
     and the Group One Canonical Scores
                      1        2
             1   0.4517   0.3408
             2   0.7388  -0.2932
             3   0.6733   0.4313
             4   0.4769  -0.5799
             5   0.5299  -0.2811
             6   0.1319  -0.0903

Correlations Between the Group Two Variables
     and the Group Two Canonical Scores
                      1        2
             1   0.8653   0.5013
             2   0.9320  -0.3625
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Chapter 10: Discriminant Analysis

Routines
10.1. Parametric Discrimination

Linear and quadratic discrimination ....................................DSCRM 863
Fisher discriminant scores ..................................................DMSCR 876

10.2. Nonparametric Discrimination
Nearest neighbor discrimination ......................................... NNBRD 880

Usage Notes
The routine DSCRM (page 863) allows linear or quadratic discrimination and the
use of either reclassification, split sample, or the leaving-out-one methods in
order to evaluate the rule. Moreover, DSCRM can be executed in an online mode,
that is, one or more observations can be added to the rule during each invocation
of DSCRM.

The mean vectors for each group of observations and an estimate of the common
covariance matrix for all groups are input to DMSCR (page 876). These estimates
can be computed via routine DSCRM. Output from DMSCR are linear combinations
of the observations, which at most separate the groups. These linear combinations
may subsequently be used for discriminating between the groups. Their use in
graphically displaying differences between the groups is possibly more important,
however.

Nearest neighbor discrimination is performed in routine NNBRD (page 880). In
this routine, the user can set the number of nearest neighbors to be used in the
discrimination and the threshold for classification. Split samples can also be used.

DSCRM/DDSCRM (Single/Double precision)
Perform a linear or a quadratic discriminant function analysis among several
known groups.
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Usage
CALL DSCRM (IDO, NROW, NVAR, NCOL, X, LDX, IND, IFRQ, IWT,
            IGRP, NGROUP, IMTH, IPRINT, PRIOR, NI, XMEAN,
            LDXMEA, COV, LDCOV, COEF, LDCOEF, ICLASS,
            PROB, LDPROB, CLASS, LDCLAS, D2, LDD2, STAT,
            NRMISS)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of DSCRM; all the data are input at once.
1 This is the first invocation of DSCRM with this data, additional calls will

be made. Initialization and updating for the NROW observations are
performed.

2 This is an intermediate invocation of DSCRM; updating for the NROW
observations is performed.

3 All statistics are updated for the NROW observations. The discriminant
functions and other statistics are computed.

4 The discriminant functions are used to classify each of the NROW

observations in X.
5 The covariance matrices are computed, and workspace is released. No

further calls to DSCRM with IDO greater than 1 should be made without
first calling DSCRM with IDO = 1.

6 Workspace is released. No further calls to DSCRM with IDO greater than
1 should be made without first calling DSCRM with IDO = 1. This option
is not required if a call has been made with IDO = 5 or if workspace is
explicitly provided by use of D2CRM.

See Comments 5 and 6 for further information.

NROW — The absolute value of NROW is the number of rows of X that contain an
observation.   (Input)
If NROW is negative, the observations are deleted from the discriminant statistics.
If NROW is positive, they are added.

NVAR — Number of variables to be used in the discrimination.   (Input)

NCOL — Number of columns in matrix X.   (Input)

X — |NROW| by NVAR + m matrix containing the data to be used on this call.
(Input, if |NROW| > 0; X is not referenced otherwise)
m is 1, 2, or 3 depending upon whether any columns in X contain frequencies or
weights. One column in X must contain the group number for each observation.
Group numbers must be 1.0, 2, 0, …, NGROUP. If present, IFRQ gives the column
containing the frequencies, while IWT gives the column in X containing the
weights.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)
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IND — Vector of length NVAR containing the column numbers in X to be used in
the discrimination.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. Positive IFRQ indicates that column
number IFRQ of X contains the frequencies. All frequencies should be integer
values. If this is not the case, the NINT (nearest integer) function is used to obtain
integer frequencies.

IWT — Weighting option.   (Input)
IWT = 0 means that all weights are 1.0. Positive IWT means that column IWT of X
contains the weights. Negative weights are not allowed.

IGRP — Column number in X containing the group numbers.   (Input)
The group numbers must be 1.0, 2,0, …, NGROUP for an observation to be used in
the discriminant functions. An observation will be classified regardless of its
group number when the reclassification method is specified.

NGROUP — Number of groups in the data.   (Input)

IMTH — Option parameter giving the method of discrimination.   (Input)
IMTH determines whether linear or quadratic discrimination is used whether the
group covariance matrices are computed (the pooled covariance matrix is always
computed) and whether the leaving-out-one or the reclassification method is used
to classify each observation.

IMTH  Discrim.      Covariance Classification
1 Linear        All        Reclassification
2 Quadratic     All        Reclassification
3 Linear        Pooled only Reclassification
4 Linear        All        Leaving-out-one
5 Quadratic     All        Leaving-out-one
6 Linear        Pooled only Leaving-out-one

In the leaving-out-one method of classification, the posterior probabilities are
adjusted so as to eliminate the effect of the observation from the sample statistics
prior to its classification. In the reclassification method, the effect of the
observation is not eliminated from the classification function. Calls to DSCRM with
IMTH = 1, 2, 4, or 5 can be intermixed, as can calls to DSCRM with IMTH = 3 or 6.
Calls to DSCRM with IMTH = 1, 2, 4, or 5 cannot be intermixed with calls to
DSCRM with IMTH = 3 or 6 without first calling DSCRM with IDO = 1 (or 0).

IPRINT — Printing option.   (Input)
For the given combination of IDO and IPRINT, the following arrays are printed.

IPRINT IDO Printing

0 Any None

1 or 2 0 PRIOR, NI, XMEAN, COV, COEF, ICLASS, PROB, CLASS, D2,
STAT, NRMISS
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IPRINT IDO Printing

1 or 2 1 or 2 None

1 or 2 3 PRIOR, NI, XMEAN, COEF, D2, STAT, NRMISS

1 4 None

2 4 ICLASS, PROB

1 or 2 5 COV, CLASS

1 or 2 6 None

Note that the only change from IPRINT = 1 to IPRINT = 2 is the printing when
IDO = 4. Also, note that PRIOR is printed even though it may be input only.

PRIOR — Vector of length NGROUP containing the prior probabilities for each
group.   (Input, if PRIOR(1) is not −1.0 and IDO is 0 or 3; input/output, if
PRIOR(1) is −1.0 and IDO is 0 or 3; input, if IDO is 4; not referenced if IDO is 1,
2, 5, or 6)
If PRIOR(1) is not −1.0, then the elements of PRIOR should sum to 1.0.
Proportional priors can be selected by setting PRIOR(1) = −1.0. In this case, the
prior probabilities will be proportional to the sample size in each group, and the
elements of PRIOR will contain the proportional prior probabilities after the first
call with IDO = 0 or 3.

NI — Vector of length NGROUP.   (Input, for IDO = 3, 4, or 5; input/output, for
IDO = 2; output, for IDO = 0 or 1; not referenced if IDO = 6)
The i-th element of NI contains the number of observations in group i.

XMEAN — NGROUP by NVAR matrix.   (Input, for IDO = 3, 4, or 5; input/output,
for IDO = 2; output, for IDO = 0 or 1; not referenced if IDO = 6)
The i-th row of XMEAN contains the group i variable means.

LDXMEA — Leading dimension of XMEAN exactly as specified in the dimension
statement in the calling program.   (Input)

COV — NVAR by NVAR by g matrix of covariances.   (Output, for IDO = 0 or 1;
input/output, for IDO = 2, 3, or 5; input, for IDO = 4; not referenced if IDO = 6)
g = NGROUP + 1 when IMTH = 1, 2, 4, or 5, and g = 1 otherwise. When IMTH = 3
or 6, the within-group covariance matrices are not computed. Regardless of the
value of IMTH, the pooled covariance matrix is always computed and saved as the
g-th covariance matrix in COV.

LDCOV — Leading and second dimensions of COV exactly as specified in the
dimension statement of the calling program.   (Input)
The first two dimensions of COV must be equal.

COEF — NGROUP by NVAR + 1 matrix containing the linear discriminant function
coefficients.   (Output, if IDO = 0 or 3; input, if IDO = 4; not referenced if IDO =
1, 2, 5, or 6)
The first column of COEF contains the constant term, and the remaining columns
contain the variable coefficients. Row i of COEF corresponds to group i. COEF is
always computed as the linear discriminant function coefficients even when
quadratic discrimination is specified.
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LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

ICLASS — Vector of length |NROW| containing the group to which the observation
was classified.   (Output, if IDO = 0 or 4; not referenced otherwise)
If an observation has an invalid group number, frequency, or weight when the
leaving-out-one method has been specified, then the observation is not classified
and the corresponding elements of ICLASS and PROB are set to zero.

PROB — |NROW| by NGROUP matrix containing the posterior probabilities for each
observation.   (Output, if IDO = 0 or 4; not referenced otherwise)

LDPROB — Leading dimension of PROB exactly as specified in the dimension
statement in the calling program.   (Input)

CLASS — NGROUP by NGROUP matrix containing the classification table.
(Output, if IDO = 0 or 1, input/output, if IDO = 4; not referenced otherwise)
Each observation that is classified and has a group number equal to 1.0, 2.0, …,
NGROUP is entered into the table. The rows of the table correspond to the known
group membership. The columns refer to the group to which the observation was
classified. Classification results accumulate with each call to DSCRM with IDO = 4.
For example, if 2 calls with IDO = 4 are made, then the elements in CLASS sum to
the total number of valid observations in the 2 calls.

LDCLAS — Leading dimension of CLASS exactly as specified in the dimension
statement in the calling program.   (Input)

D2 — NGROUP by NGROUP matrix containing the Mahalanobis distances

Dij
2

between the group means.   (Output, when IDO= 0 or 3; not referenced otherwise)
For linear discrimination, the Mahalanobis distance is computed using the pooled
covariance matrix. Otherwise, the Mahalanobis distance

Dij
2

between group means i and j is computed using the within covariance matrix for
group i in place of the pooled covariance matrix.

LDD2 — Leading dimension of D2 exactly as specified in the dimension
statement of the calling program.   (Input)

STAT — Vector of length 4 + 2 * (NGROUP + 1) containing statistics of interest.
(Input/ Output, if IDO = 3 or 5; output, if IDO = 0 or 1; not referenced otherwise)

The first element of STAT is the sum of the degrees of freedom for the within-
covariance matrices. The second, third and fourth elements of STAT correspond
to the chi-squared statistic, its degrees of freedom, and the probability of a
greater chi-squared, respectively, of a test of the homogeneity of the within-
covariance matrices (not computed if IMTH = 3 or 6). The 5-th through
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5 + NGROUP elements of STAT contain the log of the determinants of each group’s
covariance matrix (not computed if IMTH = 3 or 6) and of the pooled covariance
matrix (element 5 + NGROUP). Finally, the last NGROUP + 1 elements of STAT
contain the sum of the weights within each group and, in the last position, the sum
of the weights in all groups.

NRMISS — Number of rows of data encountered in calls to DSCRM containing
missing values (NaN) for the classification, group, weight, and/or frequency
variables.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3, not referenced
otherwise)
If a row of data contains a missing value (NaN) for any of these variables, that
row is excluded from the computations.

Comments

1. Automatic workspace usage is

DSCRM (NGROUP + 3) * NVAR units if IMTH is not 3 or 6. Otherwise, 3 *

NVAR units.

DDSCRM 2 * (NGROUP + 3) * NVAR units if IMTH is not 3 or 6. Otherwise,
6 * NVAR units.

Workspace may be explicitly provided, if desired, by use of
D2CRM/DD2CRM. The reference is

CALL D2CRM (IDO, NROW, NVAR, NCOL, X, LDX, IND,
            IFRQ, IWT, IGRP, NGROUP, IMTH, IPRINT,
            PRIOR, NI, XMEAN, LDXMEA, COV, LDCOV,
            COEF, LDCOEF, ICLASS, PROB, LDPROB,
            CLASS, LDCLAS, D2, LDD2, STAT, NRMISS,
            D, OB, OB1)

The additional arguments are as follows:

D — Work vector of length equal to (NGROUP + 1) * NVAR if IMTH is not
3 or 6, and of length NVAR otherwise.

OB — Work vector of length equal to NVAR.

OB1 — Work vector of length equal to NVAR.

2. Informational errors
Type Code
   3    1 A row of the data matrix X has an invalid group

number.
   4    2 The variance-covariance matrix for a group is singular.
   4    3 The pooled variance-covariance matrix is singular.
   3    4 The variance-covariance matrix for a group is singular.

STAT(2) cannot be computed. STAT(2) and STAT(4)
are set to the missing value code (NaN).

   3    5 An element of PRIOR is less than or equal to 10-20.
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   3    6 The leaving-out-one method is specified, but this
observation does not have a valid weight, or it does
not have a valid frequency. This observation is
ignored.

   3    7 The leaving-out-one method is specified, but this
observation does not have a valid group number. This
observation is ignored.

3. Common choices for the Bayesian prior probabilities are given by:
PRIOR(i) = 1.0/NGROUP (equal prior probabilities)
PRIOR(i) = NI(i)/NOBS (proportional prior probabilities)
PRIOR(i) = Past history or subjective judgement
In all cases, the prior probabilities should sum to 1.0.

4. Two passes of the data are made. In the first pass, the statistics required
to compute the discriminant functions are obtained (IDO = 1, 2, and 3).
In the second pass, the discriminant functions are used to classify the
observations. When IDO = 0, all of the data are memory resident, and
both passes are made in one call to DSCRM. When IDO > 0 and
workspace is not explicitly provided by use of D2CRM, a third call to
DSCRM involving no data is required with IDO = 5 or 6.

5. Here are a few rules and guidelines for the correct value of IDO in a
series of calls.

(1) Calls with IDO = 0 or 1 may be made at any time. These calls
destroy all statistics from previous calls.

(2) IDO may not be 2, 3, 4, 5, or 6
(a) immediately after a call where IDO was 0,
(b) before a call with IDO = 1 has been made, or
(c) immediately after a call with IDO = 5 or 6 has been made.

(3) IDO may not be 4 or 5 before a call with IDO = 3 has been
made.

(4) Each series of calls to DSCRM which begins with IDO = 1 should
end with IDO = 5 or 6 to ensure the proper release of
workspace.

This is a valid sequence of IDOs:
0, 1, 2, 3, 4, 5, 1, 3, 4, 3, 5, 1, 6, 1, 2, 0, 0, 1, 3, 5.

6. Unlike many routines using the parameter IDO, because of the
workspace allocation and saved variables, neither DSCRM or D2CRM can
be called with IDO greater than 1 in consecutive invocations with more
than one dataset.

Algorithm

Routine DSCRM performs discriminant function analysis using either linear or
quadratic discrimination. The output from DSCRM includes a measure of distance
between the groups, a table summarizing the classification results, a matrix
containing the posterior probabilities of group membership for each observation,
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and the within-sample means and covariance matrices. The linear discriminant
function coefficients are also computed.

All observations can be input during one call to DSCRM, a method of operation
that has the advantage of simplicity. Alternatively, one or more rows of
observations can be input during separate calls. This method does not require that
all observations be memory resident, a significant advantage with large data sets.
Note, however, that DSCRM requires two passes of the data. During the first pass
the discriminant functions are computed while in the second pass, the
observations are classified. Thus, with the second method of operation, the data
will usually need to be input into DSCRM twice.

Because both methods result in the same operations being performed, the
algorithm for DSCRM is discussed as if only a few observations are input during
each call. The operations performed during each call to DSCRM depend upon the
IDO parameter. IDO = 0 should be used if all observations are to be input at one
time.

The IDO = 1 step is the initialization step. The variables XMEAN, CLASS, and COV
are initialized to zero, and other program parameters are set. After this call, all
subroutine arguments except IDO, NROW, X, LDX and IMTH should not be changed
by the user except via another call to DSCRM with IDO = 0 or IDO = 1. IMTH can
be changed from one call to the next within the two sets {1, 2, 4, 5} or {3, 6} but
not between these sets when IDO > 1. That is, do not call DSCRM with IMTH = 1 in
one call and IMTH = 3 in another call without first calling DSCRM with IDO = 1.

After initialization has been performed in the IDO = 1 step, the within-group
means are updated for all valid observations in X. Observations with invalid
group numbers are ignored, as are observations with missing values. The LU
factorization of the covariance matrices are updated by adding (or deleting)
observations via Givens rotations.

The IDO = 2 step is used solely for adding or deleting observations from the
model as in the above paragraph.

The IDO = 3 step begins by adding all observations in X to the means and the
factorizations of the covariance matrices. It continues by computing some
statistics of interest: the linear discriminant functions, the prior probabilities (if
PRIOR(1) = −1.0), the log of the determinant of each of the covariance matrices, a
test statistic for testing that all of the within-group covariance matrices are equal,
and a matrix of Mahalanobis distances between the groups. The matrix of
Mahalanobis distances is computed via the pooled covariance matrix when linear
discrimination is specified, the row covariance matrix is used when the
discrimination is quadratic.

Covariance matrices are defined as follows. Let NL denote the sum of the
frequencies of the observations in group i, and let ML denote the number of
observations in group i. Then, if SL denotes the within-group i covariance matrix,
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where wM is the weight of the j-th observation in group i, fM is its frequency, xM is
the j-th observation column vector (in group i), and x  denotes the mean vector of
the observations in group i. The mean vectors are computed as
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Given the means and the covariance matrices, the linear discriminant function for
group i is computed as:

z p x S x x S xi i i
T

p i
T

p i= − +− −ln .1 6 0 5 1 1

where ln(pL) is the natural log of the prior probability for the i-th group, x is the
observation to be classified, and SS denotes the pooled covariance matrix.

Let S denote either the pooled covariance matrix or one of the within-group
covariance matrices SL. (S will be the pooled covariance matrix in linear
discrimination, and SL otherwise.) The Mahalanobis distance between group i and
group j is computed as:

D x x S x xij i j
T

i j
2 1= − −−3 8 3 8

Finally, the asymptotic chi-squared test for the equality of covariance matrices is
computed as follows (Morrison 1976, page 252):
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=
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where nL is the number of degrees of freedom in the i-th sample covariance
matrix, k is the number of groups, and
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where p is the number of variables.

When IDO = 4, the estimated posterior probability of each observation x
belonging to group i is computed using the prior probabilities and the sample
mean vectors and estimated covariance matrices under a multivariate normal
assumption. Under quadratic discrimination, the within-group covariance
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matrices are used to compute the estimated posterior probabilities. The estimated
posterior probability of an observation x belonging to group i is
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For the leaving-out-one method of classification (IMTH = 4, 5, and 6), the sample
mean vector and sample covariance matrices in the formula for

D xi
2 0 5

are adjusted so as to remove the observation x from their computation. For linear
discrimination (IMTH = 1, 2, 4, and 6), the linear discriminant function
coefficients are actually used to compute the same posterior probabilities.

Using the posterior probabilities, each observations in X is classified into a group;
the result is tabulated in the matrix CLASS and saved in the vector ICLASS.
CLASS is not altered at this stage if X(i, IGRP) contains a group number that is out
of range. If the reclassification method is specified, then all observations with no
missing values in the NVAR classification variables are classified. When the
leaving-out-one method is used, observations with invalid group numbers,
weights, frequencies or classification variables are not classified. Regardless of
the frequency, a 1 is added (or subtracted) from CLASS for each row of X that is
classified and contains a valid group number.

When IMTH > 3, adjustment is made to the posterior probabilities to remove the
effect of the observation in the classification rule. In this adjustment, each
observation is presumed to have a weight of X(i, IWT), if IWT > 0 and a frequency
of 1.0. See Lachenbruch (1975, page 36) for the required adjustment.

Finally, when IDO = 5, the covariance matrices are computed from their LU
factorizations.

Example 1

The following example uses linear discrimination with equal prior probabilities
on Fisher’s (1936) iris data. This example illustrates the execution of DSCRM

when one call is made.
      INTEGER    IDO, IFRQ, IGRP, IMTH, IPRINT, IWT, LDCLAS, LDCOEF,
     &           LDCOV, LDD2, LDPROB, LDX, LDXMEA, NCOL, NGROUP, NROW,
     &           NVAR
      PARAMETER  (IDO=0, IFRQ=0, IGRP=1, IMTH=3, IPRINT=1, IWT=0,
     &           LDCOV=4, NCOL=5, NGROUP=3, NROW=150, NVAR=4,
     &           LDCLAS=NGROUP, LDCOEF=NGROUP, LDD2=NGROUP,
     &           LDPROB=NROW, LDX=NROW, LDXMEA=NGROUP)
C
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      INTEGER    ICLASS(NROW), IND(4), NI(NGROUP), NOBS, NRMISS, NV
      REAL       CLASS(LDCLAS,NGROUP), COEF(LDCOEF,NVAR+1),
     &           COV(LDCOV,LDCOV,1), D2(LDD2,NGROUP), PRIOR(3),
     &           PROB(LDPROB,NGROUP), STAT(6+2*NGROUP), X(LDX,5),
     &           XMEAN(LDXMEA,NVAR)
      EXTERNAL   DSCRM, GDATA
C
      DATA IND/2, 3, 4, 5/, PRIOR/0.3333333, 0.3333333, 0.3333333/
C
      CALL GDATA (3, 0, NOBS, NV, X, LDX, 5)
C
      CALL DSCRM (IDO, NROW, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, IGRP,
     &            NGROUP, IMTH, IPRINT, PRIOR, NI, XMEAN, LDXMEA, COV,
     &            LDCOV, COEF, LDCOEF, ICLASS, PROB, LDPROB, CLASS,
     &            LDCLAS, D2, LDD2, STAT, NRMISS)
C
      END

Output
PRIOR, the prior probabilities
     1        2        3
0.3333   0.3333   0.3333

NI, the number in each group
 1    2    3
50   50   50

     XMEAN, the group means
        1       2       3       4
1   5.006   3.428   1.462   0.246
2   5.936   2.770   4.260   1.326
3   6.588   2.974   5.552   2.026

The pooled within-groups covariance matrix
         1        2        3        4
1   0.2650   0.0927   0.1675   0.0384
2   0.0927   0.1154   0.0552   0.0327
3   0.1675   0.0552   0.1852   0.0427
4   0.0384   0.0327   0.0427   0.0419

COEF, the discriminant function coefficients
        1       2       3       4       5
1   -86.3    23.5    23.6   -16.4   -17.4
2   -72.9    15.7     7.1     5.2     6.4
3  -104.4    12.4     3.7    12.8    21.1

ICLASS, the classifications

 Obs.  Class
  1     1
  2     1
  3     1
  4     1
  5     1
  6     1
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     .
     .
     .
145     3
146     3
147     3
148     3
149     3
150     3

PROB, the posterior probabilities
          1       2       3
  1   1.000   0.000   0.000
  2   1.000   0.000   0.000
  3   1.000   0.000   0.000
  4   1.000   0.000   0.000
  5   1.000   0.000   0.000
  6   1.000   0.000   0.000
          .
          .
          .
145   0.000   0.000   1.000
146   0.000   0.000   1.000
147   0.000   0.006   0.994
148   0.000   0.003   0.997
149   0.000   0.000   1.000
150   0.000   0.018   0.982

CLASS, the classification table
          1       2       3
  1   50.00    0.00    0.00
  2    0.00   48.00    2.00
  3    0.00    1.00   49.00

D2, the distances between group means
          1       2       3
  1     0.0    89.9   179.4
  2    89.9     0.0    17.2
  3   179.4    17.2     0.0

                                       STAT
    1      2      3       4       5       6       7       8       9      10
147.0    NaN    NaN     NaN     NaN     NaN     NaN   -10.0    50.0    50.0

11      12
50.0   150.0

NRMISS, number of missing observations =   0

Example 2

Continuing with Fisher’s iris data, the following example computes the quadratic
discriminant functions using values of IDO > 0. In the first loop, all observations
are added to the functions, two observations at a time. In the second loop, each of
three observations is classified, one by one, using the leaving-out-one method.
Output for statistics that are identical to those reported in the first example are not
printed here.
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      INTEGER    IFRQ, IGRP, IMTH, IWT, LDCLAS, LDCOEF, LDCOV, LDD2,
     &           LDPROB, LDX, LDXMEA, NCOL, NGROUP, NROW, NVAR
      PARAMETER  (IFRQ=0, IGRP=1, IMTH=2, IWT=0, LDPROB=10, LDX=150,
     &           NCOL=5, NGROUP=3, NROW=1, NVAR=4, LDCLAS=NGROUP,
     &           LDCOEF=NGROUP, LDCOV=NVAR, LDD2=NGROUP, LDXMEA=NGROUP)
C
      INTEGER    I, ICLASS(LDPROB), IDO, IND(4), IPRINT, NI(NGROUP),
     &           NOBS, NRMISS, NV
      REAL       CLASS(LDCLAS,NGROUP), COEF(LDCOEF,NVAR+1),
     &           COV(LDCOV,LDCOV,NGROUP+1), D2(LDD2,NGROUP), PRIOR(3),
     &           PROB(LDPROB,NGROUP), STAT(6+2*NGROUP), X(LDX,5),
     &           XMEAN(LDXMEA,NVAR)
      EXTERNAL   DSCRM, GDATA, WRRRN
C
      DATA IND/2, 3, 4, 5/, PRIOR/0.3333333, 0.3333333, 0.3333333/
C
      CALL GDATA (3, 0, NOBS, NV, X, LDX, 5)
C
      IPRINT = 0
      IDO    = 1
      CALL DSCRM (IDO, 0, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, IGRP,
     &            NGROUP, IMTH, IPRINT, PRIOR, NI, XMEAN, LDXMEA, COV,
     &            LDCOV, COEF, LDCOEF, ICLASS, PROB, LDPROB, CLASS,
     &            LDCLAS, D2, LDD2, STAT, NRMISS)
C                                 Add the observations
      IDO = 2
      DO 10  I=1, NOBS
         CALL DSCRM (IDO, NROW, NVAR, NCOL, X(I,1), LDX, IND, IFRQ,
     &               IWT, IGRP, NGROUP, IMTH, IPRINT, PRIOR, NI,
     &               XMEAN, LDXMEA, COV, LDCOV, COEF, LDCOEF, ICLASS,
     &               PROB, LDPROB, CLASS, LDCLAS, D2, LDD2, STAT,
     &               NRMISS)
   10 CONTINUE
C                                 Summarize the statistics
      IDO = 3
      CALL DSCRM (IDO, 0, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, IGRP,
     &            NGROUP, IMTH, IPRINT, PRIOR, NI, XMEAN, LDXMEA, COV,
     &            LDCOV, COEF, LDCOEF, ICLASS, PROB, LDPROB, CLASS,
     &            LDCLAS, D2, LDD2, STAT, NRMISS)
C                                 Classify the first three observations
      IPRINT = 2
      IDO    = 4
      DO 20  I=1, 3
         CALL DSCRM (IDO, NROW, NVAR, NCOL, X(I,1), LDX, IND, IFRQ,
     &               IWT, IGRP, NGROUP, IMTH, IPRINT, PRIOR, NI,
     &               XMEAN, LDXMEA, COV, LDCOV, COEF, LDCOEF,
     &               ICLASS(I), PROB(I,1), LDPROB, CLASS, LDCLAS, D2,
     &               LDD2, STAT, NRMISS)
   20 CONTINUE
C                                 Release Workspace
      IDO = 6
      CALL DSCRM (IDO, 0, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, IGRP,
     &            NGROUP, IMTH, IPRINT, PRIOR, NI, XMEAN, LDXMEA, COV,
     &            LDCOV, COEF, LDCOEF, ICLASS, PROB, LDPROB, CLASS,
     &            LDCLAS, D2, LDD2, STAT, NRMISS)
C
      END
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Output
ICLASS, the classifications

Obs.  Class
1     1

PROB, the posterior probabilities
    1       2       3
1.000   0.000   0.000

ICLASS, the classifications

Obs.  Class
1     1

PROB, the posterior probabilities
    1       2       3
1.000   0.000   0.000

ICLASS, the classifications
Obs.  Class
1     1

PROB, the posterior probabilities
    1       2       3
1.000   0.000   0.000

DMSCR/DDMSCR (Single/Double precision)
Use Fisher’s linear discriminant analysis method to reduce the number of
variables.

Usage
CALL DMSCR (NGROUP, NVAR, XMEAN, LDXMEA, SUMWT, COV, LDCOV,
            NNV, EVAL, COEF, LDCOEF, CMEAN, LDCMEA)

Arguments

NGROUP — Number of groups.   (Input)

NVAR — Number of variables.   (Input)

XMEAN — NGROUP by NVAR matrix containing the means of the variables in
each group.   (Input)

LDXMEA — Leading dimension of XMEAN exactly as specified in the dimension
statement in the calling program.   (Input)

SUMWT — Vector of length NGROUP containing the sum of the weights of the
observations in each group.   (Input)

COV — NVAR by NVAR matrix containing the pooled within-groups variance-
covariance matrix SS.   (Input)
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LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

NNV — Number of eigenvectors extracted from

S Sp b
−1

the standardized between-groups variance-covariance matrix.   (Output)
SS is the pooled within-groups variance-covariance matrix, and SE is the between-
groups variance-covariance matrix. NNV is usually the minimum of NVAR and
NGROUP − 1, but it may be smaller if any row of XMEAN or COV is a linear
combination of the other rows.

EVAL — Vector of length NNV containing the eigenvalues extracted from the
standardized between-means variancecovariance matrix, in descending order.
(Output)
NNV is less than or equal to the minimum of NVAR and (NGROUP − 1).

COEF — NVAR by NNV matrix of eigenvectors from the standardized between-
means variance-covariance matrix.   (Output)
The eigenvector coefficients have been standardized such that the canonical
scores can be obtained directly by multiplication of the original data by COEF.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

CMEAN — NGROUP by NNV matrix of group means of the canonical variables.
(Output)

LDCMEA — Leading dimension of CMEAN exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

DMSCR 3 * NVAR * (NVAR + 1) units, or
DDMSCR 6 * NVAR * (NVAR + 1) units.

Workspace may be explicitly provided, if desired, by use of
D2SCR/DD2SCR. The reference is

CALL D2SCR (NGROUP, NVAR, XMEAN, LDXMEA, SUMWT, COV,
            LDCOV, NNV, EVAL, COEF, LDCOEF,
            CMEAN, LDCMEA, BCOV, EVAL2, EVEC, WKR,
            WK)

The additional arguments are as follows:

BCOV — Work array of length NVAR * NVAR.

EVAL2 — Work array of length NVAR.

EVEC — Work array of length NVAR * NVAR.

WKR — Work array of length NVAR * NVAR.
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WK — Work array of length 2 * NVAR.

2. IMSL routine DSCRM (page 863) may be used to calculate the input
arrays for this routine from the original data.

Algorithm

Routine DMSCR is a natural generalization of R.A. Fisher’s linear discrimination
procedure for two groups. This method of discrimination obtains those linear
combinations of the observed random variables that maximize the between-
groups variation relative to the withingroups variation. Denote the first of these
linear combinations by

z xT
1 1= β

where β1 is a column vector of coefficients of length NVAR and x is an observation
to be classified. On the basis of one linear combination, the discriminant rule
assigns the observation, z, to a group (characterized by the group mean) by
minimizing the Euclidean distance between z and the group mean.

To obtain β1 (see, e.g., Tatsuoka 1971, page 158), let SS denote the pooled
within-groups covariance matrix (SS is defined and can be computed via routine
DSCRM, page 863) and let SE denote the between-groups covariance matrix
defined by

S w x x x x N gb i i i
T

i

g

= − − −
=
∑ 1 61 6 0 5/

1

where g is the number of groups,

xi

is the mean vector for the i-th group of observations, x  denotes the vector of
means over all observations, wL is the sum of the weights times the frequencies as
input in SUMWT and as used in the computation of

xi

and N is the total number of observations used in computing COV. Then, β1, such
that

β β1 1 1T
pS =

can be computed as the maximum of

ψ β β= 1 1
T

bS

This yields β1 as the eigenvector associated with the largest eigenvalue from

S Sp b
−1
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Generally,

S Sp b
−1

has rank m, where m = min(g − 1, p) and p = NVAR.

S Sp b
−1

has m such eigenvectors, and the matrix COEF is obtained as (β1, β2, …., βP),

where each βL is an eigenvector.

The matrix CMEAN is taken as the within-group means vector of the linear
combinations zL defined by the β’s. For each observation x, scores

z xi i
T= β

can be computed, because of the restriction on βL, the sample variance of the zL is
1.0. The observation is classified into the group (as specified by the group mean
of the zL’s) to which, on the basis of the zL, the Euclidean distance is the least.

Note that the linear combinations zL have meaning even when discrimination is
not desired. The linear combination of the observed variables that most separates
the g groups is z1; z2, giving the second highest such separation orthogonal to the
first, and so on. Thus, a plot of the mean vectors of the first two variables gives a
good two-dimensional summarization of the relationships between the groups.

Example

The following example illustrates a typical sequence. Fisher’s iris data is used.
(See routine GDATA, page 1302). Routine DSCRM is first used to perform a
discriminant analysis based on all the variables. COV, XMEAN, and NI are obtained
from DSCRM. Function DMSCR, which uses these arrays, is then called.

      INTEGER    IDO, IFRQ, IGRP, IMTH, IPRINT, IWT, LDCLAS, LDCMEA,
     &           LDCO, LDCOEF, LDCOV, LDD2, LDPROB, LDX, LDXMEA, NCOL,
     &           NGROUP, NROW, NVAR
      PARAMETER  (IDO=0, IFRQ=0, IGRP=1, IMTH=3, IPRINT=0, IWT=0,
     &           LDCOV=4, NCOL=5, NGROUP=3, NROW=150, NVAR=4,
     &           LDCLAS=NGROUP, LDCMEA=NGROUP, LDCO=NGROUP,
     &           LDCOEF=NVAR, LDD2=NGROUP, LDPROB=NROW, LDX=NROW,
     &           LDXMEA=NGROUP)
C
      INTEGER    ICLASS(NROW), IND(4), NI(NGROUP), NNV, NOBS, NOUT,
     &           NRMISS, NV
      REAL       CLASS(LDCLAS,NGROUP), CMEAN(LDCMEA,NGROUP-1),
     &           CO(LDCO,NVAR+1), COEF(LDCOEF,NGROUP-1),
     &           COV(LDCOV,LDCOV,1), D2(LDD2,NGROUP), EVAL(NGROUP-1),
     &           PRIOR(3), PROB(LDPROB,NGROUP), REAL,
     &           STAT(6+2*NGROUP), SUMWT(NGROUP), X(LDX,5),
     &           XMEAN(LDXMEA,NVAR)
      INTRINSIC  REAL
      EXTERNAL   DMSCR, DSCRM, GDATA, UMACH, WRRRN
C
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      DATA IND/2, 3, 4, 5/, PRIOR/0.3333333, 0.3333333, 0.3333333/
C
      CALL GDATA (3, 0, NOBS, NV, X, LDX, 5)
C
      CALL DSCRM (IDO, NROW, NVAR, NCOL, X, LDX, IND, IFRQ, IWT, IGRP,
     &            NGROUP, IMTH, IPRINT, PRIOR, NI, XMEAN, LDXMEA, COV,
     &            LDCOV, CO, LDCO, ICLASS, PROB, LDPROB, CLASS,
     &            LDCLAS, D2, LDD2, STAT, NRMISS)
C
      SUMWT(1) = STAT(6+NGROUP)
      SUMWT(2) = STAT(7+NGROUP)
      SUMWT(3) = STAT(8+NGROUP)
C
      CALL DMSCR (NGROUP, NVAR, XMEAN, LDXMEA, SUMWT, COV, LDCOV, NNV,
     &            EVAL, COEF, LDCOEF, CMEAN, LDCMEA)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,’(’’ NNV = ’’,I1)’) NNV
      CALL WRRRN (’EVAL’, 1, NNV, EVAL, 1, 0)
      CALL WRRRN (’COEF’, NVAR, NNV, COEF, LDCOEF, 0)
      CALL WRRRN (’CMEAN’, NGROUP, NNV, CMEAN, LDCMEA, 0)
      END

Output
NNV = 2

     EVAL
    1       2
32.19    0.29

        COEF
        1       2
1  -0.829   0.024
2  -1.534   2.165
3   2.201  -0.932
4   2.810   2.839

       CMEAN
        1       2
1  -5.502   6.877
2   3.930   5.934
3   7.888   7.174

NNBRD/DNNBRD (Single/Double precision)
Perform k nearest neighbor discrimination.

Arguments
CALL NNBRD (NROW, NVAR, NCOL, X, LDX, K, IND, IGRP, NGROUP,
            NRULE, NCLASS, METRIC, PRIOR, THRESH, PART,
            IDISCR, NI, ICLASS, PROB, LDPROB, CLASS,
            LDCLAS)
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Arguments

NROW — Number of rows of X that contain an observation.   (Input)

NVAR — Number of variables to be used in the discrimination.   (Input)

NCOL — Number of columns in matrix X.   (Input)

X — NROW by NVAR + 1 matrix containing the data to be used on this call.
(Input/Output)
One column in X must contain the group number for each observation. On output,
X is sorted into a k-d tree. The first NRULE + NCLASS rows of X must not contain
missing values in the columns specified by IND and IGRP.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

K — Number of nearest neighbors to be used in the discriminant rule.   (Input)

IND — Vector of length NVAR containing the column numbers in X to be used in
the discrimination.   (Input)

IGRP — Column number in X containing the group numbers.   (Input)
The group numbers must be 1.0, 2.0, …, NGROUP for an observation to be used in
the discriminant functions. (Note, however, that the nearest integer (NINT)
function is used to obtain the group numbers.)

NGROUP — Number of groups in the data.   (Input)

NRULE — Number of observations in X to be used in the discriminant rule.
(Input)
The first |NRULE| observations in X are used as the set defining the rule. If NRULE

is positive, then the NRULE observations defining the rule are classified. If NRULE

is negative, the NRULE observations defining the rule are not classified.

NCLASS — Number of observations in X to classify.   (Input)
NCLASS is the number of observations in a second sample that may be used to test
the rule formed from the first NRULE observations. If present, this sample is in
rows NRULE + 1 through NRULE + NCLASS of X.

METRIC — Metric to be used in computing the k nearest neighbors.   (Input)

METRIC Metric used
0 Euclidean distance
1 L1 norm
2 L� norm

PRIOR — Vector of length NGROUP containing the prior probabilities for each
group.   (Input, if PRIOR(1) is not −1.0; input/output, if PRIOR(1) is −1.0)
If PRIOR(1) is not −1.0, then the elements of PRIOR should sum to 1.0.
Proportional priors can be selected by setting PRIOR(1) = −1.0. In this case, the
prior probabilities will be proportional to the sample size in each group based
upon the first NRULE observations, and the elements of PRIOR will contain the
proportional prior probabilities on return from NNBRD.
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THRESH — Threshold for the posterior probabilities.   (Input)
If the maximum posterior probability is less than THRESH, the observation is
classified into group NGROUP + 1 (the group “other”).

PART — Vector of length NRULE containing the values to be used in the partition
of X for the k-d tree.   (Output)

IDISCR — Vector of length NRULE containing the element number in IND that
points to the column of X to be used as the discriminator in the k-d tree.   (Output)
IDISCR(i) = 0 if the observation is a terminal node. IND(IDISCR(i)) is the
column number in X to be used as the discriminator.

NI — Vector of length NGROUP containing the number of observations in each
group.   (Output)

ICLASS — Vector of length m containing the group to which the observation was
classified.   (Output)
If NRULE > 0, m = NRULE + NCLASS; otherwise, m = NCLASS. The i-th element in
ICLASS corresponds to to i-th row in the sorted matrix X.

PROB — m by NGROUP matrix containing the posterior probabilities for each
observation.   (Output)
The i-th row in PROB corresponds to the i-th row in the in the sorted matrix X.

LDPROB — Leading dimension of PROB exactly as specified in the dimension
statement in the calling program.   (Input)

CLASS — NGROUP by NGROUP + 1 matrix containing the classification table.
(Output)
Each observation that is classified and has a group number equal to 1.0, 2.0, …,
NGROUP is entered into the table. The rows of the table correspond to the known
group membership. The columns refer to the group to which the observation was
classified. Column NGROUP + 1 refers to the column “other” (see THRESH).

LDCLAS — Leading dimension of CLASS exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

Automatic workspace usage is

NNBRD (2 * NVAR + 3) * (log2(NROW) + 3) + (2 * NROW) + (2 * K + 2) + NVAR
units, or

DNNBRD (4 * NVAR + 3) * (log2(NROW) + 3) + (4 * NROW) + (3 * K + 2) + 2 *
NVAR units.

Workspace may be explicitly provided, if desired, by use of N2BRD/DN2BRD. The
reference is
CALL N2BRD (NROW, NVAR, NCOL, X, LDX, K, IND, IGRP, NGROUP,
            NRULE, NCLASS, METRIC, PRIOR, THRESH, PART,
            IDISCR, NI, ICLASS, PROB, LDPROB, CLASS,
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            LDCLAS, WK, IWK, ILOW, IHIGH, ISIDE, BNDL,
            BNDH, XKEY, IPQR, PQD)

The additional arguments are as follows:

WK — Work vector of length NROW.

IWK — Work vector of length NROW.

ILOW — Work vector of length log2(NROW) + 3.

IHIGH — Work vector of length log2(NROW) + 3.

ISIDE — Work vector of length log2(NROW) + 3.

BNDL — Work vector of length NVAR * (log2(NROW) + 3).

BNDH — Work vector of length NVAR * (log2(NROW) + 3).

XKEY — Work vector of length NVAR.

IPQR — Work vector of length K + 1.

PQD — Work vector of length K + 1.

Algorithm

Routine NNBRD performs k-th nearest neighbor discriminant function analysis.
The k-d tree algorithm of Friedman, Bentley, and Finkel (1977) is used to find the
nearest neighbors. Consult this reference for a discussion of k-d trees and how
one goes about finding nearest neighbors in them.

In NNBRD, the k nearest neighbors of any observation used in forming the rule
(i.e., one of the first NRULE observations in X), do not include the observation. Let
kL(i = 1, …, NGROUP) denote the number of nearest neighbors found from each of

the groups for a given observation (∑LkL = k); let pL = PRIOR(i)(∑LpL = 1); and let

$θi

denote the estimated posterior probability of membership in group i. Compute

$ $ /

/
θ θi i

i i i

j j jj

g

k p n

k p n
 as =

=∑ 1

where g = NGROUP. (If nM = 0 for some j, the associated term in the denominator is
excluded and

$θ j

is set to 0.0.)

Let m denote the index of the maximum

$θi
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and φ = THRESH. Then if

$θ φm >
the observation is classified into group m. If

$θ φm ≤

or if the maximum $θ is not unique, then the observation is not classified into any
group and ICLASS is set to zero.

Three metrics are available in NNBRD for finding the nearest neighbors. These are
Euclidean (L2) distance, L1 norm, and L� norm. In order to use Mahalanobis

distance, x7Σ-1 x, a transformation y = Σ-1/2 x is first needed so that Var(y) = I.
These transformations can be accomplished by use of the mathematical routines.
The L2 norm would then be used with y as input to obtain the Mahalanobis metric.

Example

Fisher’s iris data are used to illustrate routine NNBRD. The data consist of three
types of iris. NNBRD is called with k = 5 and Euclidean distance as the metric. The
results show a clear separation of the groups.

      INTEGER    IGRP, K, LDCLAS, LDPROB, LDX, METRIC, NCLASS, NCOL,
     &           NGROUP, NROW, NRULE, NVAR
      REAL       THRESH
      PARAMETER  (IGRP=1, K=5, LDCLAS=3, LDPROB=150, LDX=150,
     &           METRIC=0, NCLASS=0, NCOL=5, NGROUP=3, NROW=150,
     &           NRULE=150, NVAR=4, THRESH=0.10)
C
      INTEGER    ICLASS(NROW), IDISCR(NROW), IND(NVAR), NI(NGROUP),
     &           NRA, NRB
      REAL       CLASS(LDCLAS,NGROUP+1), PART(NRULE), PRIOR(NGROUP),
     &           PROB(LDPROB,NGROUP), X(LDX,NCOL)
      EXTERNAL   GDATA, NNBRD, WRIRN, WRRRN
C
      DATA IND/2, 3, 4, 5/
C
      CALL GDATA (3, 0, NRA, NRB, X, 150, 5)
C
      PRIOR(1) = -1.0
      CALL NNBRD (NROW, NVAR, NCOL, X, LDX, K, IND, IGRP, NGROUP,
     &            NRULE, NCLASS, METRIC, PRIOR, THRESH, PART, IDISCR,
     &            NI, ICLASS, PROB, LDPROB, CLASS, LDCLAS)
      CALL WRRRN (’The first 10 rows of X’, 10, NCOL, X, LDX, 0)
      CALL WRRRN (’PRIOR’, 1, NGROUP, PRIOR, 1, 0)
      CALL WRRRN (’The first 10 elements of PART’, 1, 10, PART, 1, 0)
      CALL WRIRN (’The first 10 elements of IDISCR’, 1, 10, IDISCR, 1,
     &            0)
      CALL WRIRN (’NI’, 1, NGROUP, NI, 1, 0)
      CALL WRIRN (’The first 10 elements of ICLASS’, 1, 10, ICLASS, 1,
     &            0)
      CALL WRRRN (’The first 10 rows of PROB’, 10, NGROUP, PROB,
     &            LDPROB, 0)
      CALL WRRRN (’CLASS’, NGROUP, NGROUP, CLASS, LDCLAS, 0)
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C
      END

Output
          The first 10 rows of X
         1       2       3       4       5
 1   1.000   4.500   2.300   1.300   0.300
 2   1.000   4.400   2.900   1.400   0.200
 3   1.000   4.800   3.000   1.400   0.300
 4   1.000   4.400   3.000   1.300   0.200
 5   1.000   4.800   3.000   1.400   0.100
 6   1.000   4.300   3.000   1.100   0.100
 7   1.000   4.600   3.100   1.500   0.200
 8   1.000   4.900   3.100   1.500   0.100
 9   1.000   4.900   3.000   1.400   0.200
10   1.000   4.900   3.100   1.500   0.200

          PRIOR
     1        2        3
0.3333   0.3333   0.3333

                      The first 10 elements of PART
    1      2      3       4       5       6       7       8       9      10
0.000  0.000  3.000   0.000   3.000   0.000   0.000   4.900   0.000   3.100

    The first 10 elements of IDISCR
1   2   3   4   5   6   7   8   9  10
0   0   2   0   2   0   0   1   0   2

     NI
 1    2    3
50   50   50

    The first 10 elements of ICLASS
1   2   3   4   5   6   7   8   9  10
1   1   1   1   1   1   1   1   1   1

The first 10 rows of PROB
         1       2       3
 1   1.000   0.000   0.000
 2   1.000   0.000   0.000
 3   1.000   0.000   0.000
 4   1.000   0.000   0.000
 5   1.000   0.000   0.000
 6   1.000   0.000   0.000
 7   1.000   0.000   0.000
 8   1.000   0.000   0.000
 9   1.000   0.000   0.000
10   1.000   0.000   0.000

           CLASS
        1       2       3
1   50.00    0.00    0.00
2    0.00   47.00    3.00
3    0.00    2.00   48.00
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Chapter 11: Cluster Analysis

Routines
11.1. Hierarchical Cluster Analysis

Compute distance or similarity matrix ................................... CDIST 889
Hierarchical cluster analysis.................................................. CLINK 892
Retrieve cluster numbers in hierarchical cluster analysis ...CNUMB 897

11.2. K-means Cluster Analysis
The basic K-means algorithm ............................................. KMEAN 900

Usage Notes
The routines described in this chapter perform various forms of hierarchical or K-
means cluster analysis. By appropriate manipulation of the input data, either
variables or cases may be clustered. Additionally, for hierarchical clustering,
similarity or dissimilarity (distance) matrices created by routines not included in
this chapter can be clustered. Hartigan (1975) and Anderberg (1973) are general
references that may be used in this chapter.

The first step in agglomerative hierarchical cluster analysis is to compute the
distance between each observation (or variable). Initially, each observation
(variable) is treated as a cluster. The two clusters that are closest to one another in
distance are merged, and the distance of the new cluster from all other clusters is
computed. This process continues until only one cluster remains. No attempt at
finding an optimal clustering (in the sense of minimizing some criterion) is made.

The usual steps in a hierarchical cluster analysis might proceed as follows:

1. Routine CDIST (page 889) is used to compute a distance (or possibly a
similarity) matrix from the input data matrix. A scaled matrix of
Euclidean distances is a common choice for a distance matrix, while a
correlation matrix is a common choice for a similarity matrix. If a
correlation matrix is to be used, many of the routines described in
Chapter 3, “Correlation”, may also be used to compute the correlation
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measures for the matrix. In particular, routine CORVC (page 314) from
this chapter may be used.

2. Once the distance matrix has been computed, routine CLINK (page 892)
is used to perform the agglomerative hierarchical cluster analysis using
either single, complete, average, or Ward’s linkage.

3. The results obtained from CLINK are examined, and if desired, the
number of clusters is selected. Routine TREEP (page 1098) in Chapter
16, “Line Printer Graphics,” may be used to print the cluster tree. This
tree may aid in selecting the number of clusters, assuming that such a
number is desired. Based upon the number of clusters selected, routine
CNUMB (page 897) is used to obtain the cluster number of each of the
clustered observations (or variables).

4. Routines described in Chapter 1, “Basic Statistics,” and other chapters in
the IMSL STAT/LIBRARY are used to obtain descriptive and other
statistics to evaluate the clustering.

Because routine CDIST produces similarity and distance matrices for either rows
or columns, it is easy to cluster either observations or variables. Optionally, the
user may wish to cluster a correlation matrix obtained from one of the routines in
the correlation chapter or to input a matrix of similarities (or dissimilarities)
obtained via experimentation. The objects within such matrices may be clustered
directly in routine CLINK.

Basic K-means clustering attempts to find a clustering that minimizes the within-
cluster sums of squares. In this method of clustering the data, matrix X is grouped
so that each observation (row in X) is assigned to one of a fixed number, K, of
clusters. The sum of the squared difference of each observation about its assigned
clusters mean is used as the criterion for assignment. In the basic algorithm,
observations are transferred from one cluster to another when doing so decreases
the within-cluster sums of squared differences. When, in a pass through the entire
data set, no transfer occurs, the algorithm stops. Routine KMEAN (page 900) is one
implementation of the basic algorithm.

The usual course of events in K-means cluster analysis might be to use routine
KMEAN to obtain the optimal clustering. The clustering is then evaluated via
routines described in Chapter 1, “Basic Statistics,” and/or other chapters in the
IMSL STAT/LIBRARY. Often, K-means clustering with more than one value for
K is performed, and the value of K that best fits the data is used.

Clustering can be performed either on observations or on variables. The
discussion of the routine KMEAN assumes the clustering is to be performed on the
observations, which correspond to the rows of the input data matrix. If variables,
rather than observations, are to be clustered using KMEAN, the data matrix should
first be transposed (possibly using routine TRNRR (IMSL MATH/LIBRARY)). In
the documentation for KMEAN, the words “observation” and “variable” would then
be exchanged.
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CDIST/DCDIST (Single/Double precision)
Compute a matrix of dissimilarities (or similarities) between the columns (or
rows) of a matrix.

Usage
CALL CDIST (NROW, NCOL, X, LDX, NDSTM, IND, IMETH, IROW,
            ISCALE, DIST, LDDIST)

Arguments

NROW — Number of rows in the matrix.   (Input)

NCOL — Number of columns in the matrix.   (Input)

X — NROW by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

NDSTM — Number of rows (columns, if IROW = 1) to be used in computing the
distance measure between the columns (rows).   (Input)

IND — Vector of length NDSTM containing the indices of the rows (columns, if
IROW = 1) to be used in computing the distance measure.   (Input)
If IND(1) = 0; the first NDSTM rows (columns) are used.

IMETH — Method to be used in computing the dissimilarities or similarities.
(Input)

IMETH Method
0 Euclidean distance (L2 norm)
1 Sum of the absolute differences (L1 norm)
2 Maximum difference (L� norm)
3 Mahalanobis distance
4 Absolute value of the cosine of the angle between the vectors
5 Angle in radians (0, π) between the lines through the origin defined by

the vectors
6 Correlation coefficient
7 Absolute value of the correlation coefficient
8 Number of exact matches

The algorithm section of the manual document has a more detailed description of
each measure.

IROW — Row or columns option.   (Input)
If IROW = 1, distances are computed between the NROW rows of X. Otherwise,
distances between the NCOL columns of X are computed.

ISCALE — Scaling option.   (Input)
ISCALE is not used for methods 3 through 8.
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ISCALE Scaling Performed
0 No scaling is performed.
1 Scale each column (row, if IROW = 1) by the standard deviation of the

column (row).
2 Scale each column (row, if IROW = 1) by the range of the column (row).

DIST — m by m matrix containing the computed dissimilarities or similarities,
where m = NROW if IROW = 1 and m = NCOL otherwise.   (Output)

LDDIST — Leading dimension of DIST exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

IMETH IROW Workspace in CDIST
0, 1, 2 0, 1 4 * NDSTM units
3 0, 1 4 * NDSTM + NDSTM * NDSTM units
4, 5 0 3 * NDSTM + NCOL units
4, 5 1 3 * NDSTM + NROW units
6, 7 0 4 * NDSTM + 2 * NCOL units
6, 7 1 4 * NDSTM + 2 * NROW units
8 0, 1 NDSTM units

The routine DCDIST requires twice the workspace required for CDIST.
Workspace may be explicitly provided, if desired, by use of
C2IST/DC2IST. The reference is
CALL C2IST (NROW, NCOL, X, LDX, NDSTM, IND, IMETH,
            IROW, ISCALE, DIST, LDDIST, X1, X2,
            SCALE, WK, IND1)

The additional arguments are as follows:

X1 — Work vector of length NDSTM. Not used if IMETH = 8.

X2 — Work vector of length NDSTM. Not used if IMETH = 8.

SCALE — Work vector of length NDSTM if IMETH is less than 4; of
length NCOL or NROW when IROW is 0 or 1, respectively, and IMETH is 4
or 5; and of length 2 * NCOL or 2 * NROW when IROW is 0 or 1 and
IMETH is 6 or 7. SCALE is not used when IMETH is 8.

WK — Work vector of length NDSTM * NDSTM when IMETH is 3, or of
length NDSTM when IMETH = 6 or 7. Not used otherwise.

IND1 — Integer work vector of length NDSTM.

2. Informational error
Type Code
   3    3 A variable is numerically linearly dependent on the

previous variables when IMETH is 3. The variable
detected as being linearly dependent is omitted from
the distance measure.
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Algorithm

Routine CDIST computes an upper triangular matrix (excluding the diagonal) of
dissimilarities (or similarities) between the columns or rows of a matrix. Nine
different distance measures can be computed. For the first three measures, three
different scaling options can be employed. Output from CDIST is generally used
as input to clustering or multidimensional scaling routines.

The following discussion assumes that the distance measure is being computed
between the columns of the matrix, i.e., that IROW is not 1. If distances between
the rows of the matrix are desired, set IROW to 1.

For IMETH = 0 to 2, each row of X is first scaled according to the value of
ISCALE. The scaling parameters are obtained from the values in the row scaled as
either the standard deviation of the row or the row range; the standard deviation is
computed from the unbiased estimate of the variance. If ISCALE is 0, no scaling
is performed, and the parameters in the following discussion are all 1.0. Once the
scaling value (if any) has been computed, the distance between column i and
column j is computed via the difference vector zN = (xN − yN)/sN, i = 1, …, NDSTM,
where xN denotes the k-th element in the i-th column, and yN denotes the
corresponding element in the j-th column. For given zL, the metrics 0 to 2 are
defined as:

IMETH Metric

0 Euclidean distance

1  norm

2  norm

z

z L

z L

ii

ii

i i

2
1

1 1

=

=

∞

∑
∑

NDSTM

NDSTM

4 9

max

Distance measures corresponding to IMETH = 3 to 8 do not allow for scaling.
These measures are defined via the column vectors X = (xL), Y = (yL), and

Z = (xL − yL) as follows:

IMETH Metric

3 ′ =−Z Z$Σ 1  Mahalanobis distance, where $Σ  is the usual unbiased
sample estimate of the covariance matrix of the rows.

4 cos /θ0 5 4 9= =X Y X X Y YT T T  the dot product of X and Y

divided by the length of X times the length of Y .

5 θ, where θ is defined in 4.

6 ρ = the usual (centered) estimate of the correlation between X and Y.
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7 The absolute value of ρ (where ρ is defined in 6).

8 The number of times xL = yL, where xL and yL are elements of X and Y.

For the Mahalanobis distance, any variable used in computing the distance
measure that is (numerically) linearly dependent upon the previous variables in
the IND vector is omitted from the distance measure.

Example

The following example illustrates the use of CDIST for computing the Euclidean
distance between the rows of a matrix.

      INTEGER    IMETH, IROW, ISCALE, LDDIST, LDX, NCOL, NDSTM, NROW
      PARAMETER  (IMETH=0, IROW=1, ISCALE=0, NCOL=2, NDSTM=2, NROW=4,
     &           LDDIST=NROW, LDX=NROW)
C
      INTEGER    IND(1)
      REAL       DIST(LDDIST,NROW), X(NROW,NCOL)
      EXTERNAL   CDIST, WRRRN
C
      DATA IND/0/
      DATA X/1, 1, 1, 1, 1, 0, -1, 2/
      DATA DIST/16*0.0/
C                                 Print input matrix
      CALL WRRRN (’X’, NROW, NCOL, X, LDX, 0)
C
      CALL CDIST (NROW, NCOL, X, LDX, NDSTM, IND, IMETH, IROW, ISCALE,
     &            DIST, LDDIST)
C                                 Print distance matrix
      CALL WRRRN (’DIST’, NROW, NROW, DIST, LDDIST, 0)
C
      END

Output
         X
        1       2
1   1.000   1.000
2   1.000   0.000
3   1.000  -1.000
4   1.000   2.000

              DIST
        1       2       3       4
1   0.000   1.000   2.000   1.000
2   0.000   0.000   1.000   2.000
3   0.000   0.000   0.000   3.000
4   0.000   0.000   0.000   0.000

CLINK/DCLINK (Single/Double precision)
Perform a hierarchical cluster analysis given a distance matrix.
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Usage
CALL CLINK (NPT, IMETH, IDIST, DIST, LDDIST, CLEVEL,
            ICLSON, ICRSON)

Arguments

NPT — Number of data points to be clustered.   (Input)

IMETH — Option giving the method to be used for clustering.   (Input)

IMETH Method
0 Single linkage (minimum distance)
1 Complete linkage (maximum distance)
2 Average distance within (average distance between objects within the

merged cluster)
3 Average distance between (average distance between objects in the two

clusters)
4 Ward’s method (minimize the within-cluster sums of squares). For

Ward’s method, the elements of DIST are assumed to be Euclidean
distances.

IDIST — Option giving the type of transformation to be applied to the measures
in DIST.   (Input)

IDIST Transformation
0 No transformation is required. The elements of DIST are distances.
1 Convert similarities to distances by multiplication by −1.0.
2 Convert similarities (usually correlations) to distances by taking the

reciprocal of the absolute value.

DIST — NPT by NPT matrix containing the distance (or similarity)
matrix.(Input/Output)
DIST is a symmetric matrix. On input, only the upper triangular part needs to be
present. The routine CLINK saves the upper triangular part of DIST in the lower
triangle. On return from CLINK, the upper triangular part of DIST is restored, and
the matrix has been made symmetric.

LDDIST — Leading dimension of DIST exactly as specified in the dimension
statement in the calling program.   (Input)

CLEVEL — Vector of length NPT − 1 containing the level at which the clusters
are joined.   (Output)
CLEVEL(k) contains the distance (or similarity) level at which cluster NPT + k was
formed. If the original data in DIST was transformed via the option parameter
IDIST, the inverse transformation is applied to the values in CLEVEL prior to exit
from CLINK.

ICLSON — Vector of length NPT − 1 containing the left sons of each merged
cluster.   (Output)
Cluster NPT + k is formed by merging clusters ICLSON(k) and ICRSON(k).
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ICRSON — Vector of length NPT − 1 containing the right sons of each merged
cluster.   (Output)
Cluster NPT + k is formed by merging clusters ICLSON(k) and ICRSON(k).

Comments

1. Automatic workspace usage is

CLINK 2 * NPT units if IMETH = 0 or 1, and 4 * NPT units otherwise,
or

DCLINK 2 * NPT units if IMETH = 0 or 1, and 6 * NPT units otherwise.

Workspace may be explicitly provided, if desired, by use of
C2INK/DC2INK. The reference is
CALL C2INK (NPT, IMETH, IDIST, DIST, LDDIST, CLEVEL,
            ICLSON, ICRSON, IPTR, ICLUS, CWT, CSUM)

The additional arguments are as follows:

IPTR — Integer work vector of length NPT.

ICLUS — Integer work vector of length NPT.

CWT — Work vector of length NPT. Not used if IMETH = 0 or 1.

CSUM — Work vector of length NPT. Not used if IMETH = 0 or 1.

2. The clusters corresponding to the original data points are numbered from
1 to NPT. The NPT − 1 clusters formed by merging clusters are numbered
NPT + 1 to NPT + (NPT − 1).

3. Raw correlations, if used as similarities, should be made positive and
transformed to a distance measure. One such transformation can be
performed by specifying IDIST = 2 in CLINK.

4. The user may cluster either variables or observations in CLINK since a
dissimilarity matrix, not the original data, is used. Routine CDIST

(page 889) may be used to compute the matrix DIST.

5. Routine TREEP (page 1098) in the graphics chapter can be used to obtain
a line printer plot of the clustering tree. Routine CNUMB (page 897) can
be used to obtain the cluster number assigned to each of the original
clusters when a specified number of clusters is desired.

Algorithm

Routine CLINK performs hierarchical cluster analysis based upon a distance
matrix, or by appropriate use of the IDIST option, based upon a similarity matrix.
Only the upper triangular part of the matrix needs to be input to CLINK.

Hierarchical clustering in CLINK proceeds as follows. Initially, each data point is
considered to be a cluster, numbered 1 to n = NPT.

1. If the data matrix contains similarities, they are converted to distances by
the method specified in IDIST. Set k = 1.
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2. A search is made of the distance matrix to find the two closest clusters.
These clusters are merged to form a new cluster, numbered n + k. The
cluster numbers of the two clusters joined at this stage are saved in
ICRSON and ICLSON, and the distance measure between the two clusters
is stored in CLEVEL.

3. Based upon the method of clustering, updating of the distance measure
in the row and column of DIST corresponding to the new cluster is
performed.

4. Set k = k + 1. If k < n, go to Step 2.

The five methods differ primarily in how the distance matrix is updated after two
clusters have been joined. The IMETH option parameter specifies how the
distance of the cluster just merged with each of the remaining clusters will be
updated. Routine CLINK allows five methods of computing the distances. To
understand these measures, suppose in the following discussion that clusters “A”
and “B” have just been joined to form cluster “Z”, and interest is in computing the
distance of Z with another cluster called “C”.

Z

dist

CBA

IMETH Method

0 This is the single linkage method. The distance from Z to C is the
minimum of the distances (A to C, B to C).

1 This is the complete linkage method. The distance from Z to C is the
maximum of the distances (A to C, B to C).

2 This is the average-distance-within-clusters method. The distance from Z
to C is the average distance of all objects that would be within the cluster
formed by merging clusters Z and C. This average may be computed
according to formulas given by Anderberg (1973, page 139).

3 This is the average-distance-between-clusters method. The distance from
Z to C is the average distance of objects within cluster Z to objects
within cluster C. This average may be computed according to methods
given by Anderberg (1973, page 140).

4 This is Ward’s method. Clusters are formed so as to minimize the
increase in the within-cluster sums of squares. The distance between two
clusters is the increase in these sums of squares if the two clusters were
merged. A method for computing this distance from a squared Euclidean
distance matrix is given by Anderberg (1973, pages 142−145).
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In general, single linkage will yield long thin clusters while complete linkage will
yield clusters that are more spherical. Average linkage and Ward’s linkage tend to
yield clusters that are similar to those obtained with complete linkage.

Routine CLINK produces a unique representation of the binary cluster tree via the
following three conventions; the fact that the tree is unique should aid in
interpreting the clusters. First, when two clusters are joined and each cluster
contains two or more data points, the cluster that was initially formed with the
smallest level (in CLEVEL) becomes the left son. Second, when a cluster
containing more than one data point is joined with a cluster containing a single
data point, the cluster with the single data point becomes the right son. Finally,
when two clusters containing only one object are joined, the cluster with the
smallest cluster number becomes the right son.

Example

In the following example, the average distance within clusters method is used to
perform a hierarchical cluster analysis of the Fisher iris data. Routine GDATA

(page 1302) is first used to obtain the Fisher iris data. The example is typical in
that after the program obtains the data, routine CDIST (page 889) computes the
distance matrix (DIST) prior to calling CLINK.

      INTEGER    IDATA, IDIST, IMETH, IMTH, IPRINT, IROW, ISCALE,
     &           LDDIST, LDX, NCOL, NPT, NROW, NVAR
      PARAMETER  (IDATA=3, IDIST=0, IMETH=2, IMTH=0, IPRINT=0, IROW=1,
     &           ISCALE=1, NCOL=5, NROW=150, NVAR=4, LDX=NROW,
     &           NPT=NROW, LDDIST=LDX)
C
      INTEGER    I, ICLSON(NROW-1), ICRSON(NROW-1), IND(4), NOUT,
     &           NXCOL, NXROW
      REAL       CLEVEL(NROW-1), DIST(LDDIST,LDDIST), X(LDX,NCOL)
      EXTERNAL   CDIST, CLINK, GDATA, UMACH
C
      DATA IND/2, 3, 4, 5/
C
      CALL GDATA (IDATA, IPRINT, NXROW, NXCOL, X, LDX, NCOL)
C                                 Compute the distances
      CALL CDIST (NROW, NCOL, X, LDX, NVAR, IND, IMTH, IROW, ISCALE,
     &            DIST, LDDIST)
C                                 Clustering
      CALL CLINK (NPT, IMETH, IDIST, DIST, LDDIST, CLEVEL, ICLSON,
     &            ICRSON)
C                                 Print some results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99996) (I,I=1,149,15)
      WRITE (NOUT,99997) (CLEVEL(I),I=1,149,15)
      WRITE (NOUT,99998) (ICLSON(I),I=1,149,15)
      WRITE (NOUT,99999) (ICRSON(I),I=1,149,15)
C
99996 FORMAT (’ OBS # ’, 10I6)
99997 FORMAT (’ CLEVEL’, 10F6.2)
99998 FORMAT (’ ICLSON’, 10I6)
99999 FORMAT (’ ICRSON’, 10I6)
C
      END
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Output
OBS #      1    16    31    46    61    76    91   106   121   136
CLEVEL  0.00  0.17  0.23  0.27  0.31  0.37  0.41  0.48  0.60  0.78
ICLSON   143   153    17   140    53   198   186   218   261   249
ICRSON   102    29     6   113    51    91   212   243   266   262

CNUMB
Compute cluster membership for a hierarchical cluster tree.

Usage
CALL CNUMB (NODE, ICLSON, ICRSON, K, ICLUS, NCLUS)

Arguments

NODE — Number of data points clustered.   (Input)

ICLSON — Vector of length NODE − 1 containing the left son cluster numbers.
(Input)
Cluster NODE + I is formed by merging clusters ICLSON(I) and ICRSON(I).

ICRSON — Vector of length NODE − 1 containing the right son cluster numbers.
(Input)
Cluster NODE + I is formed by merging clusters ICLSON(I) and ICRSON(I).

K — Desired number of clusters.   (Input)

ICLUS — Vector of length NODE containing the cluster membership of each
observation.   (Output)
Observation I is in cluster ICLUS(I) when K clusters are specified.

NCLUS — Vector of length K containing the number of observations in each
cluster.   (Output)

Comments

1. Automatic workspace usage is

CNUMB 2 * NODE units.

Workspace may be explicitly provided, if desired, by use of C2UMB. The
reference is
CALL C2UMB (NODE, ICLSON, ICRSON, K, ICLUS, NCLUS,
            IPT)

The additional argument is

IPT — Work vector of length 2 * NODE.

2. Informational errors
Type Code
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   4    1 The tree structure specified by ICLSON and ICRSON is
invalid because an attempt to assign an observation to
more than one cluster is being made.

   4    2 The tree structure specified by ICLSON and ICRSON is
incorrect because an observation is not assigned to a
cluster.

Algorithm

Given a fixed number of clusters (K) and the cluster tree (vectors ICRSON and
ICLSON) produced by the hierarchical clustering algorithm (see routine CLINK,
page 892), routine CNUMB determines the cluster membership of each observation.
The routine CNUMB first determines the root nodes for the K distinct subtrees
forming the K clusters and then traverses each subtree to determine the cluster
membership of each observation. The routine CNUMB also returns the number of
observations found in each cluster.

Example 1

In the following example, cluster membership for K = 2 clusters is found for the
displayed cluster tree. The output vector ICLUS contains the cluster numbers for
each observation.

9
8

6

7

5 3 1 4 2

      INTEGER    K, NODE
      PARAMETER  (K=2, NODE=5)
C
      INTEGER    ICLSON(NODE-1), ICLUS(NODE), ICRSON(NODE-1), NCLUS(K)
      EXTERNAL   CNUMB, WRIRN
C
      DATA ICLSON/5, 6, 4, 7/
      DATA ICRSON/3, 1, 2, 8/
C                                 Compute cluster membership
      CALL CNUMB (NODE, ICLSON, ICRSON, K, ICLUS, NCLUS)
C                                 Print output
      CALL WRIRN (’ICLUS’, 1, NODE, ICLUS, 1, 0)
      CALL WRIRN (’NCLUS’, 1, K, NCLUS, 1, 0)
C
      END

Output
      ICLUS
1   2   3   4   5
1   2   1   2   1
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      NCLUS
1   2
3   2

Example 2

This example illustrates the typical usage of CNUMB. The Fisher iris data (see
routine GDATA, page 1302) is clustered. First the distance between the irises are
computed using routine CDIST (page 889). The resulting distance matrix is then
clustered using routine CLINK (page 892). The cluster membership for 5 clusters
is then obtained via routine CNUMB using the output from CLINK. The need for 5
clusters can be obtained either by theoretical means or by examining a cluster
tree. Because the cluster tree is too large to be included in this example, the call
to routine TREEP (page 1098) that would ordinarily print the cluster tree has been
commented in the example code. The cluster membership for each of the iris
observations is printed.

      INTEGER    IDATA, IDIST, IMETHD, IMTH, IPRINT, IROW, ISCALE, K,
     &           LDDIST, LDX, NCOL, NODE, NODEX, NROW, NVAR
      PARAMETER  (IDATA=3, IDIST=0, IMETHD=0, IMTH=1, IPRINT=0,
     &           IROW=1, ISCALE=0, K=5, LDDIST=150, LDX=150, NCOL=5,
     &           NODE=150, NODEX=5, NROW=150, NVAR=4)
C
      INTEGER    I, ICLSON(NROW-1), ICLUS(NODE), ICRSON(NROW-1),
     &           IMETH, IND(4), IROOT, J, NCLUS(K), NFILL, NSCALE,
     &           NXCOL, NXROW
      REAL       AMAX1, CLEVEL(NROW-1), DIST(LDDIST,LDDIST), RNUNF,
     &           SCALE(2), X(LDX,NCOL)
      CHARACTER  NODENM(NODE)*7
      INTRINSIC  AMAX1
      EXTERNAL   CDIST, CLINK, CNUMB, GDATA, RNSET, RNUNF, SCOPY, WRIRN
C
      DATA IND/2, 3, 4, 5/
      DATA IMETH, IROOT, NSCALE, NFILL/1, 0, 1, 1/
      DATA SCALE/0.0, 3.5/
C                                 Get IRIS data.
      CALL GDATA (IDATA, IPRINT, NXROW, NXCOL, X, LDX, NCOL)
C                                 Compute the dissimilarities.
      CALL CDIST (NROW, NCOL, X, LDX, NVAR, IND, IMETHD, IROW, ISCALE,
     &            DIST, LDDIST)
C                                 Make sure each distance is unique,
C                                 then copy the upper triangle matrix
C                                 to the lower triangle matrix.
      CALL RNSET (4)
      DO 20  I=1, NODE
         DO 10  J=I + 1, NODE
            DIST(I,J) = AMAX1(0.0,DIST(I,J)+(0.001*RNUNF()))
   10    CONTINUE
         DIST(I,I) = 0.0
         CALL SCOPY (I-1, DIST(1,I), 1, DIST(I,1), LDDIST)
   20 CONTINUE
C                                 The initial clustering
      CALL CLINK (NODE, IMETHD, IDIST, DIST, LDDIST, CLEVEL, ICLSON,
     &            ICRSON)
C                                 Print the tree.
      NODENM(1) = ’DEFAULT’
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C     CALL TREEP (NODE, ICLSON, ICRSON,
C     IMTH, CLEVEL, IROOT, NSCALE,
C    &            NFILL, SCALE, NODENM)
C                                 Compute membership for 5 clusters
      CALL CNUMB (NODE, ICLSON, ICRSON, K, ICLUS, NCLUS)
C                                 Print output
      CALL WRIRN (’ICLUS’, 1, NODE, ICLUS, 1, 0)
      CALL WRIRN (’NCLUS’, 1, K, NCLUS, 1, 0)
C
      END

Output
                                   ICLUS
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
5  5  5  5  5  5  5  5  5   5   5   5   5   5   5   5   5   5   5   5

21 22 23 24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 5  5  5  5   5   5   5   5   5   5   5   5   5   5   5   5   5   5   5   5

41 42 43 44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
 5  5  5  5   5   5   5   5   5   5   2   2   2   2   2   2   2   1   2   2

61 62 63 64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80
 1  2  2  2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2

81 82 83 84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99
 2  2  2  2   2   2   2   2   2   2   2   2   2   1   2   2   2   2   1

100 101 102 103  104  105  106  107  108  109  110  111  112  113  114  115
  2   2   2   2    2    2    2    3    2    2    2    2    2    2    2    2

116 117 118 119  120  121  122  123  124  125  126  127  128  129  130  131
  2   2   4   2    2    2    2    2    2    2    2    2    2    2    2    2

132 133 134 135  136  137  138  139  140  141  142  143  144  145  146  147
  4   2   2   2    2    2    2    2    2    2    2    2    2    2    2    2

148  149  150
  2    2    2

         NCLUS
1    2    3    4    5
4   93    1    2   50

KMEAN/DKMEAN (Single/Double precision)
Perform a K-means (centroid) cluster analysis.

Usage
CALL KMEAN (NOBS, NCOL, NVAR, X, LDX, IFRQ, IWT, IND, K,
            MAXIT, CM, LDCM, SWT, LDSWT, IC, NC, WSS)

Arguments

NOBS — Number of observations.   (Input)



IMSL STAT/LIBRARY Chapter 11: Cluster Analysis • 901

NCOL — Number of columns in X.   (Input)

NVAR — Number of variables to be used in computing the metric.   (Input)

X — NOBS by NCOL matrix containing the observations to be clustered.   (Input)
The only columns of X used are those indicated by IND and possibly IFRQ and/or
IWT.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IFRQ — Frequency option.   (Input)
IFRQ = 0 means all frequencies are 1. For positive IFRQ, column number IFRQ
of X contains the nonnegative frequencies.

IWT — Weighting option.   (Input)
IWT = 0 means all weights are 1. For positive IWT, column number IWT contains
the nonnegative weights.

IND — Vector of length NVAR containing the columns of X to be used in
computing the metric.   (Input)
In the usual case in which X is the data matrix, no observation has multiple
frequency, and unequal weighting is not desired, IND = (1, 2, 3, …, NVAR).

K — Number of clusters.   (Input)

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 30 is usually sufficient.

CM — K by NVAR matrix containing, on input, the cluster seeds, i.e., estimates for
the cluster centers, and the cluster means on output. (Input/Output)
The cluster seeds must be unique.

LDCM — Leading dimension of CM exactly as specified in the dimension
statement in the calling program.   (Input)

SWT — K by NVAR matrix containing the sum of the weights used to compute
each cluster mean.   (Output)
Missing observations are excluded from SWT.

LDSWT — Leading dimension of SWT exactly as specified in the dimension
statement in the calling program.   (Input)

IC — Vector of length NOBS containing the cluster membership for each
observation.   (Output)

NC — Vector of length K containing the number of observations in each cluster.
(Output)

WSS — Vector of length K containing the within sum of squares for each cluster.
(Output)

Comments

1. Automatic workspace usage is
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KMEAN 2 * NOBS + 3 * K units, or
DKMEAN 3 * NOBS + 3 * K units.

Workspace may be explicitly provided, if desired, by use of
K2EAN/DK2EAN. The reference is
CALL K2EAN (NOBS, NCOL, NVAR, X, LDX, IFRQ, IWT,
            IND, K, MAXIT, CM, LDCM, SWT, LDSWT, IC,
            NC, WSS, IC2, NCP, D, ITRAN, LIVE)

The additional arguments are as follows:

IC2 — Work vector of length NOBS.

NCP — Work vector of length K.

D — Work vector of length NOBS.

ITRAN — Work vector of length K.

LIVE — Work vector of length K.

2. Informational Error
Type Code
   3    1 Convergence did not occur within MAXIT iterations.

Algorithm

Routine KMEAN is an implementation of Algorithm AS 136 by Hartigan and Wong
(1979). It computes K-means (centroid) Euclidean metric clusters for an input
matrix starting with initial estimates of the K cluster means. Routine KMEAN

allows for missing values (coded as NaN, “not a number”) and for weights and
frequencies.

Let p = NVAR denote the number of variables to be used in computing the
Euclidean distance between observations. The idea in K-means cluster analysis is
to find a clustering (or grouping) of the observations so as to minimize the total
within-cluster sums of squares. In this case, the total sums of squares within each
cluster is computed as the sum of the centered sum of squares over all nonmissing
values of each variable. That is,

φ δ= −
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where vLP denotes the row index of the m-th observation in the i-th cluster in the
matrix X; nL is the number of rows of X assigned to group i; f denotes the

frequency of the observation; w denotes its weight; δ is zero if the j-th variable on
observation vLP is missing, otherwise δ is one; and

xij

is the average of the nonmissing observations for variable j in group i. This
method sequentially processes each observation and reassigns it to another
cluster if doing so results in a decrease in the total within-cluster sums of
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squares. The user in referred to Hartigan and Wong (1979) or Hartigan (1975) for
the details.

Example

This example performs K-means cluster analysis on Fisher’s iris data, which is
first obtained via routine GDATA (page 1302). The initial cluster seed for each iris
type is an observation known to be in the iris type.

      INTEGER    IFRQ, IPRINT, IWT, K, LDCM, LDSWT, LDX, MAXIT, NCOL,
     &           NOBS, NV, NVAR
      PARAMETER  (IFRQ=0, IPRINT=0, IWT=0, K=3, MAXIT=30, NCOL=5,
     &           NOBS=150, NV=5, NVAR=4, LDCM=K, LDSWT=K, LDX=NOBS)
C
      INTEGER    IC(NOBS), IND(NVAR), NC(K), NXCOL, NXROW
      REAL       CM(K,NVAR), SWT(K,NVAR), WSS(K), X(NOBS,NV)
      EXTERNAL   GDATA, KMEAN, SCOPY, WRIRN, WRRRN
C
      DATA IND/2, 3, 4, 5/
C
      CALL GDATA (3, IPRINT, NXROW, NXCOL, X, NOBS, NV)
C                                 Copy the cluster seeds into CM
      CALL SCOPY (NVAR, X(1,2), LDX, CM(1,1), LDCM)
      CALL SCOPY (NVAR, X(51,2), LDX, CM(2,1), LDCM)
      CALL SCOPY (NVAR, X(101,2), LDX, CM(3,1), LDCM)
C
      CALL KMEAN (NOBS, NCOL, NVAR, X, LDX, IFRQ, IWT, IND, K, MAXIT,
     &            CM, LDCM, SWT, LDSWT, IC, NC, WSS)
C
      CALL WRRRN (’CM’, K, NVAR, CM, LDCM, 0)
      CALL WRRRN (’SWT’, K, NVAR, SWT, LDSWT, 0)
      CALL WRIRN (’IC’, 1, NOBS, IC, 1, 0)
      CALL WRIRN (’NC’, 1, K, NC, 1, 0)
      CALL WRRRN (’WSS’, 1, K, WSS, 1, 0)
      END

Output
               CM
        1       2       3       4
1   5.006   3.428   1.462   0.246
2   5.902   2.748   4.394   1.434
3   6.850   3.074   5.742   2.071

               SWT
        1       2       3       4
1   50.00   50.00   50.00   50.00
2   62.00   62.00   62.00   62.00
3   38.00   38.00   38.00   38.00

                                     IC
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
1  1  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1

21 22 23 24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 1  1  1  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1

41 42 43 44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
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 1  1  1  1   1   1   1   1   1   1   2   2   3   2   2   2   2   2   2   2

61 62 63 64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80
 2  2  2  2   2   2   2   2   2   2   2   2   2   2   2   2   2   3   2   2

81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99
 2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2   2

100 101 102 103  104  105  106  107  108  109  110  111  112  113  114  115
  2   3   2   3    3    3    3    2    3    3    3    3    3    3    2    2

116 117 118 119  120  121  122  123  124  125  126  127  128  129  130  131
  3   3   3   3    2    3    2    3    2    3    3    2    2    3    3    3

132 133 134 135  136  137  138  139  140  141  142  143  144  145  146  147
  3   3   2   3    3    3    3    2    3    3    3    2    3    3    3    2

148  149  150
  3    3    2

     NC
 1    2    3
50   62   38

          WSS
    1       2       3
15.15   39.82   23.88
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Chapter 12: Sampling

Routines
Proportions, simple random sample ................................... SMPPR 906
Proportions, stratified random sample ................................ SMPPS 909
Ratio or regression estimates, simple random sample .......SMPRR 911
Ratio or regression estimates, stratified random sample.... SMPRS 918
Single-stage cluster sample................................................ SMPSC 923
Simple random sample ....................................................... SMPSR 927
Stratified random sample .................................................... SMPSS 930
Two-stage sample with equisized primary units.................. SMPST 933

Usage Notes
The routines for inferences regarding proportions require only counts as the input
data. The other routines described in this chapter require the actual data. Since the
amount of data may be quite large, these routines allow for the data to be input in
small quantities (or even to be deleted after it has already been passed to the
subroutine). This is accomplished by means of the processing option parameter,
IDO, and an indicator of the number of observations being passed in, NROW. IDO
has the following meaning:

IDO Action
0 This is the only invocation of the subroutine for this data set, and all the

data are input at once.
1 This is the first invocation, and additional calls to the subroutine will be

made. Initialization and updating for the data are performed.
2 This is an intermediate invocation of the subroutine, and updating for the

data is performed.
3 This is the final invocation of the routine. Updating for the data and any

wrap-up computations are performed.

NROW can be positive or negative or zero. Its absolute value is the number of
sample values being input. If NROW is negative, it is assumed that the
observations being input have already been input once and now it is desired to
delete them from the analysis. When IDO is 3, NROW can be set to 0. In this case,
only postprocessing is performed; no accumulation of statistics is done. This
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allows input of summary statistics rather than the actual data. See Example 2 in
the documentation for the routine SMPSR (page 927).

There are other variables used by several routines in this chapter that have a
common meaning in all routines:

Y — The variable of interest.

X — The auxiliary variable.

NSAMP — The sample size.

NPOP — The population size.

CONPER — Confidence level.

STAT — Output statistics.

For stratified sampling, the following variables are often used:

NSTRAT — Number of strata.

NROWS — Vector with elements like NROW for strata.

NSAMPS — The strata sample sizes.

NPOPS — The population sizes for strata.

YBARS — The strata sample means.

YVARS — The strata sample variances.

SMPPR/DSMPPR (Single/Double precision)
Compute statistics for inferences regarding the population proportion and total
given proportion data from a simple random sample.

Usage
CALL SMPPR (NINT, NSAMP, NPOP, CONPER, STAT)

Arguments

NINT — Number of sample units in the class of interest, for the population (or
subpopulation) of interest.   (Input)

NSAMP — Number of units in the entire random sample.   (Input)

NPOP — Number of units in the population.   (Input)

CONPER — Confidence level for two-sided interval estimates, in percent.
(Input)
A CONPER percent confidence interval is computed; hence, CONPER must be
greater than or equal to 0.0 and less than 100.0. CONPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence level ONECL, set
CONPER = 100.0 − 2.0 * (100.0 − ONECL).
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STAT — Vector of length 10 containing the resulting statistics.   (Output)
These are

I STAT(I)
1 Estimate of the proportion.
2 Estimate of the total.
3 Variance estimate of the proportion estimate.
4 Variance estimate of the total estimate.
5 Lower confidence limit for the proportion.
6 Upper confidence limit for the proportion.
7 Lower confidence limit for the total.
8 Upper confidence limit for the total.
9 Estimate (expressed as a percentage) of the coefficient or variation of the

total estimate. Not defined if NINT = 0.
10 Indicator of the distribution used to approximate the hypergeometric

distribution for the confidence interval calculations. If STAT(10) = 0,
then the normal is used. If STAT(10) = 1, then the Poisson is used. If
STAT(10) = 2, then the binomial is used.

Algorithm

The routine SMPPR computes point and interval estimates for the population
proportion and total from a simple random sample. The simplest and most
common case for which this routine is appropriate is one in which the population
sampled contains two or more classes, and it is desired to estimate the proportion
of the population falling into a particular class (“class of interest”). The data
required by SMPPR consist of counts of the number of sample items in the class of
interest, the sample size, and the population size. If there are more than two
classes in the population, some of the classes may not be of interest.

Since the hypergeometric distribution is the appropriate probability model for the
sampling for proportions in a finite population without replacement, exact
confidence limits could be computed using that distribution. For populations with
sizes that occur in practice (more than a hundred, often in the thousands or even
millions), the confidence limits can be approximated very well by use of the
normal, the binomial, or the Poisson distribution. Routine SMPPR uses one of
these distributions in setting confidence limits, following the guidelines in the
table on page 58 of Cochran (1977).

Example 1

The first example is from Cochran (1977, page 52). A simple random sample of
size 200 was drawn from a list of 3042 names and addresses. Verification of the
addresses in the sample showed 38 to be wrong. The objective is to estimate the
total number of incorrect addresses.

      INTEGER    NINT, NOUT, NPOP, NSAMP
      REAL       CONPER, SQRT, STAT(10), STDP, STDT
      INTRINSIC  SQRT
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      EXTERNAL   SMPPR, UMACH
C
      CALL UMACH (2, NOUT)
      NINT   = 38
      NSAMP  = 200
      NPOP   = 3042
      CONPER = 0.0
      CALL SMPPR (NINT, NSAMP, NPOP, CONPER, STAT)
      STDP = SQRT(STAT(3))
      STDT = SQRT(STAT(4))
      WRITE (NOUT,99999) STAT(1), STAT(2), STDP, STDT, STAT(9)
99999 FORMAT (’ Estimate of proportion bad:              ’, F5.3, /,
     &       ’ Estimate of total bad:                   ’, F5.0, /,
     &       ’ Standard deviation estimate, proportion: ’, F5.3, /,
     &       ’ Standard deviation estimate, total:      ’, F5.1, /,
     &       ’ Coefficient of variation:                ’, F5.1,
     &       ’%’)
      END

Output
Estimate of proportion bad:              0.190
Estimate of total bad:                    578.
Standard deviation estimate, proportion: 0.027
Standard deviation estimate, total:       81.8
Coefficient of variation:                 14.1%

Example 2

The next example is also from Cochran (1977, page 68). A simple random sample
of size 200 from 2000 colleges showed 120 colleges to be in favor of a certain
proposal, 57 to be opposed, and 23 to have no opinion. We wish to estimate the
number of colleges, out of the 2000, that favor the proposal.

      INTEGER    NINT, NOUT, NPOP, NSAMP
      REAL       CONPER, STAT(10)
      EXTERNAL   SMPPR, UMACH
C
      CALL UMACH (2, NOUT)
      NINT   = 120
      NSAMP  = 200
      NPOP   = 2000
      CONPER = 95.0
      CALL SMPPR (NINT, NSAMP, NPOP, CONPER, STAT)
      WRITE (NOUT,99999) STAT(2), STAT(7), STAT(8)
99999 FORMAT (’ Estimate of number in favor:   ’, F5.0, /, ’ 95% ’,
     &       ’confidence interval: (’, F5.0, ’,’, F5.0, ’)’)
      END

Output
Estimate of number in favor:   1200.
95% confidence interval: (1066.,1334.)
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SMPPS/DSMPPS (Single/Double precision)
Compute statistics for inferences regarding the population proportion and total
given proportion data from a stratified random sample.

Usage
CALL SMPPS (NSTRAT, NINTS, NSAMPS, NPOPS, CONPER, PROPOR,
            STAT)

Arguments

NSTRAT — Number of strata into which the sample is divided.   (Input)
In the vectors of length NSTRAT, the elements are all ordered in the same way.

NINTS — Vector of length NSTRAT containing the observed number of units in
each stratum from the class of interest.   (Input)

NSAMPS — Vector of length NSTRAT containing the sample size in each
stratum.   (Input)

NPOPS — Vector of length NSTRAT containing the population in the strata.
(Input)
If the population strata sizes are not known, estimates must be entered in their
place.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)
A CONPER percent confidence interval is computed; hence, CONPER must be
greater than or equal to 0.0 and less than 100.0. CONPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence level ONECL, set
CONPER = 100.0 − 2.0 * (100.0 − ONECL).

PROPOR — Vector of length NSTRAT containing the within-strata proportion
estimates.   (Output)

STAT — Vector of length 10 containing the resulting statistics.   (Output)
These are

I STAT(I)
1 Estimate of the proportion.
2 Estimate of the total.
3 Variance estimate of the proportion estimate.
4 Variance estimate of the total estimate.
5 Lower confidence limit for the proportion.
6 Upper confidence limit for the proportion.
7 Lower confidence limit for the total.
8 Upper confidence limit for the total.
9 Estimate (expressed as a percentage) of the coefficient of variation of the

total estimate.
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10 Variance estimate of the proportion estimate assuming that sampling was
simple random instead of stratified random.

Algorithm

Routine SMPPS computes point and interval estimates for the population
proportion and total from a stratified random sample. If the strata are formed so
that the proportions differ greatly from one stratum to the next, considerable gain
in statistical efficiency can be realized by use of stratified sampling (see Cochran
1977, page 107).

Let NK be the number in the population in the h-th stratum, let nK be the number
in the sample from the h-th stratum, let aK be the number of the class of interest in

the sample from the h-th stratum, let N be the population size (∑ NK), let pK be the
proportion in the h-th stratum, aK/nK, and let L be the number of strata. Then, the
estimate of the proportion is
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The confidence intervals are computed using a normal approximation.

Example

This example is an artificial modification of an example used in routine SMPPR
(page 906), which is from Cochran (1977, page 52). A list of 3042 names and
addresses was built by an experienced secretary and a part-time student worker.
The secretary entered 1838 names and addresses, and the student entered the
remainder. Samples of size 100 were taken from the names entered by each.
Verification of the addresses in the sample from the secretary’s work showed 12
to be wrong, and verification of the student’s sample showed 26 to be wrong. The
objective is to estimate the total number of incorrect addresses.

      INTEGER    NSTRAT
      PARAMETER  (NSTRAT=2)
C
      INTEGER    NINTS(NSTRAT), NOUT, NPOPS(NSTRAT), NSAMPS(NSTRAT)
      REAL       CONPER, PROPOR(NSTRAT), SQRT, STAT(10), STDP, STDSRS,
     &           STDT
      INTRINSIC  SQRT
      EXTERNAL   SMPPS, UMACH
C
      CALL UMACH (2, NOUT)
      NINTS(1)  = 12
      NINTS(2)  = 26
      NSAMPS(1) = 100
      NSAMPS(2) = 100
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      NPOPS(1)  = 1838
      NPOPS(2)  = 1204
      CONPER    = 0.0
C
      CALL SMPPS (NSTRAT, NINTS, NSAMPS, NPOPS, CONPER, PROPOR, STAT)
C
      STDP   = SQRT(STAT(3))
      STDT   = SQRT(STAT(4))
      STDSRS = SQRT(STAT(10))
C
      WRITE (NOUT,99999) STAT(1), STAT(2), STDP, STDT, STAT(9), STDSRS
99999 FORMAT (’ Estimate of proportion bad:              ’, F7.3, /,
     &       ’ Estimate of total bad:                   ’, F4.0, /,
     &       ’ Standard deviation estimate, proportion: ’, F7.3, /,
     &       ’ Standard deviation estimate, total:      ’, F5.1, /,
     &       ’ Coefficient of variation:                ’, F5.1,
     &       ’%’, /, ’ Std. dev. under simple random sampling:  ’,
     &       F7.3)
      END

Output
Estimate of proportion bad:                0.175
Estimate of total bad:                   534.
Standard deviation estimate, proportion:   0.025
Standard deviation estimate, total:       77.4
Coefficient of variation:                 14.5%
Std. dev. under simple random sampling:    0.027

SMPRR/DSMPRR (Single/Double precision)
Compute statistics for inferences regarding the population mean and total using
ratio or regression estimation, or inferences regarding the population ratio given a
simple random sample.

Usage
CALL SMPRR (IDO, NROW, X, Y, NPOP, IOPT, XMEAN, COEF,
            CONPER, STAT)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of SMPRR for this data set, and all the data are

input at once.
1 This is the first invocation, and additional calls to SMPRR will be made.

Initialization and updating for the data in X and Y are performed.
2 This is an intermediate invocation of SMPRR and updating for the data in

X and Y is performed.
3 This is the final invocation of this routine. Updating for the data in X and

Y, and wrap-up computations are performed.



912 • Chapter 12: Sampling IMSL STAT/LIBRARY

NROW — The absolute value of NROW is the number of observations currently
input in X and Y.   (Input)
NROW may be positive, zero, or negative. Negative −NROW means delete the NROW

rows of data from the analysis.

X — Vector of length |NROW| containing the data for the auxiliary variable in the
random sample.   (Input)

Y — Vector of length |NROW| containing the data for the variable of interest in the
random sample.   (Input)
The value of Y(I) corresponds to that of X(I).

NPOP — Size of the population (number of pairs of elements in the sampled
population).   (Input)

IOPT — Estimation option.   (Input)

IOPT Action
0 Ratio estimation is used for inference about the population mean, total,

and ratio.
1 The population mean of the auxiliary variable is not used, and only

inference about the population ratio is desired.
2 Regression estimation with preassigned regression coefficient (in COEF)

is used for inference about the population mean and total.
3 Regression estimation with estimated regression coefficient (returned in

STAT(18)) is used for inference about the population mean and total.

XMEAN — Population mean of the auxiliary variable.   (Input)
XMEAN is not used if IOPT = 1.

COEF — Reassigned regression coefficient.   (Input)
COEF is used only when IOPT = 2.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)
A CONPER percent confidence interval is computed, hence, CONPER must be
greater than or equal to 0.0 and less than 100.0. CONPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence level ONECL, set
CONPER = 100.0 − 2.0 * (100.0 − ONECL).

STAT — Vector of length 20 containing the resulting statistics.   (Output, if
IDO = 0 or 1; input/output, if IDO = 2 or 3)

I STAT(I)
1 Estimate of the mean.
2 Estimate of the total.
3 Variance estimate of the mean estimate.
4 Variance estimate of the total estimate.
5 Lower confidence limit for the mean.
6 Upper confidence limit for the mean.
7 Lower confidence limit for the total.
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8 Upper confidence limit for the total.
9 Estimate of the ratio.
10 Variance estimate of the estimate of the ratio. The population mean of

the auxiliary variable is used in STAT(10) if the mean is known;
otherwise, the sample estimate of the population mean is used.

11 Lower confidence limit for the ratio.
12 Upper confidence limit for the ratio.
13 Estimate (expressed as a percentage) of the coefficient of variation of the

mean, total, and ratio and regression coefficient estimates that are
defined, as controlled by IOPT. The standard deviation in the numerator
of this quantity has been divided by the square root of the sample size.
The coefficients of variation in STAT(14) and STAT(15) use the sample
standard deviations without that divisor.

14 Estimate (expressed as a percentage) of the coefficient of variation of the
auxiliary variable.

15 Estimate (expressed as a percentage) of the coefficient of variation of the
variable of interest.

16 Sample mean of the auxiliary variable.
17 Sample mean of the variable of interest.
18 Estimate of the regression coefficient.
19 Sample size.
20 Number of pairs in the sample with one or both values missing.

STAT(1) through STAT(8) and STAT(13) are undefined when IOPT = 1. STAT(9)
through STAT(12) are undefined when IOPT = 2 or 3. STAT(18) is defined only
when IOPT = 3. The elements of STAT that are undefined due to IOPT or an error
are set to NaN (not a number).

Algorithm

Routine SMPRR computes point and interval estimates for the population mean,
total, and (optionally) ratio or regression coefficient, using a simple random
sample of a variable of interest and an auxiliary variable. Routine SMPRR allows
various options for the estimation techniques, which are discussed in Chapters 3,
6, and 7 of Cochran (1977). Let

x y and 

be the sample means of the auxiliary variable and the variable of interest,
respectively. Let

X
be the population mean of the auxiliary variable. Then, the ratio estimate of the
population mean is

y XR
y
x=

The linear regression estimate of the population mean is
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y y b X xlr = + −2 7
where b is the regression coefficient, which can be either preassigned, based on
previous knowledge, or estimated from the data using least squares. The least-
squares estimate of b is
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The confidence limits for the mean and for the total are computed using the
normal approximation. If the coefficient of variation of either variable exceeds
10%, then this approximation may not be very accurate.

The parameters IDO and NROW allow either all or part of the data to be brought in.

Examples

The data for these examples come from Cochran (1977, Table 6.1, page 152).
The variable of interest is the population of large U.S. cities in 1930; the auxiliary
variable is the 1920 population of the same cities. There are 196 (NPOP) cities
that are sampled (that is, that are in the population of interest). (Note that the
word “population” is being used in two ways in this discussion.) The total 1920
population of these cities is 22,919 (XMEAN = 116.934). There are 49 cities in the
sample. The data can be seen in the DATA statements in the programs below
(actual values are 1000 times greater). There are no “missing data”; therefore, the
sample size, STAT(19), is 49. Because the coefficient of variation is larger than
10%, SMPRR produces an informational “warning error” message in each
example. When the coefficient of variation is larger than 10% (generally
speaking), the confidence limits computed using the normal approximation are
likely to be shorter than the actual limits at the same confidence level.

Example 1

In this example, ratio estimation is used, as on page 151 of Cochran (1977).
      INTEGER    NROW
      PARAMETER  (NROW=49)
C
      INTEGER    I, IDO, IOPT, NOUT, NPOP
      REAL       COEF, CONPER, STAT(20), X(NROW), XMEAN, Y(NROW)
      EXTERNAL   SMPRR, UMACH
C
      DATA X/76., 138., 67., 29., 381., 23., 37., 120., 61., 387.,
     &     93., 172., 78., 66., 60., 46., 2., 507., 179., 121., 50.,
     &     44., 77., 64., 64., 56., 40., 40., 38., 136., 116., 46.,
     &     243., 87., 30., 71., 256., 43., 25., 94., 43., 298., 36.,
     &     161., 74., 45., 36., 50., 48./
      DATA Y/80., 143., 67., 50., 464., 48., 63., 115., 69., 459.,
     &     104., 183., 106., 86., 57., 65., 50., 634., 260., 113.,
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     &     64., 58., 89., 63., 77., 142., 60., 64., 52., 139., 130.,
     &     53., 291., 105., 111., 79., 288., 61., 57., 85., 50., 317.,
     &     46., 232., 93., 53., 54., 58., 75./
      DATA NPOP/196/, XMEAN/116.934/, CONPER/95./
C                                 All data are input at once.
      IDO = 0
C                                 Ratio estimation.
      IOPT = 0
      CALL SMPRR (IDO, NROW, X, Y, NPOP, IOPT, XMEAN, COEF, CONPER,
     &            STAT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,17), STAT(19), STAT(20)
99999 FORMAT (/, ’                    RATIO ESTIMATION’, /,
     &       ’ Mean estimate = ’, F8.1, ’      Total estimate = ’,
     &       F8.1, /, ’ Vhat of mean  = ’, F8.1, ’      Vhat of total ’
     &       , ’ = ’, F8.1, /, ’ Confidence limits for mean  ’, F8.1,
     &       ’,’, F8.1, /, ’ Confidence limits for total ’, F8.1,
     &       ’,’, F8.1, /, ’ Ratio estimate = ’, F8.3, ’      Vhat of ’
     &       , ’ratio = ’, F8.4, /, ’ Confidence limits for ratio ’,
     &       F8.3, ’,’, F8.3, /, ’ Coefficient of variation of mean ’,
     &       ’estimate = ’, F8.1, /, ’ CV of X =   ’, F8.1,
     &       ’               CV of Y = ’, F8.1, /, ’ Mean of X = ’,
     &       F8.1, ’            Mean of Y = ’, F8.1, /, ’ Sample size ’
     &       , ’= ’, F8.1, ’      Number missing = ’, F8.1)
      END

Output
*** WARNING  ERROR 7 from SMPRR.  The coefficient of variation of one or
***          both of the variables exceeds 10%.  The confidence limits,
***          which are computed using a normal approximation, may not be
***          very accurate.

                   RATIO ESTIMATION
Mean estimate =    144.9      Total estimate =  28397.1
Vhat of mean  =      9.5      Vhat of total  = 364860.1
Confidence limits for mean     138.8,   150.9
Confidence limits for total  27213.3, 29581.0
Ratio estimate =    1.239      Vhat of ratio =   0.0007
Confidence limits for ratio    1.187,   1.291
Coefficient of variation of mean estimate =      2.1
CV of X =       89.3               CV of Y =     96.3
Mean of X =    103.1            Mean of Y =    127.8
Sample size =     49.0      Number missing =      0.0

Example 2

In this example, regression estimation with an estimated coefficient is used, as in
Exercise 7.3 of Cochran (1977).

      INTEGER    NROW
      PARAMETER  (NROW=49)
C
      INTEGER    I, IDO, IOPT, NOUT, NPOP
      REAL       COEF, CONPER, STAT(20), X(NROW), XMEAN, Y(NROW)
      EXTERNAL   SMPRR, UMACH
C
      DATA X/76., 138., 67., 29., 381., 23., 37., 120., 61., 387.,
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     &     93., 172., 78., 66., 60., 46., 2., 507., 179., 121., 50.,
     &     44., 77., 64., 64., 56., 40., 40., 38., 136., 116., 46.,
     &     243., 87., 30., 71., 256., 43., 25., 94., 43., 298., 36.,
     &     161., 74., 45., 36., 50., 48./
      DATA Y/80., 143., 67., 50., 464., 48., 63., 115., 69., 459.,
     &     104., 183., 106., 86., 57., 65., 50., 634., 260., 113.,
     &     64., 58., 89., 63., 77., 142., 60., 64., 52., 139., 130.,
     &     53., 291., 105., 111., 79., 288., 61., 57., 85., 50., 317.,
     &     46., 232., 93., 53., 54., 58., 75./
      DATA NPOP/196/, XMEAN/116.934/, CONPER/95./
C                                 All data are input at once.
      IDO = 0
C                                 Regression estimation, with estimated
C                                 coefficient (Cochran, Exercise 7.3)
      IOPT = 3
      CALL SMPRR (IDO, NROW, X, Y, NPOP, IOPT, XMEAN, COEF, CONPER,
     &            STAT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,8), (STAT(I),I=13,20)
99999 FORMAT (/, ’                    REGRESSION ESTIMATION’, /,
     &       ’ Mean estimate = ’, F8.1, ’      Total estimate = ’,
     &       F8.1, /, ’ Vhat of mean  = ’, F8.1, ’      Vhat of total ’
     &       , ’ = ’, F8.1, /, ’ Confidence limits for mean  ’, F8.1,
     &       ’,’, F8.1, /, ’ Confidence limits for total ’, F8.1,
     &       ’,’, F8.1, /, ’ Coefficient of variation of mean ’,
     &       ’estimate = ’, F8.1, /, ’ CV of X =   ’, F8.1,
     &       ’               CV of Y = ’, F8.1, /, ’ Mean of X = ’,
     &       F8.1, ’            Mean of Y = ’, F8.1, /, ’ Estimated ’,
     &       ’regression coefficient = ’, F8.1, /, ’ Sample size = ’,
     &       F8.1, ’      Number missing = ’, F8.1)
      END

Output
*** WARNING  ERROR 7 from SMPRR.  The coefficient of variation of one or
***          both of the variables exceeds 10%.  The confidence limits,
***          which are computed using a normal approximation, may not be
***          very accurate.

                      REGRESSION ESTIMATION
Mean estimate =    143.8      Total estimate =  28177.4
Vhat of mean  =      8.6      Vhat of total  = 329372.3
Confidence limits for mean     138.0,   149.5
Confidence limits for total  27052.6, 29302.3
Coefficient of variation of mean estimate =      2.0
CV of X =       89.3               CV of Y =     96.3
Mean of X =    103.1            Mean of Y =    127.8
Estimated regression coefficient =      1.2
Sample size =     49.0      Number missing =      0.0

Example 3

In this example, regression estimation with a preassigned coefficient is used, as in
Exercise 7.4 of Cochran (1977).

      INTEGER    NROW
      PARAMETER  (NROW=49)
C
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      INTEGER    I, IDO, IOPT, NOUT, NPOP
      REAL       COEF, CONPER, STAT(20), X(NROW), XMEAN, Y(NROW)
      EXTERNAL   SMPRR, UMACH
C
      DATA X/76., 138., 67., 29., 381., 23., 37., 120., 61., 387.,
     &     93., 172., 78., 66., 60., 46., 2., 507., 179., 121., 50.,
     &     44., 77., 64., 64., 56., 40., 40., 38., 136., 116., 46.,
     &     243., 87., 30., 71., 256., 43., 25., 94., 43., 298., 36.,
     &     161., 74., 45., 36., 50., 48./
      DATA Y/80., 143., 67., 50., 464., 48., 63., 115., 69., 459.,
     &     104., 183., 106., 86., 57., 65., 50., 634., 260., 113.,
     &     64., 58., 89., 63., 77., 142., 60., 64., 52., 139., 130.,
     &     53., 291., 105., 111., 79., 288., 61., 57., 85., 50., 317.,
     &     46., 232., 93., 53., 54., 58., 75./
      DATA NPOP/196/, XMEAN/116.934/, CONPER/95./
C                                 All data are input at once.
      IDO = 0
C                                 Regression estimation, with assigned
C                                 coefficient (Cochran, Exercise 7.4)
      IOPT = 2
      COEF = 1.0
      CALL SMPRR (IDO, NROW, X, Y, NPOP, IOPT, XMEAN, COEF, CONPER,
     &            STAT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,8), (STAT(I),I=13,17), STAT(19),
     &                  STAT(20)
99999 FORMAT (/, ’                    REGRESSION ESTIMATION, FIXED ’,
     &       ’COEF’, /, ’ Mean estimate = ’, F8.1, ’      Total ’,
     &       ’estimate = ’, F8.1, /, ’ Vhat of mean  = ’, F8.1,
     &       ’      Vhat of total  = ’, F8.1, /, ’ Confidence limits ’
     &       , ’for mean  ’, F8.1, ’,’, F8.1, /, ’ Confidence limits ’
     &       , ’for total ’, F8.1, ’,’, F8.1, /, ’ Coefficient of ’,
     &       ’variation of mean estimate = ’, F8.1, /, ’ CV of X =   ’
     &       , F8.1, ’               CV of Y = ’, F8.1, /, ’ Mean of ’
     &       , ’X = ’, F8.1, ’            Mean of Y = ’, F8.1, /,
     &       ’ Sample size = ’, F8.1, ’      Number missing = ’, F8.1)
      END

Output
*** WARNING  ERROR 7 from SMPRR.  The coefficient of variation of one or
***          both of the variables exceeds 10%.  The confidence limits,
***          which are computed using a normal approximation, may not be
***          very accurate.

       REGRESSION ESTIMATION, FIXED COEF
Mean estimate =    141.6      Total estimate =  27751.1
Vhat of mean  =     12.5      Vhat of total  = 481977.4
Confidence limits for mean     134.6,   148.5
Confidence limits for total  26390.4, 29111.8
Coefficient of variation of mean estimate =      2.5
CV of X =       89.3               CV of Y =     96.3
Mean of X =    103.1            Mean of Y =    127.8
Sample size =     49.0      Number missing =      0.0
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SMPRS/DSMPRS (Single/Double precision)
Compute statistics for inferences regarding the population mean and total using
ratio or regression estimation given continuous data from a stratified random
sample.

Usage
CALL SMPRS (IDO, NSTRAT, NROWS, X, Y, NPOPS, IOPT, ITOPT,
            XMEANS, CONPER, COEFS, XBARS, XVARS, XCVS,
            YBARS, YVARS, YCVS, XYCOVS, NSAMPS, STAT)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of SMPRS for this data set, and all the data are

input at once.
1 This is the first invocation, and additional calls to SMPRS will be made.

Initialization and updating for the data in X and Y are performed.
2 This is an intermediate invocation of SMPRS, and updating for the data in

X and Y is performed.
3 This is the final invocation of this routine. Updating for the data in X and

Y and wrap-up computations are performed.

NSTRAT — Number of strata into which the population is divided.   (Input)
In the vectors of length NSTRAT, the elements are all ordered in the same way.
That is, the first stratum is always the first, the second is always the second, and
so on.

NROWS — Vector of length NSTRAT in which |NROWS(I)| is the number of items
from the I-th stratum currently input in X and Y.   (Input)
Each element of NROWS may be positive, zero, or negative. A negative value for
NROWS(I) means delete the −NROWS(I) elements of the I-th stratum in X and Y
from the analysis.

X — Vector containing the data for the auxiliary variable in the stratified random
sample.   (Input)
The observations within any one stratum must appear contiguously in X. The first
|NROWS(1)| elements of X are from the first stratum, and so on.

Y — Vector containing the data for the variable of interest in the stratified
random sample.   (Input)
The observations within any one stratum must appear contiguously in Y. The first
|NROWS(1)| elements of Y are from the first stratum, and so on. The value of Y(I)
corresponds to that of X(I).

NPOPS — Vector of length NSTRAT containing the sizes of the population in the
strata.   (Input)
The entries in NSTRAT must be ordered in correspondence with the ordering of
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strata in the other vectors. If the population strata sizes are not known, estimates
must be entered in their place.

IOPT — Estimation option.   (Input)

IOPT Action
0 Ratio estimation used for inference about the population mean and total.
1 Regression estimation used with the preassigned regression

coefficient(s) contained in COEFS.
2 Regression estimation used with the regression coefficient(s) estimated

from the data.

ITOPT — Estimation technique option.   (Input)

ITOPT Action
0 Separate ratio or regression estimation.
1 Combined ratio or regression estimation.

XMEANS — Vector of length NSTRAT containing, for each stratum, the
population mean of the auxiliary variate, provided ITOPT = 0.   (Input)
If ITOPT = 1, only XMEANS(1) is defined and it must contain the population mean
of the auxiliary variate.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)
A CONPER percent confidence interval is computed; hence, CONPER must be
greater than or equal to 0.0 and less than 100.0. CONPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence level ONECL, set
CONPER = 100.0 − 2.0 * (100.0 − ONECL).

COEFS — Vector of length NSTRAT containing the ratio estimates or the
regression coefficients.   (Input, if IOPT = 1; output, if IOPT = 0 or 2 and IDO = 0
or 1; input/output, if IOPT = 0 or 2 and IDO = 2 or 3)
If IOPT = 0, COEFS contains ratio estimates. When ITOPT = 0, COEFS contains
the estimate of the ratio for each stratum. When ITOPT = 1, only COEFS(1) is
defined and contains the combined estimate of the ratio. If IOPT = 1, COEFS
contains preassigned regression coefficients. When ITOPT = 0, COEFS contains
the preassigned regression coefficient for each stratum. When ITOPT = 1, only
COEFS(1) is defined and contains the preassigned regression coefficient common
to all strata. If IOPT = 2, COEFS contains estimated regression coefficients. When
ITOPT = 0, COEFS contains the estimated regression coefficient for each stratum.
When ITOPT = 1, only COEFS(1) is defined and contains the estimated regression
coefficient common to all strata.

XBARS — Vector of length NSTRAT containing the strata means for the auxiliary
variable.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.)

XVARS — Vector of length NSTRAT containing the within-strata variances of the
auxiliary variable.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.)
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XCVS — Vector of length NSTRAT containing the within-strata coefficients of
variation for the auxiliary variable.   (Output, if IDO = 0 or 1; input/output, if
IDO = 2 or 3.)

YBARS — Vector of length NSTRAT containing the strata means for the variable
of interest.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.)

YVARS — Vector of length NSTRAT containing the within-strata variances of the
variable of interest.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.)

YCVS — Vector of length NSTRAT containing the within-strata coefficients of
variation for the variable of interest. (Output, if IDO = 0 or 1; input/output, if
IDO = 2 or 3.)

XYCOVS — Vector of length NSTRAT containing the within-strata covariances of
the auxiliary variable and the variable of interest.   (Output, if IDO = 0 or 1; input/
output, if IDO = 2 or 3.)

NSAMPS — Vector of length NSTRAT containing the number of nonmissing
observations from each stratum.   (Output, if IDO= 0 or 1; input/output, if IDO = 2
or 3.)

STAT — Vector of length 12 containing the resulting statistics.   (Output)
These are

I STAT(I)
1 Estimate of the mean.
2 Estimate of the total.
3 Variance estimate of the mean estimate.
4 Variance estimate of the total estimate.
5 Lower confidence limit for the mean.
6 Upper confidence limit for the mean.
7 Lower confidence limit for the total.
8 Upper confidence limit for the total.
9 Estimate of the coefficient of variation for the mean and total estimate.
10 Unstratified mean of the auxiliary variate.
11 Unstratified mean of the variable of interest.
12 The number of pairs in the sample that had one or both values missing.

Algorithm

Routine SMPRS computes point and interval estimates for the population mean
and total from a stratified random sample of a variable of interest and an auxiliary
variable. Routine SMPRS allows for either ratio estimation, regression estimation
with preassigned coefficients, or regression estimation with estimated
coefficients.

This routine follows the standard methods discussed in Chapters 6 and 7 of
Cochran (1977). The statistics are similar to those discussed in the
documentation for routine SMPRR (page 911), except that they are computed
from stratified data. The option parameter IOPT allows selection of either ratio
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or regression estimation, and the parameter ITOPT allows selection of separate or
combined estimators. “Separate” estimators means that each stratum is allowed to
have different ratios or regression coefficients, while “combined” means these are
assumed to be the same over all strata.

The confidence limits for the mean and for the total are computed using the
normal approximation. If the coefficient of variation of either variable exceeds
10%, then this approximation may not be very accurate.

The parameters IDO and NROW allow either all or part of the data to be brought in
at one time.

Example 1

In the following example, we use a stratified sample from the data in Table 5.1 of
Cochran (1977), which consists of the 1920 and the 1930 population (in 1000’s)
of 64 cities in the United States. The objective is to estimate the mean and total
1930 population of the 64 cities, using a sample of size 24 of the 1920 and 1930
populations. There are two strata: the largest 16 cities and the remaining cities.
We use stratified sampling with equal sample sizes. The same example is also
used to illustrate routine SMPSS (page 930), except here we have an auxiliary
variable.

In this example, separate ratio estimation is used.
      INTEGER    NSTRAT
      PARAMETER  (NSTRAT=2)
C
      INTEGER    I, IDO, IOPT, ITOPT, NOUT, NPOPS(NSTRAT),
     &           NROWS(NSTRAT), NSAMPS(NSTRAT)
      REAL       COEFS(NSTRAT), CONPER, STAT(12), X(24),
     &           XBARS(NSTRAT), XCVS(NSTRAT), XMEANS(NSTRAT),
     &           XVARS(NSTRAT), XYCOVS(NSTRAT), Y(24), YBARS(NSTRAT),
     &           YCVS(NSTRAT), YVARS(NSTRAT)
      EXTERNAL   SMPRS, UMACH
C
      DATA X/773., 748., 734., 577., 507., 438., 415., 401., 387.,
     &     381., 324., 315., 258., 237., 235., 216., 201., 179., 136.,
     &     132., 118., 118., 106., 104./
      DATA Y/822., 781., 805., 1238., 634., 487., 442., 451., 459.,
     &     464., 400., 366., 302., 291., 272., 284., 270., 260., 139.,
     &     170., 154., 140., 163., 116./
C
      NPOPS(1) = 16
      NPOPS(2) = 48
C                                 All data are input at once.
      IDO      = 0
      NROWS(1) = 12
      NROWS(2) = 12
      CONPER   = 95.0
C                                 Use separate ratio estimation.
      IOPT      = 0
      ITOPT     = 0
      XMEANS(1) = 521.8
      XMEANS(2) = 165.4
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C
      CALL SMPRS (IDO, NSTRAT, NROWS, X, Y, NPOPS, IOPT, ITOPT,
     &            XMEANS, CONPER, COEFS, XBARS, XVARS, XCVS, YBARS,
     &            YVARS, YCVS, XYCOVS, NSAMPS, STAT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,9), STAT(12), COEFS
99999 FORMAT (’ Mean estimate = ’, F8.3, ’      Total estimate = ’,
     &       F8.1, /, ’ Vhat of mean  = ’, F8.5, ’      Vhat of total ’
     &       , ’ = ’, F8.1, /, ’ Confidence limits for mean  ’, F8.3,
     &       ’,’, F8.3, /, ’ Confidence limits for total ’, F8.1,
     &       ’,’, F8.1, /, ’ C. V.       = ’, F8.2, ’      Number ’,
     &       ’missing = ’, F8.1, /, ’ Estimated ratios = ’, 2F10.3)
      END

Output
Mean estimate =  315.511      Total estimate =  20192.7
Vhat of mean  = 55.56254      Vhat of total  = 227584.2
Confidence limits for mean   300.901, 330.120
Confidence limits for total  19257.7, 21127.7
C. V.       =     2.36      Number missing =      0.0
Estimated ratios =      1.225     1.255

Example 2

In the following example, we use a stratified sample from the data in Table 5.1 of
Cochran (1977), which consists of the 1920 and the 1930 population (in 1000’s)
of 64 cities in the United States. The objective is to estimate the mean and total
1930 population of the 64 cities, using a sample of size 24 of the 1920 and 1930
populations. There are two strata: the largest 16 cities and the remaining cities.
We use stratified sampling with equal sample sizes. The same example is also
used to illustrate routine SMPSS (page 930), except here we have an auxiliary
variable.

In this example, regression estimation is used, and it is assumed that the
regression equation is the same in the two strata.

      INTEGER    NSTRAT
      PARAMETER  (NSTRAT=2)
C
      INTEGER    I, IDO, IOPT, ITOPT, NOUT, NPOPS(NSTRAT),
     &           NROWS(NSTRAT), NSAMPS(NSTRAT)
      REAL       COEFS(NSTRAT), CONPER, STAT(12), X(24),
     &           XBARS(NSTRAT), XCVS(NSTRAT), XMEANS(1),
     &           XVARS(NSTRAT), XYCOVS(NSTRAT), Y(24), YBARS(NSTRAT),
     &           YCVS(NSTRAT), YVARS(NSTRAT)
      EXTERNAL   SMPRS, UMACH
C
      DATA X/773., 748., 734., 577., 507., 438., 415., 401., 387.,
     &     381., 324., 315., 258., 237., 235., 216., 201., 179., 136.,
     &     132., 118., 118., 106., 104./
      DATA Y/822., 781., 805., 1238., 634., 487., 442., 451., 459.,
     &     464., 400., 366., 302., 291., 272., 284., 270., 260., 139.,
     &     170., 154., 140., 163., 116./
C
      NPOPS(1) = 16
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      NPOPS(2) = 48
C                                 All data are input at once.
      IDO      = 0
      NROWS(1) = 12
      NROWS(2) = 12
      CONPER   = 95.0
C                                 Use combined regression estimation.
      IOPT      = 2
      ITOPT     = 1
      XMEANS(1) = 254.5
C
      CALL SMPRS (IDO, NSTRAT, NROWS, X, Y, NPOPS, IOPT, ITOPT,
     &            XMEANS, CONPER, COEFS, XBARS, XVARS, XCVS, YBARS,
     &            YVARS, YCVS, XYCOVS, NSAMPS, STAT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,9), STAT(12), COEFS(1)
99999 FORMAT (’ Mean estimate = ’, F8.3, ’      Total estimate = ’,
     &       F8.1, /, ’ Vhat of mean  = ’, F8.5, ’      Vhat of total ’
     &       , ’ = ’, F8.1, /, ’ Confidence limits for mean  ’, F8.3,
     &       ’,’, F8.3, /, ’ Confidence limits for total ’, F8.1,
     &       ’,’, F8.1, /, ’ C. V.       = ’, F8.1, ’      Number ’,
     &       ’missing = ’, F8.1, /, ’ Estimated combined regression ’,
     &       ’coefficient = ’, F8.3)
      END

Output
 Mean estimate =  315.517      Total estimate =  20193.1
Vhat of mean  = 54.84098      Vhat of total  = 224628.6
Confidence limits for mean   301.003, 330.031
Confidence limits for total  19264.2, 21122.0
C. V.       =      2.3      Number missing =      0.0
Estimated combined regression coefficient =    1.175

SMPSC/DSMPSC (Single/Double precision)
Compute statistics for inferences regarding the population mean and total using
single stage cluster sampling with continuous data.

Usage
CALL SMPSC (IDO, NCLSTR, NROWS, Y, IOPT, NCLPOP, NPOP,
            SIZE, TSIZE, CONPER, CLMEAN, CLVAR, NSAMPS,
            STAT)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of SMPSC for this data set, and all the data are

input at once.
1 This is the first invocation, and additional calls to SMPSC will be made.

Initialization and updating for the data in Y are performed.
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2 This is an intermediate invocation of SMPSC and updating for the data in
Y is performed.

3 This is the final invocation of this routine. Updating for the data in Y and
wrap-up computations are performed.

NCLSTR — Number of clusters into which the sample is divided.   (Input)
In the vectors of length NCLSTR, the elements are all ordered in the same way.
That is, the first cluster is always the first, the second always the second, and so
on.

NROWS — Vector of length NCLSTR in which |NROWS(I)| is the number of items
from the I-th cluster currently input in Y.   (Input)
Each element of NROWS may be positive, zero, or negative. A negative value for
NROWS(I) means delete the −NROWS(I) elements of the I-th cluster in Y from the
analysis.

Y — Vector containing the cluster sample.   (Input)
The observations within any one cluster must appear contiguously in Y. The first
|NROWS(1)| elements of Y are from the first cluster, and so on.

IOPT — Estimation option.   (Input)

IOPT Action
0 Ratio-to-size estimation is used.
1 Unbiased estimation is used.
2 Probability-proportional-to-size estimation is used and all clusters in

population are of known size.
3 Probability-proportional-to-size estimation is used and the cluster sizes

are known only approximately or a measure of cluster size other than the
number of elements per cluster is to be used.

NCLPOP — Number of clusters in the sampled population.   (Input)

NPOP — Number of elements in the population (sum of all the cluster sizes in
the population).   (Input)
NPOP is not required when IOPT = 3.

SIZE — If IOPT = 3, vector of length NCLSTR containing a measure of cluster
size for each cluster in the sample.   (Input)
The sampled cluster size measures must be ordered in correspondence with the
ordering of clusters in Y. SIZE is required only when IOPT = 3.

TSIZE — If IOPT = 3, measure of total size of all clusters in the population.
(Input) TSIZE is required only when IOPT = 3.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)
A CONPER percent confidence interval is computed; hence, CONPER must be
greater than or equal to 0.0 and less than 100.0. CONPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence level ONECL, set
CONPER = 100.0 − 2.0 * (100.0 − ONECL).
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CLMEAN — Vector of length NCLSTR containing the cluster means.   (Output, if
IDO = 0 or 1; input/output, if IDO = 2 or 3.)

CLVAR — Vector of length NCLSTR containing the within-cluster variances.
(Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.)

NSAMPS — Vector of length NCLSTR containing the number of nonmissing
observations from each cluster.   (Output, if IDO = 0 or 1; input/output, if IDO = 2
or 3.)

STAT — Vector of length 11 containing the resulting statistics.   (Output, if IDO

= 0 or 1; input/output, if IDO = 2 or 3.)
These are

I STAT(I)
1 Estimate of the mean.
2 Estimate of the total.
3 Variance estimate of the mean estimate.
4 Variance estimate of the total estimate.
5 Lower confidence limit for the mean.
6 Upper confidence limit for the mean.
7 Lower confidence limit for the total.
8 Upper confidence limit for the total.
9 Estimate (expressed as a percentage) of the coefficient of variation of the

mean and total estimate.
10 The total sample size.
11 The number of missing values.

Algorithm

Routine SMPSC computes point and interval estimates for the population mean
and total from a single-stage cluster sample. The routine uses the standard
methods discussed in Chapters 9 and 9A of Cochran (1977). The sample means
for the individual clusters are accumulated in CLMEAN, and the corrected sums of
squares are accumulated in CLVAR. In the postprocessing phase, the quantities in
STAT are computed using the cluster statistics in CLMEAN, CLVAR, and NSAMPS.
The parameters IDO and NROWS allow either all or part of the data to be brought
in at one time.

Following the notation of Cochran (1977), let N be the number of clusters in the
population, let ML be the number of elements in the i-th cluster unit, let M0 be the
total number of elements in the population, let yLM be the j-th element in the i-th
cluster, and let n be the number of clusters in the sample. Any of three different
estimators of the population total may be useful. An unbiased estimate of the total
is

N

n
yij

j

M

i

n i

==
∑∑

11



926 • Chapter 12: Sampling IMSL STAT/LIBRARY

The ratio-to-size estimate is
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The confidence limits for the mean and total are computed using the normal
approximation.

Example

In this example, we have a sample of two clusters from a population that contains
20 clusters. The sizes of the clusters in the sample are four and six, and there is a
total of 100 elements in the population.

      INTEGER    NCLSTR
      PARAMETER  (NCLSTR=2)
C
      INTEGER    IDO, IOPT, NCLPOP, NOUT, NPOP, NROWS(NCLSTR),
     &           NSAMPS(NCLSTR)
      REAL       CLMEAN(NCLSTR), CLVAR(NCLSTR), CONPER, SIZE(NCLSTR),
     &           STAT(11), TSIZE, Y(10)
      EXTERNAL   SMPSC, UMACH
C
      DATA Y/2.7, 5.1, 4.3, 2.8, 1.9, 6.2, 4.8, 5.1, 7.2, 6.5/
C
      IOPT   = 0
      NCLPOP = 20
      NPOP   = 100
C                                 All data are input at once.
      IDO      = 0
      NROWS(1) = 4
      NROWS(2) = 6
      CONPER   = 95.0
      CALL SMPSC (IDO, NCLSTR, NROWS, Y, IOPT, NCLPOP, NPOP, SIZE,
     &            TSIZE, CONPER, CLMEAN, CLVAR, NSAMPS, STAT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
99999 FORMAT (’ Mean estimate = ’, F8.3, ’      Total estimate = ’,
     &       F8.1, /, ’ Vhat of mean  = ’, F8.3, ’      Vhat of total ’
     &       , ’ = ’, F8.1, /, ’ Confidence limits for mean  ’, F8.3,
     &       ’,’, F8.3, /, ’ Confidence limits for total ’, F8.1,
     &       ’,’, F8.1, /, ’ C. V.       = ’, F8.1, ’%’, /,
     &       ’ Sample size =   ’, F8.0, ’      Number missing = ’,
     &       F8.0)
      END
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Output
Mean estimate =    4.660      Total estimate =    466.0
Vhat of mean  =    0.504      Vhat of total  =   5035.5
Confidence limits for mean     3.269,   6.051
Confidence limits for total    326.9,   605.1
C. V.       =     15.2%
Sample size =        10.      Number missing =       0.

SMPSR/DSMPSR (Single/Double precision)
Compute statistics for inferences regarding the population mean and total, given
data from a simple random sample.

Usage
CALL SMPSR (IDO, NROW, Y, NPOP, IOPT, NSAMPO, CONPER, STAT)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of SMPSR for this data set, and all the data are

input at once.
1 This is the first invocation, and additional calls to SMPSR will be made.

Initialization and updating for the data in Y are performed.
2 This is an intermediate invocation of SMPSR, and updating for the data in

Y is performed.
3 This is the final invocation of this routine. Updating for the data in Y and

wrap-up computations are performed.

NROW — The absolute value of NROW is the number of rows of data currently
input in Y.   (Input)
NROW may be positive, zero, or negative. Negative −NROW means delete the NROW

rows of data from the analysis.

Y — Vector of length |NROW| containing the sample data.   (Input)

NPOP — Size of the (full) population.   (Input)

IOPT — Subpopulation option.   (Input)
If IOPT = 0, no subpopulation is assumed. If IOPT = 1, the input data come from
a subpopulation (“domain of study”) of unknown size.

NSAMPO — Size of the sample from the full population, if a subpopulation is
sampled (that is, if IOPT = 1).   (Input)

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)
A CONPER percent confidence interval is computed; hence, CONPER must be
greater than or equal to 0.0 and less than 100.0. CONPER is often 90.0, 95.0, or
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99.0. For a one-sided confidence interval with confidence level ONECL, set
CONPER = 100.0 − 2.0 * (100.0 − ONECL).

STAT — Vector of length 11 containing the resulting statistics.   (Output, if IDO

= 0 or 1; input/output, if IDO = 2 or 3.)
These are

I STAT(I)
1 Estimate of the mean.
2 Estimate of the total.
3 Within-sample variance estimate.
4 Variance estimate of the mean estimate.
5 Variance estimate of the total estimate.
6 Lower confidence limit for the mean.
7 Upper confidence limit for the mean.
8 Lower confidence limit for the total.
9 Upper confidence limit for the total.
10 The sample size.
11 The number of missing values.

Algorithm

Routine SMPSR computes point and interval estimates for the population mean
and total from a simple random sample of one variable. The routine uses the
standard methods discussed in Chapter 2 of Cochran (1977). The sample mean is
accumulated in STAT(1) and the corrected sum of squares is accumulated in
STAT(3). In the postprocessing phase, STAT(3) is divided by the sample size
minus one, and then the other quantities in STAT are computed. The parameters
IDO and NROW allow either all or part of the data to be brought in at one time.

By use of IOPT and NSAMPO, SMPSR can also be used to analyze data from a
subpopulation or “domain of study”. (See Cochran 1977, pages 34−38.) In the
case of a subpopulation, only the estimates relating to the subpopulation total
differ from the corresponding estimates when no subpopulation is assumed. Of
course, if a subpopulation is of known size, it should be considered the full
population.

Example 1

This example uses artificial data to illustrate a simple use of SMPSR to compute
point and interval estimates of the population mean and total. The sample size is
15, from a population of size 150.

      INTEGER    NROW
      PARAMETER  (NROW=15)
C
      INTEGER    IDO, IOPT, NOUT, NPOP, NSAMPO
      REAL       CONPER, STAT(11), Y(NROW)
      EXTERNAL   SMPSR, UMACH
C
      DATA Y/21., 14., 17., 22., 19., 21., 20., 15., 24., 28., 20.,
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     &     17., 16., 22., 19./
C
      NPOP   = 150
      CONPER = 95.0
C                                 All data are input at once.
      IDO = 0
C                                 No subpopulation is assumed.
      IOPT = 0
      CALL SMPSR (IDO, NROW, Y, NPOP, IOPT, NSAMPO, CONPER, STAT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
99999 FORMAT (’ Mean estimate = ’, F8.3, ’      Total estimate = ’,
     &       F8.1, /, ’ Within-sample variance estimate = ’, F8.3, /,
     &       ’ VHAT of mean  = ’, F8.5, ’      VHAT of total  = ’,
     &       F8.1, /, ’ Confidence limits for mean  ’, F8.3,
     &       ’,’, F8.3, /, ’ Confidence limits for total ’, F8.1,
     &       ’,’, F8.1, /, ’ Sample size = ’, F8.1, ’      Number ’,
     &       ’missing = ’, F8.0)
      END

Output
Mean estimate =   19.667      Total estimate =   2950.0
Within-sample variance estimate =   13.238
VHAT of mean  =  0.79429      VHAT of total  =  17871.4
Confidence limits for mean    17.755,  21.578
Confidence limits for total   2663.3,  3236.7
Sample size =     15.0      Number missing =       0.

Example 2

This example is a problem of estimation in a subpopulation described on page 37
of Cochran (1977). The example illustrates how the IDO and NROW parameters
can be used to allow input other than the actual data. Cochran gives only the
sample total and uncorrected sum of squares, so these values are transformed to
the mean and corrected sum of squares prior to input as STAT(1) and STAT(3).

      INTEGER    IDO, IOPT, NOUT, NPOP, NROW, NSAMPO
      REAL       CONPER, SQRT, STAT(11), Y(1)
      INTRINSIC  SQRT
      EXTERNAL   SMPSR, UMACH
C
      NPOP   = 2422
      CONPER = 95.0
C                                 There are 180 items in the complete
C                                 sample, but only a subpopulation is
C                                 of interest.
      IOPT   = 1
      NSAMPO = 180
C                                 For this example, STAT is
C                                 initialized as if the data
C                                 have been already processed and only
C                                 the postprocessing computations are
C                                 to be done.  There are 152 items of
C                                 interest in the sample.  The sample
C                                 total is 343.5 and the uncorrected
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C                                 sum of squares is 1491.38.
C                                 STAT(1) is initialized to the sample
C                                 mean by dividing the total by the
C                                 sample size, and STAT(3) is
C                                 initialized to the corrected sum of
C                                 squares.
      STAT(1)  = 343.5/152.0
      STAT(3)  = 1491.38 - 152.0*STAT(1)**2
      STAT(10) = 152.0
      STAT(11) = 0.0
      IDO      = 3
      NROW     = 0
      CALL SMPSR (IDO, NROW, Y, NPOP, IOPT, NSAMPO, CONPER, STAT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT(2), SQRT(STAT(5))
99999 FORMAT (’      Total estimate = ’, F8.1, /, ’      Standard ’,
     &       ’deviation of the estimate = ’, F8.1)
      END

Output
Total estimate =   4622.0
Standard deviation of the estimate =    375.3

SMPSS/DSMPSS (Single/Double precision)
Compute statistics for inferences regarding the population mean and total, given
data from a stratified random sample.

Usage
CALL SMPSS (IDO, NSTRAT, NROWS, Y, NPOPS, IVOPT, CONPER,
            YBARS, YVARS, NSAMPS, STAT)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of SMPSS for this data set, and all the data are

input at once.
1 This is the first invocation, and additional calls to SMPSS will be made.

Initialization and updating for the data in Y are performed.
2 This is an intermediate invocation of SMPSS, and updating for the data in

Y is performed.
3 This is the final invocation of this routine. Updating for the data in Y and

wrap-up computations are performed.

NSTRAT — Number of strata into which the population is divided.   (Input)
In the vectors of length NSTRAT, the elements are all ordered in the same way.
That is, the first stratum is always the first, the second always the second, and so
on.
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NROWS — Vector of length NSTRAT in which |NROWS(I)| is the number of items
from the I-th stratum currently input in Y.   (Input)
Each element of NROWS may be positive, zero, or negative. A negative value for
NROWS(I) means delete the −NROWS(I) elements of the I-th stratum in Y from the
analysis.

Y — Vector containing the stratified random sample.   (Input)
The observations within any one stratum must appear contiguously in Y. The first
|NROWS(1)| elements of Y are from the first stratum, and so on.

NPOPS — Vector of length NSTRAT containing the sizes of the population in the
strata.   (Input)
The entries must be ordered in correspondence with the ordering of strata in the
other vectors. If the population strata sizes are not known, estimates must be
entered in their place.

IVOPT — Within-stratum variance assumption indicator.   (Input)
If IVOPT = 0, the true within-stratum variance is assumed constant, and a pooled
estimate of that variance is returned in STAT(12). If IVOPT = 1, separate within-
strata variance estimates are assumed.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)
A CONPER percent confidence interval is computed; hence, CONPER must be
greater than or equal to 0.0 and less than 100.0. CONPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence level ONECL, set
CONPER = 100.0 − 2.0 * (100.0 − ONECL).

YBARS — Vector of length NSTRAT containing the strata means.   (Output, if
IDO = 0 or 1; input/output, if IDO = 2 or 3.)

YVARS — Vector of length NSTRAT containing the within-strata variances.
(Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3.)

NSAMPS — Vector of length NSTRAT containing the number of nonmissing
observations from each stratum.   (Output, if IDO= 0 or 1; input/output, if IDO = 2
or 3.)

STAT — Vector of length 13 containing the resulting statistics.   (Output, if
IDO = 0 or 1; input/output, if IDO = 2 or 3.)
These are

I STAT(I)
1 Estimate of the mean.
2 Estimate of the total.
3 Variance estimate of the mean estimate.
4 Variance estimate of the total estimate.
5 Lower confidence limit for the mean.
6 Upper confidence limit for the mean.
7 Lower confidence limit for the total.
8 Upper confidence limit for the total.
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9 Estimate of the coefficient of variation of the mean and total estimates.
10 Number of degrees of freedom associated with the variance estimates of

the mean and total estimates. When IVOPT = 1, STAT(10) contains an
effective number of degrees of freedom determined according to the
Satterthwaite approximation.

11 Variance estimate of the mean estimate assuming that sampling was
simple random instead of stratified random.

12 Pooled estimate of the common variance, when IVOPT = 0. If
IVOPT = 1, STAT(12) is not defined.

13 The number of missing values.

Comments

Information Error
Type Code
   4    1 The population size for each stratum is equal to one.

Algorithm

Routine SMPSS computes point and interval estimates for the population mean
and total from a stratified random sample of one variable. The routine uses the
standard methods discussed in Chapters 5 and 5A of Cochran (1977). The sample
means for the individual strata are accumulated in YBARS, and the corrected sums
of squares are accumulated in YVARS. In the postprocessing phase, the quantities
in STAT are computed using the strata statistics in YBARS, YVARS, and NSAMPS.
The parameters IDO and NROWS allow either all or part of the data to be brought
in at one time.

Example

In this example, we use a stratified sample from the data in Table 5.1 of Cochran
(1977): the 1930 population (in 1000’s) of 64 cities in the United States. The 64
cities are the “population”, and our objective is to estimate the mean and total
number of inhabitants in these 64 cities. There are two strata: the largest 16 cities
and the remaining cities. We use stratified sampling with equal sample sizes. To
choose the random sample, we use routine RNSRI (page 1241), as follows:

       INTEGER     ISEED, NSAMP, NPOP, INDEX(12)
       NSAMP = 12
       NPOP = 16
       ISEED = 123457
       CALL RNSET(ISEED)
       CALL RNSRI(NSAMP, NPOP, INDEX)
       WRITE(*, *) INDEX
       NPOP = 48
       CALL RNSRI(NSAMP, NPOP, INDEX)
       WRITE(*, *) INDEX
       END
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This yields the population indices {2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16} for the
first stratum and {4, 8, 10, 11, 13, 16, 29, 30, 36, 37, 45, 46} for the second
stratum. The corresponding values from Table 5.1 are encoded in the program
below.

      INTEGER    NSTRAT
      PARAMETER  (NSTRAT=2)
C
      INTEGER    I, IDO, IVOPT, NOUT, NPOPS(NSTRAT), NROWS(NSTRAT),
     &           NSAMPS(NSTRAT)
      REAL       CONPER, STAT(13), Y(24), YBARS(NSTRAT), YVARS(NSTRAT)
      EXTERNAL   SMPSS, UMACH
C
      DATA Y/822., 781., 805., 1238., 634., 487., 442., 451., 459.,
     &     464., 400., 366., 302., 291., 272., 284., 270., 260., 139.,
     &     170., 154., 140., 163., 116./
C
      NPOPS(1) = 16
      NPOPS(2) = 48
      IVOPT    = 1
C                                 All data are input at once.
      IDO      = 0
      NROWS(1) = 12
      NROWS(2) = 12
      CONPER   = 95.0
      CALL SMPSS (IDO, NSTRAT, NROWS, Y, NPOPS, IVOPT, CONPER, YBARS,
     &            YVARS, NSAMPS, STAT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) (STAT(I),I=1,11), STAT(13)
99999 FORMAT (’ Mean estimate = ’, F8.3, ’      Total estimate = ’,
     &       F9.1, /, ’ Vhat of mean  = ’, F8.3, ’      Vhat of total ’
     &       , ’ = ’, F9.1, /, ’ Confidence limits for mean  ’, F8.3,
     &       ’,’, F8.3, /, ’ Confidence limits for total ’, F8.1,
     &       ’,’, F8.1, /, ’ C. V.       = ’, F8.1, ’        Degrees ’
     &       , ’of freedom = ’, F8.1, /, ’ SRS var. estimate = ’,
     &       F8.3, ’  Number missing = ’, F8.0)
      END

Output
Mean estimate =  313.167      Total estimate =   20042.7
Vhat of mean  =  264.703      Vhat of total  = 1084224.6
Confidence limits for mean   279.180, 347.153
Confidence limits for total  17867.5, 22217.8
C. V.       =      5.2        Degrees of freedom =     19.6
SRS var. estimate = 1288.075  Number missing =       0.

SMPST/DSMPST (Single/Double precision)
Compute statistics for inferences regarding the population mean and total given
continuous data from a two-stage sample with equisized primary units.
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Usage
CALL SMPST (IDO, NUNSAM, NELSAM, NOBS, Y, NUNPOP, NELPOP,
            CONPER, PUMEAN, PUVAR, STAT)

Arguments

IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of SMPST for this data set, and all the data are

input at once.
1 This is the first invocation, and additional calls to SMPST will be made.

Initialization and updating for the data in Y are performed.
2 This is an intermediate invocation of SMPST, and updating for the data in

Y is performed.
3 This is the final invocation of this routine. Updating for the data in Y and

wrap-up computations are performed.

NUNSAM — Number of primary units into which the sample is divided.   (Input)

NELSAM — Number of elements in the sample in each sampled primary unit.
(Input)

NOBS — The number of observations currently input in Y.   (Input)
NOBS may be positive or zero. If NOBS = 0, IDO must equal 3, and only wrap-up
computations are performed.

Y — Vector of length NOBS containing the elements of the two-stage sample.
(Input)
The elements from each primary unit must occur contiguously within Y. Since
there must be an equal number from each primary unit, Y must contain no missing
values.

NUNPOP — Number of primary units in the sampled population.   (Input)

NELPOP — Number of elements in each primary unit in the population.   (Input)

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)
A CONPER percent confidence interval is computed; hence, CONPER must be
greater than or equal to 0.0 and less than 100.0. CONPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence level ONECL, set
CONPER = 100.0 − 2.0 * (100.0 − ONECL).

PUMEAN — Vector of length NUNSAM containing the means of the primary units
in the sample.   (Output, if IDO = 0 or 1; input/output, if IDO = 2 or 3)
The estimates are ordered in correspondence with the ordering of primary units in
Y.
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PUVAR — Vector of length NUNSAM containing the sample variances of the
primary units in the sample.   (Output, if IDO= 0 or 1; input/output, if IDO= 2 or
3)
The estimates are ordered in correspondence with the ordering of primary units in
Y.

STAT — Vector of length 9 containing the resulting statistics.   (Output, if IDO=
0 or 1; input/output, if IDO = 2 or 3)

I STAT(I)
1 Estimate of the mean.
2 Estimate of the total.
3 Variance of the mean estimate.
4 Variance estimate of the total estimate.
5 Lower confidence limit for the mean.
6 Upper confidence limit for the mean
7 Lower confidence limit for the total.
8 Upper confidence limit for the total.
9 Estimate (expressed as a percentage) of the coefficient of variation of the

mean and total estimates.

Algorithm

Routine SMPST computes point and interval estimates for the population mean
and total from a two-stage sample with primary units that are all equal in size. A
two-stage sample might be taken if each unit (“primary unit”) in the population
can be divided into smaller units. Primary units are selected first, and then those
selected are subsampled. The routine uses the standard methods discussed in
Chapter 10 of Cochran (1977). The sample means for the individual primary units
are accumulated in PUMEAN, and the corrected sums of squares are accumulated in
PUVAR. In the postprocessing phase, the quantities in STAT are computed using
the primary unit statistics. The parameters IDO and NOBS allow either all or part
of the data to be brought in at one time.

Following the notation of Cochran (1977), let n (NUMSAM) be the number of
primary units in the sample, let m (NELSAM) be the number of elements (subunits)
subsampled from each primary unit, let N (NUMPOP) be the total number of
primary units in the population, let M (NELPOP) be the total number of elements
in each primary unit (in the population), and let yLM be the j-th element in the i-th
primary unit. The sample mean per subunit in the i-th primary unit is
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m

=
=
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The estimate of the population mean is
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Example

In this example, we have a sample of two primary units, with five subunits from
each. The population consists of 10 primary units with 15 elements each.

      INTEGER    IDO, NELPOP, NELSAM, NOBS, NOUT, NUNPOP, NUNSAM
      REAL       CONPER, PUMEAN(2), PUVAR(2), STAT(9), Y(10)
      EXTERNAL   SMPST, UMACH
C
      DATA Y/2.7, 5.1, 4.3, 2.8, 1.9, 6.2, 4.8, 5.1, 7.2, 6.5/
C
      NUNSAM = 2
      NELSAM = 5
      NOBS   = 10
      NUNPOP = 10
      NELPOP = 15
C                                 All data are input at once.
      IDO    = 0
      CONPER = 95.0
      CALL SMPST (IDO, NUNSAM, NELSAM, NOBS, Y, NUNPOP, NELPOP,
     &            CONPER, PUMEAN, PUVAR, STAT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STAT
99999 FORMAT (’ Mean estimate = ’, F8.3, ’      Total estimate = ’,
     &       F8.1, /, ’ Vhat of mean  = ’, F8.3, ’      Vhat of total ’
     &       , ’ = ’, F8.1, /, ’ Confidence limits for mean  ’, F8.3,
     &       ’,’, F8.3, /, ’ Confidence limits for total ’, F8.1,
     &       ’,’, F8.1, /, ’ C. V.       = ’, F8.1, ’%’)
      END

Output
Mean estimate =    4.660      Total estimate =    699.0
Vhat of mean  =    1.370      Vhat of total  =  30823.7
Confidence limits for mean     2.366,   6.954
Confidence limits for total    354.9,  1043.1
C. V.       =     25.1%
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Chapter 13: Survival Analysis, Life
Testing, and Reliability

Routines
13.1. Survival Analysis

Kaplan-Meier estimates ...................................................... KAPMR 938
Print Kaplan-Meier estimates............................................... KTBLE 942
Turnbull’s generalized Kaplan-Meier estimates ................... TRNBL 946
Analyze time event data using
a proportional hazards model.............................................. PHGLM 951
Analyze survival data using a generalized linear model...... SVGLM 967
Estimates using various parametric models ........................ STBLE 985

13.2. Actuarial Tables
Current and cohort tables .................................................... ACTBL 992

Usage Notes
The routines described in this chapter have primary application in the areas of
reliability and life testing, but they may find application in any situation in which
time is a variable of interest. Kalbfleisch and Prentice (1980), Elandt-Johnson and
Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless (1982), and
Chiang (1968) are general references for discussing the models and methods used
here.

Kaplan-Meier (product-limit) estimates of the survival distribution in a single
population is available through routine KAPMR (page 938), and these can be
printed using KTBLE (page 942). Routine TRNBL (page 946) computes
generalized Kaplan-Meier estimates. Routine PHGLM (page 951) computes the
parameter estimates in a proportional hazards model. Routine SVGLM (page 967)
fits any of several generalized linear models, and STBLE (page 985) computes
estimates of survival probabilities based on the same models. Routine ACTBL
(page 992) computes and (optionally) prints an actuarial table based either upon a
cohort followed over time or a cross-section of a population.
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KAPMR/DKAPMR (Single/Double precision)
Compute Kaplan-Meier estimates of survival probabilities in stratified samples.

Usage
CALL KAPMR (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN, IGRP,
            ISRT, SPROB, LDSPRO, NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IRT — Column number in X containing the response variable.   (Input)
For the i-th right-censored observation, X(i, IRT) contains the right-censoring
time. Otherwise, X(i, IRT) contains the failure time. (See ICEN.)

IFRQ — Column number in X containing the frequency of response for this
observation.   (Input)
If IFRQ = 0, a response frequency of 1 for each observation is assumed.

ICEN — Column number in X containing the censoring code for this observation.
(Input)
If ICEN = 0, a censoring code of 0 is assumed. Valid censoring codes are:

Code Meaning
0 Exact failure at X(i, IRT).
1 Right censored. The response is greater than X(i, IRT).

If X(i, ICEN) is not 0 or 1, then the i-th observation is omitted from the analysis.

IGRP — Column number in X containing the stratum number for this
observation.   (Input)
If IGRP = 0, the data is assumed to be from one stratum. Otherwise, column IGRP

of X contains a unique value for each stratum in the data. Kaplan-Meier estimates
are computed within each stratum.

ISRT — Sorting option.   (Input)
If ISRT = 1, column IRT of X is assumed to be sorted in ascending order within
each stratum. Otherwise, a detached sort will be performed by KAPMR . If sorting
is performed by KAPMR, all censored individuals are assumed to follow tied
failures.

SPROB — NOBS by 2 matrix.   (Output)
SPROB(i, 1) contains the estimated survival probability at time X(i, IRT) in the i-th
observation’s stratum, while SPROB(i, 2) contains Greenwood’s estimate of
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the standard deviation of this estimated probability. If the i-th observation
contains censor codes out of range or if a variable is missing, then the
corresponding elements of SPROB are set to missing (NaN, not a number).
Similarly, if an element in SPROB is not defined, then it is set to missing.

LDSPRO — Leading dimension of SPROB exactly as specified in the dimension
statement in the calling program.   (Input)

NRMISS — Number of rows of data in X that contain any missing values.
(Output)

Comments

1. Automatic workspace usage is

KAPMR 4 * NOBS + NCOL + 3 * m, or
DKAPMR 4 * NOBS + NCOL + 5 * m, where m = max(NOBS, NCOL).

Workspace may be explicitly provided, if desired, by use of
K2PMR/DK2PMR. The reference is

CALL K2PMR (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN,
            IGRP, ISRT, SPROB, LDSPRO, NRMISS,
            IGP, IPERM, INDDR, IWK, WK, IPER)

The additional arguments are as follows:

IGP — Work vector of length NOBS.

IPERM — Work vector of length NOBS + NCOL.

INDDR — Work vector of length NOBS.

IWK — Work vector of length max(NOBS, NCOL).

WK — Work vector of length 2 * max(NOBS, NCOL).

IPER — Work vector of length NOBS.

2. Missing values may occur in any of the columns of X. Any row of X that
contains missing values in the IRT, ICEN, or IFRQ columns (when the
ICEN and IFRQ columns are present) is omitted from the analysis.
Missing values in the IGRP column, if present, are classified into an
additional “missing” group.

Algorithm

Routine KAPMR computes Kaplan-Meier (or product-limit) estimates of survival
probabilities for a sample of failure times that possibly contain right censoring. A
survival probability S(t) is defined as 1 − F(t), where F(t) is the cumulative
distribution function of the failure times (t). Greenwood’s estimate of the standard
errors of the survival probability estimates are also computed. (See Kalbfleisch
and Prentice, 1980, pages 13 and 14.)
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Let (tL, δL), for i = 1,…, n denote the failure/censoring times and the censoring
codes for the n observations in a single sample. Here, tL = X(i, IRT) is a failure

time if δL is 0, where δL = X(i, ICEN). Also, tL is a censoring time if δL is 1. Rows in

X containing values other than 0 or 1 for δL are ignored. Let the number of
observations in the sample that have not failed by time s(i) be denoted by n(i),
where s(i) is an ordered (from smallest to largest) listing of the distinct failure
times (censoring times are omitted). Then the Kaplan-Meier estimate of the
survival probabilities is a step function, which in the interval from s(i) to s(L+1)
(including the lower endpoint) is given by
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where d(M) denotes the number of failures occurring at time s(M). Note that one row
of X may correspond to more than one failed (or censored) observation when the
frequency option is in effect (IFRQ is not zero). The Kaplan-Meier estimate of the
survival probability prior to time s(1) is 1.0, while the Kaplan-Meier estimate of
the survival probability after the last failure time is not defined.

Greenwood’s estimate of the variance of
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Routine KAPMR computes the single sample estimates of the survival probabilities
for all samples of data included in X during a single call. This is accomplished
through the IGRP column of X, which if present, must contain a distinct code for
each sample of observations. If IGRP = 0, there is no grouping column, and all
observations are assumed to be from the same sample.

When failures and right-censored observations are tied and the data are to be
sorted by KAPMR (ISRT is not 1), KAPMR assumes that the time of censoring for
the tied-censored observations is immediately after the tied failure (within the
same sample). When the ISRT = 1 option is in effect, the data are assumed to be
sorted from smallest to largest according to column IRT of X within each stratum.
Furthermore, a small increment of time is assumed (theoretically) to elapse
between the failed and censored observations that are tied (in the same sample).
Thus, when the ISRT = 1 option is in effect, the user must sort all of the data in X
from smallest to largest according to column IRT (and column IGRP, if present).
By appropriate sorting of the observations, the user can handle censored and
failed observations that are tied in any manner desired.
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Example

The following example is taken from Kalbfleisch and Prentice (1980, page 1).
The first column in X contains the death/censoring times for rats suffering from
vaginal cancer. The second column contains information as to which of two forms
of treatment were provided, while the third column contains the censoring code.
Finally, the fourth column contains the frequency of each observation. The
product-limit estimates of the survival probabilities are computed for both groups
with one call to KAPMR. In this example, the output in SPROB has been
equivalenced with columns 5 and 6 of X so that the input and output matrices
could be printed together. Routine KAPMR could have been called with the
ISRT = 1 option in effect if the censored observations had been sorted with
respect to the failure time variable.

      INTEGER    ICEN, IFRQ, IGRP, IRT, ISRT, LDSPRO, LDX, NCOL, NOBS
      PARAMETER  (ICEN=3, IFRQ=4, IGRP=2, IRT=1, ISRT=0, LDSPRO=33,
     &           LDX=33, NCOL=6, NOBS=33)
C
      INTEGER    NOUT, NRMISS
      REAL       SPROB(LDSPRO,2), X(LDX,NCOL)
      CHARACTER  XLABEL(7)*6, YLABEL(1)*6
      EXTERNAL   KAPMR, UMACH, WRRRL
C
      EQUIVALENCE (X(1,5), SPROB)
C
      DATA XLABEL/’OBS’, ’TIME’, ’GROUP’, ’CENSOR’, ’FREQ’, ’S-HAT’,
     &     ’SE’/
      DATA YLABEL/’NUMBER’/
      DATA X/143, 164, 188, 190, 192, 206, 209, 213, 216, 220, 227,
     &     230, 234, 246, 265, 304, 216, 244, 142, 156, 163, 198, 205,
     &     232, 233, 239, 240, 261, 280, 296, 323, 204, 344, 18*5,
     &     15*7, 16*0, 2*1, 13*0, 4*1, 2, 20*1, 2, 4, 3*1, 2*2, 3*1,
     &     66*0/
C
      CALL KAPMR (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN, IGRP, ISRT,
     &            SPROB, LDSPRO, NRMISS)
C
      CALL WRRRL (’X/SPROB’, NOBS, 6, X, LDSPRO, 0, ’(W10.6)’, YLABEL,
     &            XLABEL)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,’(//’’ NRMISS = ’’, I5)’) NRMISS
      END

Output
                                 X/SPROB
 OBS     TIME       GROUP      CENSOR        FREQ       S-HAT          SE
 1    143.000       5.000       0.000       1.000       0.947       0.051
 2    164.000       5.000       0.000       1.000       0.895       0.070
 3    188.000       5.000       0.000       2.000       0.789       0.094
 4    190.000       5.000       0.000       1.000       0.737       0.101
 5    192.000       5.000       0.000       1.000       0.684       0.107
 6    206.000       5.000       0.000       1.000       0.632       0.111
 7    209.000       5.000       0.000       1.000       0.579       0.113
 8    213.000       5.000       0.000       1.000       0.526       0.115
 9    216.000       5.000       0.000       1.000       0.474       0.115
10    220.000       5.000       0.000       1.000       0.414       0.115



942 • Chapter 13: Survival Analysis, Life Testing, and Reliability IMSL STAT/LIBRARY

11    227.000       5.000       0.000       1.000       0.355       0.112
12    230.000       5.000       0.000       1.000       0.296       0.108
13    234.000       5.000       0.000       1.000       0.237       0.101
14    246.000       5.000       0.000       1.000       0.158       0.093
15    265.000       5.000       0.000       1.000       0.079       0.073
16    304.000       5.000       0.000       1.000       0.000         NaN
17    216.000       5.000       1.000       1.000       0.474       0.115
18    244.000       5.000       1.000       1.000       0.237       0.101
19    142.000       7.000       0.000       1.000       0.952       0.046
20    156.000       7.000       0.000       1.000       0.905       0.064
21    163.000       7.000       0.000       1.000       0.857       0.076
22    198.000       7.000       0.000       1.000       0.810       0.086
23    205.000       7.000       0.000       1.000       0.759       0.094
24    232.000       7.000       0.000       2.000       0.658       0.105
25    233.000       7.000       0.000       4.000       0.455       0.111
26    239.000       7.000       0.000       1.000       0.405       0.110
27    240.000       7.000       0.000       1.000       0.354       0.107
28    261.000       7.000       0.000       1.000       0.304       0.103
29    280.000       7.000       0.000       2.000       0.202       0.090
30    296.000       7.000       0.000       2.000       0.101       0.068
31    323.000       7.000       0.000       1.000       0.051       0.049
32    204.000       7.000       1.000       1.000       0.810       0.086
33    344.000       7.000       1.000       1.000         NaN         NaN

NRMISS =     0

KTBLE/DKTBLE (Single/Double precision)
Print Kaplan-Meier estimates of survival probabilities in stratified samples.

Usage
CALL KTBLE (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN, IGRP,
            ISRT, SPROB, LDSPRO)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IRT — Column number of X containing the response variable.   (Input)
For the i-th right-censored observation, X(i, IRT) contains the right-censoring
time. Otherwise, X(i, IRT) contains the failure time. See argument ICEN.

IFRQ — Frequency option.   (Input)
IFRQ = 0 means that all frequencies are 1.0. For positive IFRQ, column number
IFRQ of X contains the frequencies.
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ICEN — Column number of X containing the censoring code for this observation.
(Input)
If ICEN = 0, a censoring code of 0 is assumed. Valid censoring codes are:

Code Meaning
0 Exact failure at X(i, IRT).
1 Right censored. The response is greater than X(i, IRT).

If X(i, ICEN) is not zero or one, then the i-th observation is omitted from the
analysis.

IGRP — Column number of X containing the stratum number for this
observation.   (Input)
If IGRP = 0, the data are assumed to be from one stratum. Otherwise, column
IGRP of X contains a unique value for each stratum in the data. Kaplan-Meier
estimates are computed within each stratum.

ISRT — Sorting option.   (Input)
If ISRT = 1, column IRT of X is assumed to be sorted in ascending order within
each stratum. Otherwise, a detached sort will be performed by KTBLE. If sorting
is performed by KTBLE, all censored observations are assumed to follow failing
observations with the same response time in X (i, IRT).

SPROB — NOBS by 2 matrix.   (Input)
SPROB (i, 1) contains the estimated survival probability at time X(i, IRT) in the i-
th observation’s stratum, while SPROB(i, 2) contains Greenwood’s estimate of the
standard deviation of this estimated probability. SPROB will usually be computed
by routine KAPMR (page 938). It may contain missing values after the last failed
observation in each group.

LDSPRO — Leading dimension of SPROB exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

KTBLE 4 * NOBS + 3 * max(NOBS, NCOL) units, or
DKTBLE 6 * NOBS + 5 * max(NOBS, NCOL) units.

Workspace may be explicitly provided, if desired, by use of
K2BLE/DK2BLE. The reference is

CALL K2BLE (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN,
            IGRP, ISRT, SPROB, LDSPRO, ALGL, IPERM,
            INDDR, WK, WK1, IWK)

The additional arguments are as follows:

ALGL — Work vector of length NOBS that contains the log likelihoods
of the Kaplan-Meier estimates. If the number of groups is known to be m
or less, then ALGL can be of length m.

IPERM — Work vector of length NOBS.
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INDDR — Work vector of length NOBS.

WK — Work vector of length NOBS.

WK1 — Work vector of length 2 * max(NOBS, NCOL).

IWK — Work vector of length max(NOBS, NCOL).

2. Informational errors
Type Code
   4    1 An invalid value for SPROB has been detected. The

estimated survival probability must be between zero
and one, inclusive, and nonincreasing with failure time
within each group.

   4    2 A negative frequency has been detected.
   4    3 A missing value for SPROB has been detected but later

failures occur. Missing values are not allowed prior to
the last failed observation.

3. Missing values may occur in any of the columns of X. Any row of X that
contains missing values in the IRT, ICEN, or IFRQ columns (when the
ICEN and IFRQ columns are present) is omitted from the analysis.
Missing values in the IGRP column, if present, are classified into an
additional “missing” group.

Algorithm

Routine KTBLE prints life tables based upon the Kaplan-Meier estimates of the
survival probabilities (see routine KAPMR, page 938). One table for each stratum
is printed. In addition to the survival probabilities at each failure point, the
following is also printed: the number of individuals remaining at risk,
Greenwood’s estimate of the standard errors for the survival probabilities, and the
Kaplan-Meier log-likelihood. The Kaplan-Meier log-likelihood is computed as:

l = + − − −∑d d n d n d n nj j j j j j j j
j

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) )ln ln( ln

where the sum is with respect to the distinct failure times s(M), d(M) is the number of
failures occurring at time s(M), and n(M) is the number of observations that had not
yet failed immediately prior to s(M). Note that sorting is performed by both KAPMR

(page 938), and by routine KTBLE. The user may sort the data to be increasing in
failure time and then use the ISRT = 1 option to avoid this double sorting.

Example

This example illustrates the typical use of KTBLE. First, routine KAPMR (page 938)
is used to compute the survival probabilities. This is followed by a call to KTBLE

that performs the printing. The input data is given as:
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143, 164, 188(2), 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246,
265, 304, 216*, 244*, 142, 156, 163, 198, 205, 232(2), 233(4), 239,
240, 261, 280(2), 296(2), 323, 204 *, 344*

where items marked with an * are right censored; and the frequency of each
failure time, if different from 1, is given in parenthesis.

      INTEGER    ICEN, IFRQ, IGRP, IRT, ISRT, LDSPRO, LDX, NCOL, NOBS
      PARAMETER  (ICEN=3, IFRQ=4, IGRP=2, IRT=1, ISRT=0, LDSPRO=33,
     &           LDX=33, NCOL=4, NOBS=33)
C
      INTEGER    NRMISS
      REAL       SPROB(LDSPRO,2), X(LDX,NCOL)
      EXTERNAL   KAPMR, KTBLE
C
      DATA X/143, 164, 188, 190, 192, 206, 209, 213, 216, 220, 227,
     &     230, 234, 246, 265, 304, 216, 244, 142, 156, 163, 198, 205,
     &     232, 233, 239, 240, 261, 280, 296, 323, 204, 344, 18*5,
     &     15*7, 16*0, 2*1, 13*0, 4*1, 2, 20*1, 2, 4, 3*1, 2*2, 3*1/
C
      CALL KAPMR (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN, IGRP, ISRT,
     &            SPROB, LDSPRO, NRMISS)
C
      CALL KTBLE (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN, IGRP, ISRT,
     &            SPROB, LDSPRO)
      END

Output
Kaplan Meier Survival Probabilities
For Group Value =      5.00000

Number      Number                 Survival     Estimated
at risk     Failing        Time  Probability    Std. Error
     19           1         143      0.94737       0.05123
     18           1         164      0.89474       0.07041
     17           2         188      0.78947       0.09353
     15           1         190      0.73684       0.10102
     14           1         192      0.68421       0.10664
     13           1         206      0.63158       0.11066
     12           1         209      0.57895       0.11327
     11           1         213      0.52632       0.11455
     10           1         216      0.47368       0.11455
      8           1         220      0.41447       0.11452
      7           1         227      0.35526       0.11243
      6           1         230      0.29605       0.10816
      5           1         234      0.23684       0.10145
      3           1         246      0.15789       0.09343
      2           1         265      0.07895       0.07279
      1           1         304      0.00000           NaN

Total number in group    =       19
Total number failing     =       17
Product Limit Likelihood =      -49.1692
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               Kaplan Meier Survival Probabilities
                  For Group Value =      7.00000
Number      Number                 Survival     Estimated
at risk     Failing        Time  Probability    Std. Error
     21           1         142      0.95238       0.04647
     20           1         156      0.90476       0.06406
     19           1         163      0.85714       0.07636
     18           1         198      0.80952       0.08569
     16           1         205      0.75893       0.09409
     15           2         232      0.65774       0.10529
     13           4         233      0.45536       0.11137
      9           1         239      0.40476       0.10989
      8           1         240      0.35417       0.10717
      7           1         261      0.30357       0.10311
      6           2         280      0.20238       0.09021
      4           2         296      0.10119       0.06778
      2           1         323      0.05060       0.04928

Total number in group    =       21
Total number failing     =       19
Product Limit Likelihood =      -50.4277

TRNBL/DTRNBL (Single/Double precision)
Compute Turnbull’s generalized Kaplan-Meier estimates of survival probabilities
in samples with interval censoring.

Usage
CALL TRNBL (NOBS, NCOL, X, LDX, ILT, IRT, IFRQ, ICEN,
            MAXIT, EPS, IPRINT, NINTVL, SPROB, LDSPRO,
            ALGL, NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

ILT — For interval-censored and left-censored observations, the column number
in X that contains the upper endpoint of the failure interval.   (Input)
See argument ICEN. If ILT = 0, left-censored and interval-censored observations
cannot be input.

IRT — For interval-censored and right-censored observations, the column
number in X that contains the lower endpoint of the failure interval.   (Input)
See argument ICEN. IRT must not be zero.
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IFRQ — Frequency option.   (Input)
If IFRQ = 0, a response frequency of 1 for each observation is assumed. For
positive IFRQ, column number IFRQ contains the frequency of response for each
observation.

ICEN — Censoring code option.   (Input)
If ICEN = 0, a censoring code of 0 is assumed. For positive ICEN, column number
ICEN contains the censoring code for each observation. Valid censoring codes
are:

Code Meaning
0 Exact failure at X(i, IRT).
1 Right censored. The response is greater than X(i, IRT).
2 Left censored. The response is less than or equal to X(i, ILT).
3 Interval censored. The response is greater than X(i, IRT), but less than or

equal to X(i, ILT).

MAXIT — Maximum number of iterations.   (Input)

EPS — Convergence criterion.   (Input)
Convergence is assumed when the relative change in the log-likelihood from one
iteration to the next is less than EPS. EPS = 0.00001 is typical.

IPRINT — Printing option.   (Input)
IPRINT = 0 means that no printing is performed. IPRINT = 1 means that printing
is performed.

NINTVL — Number of failure intervals found.   (Output)

SPROB — NINTVL by 4 matrix.   (Output)

Col. Description
1 Lower endpoint of the failure interval
2 Upper endpoint of the failure interval
3 Estimated change in the survival probability density within the failure

interval
4 Estimate of the survival probability for the interval

The estimated survival probability is a constant equal to SPROB(i, 4) from SPROB
(i, 2) to SPROB(i + 1, 1). The estimated survival probability is 1 prior to SPROB(1,
1). The estimated survival probability is undefined in the interval SPROB(i, 1) to
SPROB(i, 2). If the NINTVL-th interval is from SPROB(NINTVL, 1) to infinity, then
SPROB(NINTVL, 2) is set to positive machine infinity.

LDSPRO — Leading dimension of SPROB exactly as specified in the dimension
statement in the calling program.   (Input)
If LDSPRO is less than NINTVL, only the first LDSPRO intervals are returned in
SPROB.

ALGL — Optimized log-likelihood for the input data.   (Output)
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NRMISS — Number of rows of data in X that contain missing values.   (Output)
Any row of X that contains missing values in the ILT, IRT, ICEN, or IFRQ
columns (when the ILT, ICEN or IFRQ is positive) is omitted from the analysis.

Comments

1. Automatic workspace usage is

TRNBL 9 * NOBS + 3 * max(NOBS, 7) units, or
DTRNBL 16 * NOBS + 5 * max(NOBS, 7) units.

Workspace may be explicitly provided, if desired, by use of
T2NBL/DT2NBL. The reference is

CALL T2NBL (NOBS, NCOL, X, LDX, ILT, IRT, IFRQ,
            ICEN, MAXIT, EPS, IPRINT, NINTVL, SPROB,
            LDSPRO, ALGL, NRMISS, WK, IPERM, INDDR,
            WWK, IWK)

The additional arguments are as follows:

WK — Work vector of length 7 * NOBS.

IPERM — Work vector of length NOBS.

INDDR — Work vector of length NOBS.

WWK — Work vector of length 2 * max(NOBS, 7).

IWK — Work vector of length max(NOBS, 7).

2. Informational errors
Type Code
   3    3 The maximum number of iterations was exceeded.

Convergence is assumed.
   4    1 There are no valid observations.
   4    2 There are no finite failure intervals present in the data.

Algorithm

Routine TRNBL computes nonparametric maximum likelihood estimates of a
survival distribution based upon a random sample of data containing exact failure,
right-censored, leftcensored (interval censored with a left endpoint of zero), or
interval-censored observations. The computational method of Turnbull (1976) is
used in computing the probability estimates. The model used is also discussed by
Peto (1973).

Routine TRNBL begins by finding a set of regions or “failure intervals” (to
distinguish them from “observation failure intervals”) on the positive real axis in
which a change in the survival probability occurs. The survival probability is
constant outside of these regions, and undefined within them. Each region
(failure interval) is composed of a single left and a single right endpoint
obtained from the left and right endpoints of the observation failure intervals
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(for exact failure times, the left and right endpoints are equal). The regions are
defined by the fact that no observation interval endpoints are allowed within a
region, except at its endpoints. Note that the endpoints of the intervals need not
correspond to a single observation. Regions defined by endpoints from two
distinct observations are often obtained.

Let pL, i = 1, …, NINTVL denote the change in the survival probability within the
i-th region, and let the region be denoted by cL. Let n = NOBS and suppose that the
observation failure interval for observation j is denoted by IM. The EM
(expectation, maximization) algorithm of Dempster, Laird and Rubin (1977) is
used to find the optimal

$ ’p si

The algorithm is defined as follows:

For given

$pi

compute the expected contribution of the j-th observation to the i-th change
interval as

$
$
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where δLM = 1 if cL ⊆ IM and δLM = 0 otherwise, and fM is the observation frequency.

For given expectations

$µ ij

compute the new probability estimate as
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Iterate in this manner until convergence. Convergence is assumed when the
relative change in the log-likelihood

( $ ))l = ∑ ∑j j i ij jf pln( δ

is small (less than EPS). Because the algorithm is slow to converge, 5
expectation-maximization cycles are considered to be one iteration of the
algorithm. The initial estimate for all the

$ ’p si

is taken to be one divided by the number of regions (failure intervals).
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Example

The following example contains exact failure, right-, left-, and interval-censored
observations. The 20 observations yield 15 change intervals. The last interval is
from 192 to ∞, and corresponds to a right-censored observation. When the last
interval is infinite, as is the case here, the second column of SPROB contains +∞
in the NINTVL-th position. Left-or right-censored observations input in X are
arbitrarily assigned the value 0.0 for the non-specified endpoint.

      INTEGER    ICEN, IFRQ, ILT, IPRINT, IRT, LDSPRO, LDX, MAXIT,
     &           NCOL, NOBS
      REAL       EPS
      PARAMETER  (EPS=0.00001, ICEN=4, IFRQ=3, ILT=1, IPRINT=1, IRT=2,
     &           LDSPRO=20, LDX=20, MAXIT=30, NCOL=4, NOBS=20)
C
      INTEGER    NINTVL, NRMISS
      REAL       ALGL, SPROB(LDSPRO,4), X(LDX,NCOL)
      EXTERNAL   TRNBL, WRRRN
C
      DATA X/0.9, 1.9, 2.5, 3.5, 6.3, 7.1, 18., 25.1, 25.3, 30.3, 45.9,
     &     63.5, 70.1, 73.0, 93.0, 94.4, 96.0, 0.0, 191.4, 0.0, 0.9,
     &     0.0, 0.0, 0.0, 6.3, 1.9, 1.8, 25.1, 9.5, 30.3, 45.9,
     &     60.7, 70.1, 71.0, 74.0, 94.4, 96.0, 96.0, 191.4, 192.0,
     &     17*1.0, 5.0, 1.0, 1.0, 0.0, 2.0, 2.0, 2.0, 0.0, 3.0, 3.0,
     &     0.0, 3.0, 0.0, 0.0, 3.0, 0.0, 3.0, 3.0, 0.0, 0.0, 1.0, 0.0,
     &     1.0/
C
      CALL WRRRN (’X’, NOBS, NCOL, X, LDX, 0)
C
      CALL TRNBL (NOBS, NCOL, X, LDX, ILT, IRT, IFRQ, ICEN, MAXIT,
     &            EPS, IPRINT, NINTVL, SPROB, LDSPRO, ALGL, NRMISS)
C
      END

Output
                 X
         1       2       3       4
 1     0.9     0.9     1.0     0.0
 2     1.9     0.0     1.0     2.0
 3     2.5     0.0     1.0     2.0
 4     3.5     0.0     1.0     2.0
 5     6.3     6.3     1.0     0.0
 6     7.1     1.9     1.0     3.0
 7    18.0     1.8     1.0     3.0
 8    25.1    25.1     1.0     0.0
 9    25.3     9.5     1.0     3.0
10    30.3    30.3     1.0     0.0
11    45.9    45.9     1.0     0.0
12    63.5    60.7     1.0     3.0
13    70.1    70.1     1.0     0.0
14    73.0    71.0     1.0     3.0
15    93.0    74.0     1.0     3.0
16    94.4    94.4     1.0     0.0
17    96.0    96.0     1.0     0.0
18     0.0    96.0     5.0     1.0
19   191.4   191.4     1.0     0.0
20     0.0   192.0     1.0     1.0
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      Iteration   Log-Likelihood   Relative convergence
              0     -54.94             ............
              1     -52.14               0.5367E-01
              2     -52.09               0.8407E-03
              3     -52.09               0.1372E-03
              4     -52.09               0.2476E-04
              5     -52.08               0.4614E-05

SPROB
                Lower        Upper     Interval     Survival
Interval     Endpoint     Endpoint  Probability  Probability
       1       0.9000       0.9000       0.0972       0.9028
       2       1.9000       1.9000       0.1215       0.7813
       3       6.3000       6.3000       0.0729       0.7083
       4       9.5000      18.0000       0.0000       0.7083
       5      25.1000      25.1000       0.0833       0.6250
       6      30.3000      30.3000       0.0417       0.5833
       7      45.9000      45.9000       0.0417       0.5417
       8      60.7000      63.5000       0.0417       0.5000
       9      70.1000      70.1000       0.0417       0.4583
      10      71.0000      73.0000       0.0417       0.4167
      11      74.0000      93.0000       0.0417       0.3750
      12      94.4000      94.4000       0.0417       0.3333
      13      96.0000      96.0000       0.1111       0.2222
      14     191.4000     191.4000       0.1111       0.1111
      15     192.0000          Inf       0.1111       0.0000

PHGLM/DPHGLM (Single/Double precision)
Analyze time event data via the proportional hazards model.

Usage
CALL PHGLM (NOBS, NCOL, X, LDX, IRT, IFRQ, IFIX, ICEN,
            ISTRAT, MAXIT, EPS, RATIO, NCLVAR, INDCL, NEF,
            NVEF, INDEF, INIT, ITIE, IPRINT, MAXCL, NCLVAL,
            CLVAL, NCOEF, COEF, LDCOEF, ALGL, COV, LDCOV,
            XMEAN, CASE, LDCASE, GR, IGRP, NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)
When ITIE = 1, the observations in X must be grouped by stratum and sorted
from largest to smallest failure time within each stratum, with the strata separated.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IRT — Column number in X containing the response variable.   (Input)
For point observations, X(i, IRT) contains the time of the i-th event. For right-
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censored observations, X(i, IRT) contains the right-censoring time. Note that
because PHGLM only uses the order of the events, negative “times” are allowed.

IFRQ — Column number in X containing the frequency of response for each
observation.   (Input)
If IFRQ = 0, a response frequency of 1 for each observation is assumed.

IFIX — Column number in X containing a constant to be added to the linear
response.   (Input)
The linear response is taken to be

w zi i+ $β

where wL is the observation constant, zL is the observation design row vector, and

$β
is the vector of estimated parameters. The “fixed” constant allows one to test
hypotheses about parameters via the log-likelihoods. If IFIX = 0, the fixed
parameter is assumed to be 0.

ICEN — Column number in X containing the censoring code for each
observation.   (Input)

If ICEN = 0 a censoring code of 0 is assumed for all observations.

X(i, ICEN) Censoring
0       Point observation at X(i, IRT).
1       Right censored. The response is greater than X(i, IRT).

ISTRAT — Column number in X containing the stratification variable.   (Input)
If ISTRAT = 0, all observations are considered to be in one stratum. Otherwise,
column ISTRAT in X contains a unique number for each stratum. The risk set for
an observation is determined by the its stratum.

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 30 will usually be sufficient. Use MAXIT = 0 to compute the Hessian and
gradient, stored in COV and GR, at the initial estimates. When MAXIT = 0, INIT
must be 1.

EPS — Convergence criterion.   (Input)
Convergence is assumed when the relative change in ALGL from one iteration to
the next is less than EPS. If EPS is zero, EPS = 0.0001 is assumed.

RATIO — Ratio at which a stratum is split into two strata.   (Input)
Let

r z wk k k= exp( $ )β +

be the observation proportionality constant, where zN is the design row vector for
the k-th observation and wN is the optional fixed parameter specified by
X(k, IFIX). Let r$ be the minimum value rN in a stratum, where, for failed
observations, the minimum is over all times less than or equal to the time of
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occurrence of the k-th observation. Let r" be the maximum value of rN for the
remaining observations in the group. Then, if r$ > RATIO r", the
observations in the group are divided into two groups at k. RATIO = 1000 is
usually a good value. Set RATIO = −1.0 if no division into strata is to be made.

NCLVAR — Number of classification variables.   (Input)
Dummy variables are generated for classification variables using the IDUMMY = 2
option of IMSL routine GRGLM (page 210). See Comment 3.

INDCL — Index vector of length NCLVAR containing the column numbers of X

that are the classification variables. (Input, if NCLVAR is positive, not used
otherwise)
If NCLVAR is 0, INDCL is not referenced and can be dimensioned of length 1 in
the calling program.

NEF — Number of effects in the model.   (Input)
In addition to effects involving classification variables, simple covariates and the
product of simple covariates are also considered effects.

NVEF — Vector of length NEF containing the number of variables associated
with each effect in the model.   (Input)

INDEF — Index vector of length NVEF(1) + … + NVEF(NEF) containing the
column numbers of X associated with each effect.   (Input)
The first NVEF(1) elements of INDEF contain the column numbers of X for the
variables in the first effect. The next NVEF(2) elements in INDEF contain the
column numbers for the second effect, etc.

INIT — Initialization option.   (Input)
If INIT = 1, then the NCOEF elements of column 1 of COEF contain the initial
estimates on input to PHGLM. For INIT = 0, all initial estimates are taken to be 0.

ITIE — Option parameter containing the method to be used for handling ties.
(Input)

ITIE Method
0 Breslow’s approximate method
1 Failures are assumed to occur in the same order as the observations input

in X. The observations in X must be sorted from largest to smallest
failure time within each stratum, and grouped by stratum. All
observations are treated as if their failure/censoring times were distinct
when computing the log-likelihood.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing is performed, but observational statistics are not printed.
2 All output statistics are printed.
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MAXCL — An upper bound on the sum of the number distinct values taken by
the classification variables.   (Input)

NCLVAL — Vector of length NCLVAR containing the number of values taken by
each classification variable.   (Output, if NCLVAR is positive, not used otherwise)
NCLVAL(i) is the number of distinct values for the i-th classification variable. If
NCLVAR is zero, NCLVAL is not used and can be dimensioned of length 1 in the
calling program.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR)
containing the distinct values of the classification variables.   (Output, if NCLVAR

is positive, not used otherwise)
The first NCLVAL(1) elements of CLVAL contain the values for the first
classification variable, the next NCLVAL(2) elements contain the values for the
second classification variable, etc. If NCLVAR is zero, then NCLVAL is not
referenced and can be dimensioned of length 1 in the calling program.

NCOEF — Number of estimated coefficients in the model.   (Output)

COEF — NCOEF by 4 matrix containing the parameter estimates and associated
statistics.   (Output, if INIT = 0; input, if INIT = 1 and MAXIT = 0, input/output,
if INIT = 1 and MAXIT > 0)

Col. Statistic
1 Coefficient estimate

$β
2 Estimated standard deviation of the estimated coefficient.
3 Asymptotic normal score for testing that the coefficient is zero against

the two-sided alternative.
4 p-value associated with the normal score in column 3.

When COEF is input, only column 1 needs to be given.

LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

ALGL — The maximized log-likelihood.   (Output)

COV — NCOEF by NCOEF matrix containing the estimated asymptotic variance-
covariance matrix of the parameters.   (Output)
For MAXIT = 0, COV is the inverse of the Hessian of the negative of the log-
likelihood, computed at the estimates input in COEF.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

XMEAN — Vector of length NCOEF containing the means of the design variables.
(Output)

CASE — NOBS by 5 matrix containing the case statistics for each observation.
(Output if MAXIT > 0; used as working storage otherwise)
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Col. Statistic
1 Estimated survival probability at the observation time.
2 Estimated observation influence or leverage.
3 A residual estimate.
4 Estimated cumulative baseline hazard rate.
5 Observation proportionality constant.

LDCASE — Leading dimension of CASE exactly as specified in the dimension
statement in the calling program.   (Input)

GR — Vector of length NCOEF containing the last parameter updates (excluding
step halvings).   (Output)
For MAXIT = 0, GR contains the inverse of the Hessian times the gradient vector
computed at the estimates input in COEF.

IGRP — Vector of length NOBS giving the stratum number used for each
observation.   (Output)
If RATIO is not −1.0, additional “strata” (other than those specified by column
ISTRAT of X) may be generated. IGRP also contains a record of the generated
strata. See the algorithm section for more detail.

NRMISS — Number of rows of data in X that contain missing values in one or
more columns IRT, IFRQ, IFIX, ICEN, ISTRAT, INDCL, or INDEF of X.
(Output)

Comments

1. Automatic workspace usage is

PHGLM 2 * NOBS + 3 * NCOEF + max(NCOEF * NCOEF, 2) +
3 * MAX(NOBS, NCOL) + 1 units, or

DPHGLM 2 * NOBS + 5 * NCOEF + 2 * max(NCOEF * NCOEF,
2) + 3 * max(NOB, NCOL) + 2 units.

Workspace may be explicitly provided, if desired, by use of
P2GLM/DP2GLM. The reference is

CALL P2GLM (NOBS, NCOL, X, LDX, IRT, IFRQ, IFIX,
            ICEN, ISTRAT, MAXIT, EPS, RATIO, NCLVAR,
            INDCL, NEF, NVEF, INDEF, INIT, ITIE,
            IPRINT, MAXCL, NCLVAL, CLVAL, NCOEF,
            COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN,
            CASE, LDCASE, GR, IGRP, NRMISS, OBS,
            SMG, SMH, IPTR, IDT, IWK)

The additional arguments are as follows:

OBS — Work vector of length NCOEF + 1.

SMG — Work vector of length NCOEF.

SMH — Work vector of length max(NCOEF * NCOEF, 2).

IPTR — Work vector of length NOBS + NCOEF.

IDT — Work vector of length NOBS.
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IWK — Work vector of length 3 * max(NOBS, NCOL)

2. Informational errors
Type Code
   3    1 Too many iterations required. Convergence assumed.
   3    2 Too many step halvings. Convergence assumed.
   3    3 Additional strata were formed as required because of

the detection of infinite parameter estimates.
   4    4 The number of distinct values of the classification

variables exceeds MAXCL.
   4    5 The model specified by NEF, NVEF, and INDEF yields

no covariates.
   4    6 After eliminating observations with missing values, no

valid observations remain.
   4    7 After eliminating observations with missing values,

only one covariate vector remains.
   4    8 The number of distinct values for each classification

variable must be greater than one.
   4    9 LDCOEF or LDCOV must be greater or equal to NCOEF.

3. Dummy variables are generated for the classification variables as
follows: An ascending list of all distinct values of the classification
variable is obtained and stored in CLVAL. Dummy variables are then
generated for each but the last of these distinct values. Each dummy
variable is zero unless the classification variable equals the list value
corresponding to the dummy variable, in which case, the dummy
variable is one. See argument IDUMMY for IDUMMY = 2 in routine GRGLM
(page 210) in Chapter 2.

4. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

5. The “product” of two classification variables yields dummy variables in
the usual manner. Each dummy variable associated with the first
classification variable multiplies each dummy variable associated with
the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Algorithm

Routine PHGLM computes parameter estimates and other statistics in Proportional
Hazards Generalized Linear Models. These models were first proposed by Cox
(1972). Two methods for handling ties are allowed in PHGLM. Time-dependent
covariates are not allowed. The user is referred to Cox and Oakes (1984),
Kalbfleisch and Prentice (1980), Elandt-Johnson and Johnson (1980), Lee
(1980), or Lawless (1982), among other texts, for a thorough discussion of the
Cox proportional hazards model.
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Let λ(t, zL) represent the hazard rate at time t for observation number i with
covariables contained as elements of row vector zL. The basic assumption in the
proportional hazards model (the proportionality assumption) is that the hazard
rate can be written as a product of a time varying function λ0(t), which depends
only on time, and a function ƒ(zL), which depends only on the covariable values.

The function ƒ(zL) used in PHGLM is given as ƒ(zL) = exp(wL + βzL) where wL is a

fixed constant assigned to the observation, and β is a vector of coefficients to be
estimated. With this function one obtains a hazard rate λ(t, zL) = λ0(t) exp(wL +
βzL). The form of λ0(t) is not important in proportional hazards models.

The constants wL may be known theoretically. For example, the hazard rate may
be proportional to a known length or area, and the wL can then be determined
from this known length or area. Alternatively, the wL may be used to fix a subset

of the coefficients β (say, β1) at specified values. When wL�is used in this way,

constants wL = β1z1L are used, while the remaining coefficients in β are free to vary
in the optimization algorithm. If user-specified constants are not desired, the user
should set IFIX to 0 so that wL = 0 will be used.

With this definition of λ(t, zL), the usual partial (or marginal, see Kalbfleisch and
Prentice (1980)) likelihood becomes

L
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where R(tL) denotes the set of indices of observations that have not yet failed at
time tL (the risk set), tL denotes the time of failure for the i-th observation, nG is the
total number of observations that fail. Right-censored observations (i.e.,
observations that are known to have survived to time tL, but for which no time of
failure is known) are incorporated into the likelihood through the risk set R(tL).
Such observations never appear in the numerator of the likelihood. When ITIE =
0, all observations that are censored at time tL are not included in R(tL), while all
observations that fail at time tL are included in R(tL).

If it can be assumed that the dependence of the hazard rate upon the covariate
values remains the same from stratum to stratum, while the time-dependent term, 
λ0(t), may be different in different strata, then PHGLM allows the incorporation of
strata into the likelihood as follows. Let k index the m = NSTRAT strata. Then, the
likelihood is given by
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In PHGLM, the log of the likelihood is maximized with respect to the coefficients β
. A quasi-Newton algorithm approximating the Hessian via the matrix of sums
of squares and cross products of the first partial derivatives is used in the initial
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iterations (the “Q-N” method in the output). When the change in the log-
likelihood from one iteration to the next is less than 100*EPS, Newton-Raphson
iteration is used (the “N-R” method). If, during any iteration, the initial step does
not lead to an increase in the log-likelihood, then step halving is employed to find
a step that will increase the log-likelihood.

Once the maximum likelihood estimates have been computed, PHGLM computes
estimates of a probability associated with each failure. Within stratum k, an
estimate of the probability that the i-th observation fails at time tL given the risk
set R(tNL) is given by

p
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A diagnostic “influence” or “leverage” statistic is computed for each noncensored
observation as:

l g H gki ki s ki= − ′ ′−1

where HV is the matrix of second partial derivatives of the log-likelihood, and
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Influence statistics are not computed for censored observations.

A “residual” is computed for each of the input observations according to methods
given in Cox and Oakes (1984, page 108). Residuals are computed as
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where dNM is the number of tied failures in group k at time tNM. Assuming that the
proportional hazards assumption holds, the residuals should approximate a
random sample (with censoring) from the unit exponential distribution. By
subtracting the expected values, centered residuals can be obtained. (The j-th
expected order statistic from the unit exponential with censoring is given as

e j l j h l= ∑ ≤ − +
1

1

where h is the sample size, and censored observations are not included in the
summation.)

An estimate of the cumulative baseline hazard within group k is given as
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The observation proportionality constant is computed as

exp( $ )w zki ki+ β

Programming Notes

1. The covariate vectors zNL are computed from each row of the input matrix
X via routine GRGLM (page 210). Thus, class variables are easily
incorporated into the zNL. The reader is referred to the document for
GRGLM in the regression chapter for a more detailed discussion. Note that
PHGLM calls GRGLM with the option IDUMMY = 2.

2. The average of each of the explanatory variables is subtracted from the
variable prior to computing the product zNLβ. Subtraction of the mean
values has no effect on the computed log-likelihood or the estimates
since the constant term occurs in both the numerator and denominator of
the likelihood. Subtracting the mean values does help to avoid invalid
exponentiation in the algorithm and may also speed convergence.

3. Routine PHGLM allows for two methods of handling ties. In the first
method (ITIE = 1), the user is allowed to break ties in any manner
desired. When this method is used, it is assumed that the user has sorted
the rows in X from largest to smallest with respect to the
failure/censoring times X(i, IRT) within each stratum (and across strata),
with tied observations (failures or censored) broken in the manner
desired. The same effect can be obtained with ITIE = 0 by adding (or
subtracting) a small amount from each of the tied observations failure/
censoring times tL = X(i, IRT) so as to break the ties in the desired
manner.

The second method for handling ties (ITIE = 0) uses an approximation
for the tied likelihood proposed by Breslow (1974). The likelihood in
Breslow’s method is as specified above, with the risk set at time
tiincluding all observations that fail at time tL, while all observations that
are censored at time tiare not included. (Tied censored observations are
assumed to be censored immediately prior to the time tL).

4. If INIT = 1, then it is assumed that the user has provided initial
estimates for the model coefficients β in the first column of the matrix
COEF. When initial estimates are provided by the user, care should be
taken to ensure that the estimates correspond to the generated covariate
vector zNL. If INIT = 0, then initial estimates of zero are used for all of
the coefficients. This corresponds to no effect from any of the covariate
values.

5. If a linear combination of covariates is monotonically increasing or
decreasing with increasing failure times, then one or more of the



960 • Chapter 13: Survival Analysis, Life Testing, and Reliability IMSL STAT/LIBRARY

estimated coefficients is infinite and extended maximum likelihood
estimates must be computed. Such estimates may be written as

$ $ $β β ργ= +f

where ρ = ∞ at the supremum of the likelihood so that

$β f

is the finite part of the solution. In PHGLM, it is assumed that extended
maximum likelihood estimates must be computed if, within any group k,
for any time t,

min exp( exp(
t t

ki ki
t t

ki ki
ki ki

w z w z
< <

+ > +$ ) max $ )β ρ β

where ρ = RATIO is specified by the user. Thus, for example, if
ρ = 10000, then PHGLM does not compute extended maximum likelihood
estimates until the estimated proportionality constant

exp(w zki ki+ $ )β

is 10000 times larger for all observations prior to t than for all
observations after t. When this occurs, PHGLM computes estimates for

$β f

by splitting the failures in stratum k into two strata at t (see Bryson and
Johnson 1981). Censored observations in stratum k are placed into a
stratum based upon the associated value for

exp(w zki ki+ $ )β

The results of the splitting are returned in IGRP.

The estimates

$β f

based upon the stratified likelihood represent the finite part of the
extended maximum likelihood solution. Routine PHGLM does not
compute

$γ
explicitly, but an estimate for

$γ

may be obtained in some circumstances by setting RATIO = −1 and
optimizing the log-likelihood without forming additional strata. The
solution

$β
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obtained will be such that

$ $ $β β ργ= +f

for some finite value of ρ > 0. At this solution, the Newton-Raphson
algorithm will not have “converged” because the Newton-Raphson step
sizes returned in GR will be large, at least for some variables.
Convergence will be declared, however, because the relative change in
the log-likelihood during the final iterations will be small.

Example 1

The following data are taken from Lawless (1982, page 287) and involve the
survival of lung cancer patients based upon their initial tumor types and treatment
type. In the first example, the likelihood is maximized with no strata present in
the data. This corresponds to Example 7.2.3 in Lawless (1982, page 367). The
input data is printed in the output. The model is given as:

ln( ) = 1λ β β β α γx x x i j1 2 2 3 3+ + + +

where αL and γM correspond to dummy variables generated from columns 6 and 7
of X, respectively, x1 corresponds to column 3 of X, x2 corresponds to column 4 of
X, and x3 corresponds to column 5 of X.

      INTEGER    ICEN, IFIX, IFRQ, INIT, IPRINT, IRT, ISTRAT, ITIE,
     &           LDCASE, LDCOEF, LDCOV, LDX, MAXCL, MAXIT, NCLVAR,
     &           NCOL, NEF, NOBS
      REAL       EPS, RATIO
      PARAMETER  (EPS=0.0001, ICEN=2, IFIX=0, IFRQ=0, INIT=0,
     &           IPRINT=2, IRT=1, ISTRAT=0, ITIE=0, LDCOEF=7, LDX=40,
     &           MAXCL=10, MAXIT=30, NCLVAR=2, NCOL=7, NEF=5,
     &           RATIO=10000.0, LDCASE=LDX, LDCOV=LDCOEF, NOBS=LDX)
C
      INTEGER    IGRP(NOBS), INDCL(NCLVAR), INDEF(5), NCLVAL(NCLVAR),
     &           NCOEF, NRMISS, NVEF(NEF)
      REAL       ALGL, CASE(LDCASE,5), CLVAL(6), COEF(LDCOEF,4),
     &           COV(LDCOV,LDCOV), GR(LDCOV), X(LDX,NCOL), XMEAN(LDCOV)
      EXTERNAL   PHGLM, WRRRL
C
      DATA X/411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287,
     &     10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201,
     &     44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231,
     &     5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6,
     &     3, 8, 4, 6, 4, 2, 5, 5, 4, 8, 7, 6, 9, 5, 7, 2, 8, 6, 5, 7,
     &     4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65, 69, 63, 48,
     &     48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37,
     &     54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68,
     &     39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2,
     &     25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13,
     &     22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3,
     &     5*4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1/
      DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/
C
      CALL WRRRL (’The First 10 Rows of the Input Data’, 10, NCOL,
     &             X, LDX, 0, ’(I7)’, ’Number’, ’Number’)
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C
      CALL PHGLM (NOBS, NCOL, X, LDX, IRT, IFRQ, IFIX, ICEN, ISTRAT,
     &            MAXIT, EPS, RATIO, NCLVAR, INDCL, NEF, NVEF, INDEF,
     &            INIT, ITIE, IPRINT, MAXCL, NCLVAL, CLVAL, NCOEF,
     &            COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE, LDCASE,
     &            GR, IGRP, NRMISS)
C
      END

Output
               The First 10 Rows of the Input Data
          1        2        3        4        5        6        7
 1      411        0        7       64        5        1        0
 2      126        0        6       63        9        1        0
 3      118        0        7       65       11        1        0
 4       92        0        4       69       10        1        0
 5        8        0        4       63       58        1        0
 6       25        1        7       48        9        1        0
 7       11        0        7       48       11        1        0
 8       54        0        8       63        4        2        0
 9      153        0        6       63       14        2        0
10       16        0        3       53        4        2        0

                      Initial Estimates
      1        2        3        4        5        6        7
 0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000

 Method  Iteration  Step size  Maximum scaled     Log
                                coef. update      likelihood
   Q-N        0                                  -102.4
   Q-N        1      1.0000      0.5034           -91.04
   Q-N        2      1.0000      0.5782           -88.07
   N-R        3      1.0000      0.1131           -87.92
   N-R        4      1.0000      0.6958E-01       -87.89
   N-R        5      1.0000      0.8144E-03       -87.89

 Log-likelihood       -87.88779

                 Coefficient Statistics
                     Standard    Asymptotic    Asymptotic
    Coefficient         error   z-statistic       p-value
1        -0.585         0.137        -4.272         0.000
2        -0.013         0.021        -0.634         0.526
3         0.001         0.012         0.064         0.949
4        -0.367         0.485        -0.757         0.449
5        -0.008         0.507        -0.015         0.988
6         1.113         0.633         1.758         0.079
7         0.380         0.406         0.936         0.349
                   Asymptotic Coefficient Covariance
              1             2             3             4             5
1    0.1873E-01    0.2530E-03    0.3345E-03    0.5745E-02    0.9750E-02
2                  0.4235E-03   -0.4120E-04   -0.1663E-02   -0.7954E-03
3                                0.1397E-03    0.8111E-03   -0.1831E-02
4                                              0.2350        0.9799E-01
5                                                            0.2568
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              6             7
1    0.4264E-02    0.2082E-02
2   -0.3079E-02   -0.2898E-02
3    0.5995E-03    0.1684E-02
4    0.1184        0.3735E-01
5    0.1253       -0.1944E-01
6    0.4008        0.6289E-01
7                  0.1647

                               Case Analysis
        Survival                                Cumulative  Proportionality
     Probability     Influence      Residual        hazard         constant
 1          0.00          0.04          2.05          6.10             0.3
 2          0.30          0.11          0.74          1.21             0.61
 3          0.34          0.12          0.36          1.07             0.33
 4          0.43          0.16          1.53          0.84             1.83
 5          0.96          0.56          0.09          0.05             2.05
 6          0.74           NaN          0.13          0.31             0.42
 7          0.92          0.37          0.03          0.08             0.42
 8          0.59          0.26          0.14          0.53             0.27
 9          0.26          0.12          1.20          1.36             0.88
10          0.85          0.15          0.97          0.17             5.76
11          0.55          0.31          0.21          0.60             0.36
12          0.74          0.21          0.96          0.31             3.12
13          0.03          0.06          3.02          3.53             0.86
14          0.94          0.09          0.17          0.06             2.71
15          0.96          0.16          1.31          0.05            28.89
16          0.89          0.23          0.59          0.12             4.82
17          0.18          0.09          2.62          1.71             1.54
18          0.89          0.19          0.33          0.12             2.68
19          0.14          0.23          0.72          1.96             0.37
20          0.05          0.09          1.66          2.95             0.56
21          0.39          0.22          1.17          0.94             1.25
22          0.00          0.00          1.73         21.11             0.08
23          0.08           NaN          2.19          2.52             0.87
24          0.00          0.00          2.46          8.89             0.28
25          0.99          0.31          0.05          0.01             4.28
26          0.11          0.17          0.34          2.23             0.15
27          0.66          0.25          0.16          0.41             0.38
28          0.87          0.22          0.15          0.14             1.02
29          0.39           NaN          0.45          0.94             0.48
30          0.98          0.25          0.06          0.02             2.53
31          0.77          0.26          1.03          0.26             3.90
32          0.63          0.35          1.80          0.46             3.88
33          0.82          0.26          1.06          0.19             5.47
34          0.47          0.26          1.65          0.75             2.21
35          0.51          0.32          0.39          0.67             0.58
36          0.22          0.18          0.49          1.53             0.32
37          0.80          0.26          1.08          0.23             4.77
38          0.70          0.16          0.26          0.36             0.73
39          0.01          0.23          0.87          4.66             0.19
40          0.08          0.20          0.81          2.52             0.32

                        Last Coefficient Update
         1           2           3           4           5           6
-1.016E-07   1.918E-09  -1.305E-08  -7.190E-07  -2.854E-07   2.108E-08



964 • Chapter 13: Survival Analysis, Life Testing, and Reliability IMSL STAT/LIBRARY

         7
-6.947E-08

                  Covariate Means
   1       2       3       4       5       6       7
5.65   56.58   15.65    0.35    0.28    0.12    0.53

Distinct Values For Each Class Variable
Variable  1:     1.0         2.0         3.0         4.0
Variable  2:      0.         1.0

                     Stratum Numbers For Each Observation
1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20
1  1  1  1  1  1  1  1  1   1  1  1  1  1  1  1  1  1  1  1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1

Number of Missing Values           0

Example 2

This example illustrates the use of PHGLM when there are strata present in the
data. The observations from Example 1 are arbitrarily grouped into four strata
(the first ten observations form stratum 1, the next 10 for stratum 2, etc.).
Otherwise, the problem is unchanged. The resulting coefficients are very similar
to those obtained when there is no stratification variable. The model is the same
as in Example 1.

      INTEGER    LDCASE, LDCOEF, LDCOV, LDX, MAXCL, NCLVAR, NCOL, NEF,
     &           NOBS
      REAL       RATIO
      PARAMETER  (LDCOEF=7, LDX=40, MAXCL=10, NCLVAR=2, NCOL=8, NEF=5,
     &           LDCASE=LDX, LDCOV=LDCOEF, NOBS=LDX, RATIO=10000.0)
C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    ICEN, IFRQ, INIT, IFIX, IPRINT, IRT, ISTRAT, ITIE,
     &           MAXIT
      REAL       EPS
      PARAMETER  (EPS=0.0001, ICEN=2, IFRQ=0, INIT=0, IFIX=0,
     &           IPRINT=2, IRT=1, ISTRAT=8, ITIE=0, MAXIT=30)
C                                 SPECIFICATIONS FOR LOCAL VARIABLES
      INTEGER    IGRP(NOBS), NCLVAL(NCLVAR), NCOEF, NRMISS
      REAL       ALGL, CASE(LDCASE,5), CLVAL(6), COEF(LDCOEF,4),
     &           COV(LDCOV,LDCOV), GR(LDCOV), XMEAN(LDCOV)
C                                 SPECIFICATIONS FOR SAVE VARIABLES
      INTEGER    INDCL(NCLVAR), INDEF(NEF), NVEF(NEF)
      REAL       X(LDX,NCOL)
      SAVE       INDCL, INDEF, NVEF, X
C                                 SPECIFICATIONS FOR SUBROUTINES
      EXTERNAL   PHGLM
C
      DATA X/411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287,
     &     10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201,
     &     44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231,
     &     5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6,
     &     3, 8, 4, 6, 4, 2, 5, 5, 4, 8, 7, 6, 9, 5, 7, 2, 8, 6, 5, 7,
     &     4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65, 69, 63, 48,
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     &     48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37,
     &     54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68,
     &     39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2,
     &     25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13,
     &     22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3,
     &     5*4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1, 10*1, 10*2, 10*3, 10*4/
      DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/
C
      CALL PHGLM (NOBS, NCOL, X, LDX, IRT, IFRQ, IFIX, ICEN, ISTRAT,
     &            MAXIT, EPS, RATIO, NCLVAR, INDCL, NEF, NVEF, INDEF,
     &            INIT, ITIE, IPRINT, MAXCL, NCLVAL, CLVAL, NCOEF,
     &            COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE, LDCASE,
     &            GR, IGRP, NRMISS)
C
      END

Output
                     Initial Estimates
     1        2        3        4        5        6        7
0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000

Method  Iteration  Step size  Maximum scaled     Log
                               coef. update      likelihood
   Q-N        0                                   -55.90
   Q-N        1      1.0000      0.6748           -45.79
   Q-N        2      1.0000      0.7105           -42.85
   N-R        3      1.0000      0.2315           -42.59
   N-R        4      1.0000      0.1674           -42.55
   N-R        5      1.0000      0.3372E-02       -42.55

 Log-likelihood       -42.54570

                Coefficient Statistics
                    Standard    Asymptotic    Asymptotic
    Coefficient         error   z-statistic       p-value
1        -0.716         0.170        -4.222         0.000
2        -0.033         0.030        -1.122         0.262
3         0.001         0.015         0.048         0.961
4        -0.100         0.999        -0.100         0.921
5        -0.405         0.729        -0.555         0.579
6         1.136         0.769         1.478         0.139
7        -0.087         1.454        -0.060         0.952

Asymptotic Coefficient Covariance
              1             2             3             4             5
1    0.2877E-01    0.8662E-03    0.3119E-03    0.5057E-02    0.2480E-01
2                  0.8842E-03   -0.8137E-04   -0.7623E-02   -0.6925E-03
3                                0.2158E-03   -0.2567E-02   -0.3738E-02
4                                              0.9975        0.5109
5                                                            0.5319

               6             7
1   -0.7669E-02    0.6405E-02
2   -0.8800E-03    0.4120E-02
3    0.1170E-02   -0.3699E-02
4    0.1944        0.8056
5    0.1802        0.4905
6    0.5909        0.1858
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7                   2.114

                               Case Analysis
        Survival                               Cumulative  Proportionality
     Probability     Influence      Residual        hazard         constant
 1          0.00          0.00          2.01          7.83             0.26
 2          0.09          0.06          1.32          2.42             0.55
 3          0.20          0.04          0.40          1.59             0.25
 4          0.40          0.04          1.69          0.91             1.87
 5          0.92          0.47          0.21          0.09             2.36
 6          0.73           NaN          0.14          0.31             0.44
 7          0.82          0.47          0.09          0.20             0.44
 8          0.55          0.67          0.06          0.61             0.10
 9          0.02          0.07          1.59          3.94             0.40
10          0.73          0.10          1.50          0.31             4.79
11          0.39          0.68          0.17          0.93             0.19
12          0.60          0.14          1.12          0.51             2.19
13          0.00          0.00          2.32          6.32             0.37
14          0.90          0.16          0.15          0.10             1.49
15          0.98          0.04          0.75          0.02            35.42
16          0.75          0.21          1.12          0.29             3.83
17          0.25          0.07          1.55          1.39             1.12
18          0.75          0.21          0.63          0.29             2.14
19          0.10          0.18          0.69          2.31             0.30
20          0.03          0.11          1.48          3.60             0.41
21          0.50          0.61          1.00          0.70             1.44
22          0.00          0.00          1.28         13.59             0.09
23          0.33           NaN          1.92          1.09             1.76
24          0.05          0.00          1.32          2.94             0.45
25          0.95          0.15          0.47          0.05             9.84
26          0.33          0.24          0.23          1.09             0.21
27          0.62          0.40          0.22          0.47             0.47
28          0.76          0.13          0.71          0.27             2.63
29          0.50           NaN          0.37          0.70             0.53
30          0.87          0.23          0.49          0.14             3.53
31          0.88          0.35          0.67          0.13             5.07
32          0.71          0.22          1.56          0.34             4.54
33          0.97          0.52          0.20          0.03             7.00
34          0.44          0.03          2.64          0.83             3.19
35          0.56          0.20          0.29          0.57             0.50
36          0.11          0.00          0.61          2.24             0.27
37          0.94          0.19          0.82          0.07            12.50
38          0.79          0.43          0.24          0.23             1.05
39          0.00          0.00          1.69         11.13             0.15
40          0.01          0.00          1.28          4.54             0.28

                         Last Coefficient Update
          1           2           3           4           5           6
 -7.363E-07   8.762E-09   1.252E-08  -1.697E-06  -1.642E-06   1.075E-06

          7
 -1.772E-06

                   Covariate Means
    1       2       3       4       5       6       7
 5.65   56.58   15.65    0.35    0.28    0.12    0.53

 Distinct Values For Each Class Variable
 Variable  1:     1.0         2.0         3.0         4.0
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 Variable  2:      0.         1.0

                     Stratum Numbers For Each Observation
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
 1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 3  3  3  3  3  3  3  3  3  3  4  4  4  4  4  4  4  4  4   4

Number of Missing Values           0

SVGLM/DSVGLM (Single/Double precision)
Analyze censored survival data using a generalized linear model.

Usage
CALL SVGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ,
            IFIX, ICEN, INFIN, MAXIT, EPS, INTCEP, NCLVAR,
            INDCL, NEF, NVEF, INDEF, INIT, IPRINT, MAXCL,
            NCLVAL, CLVAL, NCOEF, COEF, LDCOEF, ALGL, COV,
            LDCOV, XMEAN, CASE, LDCASE, GR, IADD, NRMISS)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in X.   (Input)

X — NOBS by NCOL matrix containing the data.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

MODEL — Model option parameter.   (Input)
MODEL specifies the distribution of the response variable and the relationship of
the linear model to a distribution parameter.

MODEL Distribution
0 Exponential
1 Linear hazard
2 Log-normal
3 Normal
4 Log-logistic
5 Logistic
6 Log least extreme value
7 Least extreme value
8 Log extreme value
9 Extreme value
10 Weibull

For further discussion of the models and parameterizations used, see the
Algorithm section.
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ILT — For interval-censored and left-censored observations, the column number
in X that contains the upper endpoint of the failure interval.   (Input)
See argument ICEN. If ILT = 0, left-censored and interval-censored observations
cannot be input.

IRT — For interval-censored and right-censored observations, the column
number in X that contains the lower endpoint of the failure interval.   (Input)
For exact-failure observations, X(i, IRT) contains the exact-failure time. IRT must
not be zero. See argument ICEN.

IFRQ — Column number in X containing the frequency of response for each
observation.   (Input)
If IFRQ = 0, a response frequency of 1 for each observation is assumed.

IFIX — Column number in X containing a constant to be added to the linear
response.   (Input)
The estimated linear response is taken to be

w zi i+ $β

where wL is the observation constant, zL is the observation design vector,

$β
is the vector of estimated parameters output in the first column of COEF, and i
indexes the observations. The “fixed” constant allows one to test hypotheses
about parameters via the log-likelihoods. If IFIX = 0, the fixed parameter is
assumed to be 0.

ICEN — Column number in X containing the censoring code for each
observation.   (Input)
If ICEN = 0, a censoring code of 0 is assumed. Valid censoring codes are:

X(i, ICEN) Censoring
0      Exact failure at X(i, IRT).
1      Right censored. The response is greater than X(i, IRT).
2      Left censored. The response is less than or equal to X(i, ILT).
3      Interval censored. The response is greater  than X(i, IRT), but

less than or equal to X(i, ILT).

INFIN — Method to be used for handling infinite estimates.   (Input)

INFIN Method
0 Remove a rightor left-censored observation from the loglikelihood

whenever the probability of the observation exceeds 0.995. At
convergence, use linear programming to check that all removed
observations actually have infinite linear response

zi
$β
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Set IADD(i) for observation i to 2 if the linear response is infinite. If not
all removed observations have infinite linear response, recompute the
estimates based upon the observations with finite

zi
$β

1 Iterate without checking for infinite estimates.

See the algorithm section for more discussion.

MAXIT — Maximum number of iterations.   (Input)
MAXIT = 30 will usually be sufficient. Use MAXIT = 0 to compute the Hessian and
score vector at the initial estimates.

EPS — Convergence criterion.   (Input)
Convergence is assumed when the maximum relative change in any coefficient
estimate is less than EPS from one iteration to the next, or when the relative
change in the log-likelihood, ALGL, from one iteration to the next is less than
EPS/100. If EPS is negative, EPS = 0.001 is assumed.

INTCEP — Intercept option.   (Input)

INTCEP Action
0 No intercept is in the model (unless otherwise provided for by the user).
1 An intercept is automatically included in the model.

NCLVAR — Number of classification variables.   (Input)
Dummy or indicator variables are generated for classification variables using the
IDUMMY = 2 option of routine GRGLM (page 210). See Comment 3.

INDCL — Index vector of length NCLVAR containing the column numbers of X

that are classification variables.   (Input, if NCLVAR is positive, not used
otherwise)
If NCLVAR is 0, INDCL is not referenced and can be dimensioned of length 1 in
the calling program.

NEF — Number of effects in the model.   (Input)
In addition to effects involving classification variables, simple covariates and the
product of simple covariates are also considered effects.

NVEF — Vector of length NEF containing the number of variables associated
with each effect in the model.   (Input, if NEF is positive; not used otherwise)
If NEF is zero, NVEF is not used and can be dimensioned of length 1 in the calling
program.

INDEF — Index vector of length NVEF(1) + NVEF(2) + … + NVEF(NEF)
containing the column numbers in X associated with each effect.   (Input, if NEF is
positive; not used otherwise)
The first NVEF(1) elements of INDEF give the column numbers in X of the
variables in the first effect. The next NVEF(2) elements of INDEF give the column
numbers for the second effect, etc. If NEF is zero, INDEF is not used and can be
dimensioned of length one in the calling program.

INIT — Initialization option.   (Input)
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INIT Action
0 Unweighted linear regression is used to obtain initial estimates.
1 The NCOEF elements in the first column of COEF contain initial estimates

of the parameters on input to SVGLM (requiring that the user know
NCOEF prior to calling SVGLM).

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing is performed, but observational statistics are not printed.
2 All output statistics are printed.

MAXCL — An upper bound on the sum of the number of distinct values taken by
the classification variables.   (Input)

NCLVAL — Vector of length NCLVAR containing the number of values taken by
each classification variable. (Output, if NCLVAR is positive; not used otherwise)
NCLVAL(i) is the number of distinct values for the i-th classification variable. If
NCLVAR is zero, NCLVAL is not used and can be dimensioned of length 1 in the
calling program.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR)
containing the distinct values of the classification variables in ascending order.
(Output, if NCLVAR is positive, not used otherwise)
The first NCLVAL(1) elements contain the values for the first classification
variables, the next NCLVAL(2) elements contain the values for the second
classification variable, etc. If NCLVAR is zero, then CLVAL is not referenced and
can be dimensioned of length 1 in the calling program.

NCOEF — Number of estimated coefficients in the model.   (Output, if
INIT = 0; input, if INIT = 1)

COEF — NCOEF by 4 matrix containing parameter estimates and associated
statistics.   (Output, if INIT = 0; input/output, if INIT = 1; input, if MAXIT = 0)

Col. Statistic
1 Coefficient estimate.
2 Estimated standard deviation of the estimated coefficient.
3 Asymptotic normal score for testing that the coefficient is zero.
4 p-value associated with the normal score in column 3.

When COEF is input, only column 1 is referenced as input data, and columns 2 to
4 need not be set. When present in the model, the initial coefficient in COEF

estimates a “nuisance” parameter, and the remaining coefficients estimate
parameters associated with the “linear” model, beginning with the intercept, if
present. Nuisance parameters are as follows:

Model Nuisance Parameter
1 Coefficient of the quadratic term in time,θ
2 − 9 Scale parameter, σ
10 Shape parameter, θ
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LDCOEF — Leading dimension of COEF exactly as specified in the dimension
statement in the calling program.   (Input)

ALGL — Maximized log-likelihood.   (Output)

COV — NCOEF by NCOEF matrix containing the estimated asymptotic covariance
matrix of the coefficients.   (Output)
COV is computed as the inverse of the matrix of second partial derivatives of
negative one times the log-likelihood. When MAXIT = 0, COV is computed at the
initial estimates.

LDCOV — Leading dimension of COV exactly as specified in the dimension
statement in the calling program.   (Input)

XMEAN — Vector of length NCOEF containing the means of the design variables.
(Output)

CASE — NOBS by 5 vector containing the case analysis.   (Output)

Col. Statistic
1 Estimated predicted value
2 Estimated influence or leverage
3 Residual estimate
4 Estimated cumulative hazard
5 For non-censored observations, the estimated density at the observation

failure time and covariate values. For censored observations, the
corresponding estimated probability.

If MAXIT = 0, CASE is a NOBS by 1 vector containing the estimated probability
(for censored observations) or the estimated density (for non censored
observations).

LDCASE — Leading dimension of CASE exactly as specified in the dimension
statement in the calling program.   (Input)

GR — Vector of length NCOEF containing the last parameter updates, excluding
step halvings.   (Output)
GR is computed as the inverse of the matrix of second partial derivatives times the
vector of first partial derivatives of the log-likelihood. When MAXIT = 0, the
derivatives are computed at the initial estimates.

IADD — Vector of length NOBS indicating which observations have and have not
been included in the model.   (Output, if MAXIT > 0; input/output, if MAXIT = 0)

Value Status of Observation
0 Observation i has been included in the model.
1 Observation i has not been included in the model due to missing values

in the X matrix.
2 Observation i has not been included in the model because of infinite

estimates in extended maximum likelihood estimation. If MAXIT = 0,
then the IADD array must be initialized prior to calling SVGLM.
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NRMISS — Number of rows of data in X that contain missing values in one or
more columns ILT, IRT, IFRQ, ICOEF, ICEN, INDCL or INDEF of X.   (Output)

Comments

1. Automatic workspace usage is

SVGLM 6 * NMAX + 5 * NCOEF + 7 * NOBS + NMAX * NCOEF + 8 units if
INFIN = 0 and 5 * NCOEF + 7 * NOBS + 8 units if INFIN = 1,
or

DSVGLM 10 * NMAX + 10 * NCOEF + 9 * NOBS + 2 * NMAX * NCOEF + 10
units if INFIN = 0 and 10 * NCOEF + 9 * NOBS + 10 units if
INFIN = 1. NMAX is defined in the list below.

Workspace may be explicitly provided, if desired, by use of
S2GLM/DS2GLM. The reference is

CALL S2GLM (NOBS, NCOL, X, LDX, MODEL, ILT,
            IRT,IFRQ, IFIX, ICEN, INFIN, MAXIT,
            EPS,INTCEP, NCLVAR, INDCL, NEF, NVEF,
            INDEF,INIT,IPRINT, MAXCL, NCLVAL, CLVAL,
            NCOEF, COEF, LDCOEF, ALGL, COV, LDCOV,
            XMEAN, CASE, LDCASE, GR, IADD, NRMISS,
            NMAX, OBS, ADD, XD, WK, KBASIS, RWK,
            IWK)

The additional arguments are as follows:

NMAX — Maximum number of observations that can be handled in the
linear programming.   (Input)
If workspace is not explicitly provided, NMAX is set to
NMAX = (n − 6)/(6 + NCOEF) in SVGLM and NMAX= (n − 6)/(10 + 2 *
NCOEF) in DSVGLM, where n is the number of units of workspace
remaining after allocating workspace for OBS, RWK, and IWK. If INFIN
.EQ. 1, then set NMAX to 0.

OBS — Work array of length 2 * NCOEF + 2.

ADD — Logical work array of length NMAX. If ADD(I) = .TRUE., the I-
th observation deleted from the model was returned to the model. ADD is
not needed and can be a array of length 1 in the calling program if NMAX

= 0.

XD — Work array of length NMAX * NCOEF. XD is not needed and can be
a array of length 1 in the calling program if NMAX = 0.

WK — Work array of length 4 * NMAX. WK is not needed and can be a
array of length 1 in the calling program if NMAX = 0.

KBASIS — Work array of length NMAX. KBASIS is not needed and can
be a array of length 1 in the calling program if NMAX = 0.

RWK — Work array of length 2 * NOBS + 3 * NCOEF.

IWK — Work array of length 5 * NOBS + 6.
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2. Informational errors
Type Code
   3    1 There were too many iterations required. Convergence

is assumed.
   3    2 There were too many step halvings. Convergence is

assumed.
   3    4 The censoring interval has a length of 0. The

censoring code for this observation is set to 0.
   3    5 COEF(1, 1) > 1.0. The expected value for the log

logistic distribution, MODEL = 4, does not exist.
Predicted values are not calculated.

   3    6 COEF(1, 1) > 1.0. The expected value for the log
extreme value distribution, MODEL = 8, does not exist.
Predicted values are not calculated.

   4    7 The number of distinct values of the classification
variables exceeds MAXCL. MAXCL must be increased for
the computations to proceed.

   4    8 The number of distinct values for each classification
variable must be greater than one.

   4    9 INIT = 1 and the number of coefficients input in
NCOEF does not equal the number of coefficients
required by the specified model.

   4  10 For the exponential model, NCOEF has been
determined to equal 0. With no coefficients in the
model, processing cannot continue.

   4   11 LDCOEF or LDCOV is less than NCOEF.
   4   12 NOBS − NRMISS must be greater than or equal to 2 in

order to estimate the coefficients.
   4   13 The number of observations to be deleted has

exceeded NMAX. Rerun with a different model or
increase the workspace.

3. Dummy variables are generated for the classification variables as
follows: An ascending list of all distinct values of each classification
variable is obtained and stored in CLVAL. Dummy variables are then
generated for each but the last of these distinct values. Each dummy
variable is zero unless the classification variable equals the list value
corresponding to the dummy variable, in which case the dummy variable
is one. See Argument IDUMMY for IDUMMY = 2 in routine GRGLM (page
210).

4. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

5. The “product” of two classification variables yields dummy variables in
the usual manner. Each dummy variable associated with the first
classification variable multiplies each dummy variable associated with
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the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Algorithm

Routine SVGLM computes maximum likelihood estimates of parameters and associated
statistics in generalized linear models commonly found in survival (reliability) analysis.
Although the terminology used will be from the survival area, the methods discussed
have application in many areas of data analysis, including reliability analysis and event
history analysis. Indeed, these methods may be used anywhere a random variable from
one of the discussed distributions is parameterized via one of the models available in
SVGLM. Thus, while it is not advisable to do so, standard multiple linear regression may
be performed by routine SVGLM. Estimates for any of ten standard models can be
computed. Exact, leftcensored, right-censored, or interval-censored observations are
allowed. (Note that left censoring is the same as interval censoring with left endpoint
equal to the left endpoint of the support of the distribution.)

Let η = x7β be the linear parameterization, where x is a design vector obtained in SVGLM via
routine GRGLM (page 210) from a row of X, and β is a vector of parameters associated with the
linear model. Let T denote the random response variable and S(t) denote the probability that T
> t. All models considered also allow a fixed parameter wL for observation i (input in column

IFIX of X). Use of this parameter is discussed below. There may also be nuisance parameters θ
> 0, or σ > 0 to be estimated (along with β) in the various models. Let Φ denote the cumulative
normal distribution. The survival models available in SVGLM are:

Model Name S(t)

0 Exponential exp exp− +wi η1 6< A
1 Linear hazard exp{ exp[(− + +( ) )]}t wt

i
θ η

2

2

2 Log-normal 1 − − −Φ( ))ln(t wiη
σ

3 Normal 1 − − −Φ( )t wiη
σ

4 Log-logistic { )})1 1+ − − −exp( ln(t wiη
σ

5 Logistic { )}1 1+ − − −exp( t wiη
σ

6 Log least extreme value exp exp( ln({ )})− − −t wiη
σ

7 Least extreme value exp exp({ )}− − −t wiη
σ

8 Log extreme value 1 − − − − −exp{ exp ln([ )]})t wiη
σ

9 Extreme value 1 exp exp[-− − − −{ ( )]}t wiη
σ

10 Weibull
exp{ exp(− +

t
wi η

θ
) }4 9



IMSL STAT/LIBRARY Chapter 13: Survival Analysis, Life Testing, and Reliability • 975

Note that the log-least-extreme-value model is a reparameterization of the
Weibull model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 require that T > 0, while
all of the remaining models allow any value for T,−∞ < T < ∞.

Each row in the data matrix can represent a single observation, or, through the use
of column IFRQ, it can represent several observations. Classification variables
and their products are easily incorporated into the models via the usual GLM type
specifications through the use of variables NCLVAR and INDCL, and the model
variables NEF, NVEF, and INDEF.

The constant parameter wL is input in X and may be used for a number of
purposes. For example, if the parameter in an exponential model is known to
depend upon the size of the area tested, volume of a radioactive mass, or
population density, etc., then a multiplicative factor of the exponential parameter 
λ = exp(xβ) may be known apriori. This factor can be input in wL (wL is the log of
the factor). An alternate use of wL is as follows: It may be that

λ = exp(x1β1 + x2β2), where β2 is known. Letting wL = x2β2, estimates for β1 can

be obtained via SVGLM with the known fixed values for β2. Standard methods can
then be used to test hypotheses about β2 via computed log-likelihoods.

Computational details

The computations proceed as follows:

1. The input arguments are checked for consistency and validity.

2. Estimates for the means of the explanatory variables x (as generated
from the model specification via GRGLM, page 210) are computed. Let ƒL
denote the frequency of the observation. Means are computed as

x
f x

f
i i i

i i
=

∑
∑

3. If INIT = 0, initial estimates of the parameters for all but the exponential
models (MODEL = 0, 1) are are obtained as follows:

A. Routine KAPMR (page 938) is used to compute a nonparametric
estimate of the survival probability at the upper limit of each
failure interval. (Because upper limits are used, intervaland left-
censored data are taken to be exact failures at the upper
endpoint of the failure interval.) The Kaplan-Meier estimate is
computed under the assumption that all failure distributions are
identical (i.e., all β’s but the intercept, if present, are assumed
to be zero).

B. If INTCEP = 0, a simple linear regression is performed
predicting

S S t w ti
− ∗− = +1( $( )) α φ
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where t* is computed at the upper endpoint of each failure
interval, t* = t in models 3, 5, 7, and 9, and t* = ln(t) in models
2, 4, 6, 8, and 10, and wL is the fixed constant, if present. If

INTCEP is zero, α is fixed at zero, and the model

S S t t w xi
T− ∗− − =1( $( )) $φ β

is fit instead of the model above. In this model, the coefficients 
β are used in place of the location estimate α above. Here,

$φ

is estimated from the simple linear regression with α = 0.

C. If the intercept is in the model, then in log-location-scale
models (models 1–8),

$ $σ φ=
and the initial estimate of the intercept, if present, is taken to be

$α
In the Weibull model,

$ / $θ φ= 1

and the intercept, if present, is taken to be

$α
Initial estimates of all parameters β, other than the intercept, are
taken to be zero.

If no intercept is in the model, the scale parameter is estimated
as above, and the estimates

$β

from Step B are used as initial estimates for the β’s.

For exponential models (MODEL = 0, 1), the average total time on test
statistic is used to obtain an estimate for the intercept. Specifically, let TW
denote the total number of failures divided by the total time on test. The
initial estimate for the intercept is then ln(TW). Initial estimates for the

remaining parameters β are taken as zero, and, if MODEL = 1, the initial
estimate for the linear hazard parameter θ is taken to be a small positive
number. When the intercept is not in the model, the initial estimate for
the parameter θ is taken as a small positive number, and initial estimates
of the parameters β are computed via multiple linear regression as
above.
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4. A quasi-Newton algorithm is used in the initial iterations based upon a
Hessian estimate

$H
j l j li i

i
κ κ α α= ′ ′∑ l l

where

′li jα

is the partial derivative of the i-th term in the log-likelihood with respect
to the parameter αM, and αM denotes one of the parameters to be
estimated.

When the relative change in the log-likelihood from one iteration to the
next is 0.1 or less, exact second partial derivatives are used for the
Hessian so that Newton-Raphson iteration is used.

If the initial step size results in an increase in the log-likelihood, the full
step is used. If the log-likelihood decreases for the initial step size, the
step size is halved, and a check for an increase in the log-likelihood
performed. Step-halving is performed (as a simple line search) until an
increase in the log-likelihood is detected, or until the step size is less that
0.0001 (where the initial step size is 1).

5. Convergence is assumed when the maximum relative change in any
coefficient update from one iteration to the next is less than EPS, or
when the relative change in the loglikelihood from one iteration to the
next is less than EPS/100. Convergence is also assumed after MAXIT
iterations, or when step halving leads to a step size of less than .0001,
with no increase in the log-likelihood.

6. If requested (INFIN = 0), then the methods of Clarkson and Jennrich
(1988) are used to check for the existence of infinite estimates in

η βi i
Tx=

As an example of a situation in which infinite estimates can occur,
suppose that observation j is right censored with tM > 15 in a normal
distribution model in which we fit the mean as

µ β ηj j
T

jx= =

where xM is the observation design vector. If design vector xM for

parameter βP is such that xMP = 1 and xLP = 0 for all i ≠ j, then the

optimal estimate of βP occurs at

$βm = ∞

leading to an infinite estimate of both βP and ηM. In SVGLM, such
estimates may be “computed.”
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In all models fit by SVGLM, infinite estimates can only occur when the optimal
estimated probability associated with the leftor right-censored observation is 1. If
INFIN = 0, left-or right-censored observations that have estimated probability greater
than 0.995 at some point during the iterations are excluded from the log-likelihood,
and the iterations proceed with a log-likelihood based upon the remaining
observations. This allows convergence of the algorithm when the maximum relative
change in the estimated coefficients is small and also allows for a more precise
determination of observations with infinite

η βi xi
T=

At convergence, linear programming is used to ensure that the eliminated
observations have infinite η L. If some (or all) of the removed observations should

not have been removed (because their estimated η L’s must be finite), then the

iterations are restarted with a log-likelihood based upon the finite η L observations.
See Clarkson and Jennrich (1988) for more details.

When INFIN = 1, no observations are eliminated during the iterations.
In this case, when infinite estimates occur, some (or all) of the
coefficient estimates

$β
will become large, and it is likely that the Hessian will become (numerically) singular
prior to convergence.

7. The case statistics are computed as follows:

Let

li i( )θ

denote the log-likelihood of the i-th observation evaluated at θL, let

′li

denote the vector of derivatives of

li

with respect to all parameters,

′lη, i

denote the derivative of

li

with respect to η  = x7β, H denote the Hessian, and E denote
expectation. Then, the columns of CASE are:

A. Predicted values are computed as E(T|x) according to standard
formulas. If MODEL is 4 or 8, and if σ ≥ 1, then the expected
values cannot be computed because they are infinite.
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B. Following Cook and Weisberg (1982), we take the influence
(or leverage) of the i-th observation to be

( )′ ′−l li
T

iH 1

This quantity is a one-step approximation to the change in the
estimates when the i-th observation is deleted (ignoring the
nuisance parameters).

C. The “residual” is computed as

′l $ ,η i

D. The cumulative hazard is computed at the observation covariate
values and, for interval observations, the upper endpoint of the
failure interval. The cumulative hazard can also be used as a
“residual” estimate. If the model is correct, the cumulative
hazards should follow a standard exponential distribution. See
Cox and Oakes (1984).

E. The density (for exact failures) or the interval probability (for
censored observations) is computed for given x.

Programming Notes

Classification variables are specified by parameters NCLVAR and INDCL. Indicator
variables are created for the classification variables using routine GRGLM (page
210) with IDUMMY = 2.

Example 1

This example is from Lawless (1982, page 287) and involves the mortality of
patients suffering from lung cancer. (The first ten rows of the input data are
printed in the output.) An exponential distribution is fit for model

η = µ + β1x3 + β2x4 + β3x5 + αL + γN

where αL is associated with a classification variable with 4 levels, and γN is
associated with a classification variable with 2 levels. Note that because the
computations are performed in single precision, there will be some small
variation in the estimated coefficients across different machine environments.

      INTEGER    ICEN, IFIX, IFRQ, ILT, INFIN, INIT, INTCEP, IPAR,
     &           IPRINT, IRT, LDCASE, LDCOEF, LDCOV, LDX, MAXCL,
     &           MAXIT, MODEL, NCLVAR, NCOL, NEF, NOBS
      REAL       EPS
      PARAMETER  (EPS=0.001, ICEN=2, IFIX=0, IFRQ=0, ILT=0, INFIN=0,
     &           INIT=0, INTCEP=1, IPAR=0, IPRINT=2, IRT=1, LDCASE=40,
     &           LDCOEF=8, LDCOV=8, LDX=40, MAXCL=6, MAXIT=15,
     &           MODEL=0, NCLVAR=2, NCOL=7, NEF=5, NOBS=40)
C
      INTEGER    IADD(NOBS), INDCL(NCLVAR), INDEF(5), NCLVAL(NCLVAR),
     &           NCOEF, NRMISS, NVEF(NEF)
      REAL       ALGL, CASE(LDCASE,5), CLVAL(MAXCL), COEF(LDCOEF,4),
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     &           COV(LDCOV,LDCOV), GR(LDCOV), X(LDX,NCOL), XMEAN(LDCOV)
      EXTERNAL   SVGLM, WRRRL
C
      DATA X/411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287,
     &     10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201,
     &     44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231,
     &     5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6,
     &     3, 8, 4, 6, 4, 2, 5, 5, 4, 8, 7, 6, 9, 5, 7, 2, 8, 6, 5, 7,
     &     4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65, 69, 63, 48,
     &     48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37,
     &     54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68,
     &     39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2,
     &     25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13,
     &     22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3,
     &     5*4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1/
      DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/
C
      CALL WRRRL (’First 10 rows of the input data.’, 10, NCOL, X,
     &            LDX, 0, ’(F5.1)’, ’NUMBER’, ’NUMBER’)
C
      CALL SVGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ, IFIX,
     &            ICEN, INFIN, MAXIT, EPS, INTCEP, NCLVAR, INDCL, NEF,
     &            NVEF, INDEF, INIT, IPRINT, MAXCL, NCLVAL, CLVAL,
     &            NCOEF, COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE,
     &            LDCASE, GR, IADD, NRMISS)
C
      END

Output
          First 10 rows of the input data.
        1      2      3      4      5      6      7
 1  411.0    0.0    7.0   64.0    5.0    1.0    0.0
 2  126.0    0.0    6.0   63.0    9.0    1.0    0.0
 3  118.0    0.0    7.0   65.0   11.0    1.0    0.0
 4   92.0    0.0    4.0   69.0   10.0    1.0    0.0
 5    8.0    0.0    4.0   63.0   58.0    1.0    0.0
 6   25.0    1.0    7.0   48.0    9.0    1.0    0.0
 7   11.0    0.0    7.0   48.0   11.0    1.0    0.0
 8   54.0    0.0    8.0   63.0    4.0    2.0    0.0
 9  153.0    0.0    6.0   63.0   14.0    2.0    0.0
10   16.0    0.0    3.0   53.0    4.0    2.0    0.0

                       Initial Estimates
     1       2       3       4       5       6       7       8
-5.054   0.000   0.000   0.000   0.000   0.000   0.000   0.000

Method  Iteration  Step size  Maximum scaled     Log
                               coef. update      likelihood
   Q-N        0                                   -224.0
   Q-N        1      1.0000      0.9839           -213.4
   N-R        2      1.0000       3.603           -207.3
   N-R        3      1.0000       10.12           -204.3
   N-R        4      1.0000      0.1430           -204.1
   N-R        5      1.0000      0.1174E-01       -204.1

Log-likelihood       -204.1392
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                   Coefficient Statistics
                       Standard     Asymptotic     Asymptotic
     Coefficient          error    z-statistic        p-value
1         -1.103          1.309         -0.842         0.3998
2         -0.540          0.108         -4.995         0.0000
3         -0.009          0.020         -0.459         0.6460
4         -0.003          0.012         -0.291         0.7710
5         -0.363          0.445         -0.816         0.4149
6          0.127          0.486          0.261         0.7939
7          0.869          0.586          1.483         0.1385
8          0.270          0.388          0.695         0.4873

                    Asymptotic Coefficient Covariance
              1              2              3              4              5
1      1.714       -8.1873E-02    -1.9753E-02    -2.2481E-03    -6.5707E-02
2                   1.1690E-02     6.4506E-05     2.8955E-04    -3.8734E-04
3                                  3.8676E-04    -3.9067E-05    -1.2359E-03
4                                                 1.3630E-04     7.5656E-04
5                                                                0.1976

               6              7              8
1    -0.1038        -0.1554        -4.2370E-05
2     8.5772E-03     1.8120E-02     6.5272E-03
3    -3.2789E-04    -1.6986E-03    -2.7794E-03
4    -1.6742E-03     6.2668E-04     1.5432E-03
5     9.0035E-02     0.1122         4.3157E-02
6     0.2365         0.1142        -1.3527E-02
7                    0.3436         5.1948E-02
8                                  0.1507

                                Case Analysis
                                                  Cumulative     Density or
      Predicted      Influence       Residual         Hazard    Probability
 1        262.7         0.0450         -0.565          1.565         0.0008
 2        153.8         0.0042          0.181          0.819         0.0029
 3        270.5         0.0482          0.564          0.436         0.0024
 4         55.3         0.0844         -0.663          1.663         0.0034
 5         61.7         0.3765          0.870          0.130         0.0142
 6        230.4         0.0025         -0.108          0.108         0.8972
 7        232.0         0.1960          0.953          0.047         0.0041
 8        272.8         0.1677          0.802          0.198         0.0030
 9         95.9         0.0505         -0.596          1.596         0.0021
10         16.8         0.0005          0.045          0.955         0.0230
11        234.0         0.1911          0.761          0.239         0.0034
12         29.1         0.0156          0.278          0.722         0.0167
13        102.2         0.4609         -1.807          2.807         0.0006
14         34.8         0.0686          0.713          0.287         0.0216
15          5.3         0.0838         -0.521          1.521         0.0415
16         25.7         0.0711          0.533          0.467         0.0244
17         65.6         0.4185         -1.698          2.698         0.0010
18         38.4         0.0886          0.688          0.312         0.0191
19        261.0         0.0155          0.234          0.766         0.0018
20        167.2         0.0338         -0.495          1.495         0.0013
21         85.8         0.0082         -0.166          1.166         0.0036
22        947.8         0.0005         -0.054          1.054         0.0004
23        105.9         0.6402         -2.181          2.181         0.1129
24        305.2         0.5757         -2.247          3.247         0.0001
25         24.6         0.3203          0.959          0.041         0.0390



982 • Chapter 13: Survival Analysis, Life Testing, and Reliability IMSL STAT/LIBRARY

26        572.8         0.0762          0.649          0.351         0.0012
27        217.5         0.1246          0.798          0.202         0.0038
28         96.6         0.1494          0.845          0.155         0.0089
29        173.4         0.1096         -0.594          0.594         0.5522
30         38.7         0.1928          0.948          0.052         0.0245
31         22.5         0.0040          0.112          0.888         0.0183
32         30.7         0.2270         -0.661          1.661         0.0062
33         20.8         0.0058          0.134          0.866         0.0202
34         54.6         0.1094         -0.648          1.648         0.0035
35        168.6         0.0923          0.502          0.498         0.0036
36        256.8         0.0341          0.361          0.639         0.0021
37         21.9         0.0069          0.134          0.866         0.0192
38        124.3         0.0680          0.654          0.346         0.0057
39        417.9         0.0087          0.186          0.814         0.0011
40        257.1         0.0025          0.101          0.899         0.0016

                         Last Coefficient Update
          1           2           3           4           5           6
 -1.031E-05  -1.437E-06   3.098E-07   4.722E-08  -1.844E-05  -1.671E-06

          7           8
 -2.520E-06   8.139E-06

                   Covariate Means
    1       2       3       4       5       6       7
 5.65   56.58   15.65    0.35    0.28    0.12    0.53

         Distinct Values For Each Class Variable
 Variable  1:     1.0         2.0         3.0         4.0
 Variable  2:      0.         1.0

                          Observation Codes
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
0  0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

21 22 23 24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 0  0  0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

Number of Missing Values           0

Example 2

As a second example, the MAXIT = 0 option is used for the model in Example 1
with the coefficients restricted such that µ = −1.25, β1 = −.6, and the remaining 6
coefficients are zero. A chi-squared statistic with 8 degrees of freedom for testing
that the coefficients are specified as above (versus the alternative that they are not
as specified) may be computed from the output as

χ2 1= ∑−g gT $

where

$∑
is output in COV, and g is output in GR. The resulting test statistic (6.107), based
upon no iterations, is comparable to the likelihood ratio test statistic that may be
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computed from the log-likelihood output in Example 2 (−206.6835) and the log-
likelihood output in Example 1 (−204.1392).

χ LR
2 2 206 6835 204 1392 5 0886= − =. . .0 5

Neither test statistic is significant at the α = 0.05 level.

      INTEGER    ICEN, IFIX, IFRQ, ILT, INFIN, INIT, INTCEP, IPAR,
     &           IPRINT, IRT, LDCASE, LDCOEF, LDCOV, LDX, MAXCL,
     &           MAXIT, MODEL, NCLVAR, NCOL, NEF, NOBS
      REAL       EPS
      PARAMETER  (EPS=0.001, ICEN=2, IFIX=0, IFRQ=0, ILT=0, INFIN=0,
     &           INIT=1, INTCEP=1, IPAR=0, IPRINT=2, IRT=1, LDCASE=40,
     &           LDCOEF=8, LDCOV=8, LDX=40, MAXCL=6, MAXIT=0, MODEL=0,
     &           NCLVAR=2, NCOL=7, NEF=5, NOBS=40)
C
      INTEGER    IADD(NOBS), INDCL(NCLVAR), INDEF(5), IRANK,
     &           NCLVAL(NCLVAR), NCOEF, NRMISS, NVEF(NEF)
      REAL       ALGL, CASE(LDCASE,5), CHI, CLVAL(MAXCL),
     &           COEF(LDCOEF,4), COV(LDCOV,LDCOV), GR(LDCOV),
     &           GRD(LDCOV), SDOT, X(LDX,NCOL), XMEAN(LDCOV)
      EXTERNAL   CHFAC, GIRTS, SDOT, SSET, SVGLM
C
      DATA X/411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287,
     &     10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201,
     &     44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231,
     &     5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6,
     &     3, 8, 4, 6, 4, 2, 5, 5, 4, 8, 7, 6, 9, 5, 7, 2, 8, 6, 5, 7,
     &     4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65, 69, 63, 48,
     &     48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37,
     &     54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68,
     &     39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2,
     &     25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13,
     &     22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3,
     &     5*4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1/
      DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/
C
      NCOEF = 8
      CALL SSET (NCOEF, 0.0, COEF(3,1), 1)
      CALL SSET (NOBS, 0, IADD, 1)
      COEF(1,1) = -1.25
      COEF(2,1) = -0.60
      CALL SVGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ, IFIX,
     &            ICEN, INFIN, MAXIT, EPS, INTCEP, NCLVAR, INDCL, NEF,
     &            NVEF, INDEF, INIT, IPRINT, MAXCL, NCLVAL, CLVAL,
     &            NCOEF, COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE,
     &            LDCASE, GR, IADD, NRMISS)
C                                 Compute Chi-squared
      CALL CHFAC (NCOEF, COV, LDCOV, EPS, IRANK, COV, LDCOV)
      CALL GIRTS (NCOEF, COV, LDCOV, 1, GR, NCOEF, 2, IRANK, GRD,
     &            NCOEF, COV, LDCOV)
C
      CHI = SDOT(NCOEF,GRD,1,GRD,1)
      WRITE (6,99999) ’ Chi-squared statistic with 8 degrees of ’//
     &               ’freedom ’, CHI
C
99999 FORMAT (/, A, G12.4)
      END
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Output
Log-likelihood       -206.6835

                    Coefficient Statistics
                        Standard     Asymptotic     Asymptotic
      Coefficient          error    z-statistic        p-value
 1          -1.25          1.377         -0.908          0.364
 2          -0.60          0.112         -5.365          0.000
 3           0.00          0.021          0.000          1.000
 4           0.00          0.011          0.000          1.000
 5           0.00          0.429          0.000          1.000
 6           0.00          0.530          0.000          1.000
 7           0.00          0.775          0.000          1.000
 8           0.00          0.405          0.000          1.000

                                    Hessian
              1              2              3              4              5
 1      1.897      -8.1835E-02    -2.3464E-02    -1.1634E-03    -9.0646E-02
 2                  1.2507E-02     2.0883E-06     3.1320E-04    -5.3147E-04
 3                                 4.6174E-04    -5.5344E-05    -8.1929E-04
 4                                                1.1797E-04     6.0699E-04
 5                                                               0.1839

                6              7              8
 1    -0.1641        -0.1681         7.7768E-02
 2     1.0372E-02     1.9269E-02     5.9762E-03
 3     5.1246E-04    -1.6419E-03    -4.0106E-03
 4    -2.0693E-03     6.9029E-04     1.7020E-03
 5     9.9640E-02     0.1191         3.5786E-02
 6     0.2808         0.1264        -2.2602E-02
 7                    0.6003         4.6015E-02
 8                                  0.1641

 Estimated Probability (censored) or Estimated Density (non-censored)
      1        2        3        4        5        6        7        8
 0.0007   0.0029   0.0026   0.0024   0.0211   0.8982   0.0041   0.0021

       9      10       11       12       13       14       15       16
 0.00240   .0222   0.0021   0.0151   0.0008   0.0200   0.0433   0.0120

     17       18       19       20       21       22       23       24
 0.0011   0.0190   0.0015   0.0015   0.0036   0.0004   0.0371   0.0001

     25       26       27       28       29       30       31       32
 0.0792   0.0015   0.0055   0.0115   0.6424   0.0247   0.0184   0.0042

     33       34       35       36       37       38       39       40
 0.0163   0.0039   0.0019   0.0021   0.0193   0.0056   0.0011   0.0016

                      Newton-Raphson Step
     1       2       3       4       5       6       7       8
 0.171   0.062  -0.011  -0.003  -0.336   0.133   1.297   0.298

                   Covariate Means
    1       2       3       4       5       6       7
 5.65   56.58   15.65    0.35    0.28    0.12    0.53

 Distinct Values For Each Class Variable
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 Variable  1:     1.0         2.0         3.0         4.0
 Variable  2:      0.         1.0

                               Observation Codes
1  2  3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
0  0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

21 22 23 24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 0  0  0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

Number of Missing Values           0

Chi-squared statistic with 8 degrees of freedom    6.335

STBLE/DSTBLE (Single/Double precision)
Estimate survival probabilities and hazard rates for various parametric models.

Usage
CALL STBLE (NOBS, NCOL, XPT, LDXPT, MODEL, TIME, NPT,
            DELTA, IFIX, INTCEP, NCLVAR, INDCL, NCLVAL,
            CLVAL, NEF, NVEF, INDEF, NCOEF, COEF, IPRINT,
            SPROB, LDSPRO, XBETA)

Arguments

NOBS — Number of observations.   (Input)

NCOL — Number of columns in XPT.   (Input)

XPT — NOBS by NCOL matrix, each row of which contains the covariates for a
group for which survival estimates are desired.   (Input)

LDXPT — Leading dimension of XPT exactly as specified in the dimension
statement of the calling program.   (Input)

MODEL — Model option parameter.   (Input)
MODEL specifies the distribution of the response variable and the relationship of
the linear model to a distribution parameter.

MODEL Distribution
0 Exponential
1 Linear hazard
2 Log-normal
3 Normal
4 Log-logistic
5 Logistic
6 Log least extreme value
7 Least extreme value
8 Log extreme value
9 Extreme value
10 Weibull
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For further discussion of the models, see the Algorithm section.

TIME — Beginning of the time grid for which the survival estimates are desired.
(Input)
Survival probabilities and hazard rates are computed for each covariate vector
over the grid of time points TIME + i * DELTA for i = 0, 1, …, NPT − 1.

NPT — Number of points on the time grid for which survival probabilities are
desired.   (Input)

DELTA — Increment between time points on the time grid.   (Input)

IFIX — Column number in XPT containing a constant to be added to the linear
response.   (Input)
The estimated linear response is w + COEF(1) * z(1) + COEF(2) * z(2) + … +
COEF(NCOEF) * z(NCOEF), where z is the design vector for the I-th observation
obtained from a row of XPT. w = XPT(I, IFIX) if IFIX is positive, and w = 0
otherwise.

INTCEP — Intercept option.   (Input)

INTCEP Action
0 No intercept is in the model (unless otherwise provided for by the user).
1 An intercept is automatically included in the model.

NCLVAR — Number of classification variables.   (Input)
Dummy or indicator variables are generated for classification variables using the
IDUMMY = 2 option of routine GRGLM (page 210). See Comment 2.

INDCL — Index vector of length NCLVAR containing the column numbers of X

that are classification variables.   (Input, if NCLVAR is positive, not used
otherwise)
If NCLVAR is 0, INDCL is not referenced and can be dimensioned of length 1 in
the calling program.

NCLVAL — Vector of length NCLVAR containing the number of values taken on
by each classification variable. (Input, if NCLVAR is positive, not referenced
otherwise)
NCLVAL(I) is the number of distinct values for the I-th classification variable.
NCLVAL is not referenced and can be dimensioned of length 1 in the calling
program if NCLVAR is zero.

CLVAL — Vector of length NCLVAL(1) + NCLVAL(2) + … + NCLVAL(NCLVAR)
containing the distinct values of the classification variables.   (Input, if NCLVAR is
positive; not used otherwise)
The first NCLVAL(1) elements contain the values for the first classification
variables, the next NCLVAL(2) elements contain the values for the second
classification variable, etc. If NCLVAR is zero, then CLVAL is not referenced and
can be dimensioned of length 1 in the calling program.
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NEF — Number of effects in the model.   (Input)
In addition to effects involving classification variables, simple covariates and the
product of simple covariates are also considered effects.

NVEF — Vector of length NVEF that contains the number of variables associated
with each effect.   (Input, if NEF is greater than 0; not referenced otherwise)
NVEF is not referenced and can be dimensioned of length 1 in the calling program
if NEF is zero.

INDEF — Vector of length NVEF(1) + … + NVEF(NEF) that contains the column
numbers in X associated with each effect.   (Input, if NEF is greater than 0; not
used otherwise)
The first NVEF(1) elements of INDEF contain the column numbers in XPT for the
variables in the first effect. The next NVEF(2) elements in INDEF contain the
column numbers for the second effect, etc.. If NCLVAR is zero, INDEF is not
referenced and can be dimensioned of length 1 in the calling program.

NCOEF — Number of coefficients in the model.   (Input)

COEF — Vector of length NCOEF containing the model parameter estimates.
(Input)
Usually routine SVGLM (page 967) is first called to estimate COEF as the first
column of matrix COEF in SVGLM. When present in the model, the initial
coefficient in COEF is a “nuisance” parameter, and the remaining coefficients are
parameters associated with the “linear” model, beginning with the intercept, if
present. Nuisance parameters are as follows:

Model Nuisance Parameter
1 Coefficient of the quadratic term in time, θ
2−9 Scale parameter, σ
10 Shape parameter, θ

There is no nuisance parameter for model 0.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing is performed.

SPROB — NPT by 2 * NOBS + 1 matrix.   (Output)
SPROB(i, 2) contains the estimated survival probability at time
SPROB(i, 1) = TIME + (i − 1) * DELTA for observations with covariates given in
row 1 of XPT. SPROB(i, 3) contains the estimate for the hazard rate at this time
point. Columns 4 and 5 contain the estimated survival probabilities and hazard
rates for observations with covariates given in the second row in XPT, etc., up to
columns 2 * NOBS and 2 * NOBS + 1, which contain these statistics for
observations with covariates in the last row of XPT.

LDSPRO — Leading dimension of SPROB exactly as specified in the dimension
statement in the calling program.   (Input)
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XBETA — Vector of length NOBS containing the estimated linear response w +
COEF(1) * z(1) + … + COEF(NCOEF) * z(NCOEF ) for each row of XPT.   (Output)

Comments

1. Automatic workspace usage is

STBLE NCOEF numeric units if IPRINT is zero, or NCOEF +
max(7, NCOL) numeric units + NCOL * 10 character units if
IPRINT is 1, or

DSTBLE 2 * NCOEF numeric units if IPRINT is zero, or 2 * NCOEF +
max(7, NCOL) numeric units + NCOL * 10 character units if
IPRINT is 1.

Workspace may be explicitly provided, if desired, by use of
S2BLE/DS2BLE. The reference is

CALL S2BLE (NOBS, NCOL, XPT, LDXPT, MODEL, TIME,
            NPT, DELTA, IFIX, INTCEP, NCLVAR, INDCL,
            NCLVAL,CLVAL, NEF, NVEF, INDEF, NCOEF,
            COEF, IPRINT, SPROB, LDSPRO, XBETA,
            CHWK, Z, RWK)

The additional arguments are as follows:

CHWK — CHARACTER * 10 work vector of length NCOL.

Z — Work vector of length NCOEF.

RWK — Work vector of length MAX(7, NCOL) if IPRINT = 1, or of
length 1 if IPRINT = 0.

2. Dummy variables are generated for the classification variables as
follows: The list of all distinct values of each classification variable is as
stored in CLVAL. Dummy variables are generated for each but the last of
these distinct values. Each dummy variable is zero unless the
classification variable equals the list value corresponding to the dummy
variable, in which case the dummy variable is one. See argument
IDUMMY for IDUMMY = 2 in routine GRGLM (page 210).

3. Informational errors
Type Code
   3    1 Some survival probabilities are less than or equal to

zero. The corresponding hazard values cannot be
computed.

   4    2 The specified number of coefficients, NCOEF, is
incorrect.

   4    3 The model specified is not defined for negative time.
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Algorithm

Routine STBLE computes estimates of survival probabilities and hazard rates for the
parametric survival/reliability models fit by routine SVGLM (page 967) for one or more
vectors of covariate values. Because estimates for the parameters of the model must be
given, routine SVGLM is usually invoked to obtain these estimates prior to invoking STBLE.

Let η = x7β be the linear parameterization, where x is a design vector obtained in STBLE
via routine GRGLM (page 210) from a row of XPT, and β is a vector of parameters
associated with the linear model. Let T denote the random response variable and S(t)
denote the probability that T > t. All models considered also allow a fixed parameter w
(input in column IFIX of XPT). Use of this parameter is discussed in the document for
routine SVGLM . There may also be nuisance parameters θ > 0, or σ > 0. Let Φ denote the
cumulative normal distribution. The survival models available in STBLE are

Model Name S(t)

0 Exponential exp{ exp(− +t w η)}

1 Linear hazard exp{ exp[(− + +( ) )]}t wtθ η
2

2

2 Log-normal 1 − − −Φ( ))ln(t wη
σ

3 Normal 1 − − −Φ( )t wη
σ

4 Log-logistic { )}ln1 1+ )− − −exp( t w0 η
σ

5 Logistic { )}1 1+ − − −exp( t wη
σ

6 Log least extreme value exp exp( ln({ )})− − −t wη
σ

7 Least extreme value exp exp({ )}− − −t wη
σ

8 Log extreme value 1 exp exp[− − − )− −{ ( )]}ln t w0 η
σ

9 Extreme value 1 exp exp[− − − − −{ ( )]}t wη
σ

10 Weibull
exp{ exp(− +

t
w η

θ
) }4 9

Let λ(t) denote the hazard rate at time t. Then λ(t) and S(t) are related as

S t s ds
t0 5 = exp{−
−∞I λ( ) }

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case, we assume
λ(s) = 0 for s < 0), while the remaining models allow arbitrary values for T,
−∞ < T < ∞. The computations proceed in routine STBLE as follows:

1. The input arguments are checked for consistency and validity.
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2. For each row of XPT, the explanatory variables are generated from the
classification and variables and the covariates using routine GRGLM with
the IDUMMY = 2 option. (When IDUMMY is two, GRGLM assigns an
indicator variable the value 1.0 when the observation is in the class,
assigns the value 0.0 otherwise, and omits the last indicator variable
from the design vector. See the manual documentation for GRGLM.)

Given the explanatary variables x, η  is computed as η  = x7β, where β
in input in COEF.

3. For each time point requested in the time grid, the survival probabilities
and hazard rates are computed.

Example

The example is a continuation of the first example given for routine SVGLM (page
967). Prior to calling STBLE, SVGLM is invoked to compute the parameter
estimates. The example is taken from Lawless (1982, page 287) and involves the
mortality of patients suffering from lung cancer.

C
      INTEGER    ICEN, IFIX, IFRQ, ILT, INFIN, INIT, INTCEP, IPRINT,
     &           IRT, ITIE, LDCASE, LDCOEF, LDCOV, LDSPRO, LDX, LDXPT,
     &           MAXCL, MAXIT, MODEL, NCLVAR, NCOL, NEF, NOBS, NPT,
     &           NOBS
      REAL       DELTA, EPS, TIME, XPWR
      PARAMETER  (DELTA=20.0, EPS=0.001, ICEN=2, IFIX=0, IFRQ=0,
     &           ILT=0, INFIN=0, INIT=0, INTCEP=1, IPRINT=1, IRT=1,
     &           ITIE=0, LDCASE=40, LDCOEF=9, LDCOV=9, LDX=40,
     &           LDXPT=2, MAXCL=6, MAXIT=15, MODEL=0, NCLVAR=2,
     &           NCOL=7, NEF=5, NOBS=40, NPT=10, NOBS=2, TIME=10.0,
     &           XPWR=0.0, LDSPRO=NPT)
C
      INTEGER    IADD(NOBS), INDCL(NCLVAR), INDEF(5), NCLVAL(NCLVAR),
     &           NCOEF, NRMISS, NVEF(NEF)
      REAL       ALGL, CASE(LDCASE,5), CLVAL(MAXCL), COEF(LDCOEF,4),
     &           COV(LDCOV,LDCOV), GR(LDCOV), SPROB(LDSPRO,2*NOBS+1),
     &           X(LDX,NCOL), XBETA(NOBS), XMEAN(LDCOV),
     &           XPT(LDXPT,NCOL)
      EXTERNAL   SCOPY, STBLE, SVGLM
C
      DATA X/411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287,
     &     10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201,
     &     44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231,
     &     5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6,
     &     3, 8, 4, 6, 4, 2, 5, 5, 4, 8, 7, 6, 9, 5, 7, 2, 8, 6, 5, 7,
     &     4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65, 69, 63, 48,
     &     48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37,
     &     54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68,
     &     39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2,
     &     25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13,
     &     22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3,
     &     5*4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1/
      DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/
C
      CALL SVGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ, IFIX,
     &            ICEN, INFIN, MAXIT, EPS, INTCEP, NCLVAR, INDCL, NEF,
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     &            NVEF, INDEF, INIT, 0, MAXCL, NCLVAL, CLVAL, NCOEF,
     &            COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE, LDCASE,
     &            GR, IADD, NRMISS)
C
      CALL SCOPY (NCOL, X(1,1), LDX, XPT(1,1), LDXPT)
      CALL SCOPY (NCOL, X(2,1), LDX, XPT(2,1), LDXPT)
C
      CALL STBLE (NOBS, NCOL, XPT, LDXPT, MODEL, TIME, NPT, DELTA,
     &            IFIX, INTCEP, NCLVAR, INDCL, NCLVAL, CLVAL, NEF,
     &            NVEF, INDEF, NCOEF, COEF, IPRINT, SPROB, LDSPRO,
     &            XBETA)
C
      END

Output
                              group   1
                               xpt
  1           2           3           4           5           6
411           0           7          64           5           1

7
0

                     design vector
1           2           3           4           5           6
1           7          64           5           1           0

7           8
0           1

xbeta =        -5.57097

                        group   2
                          xpt
  1           2           3           4           5           6
126           0           6          63           9           1

7
0

                    design vector
1           2           3           4           5           6
1           6          63           9           1           0

7           8
0           1

xbeta =        -5.03551

             survival and hazard estimates
                        (sprob)
  time            s1            h1            s2            h2
 10.00        0.9626      0.003807        0.9370      0.006503
 30.00        0.8921      0.003807        0.8228      0.006503
 50.00        0.8267      0.003807        0.7224      0.006503
 70.00        0.7661      0.003807        0.6343      0.006503
 90.00        0.7099      0.003807        0.5570      0.006503
110.00        0.6579      0.003807        0.4890      0.006503
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130.00        0.6096      0.003807        0.4294      0.006503
150.00        0.5649      0.003807        0.3770      0.006503
170.00        0.5235      0.003807        0.3310      0.006503
190.00        0.4852      0.003807        0.2907      0.006503

Note that in simple exponential models the hazard rate is constant over time.

ACTBL/DACTBL (Single/Double precision)
Produce population and cohort life tables.

Usage
CALL ACTBL (IMTH, N, NPOP, AGE, A, IPOP, IDTH, IPRINT,
            TABLE, LDTABL)

Arguments

IMTH — Type of life table.   (Input)
IMTH = 0 indicates a population (current) table. IMTH = 1 indicates a cohort table.

N — Number of age classes.   (Input)

NPOP — Population size. (Input, if IMTH = 0; not used otherwise)
For IMTH = 0, the population size at the beginning of the first age interval. The
value is somewhat arbitrary. NPOP = 10000 is reasonable. Not used if IMTH = 1.

AGE — Vector of length N + 1 containing the lowest age in each age interval, and
in AGE(N + 1), the endpoint of the last age interval.   (Input)
Negative AGE(1) indicates that the age intervals are all of length |AGE(1)| and that
the initial age interval is from 0.0 to |AGE(1)|. In this case, all other elements of
AGE need not be specified. AGE(N + 1) need not be specified when IMTH = 1.

A — Vector of length N containing the fraction of those dying within each
interval who die before the interval midpoint.   (Input)
A common choice for all A(I) is 0.5. This choice may also be specified by setting
A(1) to any negative value. In this case, the remaining values of A need not be
specified.

IPOP — Vector of length N containing the cohort sizes during each interval.
(Input)
If IMTH = 0, then IPOP(I) contains the size of the population at the midpoint of
interval I. If IMTH = 1, then IPOP(I) contains the size of the cohort at the
beginning of interval I. When IMTH = 0, the population sizes in IPOP may need
to be adjusted to correspond to the number of deaths in IDTH . See the algorithm
section of the document for more information.

IDTH — Vector of length N containing the number of deaths in each age interval.
(Input, if IMTH = 0; not used otherwise)
If IMTH = 1, IDTH is not used and may be dimensioned of length 1.
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IPRINT — Printing option.   (Input)
If IPRINT = 1, the life table is printed. Otherwise, no printing is done.

TABLE — N by 12 matrix containing the life table.   (Output)
The rows of TABLE correspond to the age intervals.

Col. Description
1 Lowest age in the age interval.
2 Fraction of those dying within the interval who die before the interval

midpoint.
3 Number surviving to the beginning of the interval.
4 Number of deaths in the interval.
5 Death rate in the interval. If IMTH = 1, this column is set to NaN (not a

number).
6 Proportion dying in the interval.
7 Standard error of the proportion dying in the interval.
8 Proportion of survivors at the beginning of the interval.
9 Standard error of the proportion of survivors at the beginning of the

interval.
10 Expected lifetime at the beginning of the interval.
11 Standard error of the expected life at the beginning of the interval.
12 Total number of time units lived by all of the population in the interval.

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement in the calling program.   (Input)

Algorithm

Routine ACTBL computes population (current) or cohort life tables based upon the
observed population sizes at the middle (IMTH = 0) or the beginning (IMTH = 1)
of some userspecified age intervals. The number of deaths in each of these
intervals must also be observed.

The probability of dying prior to the middle of the interval, given that death
occurs somewhere in the interval, may also be specified. Often, however, this
probability is taken to be 0.5. For a discussion of the probability models
underlying the life table here, see the references.

Let tL, for i = 0, 1, …, tQ denote the time grid defining the n age intervals, and note
that the length of the age intervals may vary. Following Gross and Clark (1975,
page 24), let dL denote the number of individuals dying in age interval i, where
age interval i ends at time tL. If IMTH = 0, the death rate at the middle of the
interval is given by rL = dL/(MLhL), where ML is the number of individuals alive at

the middle of the interval, and hL = tL − tL�1, t0 = 0. The number of individuals alive

at the beginning of the interval may be estimated by PL = ML + (1 − aL)dL where aL
is the probability that an individual dying in the interval dies prior to the interval
midpoint. When IMTH = 1, PL is input directly while the death rate in the interval,
rL, is not needed.
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The probability that an individual dies during the age interval from tL�1 to tL is
given by qL = dL/PL. It is assumed that all individuals alive at the beginning of the
last interval die during the last interval. Thus, qQ = 1.0. The asymptotic variance
of qL can be estimated by

σ i i i iq q P2 1= −( ) /

When IMTH = 0, the number of individuals alive in the middle of the time interval
(input in IPOP(I)) must be adjusted to correspond to the number of deaths
observed in the interval. Routine ACTBL assumes that the number of deaths
observed in interval hL occur over a time period equal to hL. If dL is measured over

a period uL, where uL ≠ dL, then IPOP(I) must be adjusted to correspond to dL by
multiplication by uL/hL, i.e., the value ML input into ACTBL as IPOP(I) is computed
as

M M u hi i i i
∗ = /

Let SL denote the number of survivors at time tL from a hypothetical (IMTH = 0) or
observed (IMTH = 1) population. Then, S0 = NPOP when IMTH = 0, and
S0 = IPOP(1) for IMTH = 1, and SL is given by SL = SL-1 − δL�� where δL = SLqL is the
number of individuals who die in the i-th interval. The proportion of survivors in
the interval is given by VL = SL/S0 while the asymptotic variance of VL can be
estimated as follows.

var( )
( )

V V
q
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j
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σ

The expected lifetime at the beginning of the interval is calculated as the total
lifetime remaining for all survivors alive at the beginning of the interval divided
by the number of survivors at the beginning of the interval. If eL denotes this
average expected lifetime, then the variance of eL can be estimated as (see Chiang
1968)
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where var(eQ) = 0.0.

Finally, the total number of time units lived by all survivors in the time interval
can be estimated as:

U h S ai i i i i= − −[ ( )]δ 1

Example

The following example is taken from Chiang (1968). The cohort life table has
thirteen equally spaced intervals, so AGE(1) is set to −5.0. Similarly, the
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probabilities of death prior to the middle of the interval are all taken to be 0.5, so
A(1) is set to −1.0. Since IPRINT = 1, the life table is printed by ACTBL.

C                                 Specifications
      INTEGER    IMTH, IPRINT, LDTABL, N, NPOP
      PARAMETER  (IMTH=1, IPRINT=1, N=13, NPOP=10000, LDTABL=N)
C
      INTEGER    IDTH(13), IPOP(13)
      REAL       A(1), AGE(1), TABLE(13,12)
      EXTERNAL   ACTBL
C
      DATA AGE/-5.0/, A/-1.0/
      DATA IPOP/270, 268, 264, 261, 254, 251, 248, 232, 166, 130, 76,
     &     34, 13/
C
      CALL ACTBL (IMTH, N, NPOP, AGE, A, IPOP, IDTH, IPRINT, TABLE,
     &            LDTABL)
C
      END

Output
                              Life Table
Age Class         Age      PDHALF       Alive      Deaths  Death Rate
        1           0         0.5         270           2         NaN
        2           5         0.5         268           4         NaN
        3          10         0.5         264           3         NaN
        4          15         0.5         261           7         NaN
        5          20         0.5         254           3         NaN
        6          25         0.5         251           3         NaN
        7          30         0.5         248          16         NaN
        8          35         0.5         232          66         NaN
        9          40         0.5         166          36         NaN
       10          45         0.5         130          54         NaN
       11          50         0.5          76          42         NaN
       12          55         0.5          34          21         NaN
       13          60         0.5          13          13         NaN

Age Class        P(D)   Std(P(D))        P(S)   Std(P(S))    Lifetime
        1       0.007     0.00522       1.000     0.00000       43.19
        2       0.015     0.00741       0.993     0.00522       38.49
        3       0.011     0.00652       0.978     0.00897       34.03
        4       0.027     0.01000       0.967     0.01092       29.40
        5       0.012     0.00678       0.941     0.01437       25.14
        6       0.012     0.00686       0.930     0.01557       20.41
        7       0.065     0.01560       0.919     0.01665       15.62
        8       0.284     0.02962       0.859     0.02116       11.53
        9       0.217     0.03199       0.615     0.02962       10.12
       10       0.415     0.04322       0.481     0.03041        7.23
       11       0.553     0.05704       0.281     0.02737        5.59
       12       0.618     0.08334       0.126     0.02019        4.41
       13       1.000     0.00000       0.048     0.01303        2.50

Age Class   Std(Life)  Time Units
        1      0.6993      1345.0
        2      0.6707      1330.0
        3      0.6230      1312.5
        4      0.5940      1287.5
        5      0.5403      1262.5
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        6      0.5237      1247.5
        7      0.5149      1200.0
        8      0.4982       995.0
        9      0.4602       740.0
       10      0.4328       515.0
       11      0.4361       275.0
       12      0.4167       117.5
       13      0.0000        32.5
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Chapter 14: Multidimensional
Scaling

Routines
14.1. Multidimensional Scaling Routines

Individual differences model .................................................MSIDV 1003

14.2. Utility Routines
Compute distance matrices based upon a model............... MSDST 1017
Standardize the input data .................................................. MSSTN 1020
Double center a dissimilarity matrix .....................................MSDBL 1024
Compute initial estimates.......................................................MSINI 1028
Compute stress given disparities and distances................. MSTRS 1035

Usage Notes
The routines described in this chapter all involve multidimensional scaling.
Routine MSIDV (page 1003) performs computations for the individual differences
metric scaling models. The utility routines are useful for associated computations
as well as for programming other methods of multidimensional scaling.

The following is a brief introduction to multidimensional scaling meant to
acquaint the user with the purposes of the routines described in this chapter. Also
of interest is the table at the end of this section giving the notation used. A more
complete description of procedures in multidimensional scaling may be found in
the references, as well as in the algorithm sections for the routines.

Multidimensional Scaling Data Types

A “dissimilarity” is a subject’s measure of the “distance” between two objects.
For example, a subject’s estimate of the distance between two cities is a
dissimilarity measure that may, or may not, be the actual distance between the
cities (depending upon the subjects familiarity with the two cities).
Dissimilarities usually have less relationship to distance. For example, the
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subject may estimate, on a given scale, the difference between two smells, two
tastes, two colors, two shapes, etc. As a concrete example, the subject is asked to
compare two wines and indicate whether they have very similar tastes (scale value
0), or very different tastes (scale value 10), or are somewhere in between. In this
case, no objective measure of “distance” is available, yet the dissimilarity may be
measured. In all cases, however, the larger the difference between the objects, the
larger the dissimilarity measure.

If instead the measure increases as the objects become more similar, then a
“similarity” measure rather than a “dissimilarity” measure is obtained. Most
routines in this chapter require dissimilarities as input so that similarities must be
converted to dissimilarities before most routines in this chapter can be used.
Routine MSSTN (page 1020) provides two common methods for performing these
conversions.

In general, dissimilarities between all objects in a set are measured (yielding a
matrix of dissimilarities), and the multidimensional scaling problem is to locate
the objects in a Euclidean (or other) space of known dimension given the matrix
of dissimilarities. The estimates of object locations should yield predicted
distances between the objects that “closely approximate” the observed
dissimilarities. In many multidimensional scaling methods, “closely
approximates” means that a predefined measure of the discrepancy (the “stress”)
is minimized. The simplest stress measure is the sum of the squared differences
between the observed dissimilarities and the distances predicted by the estimated
object locations. This stress measure, as well as all other stress measures used in
this chapter, is discussed more fully in the manual document for routine MSTRS

(page 1035).

Note that the predicted distances between objects may not be Euclidean distance.
Indeed, in one of the more popular multidimensional scaling models, the
individual differences model, weighted Euclidean distance is used. Let λ1N and

λ2N, k = 1, … ,d, be the location estimates of two objects (stimuli) in a d
dimensional space. Then, the weighted Euclidean distance used in the individual
difference model is given by

δ λ λ12 1 2
2

1

= −
=

∑wk k k
k

d

( )

Many other distance models are possible. The models used in this chapter are
discussed in the manual document for routine MSDST (page 1017).

A dissimilarity is a subject’s estimate of the difference (“distance”) between two
objects. From the observed dissimilarities, a predicted distance between the
objects is obtained by estimating the location of the objects in a Euclidean space
of given dimension. In metric scaling, the dissimilarity may be a ratio measure (in
which case a dissimilarity of zero means that the objects are in the same location)
or an interval measure (in which case “distance” plus a constant is observed).
When an interval measure is observed, the interval constant, c, must
also be estimated in order to relate the dissimilarity to the predicted distance.
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For ratio measures, c is not required. A couple of methods for estimating c are
used by the routines in this chapter. These methods are explained in the routines
that use them.

In nonmetric scaling, the dissimilarity is an ordinal (rank) or categorical measure.
In this case, the stress function need only assure that the predicted distances
satisfy, as closely as possible, the ordinal or categorical relationships observed in
the data. Thus, the stress should be zero if the predicted distances maintain the
observed rankings in the dissimilarities in ordinal data. The meaning of a stress in
categorical data is more obtuse and is discussed further below.

In ordinal data, the stress function is computed as follows: First, the
dissimilarities are transformed so that they correspond as closely as possible to
the predicted distances, but such that the observed ordinal relationships are
maintained. The transformed dissimilarities are called “disparities”, and the stress
function is computed from the disparities and the predicted distances. (In ratio
and interval data, disparities may be taken as the dissimilarities.) Thus, if the
predicted distances preserve the observed ordinal relationships, a stress of zero
will be computed. If the predicted distances do not preserve these relationships,
then new estimates for the distances based upon the disparities can be computed.
These can be followed by new estimates of the disparities. When the new
estimates do not lead to a lower stress, convergence of the algorithm is assumed.

In categorical data, all that is observed is a category for the “distance” between
the objects, and there are no known relationships between the categories. In
categorical data, the disparities are such that the categories are preserved. A score
minimizing the stress is found for each category. As with ordinal data, new
distances are computed from this score, followed by new scores for the
categories, etc., with convergence occurring when the stress cannot be lowered
further. In categorical data, a stress of zero should be relatively uncommon.

The individual differences model assumes that the squared distance between
stimuli i and j for subject l,

δ ijl
2

is given as

δ λ λijl lk ik jk
k

d

w2 2

1

= −
=

∑ ( )

where d is the number of dimensions (always assumed to be known), λLN is the
location of the i-th stimulus in the k-th dimension, and wON is the weight given by
subject l to the k-th dimension. Let

δi l•
2
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denote the average of the squared distances in the i-th row of the dissimilarity
matrix for the l-th subject, let

δ• jl
2

be similarly defined for the j-th column, and let

δ••l
2

denote the average of all squared distances for the l-th subject. Then, the product
moment (double centering) transformation is given by

pijl ijl i l jl l= − − − +• • ••( ) / .δ δ δ δ2 2 2 2 2 0

The advantage of the product-moment transformations is that the “product-
moment” (double centered) matrices PO = (pLMO) can be expressed as

PO = Λ[diag(WO)]Λ7

where Λ = (λLN) is the configuration matrix, and where diag(WO) is a diagonal
matrix with the subject weights for subject l, wON, along the diagonal. If one
assumes that the dissimilarities are measured without error, then the
dissimilarities can be used in place of the distances, and the above relationship
allows one to compute both diag(WO) and Λ directly from the product-moment

matrices so obtained. If error is present but small, then very good estimates of Λ
and diag(WO) can still be obtained (see De Leeuw and Pruzansky 1978). Routine
MSDBL (page 1024) computes the product-moment matrices while MSINI (page
1028) computes the above estimates for X and diag(WO).

Data Structures

The data input to a multidimensional scaling routine is, conceptually, one or more
dissimilarity (or similarity) matrices where a dissimilarity matrix contains the
dissimilarity measure between the i-th and j-th stimuli (objects) in position (i, j) of
the matrix. In multidimensional scaling, the dissimilarity matrix need not be
symmetric (asymmetric distances can also be modelled, see routine MSDST, page
1017) but if it is, only elements above the diagonal need to be observed.
Moreover, in the multidimensional “unfolding” models, the distances between all
pairs of objects are not observed. Rather, all (or at least many) of the
dissimilarities between one set of objects and a second set are measured. When
these types of input are combined with the fact that missing values are also
allowed in many multidimensional scaling routines, it is easy to see that data
structures required in multidimensional scaling can be quite complicated. Three
types of structures are allowed for the routines described in this chapter. These
are discussed below.

Let X denote a matrix containing the input dissimilarities. The columns of X

correspond to the different subjects, and a subjects dissimilarity matrix is
contained within the column. Thus, X is a matrix containing a set of
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dissimilarity matrices, one dissimilarity matrix within each column. For any one
problem, the form (structure) of all dissimilarity matrices input in X must be
consistent over all subjects. The form can vary from problem to problem,
however. In the following, X contains only one column and the index for subject
is ignored to simplify the notation. The three storage forms used by the routines
described in this chapter are

1. Square symmetric: For this form, each column of X contains the upper
triangular part of the dissimilarity matrix, excluding the diagonal
elements (which should be zero anyway). Specifically, X(1) contains the
(1, 2) element of the dissimilarity matrix, X(2) contains the (1, 3)
element, X(3) contains the (2, 3) element, etc. Let q denote the number
of stimuli in the matrix. All q(q − 1)/2 off-diagonal elements are stored.

2. Square asymmetric: X contains all elements of each square matrix,
including the diagonal elements, which are not used. The dissimilarities
are stored in X as if X were dimensioned q × q. The diagonal elements
are ignored.

3. Rectangular: This corresponds to the “unfolding models” in which not
all of the dissimilarities in each matrix are observed. In this storage
mode, the row stimuli do not correspond to the column stimuli. Because
of the form of the data, no diagonal elements are present, and the data
are stored in X as if X were dimensioned r × s where r is the number of
row stimuli and s is the number of column stimuli.

Missing values are also allowed. They are indicated in X in either of two ways: 1)
The standard IMSL missing value indicator NaN (not a number) may be used to
indicate missing values, or 2) negative elements of X are taken to be missing
dissimilarities.

Table 14.1 gives some notation commonly used in this chapter. In general, an
element of a matrix is denoted by the lowercase matrix name with subscripts. The
notation is generally consistent, but there are some variations when variation
seems appropriate.
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Table 14.1: Commonly Used Notation

Symbol Fortran Meaning

δ ijl
DIST Distance between objects i and j for subject l.

δ ijl
∗ DISP Disparity for objects i and j for subject l.

X X The input array of dissimilarities.

d NDIM The number of dimensions in the solution.

W W The matrix of subject weights.

diag(WO) The diagonal matrix of subject weights for subject l.

π WS The matrix of stimulus weights.

Λ CFL The configuration matrix.

αK A The intercept for strata h.

βK B The slope for strata h.

νK WT The stratum weight for stratum h.

nK NCOM The number nonmissing dissimilarities in stratum h.

PO P The product-moment matrix for subject l.

φ STRSS The stress criterion (over all strata).

φO STRS The stress within stratum l.

p POWER The power to use in the stress criterion.

q NSTIM The total number of stimuli.

η NSUB The number of matrices input.

Γ Normalized eigenvectors.

IFORM Option giving the form of the dissimilarity input.
ICNVT Option giving the method for converting to

dissimilarities.
MODEL Vector giving the parameters in the distance model.
ISTRS Option giving the stress formula to use.
ITRANS Option giving the transformation to use.
IDISP The method to be used in estimating disparities.
EPS Convergence tolerance.
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MSIDV/DMSIDV (Single/Double precision)
Perform individual-differences multidimensional scaling for metric data using
alternating least squares.

Usage
CALL MSIDV (NSTIM, NSUB, X, ICNVT, MODEL, ISTRS, ITRANS,
            NDIM, IPRINT, DIST, CFL, LDCFL, W, LDW, A, B,
            WT, STRS, STRSS, RESID)

Arguments

NSTIM — Number of stimuli in each similarity/dissimilarity matrix.   (Input)

NSUB — Number of matrices to be used in the analysis.   (Input)

X — NSUB similarity or dissimilarity matrices in symmetric storage mode.
(Input)
Each matrix must occupy consecutive memory positions, and must be stored as a
column in X. X must be dimensioned as

DIMENSION X(NC2,NSUB)

where NC2 = NSTIM * (NSTIM − 1)/2. Each matrix is stored without the diagonal
elements by column as upper triangular matrices. For example, a 3 by 3 matrix
would be stored with the (1, 2), (1, 3), (2, 3) elements as the first three elements
of the first column of X.

ICNVT — Option for converting from similarity to dissimilarity data.   (Input)
If ICNVT = 0, the input data contains dissimilarities and no conversion is
performed. If ICNVT = 1, the data are converted from similarity to dissimilarity
data by subtracting each similarity from the largest similarity for the subject. If
ICNVT = 2, the data are converted to dissimilarities by reciprocating each
similarity.

MODEL — Model option parameter.   (Input)
MODEL = 0 means the Euclidean model is used, otherwise, the individual
differences model is used.

ISTRS — Option giving the stress formula to be used.   (Input)
Stress formulas differ in the weighting given to each subject. The valid values of
ISTRS are:

ISTRS Weighting used
0 Inverse of within-subject variance of observed dissimilarities about the

predicted distances
1 Inverse of within-subject sum of squared dissimilarities
2 Inverse of within-subject variance of dissimilarities about the subject

mean

See the Algorithm section for further discussion of the stress formula weights.
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ITRANS — Option giving the transformation to be used on the observed and
predicted dissimilarities when computing the criterion function.   (Input)

ITRANS Transformation
0 Squared distances
1 Distances (that is, no transformation is performed)
2 Log of the distances

See the Algorithm section for further discussion of stress formula transformations.

NDIM — Number of dimensions desired in the solution.   (Input)

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Printing is performed, but the output is abbreviated.
2 All printing is performed.

DIST — Vector of length NSUB * NC2, where NC2 = NSTIM * (NSTIM − 1)/2,
containing the predicted distances.   (Output)
DIST contains the distances as predicted by the estimated parameters in the
model. DIST has the same storage mode as X and may be treated as a series of
NSUB matrices in symmetric storage mode but without the diagonal elements.

CFL — Matrix of size NSTIM by NDIM containing the configuration of points
obtained from the multidimensional scaling.   (Output)

LDCFL — Leading dimension of CFL exactly as specified in the dimension
statement in the calling program.   (Input)

W — NSUB by NDIM matrix containing the subject weights.   (Output when MODEL

is not zero, not referenced otherwise)
W is not used and may be dimensioned of length 1 if MODEL = 0.

LDW — Leading dimension of W exactly as specified in the dimension statement
in the calling program.   (Input)

A — Vector of length NSUB containing the intercepts for each subject.   (Output)

B — Vector of length NSUB containing the slopes for each subject.   (Output)

WT — Vector of length NSUB containing the criterion function weights for each
subject.   (Output)

STRS — Vector of length NSUB containing the value of the weighted optimized
criterion within each subject.   (Output)

STRSS — Value of the weighted optimized criterion function (summed over
subjects).   (Output)

RESID — NSUB * NC2 vector containing the observation residuals.   (Output)
Here, NC2 = NSTIM (NSTIM − 1)/2.
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Comments

1. Automatic workspace usage is

MSIDV max(NSUB, NDIM * NSTIM, ND + 1) + NDIM * (NSTIM + 4) +
NDIM * NDIM * (2 + max(NSUB, NSTIM)) + NDSS * (NDSS + 9)
+ NSUB * (NSUB + NC2 + 1) + 2 * NSTIM * NSTIM + NC2 + 2 *
NDIM * NDIM * NSTIM * NSTIM + 3 * NPAR + 2

DMSIDV 2 * max(NSUB, NDIM * NSTIM, ND + 1) + 2 * NDIM *(NSTIM +
2 * NDIM * NDIM * (2 + max (NSUB, NSTIM)) + NDSS * (2 *
NDS + 17) + 2 * NSUB * (NSUB + NC2 + 1) + 4 * NSTIM *
NSTIM + 2 * NC2 + 2 * NDIM * NDIM * NSTIM * NSTIM + 4 *
NPAR + 2

Workspace may be explicitly provided, if desired, by use of
M2IDV/DM2IDV. The reference is

CALL M2IDV (NSTIM, NSUB, X, ICNVT, MODEL, ISTRS,
            ITRANS, NDIM, IPRINT, DIST, CFL, LDCFL,
            W, LDW, A, B, WT, STRS, STRSS, RESID,
            WK1, WK2, WK3, WK4, WK5, WK6, WK7, WK8,
            WK10, WK11, WK12, WK13, ID, WKDER,
            DWKHES, DWKGRA, WKDDP, NCOM, DISP)

The additional arguments are as follows:

WK1 — Work vector of length equal to max(NSUB, NDIM * NSTIM,
ND + 1)

WK2 — Work vector of length equal to NDIM * NDIM

WK3 — Work vector of length equal to NSTIM * NSTIM

WK4 — Work vector of length equal to NSTIM * NSTIM

WK5 — Work vector of length equal to NDSS * NDSS

WK6 — Work vector of length equal to 3 * NDSS

WK7 — Work vector of length equal to 5 * NDSS

IWK8 — Integer work vector of length equal to NDSS

WK10 — Work vector of length equal to NDIM * NDIM

WK11 — Work vector of length equal to NSUB * NSUB

WK12 — Work vector of length equal to NDIM * NDIM * max(NSUB,
NSTIM)

WK13 — Work vector of length equal to NSTIM * NDIM

ID — Integer work vector of length equal to 4 * NDIM + 2

WKDER — Work vector of length equal to NPAR

DWKHES — Double precision work vector of length equal to NDIM *
NDIM * NSTIM * NSTIM
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DWKGRA — Double precision work vector of length equal to NPAR

WKDDP — Work vector of length equal to NC2

NCOM — Work vector of length equal to NSUB

DISP — Work vector of length equal to NSUB * NC2

where ND = NDIM * (NDIM + 1)/2, NC2 = NSTIM * (NSTIM − 1)/2,
NDSS = max(NDIM, NSTIM, NSUB), and where NPAR = NDIM * NSTIM +
2 * NSUB when MODEL = 0; otherwise NPAR = NDIM * NSTIM + (NDIM +
2) * NSUB.

2. Informational errors
Type Code
   3    1 At some point during the iterations there were too

many step halvings. This is usually not serious.
   4    1 The program cannot continue because a Hessian

matrix is ill defined. A different model may be
required. This error should only occur when there is
serious numerical imprecision.

   4    2 A dissimilarity matrix has every element missing.

Algorithm

Routine MSIDV performs multidimensional scaling analysis according to an
alternating optimization algorithm. Input to MSIDV consists of symmetric
dissimilarity matrices measuring distances between the row and column objects.
Optionally, similarities can be input, and these can be converted to dissimilarities
by use of the ICNVT option. In MSIDV, the row and column objects (stimuli) must
be identical. Dissimilarities in multidimensional scaling are used to position the
objects within a d = NDIM dimensional space, where d is specified by the user.
Optionally, in the individual differences scaling model (MODEL ≠ 0), the weight
assigned to each dimension for each subject may be changed.

The Input Data

The data input in X must be in a special symmetric storage form. For this storage
mode, the input array X contains only the upper triangular part of each
dissimilarity matrix and does not contain the diagonal elements (which should all
be zero anyway). Storage of symmetric data in X is as follows: X(1) corresponds
to the (1, 2) element in the first matrix (which is a measure of the distance
between objects 1 and 2), X(2) corresponds to the (1, 3) element, X(3)
corresponds to the (2, 3) element, etc., until all t = q(q − 1)/2 off-diagonal
elements in the first matrix are stored, where q = NSTIM. The t + 1 element in X
contains the (1, 2) element in the second matrix, and so on.

Missing values are indicated in either of two ways: 1) The standard missing value
indicator NaN (not a number), specified via routine AMACH(6) (Reference
Material) may be used to indicate missing values, or 2) Negative elements of X
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may be used to indicate missing observations. In either case, missing values are
estimated as the mean dissimilarity for the subject and used as such when
computing initial estimates, and they are omitted from the criterion function when
optimal estimates are computed.

Routine MSIDV assumes a metric scaling model. When no transformation is
specified (ITRANS = 1), then each datum (after transforming to dissimilarities) is
a measure of distance plus a constant, αP. In this case, the constant (which is
always called the “intercept”) is assumed to vary with subject and must first be
added to the observed dissimilarities in order to obtain a metric. When a
transformation is specified (ITRANS ≠ 1), the meaning of αP changes (with
respect to metrics). Thus, when ITRANS = 1, the data is assumed to be interval
(see the chapter introduction) while when ITRANS ≠ 1 ratio data is assumed. A
scaling factor, the “slope”, is also always estimated for each subject.

The Criterion Function

When ISTRS = 1 or 2, the criterion function in MSIDV is given as

φ ν δ α β δ= − −∑ ∑ ∗
m

m
ijm m m ijm

i j

f f3 8 3 84 9
,

2

where δLMP denotes the predicted distance between objects i and j on subject m,

δ ijm
∗

denotes the corresponding dissimilarity (the observed distance), νP is the subject

weight, f is one of the transformations f(x) = x2, f(x) = x, or f(x) = ln(x) specified
by parameter ITRANS, αP is the intercept added to the transformed observation

within each subject, and βP is the slope for the subject. For ISTRS = 0, the
criterion function is given as

φ δ α β δ= − −
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where nP is the number of nonmissing observations on the m-th subject.
Assuming fixed weights, the first derivatives of the criterion for ISTRS = 0 are
identical to the first derivatives of the criterion when ISTRS = 1 or 2, but with
weights

ν δ α β δm i j ijm m m ijm mf f n− ∗= − −∑1 2

, /3 8 3 84 9
ISTRS can, thus, be thought of as changing the weighting to be used in the
criterion function.

The transformation ƒ(x) specified by parameter ITRANS is used to obtain
constant within-subject variance of the subject dissimilarities. If the variance of
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the log of the observed dissimilarities (about the predicted dissimilarities) is
constant within subject, then the log transformation should be used. In this case,
the variance of a dissimilarity should be proportional to its magnitude.
Alternatively, the within-subject variance may be constant when distances (or
squared distances) are used.

The Distance Models

The distance models for δLMP available in MSIDV are given by:

1. The Euclidean model:

δ λ λijm ik jk
k

d
2

1

2

= −
=

∑ 3 8
2. The individual-differences model:

δ λ λijm mk ik jk
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∑ 3 8
where Λ denotes the configuration (CFL) so that λLN is the location of the i-th
stimulus in the k-th dimension, where d is the number of dimensions, and where
wPN is the weight assigned by the m-th subject to the k-th dimension (W).

The Subject Weights

Weights that are inversely proportional to the estimated variance of the
dissimilarities (about their predicted values) within each subject may be preferred
because such weights lead to normal distribution theory maximum likelihood
estimates (when it is assumed that the dissimilarities are independently normally
distributed with constant residual variance). The estimated (conditional) variance
used as the inverse of the weight νP for the m-th subject in MSIDV (when ISTRS =
0) is computed as

ν
δ α β δ
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where the sum is over the observations for the subject, and where nP is the
number of observed nonmissing dissimilarities for the subject. These weights are
used in the first derivatives of the criterion function.

When ISTRS = 1, the within-subject average sum of squared dissimilarities are
used for the weights. They are computed as

ν
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m
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Finally, when ISTRS = 2, the within-subject variance of the dissimilarities is used
for the weights. These are computed as follows

ν
δ δ

m
i j ijm ijk

m

f f

n
−

∗ ∗

=
−∑1

2
, ( ( ) ( ))

where

f ijk( )δ∗

denotes the average of the transformed dissimilarities in the stratum.

The Optimization Procedure

Initial estimates of all parameters are obtained through methods discussed in
routine MSINI (page 1028). After obtaining initial estimates, a modified Gauss-
Newton algorithm is used to obtain estimates for the parameters that optimize the
criterion function. The parameters are optimized sequentially as follows:

1. Optimize the configuration estimates, Λ = CFL.

2. If required, estimate the optimal subject weights, wPN = W(m, k), one
subject at a time.

3. Optimize the parameters αP = A(m) and βP = B(m), one subject at a time.

4. If convergence has not been reached, continue at Step 1.

An iteration is defined to be all of the Steps 1, 2, and 3. Convergence is assumed
when the maximum absolute change in any parameter during an iteration is less

than 10-4 or if there is no change in the criterion function during an iteration.

The LS Gauss-Newton Algorithm

A modified Gauss-Newton algorithm is used in the estimation of all parameters.
This algorithm, which is discussed in detail by Merle and Spath (1974), uses
iteratively reweighted least squares on a Taylor series linearization of the
parameters in δLMP. During each iteration, the subject weights, which may depend
upon the parameters in the model, are assumed to be fixed.

Standardization

All models available are overparameterized so the resulting parameter estimates
are not uniquely defined. For example, in the Euclidean model, the columns of X
can be translated or “rotated” (multiplied by an orthonormal matrix), and the
resulting stress will not be changed. To eliminate lack of uniqueness due to
translation, model estimates for the configuration are centered in all models. No
attempt at eliminating the rotation problem is made, but note that rotation
invariance is not a problem in many of the models given. With more general
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models than the Euclidean model, other kinds of overparameterization occur.
Further restrictions on the parameters to eliminate this overparameterization are
given below by the model transformation type specified by ITRANS. In the
following, wON ∈ W, where W is the matrix of subject weights. The restrictions to
be applied by model transformation type are

1. For all models:

(a) ∑ ==i
q

ikx1 0

where q = NSTIM. i.e., center the columns of X.

(b) If W is in the model, scale the columns of W so that

∑ ==i
q

ikx1
2 1

2. For f(x) = x and f(x) = x2:

(a) Set bK = 1 if the data are matrix conditional and W is in the
model or if the data are unconditional. (Matrix conditional with
one matrix is considered to be unconditional data.)

(b) If W is not in the model, scale all elements in X so that

∑ ==h hb1
2η η

where η = NSUB is the number of matrices observed.

3. For f(x) = ln(x), substitute aK for bK (but set aK to 0 instead of 1) in all
restrictions in Item 2.

Example 1

The following example concerns some intercity distance rankings. The data are
described by Young and Lewyckyj (1979, page 83). The driving mileages
between various cities in the United States are ranked, yielding a symmetric
ordinal dissimilarity matrix. These rankings are used as input to MSIDV. A
Euclidean model is fit. The resulting two-dimensional scaling yields results
closely resembling the locations of the major cites in the U.S. Note that MSIDV
assumes continuous, not ranked, data.

The original rankings are given as:
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4 22 8 34 6 10 35 36 3

13 15 31 21 9 32 30 5

12 11 29 27 16 19 26

24 18 25 28 33 23

39 42 2 17 37

20 44 45 14

43 40 1

7 41

38

      INTEGER    ICNVT, IPRINT, ISTRS, ITRANS, LDCFL, LDW, LNX, MODEL,
     &           NDIM, NSTIM, NSUB
      PARAMETER  (ICNVT=0, IPRINT=2, ISTRS=1, ITRANS=0, LDCFL=10,
     &           LDW=1, LNX=45, MODEL=0, NDIM=2, NSTIM=10, NSUB=1)
C
      REAL       A(1), B(1), CFL(LDCFL,NDIM), DIST(45), RESID(LNX),
     &           STRS(1), STRSS, W(LDW), WT(1), X(LNX)
      EXTERNAL   MSIDV, PGOPT
C
      DATA X/4, 22, 13, 8, 15, 12, 34, 31, 11, 24, 6, 21, 29, 18, 39,
     &     10, 9, 27, 25, 42, 20, 35, 32, 16, 28, 2, 44, 43, 36, 30,
     &     19, 33, 17, 45, 40, 7, 3, 5, 26, 23, 37, 14, 1, 41, 38/
C                                 Call PGOPT to set page length for
C                                 the plotting
      CALL PGOPT (-2, 50)
C
      CALL MSIDV (NSTIM, NSUB, X, ICNVT, MODEL, ISTRS, ITRANS, NDIM,
     &            IPRINT, DIST, CFL, LDCFL, W, LDW, A, B, WT, STRS,
     &            STRSS, RESID)
C
      END

Output
 Initial parameter estimates.
        CFL
         1       2
 1  -0.762   0.124
 2  -0.451  -0.349
 3   0.496   0.073
 4  -0.151   0.651
 5   1.237   0.392
 6  -1.114   0.588
 7  -1.077  -0.566
 8   1.461   0.034
 9   1.321  -0.614
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10  -0.961  -0.333

                       Iteration history
 Iter      Source        Stress   Stress change  Maximum Change
  1     INIT   STRSS  0.3755E-02
  1     CONFIG STRSS  0.3399E-02    0.3559E-03      0.8062E-03
  1     LINES  STRSS  0.3142E-02    0.2564E-03      0.8062E-03
  2     CONFIG STRSS  0.3068E-02    0.7382E-04      0.1022E-04
  2     LINES  STRSS  0.3047E-02    0.2156E-04      0.1022E-04

                      Plot(s) of the configuration matrix (CFL)
              :::::::+::::::::::::X::+:::::::::::::::+:::::::::::::::+
              .                      I                               .
        0.600 X                      I                               +
              .                      I                               .
              .                      I                               .
              .                      I                               .
        0.450 +                      I                               +
              .                      I                        X      .
              .                      I                               .
              .                      I                               .
        0.300 +                      I                               +
              .                      I                               .
              .                      I                               .
 D            .                      I                               .
 i      0.150 +                      I                               +
 m            .       X              I                               .
 e            .                      I         X                     .
 n            .                      I                            X  .
 s      0.000 +------------------------------------------------------+
 i            .                      I                               .
 o            .                      I                               .
 n            .                      I                               .
       -0.150 +                      I                               +
 2            .                      I                               .
              .                      I                               .
              .                      I                               .
       -0.300 +                      I                               +
              .   X         X        I                               .
              .                      I                               .
              .                      I                               .
       -0.450 +                      I                               +
              .                      I                               .
              .                      I                               .
              . X                    I                               .
       -0.600 +                      I                               +
              :::::::+:::::::::::::::+:::::::::::::::+::::::::::X::::+
                   -0.80           0.00            0.80            1.60

                                 Dimension 1

Final parameter estimates.

 NCOM
   45

        CFL
         1       2
  1  -0.738   0.095
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  2  -0.447  -0.337
  3   0.497   0.077
  4  -0.153   0.661
  5   1.237   0.399
  6  -1.132   0.609
  7  -1.074  -0.571
  8   1.445   0.035
  9   1.325  -0.624
 10  -0.960  -0.343

     A
 -0.04255

   B
 0.4019

   WT
 0.01248

  STRS
 0.003047

STRESS =     3.04681E-03

                  Residuals
 Subject  Row Stimulus  Column Stimulus Residual
     1           2                1       -0.0436
     1           3                1        0.1230
     1           3                2       -0.1422
     1           4                1       -0.1318
     1           4                2       -.0697
     1           4                3       -0.0581
     1           5                1        0.0950
     1           5                2        0.0631
     1           5                3       -0.0456
     1           5                4        0.0639
     1           6                1       -0.0742
     1           6                2        0.1268
     1           6                3        0.0681
     1           6                4        0.1212
     1           6                5       -0.0495
     1           7                1       -0.0376
     1           7                2       -0.0216
     1           7                3       -0.0736
     1           7                4       -0.0119
     1           7                5        0.0464
     1           7                6        0.0558
     1           8                1       -0.1177
     1           8                2        0.0169
     1           8                3        0.0480
     1           8                4       -0.0173
     1           8                5       -0.0223
     1           8                6        0.0178
     1           8                7       -0.0047
     1           9                1       -0.0185
     1           9                2        0.0373
     1           9                3        0.0872
     1           9                4        0.0618
     1           9                5        0.0335
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     1           9                6       -0.0913
     1           9                7        0.0202
     1           9                8       -0.0671
     1          10                1       -0.0415
     1          10                2       -0.0276
     1          10                3        0.0869
     1          10                4        0.1342
     1          10                5       -0.1565
     1          10                6       -0.0522
     1          10                7        0.0179
     1          10                8        0.0701
     1          10                9       -0.0191

                           Residual Plot

        0.160 :::::::+::::::::::::::+::::::::::::::+::::::::::::::+::::
              .                                                       .
              .                                                       .
              .           X                                           .
              .         X                                             .
        0.120 +      X   X                                            +
              .                                                       .
              .                                                       .
              .                            X                          .
              .       X        X                                      .
        0.080 +                                                       +
              .                    X                     X            .
              .              X         X  X                           .
              .         X                                             .
              .     X                                       X         .
        0.040 +                       X                               +
 R            .      X                                                .
 e            .                                         X             .
 s            X                          X                        X   .
 i            .                                                       .
 d      0.000 +-------------------------------------------------------+
 u            .                X                               X      .
 a            .                     X            X   X                .
 l            .X X                                                    .
 s            .                                                       .
       -0.040 +XX X                                                   +
              .   X                                    X              .
              .    X X                                                .
              .  X                                                    .
              .  X    X            X                                  .
       -0.080 +                                                       +
              .                                                       X
              .                                                       .
              .                                                       .
              .                                                       .
       -0.120 +                                 X                     +
              .   X                                                   .
              .                                                       .
              .      X                                                .
              .                                                       .
       -0.160 :::::::+::::::::::::::+::::::::::::::+::X:::::::::::+::::
                     1              3              5              7

                                 Predicted Distances
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Example 2

The second example involves three subjects’ assessment of the dissimilarity
between rectangles that vary in height and width. An analysis is performed in k =
2 dimensions using the individual-differences scaling model. The estimated
subject weights, wPN, indicate how each subject weight the dimensions. The raw
data are given as follows:
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.

      INTEGER    ICNVT, IPRINT, ISTRS, ITRANS, LDCFL, LDW, LNX, MODEL,
     &           NDIM, NSTIM, NSUB
      PARAMETER  (ICNVT=0, IPRINT=1, ISTRS=0, ITRANS=0, LDCFL=9,
     &           LDW=3, LNX=108, MODEL=1, NDIM=2, NSTIM=9, NSUB=3)
C
      REAL       A(NSUB), B(NSUB), CFL(LDCFL,NDIM), DIST(LNX),
     &           RESID(LNX), STRS(NSUB), STRSS, W(LDW,NDIM), WT(NSUB),
     &           X(LNX)
      EXTERNAL   MSIDV
C
      DATA X/1.00, 1.41, 1.00, 2.24, 2.00, 1.00, 2.00, 2.24, 1.41,
     &     1.00, 2.24, 2.83, 2.24, 2.00, 1.00, 1.41, 2.24, 2.00, 2.24,
     &     1.41, 1.00, 1.00, 2.00, 2.24, 2.83, 2.24, 2.00, 1.00, 1.00,
     &     1.41, 1.00, 1.41, 1.00, 1.41, 1.00, 1.41, 1.50, 1.68, 0.75,
     &     2.12, 1.50, 0.75, 1.50, 2.12, 1.68, 1.50, 2.12, 3.35, 3.09,
     &     3.00, 1.50, 1.68, 3.09, 3.00, 3.09, 1.68, 0.75, 1.50, 3.00,
     &     3.09, 3.35, 2.12, 1.50, 0.75, 0.75, 1.68, 1.50, 1.68, 0.75,
     &     1.68, 1.50, 1.68, 0.50, 2.06, 2.00, 4.03, 4.00, 2.00, 4.00,
     &     4.03, 2.06, 0.50, 4.03, 4.12, 2.24, 1.00, 0.50, 2.06, 2.24,
     &     1.00, 2.24, 2.06, 2.00, 0.50, 1.00, 2.24, 4.12, 4.03, 4.00,
     &     2.00, 2.00, 2.06, 0.50, 2.06, 2.00, 2.06, 0.50, 2.06/
C
      CALL MSIDV (NSTIM, NSUB, X, ICNVT, MODEL, ISTRS, ITRANS, NDIM,
     &            IPRINT, DIST, CFL, LDCFL, W, LDW, A, B, WT, STRS,
     &            STRSS, RESID)
C
      END

Output
                  Iteration history
Iter      Source        Stress   Stress change  Maximum Change
  1     INIT   STRSS -0.3590E+03
  1     CONFIG STRSS -0.3590E+03    0.0000E+00      0.5708E-03
  1     SUB WT STRSS -0.3590E+03    0.0000E+00      0.1581E-02
  1     LINES  STRSS -0.3590E+03    0.0000E+00      0.2727E-02
  2     CONFIG STRSS -0.3590E+03    0.0000E+00      0.1442E-06
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  2     SUB WT STRSS -0.3590E+03    0.0000E+00      0.7165E-04
  2     LINES  STRSS -0.3590E+03    0.0000E+00      0.7165E-04
Final parameter estimates.

    NCOM
  1    2    3
 36   36   36

 CFL
 1       2
 1   1.225   0.000
 2   1.225  -1.225
 3   0.000  -1.225
 4  -1.225  -1.225
 5  -1.225   0.000
 6  -1.225   1.225
 7   0.000   1.225
 8   1.225   1.225
 9   0.000   0.000

         W
         1       2
 1   1.000   1.000
 2   0.342   1.372
 3   1.411   0.089

                A
         1          2          3
 -0.002773   0.001941   0.000055

            B
      1        2        3
 0.2229   0.2587   0.2963

           WT
      1        2        3
 1000.0   1000.0   1000.0

          STRS
      1       2       3
 -119.7  -119.7  -119.7

STRESS =    -359.018

MSDST/DMSDST (Single/Double precision)
Compute distances in a multidimensional scaling model.

Usage
CALL MSDST (NSTIM, NDIM, CFL, LDCFL, NSUB, IMOD, IFORM,
            ITRANS, W, LDW, WS, LDWS, DIST)

Arguments

NSTIM — Number of stimuli.   (Input)
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NDIM — Number of dimensions in the model.   (Input)

CFL — NSTIM by NDIM matrix containing the stimulus configuration.   (Input)

LDCFL — Leading dimension of CFL exactly as specified in the dimension
statement in the calling program.   (Input)

NSUB — Number of subjects.   (Input)

IMOD — Vector of length 3 describing the weighting to be used.   (Input)

I WEIGHT

1 Not used. Reserved for other scaling subroutines.
2 Subject weights (in W).
3 Stimulus weights (in WS).

If IMOD(i) is zero, then the i-th set of weights is not used. Otherwise, the weights
are used. For the Euclidean model, set IMOD(2) = IMOD(3) = 0. For the individual
differences model, IMOD(2) should not be zero. For the stimulus weighted
individual differences model, both IMOD(2) and IMOD(3) are not zero.

IFORM — Form option.   (Input)
If IFORM = 0, the computed distances are stored as the upper triangle of square
matrices stored columnwise without the diagonal elements. Otherwise, the
distances are stored as square matrices and include the diagonal elements. See
argument DIST.

ITRANS — Transformation option.   (Input)
ITRANS determines the output returned in DIST.

ITRANS Output in DIST
0 Squared distances
1 Distances
2 Log of the distances

W — NSUB by NDIM matrix of individual weights.   (Input)
If IMOD(2) is zero, then W is not referenced and can be an array of length 1.

LDW — Leading dimension of W exactly as specified in the dimension statement
in the calling program.   (Input)

WS — NSTIM by NDIM matrix of stimulus weights.   (Input)
If IMOD(3) is zero, then W is not referenced and can be an array of length 1.

LDWS — Leading dimension of WS exactly as specified in the dimension
statement in the calling program.   (Input)

DIST — Vector of length nv * NSUB, where nv = NSTIM * (NSTIM − 1)/2 if
IFORM = 0, and nv = NSTIM * NSTIM otherwise.   (Output)
DIST may be treated as NSUB distance matrices. Storage in DIST is such that the
elements of each column of a subject’s distance matrix are adjacent. Each column
in the matrix is immediately followed by the elements in the next column. If
IFORM = 0, then only the elements in each column above the diagonal are stored.
Otherwise, all elements are stored.
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Algorithm

Routine MSDST computes squared distances, distances, or log distances for
various metrics in multidimensional scaling. The “distances” are computed and
stored as either square matrices or as upper triangular symmetric matrices stored
columnwise without the diagonal. In both cases, the distances are output in a
vector of the required length. The terminology and metrics used here are the same
as those used in the ALSCAL program of Takane, Young, De Leeuw (1977).

Suppose that there are q stimuli, M subjects, and d dimensions. Let λLN denote the
location of the i-th stimulus in the k-th dimension. If wLN denotes the weight of the
i-th subject on the k-th dimension (matrix W) and piLN denotes the weight for the i-
th stimulus on the k-th dimension (matrix WS), then the distance models computed
are the same as the distance models in MSIDV. They are given by:

Euclidean Model

δ λ λijm ik jk
k

d
2

1

2

= −
=

∑ 3 8
Individual Differences Model

δ λ λijm mk ik jk
k

d

w2

1

2

= −
=

∑ 3 8
Stimulus-Weighted Model

δ π λ λijm ik ik jk
k

d
2

1

2

= −
=

∑ 3 8
Stimulus-Weighted Individual Differences Model

δ π λ λijm ik mk ik jk
k

d

w2

1

2

= −
=

∑ 3 8
where δLMP is the distance between the i-th and j-th stimuli on the m-th subject.

Example

The following small example illustrates the distance computations in symmetric
matrices. The data are fictional.

      INTEGER    IFORM, ITRANS, LDCFL, LDW, LDWS, NDIM, NSTIM, NSUB
      PARAMETER  (IFORM=0, ITRANS=0, LDCFL=4, LDW=2, LDWS=4, NDIM=2,
     &           NSTIM=4, NSUB=2)
C
      INTEGER    IMOD(3), NOUT
      REAL       CFL(NSTIM,NDIM), DIST(12), W(NSUB,NDIM), WS(1)
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      EXTERNAL   MSDST, UMACH
C
      DATA IMOD/0, 1, 0/
C
      DATA CFL/1.0, -1.0, 1.0, -1.0,
     &         1.0, 1.0, -1.0, -1.0/
C
      DATA W/1.0, 2.0, 1.0, 2.0/
C
      CALL MSDST (NSTIM, NDIM, CFL, LDCFL, NSUB, IMOD, IFORM, ITRANS,
     &            W, LDW, WS, LDWS, DIST)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) DIST
      END

Output
4.00000    4.00000    8.00000    8.00000    4.00000    4.00000    8.00000
8.00000    16.0000    16.0000    8.00000    8.00000

MSSTN/DMSSTN (Single/Double precision)
Transform dissimilarity/similarity matrices and replace missing values by
estimates to obtain standardized dissimilarity matrices.

Usage
CALL MSSTN (NROW, NCOL, NSUB, IFORM, X, LDX, ICNVT, ISTRAT,
            ISCALE, NCOM, XOUT)

Arguments

NROW — Number of row stimuli in each dissimilarity/similarity matrix.   (Input)

NCOL — Number of column stimuli in each dissimilarity/similarity matrix.
(Input)
If IFORM = 0 or 1, NCOL must equal NROW, and the stimuli in the rows and
columns must correspond to one another.

NSUB — Number of dissimilarity/similarity matrices.   (Input)

IFORM — Storage option indicating the storage mode for the input data in each
column of X.   (Input)
Array X contains NSUB columns, and each column of X contains a
dissimilarity/similarity matrix stored as specified by option IFORM.

IFORM Data Storage Mode
0 Symmetric storage mode without the diagonal elements. (Upper

triangular matrix stored columnwise.) In this storage mode, consecutive
elements of each column of X contain the (1, 2), (1, 3), (2, 3), (1, 4),
(2, 4), (3, 4), …, (NROW − 1, NROW) elements of the corresponding
dissimilarity/similarity matrix.
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1 Square matrix in full storage mode. Consecutive elements of each
column of X contain the (1, 1), (2, 1), (3, 1), …, (NROW, 1), (1, 2), (2, 2), 
…, (NROW, NROW) elements of the corresponding dissimilarity/similarity
matrix.

2 Rectangular matrix in full storage mode. In this storage mode, the row
and column stimuli input in X do not correspond to each other. Let
m = NROW. Consecutive elements of each column of X contain the (1, m +
1), (2, m + 1), …, (NROW, m + 1), (1, m + 2), …, (NROW, m + 2), …,
(NROW, m + NCOL) elements of the corresponding dissimilarity/similarity
matrix.

X — NSUB similarity or dissimilarity matrices in storage mode as determined by
IFORM.   (Input)
X must be dimensioned as:

DIMENSION X(LDX,NSUB)

where LDX ≥ NROW * NCOL in full storage mode and LDX ≥ NROW * (NROW − 1)/2
in symmetric storage mode. See argument IFORM for the method of storage used
for each storage mode. Negative elements of X, or elements equal to NaN (“not a
number”) are presumed to be missing values and will be estimated as an
appropriate average in MSSTN.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

ICNVT — Option for converting from similarity to dissimilarity matrices.
(Input)

ICNVT Conversion
0 No conversion performed.
1 Subtracting each similarity from the largest similarity in the strata (see

ISTRAT).
2 Take the reciprocal of each similarity (elements of X equal to zero are

assumed to be missing).

ISTRAT — Option giving the level of stratification to be used.   (Input)
If ISTRAT = 1, each dissimilarity/similarity matrix in X is considered to be in a
different stratum. The data are said to be matrix conditional. If ISTRAT = 2, each
column of each dissimilarity matrix is considered to be in a different stratum.
(Thus, each column of array X contains NCOL strata.) For ISTRAT to be 2, IFORM
must be 1 or 2. The data are said to be column conditional. If ISTRAT = 3, all of
the dissimilarity/similarity matrices in X are considered to be in the same stratum.
The data are said to be unconditional.

ISCALE — Scaling option.   (Input)

ISCALE Scaling
0 No scaling is performed.
1 The data in each stratum are scaled such that the sum of the squared

dissimilarities equals the number of elements in the stratum.
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NCOM — Vector containing the number of nonmissing observations in each
stratum.   (Output)
The diagonal elements of each dissimilarity/similarity matrix are not counted.

ISTRAT Length of NCOM
1 NSUB

2 NSUB * NSTIM, where NSTIM = NROW when IFORM = 0 or 1, and NSTIM
= NROW + NCOL when IFORM = 2

3 1

XOUT — Vector of length NV * NSUB containing the standardized dissimilarity
matrices where NV = NROW * (NROW − 1)/2 if IFORM = 0 and NV = NSTIM * NSTIM
otherwise.   (Output)
The value of NSTIM is as described in parameter NCOM. XOUT contains the
standardized dissimilarity matrices in the same storage mode as X if IFORM = 0 or
1 and stored as square matrices when IFORM = 2. Missing values are replaced by
an appropriate average dissimilarity and changed in sign. Scaling is performed as
requested.

Comments

1. Automatic workspace usage is

MSSTN 2 * NSTIM * NSTIM units, or
DMSSTN 4 * NSTIM * NSTIM units.

Workspace may be explicitly provided, if desired, by use of
M2STN/DM2STN. The reference is

CALL M2STN (NROW, NCOL, IFORM, NSUB, X, LDX, ICNVT,
            ISTRAT, ISCALE, NCOM, XOUT, NSTIM, XX,
            XMIS)

The additional arguments are as follows:

NSTIM — Integer scalar. NSTIM = NROW when IFORM = 0 or 1, and
NSTIM = NROW + NCOL when IFORM = 2.

XX — Work vector of length NSTIM * NSTIM.

XMIS — Work vector of length NSTIM * NSTIM.

2. Informational errors
Type Code
   3    1 At least one column in column conditional data has all

elements missing.
   4    2 A dissimilarity matrix has every element missing.

Algorithm

Routine MSSTN standardizes dissimilarity/similarity data to be usable by other
routines in the multidimensional scaling chapter. Routine MSSTN converts
similarity to dissimilarity data, estimates missing values within specified strata
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(“conditionality groups”), scales the data, computes the number of nonmissing
data elements within each stratum, and stores the data in a standard form.

The computations proceed as follows:

1. Routine MSSTN begins by expanding rectangular or symmetric storage-
form data into square storage mode (the form when IFORM = 1).

2. Missing values are replaced by the average nonmissing value within the
stratum, or when there is only one stratum, the average within each
matrix is used. If all elements in a stratum are missing and the stratum is
a column of the dissimilarity/similarity matrix, then the average of the
nonmissing elements in the matrix is used as the missing value estimate.
(Missing values are estimated primarily for use in routines computing
estimates via “double-centering”, routines MSINI, page 1028, and
MSDBL, page 1024.) Missing values are denoted in the output by
changing the signs of the estimated missing elements to be negative.

3. The data are converted to dissimilarity data from similarity data
according to the method specified by the parameter ICNVT.

4. The data are scaled according to the method specified by the ISCALE

parameter.

Example

The following example illustrates the use of MSSTN on similarity data that are
converted to dissimilarity data with the ICNVT = 1 option. Standardization within
each matrix is used. The input data is such that IFORM = 0. Since ICNVT = 1 and
all elements of the input data are nonnegative, no missing values are estimated.
The input data is given by the following two similarity matrices:
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      INTEGER    ICNVT, IFORM, ISCALE, ISTRAT, LDX, NCOL, NROW, NSUB
      PARAMETER  (ICNVT=1, IFORM=0, ISCALE=1, ISTRAT=1, LDX=10,
     &           NCOL=5, NROW=5, NSUB=2)
C
      INTEGER    I, J, K, N, NCOM(NSUB), NOUT
      REAL       X(LDX,NSUB), XOUT(NROW*(NROW-1))
      EXTERNAL   MSSTN, UMACH, WRIRN
C
      DATA X/4.0, 0.0, 1.0, 3.0, 1.0, 0.0, 1.0, 3.0, 2.0, 4.0, 1.0,
     &     2.0, 1.0, 3.0, 2.0, 1.0, 1.0, 0.0, 3.0, 4.0/
C
      CALL MSSTN (NROW, NCOL, NSUB, IFORM, X, LDX, ICNVT, ISTRAT,
     &            ISCALE, NCOM, XOUT)
C
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      CALL WRIRN (’NCOM’, 1, NSUB, NCOM, 1, 0)
      CALL UMACH (2, NOUT)
C
      N = 1
      DO 20  I=1, 2
         WRITE (NOUT,99998) I
         DO 10  J=1, 4
            WRITE (NOUT,99999) (XOUT(K),K=N,N+J-1)
            N = N + J
   10    CONTINUE
   20 CONTINUE
C
99998 FORMAT (///’ Output matrix (in XOUT)’, I2)
99999 FORMAT (1X, 4F8.3)
C
      END

Output
NCOM
 1    2
10   10

Output matrix (in XOUT) 1
 0.000
 1.569   1.177
 0.392   1.177   1.569
 1.177   0.392   0.784   0.000

Output matrix (in XOUT) 2
 1.205
 0.803   1.205
 0.402   0.803   1.205
 1.205   1.606   0.402   0.000

MSDBL/DMSDBL (Single/Double precision)
Obtain normalized product-moment (double centered) matrices from dissimilarity
matrices.

Usage
CALL MSDBL (NSTIM, NSUB, IFORM, X, LDX, ISCALE, DISP,
            LDDISP, P, LDP, DS, LDDS)

Arguments

NSTIM — Number of stimuli in each dissimilarity matrix.   (Input)

NSUB — Number of dissimilarity matrices.   (Input)

IFORM — Storage option for the data in each dissimilarity matrix.   (Input) Each
column of X contains one of the NSUB dissimilarity matrices in the storage mode
specified by IFORM.
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IFORM Data Storage Mode
0 Symmetric storage mode without the diagonal elements. (Upper

triangular matrix stored columnwise.) In this storage mode, consecutive
elements of each column of X contain the (1, 2), (1, 3), (2, 3), (1, 4),
(2, 4), (3, 4), …, (NSTIM − 1, NSTIM) elements of the corresponding
dissimilarity matrix.

1 Square matrix in full storage mode. Consecutive elements of each
column of X contain the (1, 1), (2, 1), (3, 1), …, (NROW, 1), (1, 2), (2, 2), 
…, (NSTIM, NSTIM) elements of the corresponding dissimilarity matrix.

X — NV by NSUB matrix containing the NSUB dissimilarity matrices, where
NV = NSTIM * (NSTIM − 1)/2 if IFORM = 0, and NV = NSTIM * NSTIM if
IFORM = 1.   (Input)
Missing values (NaN, “not a number”) are not allowed in X, but the position of a
missing element may be indicated as a negative dissimilarity. Since MSDBL uses
the absolute value of each element in X in the estimation procedure, the signs of
elements in X have no effect. See Comments.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

ISCALE — Scaling option.   (Input)

ISCALE Type of Scaling
0 No scaling
1 Scaling within each matrix
2 Scaling over all matrices

Scaling is such that the Euclidean norm of the vector of scaled data is equal to the
number of elements in vector.

DISP — NSTIM by NSTIM by NSUB array containing the NSUB dissimilarity
matrices in full storage mode.   (Output)
In DISP, missing value estimates are positive, and all elements represent the
square of distances.

LDDISP — Leading and second dimension of DISP exactly as specified in the
dimension statement in the calling program.   (Input)

P — NSTIM by NSTIM by NSUB array containing the standardized product-
moment matrices in full storage mode.   (Output)
P contains NSUB matrices, each of size NSTIM by NSTIM. If DISP is not needed,
DISP and P can occupy the same storage locations.

LDP — Leading and second dimension of P exactly as specified in the dimension
statement in the calling program.   (Input)

DS — NSTIM by NSTIM array containing the sum of the NSUB matrices in P.
(Output)

LDDS — Leading dimension of DS exactly as specified in the dimension
statement in the calling program.   (Input)
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Comments

Routine MSSTN (page 1020) may be used to obtain the matrix X with missing
values estimated and changed in sign so that all estimates of missing values are
negative. Routine MSSTN will also convert similarities to dissimilarities. Unless a
ratio distance measure is observed, the user will usually call MSSTN prior to
calling MSDBL.

Algorithm

Routine MSDBL computes product-moment (double-centered) matrices from input
dissimilarity matrices. The product-moment matrices output from MSDBL may be
scaled either within each matrix, over all matrices input, or not at all.

The interest in product-moment matrices can be explained as follows: Let Λ
denote a configuration of points in an d-dimensional Euclidean space with center
at the origin. When the data is measured without error, the matrix

P = ΛΛ7 can also be written as the “double-centered” matrix (defined below)
obtained from the matrix of squares of distances between the rows of

Λ δ λ λij k ik jk
2 2

= −�� ��∑ 3 8
These distances are input, approximately, in the dissimilarities. Thus, an estimate
for Λ can be obtained, approximately, by computing the double-centered matrix P
from the squared dissimilarities and then computing Λ from the scaled

eigenvectors of P (such that P = ΛΛ7).

The computation in MSDBL proceeds as follows:

1. Each input dissimilarity matrix is transformed into a square symmetric
matrix of distances. Asymmetric matrices are made symmetric by
averaging the matrix of dissimilarities with its transpose.

2. Estimates for the square of the distances,
~
δ 2

are computed as the square of the estimated distances.

3. Let
~
δ 2

m••

denote the average squared distance in a matrix m of squared distances,
let

~
δ 2

mi•

denote the average of the i-th row of estimated squared distances in
matrix m and let

~
δ 2

m j•
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denote the average of the j-th column. The m-th product-moment matrix
is computed from the m-th estimated squared distance matrix as

pmij mij mi m j m= − − − +�� ��• • ••
~ ~ ~ ~

/δ δ δ δ2 2 2 2 2

The resulting matrix is said to be double-centered.

4. If the elements of PP are to be scaled within matrix m, then the elements
of PP are divided by

i j mijp q, /2 2∑
where q = NSTIM so that q2 is the total number of elements in the matrix.
If the elements of P are to be scaled over all matrices, then the elements
of each matrix are divided by

m i j mijp sq, , /2 23 8∑
where s = NSUB.

5. The matrix DS is computed as the sum over all subjects of the product-
moment matrices, PP.

Example

The following example illustrates the use of MSDBL in computing product-
moment matrices for two input dissimilarity matrices. The input matrices are
given as:
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      INTEGER    IFORM, ISCALE, LDDISP, LDDS, LDP, LDX, NSTIM, NSUB
      PARAMETER  (IFORM=0, ISCALE=1, LDDISP=5, LDDS=5, LDP=5, LDX=10,
     &           NSTIM=5, NSUB=2)
C
      REAL       DISP(LDDISP,LDDISP,NSUB), DS(LDDS,NSTIM),
     &           P(LDP,LDP,NSUB), X(LDX,NSUB)
      EXTERNAL   MSDBL, WRRRN
C
      DATA X/4.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 3.0, 2.0, 4.0, 1.0,
     &     2.0, 1.0, 3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 4.0/
C
      CALL MSDBL (NSTIM, NSUB, IFORM, X, LDX, ISCALE, DISP, LDDISP, P,
     &            LDP, DS, LDDS)
C
      CALL WRRRN (’The first matrix in DISP’, NSTIM, NSTIM, DISP,
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     &            LDDISP, 0)
      CALL WRRRN (’The second matrix in DISP’, NSTIM, NSTIM,
     &            DISP(1,1,2), LDDISP, 0)
      CALL WRRRN (’The first matrix in P’, NSTIM, NSTIM, P, LDP, 0)
      CALL WRRRN (’The second matrix in P’, NSTIM, NSTIM, P(1,1,2),
     &            LDP, 0)
      CALL WRRRN (’DS’, NSTIM, NSTIM, DS, LDDS, 0)
C
      END

Output
        The first matrix in DISP
        1       2       3       4       5
1    0.00   16.00    1.00    9.00    1.00
2   16.00    0.00    1.00    1.00    9.00
3    1.00    1.00    0.00    4.00    4.00
4    9.00    1.00    4.00    0.00   16.00
5    1.00    9.00    4.00   16.00    0.00
        The second matrix in DISP
        1       2       3       4       5
1    0.00    1.00    4.00    9.00    1.00
2    1.00    0.00    1.00    4.00    4.00
3    4.00    1.00    0.00    1.00    9.00
4    9.00    4.00    1.00    0.00   16.00
5    1.00    4.00    9.00   16.00    0.00
        The first matrix in P
        1       2       3       4       5
1   1.110  -1.931   0.274  -0.487   1.034
2  -1.931   1.110   0.274   1.034  -0.487
3   0.274   0.274  -0.182  -0.182  -0.182
4  -0.487   1.034  -0.182   1.338  -1.703
5   1.034  -0.487  -0.182  -1.703   1.338
        The second matrix in P
        1       2       3       4       5
1   0.500   0.000  -0.500  -1.000   1.000
2   0.000   0.000   0.000   0.000   0.000
3  -0.500   0.000   0.500   1.000  -1.000
4  -1.000   0.000   1.000   2.000  -2.000
5   1.000   0.000  -1.000  -2.000   2.000
                   DS
        1       2       3       4       5
1   0.805  -0.966  -0.113  -0.743   1.017
2  -0.966   0.555   0.137   0.517  -0.243
3  -0.113   0.137   0.159   0.409  -0.591
4  -0.743   0.517   0.409   1.669  -1.852
5   1.017  -0.243  -0.591  -1.852   1.669

MSINI/DMSINI (Single/Double precision)
Compute initial estimates in multidimensional scaling models.

Usage
CALL MSINI (NSTIM, NSUB, IFORM, X, LDX, IMOD, NDIM, CFL,
            LDCFL, W, LDW, WS, LDWS, WMIN, WSMIN)
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Arguments

NSTIM — Number of stimuli in each dissimilarity matrix.   (Input)

NSUB — Number of dissimilarity matrices to be used in the analysis.   (Input)

IFORM — Storage option for the data in each dissimilarity matrix.   (Input)
Each column of X contains one of the NSUB dissimilarity matrices in the storage
mode specified by IFORM.

IFORM Data Storage Mode
0 Symmetric storage mode without the diagonal elements. (Upper

triangular matrix stored columnwise.) Consecutive elements of each
column of X contain the (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), …,
(NSTIM − 1, NSTIM) elements of the dissimilarity matrix.

1 Square matrix in full storage mode. Consecutive elements of each
column of X contain the (1, 1), (2, 1), (3, 1), …, (NSTIM, 1), (1, 2),
(2, 2), …, (NSTIM, NSTIM) elements of the dissimilarity matrix.

X — NV by NSUB matrix containing the NSUB dissimilarity matrices, where
NV = NSTIM * (NSTIM − 1)/2 if IFORM = 0, and NV = NSTIM * NSTIM if IFORM =
1.   (Input)
If IFORM = 0, then the input data is assumed to be symmetric, and the elements
below and on the diagonal are not input. If IFORM = 1, all elements of each
column of X are input, and the data for the column need not form a symmetric
matrix. Missing values (NaN, “not a number”) are not allowed in X, but the
position of a missing element may be indicated as a negative dissimilarity. Since
MSINI uses the absolute value of each element in X as the dissimilarity to be used
in the estimation procedure, the sign of an element in X has no effect. See
Comment 3.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IMOD — Vector of length 3 giving the model parameters to be estimated.
(Input)
IMOD also gives the method of initialization to be used for each set of parameters.
Each element of IMOD corresponds to a different parameter matrix. The
correspondence is given as:

ElementParameter Matrix
1      CFL–The configuration
2      W–The subject weights
3      WS–The stimulus weights

The value used for each element of IMOD tells how the parameter matrix is to be
initialized.

Value Effect on Parameter Matrix
0 The parameter matrix is not used.
1 The parameter matrix is input and its values are fixed. The parameter

matrix may be standardized.
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2 Initial estimates are input, but they may be changed by MSINI.
3 MSINI calculates the initial estimates.

IMOD(1) must be nonzero. IFORM must not be 0 if IMOD(3) is not zero. If IMOD(2)
or IMOD(3) is 1, IMOD(1) must be 1. If IMOD(3) is 1, IMOD(2) must not be 2 or 3.

NDIM — Number of dimensions in the solution.   (Input)

CFL — NSTIM by NDIM matrix containing the estimated stimulus coordinates.
(Input/Output, if IMOD(1) = 1 or 2; output, otherwise)

LDCFL — Leading dimension of CFL exactly as specified in the dimension
statement in the calling program.   (Input)

W — NSUB by NDIM matrix of subject weights.   (Input/Output, if IMOD(2) = 1 or
2, output, if IMOD(2) = 3, not referenced if IMOD(2) = 0)
W is not referenced and can be dimensioned as a 1 by 1 matrix if IMOD(2) = 0.

LDW — Leading dimension of W exactly as specified in the dimension statement
in the calling program.   (Input)

WS — NSTIM by NDIM matrix of stimulus weights.   (Input/Output, if
IMOD(3) = 1 or 2; output, if IMOD(3) = 3, not referenced if IMOD(3) = 0)
WS is not referenced and can be dimensioned as a 1 by 1 matrix if IMOD(3) = 0.

LDWS — Leading dimension of WS exactly as specified in the dimension
statement in the calling program.   (Input)

WMIN — Minimum weight in W prior to adjustment.   (Output, if IMOD(2) = 2 or
3; not referenced if IMOD(2) = 0 or 1)
If WMIN is negative, the weights in W are adjusted such that all weights are positive
by subtracting WMIN from each element in W.

WSMIN — Minimum weight in WS prior to adjustment.   (Output, if IMOD(3) = 2
or 3; not referenced if IMOD(3) = 0 or 1)
If WSMIN is negative, the weights in WS are adjusted such that all weights are
positive by subtracting WSMIN from each element in WS.

Comments

1. Automatic workspace usage is

MSINI max(NDIM + 1, NSUB, NSTIM) + 2 * NSTIM * NSTIM + NSTIM
* NSTIM * NSUB + 4 * NSTIM + max(5 * NSTIM, 4 * NSUB) +
NDIM * NDIM * NSUB units, or

DMSINI 2 *max(NDIM + 1, NSUB, NSTIM) + 4 * NSTIM * NSTIM + 2
*NSTIM *NSTIM* NSUB + 7 *NSTIM + 2 * max(5 * NSTIM, 4 *
NSUB) + 2 * NDIM *NDIM *NSUB units

Workspace may be explicitly provided, if desired, by use of M2INI/DM2INI. The
reference is
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CALL M2INI (NSTIM, NSUB, IFORM, X, LDX, IMOD, NDIM, CFL,
            LDCFL, W, LDW, WS, LDWS, WMIN, WSMIN, TR, XX,
            DISP, DS, EWK1, EWK2, IEWK, C)

The additional arguments are as follows:

TR — Real work vector of length max(NDIM + 1, NSUB, NSTIM).

XX — Real work vector of length NSTIM * NSTIM.

DISP — Real work vector of length NSTIM * NSTIM * NSUB.

DS — Real work vector of length NSTIM * NSTIM.

EWK1 — Real work vector of length 3 * NSTIM.

EWK2 — Real work vector of length max(5 * NSTIM, 4 * NSUB).

IEWK — Integer work vector of length NSTIM.

C — Real work vector of length NDIM * NDIM * NSUB.

2. Informational error
Type Code
   4    1 The sum of the product moment matrices for the data

input in X has less than NDIM positive eigenvalues.
Rerun with NDIM = number of positive eigenvalues or
less or provide initial estimates for the configuration
matrix CFL.

3. Routine MSSTN (page 1020) may be used to obtain the matrix X with
missing values estimated and changed in sign so that all estimates of
missing values are negative. Routine MSSTN will also convert similarities
to dissimilarities. Unless a ratio distance measure is observed, the user
will usually call MSSTN prior to calling MSINI.

Algorithm

Routine MSINI computes initial estimates for the stimulus configuration
(Λ = CFL), subject weights (W = W), and stimulus weights (Π = WS) in
multidimensional scaling models. The number of dimensions in the solution must
also be input. Routine MSINI requires complete (i.e., no missing values)
dissimilarity matrices as input. Consequently, missing data must be replaced by
an estimate (often an average of other dissimilarities). Because the absolute
values of dissimilarities are used, missing dissimilarities may be denoted by
changing their sign to be negative. Estimation of missing values, and further
standardization, can be performed through the use of routine MSSTN (page 1020).

In some cases, MSINI can use values input in parameter matrices CFL, W, or WS in
order to compute initial estimates for other parameter matrices. For example,
values input in matrix CFL may be used in the estimation of initial estimates for W

or WS. Because of the method of estimation, values input for some parameter
matrices will not effect the estimate computed for other matrices. In particular,
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values input in W will not effect the estimation of CFL, and values input in WS will
not effect the estimation of either CFL or W. Note that some combinations of input
and estimated matrices are not even allowed (see the option parameter IMOD).
Also, note that when the configuration matrix CFL is input and fixed (except for
standardization), computed estimates for all weights W and WS are arbitrarily taken
as 1.

Let

~
δijl

2

denote the squared distance between stimulus i and stimulus j for matrix (subject)
l, let

δi l•
2

denote the average of the squared distances in the i-th row for the l-th subject, let

δ• jl
2

be similarly defined, and let

δ••l
2

denote the average of all squared distances for the l-th subject. If each
dissimilarity input in X is measured without error, then the dissimilarities and the
distances are identical. In MSINI, the errors observed in the dissimilarities,

~
δijl

2

are assumed to be small so that good estimates for the squared distances may be
computed by squaring each dissimilarity (after first subtracting the constant
obtained in Step 1 below). The computations proceed as follows:

1. The squared distance matrices are double-centered using the product
moment transformation

pijl ijl i l jl l= − − − +�� ��• • ••
~ ~ ~ ~

/δ δ δ δ2 2 2 2 2

The matrix formed by averaging the product moment matrices PO (over

subjects) is computed as P

2. If the configuration has been input and cannot be modified (i.e., if
IMOD(1) is 1), then all weights to be estimated are taken as 1, and the
computations continue in Step 8 below.

3. If the configuration matrix has not been input, then a preliminary
estimate is obtained by first computing the eigenvectors (Γ)

corresponding to the d-largest eigenvalues of P .
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The configuration is then estimated as Γ∆1/2, where ∆ is the square
matrix containing the eigenvalues along the diagonal and zeros off the
diagonal.

4. If the subject weights W are to be estimated, or if they can be modified
(i.e., if IMOD(2) is 2 or greater), then a SUMSCALE procedure (De
Leeuw and Pruzansky, 1978) is used to estimate the weights (regardless
of the values input) and to “rotate” the configuration estimates. This is
done as follows:

A. The matrices

C Pl
T

l= − −Φ Λ ΛΦ1 1

are computed, where Φ = ∆ if ∆ has been computed, and where

the diagonal elements of Φ are the diagonal elements of Λ7Λ
otherwise (the off-diagonal elements of Φ are always zero).

B. An orthogonal matrix Q is found such that the sum of the

squared off-diagonal elements of Q7COQ is minimized over all
matrices C. (See IMSL routine KPRIN, page 797.)

C. A new configuration estimate is obtained by “rotating” the
current estimate, i.e., ΛQ = Λ.

D. The subject weights for subject l are taken as the diagonal

elements of Q7CO Q.

5. If the subject weights have been computed and the minimum weight in W

is negative, add its absolute value to all elements in W to ensure that all
estimated stimulus weights are nonnegative.

6. If the stimulus weights are to be estimated (i.e., if (IMOD(3) is 2 or 3),
then least-squares estimates are used. The least-squares model is
obtained by substituting predicted distance for actual distance in the
multidimensional scaling model specified by IMOD (see the chapter
introduction for a discussion of the models available). Least-squares
fitting is then performed over the NSUB subjects.

7. If the stimulus weights have been computed and the minimum weight in
WS is negative, its absolute value is added to all elements in WS to ensure
that all estimated stimulus weights are nonnegative.

8. The estimates are standardized (even when IMOD(i) = 2) as follows:

A. If IMOD(2) is not zero, then let

ri i
T

i= λ λ

where i-th is the ithcolumn of the configuration matrix. Let wL
denote the i-th column of the subject weight matrix.
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Standardize Λ such that the diagonal elements of Λ7Λ are 1.
Multiply wL by rL.

B. If IMOD(2) = 0 but IMOD(3) is not zero, then compute rL and
standardize the configuration matrix as above. Multiply the i-th
column of WS by rL.

C. If both IMOD(2) and IMOD(3) are nonzero, then compute

s w wi i
T

i=

and standardize W such that W7W is an identity matrix. Multiply
the i-th column of WS by cL.

Example

The following example illustrates the use of MSINI to obtain initial estimates for
an individual differences model when symmetric dissimilarities matrices obtained
from two subjects are input. The input matrices are given as:
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Estimates obtained from MSINI are not optimal. Usually an optimizing
multidimensional scaling routine will be called with the initial estimates
computed in MSINI.

      INTEGER    IFORM, LDCFL, LDW, LDWS, LDX, NDIM, NSTIM, NSUB
      PARAMETER  (IFORM=0, LDCFL=5, LDW=2, LDWS=5, LDX=10, NDIM=2,
     &           NSTIM=5, NSUB=2)
C
      INTEGER    IMOD(3), NOUT
      REAL       CFL(LDCFL,NDIM), W(LDW,NDIM), WMIN, WS(LDWS,NDIM),
     &           WSMIN, X(LDX,2)
      EXTERNAL   MSINI, UMACH, WRRRN
C
      DATA X/4.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 3.0, 2.0, 4.0, 1.0,
     &     2.0, 1.0, 3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 4.0/
      DATA IMOD/3, 3, 0/
C
      CALL UMACH (2, NOUT)
C
      CALL MSINI (NSTIM, NSUB, IFORM, X, LDX, IMOD, NDIM, CFL, LDCFL,
     &            W, LDW, WS, LDWS, WMIN, WSMIN)
C
      CALL WRRRN (’The Configuration’, NSTIM, NDIM, CFL, LDCFL, 0)
      CALL WRRRN (’Subject weights’, NSUB, NDIM, W, LDW, 0)
      WRITE (NOUT,99999) WMIN
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C
99999 FORMAT (/, ’ WMIN = ’, F12.4)
C
      END

Output
The Configuration
         1        2
1   0.2279   0.6854
2  -0.0808  -0.6584
3  -0.1728  -0.0090
4  -0.6621  -0.2287
5   0.6879   0.2107
Subject weights
        1       2
1   7.078   8.533
2   9.615   0.000
WMIN =       0.0000

MSTRS/DMSTRS (Single/Double precision)
Compute various stress criteria in multidimensional scaling.

Usage
CALL MSTRS (N, DIST, DISP, INTCEP, A, ISLOPE, B, POWER,
            ISTRS, STRSS, WT)

Arguments

N — Number of distances and disparities.   (Input)

DIST — Vector of length N containing the distances.   (Input)
Missing values are not allowed in DIST.

DISP — Vector of length N containing the disparities.   (Input)

INTCEP — Intercept option parameter.   (Input)
If INTCEP = 0, the intercept is not used in the model. If INTCEP = 1, the intercept
is used in the model.

A — The intercept.   (Input)
If INTCEP = 0, A is not used.

ISLOPE — Slope option parameter.   (Input)
If ISLOPE = 0, the slope B is not used. If ISLOPE = 1, the slope is used.

B — The slope.   (Input)
If ISLOPE = 0, B is not used.

POWER — Power to use in the stress function.   (Input)
POWER must be greater than or equal to 1.

ISTRS — Stress option parameter.   (Input)
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ISTRS Stress Criterion Used
0 Log stress
1 Stress weighted by the inverse of the sum of the squared disparities
2 Stress weighted by the inverse of the sum of the centered squared

disparities

STRSS — The computed stress criterion.   (Output)

WT — The weight used in computing the stress.   (Output)
If the weight is too large, a maximum weight is used. See the algorithm section of
the manual document.

Algorithm

Routine MSTRS computes the value of stress criteria commonly used in
multidimensional scaling. Routine MSTRS allows transformed values of the
disparities and distances to be input and will compute the stress on the
transformed values. Additionally, the user can input a slope and/or an intercept to
be used in the stress computations, and the stress can be computed using an
arbitrary LS norm as well as the squared error norm in which p = 2.

Let

δ i
∗

denote a disparity, δL denote the corresponding distance, α denote the intercept,

and let β denote the slope. If INTCEP = 0, then set α = 0. If ISLOPE = 0, then set 
β = 1.

Set ε = 0.001, and let

τ δ α βδ= − −∗

=
∑ i i

p

i

n

1

When ISTRS = 0, the stress is computed as

φ ε τ0 = n nln max ,0 5
where n is the number of nonmissing disparities, and p = POWER is the power to
be used. This stress formula, when optimized, can lead to to normal distribution
theory maximum likelihood estimation. It can not be used in nonmetric scaling.
The weight is computed as n/max(nε, τ).

When ISTRS is 1, the stress is computed as

φ τ
ετ δ

1
1

=
=

∗∑max , | |i
n

i
p3 8

and the weight returned is given as
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1
1

/ max , *ετ δ i
p

i

n

=∑�� ��
Takane, Young, and de Leeuw (1977) recommend using this formula when the
data is not column conditional (i.e., whenever the stress is computed over one or
more dissimilarity matrices rather than over one column in a single matrix). When
ISTRS = 2, the stress is given by

φ τ
ετ δ δ
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is the average of the nonmissing disparities. The weight is computed as
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Takane, Young, and de Leeuw (1977) recommend this stress for column
conditional data.

Missing values (NaN) are not allowed in DIST while missing disparities in DISP
are not used in the computations. If all disparities are missing, the stress criteria is
set to 0, and the weight (WT) is set to missing (NaN).

In general, a single call to MSTRS would be made for each strata (“conditionality
group”) in the data.

Example

The following example illustrates the computation of stress when the log of the
distances and disparities are input. For this example, ISTRS is 1 and POWER is 2.

      INTEGER    INTCEP, ISLOPE, ISTRS, N
      REAL       A, POWER
      PARAMETER  (A=0.0, INTCEP=0, ISLOPE=1, ISTRS=1, N=10, POWER=2.0)
C
      INTEGER    I, NOUT
      REAL       ALOG, B, DISP(N), DIST(N), SDOT, STRSS, WT
      INTRINSIC  ALOG
      EXTERNAL   MSTRS, SDOT, UMACH
C
      DATA DIST/4.0, 1.5, 1.25, 3.0, 1.75, 2.0, 1.0, 3.5, 2.5, 3.75/
      DATA DISP/4.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 3.0, 2.0, 4.0/
C                                 Transform the data
      DO 10  I=1, N
         DIST(I) = ALOG(DIST(I))
         DISP(I) = ALOG(DISP(I))
   10 CONTINUE
C                                 Compute a slope
      B = SDOT(N,DISP,1,DIST,1)/SDOT(N,DIST,1,DIST,1)
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C                                 Compute the stress
      CALL MSTRS (N, DIST, DISP, INTCEP, A, ISLOPE, B, POWER, ISTRS,
     &            STRSS, WT)
C                                 Print results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) STRSS, WT
C
99999 FORMAT (’ STRSS = ’, F12.4, ’    WT = ’, F12.4)
      END

Output
STRSS =       0.0720    WT =       0.1385



IMSL STAT/LIBRARY Chapter 15: Density and Hazard Estimation • 1039

Chapter 15: Density and Hazard
Estimation

Routines
15.1. Estimates for a Density

Penalized likelihood estimates............................................. DESPL 1040
Kernel estimates ..................................................................DESKN 1044
Gaussian kernel estimates via fast Fourier transform .........DNFFT 1047
Point estimates ....................................................................DESPT 1052

15.2. Modified Likelihood Estimates for Hazards
Estimates of the smoothing parameters, general case....... HAZRD 1054
Estimates of the smoothing parameters,
easy-to-use version.............................................................. HAZEZ 1061
Estimation of the hazard function......................................... HAZST 1069

Usage Notes
The routines described in this chapter compute estimates for smoothing
parameters and estimates in models for estimating density and hazard functions.
For density estimation, the penalized likelihood method of Scott (1976) may be
used to obtain smooth estimates for arbitrary (smooth) densities. Alternatively,
the routines DESKN (page 1044) and DNFFT (page 1047) obtain density estimates
by the kernel method for a given window width and kernel function. Routine
DNFFT uses a Gaussian kernel, while for routine DESKN, the kernel is provided by
the user. Finally, routine DESPT (page 1052) finds linear or quasi-cubic
interpolated estimates of a density. Tapia and Thompson (1978) discuss all of
these methods.

For hazard estimation, the methods of Tanner and Wong (1984) are used to
obtain estimates of the smoothing parameters in a modified likelihood. These
methods are implemented in routines HAZRD (page 1054) and HAZEZ (page 1061),
the difference between the routines is in the ease of use and the options offered.
For given smoothing parameters, the routine HAZST (page 1069) may be used to
obtain estimates for the hazard function.
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DESPL/DDESPL (Single/Double precision)
Perform nonparametric probability density function estimation by the penalized
likelihood method.

Usage
CALL DESPL (NOBS, X, NODE, BNDS, INIT, ALPHA, MAXIT, EPS,
            DENS, STAT, NMISS)

Arguments

NOBS — Number of observations.   (Input)

X — Vector of length NOBS containing the random sample of responses.   (Input)

NODE — Number of mesh nodes for the discrete probability density estimate.
(Input)
NODE must be an odd integer greater than 4.

BNDS — Vector of length 2 containing the upper and lower endpoints for the
interval of support of the density.   (Input)
The node values are taken as BNDS(1), BNDS(1) + h, …, BNDS(2), where
h = (BNDS(2) − BNDS(1))/(NODE − 1). All observations in vector X should be in
the support interval.

INIT — Initialization option.   (Input)
INIT = 0 means that a bootstrap procedure is used to obtain initial estimates for
the density. Otherwise, user-supplied initial estimates are contained in DENS on
entry into DESPL.

ALPHA — Penalty-weighting factor that controls the smoothness of the estimate.
(Input)
For standard normal data, ALPHA = 10.0 works well. Other values that might be
tried are 1.0 and 100.0. ALPHA must be greater than 0.0.

MAXIT — Maximum number of iterations allowed in the iterative procedure.
(Input)
MAXIT = 30 is typical.

EPS — Convergence criterion.   (Input)
When the Euclidean norm of the changes to DENS is less than EPS, convergence
is assumed. EPS = 0.0001 is typical.

DENS — Vector of length NODE containing the estimated values of the discrete
pdf at the NODE equally spaced mesh nodes.   (Input/Output, if INIT ≠ 0; output,
otherwise)
If INIT is not zero, then DENS(1) through DENS(NODE) contain the (positive)
initial estimates on input. The sum of these estimates times the window width h
(see BNDS) must equal 1.0, i.e., the integral of the density must be 1.
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STAT — Vector of length 4 containing output statistics.   (Output)
STAT(1) and STAT(2) contain the log-likelihood and the log-penalty terms,
respectively. STAT(3) and STAT(4) contain the estimated mean and variance for
the estimated density.

NMISS — Number of missing values in X.   (Output)

Comments

1. Automatic workspace usage is

DESPL NOBS + 6 * NODE + 9 * (NODE − 2) units, or
DDESPL 2 * NOBS + 12 * NODE + 17 * (NODE − 2) units.

Workspace may be explicitly provided, if desired, by use of
D2SPL/DD2SPL. The reference is

CALL D2SPL (NOBS, X, NODE, BNDS, INIT, ALPHA, MAXIT,
            EPS, DENS, STAT, NMISS, HESS, LDHESS,
            ILOHI, DENEST, B, IPVT, WK2, XWK)

The additional arguments are as follows.

HESS — Work vector of length 7 * (NODE − 2).

LDHESS — Leading dimension of HESS exactly as specified in the
dimension statement in the calling program.   (Input)
The leading dimension must be set to 7.

ILOHI — Integer work vector of length 2 * NODE.

DENEST — Work vector of length 3 * NODE.

B — Work vector of length NODE.

IPVT — Integer work vector of length NODE − 2.

WK2 — Work vector of length NODE − 2.

XWK — Work vector of length NOBS. If X is sorted with all missing
(NaN, not a number) values at the end, then XWK is not needed. If X is
not needed, X and XWK can share the same storage location.

2. Informational error
Type Code
   3    1 The maximum number of iterations is exceeded.

3 Routine DESPT (page 1052) may be used after the estimates DENS have
been obtained in order to obtain an interpolated estimate of the density at
new points. Use AMESH = BNDS in calling DESPT.

Algorithm

Routine DESPL computes piecewise linear estimates of a one-dimensional density
function for a given random sample of observations. These estimates are
discussed in detail in Scott et al. (1980), and in Tapia and Thompson (1978,
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Chapter 5). The estimator of the density function is piecewise linear over the
finite interval (BNDS(1) to BNDS(2)), is nonnegative, and integrates to one. A
penalty method is used to ensure “smooth” behavior of the estimator. The
criterion function to be maximized is a discrete approximation to

Φ = − I
�
�
��

�
�
��∏

=
f x

d f t

dt
dti

i

n
( )

( )
exp α

2

2

2

1

where n = NOBS and f(t) is a density function. Let m = NODE. The discrete
approximation is as follows: The density f is estimated at each of the equally
spaced grid points tM, for j = 1, …, m, with restriction f(t1) = f(tP) = 0.0; the
density at each data point xL is then estimated using linear interpolation. The
integral of the second derivative of the square of f is approximated using the
piecewise linear function defined by the estimates of f at the grid points tM.

Because ln Φ is actually maximized, the criterion can be separated into a
likelihood term (returned in STAT(1)) and a penalty term (returned in STAT(2)).

The parameter α (= ALPHA) determines the amount of “smoothness” in the
estimate. The larger the value of α, the smoother the resulting estimator for f. In
practice, the user should pick α as small as possible such that there is not
excessive bumpiness in the estimator. One way of doing this is to try several
values of α that differ by factors of 10. The resulting estimators can then be
graphically displayed and examined for bumpiness. α could then be chosen from
the displayed density estimates. IMSL routines can be used to produce line printer
plots (PLOTP, page 1096) of the estimated density. For a random sample from the
standard normal distribution, α = 10.0 works well. Note that α changes with

scale. If x is multiplied by a factor β, α should be multiplied by a factor β5.

The second choice to be made in using DESPL is the mesh for the estimator. The
mesh interval (BNDS(1), BNDS(2)) should be picked as narrow as possible since a
narrow mesh will speed algorithm convergence. Note, however, that points
outside the interval (BNDS(1), BNDS(2)) are not included in the likelihood.
Because of this fact, DESPL actually estimates a density that is conditional on the
mesh interval (BNDS(1), BNDS(2)). The number of mesh nodes, NODE, should be
as small as possible, but large enough to exhibit the “fine” structure of the
density. One possible method for determining NODE is to use NODE = 21 initially.
With NODE = 21, find an acceptable value for α. When an acceptable value for α
has been found, increase or decrease NODE as required.

STAT(3) and STAT(4) contain “exact” estimates of the mean and variance when
the estimated piecewise linear density is used in the required integrals. Routine
DESPT (page 1052) may be used to find interpolated estimates for the density at
any point x given the NODE estimates of the density returned in DENS.
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Example

An estimate for a density function of unknown form using a random sample of
size 10 and 13 mesh points with α  = 10 is estimated as follows:

      INTEGER    INIT, MAXIT, NOBS, NODE
      REAL       ALPHA, EPS
      PARAMETER  (ALPHA=10.0, EPS=0.0001, INIT=0, MAXIT=25, NOBS=10,
     &           NODE=13)
C
      INTEGER    NMISS, NOUT
      REAL       BNDS(2), DENS(NODE), STAT(4), X(NOBS)
      EXTERNAL   DESPL, UMACH
C
      DATA BNDS/-3., 3./
      DATA X/-.9471, -.7065, -.2933, -.1169, .2217, .4425, .4919,
     &     .5752, 1.1439, 1.3589/
C
      CALL DESPL (NOBS, X, NODE, BNDS, INIT, ALPHA, MAXIT, EPS, DENS,
     &            STAT, NMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,’(’’ DENS = ’’,9F7.4, /, 9X, 4F7.4)’) DENS
      WRITE (NOUT,’(’’ Log-likelihood term = ’’, F7.3, /,
     &              ’’ Log-penalty term    = ’’, F7.3, /,
     &              ’’ Mean                = ’’, F7.3, /,
     &              ’’ Variance            = ’’, F7.3)’) STAT
      END

Output
DENS =  0.0000 0.0014 0.0356 0.1111 0.2132 0.3040 0.3575 0.3565 0.2947
         0.1986 0.0986 0.0288 0.0000
Log-likelihood term = -11.968
Log-penalty term    =  -1.303
Mean                =   0.217
Variance            =   1.042

The following figure shows the affect of various choices of α. For larger α, the
density estimate is smoother.
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Figure 15-1   Density Estimates Using α = 1, 10, 100

DESKN/DDESKN (Single/Double precision)
Perform nonparametric probability density function estimation by the kernel
method.

Usage
CALL DESKN (XKER, NOBS, X, WINDOW, XMAX, NXPT, XPT, DENS,
            NMISS)

Arguments

XKER — User-supplied FUNCTION to compute the kernel at any point on the real
line. The form is XKER(Y), where

Y — Point at which the kernel is to be evaluated.

XKER — Value of the kernel at point Y.

XKER — ust be declared EXTERNAL in the calling program.

NOBS — Number of observations.   (Input)

X — Vector of length NOBS containing the random sample of observations.
(Input)
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WINDOW — Window width for the kernel function.   (Input)
Generally, several different values of WINDOW should be tried.

XMAX — Cutoff value such that XKER(Y) = 0.0 for all |Y| greater than XMAX.
(Input)
If XMAX exists, then the kernel function is 0.0 for all Y greater in absolute value
than XMAX, and the efficiency of the computations is enhanced. If no such XMAX

exists or the user does not wish to make use of XMAX, then XMAX should be
assigned any nonpositive value.

NXPT — Number of points at which a density estimate is desired.   (Input)

XPT — Vector of length NXPT containing the values at which a density estimate
is desired.   (Input)
If XMAX is greater than zero, then XPT must be sorted from smallest to largest.

DENS — Vector of length NXPT containing the density estimates at the points
specified in XPT.   (Output)

NMISS — Number of missing (NaN, not a number) values in X.   (Output)

Comments

1. Informational error
Type Code
   4    7 Negative kernel functions are not allowed.

2. Routine DESPT (page 1052) may be used to obtain interpolated density
estimates from the NXPT density estimates returned in DENS. Array
AMESH in DESPT corresponds to array XPT in DESKN.

Algorithm

Routine DESKN computes kernel estimates of the density function for a random
sample of (scalar-valued) observations. The kernel estimate of the density at the
point y is given by.

$( ) [( ) / ]f y
nh

K y x hi
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n
= −∑

=

1

1

where

$( )f y

is the estimated density at y, K is the kernel function, xL denotes the i-th
observation, n is the number of observations, and h is a fixed constant (called the
“window width”) supplied by the user.

One is usually interested in computing the density estimates using several values
of the window width h. Tapia and Thompson (1978), Chapter 2, give some
considerations relevant to the choice of h. Some common kernel functions (see
Tapia and Thompson 1978, page 60) are given as follows.
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The computation can be made much more efficient when the kernel is nonzero
over a finite range since observations outside this range can be ignored in the
computation of the density. In this case, the array XPT is assumed to be sorted.

Example

In this example, the standard normal density function is estimated at 13 points
using a random sample of 10 points from a standard normal distribution. The
biweight kernel function is used. The actual density for the standard normal
density is also reported in the output for comparison. The random sample is
generated using routines RNSET (page 1166) and RNNOR (page 1208).

      INTEGER    NOBS, NXPT
      REAL       C1, WINDOW, XMAX
      PARAMETER  (C1=0.3989423, NOBS=10, NXPT=13, WINDOW=2.0, XMAX=1.0)
C
      INTEGER    I, NMISS, NOUT
      REAL       DENS(NXPT), EXP, X(NOBS), XKER, XPT(NXPT)
      INTRINSIC  EXP
      EXTERNAL   DESKN, RNNOR, RNSET, UMACH, XKER
C
      DATA XPT/-3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5,
     &     2.0, 2.5, 3.0/
C
      CALL RNSET (1234457)
      CALL RNNOR (NOBS, X)
C
      CALL DESKN (XKER, NOBS, X, WINDOW, XMAX, NXPT, XPT, DENS, NMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,’(’’ NMISS = ’’, I1)’) NMISS
      WRITE (NOUT,’(’’ DENS Estimate = ’’, 10F6.4,/,8X,3F6.4)’) DENS
      WRITE (NOUT,’(’’ DENS Exact    = ’’,10F6.4,/,8X,3F6.4)’)
     &                        (C1*EXP(-XPT(I)*XPT(I)/2.0),I=1,NXPT)
      END
      REAL FUNCTION XKER (Y)
      REAL       Y
C
      REAL       ABS
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      INTRINSIC  ABS
C
      IF (ABS(Y) .LT. 1.0) THEN
         XKER = 15.0*(1.0-Y*Y)*(1.0-Y*Y)/16.0
      ELSE
         XKER = 0.0
      END IF
      RETURN
      END

Output
NMISS = 0
DENS Estimate = 0.00000.01180.07900.16980.26780.34670.36870.31840.22340.1391
        0.06120.01350.0005
DENS Exact    = 0.00440.01750.05400.12950.24200.35210.39890.35210.24200.1295
        0.05400.01750.0044

Figure 15-2   Density Estimate and Standard Normal Density

DNFFT/DDNFFT (Single/Double precision)
Compute Gaussian kernel estimates of a univariate density via the fast Fourier
transform over a fixed interval.

Usage
CALL DNFFT (NOBS, X, FREQ, BNDS, WINDOW, IFFT, NXPT, COEF,
            DENS, NRMISS)
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Arguments

NOBS — Number of observations.   (Input)

X — Vector of length NOBS containing the data for which a univariate density
estimate is desired.   (Input)
X is not referenced and may be dimensioned of length 1 in the calling program if
IFFT = 1.

FREQ — Vector of length NOBS containing the frequency of the corresponding
element of X.   (Input)
If FREQ(1) is −1.0, then the vector FREQ is not used and all frequencies are taken
to be one. FREQ is also not used if IFFT = 1. In either case, FREQ may be
dimensioned of length 1 in the calling program.

BNDS — Vector of length 2 containing the minimum and maximum values of X

at which the density is to be estimated.   (Input)
Observations less than BNDS(1) or greater than BNDS(2) are ignored. If either
range of the hypothesized density is infinite, a value equal to the smallest
observation minus 3 * WINDOW is a good choice for BNDS(1), and a value equal to
the largest observation plus 3 * WINDOW is a good choice for BNDS(2). Let STEP =
(BNDS(2) − BNDS(1))/(NXPT − 1), and note that the density is estimated at the
points BNDS(1) + i STEP where i = 0, 1, …, NXPT − 1. The density is assumed
constant over the interval from BNDS(1) + i * STEP to BNDS(1) + (i + 1) * STEP.

WINDOW — Window width for the kernel function.   (Input)
Generally, several different values for WINDOW should be tried. When several
different values are tried, use the IFFT option.

IFFT — Fourier transform option parameter.   (Input)
If IFFT = 1, then COEF contains the Fourier coefficients on input, and the
coefficients are not computed. Otherwise, the coefficients are computed. This
option is used when several different values for WINDOW are to be tried. On the
first call to DNFFT, IFFT = 0 and the coefficients COEF are computed. On
subsequent calls, these coefficients do not need to be recomputed (but only if
NXPT also remains fixed).

NXPT — Number of equally-spaced points points at which the density is to be
estimated.   (Input)
Routine DNFFT is most efficient when NXPT is a power of 2. Little efficiency is
lost if NXPT is a product of small primes. Because of the method of estimation,
NXPT should be large, say greater than 64.

COEF — Vector of length NXPT containing the Fourier coefficients.   (Input, if
IFFT= 1; output, otherwise)

DENS — Vector of length NXPT containing the density estimates.   (Output)
The density is estimated at the points BNDS(1) + i * STEP, i = 0, 1, …,
NXPT − 1, where STEP = (BNDS (2) − BNDS(1))/(NXPT − 1).
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NRMISS — Number of rows of data that contain missing values in X or FREQ.
(Output) NRMISS is not referenced if IFFT = 1.

Comments

1. Automatic workspace usage is

DNFFT 2 * NXPT + 15 units, or
DDNFFT 4 * NXPT + 30 units.

Workspace may be explicitly provided, if desired, by use of
D2FFT/DD2FFT. The reference is

CALL D2FFT (NOBS, X, BNDS, WINDOW, IFFT, NXPT,
            COEF,DENS, NRMISS, WFFTR)

The additional argument is

WFFTR – Work vector of length 2 * NXPT + 15. See Comment 3.
(Input)

2. Informational errors
Type Code
   4    1 The sum of the frequencies must be positive.
   4    2 Each frequency must be nonnegative.
   4    3 There are no valid observations remaining after all

missing values are eliminated.

3. WFFTR is computed in DNFFT. If D2FFT is to be called, WFFTR must first
be computed via the following FORTRAN statement:
CALL FFTRI (NXPT, WFFTR)

If DD2FFT is used, call DFFTRI instead of FFTRI. WFFTR need not be
recomputed between successive calls to D2FFT if NXPT does not change.

Algorithm

Routine DNFFT computes Gaussian kernel estimates of the density function for a
random sample of (scalar-valued) observations using a Gaussian kernel (normal
density). The computations are comparatively fast because they are performed
through the use of the fast Fourier transform. Routine DESKN (page 1044) should
be used in place of DNFFT if a kernel other than the Gaussian kernel is to be used,
if a irregular grid is desired, or if the approximations in DNFFT are not acceptable.
Because of its speed, DNFFT will usually be preferred to DESKN.

A Gaussian kernel estimate of the density at the point y is given by:
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$( )f y

is the estimated density at y, xL denotes the i-th observation, n is the number of
observations, and h is a fixed constant called the window width supplied by the
user. If density estimates for several different window sizes are to be computed,
then DNFFT performs a fast Fourier transform on the data only during the first call
(when IFFT is zero). On subsequent calls (with IFFT set at 1), the Fourier
transform of the data need not be recomputed.

If the same value of NXPT is to be used with several different input vectors X, then
the computations can be made faster by the use of D2FFT. In D2FFT, it is assumed
that some constants required by the Fourier transform and its inverse have already
been computed via routine FFTRI (IMSL MATH/LIBRARY) in work array
WFFTR. If D2FFT is called repeatedly with the same value of NXPT, WFTTR need
only be computed once.

Routine DNFFT is an implementation of Applied Statistics algorithm AS 176
(Silverman 1982) using IMSL routines for the fast Fourier transforms.
Modification to algorithm AS 176, as discussed in Silverman (1986, pages 61–
66), gives the details of the computational method. The basic idea is to partition
the support of the density into NXPT equally-sized nonoverlapping intervals. The
frequency of the observations within each interval is then computed, and the
Fourier transform of the frequencies obtained. Since the kernel density estimate is
the convolution of the frequencies with the Gaussian kernel (for given window
size), the Fourier coefficients for the Gaussian kernel density estimates are
computed as the product of the coefficients obtained for the frequencies, times the
Fourier coefficients for the Gaussian kernel function. The discrete Fourier
coefficients for the Gaussian kernel may be estimated from the continuous
transform. The inverse transform is then used to to obtain the density estimates.

Because the fast Fourier transform is used in computing

$( )f y

the computations are relatively fast (providing that NXPT is a product of small
primes). To maintain precision, a large number of intervals, say 256, is usually
recommended. Tapia and Thompson (1978), Chapter 2, give some considerations
relevant to the choice of the window size parameter WINDOW. Generally, several
different window sizes should be tried in order to obtain the best value for this
parameter.

Example

In this example, the density function is estimated at 64 points using a random sample
of 150 points from a standard normal distribution. The actual density for the standard
normal density is also reported in the output for comparison. The random sample is
generated using routines RNSET (page 1166) and RNNOR (page 1208).

      INTEGER    IFFT, NOBS, NXPT
      REAL       CONS, WINDOW
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      PARAMETER  (CONS=0.39894228, IFFT=0, NOBS=150, NXPT=64,
     &           WINDOW=0.25)
C
      INTEGER    I, NOUT, NRMISS
      REAL       BNDS(2), COEF(NXPT), DENS(NXPT), EXP, FREQ(1), STEP,
     &           X(NOBS), XX
      INTRINSIC  EXP
      EXTERNAL   DNFFT, RNNOR, RNSET, UMACH
C
      DATA BNDS/-4.0, 3.875/
C
      CALL RNSET (123457)
      CALL RNNOR (NOBS, X)
C
      FREQ(1) = -1.0
      CALL DNFFT (NOBS, X, FREQ, BNDS, WINDOW, IFFT, NXPT, COEF,
     &            DENS, NRMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99998)
99998 FORMAT (’   X  DENSITY POPULATION’)
      STEP = (BNDS(2)-BNDS(1))/(NXPT-1)
      XX   = BNDS(1)
      DO 10  I=1, NXPT, 2
         WRITE (NOUT,99999) XX, DENS(I), CONS*EXP(-XX*XX/2.0)
99999    FORMAT (F6.2, 2F8.4)
         XX = XX + STEP*2.0
   10 CONTINUE
C
      END

Output
X  DENSITY POPULATION
-4.00  0.0000  0.0001
-3.75  0.0000  0.0004
-3.50  0.0000  0.0009
-3.25  0.0000  0.0020
-3.00  0.0001  0.0044
-2.75  0.0011  0.0091
-2.50  0.0089  0.0175
-2.25  0.0345  0.0317
-2.00  0.0772  0.0540
-1.75  0.1204  0.0863
-1.50  0.1573  0.1295
-1.25  0.2076  0.1826
-1.00  0.2682  0.2420
-0.75  0.2987  0.3011
-0.50  0.2976  0.3521
-0.25  0.3072  0.3867
 0.00  0.3336  0.3989
 0.25  0.3458  0.3867
 0.50  0.3169  0.3521
 0.75  0.2834  0.3011
 1.00  0.2683  0.2420
 1.25  0.2242  0.1826
 1.50  0.1557  0.1295
 1.75  0.1182  0.0863
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 2.00  0.0946  0.0540
 2.25  0.0569  0.0317
 2.50  0.0199  0.0175
 2.75  0.0033  0.0091
 3.00  0.0002  0.0044
 3.25  0.0000  0.0020
 3.50  0.0000  0.0009
 3.75  0.0000  0.0004

DESPT/DDESPT (Single/Double precision)
Estimate a probability density function at specified points using linear or cubic
interpolation.

Usage
CALL DESPT (NODE, XPT, IOPT, NORD, AMESH, DENS, DENEST)

Arguments

NODE — Number of points at which the density is desired.   (Input)

XPT — Vector of length NODE containing the points at which an estimate of the
probability density is desired.   (Input)

IOPT — Interpolation option parameter.   (Input)

IOPT Method of interpolation
1 Linear on equally spaced points
2 Linear with unequal spacing
3 Cubic on equally spaced points
4 Cubic with unequal spacing

NORD — Number of ordinates supplied.   (Input)
NORD must be greater than one for linear interpolation, and greater than three for
cubic interpolation.

AMESH — Vector of length NORD for IOPT = 2 or 4, and of length 2 for IOPT =
1 or 3.   (Input)
If IOPT = 2 or 4, AMESH(I) contains the abscissas corresponding to each density
estimate in DENS(I). In this case, the abscissas must be specified in increasing
order. If IOPT = 1 or 3 (i.e., for an equally spaced mesh), then the lower and
upper ends of the mesh are specified by AMESH(1) and AMESH(2), respectively,
with the increment between mesh points given by (AMESH(2) –
 AMESH(1))/(NORD – 1).

DENS — Vector of length NORD containing the density function values
corresponding to each of the NORD abscissa values.   (Input)

DENEST — Vector of length NODE containing the density function estimates for
the points in XPT.   (Output)
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Comments

1. Automatic workspace usage is

DESPT 6 * NORD units if IOPT = 3, 5 * NORD + 1 units if IOPT = 4, and
1 unit otherwise, or

DDESPT 12 * NORD units if IOPT = 3, 10 * NORD + 2 units if IOPT = 4,
and 2 units otherwise.

Workspace may be explicitly provided, if desired, by use of
D2SPT/DD2SPT . The reference is

CALL D2SPT (NODE, XPT, IOPT, NORD, AMESH, DENS,
            DENEST, CF, X, BREAK)

The additional arguments are as follows:

CF — Work vector of length 4 * NORD for IOPT = 3 or 4. CF is not used
for other values of IOPT and may be dimensioned of length 1.

X — Work vector of length NORD for IOPT = 3 or 4. X is not used for
other values of IOPT and may be dimensioned of length 1.

BREAK — Work vector of length NORD for IOPT = 3 or 4. BREAK is not
used for other values of IOPT and may be dimensioned of length 1.

2. Array AMESH is the same as array BNDS in DESPL (page 1040) when
IOPT is 1 or 3, and the same as array XPT in DESKN (page 1044) when
IOPT is 2 or 4.

Algorithm

Routine DESPT computes an estimate of a density function using either linear or
cubic spline interpolation on a set {(XL, FL), for i = 1, …, N}, where FL = DENS(i),
N = NODE, and where the values of the the grid points XL can be obtained from the
vector AMESH. The value of IOPT indicates the type of interpolation (linear or
cubic) to be performed and whether the mesh values are equally spaced. When
IOPT is 1 or 3, then an equally spaced mesh is used with mesh values given by

AMESH (1) + i * DELTA

for i = 0, 1, …, N − 1, where

DELTA = (AMESH(2) − AMESH(1))/(NORD − 1)

IOPT = 2 or 4 yields an unequally spaced mesh with all mesh values contained in
the vector AMESH.

The Akima cubic spline method of interpolation (Akima 1970) is used for the
cubic interpolation.
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Example

The standard normal density is to be estimated via a grid of points over which the
density is provided. Grid points are given by (0.0, 0.5, 1.0, 1.5, 2.0) while the
density is to be estimated (via linear interpolation) at the four points (0.25, 0.75,
1.25, 1.75). For comparison, both the exact and the estimated density values at
each of the four points are printed.

      INTEGER    IOPT, NODE, NORD
      PARAMETER  (IOPT=1, NODE=4, NORD=5)
C
      INTEGER    I, NOUT
      REAL       AMESH(2), DENEST(NODE), DENS(NORD), EXP, F, H, X, X0,
     &           XPT(NODE)
      INTRINSIC  EXP
      EXTERNAL   DESPT, UMACH
C
      DATA XPT/0.25, 0.75, 1.25, 1.75/
      DATA AMESH/0, 2/
C
      F(X) = 0.3989423*EXP(-X*X/2.0)
C                                 Get the grid values
      H  = (AMESH(2)-AMESH(1))/(NORD-1)
      X0 = AMESH(1)
      DO 10  I=1, NORD
         DENS(I) = F(X0)
         X0      = X0 + H
   10 CONTINUE
C                                 Get the density estimates
      CALL DESPT (NODE, XPT, IOPT, NORD, AMESH, DENS, DENEST)
C                                 Print the results
      CALL UMACH (2, NOUT)
      WRITE (NOUT,’(’’    X       DENEST      EXACT’’)’)
      DO 20  I=1, NODE
         WRITE (NOUT,’(F5.2, 2F12.5)’) XPT(I), DENEST(I), F(XPT(I))
   20 CONTINUE
      END

Output
   X       DENEST      EXACT
0.25     0.37550     0.38667
0.75     0.29702     0.30114
1.25     0.18574     0.18265
1.75     0.09175     0.08628

HAZRD/DHAZRD (Single/Double precision)
Perform nonparametric hazard rate estimation using kernel functions and quasi-
likelihoods.

Usage
CALL HAZRD (NOBS, X, LDX, IRT, ICEN, IWTO, NGRID, BSTART,
            GINC, KMIN, INK, NK, IPRINT, ISORT, ST, JCEN,
            ALPHA, BETA, K, VML, H, NMISS)
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Arguments

NOBS — Number of observations.   (Input)

X — NOBS by m matrix containing the raw data, where m = 1 if ICEN = 0, and m
= 2 otherwise.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IRT — Column number in X of the event times.   (Input)

ICEN — Censoring option.   (Input)
If ICEN = 0, then all of the data is treated as exact data with no censoring. For
ICEN > 0, column ICEN of X contains the censoring codes. A censoring code of 0
means an exact event (failure). A censoring code of 1 means that the observation
was right censored at the event time.

IWTO — Weight option.   (Input)
If IWTO = 1, then weight ln(1 + 1/(NOBS − i + 1)) is used for the i-th smallest
observation. Otherwise, weight 1/(NOBS − i + 1) is used.

NGRID — Grid option.   (Input)
If NGRID = 0, a default grid is used to locate an initial starting value for parameter
BETA. For NGRID > 0, a user-defined grid is used. This grid is defined as BSTART

+ (j − 1) * GINC, for j = 1, …, NGRID, where BSTART, GINC, and NGRID are
input.

BSTART — First value to be used in the user-defined grid.   (Input)
Not used if NGRID = 0.

GINC — For a user-defined grid, the increment between successive grid values
of BETA.   (Input)
Not used if NGRID = 0.

KMIN — Minimum number for parameter k.   (Input)
Parameter k is the number of nearest neighbors to be used in computing the k-th
nearest neighbor distance.

INK — Increment between successive values of parameter k.   (Input)

NK — Number of values of k to be considered.   (Input)
HAZRD finds the optimal value of k over the grid given by: KMIN + (j − 1) * INK,
for j = 1, …, NK.

IPRINT — Printing option.   (Input)
If IPRINT = 1, the grid estimates and the optimized estimates are printed for each
value of k. Otherwise, no printing is performed.

ISORT — Sorting option.   (Input)
If ISORT = 1, then the event times are not automatically sorted by HAZRD.
Otherwise, sorting is performed with exact failure times following tied right-
censored times.
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ST — Vector of length NOBS containing the times of occurrence of the events,
sorted from smallest to largest.   (Output)
Vector ST is obtained from the matrix X and should be used as input to routine
HAZST (page 1069).

JCEN — Vector of length NOBS containing the sorted censor codes.   (Output)
Censor codes are sorted corresponding to the events ST(i), with censored
observations preceding tied failures. Vector JCEN is obtained from the censor
codes in X, if present, and is used as input to routine HAZST (page 1069).

ALPHA — Optimal estimate for the parameter α.   (Output)

BETA — Optimal estimate for the parameter β.   (Output)

K — Optimal estimate for the parameter k.   (Output)

VML — Optimum value of the criterion function.   (Output)

H — Vector of length NOBS * 5 containing constants needed to compute the k-th
nearest failure distances, and the observation weights.   (Output)
H is used as input to routine HAZST (page 1069).

NMISS — Number of missing (NaN, not a number) values in X.   (Output)

Comments

1. Informational Errors
Type Code
   4    18 All observations are missing (NaN, not a number)

values.

2. In the optimization routines, the parameterization is changed to β* and α
*, where β* = −ln(β) and α* = −ln(α). The default grid uses −8, −4, −3, −
2.5, −2, −1.5, −1, −0.5, and 0.5 for β*. This corresponds to a grid in β of
2981, 54.6, 20.08, 12.18, 7.39, 4.48, 2.72, 1.64, and .61. The grid β that
maximizes the modified “likelihood” is used as the starting point for the
iterations.

3. If the initial estimate of β as determined from the grid or as given by the

user is greater than 400 (actually e6), then infinite β is assumed, and an
analytic estimate of α based upon infinite β is used. In the optimization,
if it is determined that β must be greater than 1000, then an infinite β is
assumed. Infinite β corresponds to a “flat” hazard rate.

Algorithm

Routine HAZRD is an implementation of the methods discussed by Tanner and
Wong (1984) for estimating the hazard rate in survival or reliability data with
right censoring. It uses the biweight kernel,
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and a modified likelihood to obtain data-based estimates of the smoothing
parameters α, β, and k needed in the estimation of the hazard rate. For kernel
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where dMN is the distance to the k-th nearest failure from x(j), and x(j) is the j-th

ordered observation (from smallest to largest). For given α and β, the hazard at
point x is then
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where N = NOBS, δL is the i-th observation’s censor code (1 = censored,
0 = failed), and wL is the i-th ordered observation’s weight, which may be chosen

as either 1/(N − i + 1), or ln(1 + 1/(N − i + 1)). After the smoothing parameters
have been obtained, the hazard may be estimated via HAZST (page 1069).

Let

H x h s dso
x( ) ( )= I

The likelihood is given by
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where Π denotes product. Since the likelihood leads to degenerate estimates,
Tanner and Wong (1984) suggest the use of a modified likelihood. The
modification consists of deleting observation xL in the calculation of h(xL) and
H(xL) when the likelihood term for xL is computed using the usual optimization

techniques. α and β for given k can then be estimated.

Estimates for α and β are computed as follows: for given β, a closed form
solution is available for α. The problem is thus reduced to the estimation of β. A
grid search for β is first performed. Experience indicates that if the initial

estimate of β from this grid search is greater than, say, e6, then the modified
likelihood is degenerate because the hazard rate does not change with time. In
this situation, β should be taken to be infinite, and an estimate of α
corresponding to infinite β should be directly computed. When the estimate of β
from the grid search is less than e6, a secant algorithm is used to optimize the
modified likelihood. The secant algorithm iteration stops when the change in β
from one iteration to the next is less than 10-5. Alternatively, the iterations may
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cease when the value of β becomes greater than e6, at which point an infinite β
with a degenerate likelihood is assumed.

To find the optimum value of the likelihood with respect to k, a user-specified
grid of k-values is used. For each grid value, the modified likelihood is optimized
with respect to αand β. That grid point, which leads to the smallest likelihood, is
taken to be the optimal k.

Programming Notes

1. The routine HAZST (page 1069) may be used to estimate the hazard on a
grid of points once the optimal values for α, β and k have been found.
The user should also consider using the “easy-to-use” version of HAZRD,
routine HAZEZ (page 1061).

2. If sorting of the data is performed by HAZRD, then the sorted array will
be such that all censored observations at a given time precede all failures
at that time. To specify an arbitrary pattern of censored/failed
observations at a given time point, the ISORT = 1 option must be used.
In this case, it is assumed that the times have already been sorted from
smallest to largest.

3. The smallest value of k must be greater than the largest number of tied
failures since dMN must be positive for all j. (Censored observations are
not counted.) Similarly, the largest value of k must be less than the total
number of failures. If the grid specified for k includes values outside the
allowable range, then a warning error is issued; but k is still optimized
over the allowable grid values.

4. The secant algorithm iterates on the transformed parameter

β* = exp(− β). This assures a positive β, and it also seems to lead to a
more desirable grid search. All results returned to the user are in the
original parameterization, however.

5. Since local minimums have been observed in the modified likelihood, it
is recommended that more than one grid of initial values for α and β be
used.

Example

The following example is taken from Tanner and Wong (1984). The data are
from Stablein, Carter, and Novak (1981) and involve the survival times of
individuals with nonresectable gastric carcinoma. Individuals treated with
radiation and chemotherapy are used. For each value of k from 18 to 22 with
increment of 2, the default grid search for β is performed. Using the optimal value
of β in the grid, the optimal parameter estimates of α and β are computed for each
value of k. The final solution is the parameter estimates for the value of k which
optimizes the modified likelihood (VML). Because the IPRINT = 1 option is in
effect, HAZRD prints all of the results in the output.
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      INTEGER    ICEN, INK, IPRINT, IRT, ISORT, IWTO, KMIN, LDX,
     &           NGRID, NK, NOBS
      REAL       BSTART, GINC
      PARAMETER  (BSTART=0.0, GINC=0.0, ICEN=2, INK=2, IPRINT=1,
     &           IRT=1, ISORT=1, IWTO=0, KMIN=18, LDX=45, NGRID=0,
     &           NK=3, NOBS=45)
C
      INTEGER    JCEN(NOBS), K, NMISS, NOUT
      REAL       ALPHA, BETA, H(5*NOBS), ST(NOBS), VML, X(NOBS,2)
      EXTERNAL   HAZRD, UMACH, WRIRN, WRRRN
C
      DATA X/17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122, 144, 167,
     &     170, 183, 185, 193, 195, 197, 208, 234, 235, 254, 307, 315,
     &     401, 445, 464, 484, 528, 542, 567, 577, 580, 795, 855, 882,
     &     892, 1031, 1033, 1306, 1335, 1366, 1452, 1472, 36*0, 9*1/
C
      CALL HAZRD (NOBS, X, LDX, IRT, ICEN, IWTO, NGRID, BSTART, GINC,
     &            KMIN, INK, NK, IPRINT, ISORT, ST, JCEN, ALPHA, BETA,
     &            K, VML, H, NMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) NMISS
99999 FORMAT (/’ NMISS = ’, I4/)
      CALL WRRRN (’ST’, 1, NOBS, ST, 1, 0)
      CALL WRIRN (’JCEN’, 1, NOBS, JCEN, 1, 0)
      CALL WRRRN (’H’, NOBS, 5, H, NOBS, 0)
      END

Output
                  *** GRID SEARCH FOR K =    18 ***
           ALPHA                   BETA                   VML
           4.578322            2980.958008            -266.804504
           4.543117              54.598148            -266.619690
           4.336464              20.085537            -265.541168
           4.019334              12.182494            -264.001404
           3.542742               7.389056            -262.540100
           2.990577               4.481689            -262.511810
           2.351537               2.718282            -262.633911
           1.584173               1.648721            -262.158264
           0.966332               1.000000            -262.868408

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           1.695147               1.769263            -262.118530

                  *** GRID SEARCH FOR K =    20 ***
           ALPHA                   BETA                   VML
           4.053934            2980.958008            -266.525970
           4.032835              54.598148            -266.401428
           3.905046              20.085537            -265.648315
           3.687815              12.182494            -264.401672
           3.304344               7.389056            -262.665924
           2.822716               4.481689            -262.080078
           2.252759               2.718282            -262.445251
           1.555777               1.648721            -261.772278
           0.955586               1.000000            -262.617645
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                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           1.540533               1.631551            -261.771484

                  *** GRID SEARCH FOR K =    22 ***
           ALPHA                   BETA                   VML
           3.656405            2980.958008            -267.595337
           3.641593              54.598148            -267.498596
\           3.550560              20.085537            -266.903870
           3.388752              12.182494            -265.859131
           3.071474               7.389056            -264.066040
           2.645036               4.481689            -263.038696
           2.137399               2.718282            -263.334717
           1.512606               1.648721            -262.639740
           0.936368               1.000000            -262.682739

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           1.342176               1.450016            -262.561188

              *** THE FINAL SOLUTION     (K =    20) ***
           ALPHA                   BETA                   VML
           1.540533               1.631551            -261.771484
 NMISS =    0

                                   ST
       1        2        3        4        5        6        7        8
    17.0     42.0     44.0     48.0     60.0     72.0     74.0     95.0

       9       10       11       12       13       14       15       16
   103.0    108.0    122.0    144.0    167.0    170.0    183.0    185.0

      17       18       19       20       21       22       23       24
   193.0    195.0    197.0    208.0    234.0    235.0    254.0    307.0

      25       26       27       28       29       30       31       32
   315.0    401.0    445.0    464.0    484.0    528.0    542.0    567.0

      33       34       35       36       37       38       39       40
   577.0    580.0    795.0    855.0    882.0    892.0   1031.0   1033.0

      41       42       43       44       45
  1306.0   1335.0   1366.0   1452.0   1472.0

                                     JCEN
  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

 21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1

 41  42  43  44  45
  1   1   1   1   1

                       H
          1        2        3        4        5
 1    217.0    218.0      1.0     21.0      1.0
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 2    192.0    193.0      1.0     21.0      0.5
 3    190.0    191.0      1.0     21.0      0.3
 4    186.0    187.0      1.0     21.0      0.2
 5    174.0    175.0      1.0     21.0      0.2
 6    162.0    163.0      1.0     21.0      0.2
 7    160.0    161.0      1.0     21.0      0.1
 8    139.0    140.0      1.0     21.0      0.1
 9    131.0    132.0      1.0     21.0      0.1
10    126.0    127.0      1.0     21.0      0.1
11    112.0    113.0      1.0     21.0      0.1
12    102.0    110.0      2.0     22.0      0.1
13    123.0    125.0      3.0     23.0      0.1
14    126.0    128.0      3.0     23.0      0.1
15    132.0    135.0      5.0     25.0      0.1
16    130.0    137.0      5.0     25.0      0.1
17    133.0    145.0      5.0     25.0      0.1
18    135.0    147.0      5.0     25.0      0.1
19    137.0    149.0      5.0     25.0      0.1
20    148.0    160.0      5.0     25.0      0.1
21    167.0    174.0      6.0     26.0      0.0
22    166.0    175.0      6.0     26.0      0.0
23    182.0    191.0      6.0     26.0      0.0
24    204.0    212.0      9.0     29.0      0.0
25    212.0    213.0      9.0     29.0      0.0
26    231.0    234.0     14.0     34.0      0.0
27    275.0    278.0     14.0     34.0      0.0
28    294.0    297.0     14.0     34.0      0.0
29    311.0    314.0     15.0     35.0      0.0
30    343.0    345.0     16.0     36.0      0.0
31    357.0    359.0     16.0     38.0      0.0
32    382.0    384.0     16.0     38.0      0.0
33    392.0    394.0     16.0     38.0      0.0
34    395.0    397.0     16.0     38.0      0.0
35    610.0    612.0     16.0     43.0      0.0
36    670.0    672.0     16.0     45.0      0.0
37    689.0    697.0     17.0     45.0      0.0
38    699.0    707.0     17.0     45.0      0.0
39    838.0    846.0     17.0     45.0      0.0
40    840.0    848.0     17.0     45.0      0.0
41   1113.0   1121.0     17.0     45.0      0.0
42   1142.0   1150.0     17.0     45.0      0.0
43   1173.0   1181.0     17.0     45.0      0.0
44   1259.0   1267.0     17.0     45.0      0.0
45   1279.0   1287.0     17.0     45.0      0.0

HAZEZ/DHAZEZ (Single/Double precision)
Perform nonparametric hazard rate estimation using kernel functions. Easy-to-use
version of HAZRD.

Usage
CALL HAZEZ (NOBS, X, LDX, IRT, ICEN, IPRINT, ST, JCEN,
            ALPHA, BETA, K, VML, H, NMISS)
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Arguments

NOBS — Number of observations.   (Input)

X — NOBS by m matrix containing the raw data, where m = 1 if ICEN = 0, and m
= 2 otherwise.   (Input)

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IRT — Column number in X containing the times of occurrence of the events.
(Input)

ICEN — Censoring option.   (Input)
If ICEN = 0, then all of the data is treated as exact data with no censoring. For
ICEN > 0, column ICEN of X contains the censoring codes. A censoring code of 0
means an exact event (failure). A censoring code of 1 means that the observation
was right censored at the event time.

IPRINT — Printing option.   (Input)
If IPRINT = 1, the grid estimates and the optimized estimates are printed for each
value of k. Otherwise, no printing is performed.

ST — Vector of length NOBS containing the times of occurrence of the events,
sorted from smallest to largest.   (Output)
Vector ST is obtained from matrix X and is used as input to routine HAZST

(page 1069).

JCEN — Vector of length NOBS containing the sorted censor codes.   (Output)
Censor codes are sorted corresponding to the events ST(i), with censored
observations preceding tied failures. Vector JCEN is obtained from the censor
codes in X and is used as input to routine HAZST (page 1069).

ALPHA — Optimal estimate for the parameter α.   (Output)

BETA — Optimal estimate for the parameter β.   (Output)

K — Optimal estimate for the parameter k.   (Output)

VML — Optimal value of the criterion function.   (Output)
VML is the “modified likelihood”.

H — Vector of length 5 * NOBS containing the constants needed to compute the
k-th nearest failure distance and the observation weights.   (Output)
H is used as input to routine HAZST (page 1069).

NMISS — Number of missing (NaN, not a number) values in X.   (Output)

Comments

1. Informational errors
Type Code
   4    6 All observations are missing (NaN, not a number)

values.
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   4    7 There are not enough failing observations in X to
continue.

2. The grid values in the initial grid search are given as follows: Let

β* = − 8, − 4, − 2, − 1, − 0.5,0.5,1, and 2, and

β β= − ∗
e

For each value of β, VML is computed at the optimizing β. The
maximizing β is used to initiate the iterations.

3. If the initial β* is determined from the grid search to be less than −6,
then it is presumed that β is infinite, and an analytic estimate of α based
upon infinite β is used. Infinite β corresponds to a flat hazard rate.

Algorithm

Routine HAZEZ is an implementation of the methods discussed by Tanner and
Wong (1984) for estimating the hazard rate in survival or reliability data with
right censoring. It uses the biweight kernel,

K x
x x

( )
( )= − <%&'

15
16

2 21 1

0

for

elsewhere

and a modified likelihood to obtain data-based estimates of the smoothing
parameters α, β, and k needed in the estimation of the hazard rate. For kernel
K(x), define the “smoothed” kernel KV(x − x(j)) as follows:

K x x
d

K
x x

ds j
jk

j

jk
( )( )

( )− =
−�

��
�
��

1

α β

where dMN is the distance to the k-th nearest failure from x(j), and x(j)is the j-th

ordered observation (from smallest to largest). For given α and β, the hazard at
point x is given by:

h x w K x xi i s i
i

N
( ) {( ) ( )}( )= − −∑

=
1

1
δ

where N = NOBS, δL is the censor code (0 = failed, 1 = censored) for the i-th
ordered observation, and wL is the weight of the i-th ordered observation (given

by 1/(N − i + 1)). The hazard may be estimated via routine HAZST (page 1069)
after the smoothing parameters have been obtained

Let

H x h s dsx( ) ( )= I 0
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The likelihood is given by:

L h x H xi
N

i i
i= −∏ =

−
1

1{ ( ) ( ))}( )δ exp(

where Π denotes product. Since the likelihood, as specified, will lead to
degenerate estimates, Tanner and Wong (1984) suggest the use of a modified
likelihood. The modification consists of deleting the observation xL in the
calculation of h(xL) and H(xL) when the likelihood term for xL is computed. For a

given k, α and β can then be estimated via the usual optimization techniques.

Estimates for α and β are computed as follows. For a given β, a closed form
solution is available for α. The problem is thus reduced to the estimation of β. To
estimate α and β, a grid search is first performed. Experience indicates that if the
initial estimate of β from this grid search is greater than exp(6), then the modified
likelihood is degenerate because the hazard rate does not change with time. In this
situation, β should be taken to be infinite, and an estimate of α corresponding to
infinite β is computed directly. When the estimate of β from the grid search is less
than exp(6) (approximately 400), a secant algorithm is used to optimize the
modified likelihood. The secant algorithm is said to have converged when the
change in β from one iteration to the next is less than 0.00001. Additionally,
convergence is assumed when the value of β becomes greater than exp(6). This
corresponds to an infinite β with a degenerate likelihood.

A grid of k-values is used to find the optimum value of the likelihood with respect
to k. The grid is determined by HAZEZ and consists of at most 10 points. The
starting value in the grid is the smallest possible value of k. An increment of 2 is
then used to obtain the remaining grid points.

For each grid value, the modified likelihood is optimized with respect to α and
β. That grid point, which leads to the smallest likelihood, is taken to be the
optimal k.

Programming Notes

1. Routine HAZST (page 1069) may be used to estimate the hazard on a grid
of points once the optimal values for α, β and k have been found. (The
user should also consider using routine HAZRD (page 1054), which
allows for more options than HAZEZ.)

2. Routine HAZEZ assumes that censored observations precede failed
observations at tied failure/censoring times.

3. The secant algorithm iterates on the transformed parameter

β* = exp(−β). This assures a positive β, and it also seems to lead to a
more desirable grid search. All results returned to the user are in the
original parameterization.
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Example

The following example is illustrated in Tanner and Wong (1984), and the data are
taken from Stablein, Carter, and Novak (1981). It involves the survival times of
individuals with nonresectable gastric carcinoma. Only those individuals treated
with radiation and chemotherapy are used.

      INTEGER    ICEN, IPRINT, IRT, LDX, NOBS
      PARAMETER  (ICEN=2, IPRINT=1, IRT=1, LDX=45, NOBS=45)
C
      INTEGER    JCEN(NOBS), K, NMISS, NOUT
      REAL       ALPHA, BETA, H(5*NOBS), ST(NOBS), VML, X(NOBS,2)
      EXTERNAL   HAZEZ, UMACH, WRIRN, WRRRN
C
      DATA X/17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122, 144, 167,
     &     170, 183, 185, 193, 195, 197, 208, 234, 235, 254, 307, 315,
     &     401, 445, 464, 484, 528, 542, 567, 577, 580, 795, 855, 882,
     &     892, 1031, 1033, 1306, 1335, 1366, 1452, 1472, 36*0, 9*1/
C
      CALL HAZEZ (NOBS, X, LDX, IRT, ICEN, IPRINT, ST, JCEN, ALPHA,
     &            BETA, K, VML, H, NMISS)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999) NMISS
99999 FORMAT (/’ NMISS = ’, I4/)
      CALL WRRRN (’ST’, 1, NOBS, ST, 1, 0)
      CALL WRIRN (’JCEN’, 1, NOBS, JCEN, 1, 0)
      CALL WRRRN (’H’, NOBS, 5, H, NOBS, 0)
      END

Output
                  *** GRID SEARCH FOR K =     2 ***
           ALPHA                   BETA                   VML
          65.157967            2980.958008            -266.543945
          32.434208              54.598148            -262.551147
          17.100269              20.085537            -263.100769
          11.402525              12.182494            -264.410187
           7.263529               7.389056            -267.502014
           4.452315               4.481689            -270.548523
           2.689497               2.718282            -335.407288
           1.633702               1.648721            -338.566162
           0.995799               1.000000            -519.939514

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
          32.219337              53.968315            -262.550781

                  *** GRID SEARCH FOR K =     4 ***
           ALPHA                   BETA                   VML
          25.596716            2980.958008            -266.471558
          20.476425              54.598148            -262.893860
          13.995192              20.085537            -262.792755
          10.109113              12.182494            -262.573212
           6.883837               7.389056            -263.030121
           4.407142               4.481689            -265.238647
           2.690131               2.718282            -265.606293
           1.633339               1.648721            -266.822693
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           0.993371               1.000000            -271.831390

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           8.530729               9.683726            -262.545593

                  *** GRID SEARCH FOR K =     6 ***
           ALPHA                   BETA                   VML
          16.828691            2980.958008            -266.729248
          14.840095              54.598148            -264.019409
          11.215133              20.085537            -262.844360
           9.013870              12.182494            -263.663391
           6.557755               7.389056            -263.283752
           4.330785               4.481689            -263.732697
           2.691744               2.718282            -264.613800
           1.633932               1.648721            -265.381866
           0.990891               1.000000            -266.242767

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
          12.553377              28.178671            -262.529877

                  *** GRID SEARCH FOR K =     8 ***
           ALPHA                   BETA                   VML
          11.377748            2980.958008            -266.746185
          10.773529              54.598148            -265.469299
           8.766835              20.085537            -262.476807
           7.427887              12.182494            -263.109009
           5.916299               7.389056            -264.492432
           4.184323               4.481689            -264.289886
           2.656351               2.718282            -264.807617
           1.623750               1.648721            -265.270691
           0.989442               1.000000            -264.738403

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           8.522110              18.281288            -262.438568

                  *** GRID SEARCH FOR K =    10 ***
           ALPHA                   BETA                   VML
           8.689023            2980.958008            -267.026093
           8.412854              54.598148            -266.250366
           7.196551              20.085537            -263.192688
           6.207793              12.182494            -262.648376
           5.143391               7.389056            -264.274384
           3.934601               4.481689            -264.523193
           2.630993               2.718282            -264.877869
           1.611710               1.648721            -264.332581
           0.984530               1.000000            -263.920013

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           6.483376              13.956067            -262.589661

                  *** GRID SEARCH FOR K =    12 ***
           ALPHA                   BETA                   VML
           6.669007            2980.958008            -266.778259
           6.551508              54.598148            -266.347595
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           5.933167              20.085537            -264.141174
           5.252526              12.182494            -262.516205
           4.471936               7.389056            -262.691589
           3.598284               4.481689            -263.914032
           2.557817               2.718282            -263.390106
           1.588307               1.648721            -263.879578
           0.973723               1.000000            -263.361908

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           4.923379               9.819798            -262.336670

                  *** GRID SEARCH FOR K =    14 ***
           ALPHA                   BETA                   VML
           5.668086            2980.958008            -266.747559
           5.595870              54.598148            -266.436584
           5.195685              20.085537            -264.737946
           4.685275              12.182494            -262.971497
           4.044650               7.389056            -262.288147
           3.335586               4.481689            -263.126434
           2.496436               2.718282            -262.891663
           1.585763               1.648721            -263.418976
           0.969140               1.000000            -263.164032

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           4.145060               7.966486            -262.260559

                  *** GRID SEARCH FOR K =    16 ***
           ALPHA                   BETA                   VML
           4.970138            2980.958008            -266.419281
           4.924928              54.598148            -266.199646
           4.663393              20.085537            -264.938660
           4.280633              12.182494            -263.266602
           3.741570               7.389056            -262.020355
           3.132969               4.481689            -262.401733
           2.421248               2.718282            -262.555817
           1.586469               1.648721            -262.426025
           0.967658               1.000000            -263.135101

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           3.639074               6.767537            -261.987305

                  *** GRID SEARCH FOR K =    18 ***
           ALPHA                   BETA                   VML
           4.578322            2980.958008            -266.804504
           4.543117              54.598148            -266.619690
           4.336464              20.085537            -265.541168
           4.019334              12.182494            -264.001404
           3.542742               7.389056            -262.540100
           2.990577               4.481689            -262.511810
           2.351537               2.718282            -262.633911
           1.584173               1.648721            -262.158264
           0.966332               1.000000            -262.868408

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
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           1.695147               1.769263            -262.118530

                  *** GRID SEARCH FOR K =    20 ***
           ALPHA                   BETA                   VML
           4.053934            2980.958008            -266.525970
           4.032835              54.598148            -266.401428
           3.905046              20.085537            -265.648315
           3.687815              12.182494            -264.401672
           3.304344               7.389056            -262.665924
           2.822716               4.481689            -262.080078
           2.252759               2.718282            -262.445251
           1.555777               1.648721            -261.772278
           0.955586               1.000000            -262.617645

                  *** OPTIMAL PARAMETER ESTIMATES ***
           ALPHA                   BETA                   VML
           1.540533               1.631551            -261.771484

              *** THE FINAL SOLUTION     (K =    20) ***
           ALPHA                   BETA                   VML
           1.540533               1.631551            -261.771484

NMISS =    0

                               ST
     1        2        3        4        5        6        7        8
  17.0     42.0     44.0     48.0     60.0     72.0     74.0     95.0

     9       10       11       12       13       14       15       16
 103.0    108.0    122.0    144.0    167.0    170.0    183.0    185.0

    17       18       19       20       21       22       23       24
 193.0    195.0    197.0    208.0    234.0    235.0    254.0    307.0

    25       26       27       28       29       30       31       32
 315.0    401.0    445.0    464.0    484.0    528.0    542.0    567.0

    33       34       35       36       37       38       39       40
 577.0    580.0    795.0    855.0    882.0    892.0   1031.0   1033.0

    41       42       43       44       45
1306.0   1335.0   1366.0   1452.0   1472.0

                                     JCEN
 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1

41  42  43  44  45
 1   1   1   1   1

                       H
          1        2        3        4        5
 1    217.0    218.0      1.0     21.0      1.0
 2    192.0    193.0      1.0     21.0      0.5
 3    190.0    191.0      1.0     21.0      0.3
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                      .
                      .
                      .
43   1173.0   1181.0     17.0     45.0      0.0
44   1259.0   1267.0     17.0     45.0      0.0
45   1279.0   1287.0     17.0     45.0      0.0

HAZST/DHAZST (Single/Double precision)
Perform hazard rate estimation over a grid of points using a kernel function.

Usage
CALL HAZST (NOBS, ST, JCEN, IWTO, NGRID, GSTRT, GINC,
            ALPHA, BETA, K, IHCOMP, H, HAZ)

Arguments

NOBS — Number of observations.   (Input)
If HAZRD (page 1054) or HAZEZ (page 1061) is called prior to this routine and the
original data contained missing values, then NOBS in HAZST must be adjusted for
the number of missing values from the value used in HAZRD or HAZEZ. That is,
NOBS in HAZST is NOBS minus NMISS from HAZRD or HAZEZ .

ST — Vector of length NOBS containing the event times, sorted in ascending
order.   (Input)
ST may not contain missing values.

JCEN — Vector of length NOBS containing the censor codes.   (Input)
JCEN(i) = 1 means that event i was (right) censored at time ST(i), i = 1, …, NOBS.
JCEN(i) = 0 means that event i was a failure at time ST(i).

IWTO — Weighting option.   (Input)
IWTO = 1 means use weights ln(1 + 1/(NOBS − i + 1)). IWTO = 0 means use
weights 1/(NOBS − i + 1). Not used if IHCOMP = 1.

NGRID — Number of grid points at which to compute the hazard.   (Input)

GSTRT — First grid value.   (Input)

GINC — Increment between grid values.   (Input)

ALPHA — Value for parameter α.   (Input)

BETA — Value for parameter β.   (Input)

K — Value for parameter k.   (Input)

IHCOMP — Option parameter.   (Input)
If IHCOMP = 0, H is computed. If IHCOMP = 1, H has already been computed
(generally by HAZRD or HAZEZ).

H — Vector of length 5 * NOBS containing the constants used in computing the k-
th failure distance.   (Input, if IHCOMP = 1; Output, otherwise)
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HAZ — Vector of length NGRID containing the estimated hazard rates.   (Output)

Comments

1. Informational error
Type Code
   4    13  At least one missing (NaN, not a number) value was

found in ST. Missing values are not allowed in this
routine.

2. The user-defined grid is given by GSTRT + j * GINC, j = 0, …,
NGRID − 1.

3. Routine HAZST assumes that the grid points are new data points.

Algorithm

Routine HAZST estimates the hazard function by use of the biweight kernel,

K x x( ) ( )= −15

16
1 2 2

Because a “smoothed” estimate is computed, one generally would use either
routine HAZRD (page 1054) or routine HAZEZ (page 1061) to obtain maximum
(modified) likelihood estimates of the smoothing parameters α, β, and k.
Maximum (modified) likelihood estimates of these parameters are not required,
however. A user-specified grid of points is generated. For each point, the hazard
estimate is computed as

h x w K x xi i s i
i

n
( ) ( ) ( )( )= − −∑

=
1

1
δ

where n = NOBS, δL is the i-th observation’s censoring code (0 = failed,

1 = censored), wL is the i-th observation’s weight (either 1/(n − i + 1) or ln(1 +

1/(n − i + 1)) depending upon IWTO), and KV(x − x(L)), the “smoothed kernel”, is as
follows:

K x x
d
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α β

Here, dLN is the distance to the k-th nearest failure from the i-th observation.
Because of the dLN, HAZST requires the computation of matrix H, which contains
constants needed to quickly compute dLN. Often, H will have been computed in
routine HAZRD or HAZEZ. In this case, the parameter IHCOMP should be set to
zero and H should be input to HAZST. If H must be computed by HAZST, set
IHCOMP = 1.
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Example

The following example is a continuation of the example from HAZRD. The data
are from Stablein, Carter, and Novak (1981), and involve the survival times of
individuals with nonresectable gastric carcinoma. Only those individuals treated
with both radiation and chemotherapy are used.

      INTEGER    IHCOMP, IWTO, K, NGRID, NOBS
      REAL       ALPHA, BETA, GINC, GSTRT
      PARAMETER  (ALPHA=1.540537, BETA=1.631553, GINC=10, GSTRT=0.0,
     &           IHCOMP=0, IWTO=0, K=20, NGRID=100, NOBS=45)
C
      INTEGER    JCEN(NOBS), NOUT
      REAL       H(5*NOBS), HAZ(NGRID), ST(NOBS)
      EXTERNAL   HAZST, WRRRN
C
      DATA ST/17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122, 144, 167,
     &     170, 183, 185, 193, 195, 197, 208, 234, 235, 254, 307, 315,
     &     401, 445, 464, 484, 528, 542, 567, 577, 580, 795, 855, 882,
     &     892, 1031, 1033, 1306, 1335, 1366, 1452, 1472/
      DATA JCEN/36*0, 9*1/
C
      CALL HAZST (NOBS, ST, JCEN, IWTO, NGRID, GSTRT, GINC, ALPHA,
     &            BETA, K, IHCOMP, H, HAZ)
C
      CALL WRRRN (’Ten elements of HAZ’, 1, 10, HAZ, 1, 0)
      CALL WRRRN (’The first 10 rows of H’, 10, 5, H, NOBS, 0)
      END

Output
                           Ten elements of HAZ
       1          2          3          4          5          6          7
0.000962   0.001111   0.001276   0.001451   0.001634   0.001819   0.002004

       8          9         10
0.002185   0.002359   0.002523

          The first 10 rows of H
         1       2       3       4       5
 1   217.0   218.0     1.0    21.0     1.0
 2   192.0   193.0     1.0    21.0     0.5
 3   190.0   191.0     1.0    21.0     0.3
 4   186.0   187.0     1.0    21.0     0.2
 5   174.0   175.0     1.0    21.0     0.2
 6   162.0   163.0     1.0    21.0     0.2
 7   160.0   161.0     1.0    21.0     0.1
 8   139.0   140.0     1.0    21.0     0.1
 9   131.0   132.0     1.0    21.0     0.1
10   126.0   127.0     1.0    21.0     0.1
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Chapter 16: Line Printer Graphics

Routines
16.1. Histograms

Vertical histogram plot .........................................................VHSTP 1074
Vertical histogram plot with bars subdivided into two parts.. VHS2P 1076
Horizontal histogram plot .....................................................HHSTP 1078

16.2. Scatter Plots
Scatter plot ............................................................................. SCTP 1081

16.3. Exploratory Data Analysis
Boxplot ...................................................................................BOXP 1083
Stem and leaf plot ................................................................STMLP 1085

16.4. Empirical Probability Distribution
Cumulative distribution function (CDF) plot ........................... CDFP 1087
Plot of two sample CDFs on the same frame ...................... CDF2P 1090
Probability plot..................................................................... PROBP 1092

16.5. Other Graphics Routines
Plot up to 10 sets of points................................................... PLOTP 1096
Binary tree plot .....................................................................TREEP 1098

Usage Notes
The routine names in this chapter end with the letter “P” to indicate line printer
plotting and every routine starts printing at the beginning of a new page.

Depending on the nature of plots, some routines allow the user to change page
width and/or length. This capability is specified in each routine and, if allowed,
can be done by calling the routine PGOPT (page 1263) in advance. To change the
page width, the user should make the following call to PGOPT:

CALL PGOPT(−1, IPAGEW)

where IPAGEW indicates the page width in columns. To change the page length,
the user should make the following call to PGOPT:
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CALL PGOPT(−2, IPAGEL)

where IPAGEL indicates the page length in rows. See the PGOPT document for
more information.

VHSTP/DVHSTP (Single/Double precision)
Print a vertical histogram.

Usage
CALL VHSTP (NBAR, FRQ, ISP, TITLE)

Arguments

NBAR – Number of bars.   (Input)
If NBAR exceeds 100/(ISP + 1), then NBAR = 100/(ISP + 1) is used. NBAR must be
positive.

FRQ — Vector of length NBAR containing the frequencies or counts.   (Input)
Elements of FRQ must be nonnegative.

ISP — Spacing between histogram bars.   (Input)
ISP may be 0, 1, or 4.

TITLE — CHARACTER string containing main title.   (Input)

Comments

1. Informational errors
Type Code
   3    1 ISP is out of range. ISP = 0 is used.
   3    3 NBAR * (ISP + 1) is less than 1 or greater than 100.

The width of the histogram is set to 100, and 100/(ISP

+ 1) bars are printed. The number of class intervals
will be printed completely if ISP ≠ 0 and will always
be printed up to and including 100/(ISP + 1) even
though the histogram body is only 100 spaces wide.

   3    5 The maximum value in the vector FRQ is less than 1;
therefore, the body of the histogram is blank.

   3    6 TITLE is too long. TITLE was truncated from the right
side.

2. Output is written to the unit specified by the routine UMACH (page 1334).

3. TITLE is centered and placed at the top of the plot. The plot starts on a
new page.
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Algorithm

VHSTP prints a vertical histogram on not more than one printer page using not
more than 50 vertical and 100 horizontal print positions. Spacing control is
allowed on the horizontal axis.

Given a vector containing positive counts, VHSTP determines the maximum count
T". Vertical printing position depends on K defined by
K = 1 + (T" − 1)/50: If a frequency is greater than K, then a character is printed
on the corresponding position of the first horizontal line from above. Henceforth,
K is reduced by K/50 for each horizontal line, and frequencies are compared to
the new K.

Example

Consider the data set in Example 1 of the routine OWFRQ (page 3). This data set
consists of the measurements (in inches) of precipitaion in Minneapolis/St. Paul
during the month of March for 30 consecutive years. We use the routine OWFRQ to
create a one-way frequency table. A vertical histogram is then generated using
VHSTP. A horizontal histogram for the same data set can be found in the
document example for the routine HHSTP (page 1078).

      INTEGER    NBAR, NOBS
      PARAMETER  (NBAR=10, NOBS=30)
C
      INTEGER    IBEG, IOPT, IREP, ISPACE, LENGTH, NOUT
      REAL       CLHW, DIV(NBAR), TABLE(NBAR), X(NOBS), XHI, XLO
      EXTERNAL   VHSTP, OWFRQ, UMACH
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
C                                 Get output unit number
      CALL UMACH (2, NOUT)
C                                 Create a one-way frequency table from
C                                 a given data set using intervals of
C                                 equal length and user-supplied values
C                                 of XLO and XHI
      IOPT = 1
      XLO  = 0.5
      XHI  = 4.5
      CALL OWFRQ (NOBS, X, NBAR, IOPT, XLO, XHI, CLHW, DIV, TABLE)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT (’ Midpoints:  ’, 10F6.2, /, ’    Counts:  ’, 10F6.0)
C                                 Create the horizontal histogram
      ISP = 4
      CALL VHSTP (NBAR, TABLE, ISP, ’Plot of VHSTP’)
      END

Output
 Midpoints:    0.25  0.75  1.25  1.75  2.25  2.75  3.25  3.75  4.25  4.75
    Counts:      2.    7.    6.    6.    4.    2.    2.    0.    0.    1.
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                            Plot of VHSTP
Frequency-------------------------------------------------------
   7  *          I                                           *
   6  *          I    I    I                                 *
   5  *          I    I    I                                 *
   4  *          I    I    I    I                            *
   3  *          I    I    I    I                            *
   2  *     I    I    I    I    I    I    I                  *
   1  *     I    I    I    I    I    I    I              I   *
----------------------------------------------------------------
Class       1    2    3    4    5    6    7    8    9   10

VHS2P/DVHS2P (Single/Double precision)
Print a vertical histogram with every bar subdivided into two parts.

Usage
CALL VHS2P (NBAR, FRQX, FRQY, ISP, TITLE)

Arguments

NBAR — Number of bars.   (Input)
NBAR must be positive.

FRQX — Vector of length NBAR.   (Input)
FRQX contains the frequencies or counts, and the elements of FRQX must be
nonnegative.

FRQY — Vector of length NBAR.   (Input)
FRQY contains the second frequencies or counts, and the elements of FRQY must
be nonnegative.

ISP —Spacing between histogram bars.   (Input)
ISP = 0, 1 or 4 is allowed.

TITLE — CHARACTER string containing the title.   (Input)

Comments

1. Automatic workspace usage is

VHS2P 2 * NBAR units, or
DVHS2P 4 * NBAR units.

Workspace may be explicitly provided, if desired, by use of
V2S2P/DV2S2P. The reference is

CALL V2S2P (NBAR, FRQX, FRQY, ISP, TITLE, WK)

The additional argument is

WK — Work vector of length 2 * NBAR.

2. Informational errors
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Type Code
   3    2 NBAR * (ISP + 1) is less than 1 or greater than 100.

The width of the histogram is set to 100 and 100/(ISP
+ 1) bars are printed.

   3    3 ISP as specified is not valid. The zero option is used.
   3    4 TITLE is too long. TITLE was truncated from the right

side.

3. If NBAR exceeds 100/(ISP + 1), then only 100/(ISP + 1) bars are
printed.

4. If the maximum frequency is greater than 9999, the frequency column
contains on some lines.

5. Output is written to the unit specified by the routine UMACH (page 1334).

6. TITLE is automatically centered and plot starts on a new page.

Algorithm

The routine VHS2P prints a vertical histogram on one or more pages, using not
more than 50 vertical and 100 horizontal print positions. Spacing control is
allowed on the horizontal axis. Given two vectors containing positive counts,
VHS2P determines the maximum count of the combined vectors T". Vertical
printing position depends on K defined by K = 1 + (T" − 1)/50. If a frequency
is greater than K, then a character is printed on the first line. Henceforth, K is
reduced by K/50 for each position, and frequencies are compared to the new K.

Example

Let X = FRQX contain 12 months of projected income figures and let Y = FRQY
contain the actual income figures for the same 12 months. VHS2P produces a
histogram that allows projected versus actual figures to be graphically compared.

      INTEGER    NBAR
      PARAMETER  (NBAR=12)
C
      INTEGER    ISP, NOUT
      REAL       FRQX(NBAR), FRQY(NBAR)
      EXTERNAL   UMACH, VHS2P
C
      DATA FRQX/11., 4., 4., 8., 4., 3., 10., 14., 4., 20., 4., 3./
      DATA FRQY/10., 6., 4., 12., 3., 4., 8., 18., 6., 18., 3., 7./
C
      ISP = 4
      CALL VHS2P (NBAR, FRQX, FRQY, ISP, ’Plot of VHS2P’)
C                                 Get output unit number
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999)
99999 FORMAT (/, 3X, ’Twelve months projected sales versus actual ’,
     &       ’sales, in thousands of dollars.’, /, 11X, ’A positive ’,
     &       ’sign (+) implies projected exceeded actual.’, /, 11X,
     &       ’A negative sign (-) implies actual exceeded projected.’)
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C
      END

Output
                              Plot of VHS2P
Frequency---------------------------------------------------------------
  20                                                    -
  19                                                    -
  18                                          +         I
  17                                          +         I
  16                                          +         I
  15                                          +         I
  14                                          I         I
  13                                          I         I
  12                      +                   I         I
  11       -              +                   I         I
  10       I              +              -    I         I
   9       I              +              -    I         I
   8       I              I              I    I         I
   7       I              I              I    I         I         +
   6       I    +         I              I    I    +    I         +
   5       I    +         I              I    I    +    I         +
   4       I    I    I    I    -    +    I    I    I    I    -    +
   3       I    I    I    I    I    I    I    I    I    I    I    I
   2       I    I    I    I    I    I    I    I    I    I    I    I
   1       I    I    I    I    I    I    I    I    I    I    I    I
------------------------------------------------------------------------
Class      1    2    3    4    5    6    7    8    9   10   11   12

  Twelve months projected sales versus actual sales, in thousands of dollars.
           A positive sign (+) implies projected exceeded actual.
           A negative sign (-) implies actual exceeded projected.

HHSTP/DHHSTP (Single/Double precision)
Print a horizontal histogram.

Usage
CALL HHSTP (NBAR, FRQ, IBEG, ISPACE, LENGTH, IREP, IOPT,
            TITLE)

Arguments

NBAR — Number of bars.   (Input)
NBAR must be positive.

FRQ —Vector of length NBAR containing the frequencies or counts.   (Input)
Elements of FRQ must be nonnegative.

IBEG — Indicates the beginning setting of the plot.   (Input)
If IBEG = 0, HHSTP skips to a new page before printing the first line. If IBEG ≠ 0,
HHSTP skips two spaces and begins printing on the same page.
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ISPACE — Indicates spaces between horizontal histogram lines.   (Input)
ISPACE = 0, 1, or 2 is allowed.

LENGTH — Indicates the upper limit of the number of lines to print within the
histogram per page.   (Input)
After that number of lines is printed, the routine skips to a new page to continue
printing. If LENGTH = 0; then the maximum number of lines coincides with the
standard printer page, which is 60.

IREP — Determines the repeating appearance for the class line (top) and
frequency line (bottom) when multiple pages are required.   (Input)
If IREP = 0, the class line and the frequency line are printed on the first and last
page of the histogram, respectively. If IREP ≠ 0, both class and frequency line are
printed on every page.

IOPT — Page width option.   (Input)
IOPT = 0 will cause a full (horizontal) page histogram. IOPT = 1 will limit the
width to 80 columns.

TITLE — CHARACTER string containing the title of the histogram.   (Input)

Comments

Informational errors
Type Code
   3    3 ISPACE is not 0, 1, or 2. The zero option is used for ISPACE.
   3    6 IOPT is not 0 or 1. The zero option is used for IOPT.
   3    7 TITLE is too long and is truncated from the right side.

Algorithm

The routine HHSTP prints a horizontal histogram on one or more pages. Given a
vector containing frequencies or counts, HHSTP determines the maximum count
T". Horizontal printing position depends on K defined by

K = 1 + (T" − 1)/60 for 72 characters

K = 1 + (T" − 1)/120 for 132 characters

If a frequency is greater than K, then a character is printed in the first position.
Henceforth, K is increased by K/60 or K/120 for each position, and frequencies
are compared to the resulting K.

Example

Consider the data set in Example 1 of the routine OWFRQ (page 3). We use the
routine OWFRQ to create a one-way frequency table. A horizontal histogram is
then generated using HHSTP. The user may find a vertical histogram for the same
data set in the routine VHSTP (page 1074). Note that classes are listed from left to
right in VHSTP.

      INTEGER    NBAR, NOBS



1080 • Chapter 16: Line Printer Graphics IMSL STAT/LIBRARY

      PARAMETER  (NBAR=10, NOBS=30)
C
      INTEGER    IBEG, IOPT, IREP, ISPACE, LENGTH, NOUT
      REAL       CLHW, DIV(NBAR), TABLE(NBAR), X(NOBS), XHI, XLO
      EXTERNAL   HHSTP, OWFRQ, UMACH
C
      DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
     &     2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
     &     0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
     &     2.05/
C                                 Get output unit number
      CALL UMACH (2, NOUT)
C                                 Create a one-way frequency table from
C                                 a given data set with intervals of
C                                 equal length and user-supplied values
C                                 of XLO and XHI
      IOPT = 1
      XLO  = 0.5
      XHI  = 4.5
      CALL OWFRQ (NOBS, X, NBAR, IOPT, XLO, XHI, CLHW, DIV, TABLE)
      WRITE (NOUT,99999) DIV, TABLE
99999 FORMAT (’  Midpoints:  ’, 10F6.2, /, ’     Counts:  ’, 10F6.0)
C                                 Create the horizontal histogram
      IBEG   = 1
      ISPACE = 1
      LENGTH = 0
      IREP   = 0
      IOPT   = 0
      CALL HHSTP (NBAR, TABLE, IBEG, ISPACE, LENGTH, IREP, IOPT,
     &            ’Histogram’)
      END

Output
Midpoints:     .25   .75  1.25  1.75  2.25  2.75  3.25  3.75  4.25  4.75
   Counts:      2.    7.    6.    6.    4.    2.    2.    0.    0.    1.

    Histogram
Class -----------
  10  *I       *
      *        *
   9  *        *
      *        *
   8  *        *
      *        *
   7  *II      *
      *        *
   6  *II      *
      *        *
   5  *IIII    *
      *        *
   4  *IIIIII  *
      *        *
   3  *IIIIII  *
      *        *
   2  *IIIIIII *
      *        *
   1  *II      *
-----------------
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Frequency  5
           One frequency unit is equal to 1 count unit(s).

SCTP/DSCTP (Single/Double precision)
Print a scatter plot of several groups of data.

Usage
CALL SCTP (NOBS, NVAR, A, LDA, ICOL, RANGE, SYMBOL,
           XTITLE, YTITLE, TITLE)

Arguments

NOBS — Number of observations.   (Input)

NVAR — Number of variables.   (Input)

A —NOBS by NVAR matrix containing the data.   (Input)

LDA —Leading dimension of A exactly as specified in the dimension statement
of the calling program.   (Input)

ICOL — Vector of length NVAR representing the nature of each column of matrix
A.   (Input)
The I-th column of A is the independent variable vector if ICOL(I) = 1. The I-th
column of A is a dependent variable vector if ICOL(I) = 2. The I-th column of A
is ignored otherwise.

RANGE — Vector of length four specifying minimum x, maximum x, minimum y
and maximum y.   (Input)
SCTP will calculate the range of the axis if the minimum of that range is greater
than or equal to the maximum of that range.

SYMBOL — CHARACTER string of length NVAR.   (Input)
SYMBOL (I : I) is the character used to plot the data set represented by column I.
SYMBOL(I : I) is ignored if ICOL(I) ≠ 2.

XTITLE — CHARACTER string containing the x-axis title.   (Input)

YTITLE — CHARACTER string containing the y-axis title.   (Input)

TITLE — CHARACTER string containing the plot title.   (Input)

Comments

1. Informational errors
Type Code
   3    10 XTITLE is too long to fit into the page width

determined by the routine PGOPT. XTITLE is truncated
from the right side.
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   3    11 YTITLE is too long to fit into the page width
determined by the routine PGOPT. YTITLE is truncated
from the right side.

   3    12 TITLE is too long to fit into the page width determined
by the routine PGOPT. TITLE is truncated from the
right side.

2. Integers 2, …, 9 indicate two through nine points occupying the same
plot position, respectively, and the character “M” indicates 10 or more
multiple points. Consequently, it is recommended not to use any one of
the above characters for SYMBOL.

3. One and only one column of A can be the independent variable vector.

4. A point is ignored if either the independent or the dependent variable
contains NaN (not a number).

5. Output is written to the unit number specified by the routine UMACH

(page 1334).

6. Default page width and length are 78 and 60; respectively. The user may
change them by calling the routine PGOPT (page 1263) in advance.

Algorithm

Routine SCTP prints a scatter plot of one variable on the x-axis against several
variables on the y-axis. For multiple points, 2, 3, …, 9 are used to denote the
number of points at a location. The character “M” is used when the number of
points is greater than 9. Any entry of the matrix A containing NaN (not a number)
is ignored. See AMACH in “Machine-Dependent Constants.”.

Example

This example prints a scatter plot of width against length for 150 iris petals. The
routine GDATA (page 1302) is used to retrieve the Fisher iris data.

      INTEGER    ICOL(5), IDATA, IPRINT, LDA, NDA, NOBS, NVAR
      REAL       A(150,5), RANGE(4)
      CHARACTER  SYMBOL*5
      EXTERNAL   GDATA, PAGE, SCTP
C
      DATA ICOL/5*0/
      DATA RANGE/4*0./
      DATA SYMBOL/’    *’/
C
      IDATA  = 3
      IPRINT = 0
      LDA    = 150
      NDA    = 5
C                                 Get Fisher Iris Data
      CALL GDATA (IDATA, IPRINT, NOBS, NVAR, A, LDA, NDA)
C                                 Plot petal width against
C                                 petal length
      ICOL(4) = 1
      ICOL(5) = 2
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C                                 Set page width and length
      CALL PAGE (-1, 78)
      CALL PAGE (-2, 40)
      CALL SCTP (NOBS, NVAR, A, LDA, ICOL, RANGE, SYMBOL, ’Petal ’//
     &           ’length’, ’Petal width’, ’Fisher Iris Data’)
C
      END

Output
                                   Fisher Iris Data
           :
           :                                              *  **
      2.4 -:                                        *    2
           :                                        ****  * * *       *
           :                                             * *        *
           :
           :                                           **** *      *
           :                                      ****           *  *
           :                                       *2 *       *
           :                                     32 *   2* * *  *
           :
           :                                  *    *
P     1.6 -:                                  * *   *      *
e          :                               *  5** 2**
t          :                             *    2 *2*       *
a          :
l          :                          *   3222***
           :                             ** * *  *
w          :                    *       **
i          :                       2 2 *  **
d          :
t          :
h     0.8 -:
           :
           :      *
           :
           :       *
           :   * 3** *
           :   23* *
           :* 24875* *
           :
           : *  22
      0.0 -:
           :...............................................................
            :         :         :         :         :         :        :
            1.        2.        3.        4.        5.        6.       7.

                                     Petal length

BOXP/DBOXP (Single/Double precision)
Print boxplots for one or more samples.

Usage
CALL BOXP (NGROUP, NI, X, TITLE)
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Arguments

NGROUP — The total number of groups of samples.   (Input)

NI — Vector of length NGROUP.   (Input)
NI(I) is the number of observations in the I-th group.

X —Vector of length NI(1) + NI(2) + … + NI(NGROUP).   (Input)
The first NI(1) positions contain the observations for the first group. The next
NI(2) positions contain the observations for the second group, and so on.

TITLE — CHARACTER string containing the title of the plot.   (Input)

Comments

1. Automatic workspace usage is

BOXP NI(1) + … + NI(NGROUP) units, or
DBOXP 2 * (NI(1) + … + NI(NGROUP)) units.

Workspace may be explicitly provided, if desired, by use of
B2XP/DB2XP. The reference is

CALL B2XP (NGROUP, NI, X, TITLE, WKSP)

The additional argument is

WKSP — Workspace of length NI(1) + … + NI(NGROUP).   (Input)
The first NI(1) positions contain the sorted data from the first NI(1)
positions of X. The next NI(2) positions contain sorted data from the
next NI(2) positions of X, and so on.

2. Informational error
Type Code
   3    5 TITLE is too long to fit into the page width determined

by the routine PGOPT. TITLE is truncated from the
right side.

3. TITLE is centered and placed at the top of the plot. The plot starts on a
new page and the default page width is 78. The user may change the
width by calling the routine PGOPT (page 1263) in advance.

Algorithm

BOXP prints NGROUP boxplots. The minimum and maximum of X are printed.
The median of each data group is marked by “*” and the upper and lower
hinges by “I”. The “H-spread” is the distance between the upper and lower
hinges. The observation farthest from the median that still remains within one step
(1.5 H-spread) from each hinge also is marked by “+”. The values in the second
step (between 1.5 and 3 H-spreads from the hinges) are marked by the letter “O”
and the values beyond the second step are marked by “X”. If there are fewer than
five data points, each data point is plotted with an “X.” If multiple data points
occur at positions marked “X” or “O”, the number of multiple points



IMSL STAT/LIBRARY Chapter 16: Line Printer Graphics • 1085

is noted. More information on boxplots can be found in Chapter 2 of Chambers et
al. (1983).

Example

This example prints boxplots of three batches of data containing 5, 16 and 7
observations, respectively.

      INTEGER    NGROUP
      PARAMETER  (NGROUP=3)
C
      INTEGER    NI(NGROUP)
      REAL       X(28)
      EXTERNAL   BOXP, PAGE
C
      DATA (NI(I),I=1,3)/5, 16, 7/
      DATA (X(I),I=1,5)/7., 9., 3., 1., 1./
      DATA (X(I),I=6,21)/25., 0., 1., 0., 5., 4., 3., 5., 5., 5., 5.,
     &     5., 5., 25., 15., 9./
      DATA (X(I),I=22,28)/10., 15., 20., 25., 2., 9., 12./
C                                 Set page width.
      CALL PAGE (-1, 70)
      CALL BOXP (NGROUP, NI, X, ’Plot of BOXP’)
C
      END

Output
                            Plot of BOXP

  X    X          X    X
  2

         I--------I
+--------I   *    I-----+               O                         X
         I--------I                                               2

                         I--------------------I
     +-------------------I     *              I-------------------+
                         I--------------------I

+................................+.................................+
0.0                             12.5                            25.0

STMLP/DSTMLP (Single/Double precision)
Print a stem-and-leaf plot.

Usage
CALL STMLP (NOBS, X, UNIT, TITLE)

Arguments

NOBS — Number of observations.   (Input)
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X —Array of length NOBS containing the data.   (Input)

UNIT — Size of the increment on the stem.   (Input)
If UNIT is set so small that the length of the stem is more than 60 lines, STMLP

will use a UNIT such that the stem will be no longer than 60 lines. However, if
UNIT is a negative integer, STMLP will use the absolute value of UNIT, even if the
stem would become very long. A common value for UNIT is 10.

TITLE — CHARACTER string containing the plot title.   (Input)

Comments

1. Automatic workspace usage is

STMLP NOBS + MAXWID units, or
DSTMLP 2 * NOBS + MAXWID units.

Workspace may be explicitly provided, if desired, by use of
S2MLP/DS2MLP. The reference is

CALL S2MLP (NOBS, X, UNIT, TITLE, MAXWID, IWK, WK)

The additional arguments are as follows:

MAXWID — Page width.   (Input)
MAXWID = 78 when STMLP is called.

IWK — Work vector of length MAXWID.

WK — Vector of length NOBS.   (Output)
WK contains the sorted data from X.

2. Informational error
Type Code
   3    4 TITLE is too long to fit into the page width determined

by the routine PGOPT. TITLE is truncated from the
right side.

3. Default page width is 78. The user may change it by calling the routine
PGOPT (page 1263) in advance.

Algorithm

Routine STMLP prints a stem-and-leaf display. The user can specify that the plot
be longer than one page, but the default maximum is 60 lines. A plus sign (+) at
the end of a line indicates that there are too many data points to fit within the
width specifications. A scale marked in units of 10 is printed below the stemand-
leaf display.

Example

This example prints a stem-and-leaf plot consisting of 27 data points ranging
from −21.8 to 106.5.

      INTEGER    NOBS
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      PARAMETER  (NOBS=27)
C
      REAL       UNIT, X(NOBS)
      EXTERNAL   STMLP
C
      DATA X/6.0, 106.5, 34.0, 88.1, 89.0, 0.3, 0.7, 4.0, 4.0, 5.0,
     &     56.0, 62.8, 99.0, 4.0, 15.0, 76.0, 7.6, 101.5, 33.0, 91.0,
     &     91.0, -6.3, -21.8, 0.0, 8.99, 5.5, 6.9/
C
      UNIT = 10.
      CALL STMLP (NOBS, X, UNIT, ’Stem and leaf plot’)
C
      END

Output
                           Stem and leaf plot

Unit =    1.000000
For example: 1 2 represents    12.00000
      -2 2
      -1
      -0 6
       0 001444566789
       1 5
       2
       3 34
       4
       5 6
       6 3
       7 6
       8 89
       9 119
      10 27

CDFP/DCDFP (Single/Double precision)
Print a sample cumulative distribution function (CDF), a theoretical CDF, and
confidence band information.

Usage
CALL CDFP (CDF, NOBS, X, N12, N95, IPRINT)

Arguments

CDF — User-supplied FUNCTION to compute the cumulative distribution
function. The form is CDF(P), where

P — Sample point.   (Input)
CDF — Theoretical probability at the point P or integral of the
probability density function at the point P.   (Output)

CDF must be declared EXTERNAL in the calling program.

NOBS — Number of observations.   (Input)
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X —Vector of length NOBS containing the sample.   (Input)

N12 —Confidence band option.   (Input)
If N12 = 0, then no confidence bands are printed. If N12 = 1, then positive or
upper one-sided confidence band information is printed. If N12 = −1, then
negative or lower one-sided confidence band information is printed. If N12 = 2,
then two-sided confidence band information is printed.

N95 —Confidence band option.   (Input)
If N95 = 95, the 95-percent band is desired. Otherwise, the 99-percent band is
desired.

IPRINT — Print option.   (Input)
If IPRINT = 1, then CDFP prints the sample CDF, the theoretical CDF, and the
confidence band on the CDF. If IPRINT = 0, then the above information will not
be printed.

Comments

1. Automatic workspace usage is

CDFP 5 * NOBS units, or
DCDFP 10 * NOBS units.

Workspace may be explicitly provided, if desired, by use of
C2FP/DC2FP. The reference is

CALL C2FP (CDF, NOBS, X, N12, N95, IPRINT, WKX, WK)

The additional arguments are as follows:

WKX — Vector of length NOBS containing the sorted data X in
ascending order.   (Output)

WK — Vector of length 4 * NOBS containing confidence band values.
(Output)
WK may be dimensioned 3 * NOBS instead of 4 * NOBS for a lower or
upper confidence band.

2. Note that sample CDFs are step functions.

3. Confidence bands are plotted around the sample CDF.

4. Output is written to the unit specified by the routine UMACH (page 1334).

5. Printing starts on a new page with default page width 78 columns and
default page length 60 rows. The user may change these values by
calling the routine PGOPT (page 1263) in advance.

Algorithm

When IPRINT = 1, CDFP prints the sample cumulative distribution function
(CDF), the theoretical CDF, and confidence bands on the CDF. The theoretical
CDF will be plotted with or without the confidence band information. The
sample CDF is calculated. The theoretical CDF is calculated by calling the user
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supplied FUNCTION subprogram CDF. Asymptotic critical values are used (from
the Smirnov tables) for confidence interval calculations.

Example

This example prints and plots the sample CDF, the theoretical CDF, and the two-
sided 95 percent band information using 70 observations. Routines RNSET
(page 1166) and RNUN (page 1171) are called to generate these uniform (0, 1)
random numbers.

      INTEGER    ISEED, N12, N95, NOBS, IPRINT
      PARAMETER  (NOBS=70)
      REAL       CDF, X(NOBS)
      EXTERNAL   CDF, CDFP, PGOPT, RNSET, RNUN
C
      ISEED = 123457
      IPRINT = 0
C                                 Two-sided confidence band option.
      N12 = 2
C                                 95-percent band option.
      N95 = 95
C                                 Set page width and length.
      CALL PGOPT (-1, 78)
      CALL PGOPT (-2, 40)
C                                 Initialize the seed.
      CALL RNSET (ISEED)
C                                 Generate pseudo-random numbers from
C                                 a uniform (0,1) distribution.
      CALL RNUN (NOBS, X)
C                                 Plot
      CALL CDFP (CDF, NOBS, X, N12, N95, IPRINT)
      END
C
      REAL FUNCTION CDF (X)
      REAL       X
C
      CDF = X
      RETURN
      END
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Output
                      Cumulative Sample and Theoretical CDFs

             +::::::::::::::::+::::::::::::::::+::::::::::::::4444:4MM
        0.95 +                                               44    M2+
             .                                              44  MM   .
             .                                          44 4  2M1    .
             .                                       44 4   22 1    33
        0.80 +                                      44     2 11    33+
             .                                    4 4   22   1  33 3 .
             .                                  4    22  1 11  33    .
P            .                                44    2 1 1      3     .
r       0.65 +                             4 4    2  1        33     +
o            .                           4     22 1 1        3       .
b            .                          4    22 1 1        33        .
a            .                     44  4   2  11        33           .
b       0.50 +                   4 4    22   11      33              +
i            .               4  4      221 1        33               .
l            .            4 4           11      3 3                  .
i            .         444         2M  11      33                    .
t       0.35 +       4 4         2 1         33                      +
y            .      44       1  M1       3 3 3                       .
             .    44      1 MM          33                           .
             .  4       112            33                            .
        0.20 + 4       122         33                                +
             .4      M 2        33 3                                 .
             .    11M2      33                                       .
             .  1 M2     33                                          .
        0.05 + MM      33                                            +
             +MM3:3333:3::::::+::::::::::::::::+::::::::::::::::+:::::
            0.0              0.3              0.6              0.9

                                   Sample Values
                      Sample CDF = 1      Theoretical CDF = 2
                             Confidence bands = 3 and 4

CDF2P/DCDF2P (Single/Double precision)
Print a plot of two sample cumulative distribution functions.

Usage
CALL CDF2P (NOBS1, NOBS2, X)

Arguments

NOBS1 — Size of sample one.   (Input)

NOBS2 — Size of sample two.   (Input)

X — Vector of length NOBS1 + NOBS2.   (Input)
X contains sample one followed by sample two.
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Comments

1. Automatic workspace usage is

CDF2P 4 * (NOBS1 + NOBS2) units, or
DCDF2P 7 * (NOBS1 + NOBS2) units.

Workspace may be explicitly provided, if desired, by use of
C2F2P/DC2F2P. The reference is

CALL C2F2P (NOBS1, NOBS2, X, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 3 * (NOBS1 + NOBS2).

IWK — Work vector of length NOBS1 + NOBS2.

2. Printing starts on a new page with default page width 78 and default
page length 60. The user may change page width and length by calling
the routine PGOPT (page 1263) in advance.

Algorithm

Routine CDF2P plots two sample cumulative probability distribution functions
(CDFs). Two samples are first merged and then sorted. The cumulative
distribution functions are then calculated. On the plots, the characters “1” and “2”
indicate the first and second samples, respectively, and the character “M” indicates
multiple points.

Example

The first sample consists of pseudo-random numbers from a uniform (0, 1)
distribution. Routines RNSET (page 1166) and RNUN (page 1171) are used to
generate this sample. The second sample consists of points of the standard normal
(Gaussian) distribution function generated by the routine ANORDF (page 1122).

      INTEGER    I
      REAL       ANORDF, VAL, X(100)
      EXTERNAL   ANORDF, CDF2P, PGOPT, RNSET, RNUN
C                                 Initialize the seed.
      CALL RNSET (1234567)
C                                 Generate pseudo-random numbers from
C                                 a uniform (0,1) distribution.
      CALL RNUN (50, X)
C                                 Second sample consists of 50 points of
C                                 the std normal distribution function.
      VAL = 0.
      DO 10  I=1, 50
         VAL     = VAL + .02
         X(I+50) = ANORDF(VAL)
   10 CONTINUE
C                                 Set page width and length.
      CALL PGOPT (-1, 78)
      CALL PGOPT (-2, 40)
      CALL CDF2P (50, 50, X)
      END
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Output
                     Cumulative Sample Distribution Functions
             +::::::::::::::::+::::::::::::::::+::::::::::::22:2+22:M
        0.95 +                                             2     1 +
             .                                            22  1 1  .
             .                                            2 1 1    .
             .                                           2111      .
        0.80 +                                           1         +
             .                                          M2         .
             .                                       11M2          .
P            .                                      11 2           .
r       0.65 +                                    111 2            +
o            .                               11111   22            .
b            .                       1    11111      22            .
a            .                      1                2             .
b       0.50 +                     1                2              +
i            .                    11               22              .
l            .                  1 1                2               .
i            .                 1                  22               .
t       0.35 +             1   1                 2                 +
y            .            1                     2                  .
             .          11                     22                  .
             .       11                       22                   .
        0.20 +      1                         2                    +
             .      1                        2                     .
             .   1                          2                      .
             .  1                          22                      .
        0.05 +1 1                         22                       +
             M2:22::222:2222::+22:2222::::2::::+:::::::::::::::+::::
            0.0              0.3              0.6              0.9

                                   Sample values
                           Sample 1 = 1     Sample 2 = 2

PROBP/DPROBP (Single/Double precision)
Print a probability plot.

Usage
CALL PROBP (NOBS, N1, N2, X, IDIST)

Arguments

NOBS — Total number of observations in uncensored sample.   (Input)

N1 — The rank number of the smallest observation in the sample X, if ranked in
the complete sample.   (Input)
In other words, the number of observations that have been censored from below is
N1 − 1.

N2 — The rank number of the largest observation in the sample X, if ranked in
the complete sample.   (Input)
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In other words, the number of observations that have been censored from above is
NOBS − N2.

X — {Vector of length N2 − N1 + 1.   (Input)
X contains the data, possibly a censored data set from a complete sample of size
NOBS.

IDIST — Distribution option.   (Input)

IDIST = 1, normal distribution.
IDIST = 2, lognormal distribution.
IDIST = 3, half-normal distribution.
IDIST = 4, exponential distribution.
IDIST = 5, Weibull distribution.
IDIST = 6, extreme value distribution.

Comments

1. Automatic workspace usage is

PROBP 2 * NOBS units, or
DPROBP 4 * NOBS units.

Workspace may be explicitly provided, if desired, by use of
P2OBP/DP2OBP. The reference is

CALL P2OBP (NOBS, N1, N2, X, IDIST, M1, M2, WK)

The additional arguments are as follows:

M1 — Rank of the smallest observation actually used.   (Output)

M2 — Rank of the largest observation actually used.   (output)

WK — Work space of length 2 * NOBS.

2. Informational error
Type Code
   3    7 It is necessary to delete some items from the plotting

because those items do not satisfy properties of the
distribution.

3. NOBS must be greater than or equal to N2 − N1 + 1. If there is no
censoring, then N1 = 1 and N2 = NOBS.

4. Output is written to the unit specified by the routine UMACH (page 1334).

5. Printing starts on a new page with default page width 78. The user may
change it by calling the routine PGOPT (page 1263) in advance.

Algorithm

Routine PROBP sorts a data set and plots the observed values along the vertical
axis and the ranks along the horizontal axis. In the case of the lognormal and
Weibull distributions, the vertical axis has a log scale. The horizontal axis has
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the appropriate cumulative distribution function scale. Let M = NOBS denote the
total number of observations in an uncensored sample. For normal and lognormal
distributions, the horizontal plotting distance for the observation with rank I (out
of M) is proportional to the inverse normal cumulative distribution function
evaluated at (3 * I − 1)/(3 * M + 1). For the half-normal plot, the corresponding
horizontal distance is proportional to the inverse normal cumulative distribution
function evaluated at (3 * M + 3 * I − 1)/(6 * M + 1). For other plots, the
horizontal distances are proportional to the respective inverse cumulative
distribution functions evaluated at (I − .5)/M.

Let N1 = N1 and N2 = N2. In PROBP it is assumed that the N1 − 1 smallest
observations and the M − N2 largest observations have been censored. If there has
been no censoring, N1 should be set to 1 and N2 set to M. The smallest
observation is plotted against the expected value (or the approximated expected
value) of the N1-th order statistic from a sample of size M; the next smallest
observation is plotted as if it were the (N1 + 1)-th sample order statistic, and so
on.

PROBP does not do any shifting of location of the observation in the data set. If
any observations fall outside of the range of the distribution (that is, if any
observations are nonpositive when the distribution specified is lognormal or
Weibull), those observations are censored and N1 or N2 is modified to reflect the
number censored. In this case an error message of type 3 is generated. A plot
which is a straight line provides evidence that the sample is from the distribution
specified.

Example

In this example, a sample of size 250 (artificially generated from a normal
distribution by routines RNSET, page 1166 and RNNOR, page 1208) is plotted by
PROBP against a normal distribution function. The generally straight line
produced is an indication that the sample is from a normal distribution.

      INTEGER    NOBS
      PARAMETER  (NOBS=250)
C
      INTEGER    IDIST, N1, N2
      REAL       X(NOBS)
      EXTERNAL   PROBP, RNNOR, RNSET
C
      IDIST = 1
C                                 No censoring
      N1 = 1
      N2 = 250
C                                 Initialize the seed
      CALL RNSET (123457)
      CALL RNNOR (N2, X)
C
      CALL PROBP (NOBS, N1, N2, X, IDIST)
      END
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Output
            Probability plot for normal distribution

        2.5 +::::::::::::::::::::::::::::::::::::::::::::::  ::::.
            .                                                    .
            .                                                    .
            .                                               *    *
            .                                            **      .
        2.0 +                                          ***       .
            .                                        **          .
            .                                       **           .
            .                                      **            .
            .                                      *             .
        1.5 +                                      *             .
            .                                     **             .
            .                                    **              .
            .                                   *                .
            .                                 **                 .
        1.0 +                                **                  .
            .                               **                   .
            .                               **                   .
            .                              **                    .
O           .                             **                     .
b       0.5 +                            **                      .
s           .                          **                        .
e           .                          *                         .
r           .                         **                         .
v           .                        **                          .
a       0.0 +-------------------------*--------------------------.
t           .                       *                            .
i           .                      **                            .
o           .                     **                             .
n           .                    **                              .
s      -0.5 +                   **                               .
            .                   *                                .
            .                  *                                 .
            .                  **                                .
            .                **                                  .
       -1.0 +               **                                   .
            .              **                                    .
            .             **                                     .
            .            **                                      .
            .            *                                       .
       -1.5 +           ***                                      .
            .           *                                        .
            .          *                                         .
            .        **                                          .
            .                                                    .
       -2.0 +     ***                                            .
            *  * **                                              .
            .                                                    .
            .                                                    .
            .                                                    .
       -2.5 +:::+::::+:::+::::+::::+::::::+:::::+:::+::::::+:::::.
                .01  .05 .10  .25  .50    .75   .90 .95    .99

             Cumulative Probability
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PLOTP/DPLOTP (Single/Double precision)
Print a plot of up to 10 sets of points.

Usage
CALL PLOTP (NDATA, NFUN, X, A, LDA, INC, RANGE, SYMBOL,
            XTITLE, YTITLE, TITLE)

Arguments

NDATA — Number of independent variable data points.   (Input)

NFUN — Number of sets of points.   (Input)
NFUN must be less than or equal to 10.

X — Vector of length NDATA containing the values of the independent variable.
(Input)

A — Matrix of dimension NDATA by NFUN containing the NFUN sets of dependent
variable values.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program.   (Input)

INC — Increment between elements of the data to be used.   (Input)
PLOTP plots X(1 + (I − 1) * INC) for I = 1, 2, …, NDATA.

RANGE — Vector of length four specifying minimum x, maximum x, minimum y
and maximum y.   (Input)
PLOTP will calculate the range of the axis if the minimum and maximum of that
range are equal.

SYMBOL — CHARACTER string of length NFUN.   (Input)
SYMBOL (I : I) is the symbol used to plot function I.

XTITLE — CHARACTER string used to label the x-axis.   (Input)

YTITLE — CHARACTER string used to label the y-axis.   (Input)

TITLE — CHARACTER string used to label the plot.   (Input)

Comments

1. Informational errors
Type Code
   3    7 NFUN is greater than 10. Only the first 10 functions are

plotted.
   3    8 TITLE is too long. TITLE is truncated from the right

side.
   3    9 YTITLE is too long. YTITLE is truncated from the

right side.
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   3   10 XTITLE is too long. XTITLE is truncated from the
right side. The maximum number of characters
allowed depends on the page width and the page
length. See Comment 5 below for more information.

2. YTITLE and TITLE are automatically centered.

3. For multiple plots, the character M is used if the same print position is
shared by two or more data sets.

4 Output is written to the unit specified by UMACH (page 1334).

5. Default page width is 78 and default page length is 60. They may be
changed by calling PGOPT (page 1263) in advance.

Algorithm

Routine PLOTP produces a line printer plot of up to ten sets of points
superimposed upon the same plot. A character “M” is printed to indicate multiple
points. The user may specify the x and y-axis plot ranges and plotting symbols.
Plot width and length may be reset in advance by calling PGOPT (page 1263).

Example

This example plots the sine and cosine functions from − 3.5 to + 3.5 and sets page
width and length to 78 and 40, respectively, by calling PGOPT (page 1263) in
advance.

      INTEGER    I, INC, LDA, NDATA, NFUN
      REAL       A(200,2), DELX, PI, RANGE(4), X(200)
      CHARACTER  SYMBOL*2
      INTRINSIC  COS, SIN
      EXTERNAL   CONST, PGOPT, PLOTP
C
      DATA SYMBOL/’SC’/
      DATA RANGE/-3.5, 3.5, -1.2, 1.2/
C
      PI     = 3.14159
      NDATA  = 200
      NFUN   = 2
      LDA    = 200
      INC    = 1
      DELX   = 2.*PI/199.
      DO 10  I= 1, 200
         X(I)   = -PI + FLOAT(I-1) * DELX
         A(I,1) = SIN(X(I))
         A(I,2) = COS(X(I))
   10 CONTINUE
C                                 Set page width and length
      CALL PGOPT (-1, 78)
      CALL PGOPT (-2, 40)
      CALL PLOTP (NDATA, NFUN, X, A, LDA, INC, RANGE, SYMBOL,
     &            ’X AXIS’, ’Y AXIS’, ’ C = COS,   S = SIN’)
C
      END
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Output
                                  C = COS,   S = SIN

          1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+::::
              .                           I                           .
              .                           I                           .
              .                        CCCCCCC     SSSSSSSS           .
              .                       CC  I  CC   SS      SS          .
          0.8 +                      C    I    C SS        SS         +
              .                     C     I     MS          SS        .
              .                    C      I    SSC           SS       .
              .                   CC      I   SS CC           SS      .
              .                  CC       I   S   CC           S      .
          0.4 +                  C        I  S     C            S     +
              .                 C         I SS      C           SS    .
 Y            .                CC         I S       CC           S    .
              .                C          IS         C            S   .
 A            .               C           SS          C           SS  .
 X        0.0 +--S-----------CC-----------S-----------CC-----------S--+
 I            .  SS         CC           SS            CC             .
 S            .   S         C            SI             C             .
              .    S       CC           S I             CC            .
              .    SS      C           SS I              C            .
         -0.4 +     S     C            S  I               C           +
              .      S   CC           S   I               CC          .
              .      SS CC           SS   I                CC         .
              .       SSC           SS    I                 C         .
              .        MS          SS     I                  C        .
         -0.8 +       C SS        SS      I                   C       +
              .     CC   SS      SS       I                    CC     .
              .  CCCC     SSSSSSSS        I                     CCCC  .
              .  C                        I                        C  .
              .                           I                           .
         -1.2 ::::+:::::::::::::::+:::::::::::::::+:::::::::::::::+::::
                 -3              -1               1               3

                                      X AXIS

TREEP/DTREEP (Single/Double precision)
Print a binary tree.

Usage
CALL TREEP (NODE, ICLSON, ICRSON, IMETH, CLEVEL, IROOT,
            NSCALE, NFILL, SCALE, NODENM)

Arguments

NODE — Initial number of observations or nodes.   (Input)
NODE must be greater than 2.

ICLSON — Vector of length NODE − 1 containing the left son nodes.   (Input)
Node number NODE + K has left son given by ICLSON(K) for K = 1, …,
NODE − 1.
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ICRSON — Vector of length NODE − 1 containing the right son nodes.   (Input)
Node number NODE + K has right son given by ICRSON(K) for K = 1, …,
NODE − 1.

IMETH — Method to be used for printing the binary tree.   (Input)

IMETH Method
1 Horizontal tree
2 Horizontal I-tree
3 Vertical tree

CLEVEL — Vector of length NODE − 1 containing the level used in merging or
splitting the son nodes.   (Input)
CLEVEL(K) specifies the scale to be used on the vertical (IMETH = 1 or 2) or
horizontal (IMETH = 3) axis for node NODE + K, for K = 1, 2, …, NODE − 1.

IROOT — Subtree specification.   (Input)
IROOT specifies the root node of the subtree to be printed. If
IROOT = 2 * NODE − 1 (or zero for the default), the entire tree is printed. IROOT

must be in the range NODE + 1 to 2 * NODE − 1.

NSCALE — Number of horizontal slices of tree.   (Input)
NSCALE must be positive.

NFILL — The number of filler lines printed between horizontal or vertical node
lines.   (Input)
NFILL = 1 is usually sufficient. NFILL must be nonnegative.

SCALE — Vector of length two giving the interval on the CLEVEL axis which
should be used to plot the tree.   (Input)
SCALE(1) is the location for printing the terminal nodes. The root node is printed
at SCALE(2).

NODENM — CHARACTER*(*) vector of length NODE containing the terminal
node labels.   (Input)
If terminal node labels are to be 1, 2, 3, …, then NODENM(1) should be
“DEFAULT” and the remaining elements of NODENM are not used. The length of
each label is M, where M is determined by the user.

Comments

1. Automatic workspace usage is

TREEP 5 * IROOT + 2 units, or
DTREEP 6 * IROOT + 3 units.

Workspace may be explicitly provided, if desired, by use of
T2EEP/DT2EEP. The reference is

CALL T2EEP (NODE, ICLSON, ICRSON, IMETH, CLEVEL,
            IROOT, NSCALE, NFILL, SCALE, NODENM,
            IDTREE, ISTREE, IOTREE, INTREE, TLTREE)

The additional arguments are as follows:
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IDTREE — Work vector of length IROOT. IDTREE is used to store the
distance of each node from the vertical axis in vertical tree.

ISTREE — Work vector of length IROOT used to store all the nodes.
IROOT is the first element of the array.

IOTREE — Work vector of length IROOT + 1 used to store the index of
each node as TLTREE is sorted.

INTREE — Work vector of length IROOT.

TLTREE — Work vector of length IROOT + 1 used to store the level of
each node in descending order in a vertical tree. It is used to store the
distance of each node from the top of the horizontal line in ascending
order in a horizontal tree.

2. Printing starts on a new page with default page width 78. The user may
change it by calling the routine PGOPT (page 1263) in advance.

Algorithm

Routine TREEP prints a binary tree which may represent results of hierarchical
clustering algorithm such as the routine CLINK.

Let M = NODE indicate the number of nodes. A binary tree is composed of M
terminal nodes and M − 1 nonterminal nodes uniquely numbered 1 to M and M +
1 to M + (M − 1), respectively. Each nonterminal node joins together two son
nodes which may or may not be terminal. Nonterminal nodes M + K are printed
on the vertical scale interval [S1, S2] at the level given in C., for K = 1, 2, …, M −
1, where S1 = SCALE(1), S2 = SCALE(2), and C. = CLEVEL(K).

Example
      INTEGER    NODE
      PARAMETER  (NODE=5)
C
      INTEGER    ICLSON(NODE-1), ICRSON(NODE-1), IMETH, IROOT, NFILL,
     &           NOUT, NSCALE
      REAL       CLEVEL(NODE-1), SCALE(2)
      CHARACTER  NODENM(NODE)*7
      EXTERNAL   PGOPT, TREEP, UMACH
C
      DATA ICLSON/5, 6, 4, 7/
      DATA ICRSON/3, 1, 2, 8/
      DATA NODENM/’DEFAULT’, ’ ’, ’ ’, ’ ’, ’ ’/
      DATA CLEVEL/1., 2., 3., 4./
      DATA SCALE/0., 5./
C                                 Set page width
      CALL PGOPT (-1, 70)
      IROOT  = 0
      NSCALE = 1
      NFILL  = 1
C                                 Horizontal tree
      IMETH = 1
      CALL TREEP (NODE, ICLSON, ICRSON, IMETH, CLEVEL, IROOT, NSCALE,
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     &            NFILL, SCALE, NODENM)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99999)
99999 FORMAT (1X, //////)
C                                 Horizontal I-tree
      IMETH = 2
      CALL TREEP (NODE, ICLSON, ICRSON, IMETH, CLEVEL, IROOT, NSCALE,
     &            NFILL, SCALE, NODENM)
C
      END

Output
Similarity range from   0.   to    5.000000
    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
   5*************
                *
                6*************
                *            *
   3*************            *
                             *
                             7**************************
                             *                         *
   1**************************                         *
                                                       *
                                                       9**************
                                                       *
   4***************************************            *
                                          *            *
                                          8*************
                                          *
   2***************************************
    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Similarity range from   0.   to    5.000000
    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
   5************6************7*************************9**************
                *            *                         *
   3*************            *                         *
                             *                         *
   1**************************                         *
                                                       *
   4**************************************8*************
                                          *
   2***************************************
    ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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Chapter 17: Probability Distribution
Functions and Inverses

Routines
17.1. Discrete Random Variables: Distribution Functions and Probability

Functions
Binomial distribution function ................................................ BINDF 1108
Binomial probability ...............................................................BINPR 1110
Hypergeometric distribution function....................................HYPDF 1111
Hypergeometric probability ..................................................HYPPR 1113
Poisson distribution function .................................................POIDF 1114
Poisson probability ................................................................POIPR 1115

17.2. Continuous Random Variables: Distribution Functions and Their
Inverses
Kolmogorov-Smirnov one-sided
statistic distribution function ...............................................AKS1DF 1117
Kolmogorov-Smirnov two-sided
statistic distribution function ...............................................AKS2DF 1120
Normal (Gaussian) distribution function............................ANORDF 1122
Inverse of the normal distribution function .........................ANORIN 1124
Beta distribution function...................................................... BETDF 1125
Inverse of the beta distribution function ................................ BETIN 1127
Bivariate normal distribution function .................................. BNRDF 1128
Chi-squared distribution function ..........................................CHIDF 1129
Inverse of the chi-squared distribution function ..................... CHIIN 1132
Noncentral chi-squared distribution function....................... CSNDF 1133
Inverse of the noncentral chi-squared
distribution function ...............................................................CSNIN 1136
F distribution function................................................................FDF 1137
Inverse of the F distribution function .......................................... FIN 1139
Gamma distribution function ...............................................GAMDF 1140
Inverse of the gamma distribution function .......................... GAMIN 1142
Student’s t distribution function .................................................TDF 1143
Inverse of the Student’s t distribution function ........................... TIN 1145
Noncentral Student’s t distribution function............................ TNDF 1146
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Inverse of the noncentral Student’s t distribution function.......TNIN 1149

17.3. General Continuous Random Variables
Distribution function given ordinates of density ..................... GCDF 1150
Inverse of distribution function given ordinates of density...... GCIN 1152
Inverse of distribution function given subprogram................ GFNIN 1155

Usage Notes

Comments

Definitions and discussions of the terms basic to this chapter can be found in
Johnson and Kotz (1969, 1970a, 1970b). These are also good references for the
specific distributions.

In order to keep the calling sequences simple, whenever possible, the
subprograms described in this chapter are written for standard forms of statistical
distributions. Hence, the number of parameters for any given distribution may be
fewer than the number often associated with the distribution. For example, while
a gamma distribution is often characterized by two parameters (or even a third,
“location”), there is only one parameter that is necessary, the “shape”. The
“scale” parameter can be used to scale the variable to the standard gamma
distribution. Also, the functions relating to the normal distribution, ANORDF (page
1122) and ANORIN (page 1124), are for a normal distribution with mean equal to
zero and variance equal to one. For other means and variances, it is very easy for
the user to standardize the variables by subtracting the mean and dividing by the
square root of the variance.

The distribution function for the (real, single-valued) random variable X is the
function F defined for all real x by

F(x) = Prob(X ≤ x)

where Prob(⋅) denotes the probability of an event. The distribution function is
often called the cumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is 0 for
values less than the left endpoint and 1 for values greater than the right endpoint.
The subprograms described in this chapter return the correct values for the
distribution functions when values outside of the range of the random variable are
input, but warning error conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random
variable takes on specific values is called the probability function, defined by

p(x) = Prob(X = x)

The “PR” routines described in this chapter evaluate probability functions.



IMSL STAT/LIBRARY Chapter 17: Probability Distribution Functions and Inverses • 1105

The CDF for a discrete random variable is

F x p k
A

( ) ( )= ∑

where A is the set such that k ≤ x. The “DF” routines in this chapter evaluate
cumulative distribution functions. Since the distribution function is a step
function, its inverse does not exist uniquely.

Figure 17-1   Discrete Random Variable

In the plot above, a routine like BINPR (page 1110) in this chapter evaluates the
individual probability, given X. A routine like BINDF (page 1108) would evaluate
the sum of the probabilities up to and including the probability at X.

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not
be useful because the probability of any given point is 0. For such distributions,
the useful analog is the probability density function (PDF). The integral of the
PDF is the probability over the interval, if the continuous random variable X has
PDF f, then

Prob(a X b f x dxa
b< ≤ = I) ( )

The relationship between the CDF and the PDF is
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F x f t dtx( ) ( )= I −∞

as shown in Figure 17-2.

Figure 17-2   Probability Density Function

The “DF” routines described in this chapter evaluate cumulative distribution
functions.

For (absolutely) continuous distributions, the value of F(x) uniquely determines x
within the support of the distribution. The “IN” routines described in this chapter
compute the inverses of the distribution functions, that is, given F(x) (called “P”
for “probability”), a routine such as BETIN (page 1127) computes x. The inverses
are defined only over the open interval (0,1).
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Figure 17-3   Cumulative Probability Distribution Function

There are three routines described in this chapter that deal with general
continuous distribution functions. The routine GCDF (page 1150) computes a
distribution function using values of the density function, and the routine GCIN
(page 1152) computes the inverse. These two routines may be useful when the
user has an estimate of a probability density, as perhaps computed by the routine
DESPL (page 1040) or DESKN (page 1044), or computed from a frequency
polygon. The routine GFNIN (page 1155) computes the inverse of a distribution
function that is specified as a FORTRAN function.

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function
or is to be input to an inverse function, it is often impossible to achieve good
accuracy because of the nature of the representation of numeric values. In this
case, it may be better to work with the complementary distribution function (one
minus the distribution function). If the distribution is symmetric about some point
(as the normal distribution, for example) or is reflective about some point (as the
beta distribution, for example), the complementary distribution function has a
simple relationship with the distribution function. For example, to evaluate the
standard normal distribution at 4.0, using ANORIN (page 1124) directly, the result
to six places is 0.999968. Only two of those digits are really useful, however. A
more useful result may be 1.000000 minus this value, which can be
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obtained to six significant figures as 3.16713E-05 by evaluating ANORIN at
 −4.0. For the normal distribution, the two values are related by
Φ(x) = 1 − Φ(−x), where Φ(⋅) is the normal distribution function. Another
example is the beta distribution with parameters 2 and 10. This distribution is
skewed to the right, so evaluating BETDF (page 1125) at 0.7, we obtain 0.999953.
A more precise result is obtained by evaluating BETDF with parameters 10 and 2
at 0.3. This yields 4.72392E-5. (In both of these examples, it is wise not to trust
the last digit.)

Many of the algorithms used by routines in this chapter are discussed by
Abramowitz and Stegun (1964). The algorithms make use of various expansions
and recursive relationships and often use different methods in different regions.

Cumulative distribution functions are defined for all real arguments, however, if
the input to one of the distribution functions in this chapter is outside the range of
the random variable, an error of Type 1 is issued, and the output is set to zero or
one, as appropriate. A Type 1 error is of lowest severity, a “note”, and, by
default, no printing or stopping of the program occurs. The other common errors
that occur in the routines of this chapter are Type 2, “alert”, for a function value
being set to zero due to underflow, Type 3, “warning”, for considerable loss of
accuracy in the result returned, and Type 5, “terminal”, for incorrect and/or
inconsistent input, complete loss of accuracy in the result returned, or inability to
represent the result (because of overflow). When a Type 5 error occurs, the result
is set to NaN (not a number, also used as a missing value code, obtained by
routine AMACH(6), page 1334). (See the section “User Errors” in the Reference
Material.)

BINDF/DBINDF (Single/Double precision)
Evaluate the binomial distribution function.

Usage
BINDF(K, N, P)

Arguments

K — Argument for which the binomial distribution function is to be evaluated.
(Input)

N — Number of Bernoulli trials.   (Input)

P — Probability of success on each trial.   (Input)

BINDF — Function value, the probability that a binomial random variable takes
a value less than or equal to K.   (Output)
BINDF is the probability that K or fewer successes occur in N independent
Bernoulli trials, each of which has a P probability of success.
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Comments

Informational errors
Type Code
   1    3 The input argument, K, is less than zero.
   1    4 The input argument, K, is greater than the number of Bernoulli

trials, N.

Algorithm

Function BINDF evaluates the distribution function of a binomial random variable
with parameters n and p. It does this by summing probabilities of the random
variable taking on the specific values in its range. These probabilities are
computed by the recursive relationship

Pr( = Pr(X j
n j p

j p
X j)

( )

( )
)= + −

−
= −1

1
1

To avoid the possibility of underflow, the probabilities are computed forward
from 0, if k is not greater than n times p, and are computed backward from n,
otherwise. The smallest positive machine number, ε, is used as the starting value

for summing the probabilities, which are rescaled by (1 − p)Qε if forward

computation is performed and by pQε if backward computation is done. For the
special case of p = 0, BINDF is set to 1; and for the case p = 1, BINDF is set to 1 if
k = n and to 0 otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. In this
example, we find the probability that X is less than or equal to 3.

      INTEGER    K, N, NOUT
      REAL       BINDF, P, PR
      EXTERNAL   BINDF, UMACH
C
      CALL UMACH (2, NOUT)
      K  = 3
      N  = 5
      P  = 0.95
      PR = BINDF(K,N,P)
      WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is less than or equal to 3 is ’
     &       , F6.4)
      END

Output
The probability that X is less than or equal to 3 is 0.0226
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BINPR/DBINPR (Single/Double precision)
Evaluate the binomial probability function.

Usage
BINPR(K, N, P)

Arguments

K — Argument for which the binomial probability function is to be evaluated.
(Input)

N — Number of Bernoulli trials.   (Input)

P — Probability of success on each trial.   (Input)

BINPR   Function value, the probability that a binomial random variable takes a
value equal to K.   (Output)

Comments

Informational errors
Type Code
   1    3 The input argument, K, is less than zero.
   1    4 The input argument, K, is greater than the number of Bernoulli

trials, N.

Algorithm

The function BINPR evaluates the probability that a binomial random variable
with parameters n and p takes on the value k. It does this by computing
probabilities of the random variable taking on the values in its range less than (or
the values greater than) k. These probabilities are computed by the recursive
relationship

Pr( Pr(X j
n j p

j p
X j= = + −

−
= −)

( )

( )
)

1

1
1

To avoid the possibility of underflow, the probabilities are computed forward
from 0, if k is not greater than n times p, and are computed backward from n,
otherwise. The smallest positive machine number, ε, is used as the starting value

for computing the probabilities, which are rescaled by (1 − p)Qε if forward

computation is performed and by pQε if backward computation is done.

For the special case of p = 0, BINPR is set to 0 if k is greater than 0 and to 1
otherwise; and for the case p = 1, BINPR is set to 0 if k is less than n and to 1
otherwise.
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Figure 17-4   Binomial Probability Function

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. In this
example, we find the probability that X is equal to 3.

      INTEGER    K, N, NOUT
      REAL       BINPR, P, PR
      EXTERNAL   BINPR, UMACH
C
      CALL UMACH (2, NOUT)
      K  = 3
      N  = 5
      P  = 0.95
      PR = BINPR(K,N,P)
      WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is equal to 3 is ’, F6.4)
      END

Output
The probability that X is equal to 3 is 0.0214

HYPDF/DHYPDF (Single/Double precision)
Evaluate the hypergeometric distribution function.
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Usage
HYPDF(K, N, M, L)

Arguments

K — Argument for which the hypergeometric distribution function is to be
evaluated.   (Input)

N — Sample size.   (Input)
N must be greater than zero and greater than or equal to K.

M — Number of defectives in the lot.   (Input)

L — Lot size.   (Input)
L must be greater than or equal to N and M.

HYPDF — Function value, the probability that a hypergeometric random
variable takes a value less than or equal to K.   (Output)
HYPDF is the probability that K or fewer defectives occur in a sample of size N

drawn from a lot of size L that contains M defectives.

Comments

Informational errors
Type Code
   1    5 The input argument, K, is less than zero.
   1    6 The input argument, K, is greater than the sample size.

Algorithm

The function HYPDF evaluates the distribution function of a hypergeometric
random variable with parameters n, l, and m. The hypergeometric random
variable X can be thought of as the number of items of a given type in a random
sample of size n that is drawn without replacement from a population of size l
containing m items of this type. The probability function is

Pr( for min(X j j i i i n m
j
m

n j
l m

n
l

= = = + +
−
−

) , , , , )
3 83 8

3 8
1 2K

where i = max(0, n − l + m).

If k is greater than or equal to i and less than or equal to min(n, m), HYPDF sums
the terms in this expression for j going from i up to k. Otherwise, HYPDF returns 0
or 1, as appropriate. So, as to avoid rounding in the accumulation, HYPDF

performs the summation differently depending on whether or not k is greater than
the mode of the distribution, which is the greatest integer less than or equal to
(m + 1)(n + 1)/(l + 2).
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Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and
m = 70. In this example, we evaluate the distribution function at 7.

      INTEGER    K, L, M, N, NOUT
      REAL       DF, HYPDF
      EXTERNAL   HYPDF, UMACH
C
      CALL UMACH (2, NOUT)
      K  = 7
      N  = 100
      L  = 1000
      M  = 70
      DF = HYPDF(K,N,M,L)
      WRITE (NOUT,99999) DF
99999 FORMAT (’ The probability that X is less than or equal to 7 is ’
     &       , F6.4)
      END

Output
The probability that X is less than or equal to 7 is 0.5995

HYPPR/DHYPPR (Single/Double precision)
Evaluate the hypergeometric probability function.

Usage
HYPPR(K, N, M, L)

Arguments

K — Argument for which the hypergeometric probability function is to be
evaluated.   (Input)

N — Sample size.   (Input)
N must be greater than zero and greater than or equal to K.

M — Number of defectives in the lot.   (Input)

L — Lot size.   (Input)
L must be greater than or equal to N and M.

HYPPR — Function value, the probability that a hypergeometric random variable
takes a value equal to K.   (Output)
HYPPR is the probability that exactly K defectives occur in a sample of size N

drawn from a lot of size L that contains M defectives.

Comments

Informational errors
Type Code
   1    5 The input argument, K, is less than zero.
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   1    6 The input argument, K, is greater than the sample size.

Algorithm

The function HYPPR evaluates the probability function of a hypergeometric
random variable with parameters n, l, and m. The hypergeometric random
variable X can be thought of as the number of items of a given type in a random
sample of size n that is drawn without replacement from a population of size l
containing m items of this type. The probability function is

Pr( for min(X k k i i i n m
k
m

n k
l m

n
l

= = = + +
−
−

) , , , , )
3 83 8

3 8
1 2K

where i = max(0, n − l + m). HYPPR evaluates the expression using log gamma
functions.

Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and
m = 70. In this example, we evaluate the probability function at 7.

      INTEGER    K, L, M, N, NOUT
      REAL       HYPPR, PR
      EXTERNAL   HYPPR, UMACH
C
      CALL UMACH (2, NOUT)
      K  = 7
      N  = 100
      L  = 1000
      M  = 70
      PR = HYPPR(K,N,M,L)
      WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is equal to 7 is ’, F6.4)
      END

Output
The probability that X is equal to 7 is 0.1628

POIDF/DPOIDF (Single/Double precision)
Evaluate the Poisson distribution function.

Usage
POIDF(K, THETA)

Arguments

K — Argument for which the Poisson distribution function is to be evaluated.
(Input)
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THETA — Mean of the Poisson distribution.   (Input)
THETA must be positive.

POIDF — Function value, the probability that a Poisson random variable takes a
value less than or equal to K.   (Output)

Comments

Informational error
Type Code
   1    1 The input argument, K, is less than zero.

Algorithm

The function POIDF evaluates the distribution function of a Poisson random
variable with parameter THETA. THETA, which is the mean of the Poisson random
variable, must be positive. The probability function (with θ = THETA) is

f(x) = e-q θ[/x!, for x = 0, 1, 2,…

The individual terms are calculated from the tails of the distribution to the mode
of the distribution and summed. POIDF uses the recursive relationship

f(x + 1) = f(x)θ/(x + 1), for x = 0, 1, 2, …k − 1,

with f(0) = e-q.

Example

Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate
the distribution function at 7.

      INTEGER    K, NOUT
      REAL       DF, POIDF, THETA
      EXTERNAL   POIDF, UMACH
C
      CALL UMACH (2, NOUT)
      K     = 7
      THETA = 10.0
      DF    = POIDF(K,THETA)
      WRITE (NOUT,99999) DF
99999 FORMAT (’ The probability that X is less than or equal to ’,
     &       ’7 is ’, F6.4)
      END

Output
The probability that X is less than or equal to 7 is 0.2202

POIPR/DPOIPR (Single/Double precision)
Evaluate the Poisson probability function.
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Usage
POIPR(K, THETA)

Arguments

K — Argument for which the Poisson distribution function is to be evaluated.
(Input)

THETA — Mean of the Poisson distribution.   (Input)
THETA must be positive.

POIPR — Function value, the probability that a Poisson random variable takes a
value equal to K.   (Output)

Comments

Informational error
Type Code
   1    1 The input argument, K, is less than zero.

Algorithm

The function POIPR evaluates the probability function of a Poisson random
variable with parameter THETA. THETA, which is the mean of the Poisson random
variable, must be positive. The probability function (with θ = THETA) is

f(x) = e-q θN/k!, for k = 0, 1, 2,…

POIPR evaluates this function directly, taking logarithms and using the log
gamma function.
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Figure 17-5   Poisson Probability Function

Example

Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate
the probability function at 7.

      INTEGER    K, NOUT
      REAL       POIPR, PR, THETA
      EXTERNAL   POIPR, UMACH
C
      CALL UMACH (2, NOUT)
      K     = 7
      THETA = 10.0
      PR    = POIPR(K,THETA)
      WRITE (NOUT,99999) PR
99999 FORMAT (’ The probability that X is equal to 7 is ’, F6.4)
      END

Output
The probability that X is equal to 7 is 0.0901

AKS1DF/DKS1DF (Single/Double precision)
Evaluate the distribution function of the one-sided Kolmogorov-Smirnov

goodness of fit D+ or D- test statistic based on continuous data for one sample.
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Usage
AKS1DF(NOBS, D)

Arguments

NOBS — The total number of observations in the sample.   (Input)

D — The D+ or D-  test statistic.   (Input)
D is the maximum positive difference of the empirical cumulative distribution
function (CDF) minus the hypothetical CDF or the maximum positive difference
of the hypothetical CDF minus the empirical CDF.

AKS1DF — The probability of a smaller D.   (Output)

Comments

1. Automatic workspace usage is

AKS1DF 3 * (NOBS + 1) units, or
DKS1DF 6 * (NOBS + 1) units.

Workspace may be explicitly provided, if desired, by use of
AK21DF/DK21DF. The reference is

AK2DF(NOBS, D, WK)

The additional argument is

WK — Work vector of length 3 * NOBS + 3 if NOBS ≤ 80. WK is not used
if NOBS is greater than 80.

2. Informational errors
Type Code
   1     2  Since the D test statistic is less than zero, the

distribution function is zero at D.
   1    3 Since the D test statistic is greater than one, the

distribution function is one at D.

3. If NOBS ≤ 80, then exact one-sided probabilities are computed. In this

case, on the order of NOBS2 operations are required. For NOBS > 80,
approximate one-sided probabilities are computed. These approximate
probabilities require very few computations.

4. An approximate two-sided probability for the D = max (D+, D-) statistic
can be computed as twice the AKS1DF probability for D(minus one, if the
probability from AKS1DF is greater than 0.5).

Algorithm

Routine AKS1DF computes the cumulative distribution function (CDF) for the

one-sided Kolmogorov-Smirnov one-sample D+ or D- statistic when the
theoretical CDF is strictly continuous. Let F(x) denote the theoretical
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distribution function, and let SQ(x) denote the empirical distribution function

obtained from a sample of size NOBS. Then, the D+ statistic is computed as

D
x

F x S xn
+ = −sup[ ( ) ( )]

while the one-sided D- statistic is computed as

D
x

S x F xn
− = −sup[ ( ) ( )]

Exact probabilities are computed according to a method given by Conover (1980,
page 350) for sample sizes of 80 or less. For sample sizes greater than 80,
Smirnov’s asymptotic result is used, that is, the value of the CDF is taken as

1 − exp(−2nd2), where d is D+ or D- (Kendall and Stuart, 1979, page 482). This
asymptotic expression is conservative (the value returned by AKS1DF is smaller
than the exact value, when the sample size exceeds 80).

Programming Notes

Routine AKS1DF requires on the order of NOBS2 operations to compute the exact
probabilities, where an operation consists of taking ten or so logarithms. Because
so much computation is occurring within each “operation,” AKS1DF is much
slower than its two-sample counterpart, function AKS2DF (page 1120).

Example

In this example, the exact one-sided probabilities for the tabled values of D+ or

D-, given, for example, in Conover (1980, page 462), are computed. Tabled
values at the 10% level of significance are used as input to AKS1DF for sample
sizes of 5 to 50 in increments of 5 (the last two tabled values are obtained using
the asymptotic critical values of

1 07. / NOBS
The resulting probabilities should all be close to 0.90.

      INTEGER    I, NOBS, NOUT
      REAL       AKS1DF, D(10)
      EXTERNAL   AKS1DF, UMACH
C
      DATA D/0.447, 0.323, 0.266, 0.232, 0.208, 0.190, 0.177, 0.165,
     &     0.160, 0.151/
C
      CALL UMACH (2, NOUT)
C
      DO 10  I=1, 10
         NOBS = 5*I
C
         WRITE (NOUT,99999) D(I), NOBS, AKS1DF(NOBS,D(I))
C
99999    FORMAT (’ One-sided Probability for D = ’, F8.3, ’ with NOBS ’



1120 • Chapter 17: Probability Distribution Functions and Inverses IMSL STAT/LIBRARY

     &          , ’= ’, I2, ’ is ’, F8.4)
   10 CONTINUE
      END

Output
One-sided Probability for D =    0.447 with NOBS =  5 is   0.9000
One-sided Probability for D =    0.323 with NOBS = 10 is   0.9006
One-sided Probability for D =    0.266 with NOBS = 15 is   0.9002
One-sided Probability for D =    0.232 with NOBS = 20 is   0.9009
One-sided Probability for D =    0.208 with NOBS = 25 is   0.9002
One-sided Probability for D =    0.190 with NOBS = 30 is   0.8992
One-sided Probability for D =    0.177 with NOBS = 35 is   0.9011
One-sided Probability for D =    0.165 with NOBS = 40 is   0.8987
One-sided Probability for D =    0.160 with NOBS = 45 is   0.9105
One-sided Probability for D =    0.151 with NOBS = 50 is   0.9077

AKS2DF/DKS2DF (Single/Double precision)
Evaluate the distribution function of the Kolmogorov-Smirnov goodness of fit D
test statistic based on continuous data for two samples.

Usage
AKS2DF(NOBSX, NOBSY, D)

Arguments

NOBSX — The total number of observations in the first sample.   (Input)

NOBSY — The total number of observations in the second sample.   (Input)

D — The D test statistic.   (Input)
D is the maximum absolute difference between empirical cumulative distribution
functions (CDFs) of the two samples.

AKS2DF — The probability of a smaller D.   (Output)

Comments

1. Automatic workspace usage is

AKS2DF max(NOBSX , NOBSY) + 1 units, or
DKS2DF 2 * max(NOBSX , NOBSY) + 1 units.

Workspace may be explicitly provided, if desired, by use of
AK22DF/DK22DF. The reference is

AK22DF(NOBSX, NOBSY, D, WK)

The additional argument is

WK — Work vector of length max(NOBSX, NOBSY) + 1.

2. Informational errors
Type Code
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   1    2 Since the D test statistic is less than zero, then the
distribution function is zero at D.

   1    3 Since the D test statistic is greater than one, then the
distribution function is one at D.

Algorithm

Function AKS2DF computes the cumulative distribution function (CDF) for the
two-sided Kolmogorov-Smirnov two-sample D statistic when the theoretical CDF
is strictly continuous. Exact probabilities are computed according to a method
given by Kim and Jennrich (1973). Approximate asymptotic probabilities are
computed according to methods also given in this reference.

Let FQ(x) and GP(x) denote the empirical distribution functions for the two
samples, based on n = NOBSX and m = NOBSY observations. Then, the D statistic
is computed as

D F x G x
x n m= −sup ( ) ( )

Programming Notes

Function AKS2DF requires on the order of NOBSX * NOBSY operations to compute
the exact probabilities, where an operation consists of an addition and a
multiplication. For NOBSX * NOBSY less than 10000, the exact probability is
computed. If this is not the case, then the Smirnov approximation discussed by
Kim and Jennrich (1973) is used if the minimum of NOBSX and NOBSY is greater
than ten percent of the maximum of NOBSX and NOBSY, or if the minimum is
greater than 80. Otherwise, the Kolmogorov approximation discussed by Kim and
Jennrich (1973) is used.

Example

Function AKS2DF is used to compute the probability of a smaller D statistic for a
variety of sample sizes using values close to the 0.95 probability value.

      INTEGER    I, NOBSX(10), NOBSY(10), NOUT
      REAL       AKS2DF, D(10)
      EXTERNAL   AKS2DF, UMACH
C
      DATA NOBSX/5, 20, 40, 70, 110, 200, 200, 200, 100, 100/
      DATA NOBSY/10, 10, 10, 10, 10, 20, 40, 60, 80, 100/
      DATA D/0.7, 0.55, 0.475, 0.4429, 0.4029, 0.2861, 0.2113, 0.1796,
     &     0.18, 0.18/
C
      CALL UMACH (2, NOUT)
C
      DO 10  I=1, 10
C
         WRITE (NOUT,99999) D(I), NOBSX(I), NOBSY(I),
     &                     AKS2DF(NOBSX(I),NOBSY(I),D(I))
C
99999    FORMAT (’ Probability for D = ’, F5.3, ’ with NOBSX = ’, I3,



1122 • Chapter 17: Probability Distribution Functions and Inverses IMSL STAT/LIBRARY

     &          ’ and NOBSY = ’, I3, ’ is ’, F9.6, ’.’)
   10 CONTINUE
      END

Output
Probability for D = 0.700 with NOBSX =   5 and NOBSY =  10 is  0.980686.
Probability for D = 0.550 with NOBSX =  20 and NOBSY =  10 is  0.987553.
Probability for D = 0.475 with NOBSX =  40 and NOBSY =  10 is  0.972423.
Probability for D = 0.443 with NOBSX =  70 and NOBSY =  10 is  0.961646.
Probability for D = 0.403 with NOBSX = 110 and NOBSY =  10 is  0.928667.
Probability for D = 0.286 with NOBSX = 200 and NOBSY =  20 is  0.921126.
Probability for D = 0.211 with NOBSX = 200 and NOBSY =  40 is  0.917110.
Probability for D = 0.180 with NOBSX = 200 and NOBSY =  60 is  0.914520.
Probability for D = 0.180 with NOBSX = 100 and NOBSY =  80 is  0.908185.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 100 is  0.946098.

ANORDF/DNORDF (Single/Double precision)
Evaluate the standard normal (Gaussian) distribution function.

Usage
ANORDF(X)

Arguments

X — Argument for which the normal distribution function is to be evaluated.
(Input)

ANORDF — Function value, the probability that a normal random variable takes
a value less than or equal to X.   (Output)

Algorithm

Function ANORDF evaluates the distribution function, Φ, of a standard normal
(Gaussian) random variable, that is,

Φ( ) /x e dtx t= I −∞
−1

2

2 2

π
The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x.

The standard normal distribution (for which ANORDF is the distribution function)
has mean of 0 and variance of 1. The probability that a normal random variable

with mean and variance σ2 is less than y is given by ANORDF evaluated at (y − µ)/
σ.

Φ(x) is evaluated by use of the complementary error function, erfc. (See ERFC,
IMSL MATH/LIBRARY Special Functions). The relationship is:

Φ( )x x= −erfc( / 2.0) / 2
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Figure 17-6   Standard Normal Distribution Function

Example

Suppose X is a normal random variable with mean 100 and variance 225. In this
example, we find the probability that X is less than 90, and the probability that X
is between 105 and 110.

      INTEGER    NOUT
      REAL       ANORDF, P, X1, X2
      EXTERNAL   ANORDF, UMACH
C
      CALL UMACH (2, NOUT)
      X1 = (90.0-100.0)/15.0
      P  = ANORDF(X1)
      WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that X is less than 90 is ’, F6.4)
      X1 = (105.0-100.0)/15.0
      X2 = (110.0-100.0)/15.0
      P  = ANORDF(X2) - ANORDF(X1)
      WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is between 105 and 110 is ’,
     &       F6.4)
      END

Output
The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169
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ANORIN/DNORIN (Single/Double precision)
Evaluate the inverse of the standard normal (Gaussian) distribution function.

Usage
ANORIN(P)

Arguments

P — Probability for which the inverse of the normal distribution function is to be
evaluated.   (Input)
P must be in the open interval (0.0, 1.0).

ANORIN — Function value.   (Output)
The probability that a standard normal random variable takes a value less than or
equal to ANORIN is P.

Algorithm

Function ANORIN evaluates the inverse of the distribution function, Φ, of a

standard normal (Gaussian) random variable, that is, ANORIN(P) = Φ-1(p), where

Φ( ) /x e dtx t= I −∞
−1

2

2 2

π
The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x. The standard normal
distribution has a mean of 0 and a variance of 1.

Example

In this example, we compute the point such that the probability is 0.9 that a
standard normal random variable is less than or equal to this point.

      INTEGER    NOUT
      REAL       ANORIN, P, X
      EXTERNAL   ANORIN, UMACH
C
      CALL UMACH (2, NOUT)
      P = 0.9
      X = ANORIN(P)
      WRITE (NOUT,99999) X
99999 FORMAT (’ The 90th percentile of a standard normal is ’, F6.4)
      END

Output
The 90th percentile of a standard normal is 1.2816
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BETDF/DBETDF (Single/Double precision)
Evaluate the beta probability distribution function.

Usage
BETDF(X, PIN, QIN)

Arguments

X — Argument for which the beta distribution function is to be evaluated.
(Input)

PIN — First beta distribution parameter.   (Input)
PIN must be positive.

QIN — Second beta distribution parameter.   (Input)
QIN must be positive.

BETDF — Probability that a random variable from a beta distribution having
parameters PIN and QIN will be less than or equal to X.   (Output)

Comments

Informational errors
Type Code
   1    1  Since the input argument X is less than or equal to zero, the

distribution function is equal to zero at X.
   1    2 Since the input argument X is greater than or equal to one, the

distribution function is equal to one at X.

Algorithm

Function BETDF evaluates the distribution function of a beta random variable with
parameters PIN and QIN. This function is sometimes called the incomplete beta
ratio and, with p = PIN and q = QIN, is denoted by I[(p, q). It is given by

I p q
p q

p q
t t dtx o

x p q( , )
( ) ( )

( )
( )=

+
−I − −Γ Γ

Γ
1 11

where Γ(⋅) is the gamma function. The value of the distribution function I[(p, q) is
the probability that the random variable takes a value less than or equal to x.

The integral in the expression above is called the incomplete beta function and is
denoted by β[(p, q). The constant in the expression is the reciprocal of the beta
function (the incomplete function evaluated at one) and is denoted by
β(p, q).

Function BETDF uses the method of Bosten and Battiste (1974).



1126 • Chapter 17: Probability Distribution Functions and Inverses IMSL STAT/LIBRARY

Figure 17-7   Beta Distribution Function

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a
symmetric distribution.) In this example, we find the probability that X is less than
0.6 and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta
random variable, the probability that it is less than 0.5 is 0.5.)

      INTEGER    NOUT
      REAL       BETDF, P, PIN, QIN, X
      EXTERNAL   BETDF, UMACH
C
      CALL UMACH (2, NOUT)
      PIN = 12.0
      QIN = 12.0
      X   = 0.6
      P   = BETDF(X,PIN,QIN)
      WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that X is less than 0.6 is ’, F6.4)
      X = 0.5
      P = P - BETDF(X,PIN,QIN)
      WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is between 0.5 and 0.6 is ’,
     &       F6.4)
      END

Output
The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364
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BETIN/DBETIN (Single/Double precision)
Evaluate the inverse of the beta distribution function.

Usage
BETIN(P, PIN, QIN)

Arguments

P — Probability for which the inverse of the beta distribution function is to be
evaluated.   (Input)
P must be in the open interval (0.0, 1.0).

PIN — First beta distribution parameter.   (Input)
PIN must be positive.

QIN — Second beta distribution parameter.   (Input)
QIN must be positive.

BETIN — Function value.   (Output)
The probability that a beta random variable takes a value less than or equal to
BETIN is P.

Comments

Informational error
Type Code
   3    1 The value for the inverse Beta distribution could not be found

in 100 iterations. The best approximation is used.

Algorithm

The function BETIN evaluates the inverse distribution function of a beta random
variable with parameters PIN and QIN, that is, with P = P, p = PIN, and q = QIN,
it determines x (equal to BETIN(P, PIN, QIN)), such that

P
p q

p q
t t dto

x p q=
+

−I − −Γ Γ
Γ
( ) ( )

( )
( )1 11

where Γ(⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to x is P .

Example

Suppose X is a beta random variable with parameters 12 and 12. (X has a
symmetric distribution.) In this example, we find the value x0 such that the
probability that X ≤ x0 is 0.9.

      INTEGER    NOUT
      REAL       BETIN, P, PIN, QIN, X
      EXTERNAL   BETIN, UMACH
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C
      CALL UMACH (2, NOUT)
      PIN = 12.0
      QIN = 12.0
      P   = 0.9
      X   = BETIN(P,PIN,QIN)
      WRITE (NOUT,99999) X
99999 FORMAT (’ X is less than ’, F6.4, ’ with probability 0.9.’)
      END

Output
X is less than 0.6299 with probability 0.9.

BNRDF/DBNRDF (Single/Double precision)
Evaluate the bivariate normal distribution function.

Usage
BNRDF(X, Y, RHO)

Arguments

X — One argument for which the bivariate normal distribution function is to be
evaluated.   (Input)

Y — The other argument for which the bivariate normal distribution function is to
be evaluated.   (Input)

RHO — Correlation coefficient.   (Input)

BNRDF — Function value, the probability that a bivariate normal random
variable with correlation RHO takes a value less than or equal to X and less than or
equal to Y.   (Output)

Algorithm

Function BNRDF evaluates the distribution function F of a bivariate normal
distribution with means of zero, variances of one, and correlation of RHO; that is,
with ρ = RHO, and |ρ| < 1,

F x y
u uv v

du dvx y( , )
( )

=
−

I − − +
−

�
��

�
��I−∞ −∞

1

2 1

2

2 12

2 2

2π ρ

ρ
ρ

xp

To determine the probability that U ≤ u0 and V ≤ v0, where (U, V)7 is a bivariate

normal random variable with mean µ = (µ8, µ9)7 and variance-covariance matrix
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σ σ
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transform (U, V)7 to a vector with zero means and unit variances. The input to
BNRDF would be X = (u0 − µ8)/σ8, Y = (v0 − µ9)/σ9, and ρ = σ89/(σ8σ9).

Function BNRDF uses the method of Owen (1962, 1965). For |ρ| = 1, the
distribution function is computed based on the univariate statistic, Z = min(x, y),
and on the normal distribution function ANORDF (page 1122).

Example

Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and
variance-covariance matrix

1 0 0 9

0 9 1 0

. .

. .
�
��

�
��

In this example, we find the probability that X is less than −2.0 and Y is less than
0.0.

      INTEGER    NOUT
      REAL       BNRDF, P, RHO, X, Y
      EXTERNAL   BNRDF, UMACH
C
      CALL UMACH (2, NOUT)
      X   = -2.0
      Y   = 0.0
      RHO = 0.9
      P   = BNRDF(X,Y,RHO)
      WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is less than -2.0  and Y ’,
     &       ’is less than 0.0 is ’, F6.4)
      END

Output

The probability that X is less than −2.0 and Y is less than 0.0 is 0.0228

CHIDF/DCHIDF (Single/Double precision)
Evaluate the chi-squared distribution function.

Usage
CHIDF(CHSQ, DF)

Arguments

CHSQ — Argument for which the chi-squared distribution function is to be
evaluated.   (Input)
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DF — Number of degrees of freedom of the chi-squared distribution.   (Input)
DF must be greater than or equal to 0.5.

CHIDF — Function value, the probability that a chi-squared random variable
takes a value less than or equal to CHSQ.   (Output)

Comments

Informational errors
Type Code
   1    1 Since the input argument, CHSQ, is less than zero, the

distribution function is zero at CHSQ.
   2    3 The normal distribution is used for large degrees of freedom.

However, it has produced underflow. Therefore, the
probability, CHIDF, is set to zero.

Algorithm

Function CHIDF evaluates the distribution function, F, of a chi-squared random
variable with DF degrees of freedom, that is, with v = DF, and x = CHSQ,

F x
v

e t dtv o
x t v( )

( / )/
/ /= I − −1

2 22
2 2 1

Γ

where Γ(⋅) is the gamma function. The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal
to x.

For v > 65, CHIDF uses the Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.17) to the normal distribution, and routine ANORDF

(page 1122) is used to evaluate the normal distribution function.

For v ≤ 65, CHIDF uses series expansions to evaluate the distribution function. If
x < max (v/2, 26), CHIDF uses the series 6.5.29 in Abramowitz and Stegun
(1964), otherwise, it uses the asymptotic expansion 6.5.32 in Abramowitz and
Stegun.
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Figure 17-8   Chi-Squared Distribution Function

Example

Suppose X is a chi-squared random variable with 2 degrees of freedom. In this
example, we find the probability that X is less than 0.15 and the probability that X
is greater than 3.0.

      INTEGER    NOUT
      REAL       CHIDF, CHSQ, DF, P
      EXTERNAL   CHIDF, UMACH
C
      CALL UMACH (2, NOUT)
      DF   = 2.0
      CHSQ = 0.15
      P    = CHIDF(CHSQ,DF)
      WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that chi-squared with 2 df is less ’,
     &       ’than 0.15 is ’, F6.4)
      CHSQ = 3.0
      P    = 1.0 - CHIDF(CHSQ,DF)
      WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that chi-squared with 2 df is greater ’
     &       , ’than 3.0 is ’, F6.4)
      END

Output
The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231
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CHIIN/DCHIIN (Single/Double precision)
Evaluate the inverse of the chi-squared distribution function.

Usage
CHIIN(P, DF)

Arguments

P — Probability for which the inverse of the chi-squared distribution function is
to be evaluated.   (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the chi-squared distribution.   (Input)
DF must be greater than or equal to 0.5.

CHIIN — Function value.   (Output)
The probability that a chi-squared random variable takes a value less than or
equal to CHIIN is P.

Comments

Informational errors
Type Code
   4    1 Over 100 iterations have occurred without convergence.

Convergence is assumed.

Algorithm

Function CHIIN evaluates the inverse distribution function of a chi-squared
random variable with DF degrees of freedom, that is, with P = P and v = DF, it
determines x (equal to CHIIN(P, DF)), such that

P
v

e t dtv o
x t v= I − −1

2 22
2 2 1

/
/ /

( / )Γ

where Γ(⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to x is P.

For v < 40, CHIIN uses bisection (if v ≤ 2 or P > 0.98) or regula falsi to find the
point at which the chi-squared distribution function is equal to P. The distribution
function is evaluated using routine CHIDF (page 1129).

For 40 ≤ v < 100, a modified Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.18) to the normal distribution is used, and routine
ANORIN (page 1124) is used to evaluate the inverse of the normal distribution
function. For v ≥ 100, the ordinary Wilson-Hilferty approximation (Abramowitz
and Stegun 1964, equation 26.4.17) is used.
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Example

In this example, we find the 99-th percentage points of a chi-squared random
variable with 2 degrees of freedom and of one with 64 degrees of freedom.

      INTEGER    NOUT
      REAL       CHIIN, DF, P, X
      EXTERNAL   CHIIN, UMACH
C
      CALL UMACH (2, NOUT)
      P  = 0.99
      DF = 2.0
      X  = CHIIN(P,DF)
      WRITE (NOUT,99998) X
99998 FORMAT (’ The 99-th percentage point of chi-squared with  2 df ’
     &       , ’is ’, F7.3)
      DF = 64.0
      X  = CHIIN(P,DF)
      WRITE (NOUT,99999) X
99999 FORMAT (’ The 99-th percentage point of chi-squared with 64 df ’
     &       , ’is ’, F7.3)
      END

Output
The 99-th percentage point of chi-squared with  2 df is   9.210
The 99-th percentage point of chi-squared with 64 df is  93.217

CSNDF/DCSNDF (Single/Double precision)
Evaluate the noncentral chi-squared distribution function.

Usage
CSNDF(CHSQ, DF, ALAM)

Arguments

CHSQ — Argument for which the noncentral chi-squared distribution function is
to be evaluated.   (Input)

DF —Number of degrees of freedom of the noncentral chi-squared distribution.
(Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter.   (Input)
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

CSNDF — Function value, the probability that a noncentral chi-squared random
variable takes a value less than or equal to CHSQ.   (Output)

Comments

1. Informational errors
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Type Code
   1    1 Since the input argument, CHSQ, is less than or equal

to zero, the distribution function is zero at CHSQ.
   3    2 Convergence was not obtained. The best

approximation to the probability is returned.

2. This subroutine sums terms of an infinite series of central chi-squared
distribution functions weighted by Poisson terms. Summing terminates
when either the current term is less than 10 * AMACH(4) times the
current sum or when 1000 terms have been accumulated. In the latter
case, a warning error is issued.

Algorithm

Function CSNDF evaluates the distribution function of a noncentral chi-squared
random variable with DF degrees of freedom and noncentrality parameter ALAM,
that is, with v = DF, λ = ALAM, and x = CHSQ,

CSNDF(x e
i

t e dt
i

i

v i t

v i

x

v i) ( / )
!

/ ( )/ /

( )/ ( )
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∞ + − −
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2 20
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where Γ(⋅) is the gamma function. This is a series of central chi-squared
distribution functions with Poisson weights. The value of the distribution
function at the point x is the probability that the random variable takes a value
less than or equal to x.

The noncentral chi-squared random variable can be defined by the distribution
function above, or alternatively and equivalently, as the sum of squares of
independent normal random variables. If Yi have independent normal
distributions with means µi and variances equal to one and

X Yi
n

i= ∑ =1
2

then X has a noncentral chi-squared distribution with n degrees of freedom and
noncentrality parameter equal to

∑ =i
n

i1
2µ

With a noncentrality parameter of zero, the noncentral chi-squared distribution
is the same as the chi-squared distribution.

Function CSNDF determines the point at which the Poisson weight is greatest,
and then sums forward and backward from that point, terminating when the
additional terms are sufficiently small or when a maximum of 1000 terms have
been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun
(1964) is used to speed the evaluation of the central chi-squared distribution
functions.
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Figure 17-9   Noncentral Chi-squared Distribution Function

Example

In this example, CSNDF is used to compute the probability that a random variable
that follows the noncentral chi-squared distribution with noncentrality parameter
of 1 and with 2 degrees of freedom is less than or equal to 8.642.

      INTEGER    NOUT
      REAL       ALAM, CHSQ, CSNDF, DF, P
      EXTERNAL   CSNDF, UMACH
C
      CALL UMACH (2, NOUT)
      DF   = 2.0
      ALAM = 1.0
      CHSQ = 8.642
      P    = CSNDF(CHSQ,DF,ALAM)
      WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that a noncentral chi-squared random’,
     &       /, ’ variable with 2 df and noncentrality 1.0 is less’,
     &       /, ’ than 8.642 is ’, F5.3)
      END

Output
The probability that a noncentral chi-squared random
variable with 2 df and noncentrality 1.0 is less
than 8.642 is 0.950
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CSNIN/DCSNIN (Single/Double precision)
Evaluate the inverse of the noncentral chi-squared function.

Usage
CSNIN(P, DF, ALAM)

Arguments

P — Probability for which the inverse of the noncentral chi-squared distribution
function is to be evaluated.   (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the noncentral chi-squared distribution.
(Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter.   (Input)
ALAM must be nonnegative, and ALAM + DF must be less than or equal to 200,000.

CSNIN — Function value.   (Output)
The probability that a noncentral chi-squared random variable takes a value less
than or equal to CSNIN is P.

Comments

Informational error
Type Code
   4    1 Over 100 iterations have occurred without convergence.

Convergence is assumed.

Algorithm

Function CSNIN evaluates the inverse distribution function of a noncentral chi-
squared random variable with DF degrees of freedom and noncentrality parameter
ALAM; that is, with P = P, v = DF, and = λ = ALAM, it determines c0 (= CSNIN(P,
DF, ALAM)), such that

P
e
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x e
dx
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where Γ(⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to c0 is P .

Function CSNIN uses bisection and modified regula falsi to invert the distribution
function, which is evaluated using routine CSNDF (page 1133). See CSNDF for an
alternative definition of the noncentral chi-squared random variable in terms of
normal random variables.
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Example

In this example, we find the 95-th percentage point for a noncentral chi-squared
random variable with 2 degrees of freedom and noncentrality parameter 1.

      INTEGER    NOUT
      REAL       ALAM, CHSQ, CSNIN, DF, P
      EXTERNAL   CSNIN, UMACH
C
      CALL UMACH (2, NOUT)
      DF   = 2.0
      ALAM = 1.0
      P    = 0.95
      CHSQ = CSNIN(P,DF,ALAM)
      WRITE (NOUT,99999) CHSQ
C
99999 FORMAT (’ The 0.05 noncentral chi-squared critical value is ’,
     &       F6.3, ’.’)
C
      END

Output
The 0.05 noncentral chi-squared critical value is  8.642.

FDF/DFDF (Single/Double precision)
Evaluate the F distribution function.

Usage
FDF(F, DFN, DFD)

Arguments

F — Argument for which the F distribution function is to be evaluated.   (Input)

DFN — Numerator degrees of freedom.   (Input)
DFN must be positive.

DFD — Denominator degrees of freedom.   (Input)
DFD must be positive.

FDF — Function value, the probability that an F random variable takes a value
less than or equal to the input F.   (Output)

Comments

Informational error
Type Code
   1    3 Since the input argument F is not positive, the distribution

function is zero at F.
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Algorithm

Function FDF evaluates the distribution function of a Snedecor’s F random
variable with DFN numerator degrees of freedom and DFD denominator degrees of
freedom. The function is evaluated by making a transformation to a beta random
variable and then using the routine BETDF (page 1125). If X is an F variate with
v1 and v2 degrees of freedom and Y = v1X/(v2 + v1X), then Y is a beta variate with
parameters p = v1/2 and q = v2/2. The function FDF also uses a relationship
between F random variables that can be expressed as follows.

FDF(X, DFN, DFD) = 1.0 − FDF(1.0/X, DFD, DFN)

Figure 17-10   F Distribution Function

Example

In this example, we find the probability that an F random variable with one
numerator and one denominator degree of freedom is greater than 648.

      INTEGER    NOUT
      REAL       DFD, DFN, F, FDF, P
      EXTERNAL   FDF, UMACH
C
      CALL UMACH (2, NOUT)
      F   = 648.0
      DFN = 1.0
      DFD = 1.0
      P   = 1.0 - FDF(F,DFN,DFD)
      WRITE (NOUT,99999) P
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99999 FORMAT (’ The probability that an F(1,1) variate is greater ’,
     &       ’than 648 is ’, F6.4)
      END

Output
The probability that an F(1, 1) variate is greater than 648 is 0.0250

FIN/DFIN (Single/Double precision)
Evaluate the inverse of the F distribution function.

Usage
FIN(P, DFN, DFD)

Arguments

P — Probability for which the inverse of the F distribution function is to be
evaluated.   (Input)
P must be in the open interval (0.0, 1.0).

DFN — Numerator degrees of freedom.   (Input)
DFN must be positive.

DFD — Denominator degrees of freedom.   (Input)
DFD must be positive.

FIN — Function value.   (Output)
The probability that an F random variable takes a value less than or equal to FIN

is P.

Comments

Informational error
Type Code
   4    4 FIN is set to machine infinity since overflow would occur upon

modifying the inverse value for the F distribution with the
result obtained from the inverse beta distribution.

Algorithm

Function FIN evaluates the inverse distribution function of a Snedecor’s F
random variable with DFN numerator degrees of freedom and DFD denominator
degrees of freedom. The function is evaluated by making a transformation to a
beta random variable and then using the routine BETIN (page 1127). If X is an F
variate with v1 and v2 degrees of freedom and Y = v1X/(v2 + v1X), then Y is a beta
variate with parameters p = v1/2 and q = v2/2. If P ≤ 0.5, FIN uses this
relationship directly, otherwise, it also uses a relationship between F random
variables that can be expressed as follows, using routine FDF (page 1137), which
is the F cumulative distribution function:



1140 • Chapter 17: Probability Distribution Functions and Inverses IMSL STAT/LIBRARY

FDF(F, DFN, DFD) = 1.0 − FDF(1.0/F, DFD, DFN).

Example

In this example, we find the 99-th percentage point for an F random variable with
1 and 7 degrees of freedom.

      INTEGER    NOUT
      REAL       DFD, DFN, F, FIN, P
      EXTERNAL   FIN, UMACH
C
      CALL UMACH (2, NOUT)
      P   = 0.99
      DFN = 1.0
      DFD = 7.0
      F   = FIN(P,DFN,DFD)
      WRITE (NOUT,99999) F
99999 FORMAT (’ The F(1,7) 0.01 critical value is ’, F6.3)
      END

Output
The F(1, 7) 0.01 critical value is 12.246

GAMDF/DGAMDF (Single/Double precision)
Evaluate the gamma distribution function.

Usage
GAMDF(X, A)

Arguments

X — Argument for which the gamma distribution function is to be evaluated.
(Input)

A — The shape parameter of the gamma distribution.   (Input)
This parameter must be positive.

GAMDF — Function value, the probability that a gamma random variable takes a
value less than or equal to X.   (Output)

Comments

Informational error
Type Code
   1    2 Since the input argument X is less than zero, the distribution

function is set to zero.

Algorithm

Function GAMDF evaluates the distribution function, F, of a gamma random
variable with shape parameter a; that is,
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F x
a

e t dtt ax( )
( )

= I − −1 1
0Γ

where Γ(⋅) is the gamma function. (The gamma function is the integral from 0 to 
∞ of the same integrand as above). The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal
to x.

The gamma distribution is often defined as a two-parameter distribution with a
scale parameter b (which must be positive), or even as a three-parameter
distribution in which the third parameter c is a location parameter. In the most
general case, the probability density function over (c, ∞) is

f t
b a

e x ca
t c b a( )

( )
( )( )/= −− − −1 1

Γ
If T is such a random variable with parameters a, b, and c, the probability that
T ≤ t0 can be obtained from GAMDF by setting X = (t0 − c)/b.

If X is less than a or if X is less than or equal to 1.0, GAMDF uses a series
expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz
and Stegun, 1964.)

Figure 17-11   Gamma Distribution Function
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Example

Suppose X is a gamma random variable with a shape parameter of 4. (In this case,
it has an Erlang distribution since the shape parameter is an integer.) In this
example, we find the probability that X is less than 0.5 and the probability that X
is between 0.5 and 1.0.

      INTEGER    NOUT
      REAL       A, GAMDF, P, X
      EXTERNAL   GAMDF, UMACH
C
      CALL UMACH (2, NOUT)
      A = 4.0
      X = 0.5
      P = GAMDF(X,A)
      WRITE (NOUT,99998) P
99998 FORMAT (’ The probability that X is less than 0.5 is ’, F6.4)
      X = 1.0
      P = GAMDF(X,A) - P
      WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is between 0.5 and 1.0 is ’,
     &       F6.4)
      END

Output
The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

GAMIN/DGAMIN (Single/Double precision)
Evaluate the inverse of the gamma distribution function.

Usage
GAMIN(P, A)

Arguments

P — Probability for which the inverse of the gamma distribution function is to be
evaluated.   (Input)
P must be in the open interval (0.0, 1.0).

A — The shape parameter of the gamma distribution.   (Input)
This parameter must be positive.

GAMIN — Function value.   (Output)
The probability that a gamma random variable takes a value less than or equal to
GAMIN is P.

Comments

Informational error
Type Code
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   4    1 Over 100 iterations have occurred without convergence.
Convergence is assumed.

Algorithm

Function GAMIN evaluates the inverse distribution function of a gamma random
variable with shape parameter a, that is, it determines x (= GAMIN(P, A)), such
that

P
a

e t dtt ax= I − −1 1
0Γ( )

where Γ(⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to x is P. See the documentation for routine GAMDF
(page 1140) for further discussion of the gamma distribution.

Function GAMIN uses bisection and modified regula falsi to invert the distribution
function, which is evaluated using routine GAMDF.

Example

In this example, we find the 95-th percentage point for a gamma random variable
with shape parameter of 4.

      INTEGER    NOUT
      REAL       A, GAMIN, P, X
      EXTERNAL   GAMIN, UMACH
C
      CALL UMACH (2, NOUT)
      A = 4.0
      P = 0.95
      X = GAMIN(P,A)
      WRITE (NOUT,99999) X
C
99999 FORMAT (’ The 0.05 gamma(4) critical value is ’, F6.3,
     &       ’.’)
C
      END

Output
The 0.05 gamma(4) critical value is 7.754.

TDF/DTDF (Single/Double precision)
Evaluate the Student’s t distribution function.

Usage
TDF(T, DF)
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Arguments

T — Argument for which the Student’s t distribution function is to be evaluated.
(Input)

DF — Degrees of freedom.   (Input)
DF must be greater than or equal to 1.0.

TDF — Function value, the probability that a Student’s t random variable takes a
value less than or equal to the input T.   (Output)

Algorithm

Function TDF evaluates the distribution function of a Student’s t random variable
with DF degrees of freedom. If the square of T is greater than or equal to DF, the
relationship of a t to an F random variable (and subsequently, to a beta random
variable) is exploited, and routine BETDF (page 1125) is used. Otherwise, the
method described by Hill (1970) is used. If DF is not an integer, if DF is greater
than 19, or if DF is greater than 200, a Cornish-Fisher expansion is used to
evaluate the distribution function. If DF is less than 20 and ABS(T) is less than 2.0,
a trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and
26.7.4, with some rearrangement) is used. For the remaining cases, a series given
by Hill (1970) that converges well for large values of T is used.

Figure 17-12   Student’s t Distribution Function
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Example

In this example, we find the probability that a t random variable with 6 degrees of
freedom is greater in absolute value than 2.447. We use the fact that t is
symmetric about 0.

      INTEGER    NOUT
      REAL       DF, P, T, TDF
      EXTERNAL   TDF, UMACH
C
      CALL UMACH (2, NOUT)
      T  = 2.447
      DF = 6.0
      P  = 2.0*TDF(-T,DF)
      WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that a t(6) variate is greater ’,
     &       ’than 2.447 in’, /, ’ absolute value is ’, F6.4)
      END

Output
The probability that a t(6) variate is greater than 2.447 in absolute value
is 0.0500

TIN/DTIN (Single/Double precision)
Evaluate the inverse of the Student’s t distribution function.

Usage
TIN(P, DF)

Arguments

P — Probability for which the inverse of the Student’s t distribution function is to
be evaluated.   (Input)
P must be in the open interval (0.0, 1.0).

DF — Degrees of freedom.   (Input)
DF must be greater than or equal to 1.0.

TIN — Function value.   (Output)
The probability that a Student’s t random variable takes a value less than or equal
to TIN is P.

Comments

Informational error
Type Code
   4       3 TIN is set to machine infinity since overflow would occur upon

modifying the inverse value for the F distribution with the
result obtained from the inverse β distribution.
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Algorithm

Function TIN evaluates the inverse distribution function of a Student’s t random
variable with DF degrees of freedom. Let v = DF. If v equals 1 or 2, the inverse
can be obtained in closed form, if v is between 1 and 2, the relationship of a t to a
beta random variable is exploited and routine BETIN (page 1127) is used to
evaluate the inverse; otherwise the algorithm of Hill (1970) is used. For small
values of v greater than 2, Hill’s algorithm inverts an integrated expansion in

1/(1 + t2/v) of the t density. For larger values, an asymptotic inverse Cornish-
Fisher type expansion about normal deviates is used.

Example

In this example, we find the 0.05 critical value for a two-sided t test with 6
degrees of freedom.

      INTEGER    NOUT
      REAL       DF, P, T, TIN
      EXTERNAL   TIN, UMACH
C
      CALL UMACH (2, NOUT)
      P  = 0.975
      DF = 6.0
      T  = TIN(P,DF)
      WRITE (NOUT,99999) T
99999 FORMAT (’ The two-sided t(6) 0.05 critical value is ’, F6.3)
      END

Output
The two-sided t(6) 0.05 critical value is  2.447

TNDF/DTNDF (Single/Double precision)
Evaluate the noncentral Student’s t distribution function.

Usage
TNDF(T, IDF, DELTA)

Arguments

T — Argument for which the noncentral Student’s t distribution function is to be
evaluated.   (Input)

IDF — Number of degrees of freedom of the noncentral Student’s t distribution.
(Input)
IDF must be positive.

DELTA — The noncentrality parameter.   (Input)

TNDF — Function value, the probability that a noncentral Student’s t random
variable takes a value less than or equal to T.   (Output)



IMSL STAT/LIBRARY Chapter 17: Probability Distribution Functions and Inverses • 1147

Algorithm

Function TNDF evaluates the distribution function F of a noncentral t random
variable with IDF degrees of freedom and noncentrality parameter DELTA; that is,
with v = IDF, δ = DELTA , and t0 = T,
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where Γ(⋅) is the gamma function. The value of the distribution function at the
point t0 is the probability that the random variable takes a value less than or equal
to t0.

The noncentral t random variable can be defined by the distribution function
above, or alternatively and equivalently, as the ratio of a normal random variable
and an independent chi-squared random variable. If w has a normal distribution
with mean δ and variance equal to one, u has an independent chi-squared
distribution with v degrees of freedom, and

x w u v= / /

then x has a noncentral t distribution with degrees of freedom and noncentrality
parameter δ.

The distribution function of the noncentral t can also be expressed as a double
integral involving a normal density function (see, for example, Owen 1962, page
108). The function TNDF uses the method of Owen (1962, 1965), which uses
repeated integration by parts on that alternate expression for the distribution
function.
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Figure 17-13   Noncentral Student’s t Distribution Function

Example

Suppose T is a noncentral t random variable with 6 degrees of freedom and
noncentrality parameter 6. In this example, we find the probability that T is less
than 12.0. (This can be checked using the table on page 111 of Owen 1962, with 
η  = 0.866, which yields λ = 1.664.)

      INTEGER    IDF, NOUT
      REAL       DELTA, P, T, TNDF
      EXTERNAL   TNDF, UMACH
C
      CALL UMACH (2, NOUT)
      IDF   = 6
      DELTA = 6.0
      T     = 12.0
      P     = TNDF(T,IDF,DELTA)
      WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that T is less than 12.0 is ’, F6.4)
      END

Output
The probability that T is less than 12.0 is 0.9501
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TNIN/DTNIN (Single/Double precision)
Evaluate the inverse of the noncentral Student’s t distribution function.

Usage
TNIN(P, IDF, DELTA)

Arguments

P — Probability for which the inverse of the noncentral Student’s t distribution
function is to be evaluated.   (Input)
P must be in the open interval (0.0, 1.0).

IDF — Number of degrees of freedom of the noncentral Student’s t distribution.
(Input) IDF must be positive.

DELTA — The noncentrality parameter.   (Input)

TNIN — Function value.   (Output)
The probability that a noncentral Student’s t random variable takes a value less
than or equal to TNIN is P.

Comments

Informational error
Type Code
   4    1 Over 100 iterations have occurred without convergence.

Convergence is assumed.

Algorithm

Function TNIN evaluates the inverse distribution function of a noncentral t
random variable with IDF degrees of freedom and noncentrality parameter
DELTA; that is, with P = P, v = IDF, and δ = DELTA, it determines t0 (= TNIN(P,
IDF, DELTA )), such that
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where Γ(⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to t0 is P. See TNDF (page 1146) for an alternative
definition in terms of normal and chi-squared random variables. The function
TNIN uses bisection and modified regula falsi to invert the distribution function,
which is evaluated using routine TNDF.

Example

In this example, we find the 95-th percentage point for a noncentral t random
variable with 6 degrees of freedom and noncentrality parameter 6.
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      INTEGER    IDF, NOUT
      REAL       DELTA, P, T, TNIN
      EXTERNAL   TNIN, UMACH
C
      CALL UMACH (2, NOUT)
      IDF   = 6
      DELTA = 6.0
      P     = 0.95
      T     = TNIN(P,IDF,DELTA)
      WRITE (NOUT,99999) T
C
99999 FORMAT (’ The 0.05 noncentral t critical value is ’, F6.3,
     &       ’.’)
C
      END

Output
The 0.05 noncentral t critical value is 11.995.

GCDF/DGCDF (Single/Double precision)
Evaluate a general continuous cumulative distribution function given ordinates of
the density.

Usage
GCDF(X0, IOPT, M, X, F)

Arguments

X0 —Point at which the distribution function is to be evaluated.   (Input)

IOPT — Indicator of the method of interpolation.   (Input)

IOPT Interpolation Method
1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M —Number of ordinates of the density supplied.   (Input)
M must be greater than 1 for linear interpolation (IOPT = 1 or 2) and greater than
3 if a curve is fitted through the ordinates (IOPT = 3 or 4).

X — Array containing the abscissas or the endpoints.   (Input)
If IOPT = 1 or 3, X is of length 2. If IOPT = 2 or 4, X is of length M. For IOPT = 1
or 3, X(1) contains the lower endpoint of the support of the distribution and X(2)
is the upper endpoint. For IOPT = 2 or 4, X contains, in strictly increasing order,
the abscissas such that X(I) corresponds to F(I).

F — Vector of length M containing the probability density ordinates
corresponding to increasing abscissas.   (Input)
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If IOPT = 1 or 3, for I = 1, 2, …, M, F(I) corresponds to X(1) + (I − 1) *
(X(2) − X(1))/(M −1); otherwise, F and X correspond one for one.

GCDF — Function value, the probability that a random variable whose density is
given in F takes a value less than or equal to X0.   (Output)

Comments

If IOPT = 3, automatic workspace usage is
GCDF   6 * M units, or
DGCDF  11 * M units.

If IOPT = 4, automatic workspace usage is
GCDF   5 * M units, or
DGCDF   9 * M units.

Workspace may be explicitly provided, if desired, by the use of G4DF/DG4DF. The
reference is

G4DF(P, IOPT, M, X, F, WK, IWK)

The arguments in addition to those of GCDF are

WK — Work vector of length 5 * M if IOPT = 3, and of length 4 * M if IOPT = 4.

IWK — Work vector of length M.

Algorithm

Function GCDF evaluates a continuous distribution function, given ordinates of the
probability density function. It requires that the range of the distribution be
specified in X. For distributions with infinite ranges, endpoints must be chosen so
that most of the probability content is included. The function GCDF first fits a
curve to the points given in X and F with either a piecewise linear interpolant or a

C 1 cubic spline interpolant based on a method by Akima (1970). Function GCDF

then determines the area, A, under the curve. (If the distribution were of finite
range and if the fit were exact, this area would be 1.0.) Using the same fitted
curve, GCDF next determines the area up to the point x0(= X0). The value returned
is the area up to x0 divided by A. Because of the scaling by A, it is not assumed
that the integral of the density defined by X and F is 1.0. For most distributions, it
is likely that better approximations to the distribution function are obtained when
IOPT equals 3 or 4, that is, when a cubic spline is used to approximate the
function. It is also likely that better approximations can be obtained when the
abscissas are chosen more densely over regions where the density and its
derivatives (when they exist) are varying greatly.

Example

In this example, we evaluate the beta distribution function at the point 0.6. The
probability density function of a beta random variable with parameters p and q is
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where Γ(⋅) is the gamma function. The density is equal to 0 outside the interval
[0, 1]. We compute a constant multiple (we can ignore the constant gamma
functions) of the density at 300 equally spaced points and input this information
in X and F. Knowing that the probability density of this distribution is very
peaked in the vicinity of 0.5, we could perhaps get a better fit by using unequally
spaced abscissas, but we will keep it simple. Note that this is the same example as
one used in the description of routine BETDF (page 1125). The result from BETDF
would be expected to be more accurate than that from GCDF since BETDF is
designed specifically for this distribution.

      INTEGER    M
      PARAMETER  (M=300)
C
      INTEGER    I, IOPT, NOUT
      REAL       F(M), GCDF, H, P, PIN1, QIN1, X(2), X0, XI
      EXTERNAL   GCDF, UMACH
C
      CALL UMACH (2, NOUT)
      X0   = 0.6
      IOPT = 3
C                                 Initializations for a beta(12,12)
C                                 distribution.
      PIN1 = 11.0
      QIN1 = 11.0
      XI   = 0.0
      H    = 1.0/(M-1.0)
      X(1) = XI
      F(1) = 0.0
      XI   = XI + H
C                                 Compute ordinates of the probability
C                                 density function.
      DO 10  I=2, M - 1
         F(I) = XI**PIN1*(1.0-XI)**QIN1
         XI   = XI + H
   10 CONTINUE
      X(2) = 1.0
      F(M) = 0.0
      P    = GCDF(X0,IOPT,M,X,F)
      WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is less than 0.6 is ’, F6.4)
      END

Output
The probability that X is less than 0.6 is 0.8364

GCIN/DGCIN (Single/Double precision)
Evaluate the inverse of a general continuous cumulative distribution function
given ordinates of the density.
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Usage
GCIN(P, IOPT, M, X, F)

Arguments

P —Probability for which the inverse of the distribution function is to be
evaluated.   (Input)
P must be in the open interval (0.0, 1.0).

IOPT — Indicator of the method of interpolation.   (Input)

IOPT Interpolation Method
1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M —Number of ordinates of the density supplied.   (Input)
M must be greater than 1 for linear interpolation (IOPT = 1 or 2) and greater than
3 if a curve is fitted through the ordinates (IOPT = 3 or 4).

X —Array containing the abscissas or the endpoints.   (Input)
If IOPT = 1 or 3, X is of length 2. If IOPT = 2 or 4, X is of length M. For IOPT = 1
or 3, X(1) contains the lower endpoint of the support of the distribution and X(2)
is the upper endpoint. For IOPT = 2 or 4, X contains, in strictly increasing order,
the abscissas such that X(I) corresponds to F(I).

F —Vector of length M containing the probability density ordinates corresponding
to increasing abscissas.   (Input)
If IOPT = 1 or 3, for I = 1, 2, …, M, F(I) corresponds to X(1) + (I − 1) *
(X(2) − X(1))/(M − 1); otherwise, F and X correspond one for one.

GCIN — Function value.   (Output)
The probability that a random variable whose density is given in F takes a value
less than or equal to GCIN is P.

Comments

If IOPT = 3, automatic workspace usage is
GCIN 6 * M units, or
DGCIN 11 * M units.

If IOPT = 4, automatic workspace usage is
GCIN 5 * M units, or
DGCIN 9 * M units.

Workspace may be explicitly provided, if desired, by the use of G3IN/DG3IN. The
reference is

G3IN(P, IOPT, M, X, F, WK, IWK)

The arguments in addition to those of GCIN are
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WK — Work vector of length 5 * M if IOPT = 3, and of length 4 * M if IOPT = 4.

IWK — Work vector of length M.

Algorithm

Function GCIN evaluates the inverse of a continuous distribution function, given
ordinates of the probability density function. The range of the distribution must
be specified in X. For distributions with infinite ranges, endpoints must be chosen
so that most of the probability content is included.

The function GCIN first fits a curve to the points given in X and F with either a

piecewise linear interpolant or a C 1 cubic spline interpolant based on a method
by Akima (1970). Function GCIN then determines the area, A, under the curve. (If
the distribution were of finite range and if the fit were exact, this area would be
1.0.) It next finds the maximum abscissa up to which the area is less than AP and
the minimum abscissa up to which the area is greater than AP . The routine then
interpolates for the point corresponding to AP. Because of the scaling by A, it is
not assumed that the integral of the density defined by X and F is 1.0.

For most distributions, it is likely that better approximations to the distribution
function are obtained when IOPT equals 3 or 4, that is, when a cubic spline is
used to approximate the function. It is also likely that better approximations can
be obtained when the abscissas are chosen more densely over regions where the
density and its derivatives (when they exist) are varying greatly.

Example

In this example, we find the 90-th percentage point for a beta random variable
with parameters 12 and 12. The probability density function of a beta random
variable with parameters p and q is

f x
p q

p q
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( ) ( )
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where Γ(⋅) is the gamma function. The density is equal to 0 outside the interval
[0, 1]. With p = q, this is a symmetric distribution. Knowing that the probability
density of this distribution is very peaked in the vicinity of 0.5, we could perhaps
get a better fit by using unequally spaced abscissas, but we will keep it simple and
use 300 equally spaced points. Note that this is the same example that is used in
the description of routine BETIN (page 1127). The result from BETIN would be
expected to be more accurate than that from GCIN since BETIN is designed
specifically for this distribution.

      INTEGER    M
      PARAMETER  (M=300)
C
      INTEGER    I, IOPT, NOUT
      REAL       BETA, C, F(M), GCIN, H, P, PIN, PIN1, QIN, QIN1,
     &           X(2), X0, XI
      EXTERNAL   BETA, GCIN, UMACH
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C
      CALL UMACH (2, NOUT)
      P    = 0.9
      IOPT = 3
C                                 Initializations for a beta(12,12)
C                                 distribution.
      PIN  = 12.0
      QIN  = 12.0
      PIN1 = PIN - 1.0
      QIN1 = QIN - 1.0
      C    = 1.0/BETA(PIN,QIN)
      XI   = 0.0
      H    = 1.0/(M-1.0)
      X(1) = XI
      F(1) = 0.0
      XI   = XI + H
C                                 Compute ordinates of the probability
C                                 density function.
      DO 10  I=2, M - 1
         F(I) = C*XI**PIN1*(1.0-XI)**QIN1
         XI   = XI + H
   10 CONTINUE
      X(2) = 1.0
      F(M) = 0.0
      X0   = GCIN(P,IOPT,M,X,F)
      WRITE (NOUT,99999) X0
99999 FORMAT (’ X is less than ’, F6.4, ’ with probability 0.9.’)
      END

Output
X is less than 0.6304 with probability 0.9.

GFNIN/DGFNIN (Single/Double precision)
Evaluate the inverse of a general continuous cumulative distribution function
given in a subprogram.

Usage
GFNIN(F, P, EPS, GUESS)

Arguments

F — User-supplied FUNCTION to be inverted. F must be continuous and strictly
monotone. The form is F(X), where
X — The argument to the function.   (Input)
F — The value of the function at X.   (Output)
F must be declared EXTERNAL in the calling program.

P — The point at which the inverse of F is desired.   (Input)

EPS — Convergence criterion.   (Input)
When the relative change in GFNIN from one iteration to the next is less than



1156 • Chapter 17: Probability Distribution Functions and Inverses IMSL STAT/LIBRARY

EPS, convergence is assumed. A common value for EPS is 0.0001. Another
common value is 100 times the machine epsilon.

GUESS — An initial estimate of the inverse of F at P.   (Input)

GFNIN — The inverse of the function F at the point P.   (Output)
F(GFNIN) is “close” to P.

Comments

1. Informational errors
Type Code
   4    1 After 100 attempts, a bound for the inverse cannot be

determined. Try again with a different initial estimate.
   4    2 No unique inverse exists.
   4    3 Over 100 iterations have occurred without

convergence. Convergence is assumed.

2. The function to be inverted need not be a distribution function, it can be
any continuous, monotonic function.

Algorithm

Function GFNIN evaluates the inverse of a continuous, strictly monotone function.
Its most obvious use is in evaluating inverses of continuous distribution functions
that can be defined by a FORTRAN function. If the distribution function cannot
be specified in a FORTRAN function, but the density function can be evaluated at
a number of points, then routine GCIN (page 1152) can be used.

Function GFNIN uses regula falsi and/or bisection, possibly with the Illinois
modification (see Dahlquist and Bjorck 1974). A maximum of 100 iterations are
performed.

Example

In this example, we find the 99–th percentage point for an F random variable with
1 and 7 degrees of freedom. (This problem could be solved easily using routine
FIN (page 1139). Compare the example for FIN). The function to be inverted is
the F distribution function, for which we use routine FDF (page 1137). Since FDF
requires the degrees of freedom in addition to the point at which the function is
evaluated, we write another function F that receives the degrees of freedom via a
common block and then calls FDF. The starting point (initial guess) is taken as
two standard deviations above the mean (since this would be a good guess for a
normal distribution). It is not necessary to supply such a good guess. In this
particular case, an initial estimate of 1.0, for example, yields the same answer in
essentially the same number of iterations. (In fact, since the F distribution is
skewed, the initial guess, 7.0, is really not that close to the final answer.)
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      INTEGER    NOUT
      REAL       DFD, DFN, EPS, F, F0, GFNIN, GUESS, P, SQRT
      COMMON     /FCOM/ DFN, DFD
      INTRINSIC  SQRT
      EXTERNAL   F, GFNIN, UMACH
C
      CALL UMACH (2, NOUT)
      P   = 0.99
      DFN = 1.0
      DFD = 7.0
C                                 Compute GUESS as two standard
C                                 deviations above the mean.
      GUESS = DFD/(DFD-2.0) + 2.0*SQRT(2.0*DFD*DFD*(DFN+DFD-2.0)/(DFN*
     &        (DFD-2.0)**2*(DFD-4.0)))
      EPS   = 0.00001
      F0    = GFNIN(F,P,EPS,GUESS)
      WRITE (NOUT,99999) F0
99999 FORMAT (’ The F(1,7) 0.01 critical value is ’, F6.3)
      END
C
      REAL FUNCTION F (X)
      REAL       X
C
      REAL       DFD, DFN, FDF
      COMMON     /FCOM/ DFN, DFD
      EXTERNAL   FDF
C
      F = FDF(X,DFN,DFD)
      RETURN
      END

Output
The F(1,7) 0.01 critical value is 12.246
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Chapter 18: Random Number
Generation

Routines
18.1. Utility Routines for Random Number Generators

Select the uniform (0,1) generator ...................................... RNOPT 1165
Retrieve the indicator of the generator currently used........RNOPG 1166
Initialize the seed used in the generators.............................RNSET 1167
Retrieve the current value of the seed ................................ RNGET 1167
Initialize the table used in the shuffled generators...............RNSES 1167
Retrieve the current table used in the shuffled generators . RNGES 1167
Initialize the table used in the GFSR generator ...................RNSEF 1167
Retrieve the current table used in the GFSR generator...... RNGEF 1167
Get a seed for a separate substream of numbers ................RNISD 1168

18.2. Basic Uniform Distribution
Uniform (0,1) ......................................................................... RNUN 1171
Uniform (0,1), function form ................................................ RNUNF 1172

18.3. Univariate Discrete Distributions
Binomial ................................................................................RNBIN 1173
General discrete distribution, using alias method ...............RNGDA 1174
General discrete distribution, set up table...........................RNGDS 1177
General discrete distribution, using table lookup ................RNGDT 1181
Geometric ...........................................................................RNGEO 1183
Hypergeometric................................................................... RNHYP 1185
Logarithmic ......................................................................... RNLGR 1186
Negative binomial................................................................ RNNBN 1188
Poisson ................................................................................ RNPOI 1189
Discrete uniform..................................................................RNUND 1190

18.4. Univariate Continuous Distributions
Beta......................................................................................RNBET 1191
Chi-squared.......................................................................... RNCHI 1193
Cauchy................................................................................ RNCHY 1194
Exponential ......................................................................... RNEXP 1196
Mixture of two exponentials..................................................RNEXT 1197
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Gamma...............................................................................RNGAM 1198
General continuous distribution, set up table ..................... RNGCS 1200
General continuous distribution, using table lookup........... RNGCT 1202
Lognormal.............................................................................RNLNL 1204
Normal, using acceptance/rejection ................................... RNNOA 1205
Normal, function form of RNNOR........................................RNNOF 1207
Normal, using inverse CDF ................................................ RNNOR 1208
Stable................................................................................... RNSTA 1209
Student’s t............................................................................ RNSTT 1210
Triangular ............................................................................. RNTRI 1212
Von Mises........................................................................... RNVMS 1213
Weibull ................................................................................. RNWIB 1214

18.5. Multivariate Distributions
Orthogonal matrices and correlation matrices.................... RNCOR 1215
Data-based multivariate.......................................................RNDAT 1218
Multinomial ......................................................................... RNMTN 1222
Multivariate normal ............................................................. RNMVN 1223
Points on a unit circle or sphere ..........................................RNSPH 1225
Two-way tables.................................................................... RNTAB 1227

18.6. Order Statistics
Order statistics from a normal distribution.......................... RNNOS 1229
Order statistics from a uniform distribution......................... RNUNO 1231

18.7. Stochastic Processes
ARMA process.................................................................... RNARM 1232
Nonhomogeneous Poisson process....................................RNNPP 1236

18.8. Samples and Permutations
Random permutation ...........................................................RNPER 1240
Random sample of indices ................................................... RNSRI 1241
Random sample ..................................................................RNSRS 1242

Usage Notes
In the following discussions, the phrases “random numbers,” “random deviates,”
“deviates,” and “variates” are used interchangeably. The phrase “pseudorandom”
is sometimes used to emphasize that the numbers generated are not really
“random” since they result from a deterministic process. The usefulness of
pseudorandom numbers derives from the similarity, in a statistical sense, of
samples of the pseudorandom numbers to samples of observations from the
specified distributions. In short, while the pseudorandom numbers are completely
deterministic and repeatable, they simulate the realizations of independent and
identically distributed random variables.
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The Basic Uniform Generators

The random number generators in this chapter use either a multiplicative
congruential method or a generalized feedback shift register (GFSR) method. The
selection of the type of generator is made by calling the routine RNOPT (page
1165). If no selection is made explicitly, a multiplicative generator (with
multiplier 16807) is used. Whatever distribution is being simulated, uniform
(0, 1) numbers are first generated and then transformed if necessary. The
generation of the uniform (0, 1) numbers is done by the routine RNUN (page
1171), or by its function analog RNUNF. These routines are portable in the sense
that, given the same seed and for a given type of generator, they produce the same
sequence in all computer/compiler environments. There are many other issues
that must be considered in developing programs for the methods described below
(see Gentle 1981 and 1990).

The Multiplicative Congruential Generators

The form of the multiplicative congruential generators is

x cxi i≡ −−1
312 1mod3 8

Each xL is then scaled into the unit interval (0, 1). If the multiplier, c, is a

primitive root modulo 231 − 1 (which is a prime), then the generator will have

maximal period of 231 − 2. There are several other considerations, however. The
lattice structure induced by congruential generators (see Marsaglia 1968) can be
assessed by the lattice test of Marsaglia (1972) or the spectral test of Coveyou
and MacPherson (1967) (see also Knuth 1981, pages 89−113). Also, empirical
studies, such as by Fishman and Moore (1982 and 1986), indicate that different
values of multipliers, all of which perform well under the lattice test and the
spectral test, may yield quite different performances where the criterion is
similarity of samples generated to samples from a true uniform distribution.

There are three possible choices for c in the IMSL generators: 16807 (which is

75), 397204094 (which is 2 ⋅ 72 ⋅ 4053103), and 950706376 (which is

23 ⋅ 118838297). The selection is made by the routine RNOPT (page 1165). The
choice of 16807 will result in the fastest execution time (see Gentle 1981), but
Fishman and Moore’s studies would seem to indicate that the performance of
950706376 is best among these three choices. If no selection is made explicitly,
the routines use the multiplier 16807, which has been in use for some time
(Lewis, Goodman, and Miller 1969). It is the “minimal standard generator”
discussed by Park and Miller (1988).

The user can also select a shuffled version of the multiplicative congruential
generators using RNOPT (page 1165). The shuffled generators use a scheme due
to Learmonth and Lewis (1973a). In this scheme, a table is filled with the first
128 uniform (0, 1) numbers resulting from the simple multiplicative
congruential generator. Then, for each xL from the simple generator, the low-
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order bits of xL are used to select a random integer, j, from 1 to 128. The j-th entry
in the table is then delivered as the random number; and xL, after being scaled into
the unit interval, is inserted into the j-th position in the table.

The Generalized Feedback Shift Register Generator

The GFSR generator uses the recursion XW = XW����� ⊕ XW���. This generator,
which is different from earlier GFSR generators, was proposed by Fushimi
(1990), who discusses the theory behind the generator and reports on several
empirical tests of it. Background discussions on this type of generator can be
found in Kennedy and Gentle (1980), pages 150−162.

Setting the Seed

The seed of the generator can be set in RNSET (page 1167) and can be retrieved
by RNGET (page 1167). Prior to invoking any generator in this chapter , the user
can call RNSET to initialize the seed, which is an integer variable taking a value
between 1 and 2147483646. If it is not initialized by RNSET, a random seed is
obtained from the system clock. Once it is initialized, the seed need not be set
again. The seed is updated and passed from one routine to another by means of a
named COMMON block, R2NCOM.

If the user wishes to restart a simulation, RNGET can be used to obtain the final
seed value of one run to be used as the starting value in a subsequent run. Also, if
two random number streams are desired in one run, RNSET and RNGET can be
used before and after the invocations of the generators in each stream. If a
shuffled generator or the GFSR generator is used, in addition to resetting the
seed, the user must also reset some values in a table. For the shuffled generators,
this is done using the routines RNGES (page 1167) and RNSES (page 1167); and
for the GFSR generator, the table is retrieved and set by the routines RNGEF
(page 1167) and RNSEF (page 1167). The tables for the shuffled generators are
separate for single and double precision; so, if precisions are mixed in a program,
it is necessary to manage each precision separately for the shuffled generators.

Timing Considerations

The generation of the uniform (0,1) numbers is done by the routine RNUN
(page 1171) or by its function analog RNUNF (page 1172). The particular
generator selected in RNOPT (page 1165), that is, the value of the multiplier and
whether shuffling is done or whether the GFSR generator is used, affects the
speed of RNUN and RNUNF. The smaller multiplier (16807, selected by IOPT = 1)
is faster than the other multipliers. The multiplicative congruential generators
that do not shuffle are faster than the ones that do. The GFSR generator is
roughly as fast as the fastest multiplicative congruential generator, but the
initialization for it (required only on the first invocation) takes longer than the
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generation of thousands of uniform random numbers. Precise statements of
relative speeds depend on the computing system.

Whether RNUN or RNUNF is used also has an effect on the speed due to the
overhead in invoking an external routine, or due to the program’s inability to
optimize computations by holding some operands in registers. This effect, of
course, may be different in different environments. On an array processor or other
computers with pipelined instructions, RNUN is likely to be considerably faster
than RNUNF when several random numbers are to be generated at one time. In the
case of array processors, the multiplicative congruential generators in RNUN are
coded to generate subsequences in larger blocks (see Gentle 1990).

Use of Customized Uniform Generators

The basic uniform (0, 1) generators RNUN or RNUNF are used by all other routines
in this chapter. If, for some reason, the user would prefer a different basic uniform
generator, routines named “RNUN” and “RNUNF” can be written so that they
include the named COMMON, through which the seed is passed, and that calls the
user’s custom generator. The named COMMON is

      COMMON /R2NCOM/ D2P31A, DSEED, D2P31R, DWK, DINTTB, INDCTR,
     &       INTTB, WK, ICEED, IDSTFS, INTFS, ISRCFS, S2P31R, IWFS
      DOUBLE PRECISION D2P31A, D2P31R, DSEED, DWK(128)
      REAL    S2P31R, WK(128)
      INTEGER ICEED, IDSTFS, INDCTR, ISRCFS, IWFS(1563)
      LOGICAL DINTTB, INTTB, INTFS
      SAVE    /R2NCOM/

The user’s “RNUN” and “RNUNF” can pass the seed through any of the variables,
but the routines RNSET (page 1167) and RNGET (page 1167) expect the seed to be
in ICEED. (The user should not expect to use any utility routines other than
RNSET and RNGET if customized versions of RNUN or RNUNF are used.) The
double precision versions of the nonuniform generators, such as DRNBET (page
1191) and DRNGAM (page 1198), use the double precision versions of the uniform
generators, DRNUN (page 1171) and DRNUNF (page 1172), so to use the double
precision nonuniform generators with customized uniform generators, the user
would supply routines to replace DRNUN and DRNUNF.

Distributions Other than the Uniform

The nonuniform generators use a variety of transformation procedures. All of the
transformations used are exact (mathematically). The most straightforward
transformation is the inverse CDF technique, but it is often less efficient than
others involving acceptance/rejection and mixtures. See Kennedy and Gentle
(1980) for discussion of these and other techniques.

Many of the nonuniform generators in this chapter use different algorithms
depending on the values of the parameters of the distributions. This is particularly
true of the generators for discrete distributions. Schmeiser (1983) gives an
overview of techniques for generating deviates from discrete distributions.
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Although, as noted above, the uniform generators yield the same sequences on
different computers, because of rounding, the nonuniform generators that use
acceptance/rejection may occasionally produce different sequences on different
computer/compiler environments.

Although the generators for nonuniform distributions use fast algorithms, if a very
large number of deviates from a fixed distribution are to be generated, it might be
worthwhile to consider a table sampling method, as implemented in the routines
RNGDA (page 1174), RNGDS (page 1177), RNGDT (page 1181), RNGCS
(page 1200), and RNGCT (page 1202). After an initialization stage, which may
take some time, the actual generation may proceed very fast.

Order Statistics and Antithetic Variates

For those generators, such as RNCHY (page 1194) and RNNOR (page 1208), that
use the inverse CDF technique, it is possible to generate any set of order statistics
directly by use of a customized uniform generator, as discussed above, by
generating order statistics in a custom “RNUN” or “RNUNF”. In some routines that
employ an inverse CDF technique, such as RNEXP (page 1196) and RNWIB (page
1214), instead of directly using the uniform (0, 1) deviate u from RNUN
(page 1171), the uniform (0, 1) deviate 1 − u is used. In such routines the i-th
order, statistic from the uniform will yield the (n + 1 − i)-th order statistic from
the nonuniform distribution.

A similar technique can be used to get antithetic variates. For each uniform
deviate u, a second deviate 1 − u could be produced by a custom “RNUN” or
“RNUNF”. As with order statistics, this technique would only be reasonable for
routines that use the inverse CDF technique.

Tests

Extensive empirical tests of some of the uniform random number generators
available in RNUN (page 1171) and RNUNF (page 1172) are reported by Fishman
and Moore (1982 and 1986). Results of tests on the generator using the
multiplier 16807 with and without shuffling are reported by Learmonth and Lewis
(1973b). If the user wishes to perform additional tests, the routines in Chapter 7,
“Tests of Goodness of Fit and Randomness,” may be of use. The user may also
wish to compute some basic statistics or to make some plots of the output of the
random number generator being used. The routines in Chapter 1, “Basic
Statistics,” and Chapter 16, “Line Printer Graphics,” may be used for this
purpose. Often in Monte Carlo applications, it is appropriate to construct an ad
hoc test that is sensitive to departures that are important in the given
application. For example, in using Monte Carlo methods to evaluate a one-
dimensional integral, autocorrelations of order one may not be harmful, but they
may be disastrous in evaluating a two-dimensional integral. Although generally
the routines in this chapter for generating random deviates from nonuniform
distributions use exact methods, and, hence, their quality depends almost solely
on the quality of the underlying uniform generator, it is often advisable to
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employ an ad hoc test of goodness of fit for the transformations that are to be
applied to the deviates from the nonuniform generator.

Other Notes on Usage

The generators for continuous distributions are available in both single and
double precision versions. This is merely for the convenience of the user; the
double precision versions should not be considered more “accurate,” except
possibly for the multivariate distributions.

The names of all of the routines for random number generation begin with “RN”
for single precision and “DRN” for double precision. In most routines, the first
argument, NR, is the number of variates to generate; and the last variable, either R

or IR, is the vector of random variates.

Error handling and workspace allocation in the routines for random number
generation are done somewhat differently than in most other IMSL routines. In
general, there is less error checking than in other routines since there is more
emphasis on speed in the random number generation routines. Simple checks for
gross errors are made in all routines; and the routines for setup do complete
checking since it is assumed that they would not be called frequently. Some
routines, such as those that construct tables or interpolate from tables, require that
the user explicitly provide some work arrays.

Random Number Generation Utility Routines
All of the random number generators in this chapter depend on the generation of
uniform (0, 1) numbers, which is done by the routine RNUN (page 1171), or by its
function analog RNUNF (page 1172). These basic generators use either a
multiplicative congruential method or a generalized feedback shift register
(GFSR) method to yield a subsequence of a fixed cyclic sequence. The beginning
of the subsequence is determined by the seed.

The utility routines for the random number generators allow the user to select the
type of the generator (or to determine the type of the generator being used) and to
set or retrieve the seed.

Selection of the Type of the Generator

For generating uniform (0, 1) random numbers either a multiplicative
congruential or a GFSR method is used. In the multiplicative congruential method
one of three different multipliers, with or without shuffling, can be chosen. The
selection of the type of generator is made by calling the routine RNOPT, choosing
one of seven different options. The usage is
CALL RNOPT (IOPT)

The argument is

IOPT — The indicator of the generator.   (Input)
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IOPT Generator
1 Congruential, with multiplier 16807 is used.
2 Congruential, with multiplier 16807 is used with shuffling.
3 Congruential, with multiplier 397204094 is used.
4 Congruential, with multiplier 397204094 is used with shuffling.
5 Congruential, with multiplier 950706376 is used.
6 Congruential, with multiplier 950706376 is used with shuffling.
7 GFSR, with the recursion XW = XW�1563 ⊕ XW�96 is used.

If no selection is made explicitly, a multiplicative generator (with multiplier
16807) is used (equivalent to IOPT = 1).

The type of generator being used can be determined by calling the routine RNOPG.
The usage is
CALL RNOPG (IOPT)

IOPT is an output variable in RNOPG.

Setting the Seed

Before using any of the random number generators, the generator must be
initialized by selecting a seed, or starting value. The user does not have to do this,
but it can done by calling the routine RNSET. If the user does not select a seed,
one is generated using the system clock. A seed needs to be selected only once in
a program unless there is some desire to maintain two separate streams of random
numbers. The usage is
CALL RNSET (ISEED)

The argument is

ISEED — The seed of the random number generator.   (Input)

ISEED must be in the range (0, 2147483646). If ISEED is zero (or if RNSET is not
called before the generation of random numbers begins), a value is computed
using the system clock; and, hence, the results of programs using the IMSL
random number generators will be different at different times.

Stopping and Restarting Simulations and Controlling
More Than One Stream of Random Numbers

For most purposes, even if several simulations are being run in the same program
or if the simulation is being conducted in blocks, it is best to use the sequence of
uniform random deviates just as produced by RNUN (page 1171) or RNUNF (page
1172) without concern for from where in the underlying cyclic sequence the
numbers are coming.

If, however, the simulations are being conducted incrementally or if simulations
are being run in parallel, it may be necessary to exercise more control over the
sequence. The routines that are used in stopping and restarting simulations
come in pairs, one to get the current value and one to set the value. The
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argument for each pair is the same within the pair; it is output in one case and
input in the other. (RNSET is an exception since it is often used at the beginning of
a simulation before any seed is ever set.) If a nonshuffled form of the
multiplicative congruential generators is used (that is IOPT in RNOPT, page 1165,
is 1, 3, or 5), the only thing that must be controlled is the seed, so in this case the
only routines needed are

RNGET — Retrieve the current value of the seed
RNSET — Initialize the seed used in the generators

The usages are

CALL RNGET (ISEED) (ISEED is output.)
CALL RNSET (ISEED) (ISEED is input.)

ISEED is an integer in the range 1 to 2147483646 (except, as noted above, it can
be input to RNSET as 0 to indicate that the system clock is to be used to generate a
seed).

If a shuffled generator or the GFSR generator is used, in addition to controlling
the seed as described above, another array must be maintained if the user wishes
to stop and restart the simulation. It is a floating-point array for the shuffled
generators and an integer array for the GFSR generator. The routines are

RNGES — Retrieve the current table used in the shuffled generators
RNSES — Initialize the table used in the shuffled generators
RNGEF — Retrieve the current table used in the GFSR generator
RNSEF — Initialize the table used in the GFSR generator

There are different tables used in the single and double precision versions of the
shuffled generators, so RNGES and RNSES have double precision counterparts,
DRNGES and DRNSES, respectively.

The usages are

CALL RNGES (TABLE) (TABLE is output.)
CALL RNSES (TABLE) (TABLE is input.)
CALL RNGEF (IARRAY) (IARRAY is output.)
CALL RNSEF (IARRAY) (IARRAY is input.)

The arguments are

TABLE — Array of length 128 used in the shuffled generators.
IARRAY — Array of length 1565 used in the GFSR generators.

The values in both TABLE and IARRAY are initialized by the IMSL random
number generators. The values are all positive in both arrays except if the user
wishes to reinitialize the array, in which case the first element of the array is
input as a nonpositive value. (Usually, one should avoid reinitializing these
arrays, but it might be necessary sometimes in restarting a simulation.) If the
first element of TABLE or IARRAY is set to a nonpositive value on the call to
RNSES or RNSEF, on the next invocation of a routine to generate random
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numbers using shuffling (if RNSES) or a GFSR method (if RNSEF), the
appropriate array will be reinitialized.

In addition to controlling separate streams of random numbers, sometimes it is
desirable to insure from the beginning that two streams do not overlap. This can
be done with the congruential generators that do not do shuffling by using RNISD
to get a seed that will generate random numbers beginning 100,000 numbers
farther along.

The usage is
CALL RNISD (ISEED1, ISEED2)

The arguments are

ISEED1 — The seed that yields the first stream.   (Input)
ISEED2 — The seed that yields a stream beginning 100,000 numbers beyond the
stream that begins with ISEED1.   (Output)

Given a seed, ISEED1, RNISD determines another seed, ISEED2, such that if one
of the IMSL multiplicative congruential generators, using no shuffling, went
through 100,000 generations starting with ISEED1, the next number in that
sequence would be the first number in the sequence that begins with the seed
ISEED2. This can be described more simply by stating that RN1 and RN2 in the
following sequence of FORTRAN are assigned the same values.
       CALL RNISD(ISEED1, ISEED2)
       CALL RNSET(ISEED1)
       DO 10 I = 1, 100000
          RN1 = RNUNF()
    10 CONTINUE
       RN1 = RNUNF()
       CALL RNSET(ISEED2)
       RN2 = RNUNF()

To obtain seeds that generate sequences with beginning values separated by
200,000 numbers, call RNISD twice:
CALL RNISD(ISEED1, ISEED2)
CALL RNISD(ISEED2, ISEED2)

Note that RNISD works only when a multiplicative congruential generator without
shuffling is used. This means that either the routine RNOPT (page 1165) has not
been called at all or that it has been last called with IOPT taking a value of 1, 3,
or 5.

For many of the IMSL generators for nonuniform distributions that do not use the
inverse CDF method, the distance between the sequences generated starting with
ISEED1 and starting with ISEED2 may be less than 100,000. This is because the
nonuniform generators that use other techniques may require more than one
uniform deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known
distance apart is for blocking Monte Carlo experiments or for running parallel
streams.
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Example 1

Selecting the Type of Generator and Stopping and Restarting the
Simulations

In this example, three separate simulation streams are used, each with a different
form of the generator. Each stream is stopped and restarted. (Although this
example is obviously an artificial one, there may be reasons for maintaining
separate streams and stopping and restarting them because of the nature of the
usage of the random numbers coming from the separate streams.)

      INTEGER    I, IARRAY(1565), ISEED1, ISEED2, ISEED7, NOUT, NR
      REAL       R(5), TABLE(128)
      EXTERNAL   RNGEF, RNGES, RNGET, RNOPT, RNSEF, RNSES, RNSET,
     &           RNUN, UMACH
C
      CALL UMACH (2, NOUT)
      NR     = 5
      ISEED1 = 123457
      ISEED2 = 123457
      ISEED7 = 123457
C                                 Begin first stream, IOPT = 1 (by
C                                 default)
      CALL RNSET (ISEED1)
      CALL RNUN (NR, R)
      CALL RNGET (ISEED1)
      WRITE (NOUT,99997) (R(I),I=1,NR), ISEED1
C                                 Begin second stream, IOPT = 2
      CALL RNOPT (2)
      CALL RNSET (ISEED2)
      CALL RNUN (NR, R)
      CALL RNGET (ISEED2)
      CALL RNGES (TABLE)
      WRITE (NOUT,99998) (R(I),I=1,NR), ISEED2
C                                 Begin third stream, IOPT = 7
      CALL RNOPT (7)
      CALL RNSET (ISEED7)
      CALL RNUN (NR, R)
      CALL RNGET (ISEED7)
      CALL RNGEF (IARRAY)
      WRITE (NOUT,99999) (R(I),I=1,NR), ISEED7
C                                 Reinitialize seed
C                                 Resume first stream
      CALL RNOPT (1)
      CALL RNSET (ISEED1)
      CALL RNUN (NR, R)
      CALL RNGET (ISEED1)
      WRITE (NOUT,99997) (R(I),I=1,NR), ISEED1
C                                 Reinitialize seed and table for
C                                 shuffling
C                                 Resume second stream
      CALL RNOPT (2)
      CALL RNSET (ISEED2)
      CALL RNSES (TABLE)
      CALL RNUN (NR, R)
      CALL RNGET (ISEED2)
      WRITE (NOUT,99998) (R(I),I=1,NR), ISEED2
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C                                 Reinitialize seed and table for GFSR
C                                 Resume third stream
      CALL RNOPT (7)
      CALL RNSET (ISEED7)
      CALL RNSEF (IARRAY)
      CALL RNUN (NR, R)
      CALL RNGET (ISEED7)
      WRITE (NOUT,99999) (R(I),I=1,NR), ISEED7
C
99997 FORMAT (/, ’  First stream  ’, 5F8.4, /, ’  Output seed = ’,
     &       I11)
99998 FORMAT (/, ’  Second stream ’, 5F8.4, /, ’  Output seed = ’,
     &       I11)
99999 FORMAT (/, ’  Third stream  ’, 5F8.4, /, ’  Output seed = ’,
     &       I11)
C
      END

Output
First stream    0.9662  0.2607  0.7663  0.5693  0.8448
Output seed =      123457
Second stream   0.7095  0.1861  0.4794  0.6038  0.3790
Output seed =  1435003364
Third stream    0.7095  0.1861  0.4794  0.6038  0.3790
Output seed =      123457
First stream    0.9662  0.2607  0.7663  0.5693  0.8448
Output seed =      123457
Second stream   0.8662  0.4786  0.2062  0.2092  0.9154
Output seed =  1435003364
Third stream    0.8662  0.4786  0.2062  0.2092  0.9154
Output seed =      123457

Example 2

Determining Seeds for Separate Streams

In this example, RNISD (page 1168) is used to determine seeds for 4 separate
streams, each 200,000 numbers apart, for a multiplicative congruential generator
without shuffling. (Since RNOPT is not invoked to select a generator, the
multiplier is 16807.) To get each seed requires two invocations of RNISD. All of
the streams are non-overlapping, since the period of the underlying generator is
2,147,483,646.

      INTEGER    ISEED1, ISEED2, ISEED3, ISEED4, NOUT
      EXTERNAL   RNISD, UMACH
C
      CALL UMACH (2, NOUT)
      ISEED1 = 123457
      CALL RNISD (ISEED1, ISEED2)
      CALL RNISD (ISEED2, ISEED2)
      CALL RNISD (ISEED2, ISEED3)
      CALL RNISD (ISEED3, ISEED3)
      CALL RNISD (ISEED3, ISEED4)
      CALL RNISD (ISEED4, ISEED4)
      WRITE (NOUT,99999) ISEED1, ISEED2, ISEED3, ISEED4
C
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99999 FORMAT (’  Seeds for four separate streams: ’, /, ’  ’, 4I11)
C
      END

Output
Seeds for four separate streams:
     123457 2016130173   85016329  979156171

RNUN/DRNUN (Single/Double precision)
Generate pseudorandom numbers from a uniform (0, 1) distribution.

Usage
CALL RNUN (NR, R)

Arguments

NR — Number of random numbers to generate.   (Input)

R — Vector of length NR containing the random uniform (0, 1) deviates.
(Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNUN generates pseudorandom numbers from a uniform (0, 1)
distribution using one of the algorithms described in the introduction to the
chapter on random number generation. The algorithm used is determined by
RNOPT (page 1165). The values returned in R by RNUN are positive and less than
1.0. Values in R may be smaller than the smallest relative spacing, however.
Hence, it may be the case that some value R(i) is such that 1.0 − R(i) = 1.0.

Deviates from the distribution with uniform density over the interval (A, B) can be
obtained by scaling the output from RNUN. The following statements (in single
precision) would yield random deviates from a uniform (A, B) distribution:
CALL RNUN (NR, R)
CALL SSCAL (NR, B-A, R, 1)
CALL SADD (NR, A, R, 1)

Example

In this example, RNUN is used to generate five pseudorandom uniform numbers.
Since RNOPT (page 1165) is not called, the generator used is a simple
multiplicative congruential one with a multiplier of 16807.
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      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
      EXTERNAL   RNSET, RNUN, UMACH
C
      CALL UMACH (2, NOUT)
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNUN (NR, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’      Uniform random deviates: ’, 5F8.4)
      END

Output
Uniform random deviates:    .9662   .2607   .7663   .5693   .8448

RNUNF/DRNUNF (Single/Double precision)
Generate a pseudorandom number from a uniform (0, 1) distribution.

Usage
RNUNF()

Argument

RNUNF — Function value, a random uniform (0, 1) deviate.   (Output)

Comments

1. Routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

2. This function has a side effect: it changes the value of the seed, which is
passed through a common block.

Algorithm

Routine RNUNF is the function form of RNUN (page 1171). The routine RNUNF

generates pseudorandom numbers from a uniform (0, 1) distribution . The
algorithm used is determined by RNOPT (page 1165). The values returned by
RNUNF are positive and less than 1.0.

If several uniform deviates are needed, it may be more efficient to obtain them all
at once by a call to RNUN rather than by several references to RNUNF.

Example

In this example, RNUNF is used to generate five pseudorandom uniform numbers.
Since RNOPT (page 1165) is not called, the generator used is a simple
multiplicative congruential one with a multiplier of 16807.
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      INTEGER    I, ISEED, NOUT
      REAL       R(5), RNUNF
      EXTERNAL   RNSET, RNUNF, UMACH
C
      CALL UMACH (2, NOUT)
      ISEED = 123457
      CALL RNSET (ISEED)
      DO 10  I=1, 5
         R(I) = RNUNF()
   10 CONTINUE
      WRITE (NOUT,99999) R
99999 FORMAT (’      Uniform random deviates: ’, 5F8.4)
      END

Output
Uniform random deviates:   0.9662  0.2607  0.7663  0.5693  0.8448

RNBIN
Generate pseudorandom numbers from a binomial distribution.

Usage
CALL RNBIN (NR, N, P, IR)

Arguments

NR — Number of random numbers to generate.   (Input)

N — Number of Bernoulli trials.   (Input)

P — Probability of success on each trial.   (Input)
P must be greater than 0.0 and less than 1.0.

IR — Vector of length NR containing the random binomial deviates.   (Output)

Comments

The IMSL routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used to select
the form of the generator.

Algorithm

Routine RNBIN generates pseudorandom numbers from a binomial distribution
with parameters N and P. N and P must be positive, and P must be less than 1. The
probability function (with n = N and p = P) is

f x p px
n x n x0 5 3 8 0 5= − −1

for x = 0, 1, 2, …, n.
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The algorithm used depends on the values of n and p. If np < 10 or if p is less
than a machine epsilon (AMACH(4) (Reference Material)), the inverse CDF
technique is used; otherwise, the BTPE algorithm of Kachitvichyanukul and
Schmeiser (see Kachitvichyanukul 1982) is used. This is an acceptance/rejection
method using a composition of four regions. (TPE = Triangle, Parallelogram,
Exponential, left and right.)

Example

In this example, RNBIN is used to generate five pseudorandom binomial variates
with parameters 20 and 0.5.

      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    IR(NR), ISEED, N, NOUT
      REAL       P
      EXTERNAL   RNBIN, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      N     = 20
      P     = 0.5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNBIN (NR, N, P, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (’ Binomial (20, 0.5) random deviates: ’, 5I4)
      END

Output
Binomial (20, 0.5) random deviates:   14   9  12  10  12

RNGDA/DRNGDA (Single/Double precision)
Generate pseudorandom numbers from a general discrete distribution using an
alias method.

Usage
CALL RNGDA (NR, IOPT, IMIN, NMASS, PROBS, IWK, WK, IR)

Arguments

NR — Number of random numbers to generate.   (Input)

IOPT — Indicator of whether the alias vectors are to be initialized.   (Input)

IOPT Action
0 The alias vectors are to be initialized using the probabilities in PROBS.

IOPT is set to 0 on the first call to RNGDA.
1 The alias vectors IWK and WK are used but PROBS is not used.
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IMIN — Smallest value the random deviate can assume.   (Input)
This is the value corresponding to the probability in PROBS(1).

NMASS — Number of mass points in the discrete distribution.   (Input)

PROBS — Vector of length NMASS containing probabilities associated with the
individual mass points.   (Input)
The elements of PROBS must be nonnegative and must sum to 1.0.

IWK — Index vector of length NMASS.   (Input, if IOPT = 1; output, if IOPT = 0)
IWK is a work vector.

WK — Index vector of length NMASS.   (Input, if IOPT = 1; output, if IOPT = 0)
WK is a work vector.

IR — Vector of length NR containing the random discrete deviates.   (Output)

Comments

1. In the interest of efficiency, this routine does only limited error checking
when IOPT = 1.

2. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

Algorithm

Routine RNGDA generates pseudorandom numbers from a discrete distribution
with probability function given in the vector PROBS; that is

Pr(X = i) = pM

for i = i$, i$ + 1, …, i$ + nP − 1 where j = i − i$ + 1, pM = PROBS(j),
i$ = IMIN, and nP = NMASS.

The algorithm is the alias method, due to Walker (1974), with modifications
suggested by Kronmal and Peterson (1979). The method involves a setup phase,
in which the vectors IWK and WK are filled. After the vectors are filled, the
generation phase is very fast.

Example 1

In this example, RNGDA is used to generate five pseudorandom variates from the
discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15
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When RNGDA is called the first time, IOPT is input as 0. This causes the work
arrays to be initialized. In the next call, IOPT is 1, so the setup phase is bypassed.

      INTEGER    NMASS, NR
      PARAMETER  (NMASS=5, NR=5)
C
      INTEGER    IMIN, IOPT, IR(NR), ISEED, IWK(NMASS), NOUT
      REAL       PROBS(NMASS), WK(NMASS)
      EXTERNAL   RNGDA, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      IMIN     = 1
      PROBS(1) = 0.05
      PROBS(2) = 0.45
      PROBS(3) = 0.31
      PROBS(4) = 0.04
      PROBS(5) = 0.15
      IOPT     = 0
      ISEED    = 123457
      CALL RNSET (ISEED)
      CALL RNGDA (NR, IOPT, IMIN, NMASS, PROBS, IWK, WK, IR)
      WRITE (NOUT,99998) IR
99998 FORMAT (’          Random deviates: ’, 5I4)
      IOPT = 1
      CALL RNGDA (NR, IOPT, IMIN, NMASS, PROBS, IWK, WK, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (’                           ’, 5I4)
      END

Output
Random deviates:    3   2   2   3   5
                    1   3   4   5   3

Example 2

In this example, RNGDA is used to generate five pseudorandom binomial variates
with parameters 20 and 0.5.

      INTEGER    NMASS, NR
      PARAMETER  (NMASS=21, NR=5)
C
      INTEGER    IMIN, IOPT, IR(NR), ISEED, IWK(NMASS), K, N, NOUT
      REAL       BINPR, P, PROBS(NMASS), WK(NMASS)
      EXTERNAL   BINPR, RNGDA, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      N    = 20
      P    = 0.5
      IMIN = 0
      DO 10  K=1, NMASS
         PROBS(K) = BINPR(K-1,N,P)
   10 CONTINUE
      IOPT  = 0
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNGDA (NR, IOPT, IMIN, NMASS, PROBS, IWK, WK, IR)
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      WRITE (NOUT,99999) IR
99999 FORMAT (’   Binomial (20, .5) deviates: ’, 5I4)
      END

Output
Binomial (20, .5) deviates:   12  10  16  12  11

RNGDS/DRNGDS (Single/Double precision)
Set up table to generate pseudorandom numbers from a general discrete
distribution.

Usage
CALL RNGDS (PRF, IOPT, DEL, NNDX, IMIN, NMASS, CUMPR,
            LCUMPR)

Arguments

PRF — User-supplied FUNCTION to compute the probability associated with
each mass point of the distribution. The form is PRF(IX), where

IX – Point at which the probability function is to be evaluated.   (Input)
IX can range from IMIN to the value at which the cumulative probability
is greater than or equal to 1.0 − DEL.
PRF – Value of the probability function at IX.   (Output)
PRF must be declared EXTERNAL in the calling program.

IOPT — Indicator of the extent to which CUMPR is initialized prior to calling
RNGDS.   (Input)

IOPT Action
0 RNGDS fills all of CUMPR, using PRF.
1 RNGDS fills only the index portion of CUMPR, using the values in the first

NMASS positions. PRF is not used and may be a dummy function; also,
IMIN and DEL are not used.

DEL — Maximum absolute error allowed in computing the cumulative
probability.   (Input)
Probabilities smaller than DEL are ignored; hence, DEL should be a small positive
number. If DEL is too small, however, CUMPR(NMASS) must be exactly 1.0 since
that value is compared to 1.0 − DEL.

NNDX — The number of elements of CUMPR available to be used as indexes.
(Input)
NNDX must be greater than or equal to 1. In general, the larger NNDX is, to within
sixty or seventy percent of NMASS, the more efficient the generation of random
numbers using RNGDS will be.

IMIN — Smallest value the random deviate can assume.   (Input/Output)
IMIN is not used if IOPT = 1. If IOPT = 0, PRF is evaluated at IMIN. If this
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value is less than DEL, IMIN is incremented by 1 and again PRF is evaluated at
IMIN. This process is continued until PRF(IMIN) ≥ DEL. IMIN is output as this
value and CUMPR(1) is output as PRF(IMIN).

NMASS — The number of mass points in the distribution.   (Input, if IOPT = 1;
output, if IOPT = 0)
If IOPT = 0, NMASS is the smallest integer such that PRF(IMIN + NMASS − 1) >
1.0 − DEL. NMASS does include the points IMIN(in) + j for which PRF(IMIN(in) +
j) < DEL, for j = 0, 1, …, IMIN(out) − IMIN(in), where IMIN(in) denotes the input
value of IMIN and IMIN(out) denotes its output value.

CUMPR — Vector of length NMASS + NNDX containing in the first NMASS
positions, the cumulative probabilities and in some of the remaining positions,
indexes to speed access to the probabilities.   (Output, if IOPT = 0; input/output,
otherwise)
CUMPR(NMASS + 1) + 1 is the actual number of index positions used.

LCUMPR — Dimension of CUMPR exactly as specified in the dimension
statement in the calling program.   (Input)
Since the logical length of CUMPR is determined in RNGDS, LCUMPR is used for
error checking.

Comments

1. Informational error
Type Code
   3    1 For some I, CUMPR(I) is computed to be less than 1.0

− DEL, and yet CUMPR(I + 1) − 1.0 is greater than 1.0 
− CUMPR(I + 1). In this case, the maximum value that
the random variable is allowed to take on is I; that is,
CUMPR(I) is set to 1.0.

2. The routine RNGDT (page 1181) uses the table set up by RNGDS to
generate random numbers from the distribution with CDF represented in
CUMPR.

Algorithm

Routine RNGDS sets up a table that routine RNGDT (page 1181) uses to generate
pseudorandom deviates from a discrete distribution. The distribution can be
specified either by its probability function PRF or by a vector of values of the
cumulative probability function. Note that PRF is not the cumulative probability
distribution function. If the cumulative probabilities are already available in
CUMPR, the only reason to call RNGDS is to form an index vector in the upper
portion of CUMPR so as to speed up the generation of random deviates by the
routine RNGDT.
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Example 1

In this example, RNGDS is used to set up a table to generate pseudorandom
variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

In this simple example, we input the cumulative probabilities directly in CUMPR
and request 3 indexes to be computed (NNDX = 4). Since the number of mass
points is so small, the indexes would not have much effect on the speed of the
generation of the random variates.

      INTEGER    LCUMPR
      PARAMETER  (LCUMPR=9)
C
      INTEGER    IMIN, IOPT, NMASS, NNDX, NOUT
      REAL       CUMPR(LCUMPR), DEL, PRF
      EXTERNAL   PRF, RNGDS, UMACH
C
      CALL UMACH (2, NOUT)
      NMASS    = 5
      CUMPR(1) = 0.05
      CUMPR(2) = 0.50
      CUMPR(3) = 0.81
      CUMPR(4) = 0.85
      CUMPR(5) = 1.00
      IOPT     = 1
      NNDX     = 4
      DEL      = 0.00001
      CALL RNGDS (PRF, IOPT, DEL, NNDX, IMIN, NMASS, CUMPR, LCUMPR)
      WRITE (NOUT,99999) CUMPR
99999 FORMAT (’   Cumulative probabilities and indexes: ’, /, 9F6.2)
      END
C
C                                 Dummy function
      REAL FUNCTION PRF (IX)
      INTEGER    IX
C
      RETURN
      END

Output
Cumulative probabilities and indexes:
0.05  0.50  0.81  0.85  1.00  3.00  1.00  2.00  5.00
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Example 2

This example, RNGDS is used to set up a table to generate binomial variates with
parameters 20 and 0.5. The routine BINPR (page 1110) is used to compute the
probabilities.

      INTEGER    LCUMPR
      PARAMETER  (LCUMPR=33)
C
      INTEGER    I, IMIN, IOPT, N, NMASS, NNDX, NOUT
      REAL       CUMPR(LCUMPR), DEL, P, PRF
      COMMON     /BINCOM/ N, P
      EXTERNAL   PRF, RNGDS, UMACH
C
      CALL UMACH (2, NOUT)
      N    = 20
      P    = 0.5
      IMIN = 0
      IOPT = 0
      NNDX = 12
      DEL  = 0.00001
      CALL RNGDS (PRF, IOPT, DEL, NNDX, IMIN, NMASS, CUMPR, LCUMPR)
      WRITE (NOUT,99998) IMIN, NMASS
99998 FORMAT (’ The smallest point with positive probability using ’,
     &       /, ’ the given DEL is ’, I1, ’ and all points after ’, /,
     &       ’ point number ’, I2, ’ (counting from the input value ’,
     &       /, ’ of IMIN) have zero probability.’)
      WRITE (NOUT,99999) (CUMPR(I),I=1,NMASS+NNDX)
99999 FORMAT (’ Cumulative probabilities and indexes: ’, /, (5X,8F8.4))
      END
C
C                                 Compute binomial probabilities
      REAL FUNCTION PRF (IX)
      INTEGER    IX
C
      INTEGER    N
      REAL       BINPR, P
      COMMON     /BINCOM/ N, P
      EXTERNAL   BINPR
C
      PRF = BINPR(IX,N,P)
      RETURN
      END

Output
The smallest point with positive probability using
the given DEL is 1 and all points after
point number 19 (counting from the input value
of IMIN) have zero probability.
Cumulative probabilities and indexes:
      0.0000  0.0002  0.0013  0.0059  0.0207  0.0577  0.1316  0.2517
      0.4119  0.5881  0.7483  0.8684  0.9423  0.9793  0.9941  0.9987
      0.9998  1.0000  1.0000 11.0000  1.0000  7.0000  8.0000  9.0000
      9.0000 10.0000 11.0000 11.0000 12.0000 13.0000 19.0000



IMSL STAT/LIBRARY Chapter 18: Random Number Generation • 1181

RNGDT/DRNGDT (Single/Double precision)
Generate pseudorandom numbers from a general discrete distribution using a
table lookup method.

Usage
CALL RNGDT (NR, IMIN, NMASS, CUMPR, IR)

Arguments

NR — Number of random numbers to generate.   (Input)

IMIN — Smallest value the random deviate can assume.   (Input)
This is the value corresponding to the probability in CUMPR(1).

NMASS — Number of mass points in the discrete distribution.   (Input)

CUMPR — Vector of length at least NMASS + 1 containing in the first NMASS
positions the cumulative probabilities and, possibly, indexes to speed access to
the probabilities.   (Input)
IMSL routine RNGDS (page 1177) can be used to initialize CUMPR properly. If no
elements of CUMPR are used as indexes, CUMPR(NMASS + 1) is 0.0 on input. The
value in CUMPR(1) is the probability of IMIN. The value in CUMPR(NMASS) must
be exactly 1.0 (since this is the CDF at the upper range of the distribution.

IR — Vector of length NR containing the random discrete deviates.   (Output)

Comments
1. Informational error

Type Code
   3    1 The value in CUMPR(NMASS) is not exactly 1.0, but it

was considered close enough to 1.0 that is was set to
that value.

2. In the interest of efficiency, this routine does only limited error
checking. If CUMPR is generated by the routine RNGDS (page 1177), the
error checking is sufficient.

3. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

Algorithm

Routine RNGDT generates pseudorandom deviates from a discrete distribution,
using the table CUMPR, which contains the cumulative probabilities of the
distribution and, possibly, indexes to speed the search of the table. The routine
RNGDS (page 1177) can be used to set up the table CUMPR. RNGDT uses the inverse
CDF method to generate the variates.
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Example 1

These examples are the same ones used for the routine RNGDS (page 1177). In this
first example, RNGDS is used to set up a table and then RNGDT is used to generate
five pseudorandom variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

The cumulative probabilities are input directly in CUMPR, and three indexes are
computed by RNGDS (NNDX = 4 ). Since the number of mass points is so small, the
indexes would not have much effect on the speed of the generation of the random
variates.

      INTEGER    LCUMPR, NR
      PARAMETER  (LCUMPR=9, NR=5)
C
      INTEGER    IMIN, IOPT, IR(NR), ISEED, NMASS, NNDX, NOUT
      REAL       CUMPR(LCUMPR), DEL, PRF
      EXTERNAL   PRF, RNGDS, RNGDT, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      IMIN     = 1
      NMASS    = 5
      CUMPR(1) = 0.05
      CUMPR(2) = 0.50
      CUMPR(3) = 0.81
      CUMPR(4) = 0.85
      CUMPR(5) = 1.00
      IOPT     = 1
      NNDX     = 4
      DEL      = 0.00001
C                                 Set up table
      CALL RNGDS (PRF, IOPT, DEL, NNDX, IMIN, NMASS, CUMPR, LCUMPR)
      ISEED = 123457
      CALL RNSET (ISEED)
C                                 Generate variates
      CALL RNGDT (NR, IMIN, NMASS, CUMPR, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (’ Discrete random deviates: ’, 5I4)
      END
C
C                                 Dummy function
      REAL FUNCTION PRF (IX)
      INTEGER    IX
C
      RETURN
      END

Output
Discrete random deviates:    5   2   3   3   4
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Example 2

In this example, RNGDS (page 1177) is used to set up a table and then RNGDT is
used to generate five pseudorandom variates from the binomial distribution with
parameters 20 and 0.5. The routine BINPR (page 1110) is used to compute the
probabilities.

      INTEGER    LCUMPR, NR
      PARAMETER  (LCUMPR=33, NR=5)
C
      INTEGER    IMIN, IOPT, IR(NR), ISEED, NMASS, NNDX, NOUT
      REAL       CUMPR(LCUMPR), DEL, PRF
      EXTERNAL   PRF, RNGDS, RNGDT, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      IMIN  = 0
      NMASS = 21
      IOPT  = 0
      NNDX  = 12
      DEL   = 0.00001
C                                 Set up table
      CALL RNGDS (PRF, IOPT, DEL, NNDX, IMIN, NMASS, CUMPR, LCUMPR)
      ISEED = 123457
      CALL RNSET (ISEED)
C                                 Generate variates
      CALL RNGDT (NR, IMIN, NMASS, CUMPR, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (’ Binomial (20, 0.5) random deviates: ’, 5I4)
      END
C
C                                 Compute binomial probabilities
      REAL FUNCTION PRF (IX)
      INTEGER    IX
C
      REAL       BINPR
      EXTERNAL   BINPR
C
      PRF = BINPR(IX,20,0.5)
      RETURN
      END

Output
Binomial (20, 0.5) random deviates:   14   9  12  10  12

RNGEO
Generate pseudorandom numbers from a geometric distribution.

Usage
CALL RNGEO (NR, P, IR)

Arguments

NR — Number of random numbers to generate.   (Input)
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P — Probability of success on each trial.   (Input)
P must be positive and less than 1.0.

IR — Vector of length NR containing the random geometric deviates.   (Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNGEO generates pseudorandom numbers from a geometric distribution
with parameter P, where P is the probability of getting a success on any trial. A
geometric deviate can be interpreted as the number of trials until the first success
(including the trial in which the first success is obtained). The probability
function is

f(x) = P(1 − P)[��

for x = 1, 2, … and 0 < P < 1

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than
log(UL)/log(1 − P ), where the UL are independent uniform (0, 1) random numbers
(see Knuth, 1981).

The geometric distribution is often defined on 0, 1, 2, …, with mean (1 − P)/P.
Such deviates can be obtained by subtracting 1 from each element of IR.

Example

In this example, RNGEO is used to generate five pseudorandom deviates from a
geometric distribution with parameter P equal to 0.3.

      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    IR(NR), ISEED, NOUT
      REAL       P
      EXTERNAL   RNGEO, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      P     = 0.3
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNGEO (NR, P, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (’ Geometric(0.3) random deviates: ’, 5I8)
      END
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Output
Geometric(0.3) random deviates:        1       4       1       2       1

RNHYP
Generate pseudorandom numbers from a hypergeometric distribution.

Usage
CALL RNHYP (NR, N, M, L, IR)

Arguments

NR — Number of random numbers to generate.   (Input)

N — Number of items in the sample.   (Input)
N must be positive.

M — Number of special items in the population, or lot.   (Input)
M must be positive.

L — Number of items in the lot.   (Input)
L must be greater than both N and M.

IR — Vector of length NR containing the random hypergeometric deviates.
(Output)
Each element of IR can be considered to be the number of special items in a
sample of size N drawn without replacement from a population of size L that
contains M such special items.

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNHYP generates pseudorandom numbers from a hypergeometric
distribution with parameters N, M, and L. The hypergeometric random variable X
can be thought of as the number of items of a given type in a random sample of
size N that is drawn without replacement from a population of size L containing
M items of this type. The probability function is

f x
x
M

N x
L M

N
L

0 5 3 83 8
3 8

=
−
−

for x = max(0, N − L + M), 1, 2, …, min(N, M)
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If the hypergeometric probability function with parameters N, M, and L evaluated
at N − L + M (or at 0 if this is negative) is greater than the machine epsilon
(AMACH(4) (Reference Material)), and less than 1.0 minus the machine epsilon,
then RNHYP uses the inverse CDF technique. The routine recursively computes
the hypergeometric probabilities, starting at
x = max(0, N − L + M) and using the ratio f (X = x + 1)/f(X = x) (see Fishman
1978, page 457).

If the hypergeometric probability function is too small or too close to 1.0, then
RNHYP generates integer deviates uniformly in the interval [1, L − i], for i = 0, 1, 
…; and at the i-th step, if the generated deviate is less than or equal to the number
of special items remaining in the lot, the occurrence of one special item is tallied
and the number of remaining special items is decreased by one. This process
continues until the sample size or the number of special items in the lot is
reached, whichever comes first. This method can be much slower than the inverse
CDF technique. The timing depends on N. If N is more than half of L (which in
practical examples is rarely the case), the user may wish to modify the problem,
replacing N by L − N, and to consider the deviates in IR to be the number of
special items not included in the sample.

Example

In this example, RNHYP is used to generate five pseudorandom deviates from a
hypergeometric distribution to simulate taking random samples of size 4 from a
lot containing 20 items of which 12 are defective. The resulting hypergeometric
deviates represent the numbers of defectives in each of the five samples of size 4.

      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    IR(NR), ISEED, L, M, N, NOUT
      EXTERNAL   RNHYP, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      N     = 4
      M     = 12
      L     = 20
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNHYP (NR, N, M, L, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (’   Hypergeometric random deviates: ’, 5I8)
      END

Output
Hypergeometric random deviates:        4       2       3       3       3

RNLGR
Generate pseudorandom numbers from a logarithmic distribution.
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Usage
CALL RNLGR (NR, A, IR)

Arguments

NR — Number of random numbers to generate.   (Input)

A — Parameter of the logarithmic distribution.   (Input)
A must be positive and less than 1.0.

IR — Vector of length NR containing the random logarithmic deviates.   (Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNLGR generates pseudorandom numbers from a logarithmic distribution
with parameter A. The probability function is

f x
a

x a

x

0 5 0 5= −
−ln 1

for x = 1, 2, 3, …, and 0 < a < 1.

The methods used are described by Kemp (1981) and depend on the value of A. If
A is less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of an
inverse CDF technique, is used. Otherwise, Kemp’s algorithm LK, which gives
special treatment to the highly probable values of 1 and 2, is used.

Example

In this example, RNLGR is used to generate 5 pseudo-random deviates from a
logarithmic distribution with parameter A equal to 0.3.

      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    IR(NR), ISEED, NOUT
      REAL       A
      EXTERNAL   RNLGR, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      A     = 0.3
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNLGR (NR, A, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (’  Logarithmic (0.3) random deviates: ’, 5I8)
      END
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Output
Logarithmic (0.3) random deviates:        2       1       1       1       2

RNNBN
Generate pseudorandom numbers from a negative binomial distribution.

Usage
CALL RNNBN (NR, RK, P, IR)

Arguments

NR — Number of random numbers to generate.   (Input)

RK — Negative binomial parameter.   (Input)
RK must be positive.

P — Probability of success on each trial.   (Input)
P must be greater than the machine epsilon, AMACH(4) (Reference Material) and
less than 1.0.

IR — Vector of length NR containing the random negative binomial deviates.
(Output)

Comments

1. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

2. If RK is an integer, the deviates in IR can be thought of as the number of
failures in a sequence of Bernoulli trials before RK successes occur.

Algorithm

Routine RNNBN generates pseudorandom numbers from a negative binomial
distribution with parameters RK and P. RK and P must be positive and P must be
less than 1. The probability function (with r = RK and p = P) is

f x
r x

x p pr x0 5 0 5=
+ −�

��
�
�� −

1
1

for x = 0, 1, 2, ….

If r is an integer, the distribution is often called the Pascal distribution and can be
thought of as modeling the length of a sequence of Bernoulli trials until r
successes are obtained, where p is the probability of getting a success on any trial.
In this form, the random variable takes values r, r + 1, r + 2, … and can be
obtained from the negative binomial random variable defined above by adding r
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to the negative binomial variable. This latter form is also equivalent to the sum of
r geometric random variables defined as taking values 1, 2, 3, … .

If rp/(1 − p) is less than 100 and (1 − p)U is greater than the machine epsilon,
RNNBN uses the inverse CDF technique; otherwise, for each negative binomial
deviate, RNNBN generates a gamma (r, p/(1 − p)) deviate Y and then generates a
Poisson deviate with parameter Y.

Example

In this example, RNNBN is used to generate five pseudorandom deviates from a
negative binomial (Pascal) distribution with parameter r equal to 4 and p equal to
0.3.

      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    IR(NR), ISEED, NOUT
      REAL       P, RK
      EXTERNAL   RNNBN, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      P     = 0.3
      RK    = 4.0
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNNBN (NR, RK, P, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (’ Negative binomial (4.0, 0.3) random deviates: ’, 5I4)
      END

Output
Negative binomial (4.0, 0.3) random deviates:    5   1   3   2   3

RNPOI
Generate pseudorandom numbers from a Poisson distribution.

Usage
CALL RNPOI (NR, THETA, IR)

Arguments

NR — Number of random numbers to generate.   (Input)

THETA — Mean of the Poisson distribution.   (Input)
THETA must be positive.

IR — Vector of length NR containing the random Poisson deviates.   (Output)
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Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNPOI generates pseudorandom numbers from a Poisson distribution
with parameter THETA. THETA, which is the mean of the Poisson random variable,
must be positive. The probability function (with θ = THETA) is

f(x) = e-q θ[/x!

for x = 0, 1, 2, …

If THETA is less than 15, RNPOI uses an inverse CDF method; otherwise the PTPE
method of Schmeiser and Kachitvichyanukul (1981) (see also Schmeiser 1983) is
used.

The PTPE method uses a composition of four regions, a triangle, a parallelogram,
and two negative exponentials. In each region except the triangle,
acceptance/rejection is used. The execution time of the method is essentially
insensitive to the mean of the Poisson.

Example

In this example, RNPOI is used to generate five pseudorandom deviates from a
Poisson distribution with mean equal to 0.5.

      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    IR(NR), ISEED, NOUT
      REAL       THETA
      EXTERNAL   RNPOI, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      THETA = 0.5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNPOI (NR, THETA, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (’   Poisson(0.5) random deviates: ’, 5I8)
      END

Output
   Poisson(0.5) random deviates:        2       0       1       0       1

RNUND
Generate pseudorandom numbers from a discrete uniform distribution.
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Usage
CALL RNUND (NR, K, IR)

Arguments

NR — Number of random numbers to generate.   (Input)

K — Parameter of the discrete uniform distribution.   (Input)
The integers 1, 2, …, K occur with equal probability. K must be positive.

IR — Vector of length NR containing the random discrete uniform deviates.
(Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNUND generates pseudorandom numbers from a discrete uniform
distribution over the integers 1, 2, …, K. A random integer is generated by
multiplying K by a uniform (0, 1) random number, adding 1.0, and truncating the
result to an integer. This, of course, is equivalent to sampling with replacement
from a finite population of size K. To do the equivalent of sampling without
replacement, the routine RNSRI (page 1241) can be used.

Example

In this example, RNUND is used to generate five pseudorandom deviates from a
discrete uniform distribution over the integers from 1 to 6.

      INTEGER    IR(5), ISEED, K, NOUT, NR
      EXTERNAL   RNSET, RNUND, UMACH
C
      CALL UMACH (2, NOUT)
      K     = 6
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNUND (NR, K, IR)
      WRITE (NOUT,99999) IR
99999 FORMAT (’  Discrete uniform (1,6) random deviates: ’, 5I7)
      END

Output
Discrete uniform (1,6) random deviates:       6      2      5      4      6

RNBET/DRNBET (Single/Double precision)
Generate pseudorandom numbers from a beta distribution.
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Usage
CALL RNBET (NR, PIN, QIN, R)

Arguments

NR — Number of random numbers to generate.   (Input)

PIN — First beta distribution parameter.   (Input)
PIN must be positive.

QIN — Second beta distribution parameter.   (Input)
QIN must be positive.

R — Vector of length NR containing the random standard beta deviates.   (Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNBET generates pseudorandom numbers from a beta distribution with
parameters PIN and QIN, both of which must be positive. With p = PIN and
q = QIN, the probability density function is

f x
p q

p q
x x xp q0 5 0 5

0 5 0 5 0 5=
+

− ≤ ≤− −Γ
Γ Γ

1 11 0 1for    

where Γ(⋅) is the gamma function.

The algorithm used depends on the values of p and q. Except for the trivial cases
of p = 1 or q = 1, in which the inverse CDF method is used, all of the methods use
acceptance/rejection. If p and q are both less than 1, the method of Johnk (1964)
is used; if either p or q is less than 1 and the other is greater than 1, the method of
Atkinson (1979) is used; if both p and q are greater than 1, algorithm BB of
Cheng (1978), which requires very little setup time, is used if NR is less than 4;
and algorithm B4PE of Schmeiser and Babu (1980) is used if NR is greater than or
equal to 4. Note that for p and q both greater than 1, calling RNBET in a loop
getting less than 4 variates on each call will not yield the same set of deviates as
calling RNBET once and getting all the deviates at once.

The values returned in R are less than 1.0 and greater than ε, where ε is the
smallest positive number such that 1.0 − ε is less than 1.0.

Example

In this example, RNBET is used to generate five pseudorandom beta (3, 2)
variates.
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      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    ISEED, NOUT
      REAL       PIN, QIN, R(NR)
      EXTERNAL   RNBET, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      PIN   = 3.0
      QIN   = 2.0
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNBET (NR, PIN, QIN, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’    Beta (3,2) random deviates: ’, 5F7.4)
      END

Output
Beta (3,2) random deviates:  0.2814 0.9483 0.3984 0.3103 0.8296

RNCHI/DRNCHI (Single/Double precision)
Generate pseudorandom numbers from a chi-squared distribution.

Usage
CALL RNCHI (NR, DF, R)

Arguments

NR — Number of random numbers to generate.   (Input)

DF — Degrees of freedom.   (Input)
DF must be positive.

R — Vector of length NR containing the random chi-squared deviates.   (Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNCHI generates pseudorandom numbers from a chi-squared distribution
with DF degrees of freedom. If DF is an even integer less than 17, the chi-squared
deviate r is generated as

r ui
i

n
= − ∏

=
2

1
ln( )
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where n = DF/2 and the uL are independent random deviates from a uniform (0, 1)
distribution. If DF is an odd integer less than 17, the chi-squared deviate is
generated in the same way, except the square of a normal deviate is added to the
expression above. If DF is greater than 16 or is not an integer, and if it is not too
large to cause overflow in the gamma random number generator, the chi-squared
deviate is generated as a special case of a gamma deviate, using routine RNGAM
(page 1198). If overflow would occur in RNGAM, the chi-squared deviate is
generated in the manner described above, using the logarithm of the product of
uniforms, but scaling the quantities to prevent underflow and overflow.

Example

In this example, RNCHI is used to generate five pseudorandom chi-squared
deviates with 5 degrees of freedom.

      INTEGER    ISEED, NOUT, NR
      REAL       DF, R(5)
      EXTERNAL   RNCHI, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      DF    = 5.0
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNCHI (NR, DF, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’  Chi-squared random deviates with 5 df: ’, 5F7.3)
      END

Output
  Chi-squared random deviates with 5 df:  12.090  0.481  1.798 14.871  1.748

RNCHY/DRNCHY (Single/Double precision)
Generate pseudorandom numbers from a Cauchy distribution.

Usage
CALL RNCHY (NR, R)

Arguments

NR — Number of random numbers to generate.   (Input)

R — Vector of length NR containing the random Cauchy deviates.   (Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.
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Algorithm

Routine RNCHY generates pseudorandom numbers from a standard Cauchy
distribution. The probability density function is

f x
x

0 5
3 8

=
+
1

1 2π

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform
(0, 1) deviate, u, as tan[π(u − .5)]. Rather than evaluating a tangent directly,
however, RNCHY generates two uniform (−1, 1) deviates, x1 and x2. These values
can be thought of as sine and cosine values. If

x x1
2

2
2+

is less than or equal to 1, then x1/x2 is delivered as the Cauchy deviate; otherwise,
x1 and x2 are rejected and two new uniform (−1, 1) deviates are generated. This
method is also equivalent to taking the ratio of two independent normal deviates.

Deviates from the Cauchy distribution with median T and first quartile T − S, that
is, with density

f x
S

S x T
0 5 0 5=

+ −π 2 2

can be obtained by scaling the output from RNCHY. The following statements (in
single precision) would yield random deviates from this Cauchy distribution.
CALL RNCHY (NR, R)
CALL SSCAL (NR, S, R, 1)
CALL SADD (NR, T, R, 1)

The Cauchy distribution is a member of the symmetric stable family of
distributions. The routine RNSTA (page 1209) can be used to generate deviates
from this more general family of distributions or even from the stable family not
requiring symmetry.

Example

In this example, RNCHY is used to generate five pseudorandom deviates from a
Cauchy distribution.

      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
      EXTERNAL   RNCHY, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNCHY (NR, R)
      WRITE (NOUT,99999) R



1196 • Chapter 18: Random Number Generation IMSL STAT/LIBRARY

99999 FORMAT (’      Cauchy random deviates: ’, 5F8.4)
      END

Output
Cauchy random deviates:   3.5765  0.9353 15.5797  2.0815 -0.1333

RNEXP/DRNEXP (Single/Double precision)
Generate pseudorandom numbers from a standard exponential distribution.

Usage
CALL RNEXP (NR, R)

Arguments

NR — Number of random numbers to generate.   (Input)

R — Vector of length NR containing the random standard exponential deviates.
(Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNEXP generates pseudorandom numbers from a standard exponential

distribution. The probability density function is f(x) = e-[; for x > 0. RNEXP uses
an antithetic inverse CDF technique; that is, a uniform random deviate U is
generated and the inverse of the exponential cumulative distribution function is
evaluated at 1.0 − U to yield the exponential deviate.

Deviates from the exponential distribution with mean THETA can be generated by
using RNEXP and then multiplying each entry in R by THETA. The following
statements (in single precision using the routine SSCAL (Reference Material))
would yield random deviates from such a distribution:
CALL RNEXP (NR, R)
CALL SSCAL (NR, THETA, R, 1)

Example

In this example, RNEXP is used to generate five pseudorandom deviates from a
standard exponential distribution.

      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
      EXTERNAL   RNEXP, RNSET, UMACH
C



IMSL STAT/LIBRARY Chapter 18: Random Number Generation • 1197

      CALL UMACH (2, NOUT)
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNEXP (NR, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’    Exponential random deviates: ’, 5F8.4)
      END

Output
Exponential random deviates:   0.0344  1.3443  0.2662  0.5633  0.1686

RNEXT/DRNEXT (Single/Double precision)
Generate pseudorandom numbers from a mixture of two exponential distributions.

Usage
CALL RNEXT (NR, THETA1, THETA2, P, R)

Arguments

NR — Number of random numbers to generate.   (Input)

THETA1 —  Mean of the exponential distribution that has the larger mean.
(Input)

THETA2 — Mean of the exponential distribution that has the smaller mean.
(Input)
THETA2 must be positive and less than or equal to THETA1.

P — Mixing parameter.   (Input)
P must be nonnegative and less than or equal to THETA1/(THETA1 − THETA2).

R — Vector of length NR containing the random deviates from a mixture of
exponentials.   (Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNEXT generates pseudorandom numbers from a mixture of two
exponential distributions. The probability density function is

f x
p

e
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θ θ
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where p = P, θ1 = THETA1, and θ2 = THETA2.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter p
is interpretable as a probability; and RNEXT with probability p generates an
exponential deviate with mean θ1, and with probability 1 − p generates an
exponential with mean θ2. When p is greater than 1, but less than θ1/(θ1 − θ2),
then either an exponential deviate with mean θ1or the sum of two exponentials
with means θ1 and θ2 is generated. The probabilities are q = p − (p −1)θ1/θ2 and 1 
− q, respectively, for the single exponential and the sum of the two exponentials.

Example

In this example, RNEXT is used to generate five pseudorandom deviates from a
mixture of exponentials with means 2 and 1, respectively, and with mixing
parameter 0.5.

      INTEGER    ISEED, NOUT, NR
      REAL       P, R(5), THETA1, THETA2
      EXTERNAL   RNEXT, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      THETA1 = 2.0
      THETA2 = 1.0
      P      = 0.5
      NR     = 5
      ISEED  = 123457
      CALL RNSET (ISEED)
      CALL RNEXT (NR, THETA1, THETA2, P, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’ Random deviates from a mixture of exponentials: ’, /,
     &       5X, 5F8.4)
      END

Output
Random deviates from a mixture of exponentials:
      0.0700  1.3024  0.6301  1.9756  0.3716

RNGAM/DRNGAM (Single/Double precision)
Generate pseudorandom numbers from a standard gamma distribution.

Usage
CALL RNGAM (NR, A, R)

Arguments

NR — Number of random numbers to generate.   (Input)

A — The shape parameter of the gamma distribution.   (Input)
This parameter must be positive.
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R — Vector of length NR containing the random standard gamma deviates.
(Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNGAM generates pseudorandom numbers from a gamma distribution with
shape parameter a and unit scale parameter. The probability density function is

f x
a

x e xa x0 5 0 5= ≥− −1
01

Γ
for   

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates
are used; and for the special case of a = 1.0, exponential deviates (from IMSL
routine RNEXP, page 1196) are used. Otherwise, if a is less than 1.0, an
acceptance-rejection method due to Ahrens, described in Ahrens and Dieter
(1974), is used; if a is greater than 1.0, a ten-region rejection procedure
developed by Schmeiser and Lal (1980) is used.

Deviates from the two-parameter gamma distribution with shape parameter a and
scale parameter b can be generated by using RNGAM and then multiplying each
entry in R by b. The following statements (in single precision) would yield
random deviates from a gamma (a, b) distribution.
CALL RNGAM (NR, A, R)

CALL SSCAL (NR, B, R, 1)

The Erlang distribution is a standard gamma distribution with the shape parameter
having a value equal to a positive integer; hence, RNGAM generates pseudorandom
deviates from an Erlang distribution with no modifications required.

Example

In this example, RNGAM is used to generate five pseudorandom deviates from a
gamma (Erlang) distribution with shape parameter equal to 3.0.

      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    ISEED, NOUT
      REAL       A, R(NR)
      EXTERNAL   RNGAM, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      A     = 3.0
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      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNGAM (NR, A, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’  Gamma(3) random deviates: ’, 5F8.4)
      END

Output
Gamma(3) random deviates:   6.8428  3.4452  1.8535  3.9992  0.7794

RNGCS/DRNGCS (Single/Double precision)
Set up table to generate pseudorandom numbers from a general continuous
distribution.

Usage
CALL RNGCS (CDF, IOPT, NDATA, TABLE, LDTABL)

Arguments

CDF — User-supplied FUNCTION to compute the cumulative distribution
function. The form is CDF(X), where

X — Point at which the distribution function is to be evaluated.   (Input)
CDF — Value of the distribution function at X.   (Output)

CDF must be declared EXTERNAL in the calling program.

IOPT — Indicator of the extent to which TABLE is initialized prior to calling
RNGCS.   (Input)

IOPT Action
0 RNGCS fills the last four columns of TABLE. The user inputs the points at

which the CDF is to be evaluated in the first column of TABLE. These
must be in ascending order.

1 RNGCS fills the last three columns of TABLE. CDF is not used and may be
a dummy function; instead, the cumulative distribution function is
specified in the first two columns of TABLE. The abscissas (in the first
column) must be in ascending order and the function must be strictly
monotonically increasing.

NDATA — Number of points at which the CDF is evaluated for interpolation.
(Input)
NDATA must be greater than or equal to 4.

TABLE — NDATA by 5 table to be used for interpolation of the cumulative
distribution function.   (Input and output)
The first column of TABLE contains abscissas of the cumulative distribution
function in ascending order, the second column contains the values of the CDF
(which must be strictly increasing), and the remaining columns contain values
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 used in interpolation. The first row of TABLE corresponds to the left limit of the
support of the distribution and the last row corresponds to the right limit of the
support; that is, TABLE(1, 2) = 0.0 and TABLE(NDATA, 2) = 1.0.

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement in the calling program.   (Input)

Comments
1. Informational error

Type Code
   3    1 The values in TABLE(1, 2) and/or TABLE(NDATA, 2)

are not exactly 0.0 and 1.0, respectively, but they are
considered close enough to these values that they are
set to these values.

2. The routine RNGCT (page 1202) uses the table set up by RNGCS to
generate random numbers from the distribution with CDF represented in
TABLE.

Algorithm

Routine RNGCS sets up a table that routine RNGCT (page 1202) can use to generate
pseudorandom deviates from a continuous distribution. The distribution is
specified by its cumulative distribution function, which can be supplied either in
tabular form in TABLE or by a FORTRAN function CDF. See the documentation
for the routine RNGCT for a description of the method.

Example

In this example, RNGCS is used to set up a table to generate pseudorandom
variates from a beta distribution. This example is continued in the documentation
for routine RNGCT (page 1202) to generate the random variates.

      INTEGER    LDTABL
      PARAMETER  (LDTABL=100)
C
      INTEGER    I, IOPT, NINT, NOUT
      REAL       CDF, PIN, QIN, TABLE(LDTABL,5), X
      COMMON     /BCOM/ PIN, QIN
      EXTERNAL   CDF, RNGCS, UMACH
C
      CALL UMACH (2, NOUT)
      PIN  = 3.0
      QIN  = 2.0
      IOPT = 0
      NINT = 100
      X    = 0.0
C                                 Fill the first column of the table
C                                 with abscissas for interpolation.
      DO 10  I=1, NINT
         TABLE(I,1) = X
         X          = X + 0.01
   10 CONTINUE
      CALL RNGCS (CDF, IOPT, NINT, TABLE, LDTABL)
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      WRITE (NOUT,99999) (TABLE(I,1),TABLE(I,2),I=1,10)
99999 FORMAT (’   First few elements of the table: ’, F4.2, F8.4, /,
     &       (36X,F4.2,F8.4))
      END
C
C                                 Beta distribution function
      REAL FUNCTION CDF (X)
      REAL       X
C
      REAL       BETDF, PIN, QIN
      COMMON     /BCOM/ PIN, QIN
      EXTERNAL   BETDF
C
      CDF = BETDF(X,PIN,QIN)
      RETURN
      END

Output
*** WARNING  ERROR 1 from RNGCS.  The values of the CDF in the second
***          column of TABLE did not begin at 0.0 and end at 1.0, but they
***          have been adjusted. Prior to adjustment,
***          TABLE(1,2) = 0.000000E+00 and TABLE(NDATA,2) = 9.994079E-01.
  First few elements of the table: 0.00  0.0000
                                   0.01  0.0000
                                   0.02  0.0000
                                   0.03  0.0001
                                   0.04  0.0002
                                   0.05  0.0005
                                   0.06  0.0008
                                   0.07  0.0013
                                   0.08  0.0019
                                   0.09  0.0027

RNGCT/DRNGCT (Single/Double precision)
Generate pseudorandom numbers from a general continuous distribution.

Usage

CALL RNGCT (NR, NDATA, TABLE, LDTABL, R)

Arguments

NR — Number of random numbers to generate.   (Input)

NDATA — Number of points at which the cumulative distribution function is
evaluated for interpolation.   (Input)
NDATA must be greater than or equal to 4.

TABLE — NDATA by 5 table to be used for interpolation of the cumulative
distribution function.   (Input)
The first column of TABLE contains abscissas of the cumulative distribution
function in ascending order, the second column contains the values of the CDF
(which must be strictly increasing beginning with 0.0 and ending at 1.0) and the
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remaining columns contain values used in interpolation. This table is set up using
routine RNGCS (page 1200).

LDTABL — Leading dimension of TABLE exactly as specified in the dimension
statement in the calling program.   (Input)

R — Vector of length NR containing the random deviates.   (Output)

Comments

1. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

2. In the interest of efficiency, this routine does only limited error
checking. If TABLE is generated by the routine RNGCS (page 1200), the
error checking is sufficient.

Algorithm

Routine RNGCT generates pseudorandom numbers from a continuous distribution
using the inverse CDF technique, by interpolation of points of the distribution
function given in TABLE, which is set up by routine RNGCS (page 1200). A strictly
monotone increasing distribution function is assumed. The interpolation is by an
algorithm attributable to Akima (1970), using piecewise cubics. The use of this
technique for generation of random numbers is due to Guerra, Tapia, and
Thompson (1976), who give a description of the algorithm and accuracy
comparisons between this method and linear interpolation. The relative errors
using the Akima interpolation are generally considered very good.

Example

In this example, RNGCS (page 1200) is used to set up a table for generation of
beta pseudorandom deviates. The CDF for this distribution is computed by the
routine BETDF (page 1125). The table contains 100 points at which the CDF is
evaluated and that are used for interpolation.

      INTEGER    LDTABL, NR
      PARAMETER  (LDTABL=100, NR=5)
C
      INTEGER    I, IOPT, ISEED, NINT, NOUT
      REAL       CDF, PIN, QIN, R(NR), TABLE(LDTABL,5), X
      COMMON     /BCOM/ PIN, QIN
      EXTERNAL   CDF, RNGCS, RNGCT, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      PIN  = 3.0
      QIN  = 2.0
      IOPT = 0
      NINT = 100
      X    = 0.0
C                                 Fill the first column of the table
C                                 with abscissas for interpolation.
      DO 10  I=1, NINT
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         TABLE(I,1) = X
         X          = X + 0.01
   10 CONTINUE
      CALL RNGCS (CDF, IOPT, NINT, TABLE, LDTABL)
C                                 Initialize seed of random number
C                                 generator.
      ISEED = 123457
      CALL RNSET (ISEED)
C                                 Now generate the random deviates.
      CALL RNGCT (NR, NINT, TABLE, LDTABL, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’  Beta (3,2) random deviates: ’, 5F7.4)
      END
C
C                                 Beta distribution function
      REAL FUNCTION CDF (X)
      REAL       X
C
      REAL       BETDF, PIN, QIN
      COMMON     /BCOM/ PIN, QIN
      EXTERNAL   BETDF
C
      CDF = BETDF(X,PIN,QIN)
      RETURN
      END

Output
*** WARNING  ERROR 1 from RNGCS.  The values of the CDF in the second
***          column of TABLE did not begin at 0.0 and end at 1.0, but they
***          have been adjusted. Prior to adjustment,
***          TABLE(1,2) = 0.000000E+00 and TABLE(NDATA,2) = 9.994079E-01.
 Beta (3,2) random deviates:  0.9208 0.4641 0.7668 0.6536 0.8171

RNLNL/DRNLNL (Single/Double precision)
Generate pseudorandom numbers from a lognormal distribution.

Usage
CALL RNLNL (NR, XM, S, R)

Arguments

NR — Number of random numbers to generate.   (Input)

XM — Mean of the underlying normal distribution.   (Input)

S — Standard deviation of the underlying normal distribution.   (Input)
S must be positive.

R — Vector of length NR containing the random lognormal deviates.   (Output)
The log of each element of R has a normal distribution with mean XM and standard
deviation S.
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Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNLNL generates pseudorandom numbers from a lognormal distribution
with parameters XM and S. The scale parameter in the underlying normal
distribution, S, must be positive. The method is to generate normal deviates with
mean XM and standard deviation S and then to exponentiate the normal deviates.

With µ = XM and σ = S, the probability density function for the lognormal
distribution is
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The mean and variance of the lognormal distribution are exp(µ + σ2/2) 

and exp(2µ + 2σ2) − exp(2µ + σ2), respectively.

Example

In this example, RNLNL is used to generate five pseudorandom lognormal deviates
with µ = 0 and σ = 1.

      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    ISEED, NOUT
      REAL       R(NR), S, XM
      EXTERNAL   RNLNL, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      XM    = 0.0
      S     = 1.0
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNLNL (NR, XM, S, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’  Lognormal random deviates: ’, 5F8.4)
      END

Output
Lognormal random deviates:   7.7801  2.9543  1.0861  3.5885  0.2935

RNNOA/DRNNOA (Single/Double precision)
Generate pseudorandom numbers from a standard normal distribution using an
acceptance/rejection method.
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Usage
CALL RNNOA (NR, R)

Arguments

NR — Number of random numbers to generate.   (Input)

R — Vector of length NR containing the random standard normal deviates.
(Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNNOA generates pseudorandom numbers from a standard normal
(Gaussian) distribution using an acceptance/rejection technique due to Kinderman
and Ramage (1976). In this method, the normal density is represented as a
mixture of densities over which a variety of acceptance/rejection methods due to
Marsaglia (1964), Marsaglia and Bray (1964), and Marsaglia, MacLaren, and
Bray (1964) are applied. This method is faster than the inverse CDF technique
used in RNNOR (page 1208) to generate standard normal deviates.

Deviates from the normal distribution with mean XM and standard deviation XSTD

can be obtained by scaling the output from RNNOA. The following statements (in
single precision) would yield random deviates from a normal (XM, XSTD**2)
distribution.
CALL RNNOA (NR, R)
CALL SSCAL (NR, XSTD, R, 1)
CALL SADD (NR, XM, R, 1)

Example

In this example, RNNOA is used to generate five pseudorandom deviates from a
standard normal distribution.

      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
      EXTERNAL   RNNOA, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNNOA (NR, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’  Standard normal random deviates: ’, 5F8.4)
      END
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Output
Standard normal random deviates:   2.0516  1.0833  0.0826  1.2777 -1.2260

RNNOF/DRNNOF (Single/Double precision)
Generate a pseudorandom number from a standard normal distribution.

Usage
RNNOF ()

Argument

RNNOF — Function value, a random standard normal deviate.   (Output)

Comments

1. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

2. This function has a side effect: it changes the value of the seed, which is
passed through a common block.

Algorithm

Routine RNNOF is the function form of RNNOR. If several standard normal deviates
are needed, it may be more efficient to obtain them all at once by a call to RNNOR,
rather than by several references to RNNOF.

Example

In this example, RNNOF is used to generate five pseudorandom standard normal
numbers.

      INTEGER    I, ISEED, NOUT, NR
      REAL       R(5), RNNOF
      EXTERNAL   RNNOF, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      ISEED = 123457
      CALL RNSET (ISEED)
      DO 10  I=1, NR
         R(I) = RNNOF()
   10 CONTINUE
      WRITE (NOUT,99999) R
99999 FORMAT (’  Standard normal random deviates: ’, 5F8.4)
      END

Output
Standard normal random deviates:   0.0000  0.0000  0.0000  0.0000  0.0000
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RNNOR/DRNNOR (Single/Double precision)
Generate pseudorandom numbers from a standard normal distribution using an
inverse CDF method.

Usage
CALL RNNOR (NR, R)

Arguments

NR — Number of random numbers to generate.   (Input)

R — Vector of length NR containing the random standard normal deviates.
(Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNNOR generates pseudorandom numbers from a standard normal
(Gaussian) distribution using an inverse CDF technique. In this method, a
uniform (0,1) random deviate is generated and then the inverse of the normal
distribution function is evaluated at that point, using the routine ANORIN

(page 1124). This method is slower than the acceptance/rejection technique used
in the routine RNNOA (page 1205) to generate standard normal deviates. Deviates
from the normal distribution with mean XM and standard deviation XSTD can be
obtained by scaling the output from RNNOR. The following statements (in single
precision, using the routines SSCAL (IMSL MATH/LIBRARY) and SADD
(IMSL MATH/LIBRARY).) would yield random deviates from a normal (XM,
XSTD**2) distribution.

CALL RNNOR (NR, R)
CALL SSCAL (NR, XSTD, R, 1)
CALL SADD (NR, XM, R, 1)

Example

In this example, RNNOR is used to generate five pseudorandom deviates from a
standard normal distribution.

      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
      EXTERNAL   RNNOR, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
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      CALL RNNOR (NR, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’  Standard normal random deviates: ’, 5F8.4)
      END

Output
Standard normal random deviates:   1.8279 -0.6412  0.7266  0.1747  1.0145

RNSTA/DRNSTA (Single/Double precision)
Generate pseudorandom numbers from a stable distribution.

Usage
CALL RNSTA (NR, ALPHA, BPRIME, R)

Arguments

NR — Number of random numbers to generate.   (Input)

ALPHA — Characteristic exponent of the stable distribution.   (Input)
This parameter must be positive and less than or equal to 2.

BPRIME — Skewness parameter of the stable distribution.   (Input)
When BPRIME = 0, the distribution is symmetric. Unless ALPHA = 1, BPRIME is
not the usual skewness parameter of the stable distribution. BPRIME must be
greater than or equal to − 1 and less than or equal to 1.

R — Vector of length NR containing the random stable deviates.   (Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNSTA generates pseudorandom numbers from a stable distribution with
parameters ALPHA and BPRIME. ALPHA is the usual characteristic exponent
parameter α and BPRIME is related to the usual skewness parameter β of the
stable distribution. With the restrictions 0 < α ≤ 2 and − 1 ≤ β ≤ 1, the
characteristic function of the distribution is

ϕ(t) = exp[−| t |a exp(−πiβ(1 − |1 − α|)sign(t)/2)]   for α ≠ 1

and

ϕ(t) = exp[−| t |(1 + 2iβ ln| t |)sign(t)/π)]   for α = 1

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution is
normal with mean 0 and variance 2; and if α = 1, the distribution is Cauchy.
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The parameterization using BPRIME and the algorithm used here are due to
Chambers, Mallows, and Stuck (1976). The relationship between BPRIME = β′
and the standard β is

β′ = −tan(π(1 − α)/2) tan(−πβ(1 − |1 − α|)/2) for α ≠ 1

and

β′ = β for α = 1

The algorithm involves formation of the ratio of a uniform and an exponential
random variate.

Example

In this example, RNSTA is used to generate five pseudorandom symmetric stable
variates with characteristic exponent 1.5. The tails of this distribution are heavier
than those of a normal distribution, but not so heavy as those of a Cauchy
distribution. The variance of this distribution does not exist, however. (This is the
case for any stable distribution with characteristic exponent less than 2.)

      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    ISEED, NOUT
      REAL       ALPHA, BPRIM, R(NR)
      EXTERNAL   RNSET, RNSTA, UMACH
C
      CALL UMACH (2, NOUT)
      ALPHA = 1.5
      BPRIM = 0.0
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNSTA (NR, ALPHA, BPRIM, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’ Stable random deviates: ’, 5F9.4)
      END

Output
Stable random deviates:    4.4091   1.0564   2.5463   5.6724   2.1656

RNSTT/DRNSTT (Single/Double precision)
Generate pseudorandom numbers from a Student’s t distribution.

Usage
CALL RNSTT (NR, DF, R)

Arguments

NR — Number of random numbers to generate.   (Input)
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DF — Degrees of freedom.   (Input)
DF must be positive.

R — Vector of length NR containing the random Student’s t deviates.   (Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNSTT generates pseudo-random numbers from a Student’s t distribution
with DF degrees of freedom, using a method suggested by Kinderman, Monahan,
and Ramage (1977). The method (“TMX” in the reference) involves a
representation of the t density as the sum of a triangular density over (−2, 2) and
the difference of this and the t density. The mixing probabilities depend on the
degrees of freedom of the t distribution. If the triangular density is chosen, the
variate is generated as the sum of two uniforms; otherwise, an
acceptance/rejection method is used to generate a variate from the difference
density.

For degrees of freedom less than 100, RNSTT requires approximately twice the
execution time as routine RNNOA (page 1205) which generates pseudorandom
normal deviates. The execution time of RNSTT increases very slowly as the
degrees of freedom increase. Since for very large degrees of freedom the normal
distribution and the t distribution are very similar, the user may find that the
difference in the normal and the t does not warrant the additional generation time
required to use RNSTT instead of RNNOA.

Example

In this example, RNSTT is used to generate 5 pseudo-random t variates with 10
degrees of freedom.

      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    ISEED, NOUT
      REAL       DF, R(NR)
      EXTERNAL   RNSET, RNSTT, UMACH
C
      CALL UMACH(2, NOUT)
      DF = 10.0
      ISEED = 123457
      CALL RNSET(ISEED)
      CALL RNSTT(NR, DF, R)
      WRITE(NOUT, 99999) R
99999 FORMAT (’  t (10) random deviates: ’, 5F8.4)
      END
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Output
t (10) random deviates:   0.6152  1.1528  0.0881  1.3382 -0.9893

RNTRI/DRNTRI (Single/Double precision)
Generate pseudorandom numbers from a triangular distribution on the interval (0,
1).

Usage
CALL RNTRI (NR, R)

Arguments

NR — Number of random numbers to generate.   (Input)

R — Vector of length NR containing the random triangular deviates.   (Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNTRI generates pseudorandom numbers from a triangular distribution
over the unit interval. The probability density function is f(x) = 4x, for
0 ≤ x ≤ .5, and f (x) = 4(1 − x), for .5 < x ≤ 1. RNTRI uses an inverse CDF
technique.

Example

In this example, RNTRI is used to generate five pseudorandom deviates from a
triangular distribution.

      INTEGER    ISEED, NOUT, NR
      REAL       R(5)
      EXTERNAL   RNSET, RNTRI, UMACH
C
      CALL UMACH (2, NOUT)
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNTRI (NR, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’    Triangular random deviates: ’, 5F8.4)
      END

Output
Triangular random deviates:   0.8700  0.3610  0.6581  0.5360  0.7215
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RNVMS/DRNVMS (Single/Double precision)
Generate pseudorandom numbers from a von Mises distribution.

Usage
CALL RNVMS (NR, C, R)

Arguments

NR — Number of random numbers to generate.   (Input)

C — Parameter of the von Mises distribution.   (Input)
This parameter must be greater than one half of machine epsilon. (On many

machines, the lower bound for C is 10-3.)

R — Vector of length NR containing the random von Mises deviates.   (Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNVMS generates pseudorandom numbers from a von Mises distribution
with parameter C, which must be positive. With c = C, the probability density
function is

f x
I c
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where I0(c) is the modified Bessel function of the first kind of order 0. The
probability density equals 0 outside the interval (−π, π).

The algorithm is an acceptance/rejection method using a wrapped Cauchy
distribution as the majorizing distribution. It is due to Best and Fisher (1979).

Example

In this example, RNVMS is used to generate five pseudorandom von Mises variates
with c = 1.

      INTEGER    NR
      PARAMETER  (NR=5)
C
      INTEGER    ISEED, NOUT
      REAL       C, R(NR)
      EXTERNAL   RNSET, RNVMS, UMACH
C
      CALL UMACH (2, NOUT)
      C     = 1.0
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      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNVMS (NR, C, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’  Von Mises random deviates: ’, 5F8.4)
      END

Output
Von Mises random deviates:   0.2472 -2.4326 -1.0216 -2.1722 -0.5029

RNWIB/DRNWIB (Single/Double precision)
Generate pseudorandom numbers from a Weibull distribution.

Usage
CALL RNWIB (NR, A, R)

Arguments

NR — Number of random numbers to generate.   (Input)

A — The shape parameter of the Weibull distribution.   (Input)
This parameter must be positive.

R — Vector of length NR containing the random Weibull deviates.   (Output)

Comments

1. Informational error
Type Code
   3    1 The value of A is so small that the proportion of values

from the Weibull that are too large to represent is
greater than machine epsilon.

2. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

Algorithm

Routine RNWIB generates pseudorandom numbers from a Weibull distribution
with shape parameter A and unit scale parameter. The probability density function
is

f x Ax e xA x A0 5 = ≥− −1 0for  

Routine RNWIB uses an antithetic inverse CDF technique to generate a Weibull
variate; that is, a uniform random deviate U is generated and the inverse of the
Weibull cumulative distribution function is evaluated at 1.0 − U to yield the
Weibull deviate.
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Deviates from the two-parameter Weibull distribution with shape parameter A and
scale parameter B can be generated by using RNWIB and then multiplying each
entry in R by B. The following statements (using routine SSCAL
(IMSL MATH/LIBARY) in single precision) would yield random deviates from a
two-parameter Weibull distribution.

CALL RNWIB (NR, A, R)

CALL SSCAL (NR, B, R, 1)

The Rayleigh distribution with probability density function,

r x x e x
x0 5 4 9= ≥
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is the samep as a Weibull distribution with shape parameter A equal to 2 and scale
parameter B equal to

2α
hence, RNWIB and SSCAL (or simple multiplication) can be used to generate
Rayleigh deviates.

Example

In this example, RNWIB is used to generate five pseudorandom deviates from a
two-parameter Weibull distribution with shape parameter equal to 2.0 and scale
parameter equal to 6.0, a Rayleigh distribution with parameter

  =   α 3 2
      INTEGER    ISEED, NOUT, NR
      REAL       A, B, R(5)
      EXTERNAL   RNSET, RNWIB, SSCAL, UMACH
C
      CALL UMACH (2, NOUT)
      A     = 2.0
      B     = 6.0
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNWIB (NR, A, R)
      CALL SSCAL (NR, B, R, 1)
      WRITE (NOUT,99999) R
99999 FORMAT (’      Weibull(2,6) random deviates: ’, 5F8.4)
      END

Output
Weibull(2,6) random deviates:   1.1122  6.9568  3.0959  4.5031  2.4638

RNCOR/DRNCOR (Single/Double precision)
Generate a pseudorandom orthogonal matrix or a correlation matrix.
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Usage
CALL RNCOR (N, IOPT, EV, A, LDA, COR, LDCOR)

Arguments

N — The order of the matrices to be generated.   (Input)
N must be at least two.
IOPT — Option indicator.   (Input)

IOPT Action
0 A random orthogonal matrix is generated in A.
1 A random correlation matrix is generated in COR. (A is used as

workspace.)
2 A random correlation matrix is generated in COR using the orthogonal

matrix input in A.

EV — If IOPT = 1 or 2, a vector of length N containing the eigenvalues of the
correlation matrix to be generated.   (Input, if IOPT = 1 or 2; not used otherwise.)
The elements of EV must be positive, they must sum to N, and they cannot all be
equal.

A — N by N random orthogonal matrix.   (Output, if IOPT = 0; workspace if IOPT
= 1; input/output, if IOPT = 2. If IOPT = 2, A is destroyed.)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

COR — N by N random correlation matrix.   (Output, if IOPT = 1 or 2; not used
otherwise.)

LDCOR — Leading dimension of COR exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Automatic workspace usage is

RNCOR 4 * N units, or
DRNCOR 5 * N units.

Workspace may be explicitly provided, if desired, by use of
R2COR/DR2COR. The reference is

CALL R2COR (N, IOPT, EV, A, LDA, COR, LDCOR, IWK,
            WK)

The additional arguments are as follows:

IWK — Work vector of length 3 * N.

WK — Work vector of length N.

2. Informational error
Type Code
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   3    1 Considerable loss of precision occurred in the
rotations used to form the correlation matrix. Some of
the diagonals of COR differ from 1.0 by more than the
machine epsilon.

3. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

Algorithm

Routine RNCOR generates a pseudorandom orthogonal matrix A from the invariant
Haar measure. For each column of A, a random vector from a uniform distribution
on a hypersphere is selected and then is projected onto the orthogonal
complement of the columns of A already formed. The method is described by
Heiberger (1978). (See also Tanner and Thisted 1982.)

A correlation matrix is formed by applying a sequence of planar rotations to the

matrix A7 DA, where D = diag(EV(1), …,EV(N)), so as to yield ones along the
diagonal. The planar rotations are applied in such an order that in the two by two
matrix that determines the rotation, one diagonal element is less than 1.0 and one
is greater than 1.0. This method is discussed by Bendel and Mickey (1978) and
by Lin and Bendel (1985).

The distribution of the correlation matrices produced by this method is not
known. Bendel and Mickey (1978) and Johnson and Welch (1980) discuss the
distribution.

For larger matrices, rounding can become severe; and the double precision results
may differ significantly from single precision results.

Example

In this example, RNCOR is used to generate a 4 by 4 pseudorandom correlation
matrix with eigenvalues in the ratio 1:2:3:4. (Note that the eigenvalues must sum
to 4.) Routines MXTXF (IMSL MATH/LIBRARY) and EVCSF (IMSL
MATH/LIBRARY) are used to check the output.

      INTEGER    I, IOPT, ISEED, J, LDA, LDCOR, N, NOUT
      REAL       A(4,4), COR(4,4), EV(4), EVAL(4), EVEC(4,4), FLOAT,
     &           SSUM, SUM, XID(4,4)
      INTRINSIC  FLOAT
      EXTERNAL   EVCSF, MXTXF, RNCOR, RNSET, SSCAL, SSUM, UMACH
C
      CALL UMACH (2, NOUT)
      N     = 4
      LDA   = 4
      LDCOR = 4
      EV(1) = 1.0
      EV(2) = 2.0
      EV(3) = 3.0
      EV(4) = 4.0
C                                 Scale the eigenvalues to sum to N.
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      SUM = SSUM(N,EV,1)
      CALL SSCAL (N, FLOAT(N)/SUM, EV, 1)
      ISEED = 123457
      CALL RNSET (ISEED)
C                                 Generate an orthogonal matrix.
      IOPT = 0
      CALL RNCOR (N, IOPT, EV, A, LDA, COR, LDCOR)
      WRITE (NOUT,99996) ((A(I,J),J=1,N),I=1,N)
99996 FORMAT (’ A random orthogonal matrix: ’, /, (5X,4F8.4))
C                                 Check it for orthogonality.
      CALL MXTXF (N, N, A, LDA, N, XID, LDA)
      WRITE (NOUT,99997) ((XID(I,J),J=1,N),I=1,N)
99997 FORMAT (’ The identity matrix?:       ’, /, (5X,4F8.4))
C
C                                 Now get a correlation matrix using
C                                 the orthogonal matrix in A, which
C                                 will be destroyed.
      IOPT = 2
      CALL RNCOR (N, IOPT, EV, A, LDA, COR, LDCOR)
      WRITE (NOUT,99998) ((COR(I,J),J=1,N),I=1,N)
99998 FORMAT (’ A random correlation matrix: ’, /, (5X,4F8.4))
C                                 Check the eigenvalues.
      CALL EVCSF (N, COR, LDCOR, EVAL, EVEC, LDCOR)
      WRITE (NOUT,99999) (EVAL(I),I=1,N)
99999 FORMAT (’ The computed eigenvalues:’, 4F8.4)
      END

Output
A random orthogonal matrix:
      -0.8804 -0.2417  0.4065 -0.0351
       0.3088 -0.3002  0.5520  0.7141
      -0.3500  0.5256 -0.3874  0.6717
      -0.0841 -0.7584 -0.6165  0.1941
The identity matrix?:
       1.0000  0.0000  0.0000  0.0000
       0.0000  1.0000  0.0000  0.0000
       0.0000  0.0000  1.0000  0.0000
       0.0000  0.0000  0.0000  1.0000
A random correlation matrix:
       1.0000 -0.2358 -0.3258 -0.1101
      -0.2358  1.0000  0.1906 -0.0172
      -0.3258  0.1906  1.0000 -0.4353
      -0.1101 -0.0172 -0.4353  1.0000
The computed eigenvalues:  1.6000  1.2000  0.8000  0.4000

RNDAT/DRNDAT (Single/Double precision)
Generate pseudorandom numbers from a multivariate distribution determined
from a given sample.

Usage
CALL RNDAT (IDO, NR, K, NSAMP, X, LDX, NN, R, LDR)
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Arguments
IDO — Generator option.   (Input)

IDO Action
0 This is the only invocation of RNDAT with the sample in X and all desired

pseudorandom numbers are to be generated in this call.
1 This is the first invocation, and additional calls to RNDAT will be made to

generate additional random numbers using the same given sample.
2 This is an intermediate invocation of RNDAT. The work vectors have

been set up in a previous call, but they are not to be released because
additional calls will be made.

3 This is the final invocation of RNDAT. The work vectors have been set up
in a previous call and they are to be released.

NR — Number of random multivariate vectors to generate.   (Input)
If NR = 0, only initialization or wrap up operations are performed. (This would
make sense only if IDO = 1 or 3.)

K — The length of the multivariate vectors, that is, the number of dimensions.
(Input)

NSAMP — Number of given data points from the distribution to be simulated.
(Input)

X — NSAMP by K matrix containing the given sample.   (Input/Output)
If IDO = 0 or 1, on output the rows of X are rearranged by routine QUADT to form
a k−d tree.

LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

NN — Number of nearest neighbors of the randomly selected point in X that are
used to form the output point in R.   (Input)

R — NR by K matrix containing the random multivariate vectors in its rows.
(Output)

LDR — Leading dimension of R exactly as specified in the dimension statement
of the calling program.   (Input)

Comments

1. Automatic workspace usage is

RNDAT 4 * NSAMP + 3 * LEN + 2* K * LEN + 2 * K + 3 * NN units, or
DRNDAT 6 * NSAMP + 3 * LEN + 4 * K * LEN + 3 * K + 5 * NN units.

Here, LEN is the greatest integer in ln(NSAMP)/ln(2) + 4. Workspace may
be explicitly provided, if desired, by use of R2DAT/DR2DAT. The
reference is

CALL R2DAT (IDO, NR, K, NSAMP, X, LDX, NN, R, LDR,
            IWK, WK)
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The additional arguments are as follows:

IWK — Work vector of length equal to 2 * NSAMP + 3 * LEN + K + NN.

WK — Work vector of length equal to 2 * NSAMP + 2 * K * LEN + K + 2* NN.

R2DAT allows alternating calls for two different populations (see
Comment 3). Warning: R2DAT does no error checking.

2. The rows of X are rearranged on output from either RNDAT or R2DAT.

3. When more than one call is to be made to RNDAT to generate more than
one R matrix using the same sample in X, IDO should be set to 1 for the
first call, to 2 for all subsequent calls except the last one, and to 3 for the
last call. If more than one population is to be simulated (that is, there is
more than one sample, X), it is necessary to generate all of the
observations from each population at one time because data is stored in
the work vectors. If the user provides work vectors for each population
to be simulated, R2DAT can be used to simulate different population
alternatively.

4. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

Algorithm

Given a sample of size n (= NSAMP) of observations of a k-variate random
variable, RNDAT generates a pseudorandom sample with approximately the same
moments as the given sample. The sample obtained is essentially the same as if
sampling from a Gaussian kernel estimate of the sample density. (See Thompson
1989.) Routine RNDAT uses methods described by Taylor and Thompson (1986).

Assume that the (vector-valued) observations xL�are in the rows of X. An
observation, xM, is chosen randomly; its nearest m (= NN) neighbors,

x x  xj j  jm1 2
, , ,K

are determined; and the mean

 x j

of those nearest neighbors is calculated. Next, a random sample

u1, u2, …, uP is generated from a uniform distribution with lower bound

1 3 1
2m

m

m
−

−0 5

and upper bound
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The process is then repeated until NR such simulated variates are generated and
stored in the rows of R.

When RNDAT is invoked for the first time for a given sample, a search tree is
computed for the rows of X. During the generation process, this tree is used to
find the nearest neighbors of the randomly selected row. The argument IDO is
used to determine whether or not the tree must be computed and whether
workspace has to be allocated to store the tree.

Example

In this example, RNDAT is used to generate 5 pseudorandom vectors of length 4
using the initial and final systolic pressure and the initial and final diastolic
pressure from Data Set A in Afifi and Azen (1979) as the fixed sample from the
population to be modeled. (Values of these four variables are in the seventh,
tenth, twenty-first, and twenty-fourth columns of data set number nine in routine
GDATA, page 1302)

      INTEGER    LDR, LDRDAT, LDX, NDR, NDRDAT, NDX
      PARAMETER  (LDR=5, LDRDAT=113, LDX=113, NDR=4, NDRDAT=34, NDX=4)
C
      INTEGER    IDO, ISEED, K, NN, NR, NRCOL, NRROW, NSAMP
      REAL       R(LDR,NDR), RDATA(LDRDAT,NDRDAT), X(LDX,NDX)
      EXTERNAL   GDATA, RNDAT, RNSET, SCOPY, WRRRL
C                                 Afifi and Azen Data Set A
      CALL GDATA (9, 0, NRROW, NRCOL, RDATA, LDRDAT, NDRDAT)
      CALL SCOPY (NRROW, RDATA(1,7), 1, X(1,1), 1)
      CALL SCOPY (NRROW, RDATA(1,10), 1, X(1,2), 1)
      CALL SCOPY (NRROW, RDATA(1,21), 1, X(1,3), 1)
      CALL SCOPY (NRROW, RDATA(1,24), 1, X(1,4), 1)
C
      ISEED = 123457
      CALL RNSET (ISEED)
C                                 Set input values
      IDO   = 0
      NR    = 5
      K     = 4
      NSAMP = 113
      NN    = 5
C                                 Generate random variates
      CALL RNDAT (IDO, NR, K, NSAMP, X, LDX, NN, R, LDR)
C                                 Print results
      CALL WRRRL (’Random variates’, NR, K, R, LDR, 0, ’(F15.4)’,
     &            ’NUMBER’, ’NUMBER’)
C
      END
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Output
                           Random variates
                 1                2                3                4
1         162.7668          90.5057         153.7173         104.8768
2         153.3533          78.3180         176.6643          85.2155
3          93.6958          48.1675         153.5495          71.3688
4         101.7508          54.1855         113.1215          56.2916
5          91.7403          58.7684          48.4368          28.0994

RNMTN
Generate pseudorandom numbers from a multinomial distribution.

Usage
CALL RNMTN (NR, N, K, P, IR, LDIR)

Arguments

NR — Number of random multinomial vectors to generate.   (Input)

N — Multinomial parameter indicating the number of independent trials.   (Input)

K — The number of mutually exclusive outcomes on any trial.   (Input)
K is the length of the multinomial vectors. K must be greater than or equal to 2.

P — Vector of length K containing the probabilities of the possible outcomes.
(Input)
The elements of P must be positive and must sum to 1.0.

I — NR by K matrix containing the random multinomial vectors in its rows.
(Output)

LDIR — Leading dimension of IR exactly as specified in the dimension
statement of the calling program.   (Input)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNMTN generates pseudorandom numbers from a K-variate multinomial
distribution with parameters N and P. K and N must be positive. Each element of P

must be positive and the elements must sum to 1. The probability function (with n
= N, k = K, and pL = P(I)) is

f x x x
n

x x x
p p pk
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x x
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for xL ≥ 0 and

x ni
i

k

=
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The deviate in each row of IR is produced by generation of the binomial deviate
x1with parameters n and pL and then by successive generations of the conditional

binomial deviates xM given x1, x2, …, xM�� with parameters n − x1 − x2 − … − xM��
and pM /(1 − p1 − p2 − … − pM��).

Example

In this example, RNMTN is used to generate five pseudorandom 3-dimensional
multinomial variates with parameters N = 20 and P = (0.1, 0.3, 0.6).

      INTEGER    K, LDIR
      PARAMETER  (K=3, LDIR=5)
C
      INTEGER    I, IR(LDIR,K), ISEED, J, N, NOUT, NR
      REAL       P(K)
      EXTERNAL   RNMTN, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      N     = 20
      P(1)  = 0.1
      P(2)  = 0.3
      P(3)  = 0.6
      NR    = 5
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNMTN (NR, N, K, P, IR, LDIR)
      WRITE (NOUT,99999) ((IR(I,J),J=1,K),I=1,NR)
99999 FORMAT (’ Multinomial random deviates: ’, 3I4, /, (30X,3I4))
      END

Output
Multinomial random deviates:    5   4  11
                                3   6  11
                                3   3  14
                                5   5  10
                                4   5  11

RNMVN/DRNMVN (Single/Double precision)
Generate pseudorandom numbers from a multivariate normal distribution.

Usage
CALL RNMVN (NR, K, RSIG, LDRSIG, R, LDR)
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Arguments

NR — Number of random multivariate normal vectors to generate.   (Input)

K — Length of the multivariate normal vectors.   (Input)

RSIG — Upper triangular matrix, K by K, containing the Cholesky factor of the
variance-covariance matrix.   (Input)
The variance-covariance matrix is equal to the product of the transpose of RSIG

and RSIG. RSIG can be obtained from the variance-covariance matrix using
routine CHFAC.

LDRSIG — Leading dimension of RSIG exactly as specified in the dimension
statement in the calling program.   (Input)

R — NR by K matrix containing the random multivariate normal vectors in its
rows.   (Output)

LDR — Leading dimension of R exactly as specified in the dimension statement
of the calling program.   (Input)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNMVN generates pseudorandom numbers from a multivariate normal
distribution with mean vector consisting of all zeroes and variance-covariance
matrix whose Cholesky factor (or “square root”) is RSIG; that is, RSIG is an
upper triangular matrix such that the transpose of RSIG times RSIG is the
variance-covariance matrix. First, independent random normal deviates with
mean 0 and variance 1 are generated, and then the matrix containing these
deviates is postmultiplied by RSIG. The independent normals are generated into
the columns of a matrix, which has NR rows; hence, if RNSET is called with
different values of NR, the output is different even if the seed is the same in the
calls.

Deviates from a multivariate normal distribution with means other than zero can
be generated by using RNMVN and then by adding the vector of means to each row
of R.

Example

In this example, RNMVN is used to generate five pseudorandom multivariate
normal vectors of length 2 with variance-covariance matrix equal to

0.500  0.375

0.375  0.500
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The routine CHFAC is first called to compute the Cholesky factorization of the
variance-covariance matrix.

      INTEGER    I, IRANK, ISEED, J, K, LDR, LDRSIG, NOUT, NR
      REAL       COV(2,2), R(5,2), RSIG(2,2)
      EXTERNAL   CHFAC, RNMVN, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      NR       = 5
      K        = 2
      LDRSIG   = 2
      LDR      = 5
      COV(1,1) = 0.5
      COV(1,2) = 0.375
      COV(2,1) = 0.375
      COV(2,2) = 0.5
C                                 Obtain the Cholesky factorization.
      CALL CHFAC (K, COV, 2, 0.00001, IRANK, RSIG, LDRSIG)
C                                 Initialize seed of random number
C                                 generator.
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNMVN (NR, K, RSIG, LDRSIG, R, LDR)
      WRITE (NOUT,99999) ((R(I,J),J=1,K),I=1,NR)
99999 FORMAT (’    Multivariate normal random deviates: ’, /,
     &       (1X,2F8.4))
      END

Output
    Multivariate normal random deviates:
   1.4507  1.2463
   0.7660 -0.0429
   0.0584 -0.6692
   0.9035  0.4628
  -0.8669 -0.9334

RNSPH/DRNSPH (Single/Double precision)
Generate pseudorandom points on a unit circle or K-dimensional sphere.

Usage
CALL RNSPH (NR, K, Z, LDZ)

Arguments

NR — Number of random numbers to generate.   (Input)

K — Dimension of the circle (K = 2) or of the sphere.   (Input)

Z — NR by K matrix containing the random Cartesian coordinates on the unit
circle or sphere.   (Output)

LDZ — Leading dimension of Z exactly as specified in the dimension statement
of the calling program.   (Input)
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Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNSPH generates pseudorandom coordinates of points that lie on a unit
circle or a unit sphere in K-dimensional space. For points on a circle (K = 2), pairs
of uniform (− 1, 1) points are generated and accepted only if they fall within the
unit circle (the sum of their squares is less than 1), in which case they are scaled
so as to lie on the circle.

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are
used. For three dimensions, two independent uniform (− 1, 1) deviates U1 and U2
are generated and accepted only if the sum of their squares S1 is less than 1. Then,
the coordinates

Z U S Z U S Z S1 1 1 2 2 1 3 12 1 2 1 1 2= − = − = −, , and 

are formed. For four dimensions, U1, U2, and S1 are produced as described above.
Similarly, U3, U4, and S2 are formed. The coordinates are then

Z U Z U Z U S S1 1 2 2 3 3 1 21= = = −, , /1 6
and

Z U S S4 4 1 21= −1 6 /

For spheres in higher dimensions, K independent normal deviates are generated
and scaled so as to lie on the unit sphere in the manner suggested by Muller
(1959).

Example

In this example, RNSPH is used to generate two uniform random deviates from the
surface of the unit sphere in three space.

      INTEGER    K, LDZ
      PARAMETER  (K=3, LDZ=2)
C
      INTEGER    I, ISEED, J, NOUT, NR
      REAL       Z(LDZ,K)
      EXTERNAL   RNSET, RNSPH, UMACH
C
      CALL UMACH (2, NOUT)
      NR    = 2
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNSPH (NR, K, Z, LDZ)
      WRITE (NOUT,99999) ((Z(I,J),J=1,K),I=1,NR)
99999 FORMAT (’      Coordinates of first point: ’, 3F8.4, /,
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     &       ’      Coordinates of second point:’, 3F8.4)
      END

Output
      Coordinates of first point:   0.8893  0.2316  0.3944
      Coordinates of second point:  0.1901  0.0396 -0.9810

RNTAB
Generate a pseudorandom two-way table.

Usage
CALL RNTAB (IDO, NROW, NCOL, NRTOT, NCTOT, ITAB, LDITAB)

Arguments

IDO — Generator option.   (Input)

IDO Action
0 This is the only invocation of RNTAB with these input specifications of

the two-way table.
1 This is the first invocation, and additional calls to RNTAB will be made to

generate random tables with the same specifications.
2 This is an intermediate invocation of RNTAB. The work vectors have

been set up in a previous call, but they are not to be released because
additional calls will be made.

3 This is the final invocation of RNTAB. The work vectors have been set up
in a previous call and they are to be released.

NROW — Number of rows in the table.   (Input)

NCOL — Number of columns in the table.   (Input)

NRTOT — Vector of length NROW containing the row totals.   (Input)

NCTOT — Vector of length NCOL containing the column totals.   (Input)
The elements of NRTOT and NCTOT must be nonnegative and must sum to the
same quantity.

ITAB — NROW by NCOL random matrix with the given row and column totals.
(Output)

LDITAB — Leading dimension of ITAB exactly as specified in the dimension
statement in the calling program.   (Input)

Comments

1. Let IRSUM = the sum of the elements in NRTOT. If IRSUM + 1 is less
than 2 * NROW * NCOL, automatic workspace usage is IRSUM;
otherwise, automatic workspace usage is 2 * IRSUM + 1 because a
different algorithm is used. Workspace may be explicitly provided, if
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desired, by use of R2TAB. R2TAB allows selection of the algorithm to be
used and it allows alternating calls for two different problems (see
Comment 3). The reference is

CALL R2TAB (IDO, NROW, NCOL, NRTOT, NCTOT, ITAB,
            LDITAB, IOPT, IRSUM, IWK, WK).

The additional arguments are as follows:

IOPT — Option indicator.   (Input)
If IOPT = 1, Boyette’s method is used.
If IOPT = 2, Patefield’s method is used.

IRSUM — Sum of the elements in NRTOT.   (Output)

IWK — Work vector of length equal to the sum of the elements in
NRTOT.

WK — Work vector of length equal to the sum of the elements in NRTOT

plus one, used only if IOPT = 2.
WARNING: R2TAB does no error checking.

2. Informational error
Type Code
   3    1 The values of NRTOT and/or of NCTOT are such that the

probability distribution of tables is degenerate, that is,
only one such table is possible.

3. When more than one table with the same marginal totals is to be
generated, IDO should be set to 1 for the first call, to 2 for all subsequent
calls except the last one, and to 3 for the last call. If several tables of
different sizes or with different marginal totals are to be generated, it is
necessary to generate all of each type together because of the data stored
in the work vectors. If the user provides work vectors for each type of
table to be generated, R2TAB can be used to generate different types of
tables alternatively.

4. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

Algorithm

Routine RNTAB generates pseudorandom entries for a two-way contingency table
with fixed row and column totals. The method depends on the size of the table
and the total number of entries in the table. If the total number of entries is less
than twice the product of the number of rows and columns, the method described
by Boyette (1979) and by Agresti, Wackerly, and Boyette (1979) is used. In this
method, a work vector is filled with row indices so that the number of times each
index appears equals the given row total. This vector is then randomly permuted
and used to increment the entries in each row so that the given row total is
attained.
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For tables with larger numbers of entries, the method of Patefield (1981) is used.
This method can be considerably faster in these cases. The method depends on
the conditional probability distribution of individual elements, given the entries in
the previous rows. The probabilities for the individual elements are computed
starting from their conditional means.

On the first call to RNTAB with a given set of row and column totals, certain
checking is done, and the work vector is allocated and initialized. On the final
call, the work vector is released. The argument IDO indicates the nature of the
call. In a simulation study, RNTAB would typically be called first with IDO = 1,
then would be called several times with IDO = 2, and then finally would be called
with IDO = 3. If only one table is needed, IDO should be set to 0.

Example

In this example, RNTAB is used to generate a two by three table with row totals 3
and 5, and column totals 2, 4, and 2.

      INTEGER    I, IDO, ISEED, ITAB(2,3), IWK, J, LDITAB, NCOL,
     &           NCTOT(3), NOUT, NROW, NRTOT(2)
      EXTERNAL   RNSET, RNTAB, UMACH
C
      CALL UMACH (2, NOUT)
      IDO      = 0
      NROW     = 2
      NCOL     = 3
      NRTOT(1) = 3
      NRTOT(2) = 5
      NCTOT(1) = 2
      NCTOT(2) = 4
      NCTOT(3) = 2
      LDITAB   = 2
      ISEED    = 123457
      CALL RNSET (ISEED)
      CALL RNTAB (IDO, NROW, NCOL, NRTOT, NCTOT, ITAB, LDITAB)
      WRITE (NOUT,99999) ((ITAB(I,J),J=1,NCOL),I=1,NROW)
99999 FORMAT (’ A random contingency table with fixed marginal totals:’
     &       , /, (5X,3I5))
      END

Output
A random contingency table with fixed marginal totals:
        0    2    1
        2    2    1

RNNOS/DRNNOS (Single/Double precision)
Generate pseudorandom order statistics from a standard normal distribution.

Usage
CALL RNNOS (IFIRST, ILAST, N, R)
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Arguments

IFIRST — First order statistic to generate.   (Input)

ILAST — Last order statistic to generate.   (Input)
ILAST must be greater than or equal to IFIRST. The full set of order statistics
from IFIRST to ILAST is generated. If only one order statistic is desired, set
ILAST = IFIRST.

N — Size of the sample from which the order statistics arise.   (Input)

R — Vector of length ILAST + 1 − IFIRST containing the random order statistics
in ascending order.   (Output)
The first element of R is the IFIRST-th order statistic in a random sample of size
N from the standard normal distribution.

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNNOS generates the IFIRST through the ILAST order statistics from a
pseudorandom sample of size N from a normal (0, 1) distribution. Routine RNNOS

uses the routine RNUNO (page 1231) to generate order statistics from the uniform
(0, 1) distribution and then obtains the normal order statistics using the inverse
CDF transformation.

Each call to RNNOS yields an independent event so order statistics from different
calls may not have the same order relations with each other.

Example

In this example, RNNOS is used to generate the fifteenth through the nineteenth
order statistics from a sample of size twenty.

      INTEGER    IFIRST, ILAST, ISEED, N, NOUT
      REAL       R(5)
      EXTERNAL   RNNOS, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      IFIRST = 15
      ILAST  = 19
      N      = 20
C                                 Initialize seed of random number
C                                 generator.
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNNOS (IFIRST, ILAST, N, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’  The 15th through the 19th order statistics from a’,
     &       /, ’  random sample of size 20 from a normal distribution’
     &       , /, 5F8.4)
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      END

Output
The 15th through the 19th order statistics from a
random sample of size 20 from a normal distribution
0.4056  0.4681  0.4697  0.9067  0.9362

RNUNO/DRNUNO (Single/Double precision)
Generate pseudorandom order statistics from a uniform (0, 1) distribution.

Usage
CALL RNUNO (IFIRST, ILAST, N, R)

Arguments

IFIRST — First order statistic to generate.   (Input)

ILAST — Last order statistic to generate.   (Input)
ILAST must be greater than or equal to IFIRST. The full set of order statistics
from IFIRST to ILAST is generated. If only one order statistic is desired, set
ILAST = IFIRST.

N — Size of the sample from which the order statistics arise.   (Input)

R — Vector of length ILAST + 1 − IFIRST containing the random order statistics
in ascending order.   (Output)
The first element of R is the IFIRST-th order statistic in a random sample of size
N from the uniform (0, 1) distribution.

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNUNO generates the IFIRST through the ILAST order statistics from a
pseudorandom sample of size N from a uniform (0, 1) distribution. Depending on
the values of IFIRST and ILAST, different methods of generation are used to
achieve greater efficiency. If IFIRST = 1 and ILAST = N, that is, if the full set of
order statistics are desired, the spacings between successive order statistics are
generated as ratios of exponential variates. If the full set is not desired, a beta
variate is generated for one of the order statistics, and the others are generated as
extreme order statistics from conditional uniform distributions. Extreme order
statistics from a uniform distribution can be obtained by raising a uniform deviate
to an appropriate power.
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Each call to RNUNO yields an independent event. This means, for example, that if
on one call the fourth order statistic is requested and on a second call the third
order statistic is requested, the “fourth” may be smaller than the “third”. If both
the third and fourth order statistics from a given sample are desired, they should
be obtained from a single call to RNUNO (by specifying IFIRST less than or equal
to 3 and ILAST greater than or equal to 4).

Example

In this example, RNUNO is used to generate the fifteenth through the nineteenth
order statistics from a sample of size twenty.

      INTEGER    IFIRST, ILAST, ISEED, N, NOUT
      REAL       R(5)
      EXTERNAL   RNSET, RNUNO, UMACH
C
      CALL UMACH (2, NOUT)
      IFIRST = 15
      ILAST  = 19
      N      = 20
C                                 Initialize seed of random number
C                                 generator.
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNUNO (IFIRST, ILAST, N, R)
      WRITE (NOUT,99999) R
99999 FORMAT (’  The 15th through the 19th order statistics from a’,
     &       /, ’  random sample of size 20 from a uniform ’,
     &       ’distribution’, /, 5F8.4)
      END

Output
  The 15th through the 19th order statistics from a
  random sample of size 20 from a uniform distribution
  0.6575  0.6802  0.6807  0.8177  0.8254

RNARM/DRNARM (Single/Double precision)
Generate a time series from a specified ARMA model.

Usage
CALL RNARM (NW, CONST, NPAR, PAR, LAGAR, NPMA, PMA, LAGMA,
            IADIST, AVAR, A, WI, W)

Arguments

NW — Number of observations of the time series to generate.   (Input)
NW must be greater than or equal to one.

CONST — Overall constant.   (Input)
See Comments.
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NPAR — Number of autoregressive parameters.   (Input)
NPAR must be greater than or equal to zero.

PAR — Vector of length NPAR containing the autoregressive parameters.   (Input)

LAGAR — Vector of length NPAR containing the order of the autoregressive
parameters.   (Input)
The elements of LAGAR must be greater than or equal to one.

NPMA — Number of moving average parameters.   (Input)
NPMA must be greater than or equal to zero.

PMA — Vector of length NPMA containing the moving average parameters.
(Input)

LAGMA — Vector of length NPMA containing the order of the moving average
parameters.   (Input)
The elements of LAGMA must be greater than or equal to one.

IADIST — Option for normally distributed innovations.   (Input)

IADIST Action
0 Innovations are generated from a normal distribution (white noise) with

mean 0 and variance AVAR.
1 Innovations are specifed by the user.

AVAR — Variance of the normal distribution, if used.   (Input)
For IADIST = 0, AVAR is input; and for IADIST = 1, AVAR is unused.

A — Vector of length NW + max(LAGMA(j)) containing the innovations.   (Input or
output)
For IADIST = 1, A is input; and for IADIST = 0, A is output.

WI — Vector of length max(LAGAR(i)) containing the initial values of the time
series.   (Input)

W — Vector of length NW containing the generated time series.   (Output)

Comments

1. The time series is generated according to the following model:

X(i) = CONST + PAR(1) * X(i − LAGAR(1)) + … + PAR(NPAR) * X(i −
LAGAR(NPAR)) + A(i) − PMA(1) * A(i − LAGMA(1)) − … − PMA(NPMA) *
A(i − LAGAR(NPMA))

where

X(t) = W(t), t = 1, 2, …, NW

and

W(t) = WI(t + p), t = 1 − p, 2 − p, …, − 1, 0

with p = max(LAGAR(k)).
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The constant is related to the mean of the series, WMEAN, as follows:

CONST = WMEAN * (1 − PAR(1)− … − PAR(NPAR))

2. Time series whose innovations have a nonnormal distribution may be
simulated by setting IADIST = 1 and by providing the appropriate
innovations in A and start values in WI.

3. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

Algorithm

Routine RNARM simulates an ARMA(p, q) process, {WW} for t = 1, 2, …, n (with n
= NW, p = NPAR, and q = NPMA). The model is

φ(B)WW = θ0 + θ(B)AW   t ∈ ZZ

where B is the backward shift operator,

φ(B) = 1 − φ1B − φ2B2 − … − φSBS

θ(B) = 1 − θ1B − θ2B2 − … − θTBT

Let µ be the mean of the time series {WW}. The overall constant θ0 (CONST) is
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Example 1

In this example, RNARM is used to generate a time series of length five, using an
ARMA model with three autoregressive parameters and two moving average
parameters. The start values are 0.1000, 0.0500, and 0.0375.

      INTEGER    NPAR, NPMA, NW
      PARAMETER  (NPAR=3, NPMA=2, NW=5)
C
      INTEGER    I, IADIST, ISEED, LAGAR(NPAR), LAGMA(NPMA), NOUT
      REAL       A(NW+2), AVAR, CONST, PAR(NPAR), PMA(NPMA), W(NW),
     &           WI(3)
      EXTERNAL   RNARM, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      LAGAR(1) = 1
      LAGAR(2) = 2
      LAGAR(3) = 3
      PAR(1)   = 0.500
      PAR(2)   = 0.250
      PAR(3)   = 0.125
      LAGMA(1) = 1
      LAGMA(2) = 2
      PMA(1)   = -0.500
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      PMA(2)   = -0.250
      IADIST   = 0
      CONST    = 1.0
      AVAR     = 0.1
      WI(1)    = 0.1
      WI(2)    = 0.05
      WI(3)    = 0.0375
      ISEED    = 123457
      CALL RNSET (ISEED)
      CALL RNARM (NW, CONST, NPAR, PAR, LAGAR, NPMA, PMA, LAGMA,
     &            IADIST, AVAR, A, WI, W)
      WRITE (NOUT,99999) (W(I),I=1,NW)
99999 FORMAT (’   Simulated ARMA(3,2) series ’, 5F7.4)
      END

Output
   Simulated ARMA(3,2) series  1.4033 2.2200 2.2864 2.8878 2.8322

Example 2

In this example, 500 observations from an ARMA(2, 2) process are simulated using
RNARM; and then routine NSPE (page 664) is used to estimate the parameters of the
model. The model is used as an example by Priestley (1981), page 139.

      INTEGER    NPAR, NPMA, NW
      PARAMETER  (NPAR=2, NPMA=2, NW=500)
C
      INTEGER    IADIST, ISEED, LAGAR(NPAR), LAGMA(NPMA)
      REAL       A(NW+2), AVAR, AVAR1, CONST, CONST1, PAR(NPAR),
     &           PAR1(NPAR), PMA(NPMA), PMA1(NPMA), W(NW), WI(2), WMEAN
      EXTERNAL   NSPE, RNARM, RNSET
C
      LAGAR(1) = 1
      LAGAR(2) = 2
      PAR(1)   = -1.4
      PAR(2)   = -0.5
      LAGMA(1) = 1
      LAGMA(2) = 2
      PMA(1)   = 0.2
      PMA(2)   = 0.1
      IADIST   = 0
      CONST    = 0.0
      AVAR     = 1.0
      WI(1)    = 0.0
      WI(2)    = 0.0
      ISEED    = 123457
      CALL RNSET (ISEED)
      CALL RNARM (NW, CONST, NPAR, PAR, LAGAR, NPMA, PMA, LAGMA,
     &            IADIST, AVAR, A, WI, W)
      CALL NSPE (NW, W, 1, 1, WMEAN, NPAR, NPMA, 0.0, 0, CONST1, PAR1,
     &           PMA1, AVAR1)
      END

Output
Results from NSPE/N2PE
WMEAN =     2.26275E-02
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CONST =     7.19606E-02
AVAR  =     1.12579
       PAR
      1       2
 -1.536  -0.645
        PMA
       1        2
  0.0631   0.1405

RNNPP/DRNNPP (Single/Double precision)
Generate pseudorandom numbers from a nonhomogeneous Poisson process.

Usage
CALL RNNPP (TIMBEG, TIMEND, FTHETA, THEMIN, THEMAX, NEUB,
            NE, R)

Arguments

TIMBEG — Lower endpoint of the time interval of the process.   (Input)
TIMBEG must be nonnegative. Usually, TIMBEG = 0.

TIMEND — Upper endpoint of the time interval of the process.   (Input)
TIMEND must be greater than TIMBEG.

FTHETA — User-supplied FUNCTION to provide the value of the rate of the
process as a function of time. This function must be defined over the interval
from TIMBEG to TIMEND and must be nonnegative in that interval. The form is
FTHETA(TIME), where

TIME — Time at which the rate function is evaluated.   (Input)
FTHETA — Value of the rate function.   (Output)

FTHETA must be declared EXTERNAL in the calling program.

THEMIN — Minimum value of the rate function FTHETA in the interval
(TIMBEG, TIMEND).   (Input)
If the actual minimum is unknown, set THEMIN = 0.0.

THEMAX — Maximum value of the rate function FTHETA in the interval
(TIMBEG, TIMEND).   (Input)
If the actual maximum is unknown, set THEMAX to a known upper bound of the
maximum. The efficiency of RNNPP is less the greater THEMAX exceeds the true
maximum.

NEUB — Upper bound on the number of events to be generated.   (Input)
In order to be reasonably sure that the full process through time TIMEND is
generated, calculate NEUB as NEUB = X + 10.0 * SQRT(X), where X = THEMAX *
(TIMEND − TIMBEG). The only penalty in setting NEUB too large is that the output
vector must be dimensioned of length NEUB.
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NE —  Number of events actually generated.   (Output)
If NE is less that NEUB, the time TIMEND is reached before NEUB events are
realized.

R —  Vector of length NE containing the times to events.   (Output)
R must be dimensioned to be of length NEUB.

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the
form of the generator.

Algorithm

Routine RNNPP simulates a one-dimensional nonhomogeneous Poisson process
with rate function THETA in a fixed interval (TIMBEG, TIMEND].

Let λ(t) be the rate function and t0 = TIMBEG and t1 = TIMEND. Routine RNNPP
uses a method of thinning a nonhomogeneous Poisson process {N∗(t), t ≥ t0}
with rate function λ∗(t) ≥ λ(t) in (t0, t1], where the number of events, N∗, in the
interval (t0, t1] has a Poisson distribution with parameter

µ λ0
0

1= z t dt
t

t b g
The function

Λ t t dt
tb g b g=
′zλ0

is called the integrated rate function.) In RNNPP, λ∗(t) is taken to be a constant
λ∗(= THEMAX) so that at time ti, the time of the next event ti + 1 is obtained by
generating and cumulating exponential random numbers

E Ei i1 2,
*

,
*, , ,K

with parameter λ∗, until for the first time

u t E Ej i i i j i, ≤ + + +1,
*

,
* */Le j λ

where the uj,i are independent uniform random numbers between 0 and 1. This
process is continued until the specified number of events, NEUB, is realized or
until the time, TIMEND, is exceeded. This method is due to Lewis and Shedler
(1979), who also review other methods. The most straightforward (and most
efficient) method is by inverting the integrated rate function, but often this is not
possible.

If THEMAX is actually greater than the maximum of λ(t) in (t0, t1], the routine
will work, but less efficiently. Also, if λ(t) varies greatly within the interval, the
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efficiency is reduced. In that case, it may be desirable to divide the time interval
into subintervals within which the rate function is less variable. This is possible
because the process is without memory.

If no time horizon arises naturally, TIMEND must be set large enough to allow for
the required number of events to be realized. Care must be taken, however, that
FTHETA is defined over the entire interval.

After simulating a given number of events, the next event came be generated by
setting TIMBEG to the time of the last event (the sum of the elements in R) and
calling RNNPP again. Cox and Lewis (1966) discuss modeling applications of
nonhomogeneous Poisson processes.

Example 1

In this example, RNNPP is used to generate the first five events in the time 0 to 20
(if that many events are realized) in a nonhomogeneous process with rate function

λ(t) = 0.6342 e0.001427W

for 0 < t ≤ 20.

Since this is a monotonically increasing function of t, the minimum is at t = 0 and

is 0.6342, and the maximum is at t = 20 and is 0.6342 e0.02854 = 0.652561.
      INTEGER    NEUB
      PARAMETER  (NEUB=5)
C
      INTEGER    I, ISEED, NE, NOUT
      REAL       FTHETA, R(NEUB), THEMAX, THEMIN, TIMBEG, TIMEND
      EXTERNAL   FTHETA, RNNPP, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      TIMBEG = 0.0
      TIMEND = 20.0
      THEMIN = 0.6342
      THEMAX = 0.652561
      ISEED  = 123457
      CALL RNSET (ISEED)
      CALL RNNPP (TIMBEG, TIMEND, FTHETA, THEMIN, THEMAX, NEUB, NE, R)
      WRITE (NOUT,99999) NE, (R(I),I=1,NE)
99999 FORMAT (’   Inter-event times for the first ’, I1, ’ events’, /,
     &       ’   in the process: ’, 5F7.4)
      END
C
      REAL FUNCTION FTHETA (T)
      REAL       T
C
      REAL       EXP
      INTRINSIC  EXP
C
      FTHETA = 0.6342*EXP(0.001427*T)
      RETURN
      END
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Output
Inter-event times for the first 5 events
in the process:  0.0527 0.4080 0.2584 0.0198 0.1676

Example 2

As it turns out in the simulation above, the first five events are realized before
time equals 20. If it is desired to continue the simulation to time equals 20, setting
NEUB to 49 (that is,

λ λ* *t t t t1 0 1 010− + −1 6 1 6
would likely ensure that the time is reached. In the following example, we see that
there are twelve events realized by time equals 20.

      INTEGER    NEUB
      PARAMETER  (NEUB=49)
C
      INTEGER    ISEED, NE, NOUT
      REAL       FTHETA, R(NEUB), SSUM, T, THEMAX, THEMIN, TIMBEG,
     &           TIMEND
      EXTERNAL   FTHETA, RNNPP, RNSET, SSUM, UMACH
C
      CALL UMACH (2, NOUT)
      TIMBEG = 0.0
      TIMEND = 20.0
      THEMIN = 0.6342
      THEMAX = 0.652561
      ISEED  = 123457
      CALL RNSET (ISEED)
      CALL RNNPP (TIMBEG, TIMEND, FTHETA, THEMIN, THEMAX, NEUB, NE, R)
      T = TIMBEG + SSUM(NE,R,1)
      IF (NE .LT. NEUB) THEN
         WRITE (NOUT,99998) NE, T
99998    FORMAT (’   Only ’, I2, ’ events occurred before the time’,
     &          /, ’   limit expired.  The last event occurred at’, /,
     &          ’   time = ’, F6.3)
      ELSE
         WRITE (NOUT,99999) NE, T
99999    FORMAT (’   Possibly more than ’, I2, ’ events would have’,
     &          /, ’   occurred before the time limit expired.’, /,
     &          ’   The last event occurred at time = ’, F6.3)
      END IF
      END
C
      REAL FUNCTION FTHETA (T)
      REAL       T
C
      REAL       EXP
      INTRINSIC  EXP
C
      FTHETA = 0.6342*EXP(0.001427*T)
      RETURN
      END
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Output
   Only 12 events occurred before the time
   limit expired.  The last event occurred at
   time = 18.809

RNPER
Generate a pseudorandom permutation.

Usage
CALL RNPER (K, IPER)

Arguments

K — Number of integers to be permuted.   (Input)

IPER — Vector of length K containing the random permutation of the integers
from 1 to K.   (Output)

Comments

The routine RNSET (page 1167) can be used to initialize the seed of the random
number generator. The routine RNOPT (page 1165) can be used to select the form
of the generator.

Algorithm

Routine RNPER generates a pseudorandom permutation of the integers from 1 to
K. It begins by filling a vector of length K with the consecutive integers 1 to K.
Then, with M initially equal to K, a random index J between 1 and M (inclusive)
is generated. The element of the vector with the index M and the element with
index J swap places in the vector. M is then decremented by 1 and the process
repeated until M = 1.

Example

In this example, RNPER is called to produce a pseudorandom permutation of the
integers from 1 to 10.

      INTEGER    IPER(10), ISEED, K, NOUT
      EXTERNAL   RNPER, RNSET, UMACH
C
      CALL UMACH (2, NOUT)
      K = 10
C                                 Initialize seed of random number
C                                 generator.
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNPER (K, IPER)
      WRITE (NOUT,99999) IPER
99999 FORMAT (’   Random permutation of the integers from 1 to 10’, /,
     &       10I5)
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      END

Output
Random permutation of the integers from 1 to 10
 5    9    2    8    1    6    4    7    3   10

RNSRI
Generate a simple pseudorandom sample of indices.

Usage
CALL RNSRI (NSAMP, NPOP, INDEX)

Arguments

NSAMP — Sample size desired.   (Input)

NPOP — Number of items in the population.   (Input)

INDEX — Vector of length NSAMP containing the indices of the sample.
(Output)
INDEX is a random sample (without replacement) of the integers from 1 to NPOP,
in increasing order.

Comments

1. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. If NSAMP is greater than NPOP/2, RNSRI uses
two different generators in an algorithm due to Ahrens and Dieter
(1985). The routine RNOPT (page 1165) can be used to select the form of
the generator used for uniform deviates in the algorithm. The generator
used for exponential deviates in the algorithm is a nonshuffled generator
that is different from the one for the uniform. If IOPTU is the option
indicator for the uniform generator (see documentation for RNOPT, page
1165), then the option indicator for the exponential generator is
MOD((2* INT((IOPTU + 1)/2) + 1), 6).

2. The routine RNSRS (page 1242) can be used to select a sample from a
population of unknown size.

Algorithm

Routine RNSRI generates the indices of a pseudorandom sample,without
replacement, of size NSAMP numbers from a population of size NPOP. If NSAMP is
greater than NPOP/2, the integers from 1 to NPOP are selected sequentially with a
probability conditional on the number selected and the number remaining to be
considered. If, when the i-th population index is considered, j items have been
included in the sample, then the index i is included with probability 
(NSAMP −j)/(NPOP + 1 − i).
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If NSAMP is not greater than NPOP/2, a O(NSAMP) algorithm due to Ahrens and
Dieter (1985) is used. Of the methods discussed by Ahrens and Dieter, the one
called SG* is used in RNSRI. It involves a preliminary selection of q indices
using a geometric distribution for the distances between each index and the next
one. If the preliminary sample size q is less than NSAMP, a new preliminary
sample is chosen, and this is continued until a preliminary sample greater in size
than NSAMP is chosen. This preliminary sample is then thinned using the same
kind of sampling as described above for the case in which the sample size is
greater than half of the population size. Routine RNSRI does not store the
preliminary sample indices, but rather restores the state of the generator used in
selecting the sample initially, and then passes through once again, making the
final selection as the preliminary sample indices are being generated.

Example

In this example, RNSRI is used to generate the indices of a pseudorandom sample
of size 5 from a population of size 100.

      INTEGER    INDEX(5), ISEED, NOUT, NPOP, NSAMP
      EXTERNAL   RNSET, RNSRI, UMACH
C
      CALL UMACH (2, NOUT)
      NSAMP = 5
      NPOP  = 100
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNSRI (NSAMP, NPOP, INDEX)
      WRITE (NOUT,99999) INDEX
99999 FORMAT (’      Random sample: ’, 5I4)
      END

Output
      Random sample:    2   4   6   8  10

RNSRS/DRNSRS (Single/Double precision)
Generate a simple pseudorandom sample from a finite population.

Usage
CALL RNSRS (IDO, NROW, NVAR, POP, LDPOP, NSAMP, NPOP, SAMP,
            LDSAMP, INDEX)

Arguments
IDO — Processing option.   (Input)

IDO Action
0 This is the only invocation of RNSRS for this data set, and the entire

population is input at once.
1 This is the first invocation, and additional calls to RNSRS will be made.

Initialization and updating for the subpopulation in POP are performed.
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2 This is an additional invocation of RNSRS, and updating for the
subpopulation in POP is performed.

NROW — Number of rows of data currently input in POP.   (Input)
NROW must be nonnegative.

NVAR — Number of variables in the population and in the sample.   (Input)

POP — NROW by NVAR matrix containing the population to be sampled.   (Input)
If IDO = 0, POP contains the entire population; otherwise, POP contains a different
part of the population on each invocation of RNSRS.

LDPOP — Leading dimension of POP exactly as specified in the dimension
statement in the calling program.   (Input)

NSAMP — The sample size desired.   (Input)

NPOP — The number of items in the population.   (Output, if IDO = 0 or 1;
input/output, if IDO = 2.)
If IDO = 0, NPOP = NROW on output. If the population is input a few items at a
time, it is not necessary to know the number of items in the population in
advance. NPOP is used to cumulate the population size and should not be changed
between calls to RNSRS. If, on output, NPOP is greater than or equal to NSAMP, the
sampling can be considered complete for a population of size NPOP.

SAMP — NSAMP by NVAR matrix containing the sample.   (Output, if IDO = 0 or
1; input/output, if IDO = 2.)

LDSAMP — Leading dimension of SAMP exactly as specified in the dimension
statement in the calling program.   (Input)

INDEX — Vector of length NSAMP containing the indices of the sample in the
population. (Output, if IDO = 0 or 1; input/output, if IDO = 2.) The INDEX(I)-th
item in the population is the I-th item in the sample. INDEX is not necessarily in
increasing order.

Comments

1. The routine RNSET (page 1167) can be used to initialize the seed of the
random number generator. The routine RNOPT (page 1165) can be used
to select the form of the generator.

2. The routine RNSRI (page 1241) can be used to select a sample of indices
in increasing order.

Algorithm

Routine RNSRS generates a pseudorandom sample from a given population,
without replacement, using an algorithm due to McLeod and Bellhouse (1983).

The first NSAMP items in the population are included in the sample. Then, for
each successive item from the population, a random item in the sample is
replaced by that item from the population with probability equal to the sample
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size divided by the number of population items that have been encountered at that
time.

Example 1

In this example, RNSRS is used to generate a sample of size 5 from a population
stored in the matrix POP. All of the data are available at once, so IDO is set to 0.

      INTEGER    I, IDO, INDEX(5), ISEED, J, LDPOP, LDSAMP, NOUT,
     &           NPOP, NROW, NSAMP, NVAR
      REAL       POP(176,2), SAMP(5,2)
      EXTERNAL   GDATA, RNSET, RNSRS, UMACH
C
      CALL UMACH (2, NOUT)
      LDPOP  = 176
      NSAMP  = 5
      LDSAMP = 5
C                                 Get Wolfer sunspot data to use
C                                 as “population”.
      CALL GDATA (2, 0, NROW, NVAR, POP, 176, 2)
      IDO = 0
C                                 Initialize seed of random number
C                                 generator.
      ISEED = 123457
      CALL RNSET (ISEED)
      CALL RNSRS (IDO, NROW, NVAR, POP, LDPOP, NSAMP, NPOP, SAMP,
     &            LDSAMP, INDEX)
      WRITE (NOUT,99999) NPOP, INDEX, ((SAMP(I,J),I=1,5),J=1,2)
99999 FORMAT (’     The population size is ’, I5, /, ’   Indices of ’,
     &       ’random sample: ’, 5I8, /, ’                 The sample: ’
     &       , 5F8.0, /, ’                             ’, 5F8.0)
      END

Output
The population size is   176
Indices of random sample:       16      80     175      25      21
              The sample:    1764.   1828.   1923.   1773.   1769.
                               36.     62.      6.     35.    106.

Example 2

Routine RNSRS is now used to generate a sample of size 5 from the same
population as in the example above except the data are input to RNSRS one
observation at a time. This is the way RNSRS may be used to sample from a file
on disk or tape. Notice that the number of records need not be known in advance.

      INTEGER    ISEED, NOUT, IDO, NROW, NVAR, LDPOP, NSAMP, NPOP,
     &           LDSAMP, INDEX(5)
      REAL       POP(176,2), SAMP(5,2), X(2)
      CALL UMACH(2, NOUT)
      LDPOP = 176
      NSAMP = 5
      LDSAMP = 5
C                                 Get Wolfer sunspot data to use
C                                 as “population”.
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      CALL GDATA (2, 0, NROW, NVAR, POP, 176, 2)
C                                 Initialize seed of random number
C                                 generator.
      ISEED = 123457
      CALL RNSET(ISEED)
      IDO = 1
      DO 10 I=1,176
C                                 In this DO-loop, the data would
C                                 generally be read from a file,
C                                 one observation at a time.  This
C                                 program simulates this by copying
C                                 the observations one at a time into
C                                 X from POP.
         X(1) = POP(I,1)
         X(2) = POP(I,2)
         CALL RNSRS (IDO, 1, NVAR, X, 1, NSAMP, NPOP, SAMP, LDSAMP,
     &               INDEX)
         IDO = 2
   10 CONTINUE
      WRITE(NOUT, 20) NPOP, INDEX, ((SAMP(I,J),I=1,5),J=1,2)
   20 FORMAT (’     The population size is ’, I5,/,
     &        ’   Indices of random sample: ’, 5I8,/,
     &        ’                 The sample: ’, 5F8.0,/,
     &        ’                             ’, 5F8.0)
      END

Output
The population size is   176
Indices of random sample:       16      80     175      25      21
              The sample:    1764.   1828.   1923.   1773.   1769.
                               36.     62.      6.     35.    106.
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Chapter 19: Utilities

Routines
19.1. Print

Real rectangular matrix with integer row
and column labels ..............................................................WRRRN 1248
Real rectangular matrix with given format and labels ........ WRRRL 1250
Integer rectangular matrix with integer row
and column labels ............................................................... WRIRN 1253
Integer rectangular matrix with given format and labels ...... WRIRL 1254
Set or retrieve options for printing a matrix ........................ WROPT 1257
Set or retrieve page width and length ................................. PGOPT 1263

19.2. Permute
Elements of a vector ...........................................................PERMU 1265
Rows/Columns of a matrix .................................................. PERMA 1266
Rows/Columns of a symmetric matrix ............................... RORDM 1268
Move any rows with NaN to the last rows of the matrix ......MVNAN 1269

19.3. Sort
Real vector by algebraic value............................................ SVRGN 1273
Real vector by algebraic value 0
and permutations returned.................................................. SVRGP 1274
Integer vector by algebraic value ..........................................SVIGN 1275
Integer vector by algebraic value
and permutations returned....................................................SVIGP 1276
Columns of a real matrix ..................................................... SCOLR 1277
Rows of a real matrix .........................................................SROWR 1280

19.4. Search
Sorted real vector for a number .............................................SRCH 1284
Sorted integer vector for a number .......................................ISRCH 1286
Sorted character vector for a string..................................... SSRCH 1287

19.5. Character String Manipulation
Get the character corresponding to a given ASCII value.... ACHAR 1289
Get the integer ASCII value for a given character ............. IACHAR 1290
Get uppercase integer ASCII value for a character .............. ICASE 1291
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Case-insensitive comparison of two strings ...........................IICSR 1292
Case-insensitive version of intrinsic function INDEX ............... IIDEX 1293
Convert a character string with digits to an integer ...............CVTSI 1294

19.6. Time, Date, and Version
CPU time .............................................................................CPSEC 1295
Time of day........................................................................... TIMDY 1296
Today’s date ........................................................................ TDATE 1297
Number of days from January 1, 1900, to the given date.... NDAYS 1297
Date for the number of days from January 1, 1900.............. NDYIN 1299
Day of week for given date .................................................. IDYWK 1300
Version, system, and license numbers.................................VERSL 1301

19.7. Retrieval of Data Sets
Get a particular standard data set .......................................GDATA 1302

WRRRN/DWRRRN (Single/Double precision)
Print a real rectangular matrix with integer row and column labels.

Usage
CALL WRRRN (TITLE, NRA, NCA, A, LDA, ITRING)

Arguments

TITLE — Character string specifying the title.   (Input)
TITLE set equal to a blank character(s) suppresses printing of the title. Use “ %/”
within the title to create a new line. Long titles are automatically wrapped.

NRA — Number of rows.   (Input)

NCA — Number of columns.   (Input)

A — NRA by NCA matrix to be printed.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

ITRING — Triangle option.   (Input)

ITRING Action
0 Full matrix is printed.
1 Upper triangle of A is printed, including the diagonal.
2 Upper triangle of A excluding the diagonal of A is printed.
−1 Lower triangle of A is printed, including the diagonal.
−2 Lower triangle of A excluding the diagonal of A is printed.
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Comments

1. A single D, E, or F format is chosen automatically in order to print 4
significant digits for the largest element of A in absolute value. Routine
WROPT (page 1257) can be used to change the default format.

2. Horizontal centering, a method for printing large matrices, paging,
printing a title on each page, and many other options can be selected by
invoking WROPT.

3. A page width of 78 characters is used. Page width and page length can
be reset by invoking PGOPT (page 1263).

4. Output is written to the unit specified by UMACH (Reference Material).

Algorithm

Routine WRRRN prints a real rectangular matrix with the rows and columns labeled
1, 2, 3, and so on. WRRRN can restrict printing to the elements of the upper or
lower triangles of matrices via the ITRING option. Generally,
ITRING ≠ 0 is used with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For
a column vector, set NRA to the length of the array and set NCA = 1. For a row
vector, set NRA = 1 and set NCA to the length of the array. In both cases, set LDA =
NRA and set ITRING = 0.

Example

The following example prints all of a 3 × 4 matrix A where aLM = i + j/10.

      INTEGER    ITRING, LDA, NCA, NRA
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3)
C
      INTEGER    I, J
      REAL       A(LDA,NCA)
      EXTERNAL   WRRRN
C
      DO 20  I=1, NRA
         DO 10  J=1, NCA
            A(I,J) = I + J*0.1
   10    CONTINUE
   20 CONTINUE
C                                 Write A matrix.
      CALL WRRRN (’A’, NRA, NCA, A, LDA, ITRING)
      END

Output
                 A
         1       2       3       4
1   1.100   1.200   1.300   1.400
2   2.100   2.200   2.300   2.400
3   3.100   3.200   3.300   3.400
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WRRRL/DWRRRL (Single/Double precision)
Print a real rectangular matrix with a given format and labels.

Usage
CALL WRRRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT, RLABEL,
            CLABEL)

Arguments

TITLE — Character string specifying the title.   (Input)
TITLE set equal to a blank character(s) suppresses printing of the title.

NRA — Number of rows.   (Input)

NCA — Number of columns.   (Input)

A — NRA by NCA matrix to be printed.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

ITRING — Triangle option.   (Input)

ITRING Action
0 Full matrix is printed.
1 Upper triangle of A is printed, including the diagonal.
2 Upper triangle of A excluding the diagonal of A is printed.
−1 Lower triangle of A is printed, including the diagonal.
−2 Lower triangle of A excluding the diagonal of A is printed.

FMT — Character string containing formats.   (Input)
If FMT is set to a blank character(s), the format used is specified by WROPT

(page 1257). Otherwise, FMT must contain exactly one set of parentheses and one
or more edit descriptors. For example, FMT = ’(F10.3) ’ specifies this F format
for the entire matrix. FMT = ’(2E10.3, 3F10.3)’  specifies an E format for
columns 1 and 2 and an F format for columns 3, 4 and 5. If the end of FMT is
encountered and if some columns of the matrix remain, format control continues
with the first format in FMT. Even though the matrix A is real, an I  format can be
used to print the integer part of matrix elements of A. The most useful formats are
special formats, called the “V and W formats,” that can be used to specify pretty
formats automatically. Set FMT = ’(V10.4)’  if you want a single D, E, or F
format selected automatically with field width 10 and with 4 significant digits. Set
FMT = ’(W10.4)’  if you want a single D, E, F, or I  format selected
automatically with field width 10 and with 4 significant digits. While the V format
prints trailing zeroes and a trailing decimal point, the W format does not. See
Comment 4 for general descriptions of the V and W formats. FMT may contain only
D, E, F, G, I , V, or W edit descriptors, e.g., the X descriptor is not allowed.
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RLABEL — CHARACTER*(*) vector of labels for rows of A.   (Input)
If rows are to be numbered consecutively 1, 2, …, NRA, use
RLABEL(1) = ’NUMBER’. If no row labels are desired, use RLABEL(1) = ’NONE’ .
Otherwise, RLABEL is a vector of length NRA containing the labels.

CLABEL — CHARACTER*(*) vector of labels for columns of A.   (Input)
If columns are to be numbered consecutively 1, 2, …, NCA, use
CLABEL(1) = ’NUMBER’. If no column labels are desired, use
CLABEL(1) = ’NONE’ . Otherwise, CLABEL(1) is the heading for the row labels,
and either CLABEL(2) must be ’NUMBER’or ’NONE’ , or CLABEL must be a vector
of length NCA + 1 with CLABEL(1 + j) containing the column heading for the j-th
column.

Comments

1. Automatic workspace is used only if all of the following three conditions
are met: (1) FMT contains V or W edit descriptors. (2) FMT is not a single
V or W format with no repetition factor. (3) WROPT has previously been
invoked with IOPT = −2 and ISET  = 0. In this case, workspace usage is

WRRRL 10 *  NCA character units, or
DWRRRL10 *  NCA character units.

Workspace may be explicitly provided, if desired, by use of
W2RRL/DW2RRL. The reference is

CALL W2RRL (TITLE, NRA, NCA, A, LDA, ITRING, FMT,
            RLABEL, CLABEL, CHWK)

The additional argument is

CHWK — CHARACTER * 10 work vector of length NCA. This workspace
is referenced only if all three conditions indicated at the beginning of
this remark are met. Otherwise, CHWK is not referenced and can be a
CHARACTER * 10 vector of length one.

2. The output appears in the following form:

TITLE

CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4)

RLABEL(1) XXXXX XXXXX XXXXX

RLABEL(2) XXXXX XXXXX XXXXX

3. Use “%/” within titles or labels to create a new line. Long titles or labels
are automatically wrapped.

4. For printing numbers whose magnitudes are unknown, the G format in
FORTRAN is useful; however, the decimal points will generally not be
aligned when printing a column of numbers. The V and W formats are
special formats used by this routine to select a D, E, F, or I format so
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that the decimal points will be aligned. The V and W formats are specified
as Vn.d and Wn.d. Here, n is the field width and d is the number of
significant digits generally printed. Valid values for n are 3, 4, …, 40.
Valid values for d are 1, 2, …, n − 2. If FMT specifies one format and
that format is a V or W format, all elements of the matrix A are examined
to determine one FORTRAN format for printing. If FMT specifies more
than one format, FORTRAN formats are generated separately from each
V or W format.

5. A page width of 78 characters is used. Page width and page length can
be reset by invoking PGOPT (page 1263).

6. Horizontal centering, method for printing large matrices, paging, method
for printing NaN (not a number), printing a title on each page, and many
other options can be selected by invoking WROPT (page 1257).

7. Output is written to the unit specified by UMACH (Reference Material).

Algorithm

Routine WRRRL prints a real rectangular matrix (stored in A) with row and column
labels (specified by RLABEL and CLABEL, respectively) according to a given
format (stored in FMT). WRRRL can restrict printing to the elements of upper or
lower triangles of matrices via the ITRING option. Generally,
ITRING ≠ 0 is used with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For
a column vector, set NRA to the length of the array and set NCA = 1. For a row
vector, set NRA = 1 and set NCA to the length of the array. In both cases, set LDA =
NRA, and set ITRING = 0

Example

The following example prints all of a 3 × 4 matrix A where aLM = (i + j/10)10M-3.
      INTEGER    ITRING, LDA, NCA, NRA
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3)
C
      INTEGER    I, J
      REAL       A(LDA,NCA)
      CHARACTER  CLABEL(5)*5, FMT*8, RLABEL(3)*5
      EXTERNAL   WRRRL
C
      DATA FMT/’(W10.6)’/
      DATA CLABEL/’   ’, ’Col 1’, ’Col 2’, ’Col 3’, ’Col 4’/
      DATA RLABEL/’Row 1’, ’Row 2’, ’Row 3’/
C
      DO 20  I=1, NRA
         DO 10  J=1, NCA
            A(I,J) = (I+J*0.1)*10.0**(J-3)
   10    CONTINUE
   20 CONTINUE
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C                                 Write A matrix.
      CALL WRRRL (’A’, NRA, NCA, A, LDA, ITRING, FMT, RLABEL, CLABEL)
      END

Output
                           A
            Col 1       Col 2       Col 3       Col 4
Row 1       0.011       0.120       1.300      14.000
Row 2       0.021       0.220       2.300      24.000
Row 3       0.031       0.320       3.300      34.000

WRIRN
Print an integer rectangular matrix with integer row and column labels.

Usage
CALL WRIRN (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING)

Arguments

TITLE — Character string specifying the title.   (Input)
TITLE set equal to a blank character(s) suppresses printing of the title. Use “%/”
within the title to create a new line. Long titles are automatically wrapped.

NRMAT — Number of rows.   (Input)

NCMAT — Number of columns.   (Input)

MAT — NRMAT by NCMAT matrix to be printed.   (Input)

LDMAT — Leading dimension of MAT exactly as specified in the dimension
statement in the calling program.   (Input)

ITRING — Triangle option.   (Input)

ITRING Action
0 Full matrix is printed.
1 Upper triangle of MAT is printed, including the diagonal.
2 Upper triangle of MAT excluding the diagonal of MAT is printed.
−1 Lower triangle of MAT is printed, including the diagonal.
−2 Lower triangle of MAT excluding the diagonal of MAT is printed.

Comments

1. All the entries in MAT are printed using a single I format. The field width
is determined by the largest absolute entry.

2. Horizontal centering, a method for printing large matrices, paging,
printing a title on each page, and many other options can be selected by
invoking WROPT (page 1257).
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3. A page width of 78 characters is used. Page width and page length can
be reset by invoking PGOPT (page 1263).

4. Output is written to the unit specified by UMACH (Reference Material).

Algorithm

Routine WRIRN prints an integer rectangular matrix with the rows and columns
labeled 1, 2, 3, and so on. WRIRN can restrict printing to elements of the upper
and lower triangles of matrices via the ITRING option. Generally, ITRING ≠ 0 is
used with symmetric matrices. In addition, one-dimensional arrays can be printed
as column or row vectors. For a column vector, set NRMAT to the length of the
array and set NCMAT = 1. For a row vector, set NRMAT = 1 and set NCMAT to the
length of the array. In both cases, set LDMAT = NRMAT and set ITRING = 0.

Example

The following example prints all of a 3 × 4 matrix A = MAT where aLM = 10i + j.

      INTEGER    ITRING, LDMAT, NCMAT, NRMAT
      PARAMETER  (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3)
C
      INTEGER    I, J, MAT(LDMAT,NCMAT)
      EXTERNAL   WRIRN
C
      DO 20  I=1, NRMAT
         DO 10  J=1, NCMAT
            MAT(I,J) = I*10 + J
   10    CONTINUE
   20 CONTINUE
C                                 Write MAT matrix.
      CALL WRIRN (’MAT’, NRMAT, NCMAT, MAT, LDMAT, ITRING)
      END

Output
          MAT
     1    2    3    4
1   11   12   13   14
2   21   22   23   24
3   31   32   33   34

WRIRL
Print an integer rectangular matrix with a given format and labels.

Usage
CALL WRIRL (TITLE, NRMAT, NCMAT, MAT, LDMAT, ITRING, FMT,
            RLABEL, CLABEL)
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Arguments

TITLE — Character string specifying the title.   (Input)
TITLE set equal to a blank character(s) suppresses printing of the title.

NRMAT — Number of rows.   (Input)

NCMAT — Number of columns.   (Input)

MAT — NRMAT by NCMAT matrix to be printed.   (Input)

LDMAT — Leading dimension of MAT exactly as specified in the dimension
statement in the calling program.   (Input)

ITRING — Triangle option.   (Input)

ITRING Action
0 Full matrix is printed.
1 Upper triangle of MAT is printed, including the diagonal.
2 Upper triangle of MAT excluding the diagonal of MAT is printed.
−1 Lower triangle of MAT is printed, including the diagonal.
−2 Lower triangle of MAT excluding the diagonal of MAT is printed.

FMT — Character string containing formats.   (Input)
If FMT is set to a blank character(s), the format used is a single I format with field
width determined by the largest absolute entry. Otherwise, FMT must contain
exactly one set of parentheses and one or more I edit descriptors. For example,
FMT = ’(I10)’  specifies this I  format for the entire matrix. FMT = ’(2I10,

3I5)’  specifies an I10  format for columns 1 and 2 and an I5  format for columns
3, 4 and 5. If the end of FMT is encountered and if some columns of the matrix
remain, format control continues with the first format in FMT. FMT may only
contain the I  edit descriptor, e.g., the X edit descriptor is not allowed.

RLABEL — CHARACTER * (*) vector of labels for rows of MAT.   (Input)
If rows are to be numbered consecutively 1, 2, …, NRMAT, use
RLABEL(1) = ’NUMBER’ . If no row labels are desired, use
RLABEL(1) = ’NONE’ . Otherwise, RLABEL is a vector of length NRMAT

containing the labels.

CLABEL — CHARACTER * (*) vector of labels for columns of MAT.   (Input)
If columns are to be numbered consecutively 1, 2, …, NCMAT, use
CLABEL(1) = ’NUMBER’ . If no column labels are desired, use
CLABEL(1) = ’NONE’ . Otherwise, CLABEL(1) is the heading for the row labels,
and either CLABEL(2) must be ’NUMBER’ or ’NONE’ , or CLABEL must be a
vector of length NCMAT + 1 with CLABEL(1 + j) containing the column heading for
the j-th column.

Comments

1.  The output appears in the following form:
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TITLE

CLABEL(1) CLABEL(2) CLABEL(3) CLABEL(4)

RLABEL(1) XXXXX XXXXX XXXXX

RLABEL(2) XXXXX XXXXX XXXXX

2. Use “%/” within titles or labels to create a new line. Long titles or labels
are automatically wrapped.

3. A page width of 78 characters is used. Page width and page length can
be reset by invoking PGOPT (page 1263).

4. Horizontal centering, a method for printing large matrices, paging,
printing a title on each page, and many other options can be selected by
invoking WROPT (page 1257).

5. Output is written to the unit specified by UMACH (Reference Material).

Algorithm

Routine WRIRL prints an integer rectangular matrix (stored in MAT) with row and
column labels (specified by RLABEL and CLABEL, respectively), according to a
given format (stored in FMT). WRIRL can restrict printing to the elements of upper
or lower triangles of matrices via the ITRING option. Generally,
ITRING ≠ 0 is used with symmetric matrices.

In addition, one-dimensional arrays can be printed as column or row vectors. For
a column vector, set NRMAT to the length of the array and set NCMAT = 1. For a
row vector, set NRMAT = 1 and set NCMAT to the length of the array. In both cases,
set LDMAT = NRMAT, and set ITRING = 0.

Example

The following example prints all of a 3 × 4 matrix A = MAT where aLM�= 10i + j.

      INTEGER    ITRING, LDMAT, NCMAT, NRMAT
      PARAMETER  (ITRING=0, LDMAT=10, NCMAT=4, NRMAT=3)
C
      INTEGER    I, J, MAT(LDMAT,NCMAT)
      CHARACTER  CLABEL(5)*5, FMT*8, RLABEL(3)*5
      EXTERNAL   WRIRL
C
      DATA FMT/’(I2)’/
      DATA CLABEL/’     ’, ’Col 1’, ’Col 2’, ’Col 3’, ’Col 4’/
      DATA RLABEL/’Row 1’, ’Row 2’, ’Row 3’/
C
      DO 20  I=1, NRMAT
         DO 10  J=1, NCMAT
            MAT(I,J) = I*10 + J
   10    CONTINUE
   20 CONTINUE
C                                 Write MAT matrix.
      CALL WRIRL (’MAT’, NRMAT, NCMAT, MAT, LDMAT, ITRING, FMT,
     &            RLABEL, CLABEL)
      END
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Output
               MAT
       Col 1  Col 2  Col 3  Col 4
Row 1     11     12     13     14
Row 2     21     22     23     24
Row 3     31     32     33     34

WROPT
Set or retrieve an option for printing a matrix.

Usage
CALL WROPT (IOPT, ISET, ISCOPE)

Arguments

IOPT — Indicator of option type.   (Input)

IOPT Description of Option Type
−1, 1 Horizontal centering or left justification of matrix to be printed
−2, 2 Method for printing large matrices
−3, 3 Paging
−4, 4 Method for printing NaN (not a number), and negative and positive

machine infinity.
−5, 5 Title option
−6, 6 Default format for real and complex numbers
−7, 7 Spacing between columns
−8, 8 Maximum horizontal space reserved for row labels
−9, 9 Indentation of continuation lines for row labels
−10, 10 Hot zone option for determining line breaks for row labels
−11, 11 Maximum horizontal space reserved for column labels
−12, 12 Hot zone option for determining line breaks for column labels
−13, 13 Hot zone option for determining line breaks for titles
−14, 14 Option for the label that appears in the upper left hand corner that can be

used as a heading for the row numbers or a label for the column
headings for WR**N outines

−15, 15 Option for skipping a line between invocations of WR**N routines,
provided a new page is not to be issued

−16, 16 Option for vertical alignment of the matrix values relative to the
associated row labels that occupy more than one line

0 Reset all the current settings saved in internal variables back to their last
setting made with an invocation of WROPT with ISCOPE = 1. (This
option is used internally by routines printing a matrix and is not useful
otherwise.)

If IOPT is negative, ISET and ISCOPE are input and are saved in internal
variables. If IOPT is positive, ISET is output and receives the currently active
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setting for the option (if ISCOPE = 0) or the last global setting for the option (if
ISCOPE = 1). If IOPT = 0, ISET and ISCOPE are not referenced.

ISET — Setting for option selected by IOPT.   (Input, if IOPT is negative; output,
if IOPT is positive; not referenced if IOPT = 0)

IOPT ISET Meaning

−1, 1 0 Matrix is left justified.

−1 Matrix is centered horizontally on page.

−2, 2 0 A complete row is printed before the next row is
printed. Wrapping is used if necessary.

m Here, m is a positive integer. Let n1 be the
maximum number of columns beginning with
column 1 that fit across the page (as determined by
the widths of the printing formats). First, columns
1 through n1 are printed for rows 1 through m. Let
n2 be the maximum number of columns beginning
with column n1 + 1 that fit across the page.
Second, columns n1 + 1 through n1 + n2 are printed
for rows 1 through m. This continues until the last
columns are printed for rows 1 through m. Printing
continues in this fashion for the next m rows, etc.

−3, 3 −2 Printing begins on the next line, and no paging
occurs.

−1 Paging is on. Every invocation of a WR*** routine
begins on a new page, and paging occurs within
each invocation as is needed.

0 Paging is on. The first invocation of a WR***

routine begins on a new page, and subsequent
paging occurs as is needed. With this option, every
invocation of a WR*** routine ends with a call to
WROPT to reset this option to k, a positive integer
giving the number of lines printed on the current
page.
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IOPT ISET Meaning

k Here, k is a positive integer. Paging is on, and k
lines have been printed on the current page. If k is
less than the page length IPAGE (see PGOPT,
page 1263), then IPAGE − k lines are printed
before a new page instruction is issued. If k is
greater than or equal to IPAGE, then the first
invocation of a WR*** routine begins on a new
page. In any case, subsequent paging occurs as is
needed. With this option, every invocation of a
WR*** routine ends with a call to WROPT to reset
the value of k.

−4, 4 0 NaN is printed as a series of decimal points,
negative machine infinity is printed as a series of
minus signs, and positive machine infinity is
printed as a series of plus signs.

1 NaN is printed as a series of blank characters,
negative machine infinity is printed as a series of
minus signs, and positive machine infinity is
printed as a series of plus signs.

2 NaN is printed as “NaN,” negative machine infinity
is printed as “-Inf” and positive machine infinity
is printed as “Inf.”

3 NaN is printed as a series of blank characters,
negative machine infinity is printed as “-Inf ,”
and positive machine infinity is printed as “Inf.”

−5, 5 0 Title appears only on first page.

1 Title appears on the first page and all continuation
pages.

−6, 6 0 Format is (W10.4). See Comment 2.

1 Format is (W12.6). See Comment 2.

2 Format is (1PE12.5).

3 Format is Vn.4 where the field width n is
determined. See Comment 2.

4 Format is Vn.6 where the field width n is
determined. See Comment 2.

5 Format is 1PEn.d where n = d + 7, and d + 1 is the
maximum number of significant digits.

−7, 7 k1 Number of characters left blank between columns.
k1 must be between 0 and 5, inclusively.

−8, 8 k2 Maximum width (in characters) reserved for row
labels. k2 = 0 means use the default.
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IOPT ISET Meaning

−9, 9 k3 Number of characters used to indent continuation
lines for row labels. k3 must be between 0 and 10,
inclusively.

−10, 10 k4 Width (in characters) of the hot zone where line
breaks in row labels can occur. k4 = 0 means use
the default. k4 must not exceed 50.

−11, 11 k5 Maximum width (in characters) reserved for
column labels. k5 = 0 means use the default.

−12, 12 k6 Width (in characters) of the hot zone where line
breaks in column labels can occur. k6 = 0 means
use the default. k6 must not exceed 50.

−13, 13 k7 Width (in characters) of the hot zone where line
breaks in titles can occur. k7 must be between 1
and 50, inclusively.

−14 0 There is no label in the upper left hand corner.

1 The label in the upper left hand corner is
“Component” if a row vector or column vector is
printed; the label is “Row/Column” if both the
number of rows and columns are greater than one;
otherwise, there is no label.

−15 0 A blank line is printed on each invocation of a
WR**N routine before the matrix title provided a
new page is not to be issued.

1 A blank line is not printed on each invocation of a
WR** N routine before the matrix title.

−16, 16 0 The matrix values are aligned vertically with the
last line of the associated row label for the case
IOPT = 2 and ISET is positive.

1 The matrix values are aligned vertically with the
first line of the associated row label.

ISCOPE — Indicator of the scope of the option.   (Input if IOPT is nonzero; not
referenced if IOPT = 0)

ISCOPE Action
0 Setting is temporarily active for the next invocation of a WR*** matrix

printing routine.
1 Setting is active until it is changed by another invocation of WROPT.

Comments

1. This program can be invoked repeatedly before using a WR*** routine to
print a matrix. The matrix printing routines retrieve these settings to



IMSL STAT/LIBRARY Chapter 19: Utilities • 1261

determine the printing options. It is not necessary to call WROPT if a
default value of a printing option is desired. The defaults are as follows.

IOPT
Default Value

for ISET Meaning

1 0 Left justified.

2 1000000 Number lines before wrapping.

3 −2 No paging.

4 2 NaN is printed as “NaN,” negative
machine infinity is printed as “-Inf” and
positive machine infinity is printed as
“Inf.”

5 0 Title only on first page.

6 3 Default format is Vn.4.

7 2 2 spaces between columns.

8 0 Maximum row label width MAXRLW = 2 *
IPAGEW/3 if matrix has one column;
MAXRLW = IPAGEW/4 otherwise.

9 3 3 character indentation of row labels
continued beyond one line.

10 0 Width of row label hot zone is MAXRLW/3
characters.

11 0 Maximum column label width MAXCLW =
min{max (NW + NW/2, 15), 40} for integer
and real matrices, where NW is the field
width for the format corresponding to the
particular column. MAXCLW = min{max
(NW + NW/2, 15), 83} for complex
matrices, where NW is the sum of the two
field widths for the formats
corresponding to the particular column
plus 3.

12 0 Width of column label hot zone is
MAXCLW/3 characters.

13 10 Width of hot zone for titles is 10
characters.

14 0 There is no label in the upper left hand
corner.

15 0 Blank line is printed.
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IOPT
Default Value

for ISET Meaning

16 0 The matrix values are aligned vertically
with the last line of the associated row
label. For IOPT = 8, the default depends
on the current value for the page width,
IPAGEW (see PGOPT, page 1263).

2. The V and W formats are special formats that can be used to select a D, E,
F, or I format so that the decimal points will be aligned. The V and W
formats are specified as Vn.d and Wn.d. Here, n is the field width and d
is the number of significant digits generally printed. Valid values for n
are 3, 4, …, 40. Valid values for d are 1, 2, …, n − 2. While the V format
prints trailing zeroes and a trailing decimal point, the W format does not.

Algorithm

Routine WROPT allows the user to set or retrieve an option for printing a matrix.
The options controlled by WROPT include the following: horizontal centering, a
method for printing large matrices, paging, method for printing NaN (not a
number) and positive and negative machine infinities, printing titles, default
formats for numbers, spacing between columns, maximum widths reserved for
row and column labels, indentation of row labels that continue beyond one line,
widths of hot zones for breaking of labels and titles, the default heading for row
labels, whether to print a blank line between invocations of routines, and vertical
alignment of matrix entries with respect to row labels continued beyond one line.
(NaN and positive and negative machine infinities can be retrieved by AMACH and
DMACH that are documented in the section “Machine-Dependent Constants” in the
Reference Material.) Options can be set globally (ISCOPE = 1) or temporarily for
the next call to a printing routine (ISCOPE = 0).

Example

The following example illustrates the effect of WROPT when printing a 3 × 4 real
matrix A with WRRRN (page 1248) where aLM = i + j/10. The first call to WROPT sets
horizontal printing so that the matrix is first printed horizontally centered on the
page. In the next invocation of WRRRN, the left-justification option has been set
via routine WROPT so the matrix is left justified when printed. Finally, because the
scope of left justification was only for the next call to a printing routine, the last
call to WRRRN results in horizontally centered printing.

      INTEGER    ITRING, LDA, NCA, NRA
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3)
C
      INTEGER    I, IOPT, ISCOPE, ISET, J
      REAL       A(LDA,NCA)
      EXTERNAL   WROPT, WRRRN
C
      DO 20  I=1, NRA
         DO 10  J=1, NCA
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 A(I,J) = I + J*0.1
   10    CONTINUE
   20 CONTINUE
C                                 Activate centering option.
C                                 Scope is global.
      IOPT   = -1
      ISET   = 1
      ISCOPE = 1
C
      CALL WROPT (IOPT, ISET, ISCOPE)
C                                 Write A matrix.
      CALL WRRRN (’A’, NRA, NCA, A, LDA, ITRING)
C                                 Activate left justification.
C                                 Scope is local.
      IOPT   = -1
      ISET   = 0
      ISCOPE = 0
      CALL WROPT (IOPT, ISET, ISCOPE)
      CALL WRRRN (’A’, NRA, NCA, A, LDA, ITRING)
      CALL WRRRN (’A’, NRA, NCA, A, LDA, ITRING)
      END

Output
                                       A
                               1       2       3       4
                       1   1.100   1.200   1.300   1.400
                       2   2.100   2.200   2.300   2.400
                       3   3.100   3.200   3.300   3.400

                A
        1       2       3       4
1   1.100   1.200   1.300   1.400
2   2.100   2.200   2.300   2.400
3   3.100   3.200   3.300   3.400

                                       A
                               1       2       3       4
                       1   1.100   1.200   1.300   1.400
                       2   2.100   2.200   2.300   2.400
                       3   3.100   3.200   3.300   3.400

PGOPT
Set or retrieve page width and length for printing.

Usage
CALL PGOPT (IOPT, IPAGE)

Arguments
IOPT — Page attribute option.   (Input)

IOPT Description of Attribute
−1, 1 Page width.
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−2, 2 Page length.

Negative values of IOPT indicate the setting IPAGE is input. Positive values of
IOPT indcate the setting IPAGE is output.

IPAGE — Value of page attribute.   (Input, if IOPT is negative; output, if IOPT
is positive.)

IOPT Description of Attribute Settings for IPAGE
−1, 1 Page width (in characters) 10, 11, …
−2, 2 Page length (in lines) 10, 11, …

Algorithm

Routine PGOPT is used to set or retrieve the page width or the page length for
routines that perform printing.

Example

The following example illustrates the use of PGOPT to set the page width at 20
characters. Routine WRRRN (page 1248) is then used to print a 3 × 4 matrix A
where aLM = i + j/10.

      INTEGER    ITRING, LDA, NCA, NRA
      PARAMETER  (ITRING=0, LDA=10, NCA=4, NRA=3)
C
      INTEGER    I, IOPT, IPAGE, J
      REAL       A(LDA,NCA)
      EXTERNAL   PGOPT, WRRRN
C
      DO 20  I=1, NRA
         DO 10  J=1, NCA
            A(I,J) = I + J*0.1
   10    CONTINUE
   20 CONTINUE
C                                 Set page width.
      IOPT  = -1
      IPAGE = 20
      CALL PGOPT (IOPT, IPAGE)
C                                 Print the matrix A.
      CALL WRRRN (’A’, NRA, NCA, A, LDA, ITRING)
      END

Output
        A
        1       2
1   1.100   1.200
2   2.100   2.200
3   3.100   3.200

        3       4
1   1.300   1.400
2   2.300   2.400
3   3.300   3.400
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PERMU/DPERMU (Single/Double precision)
Rearrange the elements of an array as specified by a permutation.

Usage
CALL PERMU (N, X, IPERMU, IPATH, XPERMU)

Arguments

N — Length of the arrays X and XPERMU.   (Input)

X — Real vector of length N containing the array to be permuted.   (Input)

IPERMU — Integer vector of length N containing a permutation IPERMU(1),
…, IPERMU(N) of the integers 1, …, N.   (Input)

IPATH — Integer flag.   (Input)
IPATH = 1 means IPERMU represents a forward permutation, i.e., X(IPERMU(I))
is moved to XPERMU(I). IPATH = 2 means IPERMU represents a backward
permutation, i.e., X(I) is moved to XPERMU(IPERMU(I)).

XPERMU — Real vector of length N containing the array X permuted.   (Output)
If X is not needed, X and XPERMU can share the same storage locations.

Algorithm

Routine PERMU rearranges the elements of an array according to a permutation
vector. It has the option to do both forward and backward permutations.

Example

This example rearranges the array X using IPERMU; forward permutation is
performed.

C                                 Declare variables
      INTEGER    IPATH, N
      PARAMETER  (IPATH=1, N=4)
C
      INTEGER    IPERMU(N), J, NOUT
      REAL       X(N), XPERMU(N)
      EXTERNAL   PERMU, UMACH
C                                 Set values for  X, IPERMU
C
C                           X = ( 5.0  6.0  1.0  4.0 )
C                           IPERMU = ( 3 1 4 2 )
C
      DATA X/5.0, 6.0, 1.0, 4.0/, IPERMU/3, 1, 4, 2/
C                                 Permute X into XPERMU
      CALL PERMU (N, X, IPERMU, IPATH, XPERMU)
C                                 Get output unit number
      CALL UMACH (2, NOUT)
C                                 Print results
      WRITE (NOUT,99999) (XPERMU(J),J=1,N)



1266 • Chapter 19: Utilities IMSL STAT/LIBRARY

C
99999 FORMAT (’  The output vector is:’, /, 10(1X,F10.2))
      END

Output
The output vector is:
     1.00       5.00       4.00       6.00

PERMA/DPERMA (Single/Double precision)
Permute the rows or columns of a matrix.

Usage
CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER)

Arguments

NRA — Number of rows.   (Input)

NCA — Number of columns.   (Input)

A — NRA by NCA matrix to be permuted.   (Input)

LDA — Leading dimension of A exactly as specified in the dimension statement
of the calling program.   (Input)

IPERMU — Vector of length K containing a permutation IPERMU(1), …,
IPERMU(K) of the integers 1, …, K where K = NRA if the rows of A are to be
permuted and K = NCA if the columns of A are to be permuted.   (Input)

IPATH — Option parameter.   (Input)
IPATH = 1 means the rows of A will be permuted. IPATH = 2 means the columns
of A will be permuted.

APER — NRA by NCA matrix containing the permuted matrix.   (Output)
If A is not needed, A and APER can share the same storage locations.

LDAPER — Leading dimension of APER exactly as specified in the dimension
statement of the calling program.   (Input)

Comments

Automatic workspace usage is

PERMA NCA units, or
DPERMA 2 * NCA units.

Workspace may be explicitly provided, if desired, by use of P2RMA/DP2RMA. The
reference is

CALL P2RMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER,
            WORK)
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The additional argument is

WORK — Real work vector of length NCA.

Algorithm

Routine PERMA interchanges the rows or columns of a matrix using a permutation
vector.

The routine PERMA permutes a column (row) at a time by calling PERMU

(page 1265). This process is continued until all the columns (rows) are permuted.
On completion, let B = APER and pL = IPERMU(I), then

B Aij p ji
=

for all i, j.

Example

This example permutes the columns of a matrix A.
C                                 Declare variables
      INTEGER    IPATH, LDA, LDAPER, NCA, NRA
      PARAMETER  (IPATH=2, LDA=3, LDAPER=3, NCA=5, NRA=3)
C
      INTEGER    I, IPERMU(5), J, NOUT
      REAL       A(LDA,NCA), APER(LDAPER,NCA)
      EXTERNAL   PERMA, UMACH
C                                 Set values for  A, IPERMU
C                                 A = ( 3.0  5.0  1.0  2.0  4.0 )
C                                     ( 3.0  5.0  1.0  2.0  4.0 )
C                                     ( 3.0  5.0  1.0  2.0  4.0 )
C
C                                 IPERMU = ( 3 4 1 5 2 )
C
      DATA A/3*3.0, 3*5.0, 3*1.0, 3*2.0, 3*4.0/, IPERMU/3, 4, 1, 5, 2/
C                                 Perform column permutation on A,
C                                 giving APER
      CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, APER, LDAPER)
C                                 Get output unit number
      CALL UMACH (2, NOUT)
C                                 Print results
      WRITE (NOUT,99999) ((APER(I,J),J=1,NCA),I=1,NRA)
C
99999 FORMAT (’  The output matrix is:’, /, 3(5F8.1,/))
      END

Output
The output matrix is:
1.0     2.0     3.0     4.0     5.0
1.0     2.0     3.0     4.0     5.0
1.0     2.0     3.0     4.0     5.0
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RORDM/DRORDM (Single/Double precision)
Reorder rows and columns of a symmetric matrix.

Usage
CALL RORDM (NAA, AA, LDAA, NA, INDAA, A, LDA)

Arguments

NAA — Order of the matrix AA.   (Input)

AA — NAA by NAA symmetric matrix to be reordered.   (Input)
Only elements in the upper triangle of AA are referenced.

LDAA — Leading dimension of AA exactly as specified in the dimension
statement in the calling program.   (Input)

NA — Order of the reordered matrix A.   (Input)
NA must be less than or equal to NAA.

INDAA — Index vector of length NA containing the indices of the rows/columns
of AA that are being selected for inclusion into A.   (Input)
INDAA(I) = J means the J-th row and column of AA will be the I-th row and
column of A.

A — NAA by NAA matrix containing the reordered AA.   (Output)
The first NA rows and columns of A are those specified by INDAA. The remaining
elements of A contain the rows and columns not specified in INDAA

LDA — Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

Comments

Automatic workspace usage is

RORDM NAA units, or
DRORDM NAA units.

Workspace may be explicitly provided, if desired, by use of R2RDM/DR2RDM. The
reference is

CALL R2RDM (NAA, AA, LDAA, NA, INDAA, A, LDA, IWK)

The additional argument is

IWK — Work vector of length NAA indicating how the entire AA matrix has been
reordered and returned in A. IWK(I) = J means the J-th row and column of AA are
returned as the I-th row and column of A.
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Algorithm

Routine RORDM reorders the rows and columns of a symmetric matrix. Frequently
in practice a sum of squares and crossproducts matrix is first computed for all
variables in a data set. Then, a sum of squares and crossproducts matrix is needed
for some subset of the data set variables. Alternatively, a specific order for the
selected variables may be required for input into an analysis routine. For example,
in regression, IMSL routine RCOV requires the sum of squares and crossproducts
matrix for the independent variables and the dependent variables. Sums of
squares and crossproducts for the independent variables must appear first,
followed by entries for the dependent variables. Variables not in the regression
analysis, but in the data set, can appear last. RORDM can be used to reorder the
sum of squares and crossproducts matrix for input to RCOV.

Example

A 4 × 4 symmetric matrix AA is reordered so that row/column 4, 3, and 1 of AA
correspond to row/ column 1, 2, and 3 of A, respectively.

      INTEGER    LDA, LDAA, NA, NAA
      PARAMETER  (NA=3, NAA=4, LDA=NAA, LDAA=NAA)
C
      INTEGER    INDAA(NA)
      REAL       A(LDA,NAA), AA(LDAA,NAA)
      EXTERNAL   RORDM, WRRRN
C
      DATA (AA(1,J),J=1,NAA)/10., 20., 40., 70./
      DATA (AA(2,J),J=1,NAA)/20., 30., 50., 80./
      DATA (AA(3,J),J=1,NAA)/40., 50., 60., 90./
      DATA (AA(4,J),J=1,NAA)/70., 80., 90., 100./
      DATA INDAA/4, 3, 1/
C
      CALL RORDM (NAA, AA, LDAA, NA, INDAA, A, LDA)
      CALL WRRRN (’A’, NAA, NAA, A, LDA, 0)
      END

Output
                A
        1       2       3       4
1   100.0    90.0    70.0    80.0
2    90.0    60.0    40.0    50.0
3    70.0    40.0    10.0    20.0
4    80.0    50.0    20.0    30.0

MVNAN/DMVNAN (Single/Double precision)
Move any rows of a matrix with the IMSL missing value code NaN (not a
number) in the specified columns to the last rows of the matrix.
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Usage
CALL MVNAN (NROW, NCOL, IIND, IND, X, LDX, ISWAP, NRMISS)

Arguments

NROW — Number of rows.   (Input)

NCOL — Number of columns.   (Input)
IIND — Index vector option.   (Input)

IIND Meaning
< 0 The first −IIND columns of X are checked for NaN.
> 0 The IIND columns of X given by IND are checked for NaN.

IND — Index vector of length IIND containing the column numbers of X that are
to be checked for NaN.   (Input if IIND is positive)
If IIND is negative, IND is not referenced and can be a vector of length one.

X — NROW by NCOL matrix whose rows are checked for NaN (not a number).
(Input/Output)
On output, the rows of X containing NaN are the last NRMISS rows of X.

LDX — Leading dimension of X exactly as specified in the dimension statement
of the calling program.   (Input)

ISWAP — Vector of length NROW specifying the rows that were exchanged
(swapped).   (Output)
The number of nonzero elements in ISWAP is the number of swaps that took
place. ISWAP(I) = J (J greater than zero) means that rows I and J of X were
swapped, i.e., row I of the input X is row J of the output X and row J of the input
X is row I of the output X.

NRMISS — Number of rows that contained NaN in the specified columns of X.
(Output)

Algorithm

Routine MVNAN moves any rows containing the IMSL missing value code NaN
(not a number) in the specified columns to the last rows of the matrix. In single
precision, NaN can be assigned to the element of a matrix by using routine
AMACH. In double precision, routine DMACH should be used instead. (See the
following examples and the section “Machine-Dependent Constants” in the
Reference Material.)

The columns that are checked for NaN are specified through arguments IIND and
IND. Let c1, c2, …, cN be the column numbers specified. The main steps
performed by MVNAN are as follows:

1. Initialize the NROW elements of ISWAP to zero.

2. Exchange (swap) the first row of X containing NaN in at least one of the
specified columns c1, c2, …, cN with the last row of X that does not
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contain NaN in any of the specified columns c1, c2, …, cN. Let i and j (i <
j) correspond to the rows that are exchanged. Set the i-th element of
ISWAP to j.

3. Starting with the (i + 1)-st row of X, exchange the first row containing
NaN with the last row not containing NaN, beginning from row j − 1 and
continuing backward. Reset i and j (i < j) to correspond to the rows
exchanged.

4. Continue in this manner until all rows have been examined for NaN.

Example 1

In this example, MVNAN is used to move rows containing NaN in columns 1 and 2
of a 5 by 3 matrix X to the last rows.

      INTEGER    LDX, NCOL, NROW
      PARAMETER  (NCOL=3, NROW=5, LDX=NROW)
C
      INTEGER    IIND, IND(1), ISWAP(NROW), NOUT, NRMISS
      REAL       AMACH, X(LDX,NCOL)
      EXTERNAL   AMACH, MVNAN, UMACH, WRIRN, WRRRN
C
      DATA (X(1,J),J=1,NCOL)/1.0, 10.0, 100.0/
      DATA (X(2,J),J=1,NCOL)/2.0, 20.0, 200.0/
      DATA (X(3,J),J=1,NCOL)/3.0, 30.0, 300.0/
      DATA (X(4,J),J=1,NCOL)/4.0, 40.0, 400.0/
      DATA (X(5,J),J=1,NCOL)/5.0, 50.0, 500.0/
C
      X(2,2) = AMACH(6)
      X(4,1) = AMACH(6)
      IIND   = -2
      CALL WRRRN (’Input X’, NROW, NCOL, X, LDX, 0)
      CALL MVNAN (NROW, NCOL, IIND, IND, X, LDX, ISWAP, NRMISS)
      CALL WRRRN (’Output X’, NROW, NCOL, X, LDX, 0)
      CALL WRIRN (’ISWAP’, NROW, 1, ISWAP, NROW, 0)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ ’
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
      END

Output
         Input X
        1       2       3
1     1.0    10.0   100.0
2     2.0     NaN   200.0
3     3.0    30.0   300.0
4     NaN    40.0   400.0
5     5.0    50.0   500.0

        Output X
        1       2       3
1     1.0    10.0   100.0
2     5.0    50.0   500.0
3     3.0    30.0   300.0
4     NaN    40.0   400.0
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5     2.0     NaN   200.0

ISWAP
1   0
2   5
3   0
4   0
5   0
NRMISS =   2

Example 2

In this example, MVNAN is used to move rows containing NaN in column 1 and 3
of a 5 by 3 matrix X to the last rows.

      INTEGER    LDX, NCOL, NROW
      PARAMETER  (NCOL=3, NROW=5, LDX=NROW)
C
      INTEGER    IIND, IND(2), ISWAP(NROW), NOUT, NRMISS
      REAL       AMACH, X(LDX,NCOL)
      EXTERNAL   AMACH, MVNAN, UMACH, WRIRN, WRRRN
C
      DATA (X(1,J),J=1,NCOL)/1.0, 10.0, 100.0/
      DATA (X(2,J),J=1,NCOL)/2.0, 20.0, 200.0/
      DATA (X(3,J),J=1,NCOL)/3.0, 30.0, 300.0/
      DATA (X(4,J),J=1,NCOL)/4.0, 40.0, 400.0/
      DATA (X(5,J),J=1,NCOL)/5.0, 50.0, 500.0/
      DATA IND/1, 3/
C
      X(2,2) = AMACH(6)
      X(4,1) = AMACH(6)
      IIND   = 2
      CALL WRRRN (’Input X’, NROW, NCOL, X, LDX, 0)
      CALL MVNAN (NROW, NCOL, IIND, IND, X, LDX, ISWAP, NRMISS)
      CALL WRRRN (’Output X’, NROW, NCOL, X, LDX, 0)
      CALL WRIRN (’ISWAP’, NROW, 1, ISWAP, NROW, 0)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ ’
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
      END

Output
         Input X
        1       2       3
1     1.0    10.0   100.0
2     2.0     NaN   200.0
3     3.0    30.0   300.0
4     NaN    40.0   400.0
5     5.0    50.0   500.0

        Output X
        1       2       3
1     1.0    10.0   100.0
2     2.0     NaN   200.0
3     3.0    30.0   300.0
4     5.0    50.0   500.0
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5     NaN    40.0   400.0

ISWAP
1   0
2   0
3   0
4   5
5   0
NRMISS =   1

SVRGN/DSVRGN (Single/Double precision)
Sort a real array by algebraically increasing value.

Usage

CALL SVRGN (N, RA, RB)

Arguments

N — Number of elements in the array to be sorted.   (Input)

RA — Vector of length N containing the array to be sorted.   (Input)

RB — Vector of length N containing the sorted array.   (Output)
If RA is not needed, RA and RB can share the same storage locations.

Algorithm

Routine SVRGN sorts the elements of an array, A, into ascending order by
algebraic value. The array A is divided into two parts by picking a central element
T of the array. The first and last elements of A are compared with T and
exchanged until the three values appear in the array in ascending order. The
elements of the array are rearranged until all elements greater than or equal to the
central element appear in the second part of the array and all those less than or
equal to the central element appear in the first part. The upper and lower
subscripts of one of the segments are saved, and the process continues iteratively
on the other segment. When one segment is finally sorted, the process begins
again by retrieving the subscripts of another unsorted portion of the array. On
completion, AM ≤ AL for j < i. For more details, see Singleton (1969), Griffin and
Redish (1970), and Petro (1970).

Example

This example sorts the 10-element array RA algebraically.
C                                 Declare variables
      PARAMETER  (N=10)
      REAL       RA(N), RB(N)
C                                 Set values for  RA
C     RA = ( -1.0  2.0  -3.0  4.0  -5.0  6.0  -7.0  8.0  -9.0  10.0 )
C
      DATA RA/-1.0, 2.0, -3.0, 4.0, -5.0, 6.0, -7.0, 8.0, -9.0, 10.0/
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C                                 Sort RA by algebraic value into RB
      CALL SVRGN (N, RA, RB)
C                                 Print results
      CALL UMACH (2,NOUT)
      WRITE (NOUT, 99999) (RB(J),J=1,N)
C
99999 FORMAT (’  The output vector is:’, /, 10(1X,F5.1))
      END

Output
The output vector is:
-9.0  -7.0  -5.0  -3.0  -1.0   2.0   4.0   6.0   8.0  10.0

SVRGP/DSVRGP (Single/Double precision)
Sort a real array by algebraically increasing value and return the permutation that
rearranges the array.

Usage
CALL SVRGP (N, RA, RB, IPERM)

Arguments

N — Number of elements in the array to be sorted.   (Input)

RA — Vector of length N containing the array to be sorted.   (Input)

RB — Vector of length N containing the sorted array.   (Output)
If RA is not needed, RA and RB can share the same storage locations.

IPERM — Vector of length N.   (Input/Output)
On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM
contains a record of permutations made on the vector RA.

Comments

For wider applicability, integers (1. 2, …, N) that are to be associated with RA(I)
for I = 1, 2, …, N may be entered into IPERM(I) in any order. Note that these
integers must be unique.

Algorithm

Routine SVRGP sorts the elements of an array, A, into ascending order by
algebraic value, keeping a record in P of the permutations to the array A. That is,
the elements of P are moved in the same manner as are the elements in A as A is
being sorted. The routine SVRGP uses the algorithm discussed in SVRGN (page
1273). On completion, AM ≤ AL for j < i.

Example

This example sorts the 10-element array RA algebraically.
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C                                 Declare variables
      PARAMETER  (N=10)
      REAL       RA(N), RB(N)
      INTEGER    IPERM(N)
C                                 Set values for  RA and IPERM
C     RA    = ( 10.0  -9.0  8.0  -7.0  6.0  5.0  4.0  -3.0  -2.0  -1.0 )
C
C     IPERM = ( 1  2  3  4  5  6  7  8  9  10)
C
      DATA RA/10.0, -9.0, 8.0, -7.0, 6.0, 5.0, 4.0, -3.0, -2.0, -1.0/
      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
C                                 Sort RA by algebraic value into RB
      CALL SVRGP (N, RA, RB, IPERM)
C                                 Print results
      CALL UMACH (2,NOUT)
      WRITE (NOUT, 99998) (RB(J),J=1,N)
      WRITE (NOUT, 99999) (IPERM(J),J=1,N)
C
99998 FORMAT (’  The output vector is:’, /, 10(1X,F5.1))
99999 FORMAT (’  The permutation vector is:’, /, 10(1X,I5))
      END

Output
The output vector is:
-9.0  -7.0  -3.0  -2.0  -1.0   4.0   5.0   6.0   8.0  10.0
The permutation vector is:
   2     4     8     9    10     7     6     5     3     1

SVIGN
Sort an integer array by algebraically increasing value.

Usage
CALL SVIGN (N, IA, IB)

Arguments

N — Number of elements in the array to be sorted.   (Input)

IA — Integer vector of length N containing the array to be sorted.   (Input)

IB — Integer vector of length N containing the sorted array.   (Output)
If IA is not needed, IA and IB can share the same storage locations.

Algorithm

Routine SVIGN sorts the elements of an integer array, A, into ascending order by
algebraic value. The routine SVIGN uses the algorithm discussed in SVRGN (page
1273). On completion, AM ≤ AL for j < i.

Example

This example sorts the 10-element array IA algebraically.



1276 • Chapter 19: Utilities IMSL STAT/LIBRARY

C                                 Declare variables
      PARAMETER  (N=10)
      INTEGER    IA(N), IB(N)
C                                 Set values for  IA
C     IA = ( -1  2  -3  4  -5  6  -7  8  -9  10 )
C
      DATA IA/-1, 2, -3, 4, -5, 6, -7, 8, -9, 10/
C                                 Sort IA by algebraic value into IB
      CALL SVIGN (N, IA, IB)
C                                 Print results
      CALL UMACH (2,NOUT)
      WRITE (NOUT, 99999) (IB(J),J=1,N)
C
99999 FORMAT (’  The output vector is:’, /, 10(1X,I5))
      END

Output
The output vector is:
-9    -7    -5    -3    -1     2     4     6     8    10

SVIGP
Sort an integer array by algebraically increasing value and return the permutation
that rearranges the array.

Usage
CALL SVIGP (N, IA, IB, IPERM)

Arguments

N — Number of elements in the array to be sorted.   (Input)

IA — Integer vector of length N containing the array to be sorted.   (Input)

IB — Integer vector of length N containing the sorted array.   (Output)
If IA is not needed, IA and IB can share the same storage locations.

IPERM — Vector of length N.   (Input/Output)
On input, IPERM should be initialized to the values 1, 2, …, N. On output, IPERM
contains a record of permutations made on the vector IA.

Comments

For wider applicability, integers (1, 2, …, N) that are to be associated with IA(I)
for I = 1, 2, …, N may be entered into IPERM(I) in any order. Note that these
integers must be unique.

Algorithm

Routine SVIGP sorts the elements of an integer array, A, into ascending order by
algebraic value, keeping a record in P of the permutations to the array A. That is,
the elements of P are moved in the same manner as are the elements in A as
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A is being sorted. The routine SVIGP uses the algorithm discussed in SVRGN
(page 1273). On completion, AM ≤ AL for j < i.

Example

This example sorts the 10-element array IA algebraically.
C                                 Declare variables
      PARAMETER  (N=10)
      INTEGER    IA(N), IB(N), IPERM(N)
C                                 Set values for  IA and IPERM
C     IA    = ( 10  -9  8  -7  6  5  4  -3  -2  -1 )
C
C     IPERM = ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 )
C
      DATA IA/10, -9, 8, -7, 6, 5, 4, -3, -2, -1/
      DATA IPERM/1, 2, 3, 4, 5, 6, 7, 8, 9, 10/
C                                 Sort IA by algebraic value into IB
      CALL SVIGP (N, IA, IB, IPERM)
C                                 Print results
      CALL UMACH (2,NOUT)
      WRITE (NOUT, 99998) (IB(J),J=1,N)
      WRITE (NOUT, 99999) (IPERM(J),J=1,N)
C
99998 FORMAT (’ The output vector is:’, /, 10(1X,I5))
99999 FORMAT (’ The permutation vector is:’, /, 10(1X,I5))
      END

Output
The  output vector is:
    -9    -7    -3    -2    -1     4     5     6     8    10
The permutation vector is:
    2     4     8     9    10     7     6     5     3     1

SCOLR/DSCOLR (Single/Double precision)
Sort columns of a real rectangular matrix using keys in rows.

Usage
CALL SCOLR (NRX, NCX, X, LDX, ICOMP, IORDR, IRET, NKEY,
            INDKEY, IPERM, NGROUP, NI)

Arguments

NRX — Number of rows of X.   (Input)

NCX — Number of columns of X.   (Input)

X — NRX by NCX matrix.   (Input, if IRET = 1; input/output if IRET = 0)
On input, X contains the matrix to be sorted. If IRET = 0, the output X contains
the sorted matrix.
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LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

ICOMP — Option giving the method of comparison of the column vectors.
(Input)

ICOMP Action
0 Elementwise, by algebraic values
1 Elementwise, by absolute values

IORDR — Option giving the sorting order.   (Input)

IORDR Action
0 Ascending
1 Descending

IRET — Option for determining whether the columns of X are to be permuted.
(Input)

IRET Action
0 The columns of X are sorted.
1 X is unchanged (detached key sort).

NKEY — Number of rows of X on which to sort.   (Input)

INDKEY — Vector of length NKEY giving the row numbers of X which are to be
used in the sort.   (Input)

IPERM — Permutation vector of length NCX specifying the rearrangement of the
columns.   (Output)
IPERM (I) = J means column I of the sorted X is column J of the unsorted X.

NGROUP — Number of groups.   (Output)
The columns of the sorted X are partitioned into groups. A group contains
columns that are equal with respect to the method of comparison. NGROUP is the
number of groups of different columns.

NI — Vector of length NGROUP containing the number of columns in each group.
(Output)
The first NI(1) columns of the sorted X are group number 1; the next NI(2)
columns of the sorted X are group number 2;… the last NI(NGROUP) columns of
the sorted X are group number NGROUP. If NGROUP is not known prior to the
invocation of this routine, NCX(an upper bound for NGROUP) can be used as the
dimension of NI.

Comments

1. Automatic workspace usage is

SCOLR 3 * m + INT(2.8854 * ln(m)) + 2 units, or
DSCOLR 5 * m + INT(2.8854 * ln(m)) + 2 units,

where m = max(NRX, NCX). Workspace may be explicitly provided, if
desired, by use of S2OLR/DS2OLR. The reference is
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CALL S2OLR (NRX, NCX, X, LDX, ICOMP, IORDR, IRET,
            NKEY, INDKEY, IPERM, NGROUP, NI, WK,
            IWK)

The additional arguments are as follows:

WK — Work vector of length 2 * m.

IWK — Work vector of length m + INT(2.8854 ln(m)) + 2.

2. When X is sorted by algebraic value (ICOMP = 0) in ascending order, the
resulting array X is such that:
For i = 1, 2, …, NCX − 1, X(INDKEY(1), i) ≤ X(INDKEY(1), i + 1)
For k = 2, …, NKEY, if X(INDKEY(j), i) = X(INDKEY(j), i + 1) for j = 1, 2, 
…, k − 1, then X(INDKEY (k), i) ≤ X(INDKEY(k), i + 1).
When ICOMP = 1, the absolute values are compared instead.

Algorithm

Routine SCOLR sorts the columns of a real matrix X using particular rows in X as
the keys. One of two methods for comparing the columns can be used for sorting.

1. Algebraic with the first key as the most significant, the second key next
most significant and so forth.

2. Absolute values with the first key as the most significant, the second key
next most significant and so forth.

The columns of X can be put in ascending or descending order.

The routine is useful for data containing classification variables. Routine CSTAT

(page 54) can be used to form the cells and frequency counts for a multi-way
table from data. The columns of the output matrix contain the values of each
combination of values of the classification variables along with the tallies. SCOLR

can then be used to sort the columns of this output matrix using the classification
variables as keys.

SCOLR is based on a quicksort method given by Singleton (1969). Modifications
by Griffin and Redish (1970) and Petro (1970) are incorporated.

Example

The columns of a 5 × 10 matrix X are sorted in descending order by absolute
value using rows 1, 2, 3, and 5 as the keys. The permutations to put the columns
of X in order are returned. The input matrix X is not changed.

      INTEGER    LDX, NCX, NKEY, NRX
      PARAMETER  (NCX=10, NKEY=4, NRX=5, LDX=NRX)
C
      INTEGER    ICOMP, INDKEY(NKEY), IORDR, IPERM(NCX), IRET, NI(NCX),
     &           NGROUP, NOUT
      REAL       X(LDX,NCX)
      CHARACTER  CLABEL(1)*10, FMT*10, RLABEL(1)*23
      EXTERNAL   SCOLR, UMACH, WRIRL, WRRRL
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C
      DATA CLABEL(1)/’NONE’/, RLABEL(1)/’NONE’/
      DATA X/-1.0, -10.0, -11.0, 10.0, -1.0, 2.0, 20.0, 22.0, -20.0,
     &     -2.0, -3.0, -30.0, 33.0, 30.0, -3.0, 4.0, 40.0, 44.0,
     &     -40.0, -4.0, -5.0, -50.0, 55.0, 50.0, -5.0, -1.0, 60.0,
     &     -66.0, -60.0, 6.0, 2.0, -70.0, -77.0, 70.0, 7.0, -3.0,
     &     -30.0, -88.0, 80.0, 8.0, 4.0, 40.0, -99.0, -90.0, 9.0,
     &     -5.0, -50.0, -100.0, 100.0, 10.0/
      DATA INDKEY/1, 2, 3, 5/
C
      ICOMP = 1
      IORDR = 1
      IRET  = 1
      CALL SCOLR (NRX, NCX, X, LDX, ICOMP, IORDR, IRET, NKEY, INDKEY,
     &            IPERM, NGROUP, NI)
C
      FMT       = ’(F6.1)’
      RLABEL(1) = ’NONE’
      CALL WRRRL (’X’, NRX, NCX, X, LDX, 0, FMT, RLABEL, CLABEL)
C
      FMT       = ’(I4)’
      RLABEL(1) = ’IPERM = ’
      CALL WRIRL (’%/’, 1, NCX, IPERM, 1, 0, FMT, RLABEL, CLABEL)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*)
      WRITE (NOUT,*) ’NGROUP = ’, NGROUP
C
      RLABEL(1) = ’NI = ’
      CALL WRIRL (’%/’, 1, NGROUP, NI, 1, 0, FMT, RLABEL, CLABEL)
C
      END

Output
                                       X
 -1.0    2.0   -3.0     4.0    -5.0    -1.0     2.0    -3.0     4.0    -5.0
-10.0   20.0  -30.0    40.0   -50.0    60.0   -70.0   -30.0    40.0   -50.0
-11.0   22.0   33.0    44.0    55.0   -66.0   -77.0   -88.0   -99.0  -100.0
 10.0  -20.0   30.0   -40.0    50.0   -60.0    70.0    80.0   -90.0   100.0
 -1.0   -2.0   -3.0    -4.0    -5.0     6.0     7.0     8.0     9.0    10.0
IPERM =    10     5     9     4     8     3     7     2     6     1
NGROUP =   10
NI =     1     1     1     1     1     1     1     1     1     1

SROWR/DSROWR (Single/Double precision)
Sort rows of a real rectangular matrix using keys in columns.

Usage
CALL SROWR (NROW, NCOL, X, LDX, ICOMP, IORDR, IRET, NKEY,
            INDKEY, IPERM, NGROUP, NI, NRMISS)



IMSL STAT/LIBRARY Chapter 19: Utilities • 1281

Arguments

NROW — Number of rows of X.   (Input)

NCOL — Number of columns of X.   (Input)

X — NROW by NCOL matrix.   (Input, if IRET = 1; input/output if IRET = 0)
On input, X contains the matrix to be sorted. If IRET = 0, the output X contains
the sorted matrix.

LDX — Leading dimension of X exactly as specified in the dimension statement
of the calling program.   (Input)
ICOMP — Option giving the method of comparison of the row vectors.   (Input)

ICOMP Action
0 Elementwise, by algebraic values
1 Elementwise, by absolute values

IORDR — Option giving the sorting order.   (Input)

IORDR Action
0 Ascending
1 Descending

IRET — Option to indicate information returned.   (Input)

IRET Action
0 The sorted X is returned along with NGROUP and NI.
1 X is unchanged (detached key sort) and NGROUP and NI are returned.
2 The sorted X is returned, but NGROUP and NI are not returned.
3 X is unchanged (detached key sort) and NGROUP and NI are not returned.

NKEY — Number of columns of X on which to sort.   (Input)

INDKEY — Vector of length NKEY giving the column numbers of X which are to
be used in the sort.   (Input)

IPERM — Permutation vector of length NROW specifying the rearrangement of
the rows.   (Output)
IPERM(I) = J means row I of the sorted X is row J of the unsorted X.

NGROUP — Number of groups.   (Output, if IRET ≤ 1)
The rows of the sorted X are partitioned into groups. A group contains rows that
are equal with respect to the method of comparison. NGROUP is the number of
groups of different rows.

NI — Vector of length NGROUP containing the number of rows in each group.
(Output, if IRET ≤ 1)

The first NI(1) rows of the sorted X are group number 1. The next NI(2) rows of
the sorted X are group number 2. … The last NI(NGROUP) rows of the sorted X are
group number NGROUP. If NGROUP is not known prior to the invocation of



1282 • Chapter 19: Utilities IMSL STAT/LIBRARY

this routine, NROW(an upper bound for NGROUP) can be used as the dimension of
NI. If IRET ≥ 2, NI is not referenced and can be a vector of length one.

NRMISS — Number of rows that contained NaN in the columns of X used in the
sort.   (Output)
These rows are considered as a separate group from the other NGROUP groups and
are put as the last NRMISS rows of the sorted X.

Comments

1. Automatic workspace usage is

SROWR 3 * m + INT(2.8854 * ln(m)) + 2 units, or
DSROWR  5 * m + INT(2.8854 * ln(m)) + 2 units,

where m = max(NROW, NCOL). Workspace may be explicitly provided, if
desired, by use of S2OWR/DS2OWR. The reference is

CALL S2OWR (NROW, NCOL, X, LDX, ICOMP, IORDR, IRET,
            NKEY, INDKEY, IPERM, NGROUP, NI, NRMISS,
            WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 2 * m.

IWK — Work vector of length m + INT(2.8854 * ln(m)) + 2.

2. When X is sorted by algebraic values (ICOMP = 0), in ascending order,
the resulting array X is such that:
For i = 1, 2, …, NROW − 1, X(i, INDKEY(1)) ≤ X(i + 1, INDKEY(1)).
For k = 2, …, NKEY, if X(i, INDKEY(j)) = X(i + 1, INDKEY(j)) for j = 1, 2, 
…, k − 1; then X(i, INDKEY(k)) ≤ X(i + 1, INDKEY(k)).
When ICOMP = 1, the absolute values are compared instead.

Algorithm

Routine SROWR sorts the rows of a real matrix X using particular rows in X as the
keys. One of two methods for comparing the rows can be used for sorting.

1. Algebraic with the first key as the most significant, the second key next
most significant and so forth.

2. Absolute values with the first key as the most significant, the second key
next most significant and so forth.

The rows of X can be put in ascending or descending order.

The routine is useful for grouping data based on values of specified variables.
The rows of X containing the IMSL missing value code NaN (not a number) in at
least one of the specified columns are considered as an additional group of
NRMISS rows. These rows are moved to the end of the sorted X. SROWR is based
on a quicksort method given by Singleton (1969). Modifications by Griffin and
Redish (1970) and Petro (1970) are incorporated.
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Example

The rows of a 10 × 3 matrix X are sorted in ascending order by algebraic value
using columns 2 and 3 as the keys. The permutations to put the rows of the input
X into sorted order are returned along with the sorted X.

      INTEGER    LDX, NCOL, NKEY, NROW
      PARAMETER  (NCOL=3, NKEY=2, NROW=10, LDX=NROW)
C
      INTEGER    ICOMP, INDKEY(NKEY), IORDR, IPERM(NROW), IRET,
     &           NGROUP, NI(NROW), NOUT, NRMISS
      REAL       AMACH, X(LDX,NCOL)
      EXTERNAL   AMACH, SROWR, UMACH, WRIRN, WRRRN
C
      DATA (X(1,J),J=1,3)/1.0, 1., 1./
      DATA (X(2,J),J=1,3)/2.0, 2., 1./
      DATA (X(3,J),J=1,3)/3.0, 1., 1./
      DATA (X(4,J),J=1,3)/4.0, 1., 1./
      DATA (X(5,J),J=1,3)/5.0, 2., 2./
      DATA (X(6,J),J=1,3)/6.0, 1., 2./
      DATA (X(7,J),J=1,3)/7.0, 1., 2./
      DATA (X(8,J),J=1,3)/8.0, 1., 1./
      DATA (X(9,J),J=1,3)/9.0, 2., 2./
      DATA (X(10,J),J=1,3)/9.0, 1., 1./
      DATA INDKEY/2, 3/
C
      X(5,3) = AMACH(6)
      X(7,2) = AMACH(6)
      IRET   = 0
      ICOMP  = 0
      IORDR  = 0
      CALL SROWR (NROW, NCOL, X, LDX, ICOMP, IORDR, IRET, NKEY,
     &            INDKEY, IPERM, NGROUP, NI, NRMISS)
      CALL WRRRN (’X’, NROW, NCOL, X, LDX, 0)
      CALL WRIRN (’IPERM’, NROW, 1, IPERM, NROW, 0)
      CALL WRIRN (’NI’, NGROUP, 1, NI, NGROUP, 0)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’ ’
      WRITE (NOUT,*) ’NRMISS = ’, NRMISS
      END

Output
              X
         1       2       3
 1   1.000   1.000   1.000
 2   9.000   1.000   1.000
 3   3.000   1.000   1.000
 4   4.000   1.000   1.000
 5   8.000   1.000   1.000
 6   6.000   1.000   2.000
 7   2.000   2.000   1.000
 8   9.000   2.000   2.000
 9   7.000     NaN   2.000
10   5.000   2.000     NaN

 IPERM
 1    1
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 2   10
 3    3
 4    4
 5    8
 6    6
 7    2
 8    9
 9    7
10    5

  NI
 1   5
 2   1
 3   1
 4   1
NRMISS =   2

SRCH/DSRCH (Single/Double precision)
Search a sorted vector for a given scalar and return its index.

Usage
CALL SRCH (N, VALUE, X, INCX, INDEX)

Arguments

N — Length of vector Y.   (Input)

VALUE — Scalar to be searched for in Y.   (Input)

X — Vector of length N * INCX.   (Input)
Y is obtained from X for I = 1, 2, …, N by Y(I) = X(1 + (I − 1) * INCX). Y(1),
Y(2), …, Y(N) must be in ascending order.

INCX — Displacement between elements of X.   (Input)
INCX must be greater than zero.

INDEX — Index of Y pointing to VALUE.   (Output)
If INDEX is positive, VALUE is found in Y. If INDEX is negative, VALUE is not
found in Y.

INDEX    Location of VALUE
1 thru N      VALUE = Y(INDEX)
−1          VALUE < Y(1) or N = 0
−N thru −2 Y(− INDEX − 1) < VALUE < Y(− INDEX)
−(N + 1)   VALUE > Y(N)

Algorithm

Routine SRCH searches a real vector x (stored in X), whose n elements are sorted
in ascending order for a real number c (stored in VALUE). If c is found in x, its
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index i (stored in INDEX) is returned so that xL = c. Otherwise, a negative number
i is returned for the index. Specifically,

if 1 ≤ i ≤ n then xL = c

if i = − 1 then c < x1 or n = 0

if − n ≤ i ≤ − 2 then x-L-1 < c < x-L

if i = − (n + 1) then c > xQ

The argument INCX is useful if a row of a matrix, for example, row number I of a
matrix X, must be searched. The elements of row I are assumed to be in
ascending order. In this case, set INCX equal to the leading dimension of X
exactly as specified in the dimension statement in the calling program. With X
declared

REAL X(LDX,N)

the invocation

CALL SRCH (N, VALUE, X(I,1), LDX, INDEX)

returns an index that will reference a column number of X.

Routine SRCH performs a binary search. The routine is an implementation of
Algorithm B discussed by Knuth (1973, pages 407−411).

Example

This example searches a real vector sorted in ascending order for the value 653.0.
The problem is discussed by Knuth (1973, pages 407−409).

      INTEGER    N
      PARAMETER  (N=16)
C
      INTEGER    INCX, INDEX, NOUT
      REAL       VALUE, X(N)
      EXTERNAL   SRCH, UMACH
C
      DATA X/61.0, 87.0, 154.0, 170.0, 275.0, 426.0, 503.0, 509.0,
     &     512.0, 612.0, 653.0, 677.0, 703.0, 765.0, 897.0, 908.0/
C
      INCX  = 1
      VALUE = 653.0
      CALL SRCH (N, VALUE, X, INCX, INDEX)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’INDEX = ’, INDEX
      END

Output
INDEX =   11



1286 • Chapter 19: Utilities IMSL STAT/LIBRARY

ISRCH
Search a sorted integer vector for a given integer and return its index.

Usage
CALL ISRCH (N, IVALUE, IX, INCX, INDEX)

Arguments

N — Length of vector IY.   (Input)

IVALUE — Scalar to be searched for in IY.   (Input)

IX — Vector of length N * INCX.   (Input)
IY is obtained from IX for I = 1, 2, …, N by IY(I) = IX(1 + (I − 1) * INCX).
IY(1), IY(2), …, IY(N) must be in ascending order.

INCX — Displacement between elements of IX.   (Input)
INCX must be greater than zero.

INDEX — Index of IY pointing to IVALUE.   (Output)
If INDEX is positive, IVALUE is found in IY. If INDEX is negative, IVALUE is not
found in IY.

INDEX    Location of IVALUE
1 thru N IVALUE = IY(INDEX)
−1       IVALUE < IY(1) or N = 0
−N thru −2 IY(−INDEX − 1) < IVALUE < IY(−INDEX)
−(N + 1)   IVALUE > IY(N)

Algorithm

Routine ISRCH searches an integer vector x (stored in IX), whose n elements are
sorted in ascending order for an integer c (stored in IVALUE). If c is found in x, its
index i (stored in INDEX) is returned so that xL = c. Otherwise, a negative number
i is returned for the index.

Specifically,

if 1 ≤ i ≤ n then xL = c

if i = −1     then c < x1 or n = 0

if −n ≤ i ≤ −2 then x-L-1 < c < x-L

if i = −(n + 1) then c > xQ

The argument INCX is useful if a row of a matrix, for example, row number I of a
matrix IX, must be searched. The elements of row I are assumed to be in
ascending order. Here, set INCX equal to the leading dimension of IX exactly as
specified in the dimension statement in the calling program. With IX declared
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INTEGER IX(LDIX,N)

the invocation

CALL ISRCH (N, IVALUE, IX(I,1), LDIX, INDEX)

returns an index that will reference a column number of IX. The routine ISRCH
performs a binary search. The routine is an implementation of Algorithm B
discussed by Knuth (1973, pages 407−411).

Example

This example searches an integer vector sorted in ascending order for the value
653. The problem is discussed by Knuth (1973, pages 407−409).

      INTEGER    N
      PARAMETER  (N=16)
C
      INTEGER    INCX, INDEX, NOUT
      INTEGER    IVALUE, IX(N)
      EXTERNAL   ISRCH, UMACH
C
      DATA IX/61, 87, 154, 170, 275, 426, 503, 509, 512, 612, 653, 677,
     &        703, 765, 897, 908/
C
      INCX  = 1
      IVALUE = 653
      CALL ISRCH (N, IVALUE, IX, INCX, INDEX)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’INDEX = ’, INDEX
      END

Output
INDEX =   11

SSRCH
Search a character vector, sorted in ascending ASCII order, for a given string and
return its index.

Usage
CALL SSRCH (N, STRING, CHX, INCX, INDEX)

Arguments

N — Length of vector CHY.   (Input)

STRING — Character string to be searched for in CHY.   (Input)

CHX — Vector of length N * INCX containing character strings.   (Input)
CHY is obtained from CHX for I = 1, 2, …, N by CHY(I) = CHX(1 + (I − 1) *
INCX). CHY(1), CHY(2), …, CHY(N) must be in ascending ASCII order.
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INCX — Displacement between elements of CHX.   (Input)
INCX must be greater than zero.

INDEX — Index of CHY pointing to STRING.   (Output)
If INDEX is positive, STRING is found in CHY. If INDEX is negative, STRING is
not found in CHY.

INDEX  Location of STRING
1 thru N STRING = CHY(INDEX)
−1     STRING < CHY(1) or N = 0
−N thru −2 CHY(−INDEX − 1) < STRING < CHY(−INDEX)
−(N + 1)     STRING > CHY(N)

Algorithm

Routine SSRCH searches a vector of character strings x (stored in CHX), whose n
elements are sorted in ascending ASCII order, for a character string c (stored in
STRING). If c is found in x, its index i (stored in INDEX) is returned so that xL = c.
Otherwise, a negative number i is returned for the index. Specifically,

if 1 ≤ i ≤ n then xL = c

if i = −1 then c < x1 or n = 0

if −n ≤ i ≤ −2 then x-L-1 < c < x-L

if i = −(n + 1) then c > xQ

Here, “<” and “>” are in reference to the ASCII collating sequence. For
comparisons made between character strings c and xL with different lengths, the
shorter string is considered as if it were extended on the right with blanks to the
length of the longer string. (SSRCH uses FORTRAN intrinsic functions LLT and
LGT.)

The argument INCX is useful if a row of a matrix, for example, row number I of a
matrix CHX, must be searched. The elements of row I are assumed to be in
ascending ASCII order. In this case, set INCX equal to the leading dimension of
CHX exactly as specified in the dimension statement in the calling program. With
CHX declared

CHARACTER*7 CHX(LDCHX,N)

the invocation

CALL SSRCH (N, STRING, CHX(I,1), LDCHX, INDEX)

returns an index that will reference a column number of CHX.

Routine SSRCH performs a binary search. The routine is an implementation of
Algorithm B discussed by Knuth (1973, pages 407−411).
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Example

This example searches a CHARACTER*2 vector containing 9 character strings,
sorted in ascending ASCII order, for the value ’CC’ .

      INTEGER    N
      PARAMETER  (N=9)
C
      INTEGER    INCX, INDEX, NOUT
      CHARACTER  CHX(N)*2, STRING*2
      EXTERNAL   SSRCH, UMACH
C
      DATA CHX/’AA’, ’BB’, ’CC’, ’DD’, ’EE’, ’FF’, ’GG’, ’HH’,
     &     ’II’/
C
      INCX   = 1
      STRING = ’CC’
      CALL SSRCH (N, STRING, CHX, INCX, INDEX)
C
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’INDEX = ’, INDEX
      END

Output
INDEX =   3

ACHAR
Return a character given its ASCII value.

Usage

ACHAR(I)

Arguments

I — Integer ASCII value of the character desired.   (Input)
I must be greater than or equal to zero and less than or equal to 127.

ACHAR — CHARACTER * 1 string containing the character in the I-th position of
the ASCII collating sequence.   (Output)

Algorithm

Routine ACHAR returns the character of the input ASCII value. The input value
should be between 0 and 127. If the input value is out of range, the value returned
in ACHAR is machine dependent.

Example

This example returns the character of the ASCII value 65.
      INTEGER    I, NOUT
      CHARACTER  ACHAR
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      EXTERNAL   ACHAR, UMACH
C
      CALL UMACH (2, NOUT)
C                                 Get character for ASCII value
C                                 of 65 (’A’)
      I = 65
      WRITE (NOUT,99999) I, ACHAR(I)
C
99999 FORMAT (’ For the ASCII value of ’, I2, ’, the character is : ’,
     &       A1)
      END

Output
For the ASCII value of 65, the character is : A

IACHAR
Return the integer ASCII value of a character argument.

Usage

IACHAR(CH)

Arguments

CH — Character argument for which the integer ASCII value is desired.   (Input)

IACHAR — Integer ASCII value for CH.   (Output)
The character CH is in the IACHAR-th position of the ASCII collating sequence.

Algorithm

Routine IACHAR returns the ASCII value of the input character.

Example

This example gives the ASCII value of character A.
      INTEGER    IACHAR, NOUT
      CHARACTER  CH
      EXTERNAL   IACHAR, UMACH
C
      CALL UMACH (2, NOUT)
C                                 Get ASCII value for the character
C                                 ’A’.
      CH = ’A’
      WRITE (NOUT,99999) CH, IACHAR(CH)
C
99999 FORMAT (’ For the character  ’, A1, ’  the ASCII value is : ’,
     &       I3)
      END
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Output
For the character  A  the ASCII value is :  65

ICASE
Return the ASCII value of a character converted to uppercase.

Usage

ICASE(CH)

Arguments

CH — Character to be converted.   (Input)

ICASE — Integer ASCII value for CH without regard to the case of CH.   (Output)
Routine ICASE returns the same value as IACHAR (page 1290) for all but
lowercase letters. For these, it returns the IACHAR value for the corresponding
uppercase letter.

Algorithm

Routine ICASE converts a character to its integer ASCII value. The conversion is
case insensitive; that is, it returns the ASCII value of the corresponding uppercase
letter for a lowercase letter.

Example

This example shows the case insensitive conversion.
      INTEGER    ICASE, NOUT
      CHARACTER  CH
      EXTERNAL   ICASE, UMACH
C                                 Get output unit number
      CALL UMACH (2, NOUT)
C                                 Get ASCII value for the character
C                                 ’a’.
      CH = ’a’
      WRITE (NOUT,99999) CH, ICASE(CH)
C
99999 FORMAT (’ For the character  ’, A1, ’  the ICASE value is : ’,
     &       I3)
      END

Output
For the character  a  the ICASE value is :  65
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IICSR
Compare two character strings using the ASCII collating sequence but without
regard to case.

Usage

IICSR(STR1, STR2)

Arguments

STR1 — First character string.     (Input)

STR2 — Second character string.     (Input)

IICSR — Comparison indicator.     (Output)
Let USTR1 and USTR2 be the uppercase versions of STR1 and STR2, respectively.
The following table indicates the relationship between USTR1 and USTR2 as
determined by the ASCII collating sequence.

IICSR Meaning
−1 USTR1 precedes USTR2
0 USTR1 equals USTR2
1 USTR1 follows USTR2

Comments

If the two strings, STR1 and STR2, are of unequal length, the shorter string is
considered as if it were extended with blanks to the length of the longer string.

Algorithm

Routine IICSR compares two character strings. It returns −1 if the first string is
less than the second string, 0 if they are equal, and 1 if the first string is greater
than the second string. The comparison is case insensitive.

Example

This example shows different cases on comparing two strings.
      INTEGER    IICSR, NOUT
      CHARACTER  STR1*6, STR2*6
      EXTERNAL   IICSR, UMACH
C                                 Get output unit number
      CALL UMACH (2, NOUT)
C                                 Compare String1 and String2
C                                 String1 is ’bigger’ than String2
      STR1 = ’ABc 1’
      STR2 = ’ ’
      WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
C
C                                 String1 is ’equal’ to String2
      STR1 = ’AbC’
      STR2 = ’ABc’
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WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
C
C                                 String1 is ’smaller’ than String2
      STR1 = ’ABc’
      STR2 = ’aBC 1’
      WRITE (NOUT,99999) STR1, STR2, IICSR(STR1,STR2)
C
99999 FORMAT (’ For String1 = ’, A6, ’and String2 = ’, A6,
     &       ’ IICSR = ’, I2, /)
      END

Output
For String1 = ABc 1 and String2 =        IICSR =  1
For String1 = AbC   and String2 = ABc    IICSR =  0
For String1 = ABc   and String2 = aBC 1  IICSR = -1

IIDEX
Determine the position in a string at which a given character sequence begins
without regard to case.

Usage

IIDEX(CHRSTR, KEY)

Arguments

CHRSTR — Character string to be searched.   (Input)

KEY — Character string that contains the key sequence.   (Input)

IIDEX — Position in CHRSTR where KEY begins.   (Output)
If KEY occurs more than once in CHRSTR, the starting position of the first
occurrence is returned. If KEY does not occur in CHRSTR, then IIDEX returns a
zero.

Comments

If the length of KEY is greater than the length CHRSTR, IIDEX returns a zero.

Algorithm

Routine IIDEX searches for a key string in a given string and returns the index of
the starting element at which the key character string begins. It returns 0 if there is
no match. The comparison is case insensitive. For a case-sensitive version, use
the FORTRAN 77 intrinsic function INDEX.

Example

This example locates a key string.
      INTEGER    IIDEX, NOUT
      CHARACTER  KEY*5, STRING*10
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      EXTERNAL   IIDEX, UMACH
C                                 Get output unit number
      CALL UMACH (2, NOUT)
C                                 Locate KEY in STRING
      STRING = ’a1b2c3d4e5’
      KEY    = ’C3d4E’
      WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY)
C
      KEY = ’F’
      WRITE (NOUT,99999) STRING, KEY, IIDEX(STRING,KEY)
C
99999 FORMAT (’ For STRING = ’, A10, ’ and KEY = ’, A5, ’ IIDEX = ’, I2,
     &       /)
      END

Output
For STRING = a1b2c3d4e5 and KEY = C3d4E IIDEX =  5
For STRING = a1b2c3d4e5 and KEY = F     IIDEX =  0

CVTSI
Convert a character string containing an integer number into the corresponding
integer form.

Usage
CALL CVTSI (STRING, NUMBER)

Arguments

STRING — Character string containing an integer number.   (Input)

NUMBER — The integer equivalent of STRING.     (Output)

Algorithm

Routine CVTSI converts a character string containing an integer to an INTEGER

variable. Leading and trailing blanks in the string are ignored. If the string
contains something other than an integer, a terminal error is issued. If the string
contains an integer larger than can be represented by an INTEGER variable as
determined from routine IMACH (Reference Material), a terminal error is issued.

Example

The string “12345” is converted to an INTEGER variable.
      INTEGER    NOUT, NUMBER
      CHARACTER  STRING*10
      EXTERNAL   CVTSI, UMACH
C
      DATA STRING/’12345’/
C
      CALL CVTSI (STRING, NUMBER)
C



IMSL STAT/LIBRARY Chapter 19: Utilities • 1295

      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’NUMBER = ’, NUMBER
      END

Output
NUMBER =   12345

CPSEC
Return CPU time used in seconds.

Usage

CPSEC ()

Argument

CPSEC — CPU time used (in seconds) since first call to CPSEC.     (Output)

Comments

1. The first call to CPSEC returns 0.0.

2. The accuracy of this routine depends on the hardware and the operating
system. On some systems, identical runs can produce timings differing
by more than 10 percent.

Algorithm

Function CPSEC is used to find the CPU time used in a particular section of
FORTRAN code. The first call to CPSEC in a program returns CPSEC() = 0.0.
Subsequent calls to CPSEC return the CPU time (in seconds) since the first call.

Example

The following example uses CPSEC to return the CPU time to compute 1 million
additions in a DO loop on a particular computer. The program was compiled
without optimization.

      INTEGER    I, NOUT
      REAL       A, CPSEC, TIME0, TIME1, X, Y
      EXTERNAL   CPSEC, UMACH
C
      X     = 1.414
      Y     = 3.142
      TIME0 = CPSEC()
      DO 10  I=1, 1000000
         A = X + Y
   10 CONTINUE
      TIME1 = CPSEC()
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’CPU time (seconds) = ’, TIME1 - TIME0
      END
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Output
CPU time (seconds) =     1.09000

TIMDY
Get time of day.

Usage
CALL TIMDY (IHOUR, MINUTE, ISEC)

Arguments

IHOUR — Hour of the day.     (Output)
IHOUR is between 0 and 23 inclusive.

MINUTE — Minute within the hour.     (Output)
MINUTE is between 0 and 59 inclusive.

ISEC — Second within the minute.     (Output)
ISEC is between 0 and 59 inclusive.

Algorithm

Routine TIMDY is used to retrieve the time of day.

Example

The following example uses TIMDY to return the current time. Obviously, the
output is dependent upon the time at which the program is run.

      INTEGER    IHOUR, IMIN, ISEC, NOUT
      EXTERNAL   TIMDY, UMACH
C
      CALL TIMDY (IHOUR, IMIN, ISEC)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’Hour:Minute:Second = ’, IHOUR, ’:’, IMIN,
     &              ’:’, ISEC
      IF (IHOUR .EQ. 0) THEN
         WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC,
     &                 ’ second(s) past midnight.’
      ELSE IF (IHOUR .LT. 12) THEN
         WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC,
     &                 ’ second(s) past ’, IHOUR, ’ am.’
      ELSE IF (IHOUR .EQ. 12) THEN
         WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC,
     &                 ’ second(s) past noon.’
      ELSE
         WRITE (NOUT,*) ’The time is ’, IMIN, ’ minute(s), ’, ISEC,
     &                 ’ second(s) past ’, IHOUR-12, ’ pm.’
      END IF
      END



IMSL STAT/LIBRARY Chapter 19: Utilities • 1297

Output
Hour:Minute:Second =   16:  52:  29
The time is   52 minute(s),   29 second(s) past   4 pm.

TDATE
Get today’s date.

Usage
CALL TDATE (IDAY, MONTH, IYEAR)

Arguments

IDAY — Day of the month.   (Output)
IDAY is between 1 and 31 inclusive.

MONTH — Month of the year.   (Output)
MONTH is between 1 and 12 inclusive.

IYEAR — Year.   (Output)
For example, IYEAR = 1985.

Algorithm

Routine TDATE is used to retrieve today’s date. Obviously, the output is
dependent upon the date the program is run.

Example

The following example uses TDATE to return today’s date.
      INTEGER    IDAY, IYEAR, MONTH, NOUT
      EXTERNAL   TDATE, UMACH
C
      CALL TDATE (IDAY, MONTH, IYEAR)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’Day-Month-Year = ’, IDAY, ’-’, MONTH,
     &              ’-’, IYEAR
      END

Output
Day-Month-Year =   2-  4-  1991

NDAYS
Compute the number of days from January 1, 1900, to the given date.

Usage

NDAYS(IDAY, MONTH, IYEAR)
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Arguments

IDAY — Day of the input date.   (Input)

MONTH — Month of the input date.   (Input)

IYEAR — Year of the input date.   (Input)
1950 would correspond to the year 1950 A.D. and 50 would correspond to year
50 A.D.

NDAYS — Function value.   (Output)
If NDAYS is negative, it indicates the number of days prior to January 1, 1900.

Comments

1. Informational error
Type Code
   1    1  The Julian calendar, the first modern calendar, went

into use in 45 B.C. No calendar prior to 45 B.C. was
as universally used nor as accurate as the Julian.
Therefore, it is assumed that the Julian calendar was in
use prior to 45 B.C.

2. The number of days from one date to a second date can be computed by
two references to NDAYS and then calculating the difference.

3. The beginning of the Gregorian calendar was the first day after
October 4, 1582, which became October 15, 1582. Prior to that, the
Julian calendar was in use. NDAYS makes the proper adjustment for the
change in calendars.

Algorithm

Function NDAYS returns the number of days from January 1, 1900, to the given
date. The function NDAYS returns negative values for days prior to January 1,
1900. A negative IYEAR can be used to specify B.C. Input dates in year 0 and for
October 5, 1582, through October 14, 1582, inclusive, do not exist; consequently,
in these cases, NDAYS issues a terminal error.

Example

The following example uses NDAYS to compute the number of days from
January 15, 1986, to February 28, 1986:

      INTEGER    IDAY, IYEAR, MONTH, NDAY0, NDAY1, NDAYS, NOUT
      EXTERNAL   NDAYS, UMACH
C
      IDAY  = 15
      MONTH = 1
      IYEAR = 1986
      NDAY0 = NDAYS(IDAY,MONTH,IYEAR)
      IDAY  = 28
      MONTH = 2
      IYEAR = 1986
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      NDAY1 = NDAYS(IDAY,MONTH,IYEAR)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’Number of days = ’, NDAY1 - NDAY0
      END

Output
Number of days =   44

NDYIN
Give the date corresponding to the number of days since January 1, 1900.

Usage
CALL NDYIN (NDAYS, IDAY, MONTH, IYEAR)

Arguments

NDAYS — Number of days since January 1, 1900.   (Input)

IDAY — Day of the input date.   (Output)

MONTH — Month of the input date.   (Output)

IYEAR — Year of the input date.   (Output)
1950 would correspond to the year 1950 A.D. and −50 would correspond to year
50 B.C.

Comments

The beginning of the Gregorian calendar was the first day after October 4, 1582,
which became October 15, 1582. Prior to that, the Julian calendar was in use.
Routine NDYIN makes the proper adjustment for the change in calendars.

Algorithm

Routine NDYIN computes the date corresponding to the number of days since
January 1, 1900. For an input value of NDAYS that is negative, the date computed
is prior to January 1, 1900. The routine NDYIN is the inverse of NDAYS (page
1297).

Example

The following example uses NDYIN to compute the date for the 100th day of
1986. This is accomplished by first using NDAYS (see page 1297) to get the “day
number” for December 31, 1985.

      NDAY0 = NDAYS(31,12,1985)
      CALL NDYIN (NDAY0+100, IDAY, MONTH, IYEAR)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’Day 100 of 1986 is (day-month-year) ’, IDAY,
     &              ’-’, MONTH, ’-’, IYEAR
      END
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Output
Day 100 of 1986 is (day-month-year)   10-  4-  1986

IDYWK
Compute the day of the week for a given date.

Usage

IDYWK(IDAY, MONTH, IYEAR)

Arguments

IDAY — Day of the input date.   (Input)

MONTH — Month of the input date.   (Input)

IYEAR — Year of the input date.   (Input)
1950 would correspond to the year 1950 A.D. and 50 would correspond to year
50 A.D.

IDYWK — Function value.   (Output)
The value of IDYWK ranges from 1 to 7, where 1 corresponds to Sunday and 7
corresponds to Saturday.

Comments

1. Informational error
Type Code
   1    1 The Julian calendar, the first modern calendar, went

into use in 45 B.C. No calendar prior to 45 B.C. was
as universally used nor as accurate as the Julian.
Therefore, it is assumed that the Julian calendar was in
use prior to 45 B.C.

2. The beginning of the Gregorian calendar was the first day after
October 4, 1582, which became October 15, 1582. Prior to that, the
Julian calendar was in use. Function IDYWK makes the proper adjustment
for the change in calendars.

Algorithm

Function IDYWK returns an integer code that specifies the day of week for a given
date. Sunday corresponds to 1, Monday corresponds to 2, and so forth. A
negative IYEAR can be used to specify B.C. Input dates in year 0 and for October
5, 1582, through October 14, 1582, inclusive, do not exist; consequently, in these
cases, IDYWK issues a terminal error.
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Example

The following example uses IDYWK to return the day of the week for February 24,
1963.

      INTEGER    IDAY, IDYWK, IYEAR, MONTH, NOUT
      EXTERNAL   IDYWK, UMACH
C
      IDAY  = 24
      MONTH = 2
      IYEAR = 1963
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’IDYWK (index for day of week) = ’,
     &               IDYWK(IDAY,MONTH,IYEAR)
      END

Output
IDYWK (index for day of week) =   1

VERSL
Obtain STAT/LIBRARY-related version, system and serial numbers.

Usage

VERSL(ISELCT)

Arguments

ISELCT — Option for the information to retrieve.   (Input)

ISELCT VERSL

1 IMSL STAT/LIBRARY version number
2 Operating system (and version number) for which the library was

produced.
3 Fortran compiler (and version number) for which the library was

produced.
4 IMSL STAT/LIBRARY serial number

VERSL — CHARACTER string containing information.   (Output)

Example

In this example, we print all of the information returned by VERSL on a particular
machine. The output is omitted because the results are system dependent.

      INTEGER    ISELCT, NOUT
      CHARACTER  STRING(4)*50, TEMP*32, VERSL*32
      EXTERNAL   UMACH, VERSL
C
      STRING(1) = ’(’’ IMSL STAT/LIBRARY Version Number:  ’’, A)’
      STRING(2) = ’(’’ Operating System ID Number:  ’’, A)’
      STRING(3) = ’(’’ Fortran Compiler Version Number:  ’’, A)’
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      STRING(4) = ’(’’ IMSL STAT/LIBRARY Serial Number:  ’’, A)’

C                                 Print the versions and numbers.
      CALL UMACH (2, NOUT)
      DO 10  ISELCT=1, 4
         TEMP = VERSL(ISELCT)
         WRITE (NOUT,STRING(ISELCT)) TEMP
   10 CONTINUE
      END

GDATA/DGDATA (Single/Double precision)
Retrieve a commonly analyzed data set.

Usage
CALL GDATA (IDATA, IPRINT, NOBS, NVAR, X, LDX, NDX)

Arguments

IDATA — Data set indicator.   (Input)

IDATA NOBS NVAR Description of Data Set

1 16 7 Longley

2 176 2 Wolfer sunspot

3 150 5 Fisher iris

4 144 1 Box and Jenkins Series G

5 13 5 Draper and Smith Appendix B

6 197 1 Box and Jenkins Series A

7 296 2 Box and Jenkins Series J

8 100 4 Robinson Multichannel Time Series

9 113 34 Afifi and Azen Data Set A

Set IDATA = 0 to print a description of all the data sets above. In this case, the
remaining arguments are not referenced.

IPRINT — Printing option.   (Input)

IPRINT Action
0 No printing is performed.
1 Rows 1 through 10 of X are printed.
2 All rows of X are printed.

When printing is performed, a header listing the data set name and a reference is
printed.

NOBS — Number of observations or rows in the output matrix.   (Output)

NVAR — Number of variables or columns in the output matrix.   (Output)

X — NOBS by NVAR matrix containing the data set.   (Output)
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LDX — Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

NDX — Second dimension of the matrix X exactly as specified in the dimension
statement of the calling program.   (Input)

Algorithm

Routine GDATA retrieves a standard data set frequently cited in statistics textbooks
or in this manual. The following table gives the references for each data set:

IDATA Reference

1 Longley (1967)

2 Anderson (1971, page 660)

3 Fisher (1936); Mardia, Kent, and Bibby (1979, Table 1.2.2 )

4 Box and Jenkins (1976, page 531)

5 Draper and Smith (1981, pages 629−630)

6 Box and Jenkins (1976, page 525)

7 Box and Jenkins (1976, page 532−533)

8 Robinson (1967, page 204)|

9 Afifi and Azen (1979, pages 16−22)

Example

GDATA is used to copy the Longley data set into the matrix X.
      INTEGER    LDX, NDX
      PARAMETER  (LDX=200, NDX=10)
C
      INTEGER    IDATA, IPRINT, NOBS, NVAR
      REAL       X(LDX,NDX)
      EXTERNAL   GDATA
C
      IDATA  = 1
      IPRINT = 2
      CALL GDATA (IDATA, IPRINT, NOBS, NVAR, X, LDX, NDX)
C
      END

Output

The Longley data.

Longley, James W. (1967), An appraisal of least squares
programs for the electronic computer from the point of view
of the user, Journal of the American Statistical
Association, 62, 819-841.

This data set consists of 16 observations on 7 variables.

                                  X
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            1          2          3          4          5          6
 1       83.0   234289.0     2356.0     1590.0   107608.0     1947.0
 2       88.5   259426.0     2325.0     1456.0   108632.0     1948.0
 3       88.2   258054.0     3682.0     1616.0   109773.0     1949.0
 4       89.5   284599.0     3351.0     1650.0   110929.0     1950.0
 5       96.2   328975.0     2099.0     3099.0   112075.0     1951.0
 6       98.1   346999.0     1932.0     3594.0   113270.0     1952.0
 7       99.0   365385.0     1870.0     3547.0   115094.0     1953.0
 8      100.0   363112.0     3578.0     3350.0   116219.0     1954.0
 9      101.2   397469.0     2904.0     3048.0   117388.0     1955.0
10      104.6   419180.0     2822.0     2857.0   118734.0     1956.0
11      108.4   442769.0     2936.0     2798.0   120445.0     1957.0
12      110.8   444546.0     4681.0     2637.0   121950.0     1958.0
13      112.6   482704.0     3813.0     2552.0   123366.0     1959.0
14      114.2   502601.0     3931.0     2514.0   125368.0     1960.0
15      115.7   518173.0     4806.0     2572.0   127852.0     1961.0
16      116.9   554894.0     4007.0     2827.0   130081.0     1962.0

            7
 1    60323.0
 2    61122.0
 3    60171.0
 4    61187.0
 5    63221.0
 6    63639.0
 7    64989.0
 8    63761.0
 9    66019.0
10    67857.0
11    68169.0
12    66513.0
13    68655.0
14    69564.0
15    69331.0
16    70551.0
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Chapter 20: Mathematical Support

Routines
20.1 Linear Systems

Solve a triangular linear system given R...............................GIRTS 1305

Cholesky factorization R7R
of a nonnegative definite matrix .......................................... CHFAC 1308
Modified Cholesky factorization ..........................................MCHOL 1311

20.2 Special Functions
Expected value of a normal order statistic .............................ENOS 1314
Mill�s ratio ............................................................................AMILLR 1315

20.3 Nearest Neighbors
Form a k-d tree ................................................................... QUADT 1317
Search a k-d tree for the m nearest neighbors ...................NGHBR 1320

GIRTS/DGIRTS (Single/Double precision)
Solve a triangular (possibly singular) set of linear systems and/or compute a
generalized inverse of an upper triangular matrix.

Usage
CALL GIRTS (N, R, LDR, NB, B, LDB, IPATH, IRANK, X, LDX,
            RINV, LDRINV)

Arguments

N  Order of the upper triangular matrix R.   (Input)

R  N by N upper triangular matrix.   (Input)
If R contains a zero along the diagonal, the remaining elements of the row must
also be zero. Only the upper triangle of R is referenced.
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LDR  Leading dimension of R exactly as specified in the dimension statement
of the calling program.   (Input)

NB  Number of columns in B.   (Input)
NB must be nonnegative. If NB is zero, no linear systems are solved.

B  N by NB matrix containing the right hand sides of the linear system.   (Input,
if NB > 0)
If NB = 0, B is not referenced and can be a vector length one.

LDB  Leading dimension of B exactly as specified in the dimension statement
of the calling program.   (Input)

IPATH  Path option.   (Input)

IPATH Action
1 Solve R * X = B.

2 Solve R7 * X = B.
3 Solve R * X = B and compute RINV.

4 Solve R7 * X = B and compute RINV.

IRANK  Rank of R.   (Output)
X  N by NB matrix containing the solution matrix corresponding to the right

hand side B.   (Output, if NB > 0)
If B is not needed, then X and B can share the same storage locations. If
NB = 0, x is not referenced and can be a vector of length one.

LDX  Leading dimension of X exactly as specified in the dimension statement
of the calling program.   (Input)

RINV  N by N upper triangular matrix that is the inverse of R when R is
nonsingular.   (Output, if IPATH equals 3 or 4)
(When R is singular, RINV is g3 inverse. See the Algorithm section for an
explanation of g3 inverses.) If IPATH = 1 or 2, RINV is not referenced and can be
a vector of length one. If IPATH = 3 or 4 and R is not needed, then R and RINV
can share the same storage locations.

LDRINV  Leading dimension of RINV exactly as specified in the dimension
statement of the calling program.   (Input)

Comments

1. Informational error
Type Code
   3    1 The linear system of equations is inconsistent.

2. Routine GIRTS assumes that a singular R is represented by zero rows in
R. No other forms of singularity in R are allowed.
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Algorithm

Routine GIRTS solves systems of linear algebraic equations with a triangular
coefficient matrix.  Inversion of the coefficient matrix is an option. The
coefficient matrix can contain a zero diagonal element, but if so, the remaining
elements in the row must be zero also. (A terminal error message is issued if a
nonzero element appears in the row of the coefficient matrix where a zero
diagonal element appears.)

If solution of a linear system is requested (i.e., NB > 0) and row i of the coefficient
matrix contains elements all equal to zero, the following action is taken:

• The i-th row of the solution X is set to zero.

• If IPATH is 1 or 3, a warning error is issued when the i-th row of the right-hand
side B is not zero.

• If IPATH is 2 or 4, a warning error is issued when the i-th row of the reduced
right-hand side (obtained after the first i − 1 variables are eliminated from row i)
is not zero within a computed tolerance.

If an inverse of the coefficient matrix is requested and row i contains elements all
equal to zero, row i and column i elements of RINV are set to zero. The resulting
inverse is a g3 inverse of R. For a matrix G to be g3 inverse of a matrix A, G must
satisfy Conditions 1, 2, and 3 for the Moore-Penrose inverse but generally fail
Condition 4. The four conditions for G to be a Moore-Penrose inverse of A are as
follows:

1. AGA = A

2. GAG = G

3 AG is symmetric

4 GA is symmetric

For a detailed description of the algorithm, see Section 2 in Sallas and Lionti
(1988).

Example

The following example is taken from Maindonald (1984, pp. 102-105). A linear
system Rx = B is solved, and a g3 inverse of R is computed.

      INTEGER    LDB, LDR, LDRINV, LDX, N, NB
      PARAMETER  (N=4, NB=1, LDB=N, LDR=N, LDRINV=N, LDX=N)
C
      INTEGER    IPATH, IRANK
      REAL       B(LDB,NB), R(LDR,N), RINV(LDRINV,N), X(LDX,NB)
      EXTERNAL   GIRTS, WRRRN
C
      DATA (R(1,J),J=1,N)/6.0, 2.0, 5.0, 1.0/, B(1,1)/3.0/
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      DATA (R(2,J),J=1,N)/0.0, 4.0,-2.0, 2.0/, B(2,1)/4.0/
      DATA (R(3,J),J=1,N)/0.0, 0.0, 0.0, 0.0/, B(3,1)/0.0/
      DATA (R(4,J),J=1,N)/0.0, 0.0, 0.0, 3.0/, B(4,1)/3.0/
C
      IPATH = 3
      CALL GIRTS (N, R, LDR, NB, B, LDB, IPATH, IRANK, X, LDX, RINV,
     &            LDRINV)
C
      CALL WRRRN (’RINV’, N, N, RINV, LDRINV, 0)
      CALL WRRRN (’X’, N, NB, X, LDX, 0)

Output
              RINV
         1        2        3        4
1   0.1667  -0.0833   0.0000   0.0000
2   0.0000   0.2500   0.0000  -0.1667
3   0.0000   0.0000   0.0000   0.0000
4   0.0000   0.0000   0.0000   0.3333

    X
1   0.167
2   0.500
3   0.000
4   1.000

CHFAC/DCHFAC (Single/Double precision)
Compute an upper triangular factorization of a real symmetric nonnegative
definite matrix.

Usage
CALL CHFAC (N, A, LDA, TOL, IRANK, R, LDR)

Arguments

N  Order of the matrix.   (Input)

A  N by N symmetric nonnegative definite matrix for which an upper triangular
factorization is desired.   (Input)
Only elements in the upper triangle of A are referenced.

LDA  Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

TOL  Tolerance used in determining linear dependence.   (Input)
For CHFAC, TOL = 100 *  AMACH(4) is a common choice. For DCHFAC, TOL = 100
*  DMACH(4) is a common choice. See documentation for routine AMACH.

IRANK  Rank of A.   (Output)
N − IRANK is the number of effective zero pivots.
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R  N by N upper triangular matrix containing the R matrix from a Cholesky

decomposition R7R of A.   (Output)
The elements of the appropriate rows of R are set to 0.0 if linear dependence of
the columns of A is declared. (There are N − IRANK rows of R whose elements are
set to 0.0.) If A is not needed, then R and A can share the same storage locations.

LDR  Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

Comments

1. Informational error
Type Code
   3    1 The input matrix is not nonnegative definite within the

tolerance defined by TOL.

2. Elements of row i of R are set to 0.0 if a linear dependence is declared.
Linear dependence is declared if

a r aii ji
j

i

ii− ∑ ≤
=

−
2

1

1
TOL *

Algorithm

Routine CHFAC computes a Cholesky factorization R7R = A of an n × n
symmetric nonnegative definite matrix A. The matrix R is taken to be an upper
triangular matrix. The diagonal elements of R are taken to be nonnegative. If A is
singular and has rank r, n − r rows of R have all their elements taken to be zero.

The algorithm is based on the work of Healy (1968). The algorithm proceeds
sequentially by columns. The i-th column is declared to be linearly dependent on
the first i − 1 columns if

a r aii ji
j

i

ii− ∑ ≤
=

−
2

1

1
ε

where ε (stored in TOL) is the input tolerance. When a linear dependence is
declared, all elements in the i-th row of R are set to zero.

Modifications due to Farebrother and Berry (1974) and Barrett and Healy (1978)
for checking for matrices that are not nonnegative definite are also incorporated.
Routine CHFAC declares A to not be nonnegative definite and issues an error
message with an error code of 1 if either of the following conditions is satisfied:



1310 • Chapter 20: Mathematical Support IMSL STAT/LIBRARY
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Healy’s (1968) algorithm and CHFAC permit the matrices A and R to occupy the
same storage locations. Barrett and Healy (1978) in their remark neglect this fact.
Routine CHFAC uses

rjij
i 2

1
1

=
−∑

for aLL in the Condition 2 above to remedy this problem.

Example

A Cholesky factorization of a 5 × 5 symmetric nonnegative definite matrix is
computed. Maindonald (1984, pages 85−86) discusses in detail the computations
for this problem.

C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    LDA, LDR, N
      PARAMETER  (N=5, LDA=N, LDR=N)
C
      INTEGER    IRANK, NOUT
      REAL       A(LDA,N), AMACH, R(LDR,N), TOL
      EXTERNAL   AMACH, CHFAC, UMACH, WRRRN
C
      DATA (A(1,J),J=1,N)/36.0, 12.0, 30.0,  6.0, 18.0/
      DATA (A(2,J),J=1,N)/12.0, 20.0,  2.0, 10.0, 22.0/
      DATA (A(3,J),J=1,N)/30.0,  2.0, 29.0,  1.0,  7.0/
      DATA (A(4,J),J=1,N)/ 6.0, 10.0,  1.0, 14.0, 20.0/
      DATA (A(5,J),J=1,N)/ 8.0, 22.0,  7.0, 20.0, 40.0/
C
      TOL = 100.0*AMACH(4)
C
      CALL CHFAC (N, A, LDA, TOL, IRANK, R, LDR)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,*) ’IRANK = ’, IRANK
      CALL WRRRN (’R’, N, N, R, LDR, 0)
      END

Output
IRANK =   4

                    R
        1       2       3       4       5
1   6.000   2.000   5.000   1.000   3.000
2   0.000   4.000  -2.000   2.000   4.000
3   0.000   0.000   0.000   0.000   0.000
4   0.000   0.000   0.000   3.000   3.000
5   0.000   0.000   0.000   0.000   2.449
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MCHOL/DMCHOL (Single/Double precision)
Compute an upper triangular factorization of a real symmetric matrix A plus a
diagonal matrix D, where D is determined sequentially during the Cholesky
factorization in order to make A + D nonnegative definite.

Usage
CALL MCHOL (N, A, LDA, TOL, IRANK, R, LDR, DMAX, IND)

Arguments

N  Order of the matrix.   (Input)

A  N by N symmetric matrix for which a Cholesky factorization is attempted.
(Input)
Only elements in the upper triangle and diagonal of A are referenced.

LDA  Leading dimension of A exactly as specified in the dimension statement
in the calling program.   (Input)

TOL  Tolerance used in determining linear dependence.   (Input)
For MCHOL, TOL = 100 * AMACH(4) is a common choice. For DMCHOL, TOL = 100
* DMACH(4) is a common choice. See documentation for routine AMACH.

IRANK  Rank of A + D.   (Output)

R  N by N upper triangular matrix containing the R matrix from a Cholesky

decomposition R7R of A + D.   (Output)
The lower triangle of R is not referenced. If A is not needed, then R and A can
share the same storage locations.

LDR  Leading dimension of R exactly as specified in the dimension statement
in the calling program.   (Input)

DMAX  Largest diagonal element of D.   (Output)
If DMAX equals 0.0, then A is nonnegative definite, and R is a Cholesky
factorization of A. If DMAX is positive, then A is indefinite, i.e., A has at least one
negative eigenvalue. In this case, DMAX is an upper bound on the absolute value of
the minimum eigenvalue.

IND  Index for subsequent computation of a descent direction in the case of a
saddle point.   (Output)
If IND = 0, then A is nonnegative definite. For positive IND, let e be a unit vector
with IND-th element 1 and remaining elements 0. The solution s of Rs = e is a

direction of negative curvature, i.e., s7 As is negative.
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Algorithm

Routine MCHOL computes a Cholesky factorization, R7R, of A + D where A is
symmetric and D is a diagonal matrix with sufficiently large diagonal elements
such that A + D is nonnegative definite. The routine is similar to one described by
Gill, Murray, and Wright (1981, pages 108−111). Here, though, we allow A + D
to be singular.

The algorithm proceeds sequentially by rows. If A + D is singular, the Cholesky
factor R is taken to have some rows that are entirely zero. The i-th row of A + D is
declared to be linearly dependent on the first i − 1 rows if the following two
conditions are satisfied:

1
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where ε is the input argument TOL.

The routine MCHOL is often used to find a descent direction in a minimization
problem. Let A and g be the current Hessian and gradient, respectively, associated
with the minimization problem. The solution s of As = −g may not give a descent
direction if A is not nonnegative definite. Instead, in order to guarantee a descent
direction, a solution s of (A + D)s = −g can be found where A + D is nonnegative
definite. Routine MCHOL is useful for computing the upper triangular Cholesky
factor R of A + D so that routine GIRTS can be invoked to compute the descent

direction s by solving successively the two triangular linear systems R7x = −g and
Rs = x for x and then s. Also if g = 0 and A is not nonnegative definite, i.e., the
current solution is a saddle point, GIRTS can be used to compute a descent
direction s from the linear system Rs = e where e is a unit vector with

ε i
i

=
=%&'

1

0

if 

otherwise

IND

Example 1

A Cholesky factorization of a 5 × 5 symmetric nonnegative definite matrix is
computed. Maindonald (1984, pages 85−86) discusses the example.

C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    LDA, LDR, N
      PARAMETER  (N=5, LDA=N, LDR=N)
C
      INTEGER    IND, IRANK, NOUT
      REAL       A(LDA,N), DMAX, R(LDR,N), TOL
      EXTERNAL   MCHOL, UMACH, WRRRN
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C
      DATA (A(1,J),J=1,N)/36.0, 12.0, 30.0, 6.0, 18.0/
      DATA (A(2,J),J=1,N)/12.0, 20.0, 2.0, 10.0, 22.0/
      DATA (A(3,J),J=1,N)/30.0, 2.0, 29.0, 1.0, 7.0/
      DATA (A(4,J),J=1,N)/6.0, 10.0, 1.0, 14.0, 20.0/
      DATA (A(5,J),J=1,N)/8.0, 22.0, 7.0, 20.0, 40.0/
C
      TOL = 0.00001
      CALL MCHOL (N, A, LDA, TOL, IRANK, R, LDR, DMAX, IND)
      CALL UMACH (2, NOUT)
      WRITE (NOUT,99998) ’ IRANK = ’, IRANK
      WRITE (NOUT,99999) ’ DMAX =  ’, DMAX
      WRITE (NOUT,99998) ’ IND =   ’, IND
99998 FORMAT (A, I3)
99999 FORMAT (A, 1PE10.3)
      CALL WRRRN (’R’, N, N, R, LDR, 0)
      END

Output
IRANK =   4
DMAX =   0.000E+00
IND =     0

                    R
        1       2       3       4       5
1   6.000   2.000   5.000   1.000   3.000
2   0.000   4.000  -2.000   2.000   4.000
3   0.000   0.000   0.000   0.000   0.000
4   0.000   0.000   0.000   3.000   3.000
5   0.000   0.000   0.000   0.000   2.449

Example 2

A modified Cholesky factorization of a 3 × 3 symmetric indefinite matrix A is
computed. A solution of Rs = e3 is also obtained using routine GIRTS. Note that

s7 As  is negative as verified by using routine BLINF  (IMSL MATH/LIBRARY).
Gill, Murray, and Wright (1981, page 111) discuss the example.

C                                 SPECIFICATIONS FOR PARAMETERS
      INTEGER    LDA, LDR, N
      PARAMETER  (N=3, LDA=N, LDR=N)
C
      INTEGER    IND, IRANK, NOUT
      REAL       A(LDA,N), BLINF, DMAX, E(N), R(LDR,N), S(N), SPAS, TOL
      EXTERNAL   BLINF, GIRTS, MCHOL, SSET, UMACH, WRRRN
C
      DATA (A(1,J),J=1,N)/1, 1, 2/
      DATA (A(2,J),J=1,N)/1, 1, 3/
      DATA (A(3,J),J=1,N)/2, 3, 1/
C
      TOL = 0.00001
      CALL MCHOL (N, A, LDA, TOL, IRANK, R, LDR, DMAX, IND)
      CALL UMACH (2, NOUT)
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      WRITE (NOUT,99998) ’ IRANK = ’, IRANK
      WRITE (NOUT,99999) ’ DMAX  = ’, DMAX
      WRITE (NOUT,99998) ’ IND   = ’, IND
      CALL WRRRN (’R’, N, N, R, LDR, 0)
      IF (IND .GT. 0) THEN
         CALL SSET (N, 0.0, E, 1)
         E(IND) = 1.0
         CALL GIRTS (N, R, LDR, 1, E, N, 1, IRANK, S, N, R, LDR)
         SPAS = BLINF(N,N,A,LDA,S,S)
         WRITE (NOUT,*) ’ ’
         WRITE (NOUT,99999) ’ trans(s)*A*s = ’, SPAS
      END IF
99998 FORMAT (A, I3)
99999 FORMAT (A, F10.3)
      END

Output
IRANK =   3
DMAX  =      5.016
IND   =   3

            R
        1       2       3
1   1.942   0.515   1.030
2   0.000   2.398   1.030
3   0.000   0.000   1.059

trans(s)*A*s =     -2.254

ENOS/DENOS (Single/Double precision)
Evaluate the expected value of a normal order statistic.

Usage
Usage ENOS(I, N)

Arguments

I  Rank of the order statistic.   (Input)

N  Sample size.   (Input)

ENOS  Function value, the expected value of the I -th order statistic in a
sample of size N from the standard normal distribution.   (Output)

Comments

Informational errors
Type Code
   3    1 The rank of the order statistic is less than 1. A rank of 1 is

assumed.
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   3    2 The rank of the order statistic is greater than sample size (N). A
rank of N is assumed.

Algorithm

Let X1 ≤ X2 ≤ … ≤ XQ be the order statistics of a random sample of size n from a
standard normal distribution. The expected value of XL is given by

n

n i i
x x x x dx

i n i!

! !− −
−I − −

−∞
∞

0 5 0 5 0 5 0 5 0 5
1

1
1Φ Φ φ

where φ(x) and Φ(x) are the standard normal density and cumulative distribution
functions respectively (David 1981).

Function ENOS evaluates the integral using a trapezoidal rule after first making a
logarithmic transformation. This is the method used by Harter (1961). Although
the method permits computations for any value of n, extremely large values of n
cannot be guaranteed to be as accurate as smaller values of n. For n > 2500, the
method is inappropriate.

Example

In this example, we compute the expected value of the first order statistic in a
sample of size 5 from a standard normal distribution.

      INTEGER    I, N, NOUT
      REAL       ENOS, EX
      EXTERNAL   ENOS, UMACH
C
      CALL UMACH (2, NOUT)
      I  = 1
      N  = 5
      EX = ENOS(I,N)
      WRITE (NOUT,99999) EX
99999 FORMAT (’ The expected value of the smallest order statistic’,
     &       /, ’ in a normal sample of size 5 is ’, F9.5)
      END

Output
The expected value of the smallest order statistic
in a normal sample of size 5 is  -1.16296

AMILLR/DMILLR (Single/Double precision)
Evaluate Mill’s ratio (the ratio of the ordinate to the upper tail area of the
standardized normal distribution).

Usage
AMILLR(X)
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Arguments

X  Value at which Mill’s ratio is evaluated.   (Input)
In order to avoid overflow, X must be less than a bound that is machine
dependent. On most machines, the bound is greater than −13. The function
underflows (and is set to 0.0) for small values of X. On most machines, the
underflow does not occur unless X is less than −13.

AMILLR  Function value, Mill’s ratio.   (Output)

Comments

Informational error
Type Code
   2    1 The function underflows because X is too small.

Algorithm

Function AMILLR evaluates Mill’s ratio, the hazard rate for the standard normal
distribution. It is computed as the ratio of the ordinate to the upper tail area of the
standard normal distribution, that is, φ(x)/(1 − Φ(x)), where φ(x) and Φ(x) are the
standard normal density and cumulative distribution functions, respectively. The
reciprocal of Mill’s ratio is called the failure rate in reliability and life testing
applications. As x becomes small, the ratio goes to zero. For large x (how large is
machine dependent), the ratio cannot be computed. Function AMILLR computes 1− Φ(x)
using the complementary error function (IMSL 1991) rather than as one
minus the normal distribution function, which would underflow sooner as x gets
small.

Example

In this example, we compute Mill’s ratio at x = −1.0.

      INTEGER    NOUT
      REAL       AMILLR, R, X
      EXTERNAL   AMILLR, UMACH
C
      CALL UMACH (2, NOUT)
      X = -1.0
      R = AMILLR(X)
      WRITE (NOUT,99999) R
99999 FORMAT (’ Mill’’s ratio at -1.0 is ’, F8.5)
      END

Output
Mill’s ratio at -1.0 is  0.28760
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QUADT/DQUADT (Single/Double precision)
Form a k-d tree.

Usage
CALL QUADT (NROW, NVAR, NCOL, X, LDX, IND, NBUCK, IDISCR,
            PART)

Arguments

NROW  Number of rows of X to be used in forming the k-d tree.   (Input)

NVAR  Number of variables to be used in forming the tree.   (Input)

NCOL  Number of columns in X.   (Input)

X  NROW by NCOL matrix containing the data to be used on this call.
(Input/Output)
On output the rows of X have been rearranged to form the k-d tree. X must not
contain missing values (NaN).

LDX  Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IND  Vector of length NVAR containing the column numbers in X to be used in
the forming the k-d tree.   (Input)

NBUCK  Bucket size.   (Input)
NBUCK gives the maximum number of observations in a leaf of the k-d tree.
NBUCK = 3 is a common choice. NBUCK should be small when compared to NROW.

IDISCR  Vector of length NROW containing the element number in IND that
points to the column of X to be used as the discriminator in the k-d tree.   (Output)
IDISCR(I) = 0 if the observation is a terminal node. IND(IDISCR(I)) is the
column number in X to be used as the discriminator.

PART  Vector of length NROW containing the value to be used in the partition
for this observation.   (Output)

Comments

Automatic workspace usage is

QUADT 2 * NROW + 2 * (log2(NROW) + 3) units, or
DQUADT 3 * NROW + 2 * (log2(NROW) + 3) units.

Workspace may be explicitly provided, if desired, by use of Q2ADT/DQ2ADT. The
reference is
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CALL Q2ADT (NROW, NVAR, NCOL, X, LDX, IND, NBUCK, IDISCR,
            PART, ILOW, IHIGH, WK, IWK)

The additional arguments are as follows:

ILOW  Work vector of length log2(NROW) + 3.

IHIGH  Work vector of length log2(NROW) + 3.

WK  Work vector of length NROW.

IWK  Work vector of length NROW.

Algorithm

Routine QUADT creates the data structure required for a k-d tree. A k-d tree is a
multivariate form of B-tree that is especially useful for finding nearest neighbors
but may be of use in other situations. Once the k-d tree has been formed, routine
NGHBR (page 1320) may be used to find the nearest neighbors for any point in
logarithmic time.

The basic algorithm is given by Friedman, Bentley, and Finkel (1977) and can be
summarized as follows:

1. Let l = 1 and h = NROW.

2. Let k = (l + h)/2.

3. Each column in X to be used in forming the k-d tree is examined over the
range [l, h] in order to find the column with the maximum spread. Let j
equal this column number.

4. The k-th element of PART is set to the median value in the range [l, h] of
the j-th column in X while IDISCR(k) is set to the element in IND that
points to this column.

5. The rows of X are interchanged so that all rows of X with values in
column j less than or equal to the median value computed in Step 4
occur before (or at) the k-th element.

6. Go to Step 2 repeatedly with zero, one, or two submatrices in X. Go to
Step 2 with the submatrix formed from rows l to k of X if k − l is greater
than NBUCK. Go to Step 2 with the submatrix formed from rows k + 1 to
h of X if h − k − 1 is greater than NBUCK.

The bucket size, NBUCK, is the maximum number of observations allowed in the
lowest level of the k-d tree, i.e., in the leaves of the tree. The choice of NBUCK can
affect the speed with which nearest neighbors are found. A value of 3 or 5 is a
common choice, but if the number of nearest neighbors to be obtained is large, a
larger value for NBUCK should probably be used.
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Example

The following example creates a k-d tree from financial data collected for firms
approximately 2 years prior to bankruptcy and for financially sound firms at
about the same point in time. The data on five variables, X1 = (population), X2 =
(cash flow)/(total debt), X3 = (net income)/(total assets), X4 = (current
assets)/(current liabilities), and X5 = (current assets)/(net sales) are taken from
Johnson and Wichern (1988, page 536).

      INTEGER    LDX, NBUCK, NCOL, NROW, NVAR
      PARAMETER  (LDX=47, NBUCK=3, NCOL=5, NROW=47, NVAR=4)
C
      INTEGER    IDISCR(NROW), IND(NVAR)
      REAL       PART(NROW), X(LDX,NCOL)
      EXTERNAL   QUADT, WRIRN, WRRRN
C
      DATA IND/2, 3, 4, 5/
      DATA (X(I,1),I=1,47)/1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
     &     1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2.,
     &     2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
     &     2., 2., 2., 2., 2., 2./
      DATA (X(I,2),I=1,47)/-0.4485, -0.5633, 0.0643, -0.0721, -0.1002,
     &     -0.1421, 0.0351, -0.0653, 0.0724, -0.1353, -0.2298, 0.0713,
     &     0.0109, -0.2777, 0.1454, 0.3703, -0.0757, 0.0451, 0.0115,
     &     0.1227, -0.2843, 0.5135, 0.0769, 0.3776, 0.1933, 0.3248,
     &     0.3132, 0.1184, -0.0173, 0.2169, 0.1703, 0.1460, -0.0985,
     &     0.1398, 0.1379, 0.1486, 0.1633, 0.2907, 0.5383, -0.3330,
     &     0.4785, 0.5603, 0.2029, 0.2029, 0.4746, 0.1661, 0.5808/
      DATA (X(I,3),I=1,47)/-0.4106, -0.3114, -0.3114, -0.0930,
     &     -0.0917, -0.0651, 0.0147, -0.0566, -0.0076, -0.1433,
     &     -0.2961, 0.0205, 0.0011, -0.2316, 0.0500, 0.1098, -0.0821,
     &     0.0263, -0.0032, 0.1055, -0.2703, 0.1001, 0.0195, 0.1075,
     &     0.0473, 0.0718, 0.0511, 0.0499, 0.0233, 0.0779, 0.0695,
     &     0.0518, -0.0123, -0.0312, 0.0728, 0.0564, 0.0486, 0.0597,
     &     0.1064, -0.0854, 0.0910, 0.1112, 0.0792, 0.0792, 0.1380,
     &     0.0351, 0.0371/
      DATA (X(I,4),I=1,47)/1.0865, 1.5134, 1.0077, 1.4544, 1.5644,
     &     0.7066, 1.5046, 1.3737, 1.3723, 1.4196, 0.3310, 1.3124,
     &     2.1495, 1.1918, 1.8762, 1.9941, 1.5077, 1.6756, 1.2602,
     &     1.1434, 1.2722, 2.4871, 2.0069, 3.2651, 2.2506, 4.2401,
     &     4.4500, 2.5210, 2.0538, 2.3489, 1.7973, 2.1692, 2.5029,
     &     0.4611, 2.6123, 2.2347, 2.3080, 1.8381, 2.3293, 3.0124,
     &     1.2444, 4.2918, 1.9936, 1.9936, 2.9166, 2.4527, 5.0594/
      DATA (X(I,5),I=1,47)/0.4526, 0.1642, 0.3978, 0.2589, 0.6683,
     &     0.2794, 0.7080, 0.4032, 0.3361, 0.4347, 0.1824, 0.2497,
     &     0.6969, 0.6601, 0.2723, 0.3828, 0.4215, 0.9494, 0.6038,
     &     0.1655, 0.5128, 0.5368, 0.5304, 0.3548, 0.3309, 0.6279,
     &     0.6852, 0.6925, 0.3483, 0.3970, 0.5174, 0.5500, 0.5778,
     &     0.2643, 0.5151, 0.5563, 0.1978, 0.3786, 0.4835, 0.4730,
     &     0.1847, 0.4443, 0.3018, 0.3018, 0.4487, 0.1370, 0.1268/
C
      CALL QUADT (NROW, NVAR, NCOL, X, LDX, IND, NBUCK, IDISCR, PART)
      CALL WRRRN (’first 10 rows of X after QUADT’, 10, NCOL, X, LDX,
     &            0)
      CALL WRRRN (’PART’, 1, NROW, PART, 1, 0)
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      CALL WRIRN (’IDISCR’, 1, NROW, IDISCR, 1, 0)
C
      END

Output
      first 10 rows of X after QUADT
         1       2       3       4       5
 1   1.000  -0.230  -0.296   0.331   0.182
 2   2.000   0.140  -0.031   0.461   0.264
 3   1.000  -0.142  -0.065   0.707   0.279
 4   1.000  -0.449  -0.411   1.087   0.453
 5   1.000   0.064  -0.311   1.008   0.398
 6   1.000   0.123   0.105   1.143   0.166
 7   1.000  -0.284  -0.270   1.272   0.513
 8   1.000  -0.278  -0.232   1.192   0.660
 9   1.000   0.012  -0.003   1.260   0.604
10   1.000   0.071   0.021   1.312   0.250

                                   PART
    1      2      3       4       5       6       7       8       9      10
0.000  0.461  0.857   0.000   0.064   1.168   0.000  -0.278   0.041   0.000

   11     12     13      14      15      16      17      18      19      20
0.072  1.373  0.000  -0.072   0.412   0.000   0.435  -0.015   0.000   1.876

   21     22     23      24      25      26      27      28      29      30
0.448  0.000   .708   1.994   0.000   0.203   2.152   0.000   2.308   0.390

   31     32     33      34      35      36      37      38      39      40
0.000   .550  0.147   0.000   0.217   2.453   0.000   2.521   0.128   0.000

   41      42      43      44      45      46      47
2.612   3.012   0.000   4.240   4.292   4.755   0.000

                                    IDISCR
 1  2  3  4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
 0  3  3  0   1   3   0   1   1   0   1   3   0   1   4   0   4   1   0   3

21 22 23 24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40
 4  0  4  3   0   1   3   0   3   4   0   4   1   0   1   3   0   3   1   0

41  42  43  44  45  46  47
 3   3   0   3   3   3   0

NGHBR/DNGHBR (Single/Double precision)
Search a k-d tree for the k nearest neighbors of a key.

Usage
CALL NGHBR (NVAR, XKEY, K, NROW, NCOL, X, LDX, IND,
            NBUCK, IDISCR, PART, METRIC, IPQR, PQD)
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Arguments

NVAR  Number of variables used to form the k-d tree. (Input)

XKEY  Vector of length NVAR containing the key for which nearest neighbors
are desired.   (Input)
Note that the elements in XKEY are not arranged in the same manner as the
columns in X.

K  Number of nearest neighbors to find.   (Input)

NROW  Number of rows of X used to form the k-d tree.   (Input)

NCOL  Number of columns in X.   (Input)

X  NROW by NCOL matrix containing the data used to form the k-d tree as output
from routine QUADT (page 1317).   (Input)
X must not contain missing values (NaN).

LDX  Leading dimension of X exactly as specified in the dimension statement
in the calling program.   (Input)

IND  Vector of length NVAR containing the column numbers in X used in
forming the k-d tree.   (Input)

NBUCK  Bucket size.   (Input)
NBUCK is the maximum number of observations in a leaf of the k-d tree. The value
of NBUCK should be the same as the value used in forming the k-d tree (i.e. as
input to the routine QUADT).

IDISCR  Vector of length NROW containing the element number in IND that
points to the column of X to be used as the discriminator in the k-d tree, as output
from routine QUADT.   (Input)
IDISCR(I) = 0 if the observation is a terminal node. IND(IDISCR(I)) is the
column number in X to be used as the discriminator.

PART  Vector of length NROW containing the median value to be used for the
partition, as output from routine QUADT.   (Input)

METRIC  Metric to use in computing the k nearest neighbors.   (Input)

METRIC Metric used
0 Euclidean distance
1 L1 norm
2 L� norm

IPQR  Vector of length K containing the indices of the nearest neighbors.
(Output)

PQD  Vector of length K containing the nearest neighbor distances.   (Output)
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Comments

1. Automatic workspace usage is

NGHBR (2 * NVAR + 3) * (log2(NROW) + 3) units, or
DNGHBR (4 * NVAR + 3) * (log2(NROW) + 3) units.

Workspace may be explicitly provided, if desired, by use of
N2HBR/DN2HBR. The reference is
CALL N2HBR (NVAR, XKEY, K, NROW, NCOL, X, LDX, IND,
            IDISCR, PART, METRIC, IPQR, PQD, ILOW,
            IHIGH, ISIDE, BNDL, BNDH)

The additional arguments are as follows:

ILOW  Work vector of length log2(NROW) + 3.

IHIGH  Work vector of length log2(NROW) + 3.

ISIDE  Work vector of length log2(NROW) + 3.

BNDL  Work vector of length NVAR * (log2(NROW) + 3).

BNDH  Work vector of length NVAR * (log2(NROW) + 3).

2. Informational error
Type Code
   4    1 The data structure input is not a k-d tree. Use routine

QUADT to create the k-d tree.

Algorithm

Routine NGHBR finds the k nearest neighbors in an input k-d tree for an arbitrary
key, XKEY in logarithmic time. A k-d tree is a form of B-tree that is especially
useful for finding nearest neighbors. The k-d tree input into routine NGHBR should
be produced by routine QUADT (page 1317). Three metrics, Euclidean, L1, and L�,
are available for defining the nearest neighbors. The user should note that if the
input key is a row of the k-d tree, then the row will be returned as one of the
nearest neighbors. In this case, only k − 1 nearest neighbors will be found.

The algorithm is given by Friedman, Bentley, and Finkel (1977) and is
summarized in the following. The basic idea is to traverse the k-d tree in order to
determine which leaves of the tree need to be examined for the nearest neighbor.
The algorithm is efficient because most leaves are not examined.

1. Let l = 1 and h = NROW.

2. Let k = (l + h)/2, and j and p be the k-th elements of IDISCR and PART,
respectively.
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3. If (h − l) is less than NBUCK, then go to Step 4. Otherwise, let m be the j-
th element of IND. If the (k, m)-th element of X is greater than p, then let
l = k + 1 and go to Step 2. Otherwise, set h = k and go to Step 2.

4. Examine each row in X from row l to row h to determine if it is a nearest
neighbor. Check to see if rows in X (leaves of the tree) adjacent to these
rows need to be examined (see Friedman, Bentley, and Finkel (1977)). If
necessary, examine the adjacent rows for nearest neighbors.

The value used for the bucket size, NBUCK, must be the same value as was used in
routine QUADT when the k-d tree was created. A common choice for NBUCK is
three.

Example

The following example creates a k-d tree from financial data collected for firms
approximately 2 years prior to bankruptcy and for financially sound firms at
about the same point in time. The data on five variables, X1 = (population), X2 =
(cash flow)/(total dept), X3 = (net income)/(total assets), X4 = (current
assets)/(current liabilities), and X5 = (current assets)/(net sales) are taken from
Johnson and Wichern, page 536. Routine NGHBR is then used to determine the 5
nearest neighbors of the first row in X. As expected, one of the nearest neighbors
found is the key (the first row in X).

      INTEGER    K, LDX, METRIC, NBUCK, NCOL, NROW, NVAR
      PARAMETER  (K=5, LDX=47, METRIC=1, NBUCK=3, NCOL=5, NROW=47,
     &           NVAR=4)
C
      INTEGER    I, IDISCR(NROW), IND(NVAR), IPQR(K)
      REAL       PART(NROW), PQD(K), X(LDX,NCOL), XKEY(NVAR)
      EXTERNAL   NGHBR, QUADT, WRIRN, WRRRN
C
      DATA IND/2, 3, 4, 5/
      DATA (X(I,1),I=1,47)/1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
     &     1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2., 2., 2., 2.,
     &     2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
     &     2., 2., 2., 2., 2., 2./
      DATA (X(I,2),I=1,47)/-0.4485, -0.5633, 0.0643, -0.0721, -0.1002,
     &     -0.1421, 0.0351, -0.0653, 0.0724, -0.1353, -0.2298, 0.0713,
     &     0.0109, -0.2777, 0.1454, 0.3703, -0.0757, 0.0451, 0.0115,
     &     0.1227, -0.2843, 0.5135, 0.0769, 0.3776, 0.1933, 0.3248,
     &     0.3132, 0.1184, -0.0173, 0.2169, 0.1703, 0.1460, -0.0985,
     &     0.1398, 0.1379, 0.1486, 0.1633, 0.2907, 0.5383, -0.3330,
     &     0.4785, 0.5603, 0.2029, 0.2029, 0.4746, 0.1661, 0.5808/
      DATA (X(I,3),I=1,47)/-0.4106, -0.3114, -0.3114, -0.0930,
     &     -0.0917, -0.0651, 0.0147, -0.0566, -0.0076, -0.1433,
     &     -0.2961, 0.0205, 0.0011, -0.2316, 0.0500, 0.1098, -0.0821,
     &     0.0263, -0.0032, 0.1055, -0.2703, 0.1001, 0.0195, 0.1075,
     &     0.0473, 0.0718, 0.0511, 0.0499, 0.0233, 0.0779, 0.0695,
     &     0.0518, -0.0123, -0.0312, 0.0728, 0.0564, 0.0486, 0.0597,
     &     0.1064, -0.0854, 0.0910, 0.1112, 0.0792, 0.0792, 0.1380,
     &     0.0351, 0.0371/
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      DATA (X(I,4),I=1,47)/1.0865, 1.5134, 1.0077, 1.4544, 1.5644,
     &     0.7066, 1.5046, 1.3737, 1.3723, 1.4196, 0.3310, 1.3124,
     &     2.1495, 1.1918, 1.8762, 1.9941, 1.5077, 1.6756, 1.2602,
     &     1.1434, 1.2722, 2.4871, 2.0069, 3.2651, 2.2506, 4.2401,
     &     4.4500, 2.5210, 2.0538, 2.3489, 1.7973, 2.1692, 2.5029,
     &     0.4611, 2.6123, 2.2347, 2.3080, 1.8381, 2.3293, 3.0124,
     &     1.2444, 4.2918, 1.9936, 1.9936, 2.9166, 2.4527, 5.0594/
      DATA (X(I,5),I=1,47)/0.4526, 0.1642, 0.3978, 0.2589, 0.6683,
     &     0.2794, 0.7080, 0.4032, 0.3361, 0.4347, 0.1824, 0.2497,
     &     0.6969, 0.6601, 0.2723, 0.3828, 0.4215, 0.9494, 0.6038,
     &     0.1655, 0.5128, 0.5368, 0.5304, 0.3548, 0.3309, 0.6279,
     &     0.6852, 0.6925, 0.3483, 0.3970, 0.5174, 0.5500, 0.5778,
     &     0.2643, 0.5151, 0.5563, 0.1978, 0.3786, 0.4835, 0.4730,
     &     0.1847, 0.4443, 0.3018, 0.3018, 0.4487, 0.1370, 0.1268/
C
C                                 Create the k-d tree
C
      CALL QUADT (NROW, NVAR, NCOL, X, LDX, IND, NBUCK, IDISCR, PART)
C
      DO 10  I=1, NVAR
         XKEY(I) = X(1,IND(I))
   10 CONTINUE
C
      CALL NGHBR (NVAR, XKEY, K, NROW, NCOL, X, LDX, IND, NBUCK,
     &            IDISCR, PART, METRIC, IPQR, PQD)
C
      CALL WRIRN (’Indices of the nearest neighbors, IPQR.’, 1, K,
     &            IPQR, 1, 0)
      CALL WRRRN (’Nearest neighbor distances, PQD.’, 1, K, PQD, 1, 0)
C
      END

Output
Indices of the nearest neighbors, IPQR.
          1   2   3   4   5
          1   3   2   5   7

  Nearest neighbor distances, PQD.
    1       2       3       4       5
0.000   0.791   0.847   1.201   1.352
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User Errors
IMSL routines attempt to detect user errors and handle them in a way that
provides as much information to the user as possible. To do this, we recognize
various levels of severity of errors, and we also consider the extent of the error in
the context of the purpose of the routine; a trivial error in one situation may be
serious in another. IMSL routines attempt to report as many errors as they can
reasonably detect. Multiple errors present a difficult problem in error detection
because input is interpreted in an uncertain context after the first error is
detected.

What Determines Error Severity
In some cases, the user’s input may be mathematically correct, but because of
limitations of the computer arithmetic and of the algorithm used, it is not
possible to compute an answer accurately. In this case, the assessed degree of
accuracy determines the severity of the error. In cases where the routine
computes several output quantities, if some are not computable but most are, an
error condition exists. The severity depends on an assessment of the overall
impact of the error.

Terminal errors

If the user’s input is regarded as meaningless, such as N = − 1 when “N” is the
number of equations, the routine prints a message giving the value of the
erroneous input argument(s) and the reason for the erroneous input. The routine
will then cause the user’s program to stop. An error in which the user’s input is
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meaningless is the most severe error and is called a terminal error. Multiple
terminal error messages may be printed from a single routine.

Informational errors

In many cases, the best way to respond to an error condition is simply to correct
the input and rerun the program. In other cases, the user may want to take
actions in the program itself based on errors that occur. An error that may be
used as the basis for corrective action within the program is called an
informational error. If an informational error occurs, a user-retrievable code is
set. A routine can return at most one informational error for a single reference to
the routine. The codes for the informational error codes are printed in the error
messages.

Other errors

In addition to informational errors, IMSL routines issue error messages for
which no user- retrievable code is set. Multiple error messages for this kind of
error may be printed. These errors, which generally are not described in the
documentation, include terminal errors as well as less serious errors. Corrective
action within the calling program is not possible for these errors.

Kinds of Errors and Default Actions
Five levels of severity of errors are defined in the STAT/LIBRARY. Each level
has an associated PRINT attribute and a STOP attribute. These attributes have
default settings (YES or NO), but they may also be set by the user. The purpose
of having multiple error severity levels is to provide independent control of
actions to be taken for errors of different severity. Upon return from an IMSL
routine, exactly one error state exists. (A code 0 “error” is no informational
error.) Even if more than one informational error occurs, only one message is
printed (if the PRINT attribute is YES). Multiple errors for which no corrective
action within the calling program is reasonable or necessary result in the
printing of multiple messages (if the PRINT attribute for their severity level is
YES). Errors of any of the severity levels except level 5 may be informational
errors.

Level 1: Note. A note is issued to indicate the possibility of a trivial error or
simply to provide information about the computations. Default
attributes: PRINT = NO, STOP = NO

Level 2: Alert. An alert indicates that the user should be advised about events
occurring in the software. Default attributes: PRINT = NO, STOP =
NO

Level 3: Warning. A warning indicates the existence of a condition that may
require corrective action by the user or calling routine. A warning error
may be issued because the results are accurate to only a few decimal
places, because some of the output may be erroneous but most of the
output is correct, or because some assumptions underlying the analysis
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technique are violated. Often no corrective action is necessary and the
condition can be ignored. Default attributes: PRINT = YES,
STOP = NO

Level 4: Fatal. A fatal error indicates the existence of a condition that may be
serious. In most cases, the user or calling routine must take corrective
action to recover. Default attributes: PRINT = YES, STOP = YES

Level 5: Terminal. A terminal error is serious. It usually is the result of an
incorrect specification, such as specifying a negative number as the
number of equations. These errors may also be caused by various
programming errors impossible to diagnose correctly in FORTRAN.
The resulting error message may be perplexing to the user. In such
cases, the user is advised to compare carefully the actual arguments
passed to the routine with the dummy argument descriptions given in
the documentation. Special attention should be given to checking
argument order and data types.

A terminal error is not an informational error because corrective action
within the program is generally not reasonable. In normal usage,
execution is terminated immediately when a terminal error occurs.
Messages relating to more than one terminal error are printed if they
occur. Default attributes: PRINT = YES, STOP = YES

The user can set PRINT and STOP attributes by calling ERSET as described in
“Routines for Error Handling.”

Errors in Lower-Level Routines
It is possible that a user’s program may call an IMSL routine that in turn calls a
nested sequence of lower-level IMSL routines. If an error occurs at a lower level
in such a nest of routines and if the lower-level routine cannot pass the
information up to the original user- called routine, then a traceback of the
routines is produced. The only common situation in which this can occur is
when an IMSL routine calls a user-supplied routine that in turn calls another
IMSL routine.

Routines for Error Handling
There are three ways in which the user may interact with the IMSL error
handling system: (1) to change the default actions, (2) to retrieve the integer
code of an informational error so as to take corrective action, and (3) to
determine the severity level of an error. The routines to use are ERSET, IERCD,
and N1RTY, respectively.

ERSET
Change the default printing or stopping actions when errors of a particular error
severity level occur.
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Usage
CALL ERSET (IERSVR, IPACT, ISACT)

Arguments

IERSVR —  Error severity level indicator.   (Input)
If IERSVR = 0, actions are set for levels 1 to 5. If IERSVR is 1 to 5, actions are
set for errors of the specified severity level.
IPACT —  Printing action.   (Input)

IPACT Action
− 1 Do not change current setting(s).
0 Do not print.
1 Print.
2 Restore the default setting(s).

ISACT —  Stopping action.   (Input)

ISACT Action
− 1 Do not change current setting(s).
0 Do not stop.
1 Stop.
2 Restore the default setting(s).

IERCD and N1RTY
The last two routines for interacting with the error handling system, IERCD and
N1RTY, are INTEGER functions and are described in the following material.

IERCD retrieves the integer code for an informational error. Since it has no
arguments, it may be used in the following way:

ICODE = IERCD( )

The function retrieves the code set by the most recently called IMSL routine.

N1RTY retrieves the error type set by the most recently called IMSL routine. It is
used in the following way:

ITYPE = N1RTY(1)

ITYPE = 1, 2, 4, and 5 correspond to error severity levels 1, 2, 4, and 5,
respectively. ITYPE = 3 and ITYPE = 6 are both warning errors, error severity
level 3. While ITYPE = 3 errors are informational errors (IERCD( ) ≠ 0),
ITYPE = 6 errors are not informational errors (IERCD( ) = 0).

For software developers requiring additional interaction with the IMSL error
handling system, see Aird and Howell (1991).
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Examples

Changes to default actions

Some possible changes to the default actions are illustrated below. The default
actions remain in effect for the kinds of errors not included in the call to ERSET.

To turn off printing of warning error messages:
CALL ERSET (3, 0, − 1)

To stop if warning errors occur:
CALL ERSET (3, − 1, 1)

To print all error messages:
CALL ERSET (0, 1, − 1)

To restore all default settings:
CALL ERSET (0, 2, 2)

Use of informational error to determine program action

In the program segment below, the Cholesky factorization of a matrix is to be
performed. If it is determined that the matrix is not nonnegative definite (and
often this is not immediately obvious), the program is to take a different branch.

.

.

.
      CALL CHFAC (N, A, TOL, IRANK, R, CDR)
      IF (IERCD() .EQ. 1) THEN
C            Handle matrix that is not nonnegative definite

.

.

.

      END IF

Examples of All Types of Errors

The program below illustrates each of the different types of errors detected by
the STAT/LIBRARY routines. If the call to ERSET was not made, messages for
errors of levels 1 and 2 would not be printed.

The error messages refer to the argument names that are used in the
documentation for the routine, rather than the user’s name of the variable used
for the argument. In the messages generated by IMSL routine CHFAC in this
example, references are made to LDA and LDR, whereas in the program literals
were used for these arguments. Note that error codes are printed as part of the
messages for informational errors.

C                                    Specifications for local variables
      INTEGER   IDO, IOPT, IRANK, N, NMISS, NOBS, NPOP, NROW, NUM
      REAL      A(2,2), CHSQ, CONPER, DF, PR, R(2,2), RCOEF, STAT(20),
     &          SUMRY(11), TOL, X(10), XMEAN, Y(10)
C                                     Specifications for subroutines
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      EXTERNAL  CHFAC, ERSET, LETTR, SMPRR
C                                     Specifications for functions
      EXTERNAL  CHIDF
      REAL      CHIDF
C
      DATA X/-5.0, -4.0, -3.0, -2.0, -1.0, 1.0, 2.0, 3.0, 4.0, 5.0/
      DATA Y/3.0, 5.0, 4.0, 5.0, 6.0, 7.0, 6.0, 8.0, 7.0, 9.0/
      DATA A/2.0, 0.0, 0.0, -3.0/
C                                     Turn on printing and turn off
C                                     stopping for all error types.
      CALL ERSET (0, 1, 0)
C                                     Generate level 1 informational error.
      DF = 1000.0
      CHSQ = -1.0
      PR = CHIDF(CHSQ,DF)
C                                     Generate level 2 informational error.
      DF = 1000.0
      CHSQ = 10.0
      PR = CHIDF(CHSQ,DF)
C                                     Generate level 3 informational error.
      NOBS = 10
      NUM = 11
      CALL LETTR (NOBS, X, NUM, SUMRY, NMISS)
C                                     Generate level 4 informational error.
      N = 2
      TOL = 0.0001
      CALL CHFAC (N, A, 2, TOL, IRANK, R, 2)
C                                     Generate several level 5 errors.
      CALL CHFAC (N, A, 1, TOL, IRANK, R, -2)
C                                     Generate several warning errors that
C                                     do not allow corrective action
C                                     (because no codes are listed for
C                                     these errors in the document for the
C                                     routine).
      IDO = 0
      NROW = 10
      NPOP = 100
      IOPT = 1
      CONPER = 0.95
      CALL SMPRR (IDO, NROW, X, Y, NPOP, IOPT, XMEAN, RCOEF, CONPER,
     &            STAT)
      END

Output
*** NOTE      ERROR 1 from CHIDF. Since CHSQ = -1.000000E+00 is less than
***           zero, the distribution function is zero at CHSQ.
*** ALERT     ERROR 3 from CHIDF. The normal distribution is used for large
***           degrees of freedom. However, it has produced underflow.
***           Therefore, the probability is set to 0.
*** WARNING   ERROR 3 from LETTR. NUM = 11 and the number of observations =
***           10. Since NUM is greater than the number of observations, it
***           is likely that the results are not useful.
*** WARNING   ERROR 1 from CHFAC. The leading 2 by 2 submatrix of the input
***           matrix is not nonnegative definite within the tolerance
***           definedby TOL = 1.000000E-04.
*** TERMINAL  ERROR 3 from CHFAC. N = 2 and LDA = 1. N must be less than or
***           equal to LDA.
*** TERMINAL  ERROR 5 from CHFAC. LDR = -2. LDR must be greater than or



IMSL STAT/LIBRARY Reference Material • 1331

***           equal to 1.
*** WARNING   ERROR 1 from SMPRR. CONPER = 9.500000E-01. The confidence
***           percentage is less than 50.0. Commonly used confidence
***           percentages are: 90.0, 95.0 or 99.0.
*** WARNING   ERROR 3 from SMPRR. The sample size, STAT(19) = 10. This is
***           less than 30. The confidence limits, which are computed using
***           a normal approximation, may not be very accurate.
*** WARNING   ERROR 7 from SMPRR. The coefficient of variation of one or
***           both of the variables exceeds 10%. The confidence limits,
***           which are computed using a normal approximation, may not be
***           very accurate.

Example of Traceback

The next program illustrates a situation in which a traceback is produced.
Although the traceback shows an error code associated with a terminal error,
this code has no meaning to the user; the printed message contains all relevant
information and it is not assumed that the user would take corrective action
based on knowledge of the code.

C                                 Specifications for local variables
      REAL       A, B, ERRABS, ERRREL, RESULT, ERREST
C                                 Specifications for common variables
      REAL       PIN, QIN, SAMP
      COMMON     PIN, QIN, SAMP
C                                 Specifications for subroutines
      EXTERNAL   QDAGS
C                                 Specifications for functions
      EXTERNAL F
      REAL F
C                                 Compute the expected value of the
C                                 maximum order statistic in a sample
C                                 of size SAMP from a beta distribution.
      A = 0.0
      B = 1.0
      ERRABS = 0.0
      ERRREL = 0.001
C                                 Initialize parameters for the beta
C                                 order statistic of interest.
      SAMP = 10.0
      PIN = 2.0
      QIN = -3.0
C                                 The parameters for the beta must be
C                                 nonnegative -- hence, the preceeding
C                                 assignment causes an error.
      CALL QDAGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST)
C
      WRITE (*, *) RESULT, ERREST
      END
C
      REAL FUNCTION F (X)
      REAL       X, PIN, QIN, SAMP
      COMMON     PIN, QIN, SAMP
C
      F = X*BETDF(X,PIN,QIN)**(SAMP-1.0)
      RETURN
      END
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Output
*** TERMINAL ERROR 4 from BETDF.   QIN = -3.000000E+00 must be greater than
***          0.0.
    Here is a traceback of subprogram calls in reverse order:
    Routine name                      Error type Error code
    ------------                      ---------- ----------
    BETDF                                  5          4
    Q2AGS                                  0          0 (Called internally)
    QDAGS                                  0          0
    USER                                   0          0

Automatic Workspace Allocation
FORTRAN subroutines that work with arrays as input and output often require
extra arrays for use as workspace while doing computations or moving around
data. IMSL routines generally do not require the user explicitly to allocate such
arrays for use as workspace. On most systems the workspace allocation is
handled transparently. The only limitation is the actual amount of memory
available on the system.

On some systems the workspace is allocated out of a stack that is passed as a
FORTRAN array in a named common block WORKSP. A very similar use of a
workspace stack is described by Fox et al. (1978, pages 116− 121). (For
compatiblity with older versions of the IMSL Libraries, space is allocated from
the COMMON block, if possible.)

The arrays for workspace appear as arguments in lower-level routines. For
example, the IMSL routine FREQ (page 13), which computes frequency
tabulations, needs arrays for workspace. FREQ allocates arrays from the common
area and passes them to the lower-level routine F2EQ, which does the
computations. In the “Comments” section of the documentation for FREQ, the
amount of workspace is noted, and the call to F2EQ is described. This scheme
for using lower-level routines is followed throughout the IMSL Libraries. The
names of these routines have a “2” in the second position (or in the third
position in double precision routines having a “D” prefix). The user can provide
workspace explicitly and call directly the “2-level” routine, which is documented
along with the main routine. In a very few cases, the 2-level routine allows
additional options that the main routine does not allow.

Prior to returning to the calling program, a routine that allocates workspace
generally deallocates that space, so that it becomes available for use in other
routines. There are some exceptions to this, as noted in the section “IDO
Routines” which follows later in this chapter.

Changing the Amount of Space Allocated

This section is relevant only to those systems on which the transparent
workspace allocator is not available.

By default, the total amount of space allocated in the common area for storage of
numeric data is 5000 numeric storage units. (A numeric storage unit is the
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amount of space required to store an integer or a real number. By comparison, a
double precision unit is twice this amount. Therefore the total amount of space
allocated in the common area for storage of numeric data is 2500 double
precision units.) This space is allocated as needed for INTEGER, REAL, or other
numeric data. For larger problems in which the default amount of workspace is
insufficient, the user can change the allocation by supplying the FORTRAN
statements to define the array in the named common block and by informing the
IMSL workspace allocation system of the new size of the common array. To
request 7000 units, the statements are
COMMON /WORKSP/ RWKSP
REAL RWKSP(7000)
CALL IWKIN(7000)

If an IMSL routine attempts to allocate workspace in excess of the amount
available in the common stack, the routine issues a fatal error message that
indicates how much space is needed and prints statements like those above to
guide the user in allocating the necessary amount. The program below uses
IMSL routine PERMA (page 1266) to permute rows or columns of a matrix. This
routine requires workspace equal to the number of columns, which in this
example is too large. (Note that the work vector RWKSP must also provide extra
space for bookkeeping.)

C                                  Specifications for local variables
      INTEGER    NRA, NCA, LDA, IPERMU(6000), IPATH
      REAL A(2,6000)
C                                  Specifications for subroutines
      EXTERNAL PERMA
C
      NRA = 2
      NCA = 6000
      LDA = 2
C                                  Initialize permutation index
      DO 10 I = 1, NCA
         IPERMU(I) = NCA + 1 - I
   10 CONTINUE
      IPATH = 2
      CALL PERMA (NRA, NCA, A, LDA, IPERMU, IPATH, A, LDA)
      END

Output
*** TERMINAL ERROR 10 from PERMA.  Insufficient workspace for current
***          allocation(s). Correct by calling IWKIN from main program with
***          the three following statements: (REGARDLESS OF PRECISION)
***                COMMON /WORKSP/ RWKSP
***                REAL RWKSP(6018)
***                CALL IWKIN(6018)
*** TERMINAL ERROR 10 from PERMA.  Workspace allocation was based on NCA =
***          6000.

In most cases, the amount of workspace is dependent on the parameters of the
problem so the amount needed is known exactly. In a few cases, however, the
amount of workspace is dependent on the data (for example, if it is necessary to
count all of the unique values in a vector), so the IMSL routine cannot tell in



1334 • Reference Material IMSL STAT/LIBRARY

advance exactly how much workspace is needed. In such cases the error message
printed is an estimate of the amount of space required.

IDO Routines

Some routines with an argument named “IDO” allocate workspace automatically
and store intermediate results in elements of workspace that are referenced in
subsequent calls. Typically, these routines are called in a loop. With each call,
some rows of the data set are input to the routine and statistics stored in
workspace are updated. In this case, the workspace must be preserved between
calls.

For these routines, when IDO indicates this is the first call, the routine allocates
workspace; when IDO indicates this is the last call, the routine deallocates the
workspace. Because of the way this workspace is allocated and deallocated, no
IMSL routine requiring additional automatic workspace can be used between
these two calls. If it is necessary to call additional routines requiring workspace,
use the 2-level routines and explicitly allocate the work arrays.

Not all IDO routines require workspace to be preserved between their first and
last call. Some may not even use workspace. Others may allocate and deallocate
workspace with each call. The statement “workspace should not be changed
between calls” will be in the description of the “IDO” routine that requires that
workspace be preserved. (This statement will occur in the description of one or
more of the workspace arguments for the 2-level routine.)

Character Workspace

Since character arrays cannot be equivalenced with numeric arrays, a separate
named common block WKSPCH is provided for character workspace. In most
respects this stack is managed in the same way as the numeric stack. The default
size of the character workspace is 2000 character units. (A character unit is the
amount of space required to store one character.) The routine analogous to
IWKIN used to change the default allocation is IWKCIN.

Machine-Dependent Constants
The function subprograms in this section return machine-dependent information
and can be used to enhance portability of programs between different computers.
The routines IMACH, AMACH and DMACH describe the computer’s arithmetic. The
routine UMACH describes the input, output, and error output unit numbers.
INTEGER FUNCTION IMACH(I)

IMACH retrieves machine integer constants that define the arithmetic used by the
computer.

IMACH(1) = Number of bits per integer storage unit.
IMACH(2) = Number of characters per integer storage unit.

Integers are represented in M-digit, base A form as
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σ x Akk

M k

=∑ 0

where σ is the sign and 0 ≤ xk < A, k = 0, … , M. Then,

IMACH(3) = A, the base.
IMACH(4) = M, the number of base-A digits.

IMACH(5) = AM −  1, the largest integer.

The machine model assumes that floating-point numbers are represented in
normalized N-digit, base B form as

σB x BE
kk

N k

=
−∑ 1

where σ is the sign, 0 < x1 < B, 0 ≤ xk < B, k = 2, … , N and
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 =  ,  the number of base -  digits in double precision

 =  ,  the smallest double precision exponent

 =  ,  the number of base -  digits in double precision
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REAL FUNCTION AMACH(I)

The function subprogram AMACH retrieves real machine constants that define the
computer’s real or single-precision arithmetic. Such floating-point numbers are
represented in normalized Ns-digit, base B form as

σB x BE
kk

N ks
=

−∑ 1

where σ is the sign, 0 < x1 < B, 0 ≤ xk < B, k = 2, … , Ns and

E E E
s smin max≤ ≤

Note that B = IMACH(6), Ns = IMACH(7),

E E
s smin max= =IMACH(8) IMACH(9),  and 

The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN
(not a number) as the result of various invalid or ambiguous operations, such as
0/0. The intent is that AMACH(6) return a signaling NaN. On IEEE format
computers that do not support signaling NaN, a quiet NaN is returned. If the
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machine does not support a NaN, a special value near AMACH(2) is returned for
AMACH(6). On computers that do not have a special representation for infinity,
AMACH(7) returns the same value as AMACH(2).

AMACH is defined by the following table:

AMACH

AMACH

AMACH

AMACH
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,

,

,
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max
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1

1

1
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−

−
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E N

N

N

s

s s
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the smallest normalized positive number.

(2) = the largest number.

(3) = the smallest relative spacing.

(4) =  the largest relative spacing.

e j

AMACH

AMACH

AMACH

AMACH

(5) =  log

NaN (signaling not a number).                              

(7) = positive machine infinity.

(8) =  negative machine infinity.

10 Bb g.
(6) =

DOUBLE PRECISION FUNCTION DMACH(I)

The function subprogram DMACH retrieves real machine constants that define the
computer’s double precision arithmetic. Such double-precision floating-point
numbers are represented in normalized Nd-digit, base B form as

σB x BE
kk

N kd

=
−∑ 1

where σ is the sign, 0 < x1 < B, 0 ≤ xk < B, k = 2, … , Nd and

E E E
d dmin max≤ ≤

Note that B = IMACH(6), Nd = IMACH(10),

E E
d dmin max=  (11),  and =  (12)IMACH IMACH

The IEEE standard for binary arithmetic (see IEEE 1985) specifies quiet NaN
(not a number) as the result of various invalid or ambiguous operations, such as
0/0. The intent is that DMACH(6) return a signaling NaN. On IEEE format
computers that do not support signaling NaN, a quiet NaN is returned. If the
machine does not support a NaN, a special value near DMACH(2) is returned for
DMACH(6). On computers that do not have a special representation for infinity,
DMACH(7) returns the same value as DMACH(2).

DMACH is defined by the following table:
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NaN (signaling not a number).                                

(7) =  positive machine infinity.

(8) =  negative machine infinity.
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LOGICAL FUNCTION IFNAN(X), DIFNAN(DX)

The logical function IFNAN checks if the REAL argument X is NaN (not a
number). Similarly, DIFNAN checks if the DOUBLE PRECISION argument DX is
NaN.

The functions IFNAN and DIFNAN are provided to facilitate the transfer of
programs across computer systems. This is because the check for NaN can be
tricky and not portable across computer systems that do not adhere to the IEEE
standard. For example, on computers that support the IEEE standard for binary
arithmetic (see IEEE 1985), NaN is specified as a bit format not equal to itself.
Thus, the check is performed as
IFNAN = X .NE. X

On other computers that do not use IEEE floating-point format, the check can be
performed in single precision as
IFNAN = X .EQ. AMACH(6)

The function IFNAN or DIFNAN is equivalent to the specification of the function
Isnan listed in the Appendix, (IEEE 1985). The following example illustrates
the use of IFNAN. If X is NaN, a message is printed instead of X. (Routine
UMACH, which is described in the following section, is used to retrieve the output
unit number for printing the message.)

      INTEGER      NOUT
      REAL         AMACH, X
      LOGICAL      IFNAN
      EXTERNAL     AMACH, IFNAN, UMACH
C
      CALL UMACH (2, NOUT)
C
      X = AMACH(6)
      IF (IFNAN(X)) THEN
         WRITE (NOUT,*) ’ X is NaN (not a number).’
      ELSE
         WRITE (NOUT,*) ’ X = ’, X
      END IF
C
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      END

Output
X is NaN (not a number).

SUBROUTINE UMACH(N, NUNIT)

Routine UMACH sets or retrieves the input, output, or error output device unit
numbers. UMACH is set automatically so that the default FORTRAN unit
numbers for standard input, standard output, and standard error are used. These
unit numbers can be changed by inserting a call to UMACH at the beginning of
the main program that calls STAT/LIBRARY routines. If these unit numbers
are changed from the standard values, the user should insert an appropriate
OPEN statement in the calling program. The calling sequence for UMACH is
CALL UMACH (N, NUNIT)

where NUNIT is the input, output, or error output unit number that is either
retrieved or set, depending on which value of N is selected.

The arguments are summarized by the following table:

N Effect
1 Retrieves input unit number in NUNIT.

2 Retrieves output unit number in NUNIT.

3 Retrieves error output unit number in NUNIT.

− 1 Sets the input unit number to NUNIT.

− 2 Sets the output unit number to NUNIT.

− 3 Sets the error output unit number to NUNIT.

If the value of N is negative, the input, output, or error output unit number is
reset to NUNIT. If the value of N is positive, the input, output, or error output
unit number is returned in NUNIT.

In the following example, a terminal error is issued from the STAT/LIBRARY
AMACH function since the argument is invalid. With a call to UMACH, the error
message will be written to a local file named “CHECKERR”.

      INTEGER     N, AMACH
      REAL        X
      EXTERNAL   AMACH, UMACH
C                                      Set Parameter
      N = 0
C
      CALL UMACH (-3, 9)
      OPEN (UNIT=9,FILE=’CHECKERR’)
      X = AMACH(N)
      END
The output from this example, written to ’CHECKERR’ is:
*** TERMINAL ERROR 5 from AMACH.  The argument must be between 1 and 8
***           inclusive. N = 0
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Missing Values
Missing values in IMSL routines are always indicated by NaN (not a number).
This is AMACH(6) in single precision and DMACH(6) in double precision. There is
no missing-value indicator for FORTRAN integers. Users will almost always
have to convert from their missing value indicators to NaN. This is easily
accomplished, as the following example illustrates. In this example, “− 9.9” in
the input represents a missing value, which is converted to NaN (not a number).
After the input matrix is printed with missing values as “NaN”, IMSL routine
UVSTA is called to obtain univariate summary statistics. When a frequency is
missing, the entire row is omitted from the analysis, whereas only the data
element in question is omitted otherwise.

      INTEGER IDO, IFRQ, IPRINT, IWT, LDSTAT, LDX, MOPT, NROW, NVAR
      REAL CONPRM, CONPRV
      PARAMETER (CONPRM=95.0, CONPRV=90.0, IDO=0, IFRQ=3, IPRINT=1,
     &           IWT=0, LDSTAT=15, LDX=10, MOPT=1, NROW=10, NVAR=2)
C
      INTEGER I, J, NRMISS
      REAL AMACH, STAT(LDSTAT,NVAR), X(LDX,3)
      EXTERNAL AMACH, UVSTA, WRRRN
C
      DATA X/1.2, 1.6, -9.9, 1.6, 1.3, -9.9, 1.1, 1.3, 1.5, 1.2, 8.2,
     & 7.6, 10.3, -9.9, 8.2, 11.3, -9.9, 7.4, -9.9, -9.9, 10, 7,
     & 4, -9.9, 10, 11, 4, 5, -9.9, 10/
C                                       Replace missing values
      DO 20 I=1, NROW
         DO 10 J=1, 3
            IF (X(I,J) .EQ. -9.9) X(I,J) = AMACH(6)
   10 CONTINUE
   20 CONTINUE
C                                       Print the matrix
      CALL WRRRN (’X’, NROW, 3, X, LDX, 0)
C
      CALL UVSTA (IDO, NROW, NVAR, X, LDX, IFRQ, IWT, MOPT, CONPRM,
     &            CONPRV, IPRINT, STAT, LDSTAT, NRMISS)
C
      END

Output
            X
        1       2        3
1    1.20    8.20    10.00
2    1.60    7.60     7.00
3     NaN   10.30     4.00
4    1.60     NaN      NaN
5    1.30    8.20    10.00
6     NaN   11.30    11.00
7    1.10     NaN     4.00
8    1.30    7.40     5.00
9    1.50     NaN      NaN
10   1.20     NaN    10.00

                      Univariate Statistics from UVSTA
Variable        Mean     Variance    Std. Dev.     Skewness    Kurtosis
   1          1.2848      0.02176      0.1475        1.2727      0.5878
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   2          8.9298      2.26170      1.5039        0.7405     -1.1927
Variable     Minimum      Maximum       Range     Coef. Var.      Count
   1          1.1000       1.6000      0.5000        0.1148     46.0000
   2          7.4000      11.3000      3.9000        0.1684     47.0000
Variable   Lower CLM    Upper CLM   Lower CLV     Upper CLV
   1          1.2410       1.3286     0.01588       0.03199
   2          8.4882       9.3713     1.65588       3.30921

Matrix Storage Modes
In this section, the word matrix will be used to refer to a mathematical object,
and the word array will be used to refer to its representation as a FORTRAN
data structure.

General Mode

A general matrix is an N × N matrix A. It is stored in a FORTRAN array that is
declared by the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as N. IMSL general matrix subprograms only refer to values Aij for i = 1, 
… , N and j = 1, … , N. The data type of a general array can be one of REAL,
DOUBLE PRECISION, or COMPLEX. If your FORTRAN compiler allows, the
nonstandard data type DOUBLE COMPLEX can also be declared.

Rectangular Mode

A rectangular matrix is an M × N matrix A. It is stored in a FORTRAN array
that is declared by the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as M. IMSL rectangular matrix subprograms only refer to values Aij for
i = 1, … , M and j = 1, … , N. The data type of a rectangular array can be REAL,
DOUBLE PRECISION, or COMPLEX. If your FORTRAN compiler allows, you can
declare the nonstandard data type DOUBLE COMPLEX.

Symmetric Mode

A symmetric matrix is a square N × N matrix A, such that AT = A. (AT is the
transpose of A.) It is stored in a FORTRAN array that is declared by the
following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as N. IMSL symmetric matrix subprograms only refer to the upper or to the
lower half of A (i.e., to values Aij for i = 1, … , N and j = 1, … , N, or Aij for
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j = 1, … , N and i = j, … , N. The data type of a symmetric array can be one of
REAL or DOUBLE PRECISION. Use of the upper half of the array is denoted in
the BLAS that compute with symmetric matrices using the CHARACTER*1 flag
UPLO = ’U’. Otherwise, UPLO = ’L’ denotes that the lower half of the array
is used.

Hermitian Mode

A Hermitian matrix is a square N × N matrix A, such that

A AT =
The matrix

A

is the complex conjugate of A and

A AH T ≡

is the conjugate transpose of A. For Hermitian matrices, AH = A. The matrix is
stored in a FORTRAN array that is declared by the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as N. IMSL Hermitian matrix subprograms only refer to the upper or to the
lower half of A (i.e., to values Aij for i = 1, … , N and j = i, … , N., or Aij for
j = 1, … , N and i = j, … , N). Use of the upper half of the array is denoted in the
BLAS that compute with Hermitian matrices using the CHARACTER*1 flag UPLO
= ’U’. Otherwise, UPLO = ’L’ denotes that the lower half of the array is used.
The data type of a Hermitian array can be COMPLEX or, if your FORTRAN
compiler allows, the nonstandard data type DOUBLE COMPLEX.

Triangular Mode

A triangular matrix is a square N × N matrix A such that values Aij = 0 for i < j or
Aij = 0 for i > j. The first condition defines a lower triangular matrix while
the second condition defines an upper triangular matrix. A lower triangular
matrix A is stored in the lower triangular part of a FORTRAN array A. An upper
triangular matrix is stored in the upper triangular part of a FORTRAN array.
Triangular matrices are called unit triangular whenever Ajj = 1, j = 1, … , N. For
unit triangular matrices, only the strictly lower or upper parts of the array are
referenced. This is denoted in the BLAS that compute with triangular matrices
using the CHARACTER*1 flag DIAG = ’U’. Otherwise, DIAG = ’N’ denotes
that the diagonal array terms should be used. For unit triangular matrices, the
diagonal terms are each used with the mathematical value 1. The array diagonal
term does not need to be 1.0 in this usage. Use of the upper half of the array is
denoted in the BLAS that compute with triangular matrices, IMSL
MATH/LIBRARY, using the CHARACTER*1 flag UPLO = ’U’. Otherwise,
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UPLO = ’L’ denotes that the lower half of the array is used. The data type of
an array that contains a triangular matrix can be one of REAL, DOUBLE
PRECISION, or COMPLEX. If your FORTRAN compiler allows, the nonstandard
data type DOUBLE COMPLEX can also be declared.

Band Storage Mode

A band matrix is an M × N matrix A with all of its nonzero elements “close” to
the main diagonal. Specifically, values Aij = 0 if i −  j > NLCA or j −  i > NUCA.
The integers NLCA and NUCA are the lower and upper band widths. The integer
m = NLCA + NUCA + 1 is the total band width. The diagonals, other than the
main diagonal, are called codiagonals. While any M × N matrix is a band
matrix, the band matrix mode is most useful only when the number of nonzero
codiagonals is much less than m.

In the band storage mode, the NLCA lower codiagonals and NUCA upper
codiagonals are stored in the rows of a FORTRAN array of dimension m × N.
The elements are stored in the same column of the array as they are in the
matrix. The values Aij inside the band width are stored in array positions (i −  j
+ NUCA + 1, j). This array is declared by the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as m. The data type of a band matrix array can be one of REAL, DOUBLE
PRECISION, COMPLEX or, if your FORTRAN compiler allows, the nonstandard
data type DOUBLE COMPLEX . Use of the CHARACTER*1 flag TRANS = ’N’ in the

BLAS specifies that the matrix A is used. The flag value TRANS = ’T’ uses AT
while TRANS = ’C’ uses

A T

For example, consider a real 5 × 5 band matrix with 1 lower and 2 upper
codiagonals, stored in the FORTRAN array declared by the following
statements:
PARAMETER (N=5, NLCA=1, NUCA=2)
REAL A(NLCA+NUCA+1, N)

The matrix A has the form

A

A A A

A A A A

A A A A

A A A

A A

=

L

N

MMMMMMM

O

Q

PPPPPPP

11 12 13

21 22 23 24

32 33 34 35

43 44 45

54 55

0 0

0

0

0 0

0 0 0

As a FORTRAN array, it is
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A

A A A

A A A A

A A A A A

A A A A

=

× ×
×

L

N

MMMMM

O

Q

PPPPP

13 24 35

12 23 34 45

11 22 33 44 45

21 32 43 54 x

The entries marked with an × in the above array are not referenced by the IMSL
band symmetric subprograms.

Band Symmetric Storage Mode
A band symmetric matrix is a band matrix that is also symmetric. The band
symmetric storage mode is similar to the band mode except only the lower or
upper codiagonals are stored.

In the band symmetric storage mode, the NCODA upper codiagonals are stored in
the rows of a FORTRAN array of dimension (NCODA + 1) × N. The elements are
stored in the same column of the array as they are in the matrix. Specifically,
values Aij, j ≥ i inside the band are stored in array positions (i −  j + NCODA + 1,
j). This is the storage mode designated by using the CHARACTER*1 flag
UPLO = ’U’ in Level 2 BLAS that compute with band symmetric matrices.
Alternatively, Aij, j ≤ i, inside the band, are stored in array positions (i −  j + 1,
j). This is the storage mode designated by using the CHARACTER*1 flag
UPLO = ’L’ in these Level 2 BLAS. The array is declared by the following
statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as NCODA + 1. The data type of a band symmetric array can be REAL or
DOUBLE PRECISION. For example, consider a real 5 × 5 band matrix with 2
codiagonals. Its FORTRAN declaration is
PARAMETER (N=5, NCODA=2)
REAL A(NCODA+1, N)

The matrix A has the form

A

A A A

A A A A

A A A A A

A A A A

A A A

=

L

N

MMMMMMM

O

Q

PPPPPPP

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

Since A is symmetric, the values Aij = Aji. In the FORTRAN array, it is
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A

A A A

A A A A

A A A A A

=
× ×
×

L

N
MMMM

O

Q
PPPP

13 24 35

12 23 34 45

11 22 33 44 45

The entries marked with an × in the above array are not referenced by the IMSL
band symmetric subprograms.

An alternate storage mode for band symmetric matrices is designated using the
CHARACTER*1 flag UPLO = ’L’ in Level 2 BLAS that compute with band
symmetric matrices. In that case, the example matrix is represented as

A

A A A A A

A A A A

A A A

= ×
× ×

L

N
MMMM

O

Q
PPPP

11 22 33 44 55

12 23 34 45

13 24 35

Band Hermitian Storage Mode
A band Hermitian matrix is a band matrix that is also Hermitian. The band
Hermitian mode is a complex analogue of the band symmetric mode.

In the band Hermitian storage mode, the NCODA upper codiagonals are stored in
the rows of a FORTRAN array of dimension (NCODA + 1) × N. The elements are
stored in the same column of the array as they are in the matrix. In the Level 2
BLAS, IMSL MATH/LIBRARY, this is denoted by using the CHARACTER*1
flag UPLO = ’U’. The array is declared by the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as (NCODA + 1). The data type of a band Hermitian array can be COMPLEX
or, if your FORTRAN compiler allows, the nonstandard data type DOUBLE
COMPLEX.

For example, consider a complex 5 × 5 band matrix with 2 codiagonals. Its
FORTRAN declaration is
PARAMETER (N=5, NCODA = 2)
COMPLEX A(NCODA + 1, N)

The matrix A has the form

A

A A A

A A A A

A A A A A

A A A A

A A A

=

L

N

MMMMMMM

O

Q

PPPPPPP

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

where the value



IMSL STAT/LIBRARY Reference Material • 1345

Aij

is the complex conjugate of Aij. This matrix represented as a FORTRAN array is

A

A A A

A A A A

A A A A A

=
× ×
×

L

N
MMMM

O

Q
PPPP

13 24 35

12 23 34 45

11 22 33 44 55

The entries marked with an × in the above array are not referenced by the IMSL
band Hermitian subprograms.

An alternate storage mode for band Hermitian matrices is designated using the
CHARACTER*1 flag UPLO = ’L’ in Level 2 BLAS that compute with band
Hermitian matrices. In that case, the example matrix is represented as

A

A A A A A

A A A A

A A A

= ×
× ×

L

N
MMMM

O

Q
PPPP

11 22 33 44 55

12 23 34 45

13 24 35

Band Triangular Storage Mode
A band triangular matrix is a band matrix that is also triangular. In the band
triangular storage mode, the NCODA codiagonals are stored in the rows of a
FORTRAN array of dimension (NCODA + 1) × N. The elements are stored in the
same column of the array as they are in the matrix. For usage in the Level 2
BLAS, the CHARACTER*1 flag DIAG has the same meaning as used in section
“Triangular Storage Mode”. The flag UPLO has the meaning analogous with its
usage in the section “Band Symmetric Storage Mode”. This array is declared by
the following statement:
DIMENSION A(LDA,N)

The parameter LDA is called the leading dimension of A. It must be at least as
large as (NCODA + 1).

For example, consider a 5 × 5 band upper triangular matrix with 2 codiagonals.
Its FORTRAN declaration is
PARAMETER (N = 5, NCODA = 2)
COMPLEX A(NCODA + 1, N)

The matrix A has the form

A

A A A

A A A

A A A

A A

A

=

L

N

MMMMMMM

O

Q

PPPPPPP

11 12 13

22 23 24

33 34 35

44 45

55

0 0

0 0

0 0

0 0 0

0 0 0 0
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This matrix represented as a FORTRAN array is

A

A A A

A A A A

A A A A A

=
× ×
×

L

N
MMMM

O

Q
PPPP

13 24 35

12 23 34 45

11 22 33 44 55

This corresponds to the CHARACTER*1 flags DIAG = ’N’ and UPLO = ’U’.

The matrix AT is represented as the FORTRAN array

A

A A A A A

A A A A

A A A

= ×
× ×

L

N
MMMM

O

Q
PPPP

11 22 33 44 55

12 23 34 45

13 24 35

This corresponds to the CHARACTER*1 flags DIAG = ’N’ and UPLO = ’L’. In
both examples, the entries indicated with an × are not referenced by IMSL
subprograms.

Codiagonal Band Symmetric Storage Mode
This is an alternate storage mode for band symmetric matrices. It is not used by
any of the BLAS. Storing data in a form transposed from the Band Symmetric
Storage Mode maintains unit spacing between consecutive referenced array
elements. This data structure is used to get good performance in the Cholesky
decomposition algorithm that solves positive definite symmetric systems of
linear equations Ax = b. The data type can be REAL or DOUBLE PRECISION. In
the codiagonal band symmetric storage mode, the NCODA upper codiagonals and
right-hand-side are stored in columns of this FORTRAN array. This array is
declared by the following statement:
DIMENSION A(LDA, NCODA + 2)

The parameter LDA is the leading positive dimension of A. It must be at least as
large as N + NCODA.

Consider a real symmetric 5 × 5 matrix with 2 codiagonals

A

A A A

A A A A

A A A A A

A A A A

A A A

=

L

N

MMMMMMM

O

Q

PPPPPPP

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

0 0

0

0

0 0

and a right-hand-side vector
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b

b

b

b

b

b

=

L

N

MMMMMMM

O

Q

PPPPPPP

1

2

3

4

5

A FORTRAN declaration for the array to hold this matrix and right-hand-side
vector is
PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA)
REAL A(LDA, NCODA + 2)

The matrix and right-hand-side entries are placed in the FORTRAN array A as
follows:

A

A b

A A b

A A A b

A A A b

A A A b

=

× × × ×
× × × ×

× ×

×

L

N

MMMMMMMMMMM

O

Q

PPPPPPPPPPP

11 1

22 12 2

33 23 13 3

44 34 24 4

55 45 35 5

Entries marked with a × do not need to be defined. Certain of the IMSL band
symmetric subprograms will initialize and use these values during the solution
process. When a solution is computed, the bi, i = 1, … , 5, are replaced by xi,
i = 1, … , 5.

The nonzero Aij, j ≥ i, are stored in array locations A (j + NCODA,(j −  i) + 1) .
The right-hand-side entries bj are stored in locations A (j + NCODA, NCODA + 2).
The solution entries xj are returned in A (j + NCODA, NCODA + 2).

Codiagonal Band Hermitian Storage Mode
This is an alternate storage mode for band Hermitian matrices. It is not used by
any of the BLAS, IMSL MATH/LIBRARY. In the codiagonal band Hermitian
storage mode, the real and imaginary parts of the 2*NCODA + 1 upper
codiagonals and right-hand-side are stored in columns of a FORTRAN array.
Note that there is no explicit use of the COMPLEX or the nonstandard data type
DOUBLE COMPLEX data type in this storage mode.

For Hermitian complex matrices,

A U V =   +  − 1
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where U and V are real matrices. They satisfy the conditions U = UT and

V = − VT. The right-hand-side

b c d= + − 1

where c and d are real vectors. The solution vector is denoted as

x u v= + − 1

where u and v are real. The storage is declared with the following statement
DIMENSION A(LDA, 2*NCODA + 3)

The parameter LDA is the leading positive dimension of A. It must be at least as
large as N + NCODA.

The diagonal terms Ujj are stored in array locations A (j + NCODA, 1). The
diagonal Vjj are zero and are not stored. The nonzero Uij, j > i, are stored in
locations A(j + NCODA, 2 * (j −  i)).

The nonzero Vij are stored in locations A(j + NCODA, 2 *(j −  i) + 1). The right
side vector b is stored with cj and dj in locations A(j + NCODA, 2 * NCODA +
2)and A (j + NCODA, 2*NCODA + 3) respectively. The real and imaginary parts
of the solution, uj and vj, respectively overwrite cj and dj.
Consider a complex hermitian 5 × 5 matrix with 2 codiagonals

A

U U U

U U U U

U U U U U

U U U U

U U U

V V

V V V

V V V V

V V V

V V

=

L

N

MMMMMMM

O

Q

PPPPPPP

+ −

−

− −
− −

− −

L

N

MMMMMMM

O

Q

PPPPPPP

11 12 13

12 22 23 24

13 23 33 34 35

24 34 44 45

35 45 55

12 13

12 23 24

13 23 34 35

24 34 45

35 45

0 0

0

0

0 0

1

0 0 0

0 0

0

0 0

0 0 0

and a right-hand-side vector

b

c

c

c

c

c

d

d

d

d

d

=

L

N

MMMMMMM

O

Q

PPPPPPP

+ −

L

N

MMMMMMM

O

Q

PPPPPPP

1

2

3

4

5

1

2

3

4

5

1

A FORTRAN declaration for the array to hold this matrix and right-hand-side
vector is
PARAMETER (N = 5, NCODA = 2, LDA = N + NCODA)
REAL A(LDA,2*NCODA + 3)

The matrix and right-hand-side entries are placed in the FORTRAN array A as
follows:
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A

U c d

U U V c d

U U V U V c d

U U V U V c d

U U V U V c d

=

× × × × × × ×
× × × × × × ×

× × × ×

× ×

L

N

MMMMMMMMMMM

O

Q

PPPPPPPPPPP

11 1 1

22 12 12 2 2

33 23 23 13 13 3 3

44 34 34 24 24 4 4

55 45 45 35 35 5 5

Entries marked with an × do not need to be defined.

Reserved Names
When writing programs accessing the STAT/LIBRARY, the user should choose
FORTRAN names that do not conflict with names of IMSL subroutines,
functions, or named common blocks, such as the workspace common block
WORKSP (page 1332). The user needs to be aware of two types of name conflicts
that can arise. The first type of name conflict occurs when a name (technically a
symbolic name) is not uniquely defined within a program unit (either a main
program or a subprogram). For example, such a name conflict exists when the
name RCURV is used to refer both to a type REAL variable and to the IMSL
subroutine RCURV in a single program unit. Such errors are detected during
compilation and are easy to correct. The second type of name conflict, which can
be more serious, occurs when names of program units and named common
blocks are not unique. For example, such a name conflict would be caused by the
user defining a subroutine named WORKSP and also referencing an
STAT/LIBRARY subroutine that uses the named common block WORKSP.
Likewise, the user must not define a subprogram with the same name as a
subprogram in the STAT/LIBRARY, that is referenced directly by the user’s
program or is referenced indirectly by other STAT/LIBRARY subprograms.

The STAT/LIBRARY consists of many routines, some that are described in the
User’s Manual and others that are not intended to be called by the user and,
hence, that are not documented. If the choice of names were completely random
over the set of valid FORTRAN names, and if a program uses only a small
subset of the STAT/LIBRARY, the probability of name conflicts is very small.
Since names are usually chosen to be mnemonic, however, the user may wish to
take some precautions in choosing FORTRAN names.

Many IMSL names consist of a root name that may have a prefix to indicate the
type of the routine. For example, the IMSL single precision subroutine for fitting
a polynomial by least squares has the name RCURV, which is the root name, and
the corresponding IMSL double precision routine has the name DRCURV.
Associated with these two routines are R2URV and DR2URV. RCURV and DRCURV
are listed in the Alphabetical Index of Routines, but R2URV and DR2URV are not.
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The user of RCURV must consider both names RCURV and R2URV to be reserved;
likewise, the user of DRCURV must consider both names DRCURV and DR2URV to
be reserved. The names of all routines and named common blocks that are used
by the STAT/LIBRARY and that do not have a numeral in the second position
of the root name are listed in the Alphabetical Summary of Routines.

The careful user can avoid any conflicts with IMSL names if the following rules
are observed:

• Do not choose a name that appears in the Alphabetical Summary of
Routines in the User’s Manual.

• Do not choose a name of three or more characters with a numeral in the
second or third position.

These simplified rules include many combinations that are, in fact, allowable.
However, if the user selects names that conform to these rules, no conflict will
be encountered.

Deprecated and Renamed Routines
The routines in the following list are being deprecated in Version 2.0 of
STAT/LIBRARY. A deprecated routine is one that is no longer used by
anything in the library but is being included in the product for those users who
may be currently referencing it in their application. However, any future
versions of STAT/LIBRARY will not include these routines. If any of these
routines are being called within an application, it is recommended that you
change your code or retain the deprecated routine before replacing this library
with the next version. Most of these routines were called by users only when
they needed to set up their own workspace. Thus, the impact of these changes
should be limited.

DHOUAP
DHOUTR
DG2DF
DG2IN
DG3DF
G2DF
G2IN
G3DF
SHOUAP
SHOUTR

The following routines have been renamed due to naming conflicts with other
software manufacturers.

CTIME —  replaced with CPSEC

DTIME —  replaced with TIMDY

PAGE —  replaced with PGOPT



IMSL STAT/LIBRARY Appendix A: GAMS Index • A-1

Appendix A: GAMS Index

Description
This index lists routines in STAT/LIBRARY by a tree-structured classification
scheme known as GAMS. Boisvert, Howe, Kahaner, and Springmann (1990) give
the GAMS classification scheme. The classification scheme given here is Version
2.0.

The first level of the  full classification scheme is denoted by a letter A thru Z as
follows:

A. Arithmetic, Error Analysis
B. Number Theory
C. Elementary and Special Functions
D. Linear Algebra
E. Interpolation
F. Solution of Nonlinear Equations
G. Optimization
H. Differentiation and Integration
I. Differential and Integral Equations
J. Integral Transforms
K. Approximation
L. Statistics, Probability
M. Simulation, Stochastic Modeling
N. Data Handling
O. Symbolic Computation
P. Computational Geometry
Q. Graphics
R. Service Routines
S. Software Development Tools
Z.         Other

There are seven levels in the classification scheme. Classes in the first level are
identified by a capital letter as is given above. Classes in the remaining levels are
identified by alternating letter-and-number combinations. A single letter (a–z) is
used with the odd-numbered levels. A number (1–26) is used within the even-
numbered levels.
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IMSL STAT/LIBRARY

C .......... ELEMENTARY AND SPECIAL FUNCTIONS (search also class L5)

C3 ........ Polynomials

C3a....... Orthogonal
OPOLY Generate orthogonal polynomials with respect to x values

and specified weights.

C7 ........ Gamma

C7e....... Incomplete gamma
CHIDF Evaluate the chi-squared distribution function.
CHIIN Evaluate the inverse of the chi-squared distribution

function.
GAMDF Evaluate the gamma distribution function.
GAMIN Evaluate the inverse of the gamma distribution function.

C7f ....... Incomplete gamma
BETDF Evaluate the beta probability distribution function.
BETIN Evaluate the inverse of the beta distribution function.

C8 ........ Error functions

C8a....... Error functions, their inverses, integrals, including the normal
distribution function

ANORDF Evaluate the standard normal (Gaussian) distribution
function.

ANORIN Evaluate the inverse of the standard normal (Gaussian)
distribution function.

K .......... APPROXIMATION (search also class L8)

K1 ........ Least squares (L2) approximation

K1a ...... Linear least squares (search also classes D5, D6, D9)

K1a1 .... Unconstrained
RCOV Fit a multiple linear regression model given the variance-

covariance matrix.
RGIVN Fit a multivariate linear regression model via fast Givens

transformations.
RGLM Fit a multivariate general linear model.
RLSE Fit a multiple linear regression model using least squares.

K1a1a... Univariate data (curve fitting)

K1ala2.. Polynomials
RCURV Fit a polynomial curve using least squares.
RFORP Fit an orthogonal polynomial regression model.
RPOLY Analyze a polynomial regression model.
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K1a2 .... Constrained

K1a2a .. Linear constraints
RLEQU Fit a multivariate linear regression model with linear

equality restrictions HΒ  = G imposed on the regression
parameters given results from IMSL routine RGIVN after
IDO = 1 and IDO = 2 and prior to IDO = 3.

K1b ...... Nonlinear least squares

K1b1 .... Unconstrained

K1b1a .. Smooth functions

K1b1a1 User provides no derivatives
RNLIN Fit a nonlinear regression model.

K1b1a2 User provides first derivatives
RNLIN Fit a nonlinear regression model.

K2 ........ Minimax (L∞) approximation
RLMV Fit a multiple linear regression model using the minimax

criterion.

K3 ........ Least absolute value (L1) approximation
RLLP Fit a multiple linear regression model using the LS norm

criterion.

K4 ........ Other analytic approximations (e.g., Taylor polynomial, Pade)
RLLP Fit a multiple linear regression model using the LS norm

criterion.

L .......... STATISTICS, PROBABILITY

L1 ........ Data summarization

L1a....... One-dimensional data

L1a1..... Raw data
EQTIL Compute empirical quantiles.
LETTR Produce a letter value summary.
ORDST Determine order statistics.

L1a1a ... Location
UVSTA Compute basic univariate statistics.

L1a1b... Disperson
UVSTA Compute basic univariate statistics.

L1a1c ... Shape
UVSTA Compute basic univariate statistics.

L1a1e ... Ties
NTIES Compute tie statistics for a sample of observations.
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L1a3..... Grouped data
GRPES Compute basic statistics from grouped data.

L1c....... Multi-dimensional data

L1c1..... Raw data
CSTAT Compute cell frequencies, cell means, and cell sums of

squares for multivariate data.

L1c1b... Covariance, correlation
CORVC Compute the variance-covariance or correlation matrix.
PCORR Compute partial correlations or covariances from the

covariance or correlation matrix.
RBCOV Compute a robust estimate of a covariance matrix and

mean vector.

L2......... Data manipulation

L2a....... Transform (search also classes L10a, N6, and N8)
BCTR Perform a forward or an inverse Box-Cox (power)

transformation.
GCSCP Generate centered variables, squares, and crossproducts.
OPOLY Generate orthogonal polynomials with respect to x values

and specified weights.
RANKS Compute the ranks, normal scores, or exponential scores

for a vector of observations.

L2b....... Tally
CSTAT Compute cell frequencies, cell means, and cell sums of

squares for multivariate data.
FREQ Tally multivariate observations into a multi-way frequency

table.
OWFRQ Tally observations into a one-way frequency table.
TWFRQ Tally observations into a two-way frequency table.

L2e....... Construct new variables (e.g., indicator variables)
GRGLM Generate regressors for a general linear model.

L3......... Elementary statistical graphics (search also class Q)

L3a....... One-dimensional data

L3a1..... Histograms
HHSTP Print a horizontal histogram.
VHSTP Print a vertical histogram.

L3a2..... Frequency, cumulative frequency, percentile plots
CDFP Print a sample cumulative distribution function (CDF), a

theoretical CDF, and confidence band information.

L3a3..... EDA graphics (e.g., box plots)
BOXP Print boxplots for one or more samples.
STMLP Print a stem-and-leaf plot.
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L3a4..... Bar charts
HHSTP Print a horizontal histogram.
VHSTP Print a vertical histogram.

L3b ...... Two-dimensional data (search also class L3e)

L3b1 .... Histograms (superimposed and bivariate)
VHS2P Print a vertical histogram with every bar subdivided into

two parts.

L3b2 .... Frequency, cumulative frequency
CDF2P Print a plot of two sample cumulative distribution

functions.

L3e....... Multi-dimensional data

L3e3..... Scatter diagrams

L3e3a ... Superimposed Y vs. X
PLOTP Print a plot of up to ten sets of points.
SCTP Print a scatterplot of several groups of data.

L3e4..... EDA
BOXP Print boxplots for one or more samples.

L4 ........ Elementary data analaysis

L4a....... One-dimensional data

L4a1..... Raw data

L4a1a ... Parametric analysis
CDFP Print a sample cumulative distribution function (CDF), a

theoretical CDF, and confidence band information.

L4a1a2 . Probability plots

L4a1a2e Exponential, extreme value
PROBP Print a probability plot.

L4a1a2hHalfnormal
PROBP Print a probability plot.

L4a1a21Lambfa, logistic, lognormal
PROBP Print a probability plot.

L4a1a2nNegative binomial, normal
PROBP Print a probability plot.

L4a1a2wWeibull
PROBP Print a probability plot.

L4a1a4 . Parameter estimates and tests

L4a1a4bBinomial
BINES Estimate the parameter p of the binomial distribution.
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L4a1a4pPoisson
POIES Estimate the parameter of the Poisson distribution.

L4a1b... Nonparametric analysis

L4a1b1. Estimates and test regarding location (e.g., median), dispersion and
shape

SIGNT Perform a sign test of the hypothesis that a given value is a
specified quantile of a distribution.

SNRNK Perform a Wilcoxon signed rank test.

L4a1b2. Density function estimation
DESKN Perform nonparametric probability density function

estimation by the kernel method.
DESPL Perform nonparametric probability density function

estimation by the penalized likelihood method.
DESPT Estimate a probability density function at specified points

using linear or cubic interpolation.
DNFFT Compute Gaussian kernel estimates of a univariate density

via the fast Fourier transform over a fixed interval.

L4a1c ... Goodness-of-fit tests
CHIGF Perform a chi-squared goodness-of-fit test.
KSONE Perform a Kolmogorov-Smirnov one-sample test for

continuous distributions.
LILLF Perform Lilliefors test for an exponential or normal

distribution.
SPWLK Perform a Shapiro-Wilk W-test for normality.

L4ald.... Analysis of a sequnce of numbers (search also class L10a)
DCUBE Perform a triplets test.
DSQAR Perform a D-square test.
NCTRD Perform the Noether test for cyclical trend.
PAIRS Perform a pairs test.
RUNS Perform a runs up test.
SDPLC Perform the Cox and Stuart sign test for trends in

dispersion and location.

L4a3..... Grouped (and/or censored) data
GRPES Compute basic statistics from grouped data.
NRCES Compute maximum likelihood estimates of the mean and

variance from grouped and/or censored normal data.

L4a4..... Data sampled from a finite population
SMPPR Compute statistics for inferences regarding the population

proportion and total, given proportion data from a simple
random sample.

SMPPS Compute statistics for inferences regarding the population
proportion and total, given proportion data from a stratified
random sample.
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SMPSC Compute statistics for inferences regarding the population
mean and total using single-stage cluster sampling with
continuous data.

SMPSR Compute statistics for inferences regarding the population
mean and total, given data from a simple random sample.

SMPSS Compute statistics for inferences regarding the population
mean and total, given data from a stratified random sample.

SMPST Compute statistics for inferences regarding the population
mean and total, given continuous data from a two-stage
sample with equisized primary units.

L4b ...... Two dimensional data (search also class L4c)

L4b1 .... Pairwise independent data

L4b1a... Parametric analysis

L4b1a4. Parameter estimates and hypothesis tests
TWOMV Compute statistics for mean and variance inferences using

samples from two normal populations.

L4b1b .. Nonparametric analysis (e.g., tests based on ranks)
CNCRD Calculate and test the significance of the Kendall

coefficient of concordance.
INCLD Perform an includance test.
KENDL Compute and test Kendall’s rank correlation coefficient.
RNKSM Perform the Wilcoxon rank sum test.

L4b1c... Goodness-of-fit tests
KSTWO Perform a Kolmogorov-Smirnov two-sample test.

L4b4 .... Pairwise dependent grouped data
CTRHO Estimate the bivariate normal correlation coefficient using

a contingency table.
TETCC Categorize bivariate data and compute the tetrachoric

correlation coefficient.

L4b5 .... Data sampled from a finite population
SMPRR Compute statistics for inferences regarding the population

mean and total using ratio or regression estimation, or
inferences regarding the population ratio, given a simple
random sample.

SMPRS Compute statistics for inferences regarding the population
mean and total using ratio or regression estimation, given
continuous data from a stratified random sample.

L4c....... Multi-dimensional data (search also classes L4b and L7a1)

L4c1..... Independent data

L4c1b... Nonparametric analysis
BHAKV Perform a Bhapkar V test.



A-8 • Appendix A: GAMS Index IMSL STAT/LIBRARY

KRSKL Perform a Kruskal-Wallis test for identical population
medians.

KTRND Perform a k-sample trends test against ordered alternatives.
MVMMT Compute Mardia’s multivariate measures of skewness and

kurtosis and test for multivariate normality.
QTEST Perform a Cochran Q test for related observations.

L4e....... Multiple multi-dimensional data sets
MVIND Compute a test for the independence of k sets of

multivariate normal variables.

L5......... Function evaluation (search also class C)

L5a....... Univariate

L5a1..... Cumulative distribution functions, probability density functions

L5a1b... Beta, binomial
BETDF Evaluate the beta probability distribution function.
BINDF Evaluate the binomial distribution function.
BINPR Evaluate the binomial probability function.

L5a1c ... Cauchy, chi-squared
CHIDF Evaluate the chi-squared distribution function.
CSNDF Evaluate the noncentral chi-squared distribution function.

L5a1f....F distribution
FDF Evaluate the F distribution function.

L5a1g... Gamma, general, geometric
GAMDF Evaluate the gamma distribution function.
GCDF Evaluate a general continuous cumulative distribution

function given ordinates of the density.

L5a1h... Halfnormal, hyergeometric
HYPDF Evaluate the hypergeometric distribution function.
HYPPR Evaluate the hypergeometric probability function.

L5a1k... Kendall F statistic, Kolmogorsv-Smirnov
AKS1DF Evaluate the distribution function of the one-sided

Kolmogorov-Smirnov goodness-of-fit D+ or D- test
statistic based on continuous data for one sample.

AKS2DF Evaluate the distribution function of the Kolmogorov-
Smirnov goodness-of-fit D test statistic based on
continuous data for two samples.

KENDP Compute the frequency distribution of the total score in
Kendall’s rank correlation coefficient.

L5a1n... Negative binomial, normal
ANORDF Evaluate the standard normal (Gaussian) distribution

function.
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L5a1p... Pareto, Poisson
POIDF Evaluate the Poisson distribution function.
POIPR Evaluate the Poisson probability function.

L5a1t.... t distribution
TDF Evaluate the Student’s t distribution function.
TNDF Evaluate the noncentral Student’s t distribution function.

L5a2..... Inverse cumulative distribution functions, sparsity functions

L5a2b... Beta, binomial
BETIN Evaluate the inverse of the beta distribution function.

L5a2c... Cauchy, chi-squared
CHIIN Evaluate the inverse of the chi-squared distribution

function.
CSNIN Evaluate the inverse of the noncentral chi-squared function.

L5a2f ...F distribution
FIN Evaluate the inverse of the F distribution function.

L5a2g... Gamma, general, geometric
GAMIN Evaluate the inverse of the gamma distribution function.
GCIN Evaluate the inverse of a general continuous cumulative

distribution function given ordinates of the density.
GFNIN Evaluate the inverse of a general continuous cumulative

distribution function given in a subprogram.

L5a2t....t distribution
TIN Evaluate the inverse of the Student’s t distribution

function.
TNIN Evaluate the inverse of the noncentral Student’s t

distribution function.

L5b ...... Multivariate

L5b1 .... Cumulative distribution functions, probability density functions

L5b1n... Normal
BNRDF Evaluate the bivariate normal distribution function.

L6 ........ Random number generation

L6a....... Univariate

L6a2..... Beta, binomial, Boolean
RNBET Generate pseudorandom numbers from a beta distribution.
RNBIN Generate pseudorandom numbers from a binomial

distribution.

L6a3..... Cauchy, chi-squared
RNCHI Generate pseudorandom numbers from a chi-squared

distribution.
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RNCHY Generate pseudorandom numbers from a Cauchy
distribution.

L6a5..... Exponential, extreme value
RNEXP Generate pseudorandom numbers from a standard

exponential distribution.
RNEXT Generate pseudorandom numbers from a mixture of two

exponential distributions.

L6a7..... Gamma, general (continuous, discrete), geometric
RNGAM Generate pseudorandom numbers from a standard gamma

distribution.
RNGCS Set up table to generate pseudorandom numbers from a

general continuous distribution.
RNGCT Generate pseudorandom numbers from a general

continuous distribution.
RNGDA Generate pseudorandom numbers from a general discrete

distribution using an alias method.
RNGDS Set up table to generate pseudorandom numbers from a

general discrete distribution.
RNGDT Generate pseudorandom numbers from a general discrete

distribution using a table lookup method.
RNGEO Generate pseudorandom numbers from a geometric

distribution.

L6a8..... Halfnormal, hypergeometric
RNHYP Generate pseudorandom numbers from a hypergeometric

distribution.

L6a12... Lambda, logistic, lognormal
RNLGR Generate pseudorandom numbers from a logarithmic

distribution.
RNLNL Generate pseudorandom numbers from a lognormal

distribution.

L6a14... Negative binomial, normal, normal order statistics
RNNBN Generate pseudorandom numbers from a negative binomial

distribution.
RNNOA Generate pseudorandom numbers from a standard normal

distribution using an acceptance/rejection method.
RNNOF Generate a pseudorandom number from a standard normal

distribution.
RNNOR Generate pseudorandom numbers from a standard normal

distribution using an inverse CDF method.
RNNOS Generate pseudorandom order statistics from a standard

normal distribution.

L6a16... Pareto, Pascal, permutations, Poisson
RNNPP Generate pseudorandom numbers from a nonhomogeneous

Poisson process.
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RNPER Generate a pseudorandom permutation.
RNPOI Generate pseudorandom numbers from a Poisson

distribution.

L6a19... Samples, stable distribution
RNSRI Generate a simple pseudorandom sample of indices.
RNSRS Generate a simple pseudorandom sample from a finite

population.
RNSTA Generate pseudorandom numbers from a stable

distribution.

L6a20... t distribution, time series, triangular
RNARM Generate a time series from a specified ARMA model.
RNNPP Generate pseudorandom numbers from a nonhomogeneous

Poisson process.
RNSTT Generate pseudorandom numbers from a Student’s t

distribution.
RNTRI Generate pseudorandom numbers from a triangular

distribution on the interval (0,1).

L6a21... Uniform (continuous, discrete), uniform order statistics
RNUN Generate pseudorandom numbers from a uniform (0,1)

distribution.
RNUND Generate pseudorandom numbers from a discrete uniform

distribution.
RNUNF Generate a pseudorandom number from a uniform (0, 1)

distribution.
RNUNO Generate pseudorandom order statistics from a uniform (0,

1) distribution.

L6a22... Von Mises
RNVMS Generate pseudorandom numbers from a von Mises

distribution.

L6a23... Weibull
RNWIB Generate pseudorandom numbers from a Weibull

distribution.

L6b ...... Multivariate
RNDAT Generate pseudorandom numbers from a multivariate

distribution determined from a given sample.

L6b3 .... Contingency table, correlation matrix
RNCOR Generate a pseudorandom orthogonal matrix or a

correlation matrix.
RNTAB Generate a pseudorandom two-way table.

L6b13 .. Multinomial
RNMTN Generate pseudorandom numbers from a multinomial

distribution.
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L6b14... Normal
RNMVN Generate pseudorandom numbers from a multivariate

normal distribution.

L6b15... Orthogonal matrix
RNCOR Generate a pseudorandom orthogonal matrix or a

correlation matrix.

L6b21... Uniform
RNSPH Generate pseudorandom points on a unit circle or K-

dimensional sphere.

L6c....... Service routines (e.g., seed)
RNGEF Retrieve the current value of the array used in the IMSL

GFSR random number generator.
RNGES Retrieve the current value of the table in the IMSL random

number generators that use shuffling.
RNGET Retrieve the current value of the seed used in the IMSL

random number generators.
RNISD Determine a seed that yields a stream beginning 100,000

numbers beyond the beginning of the stream yielded by a
given seed used in IMSL multiplicative congruential
generators (with no shufflings).

RNOPG Retrieve the indicator of the type of uniform random
number generator.

RNOPT Select the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

RNSEF Initialize the array used in the IMSL GFSR random
number generator.

RNSES Initialize the table in the IMSL random number generators
that use shuffling.

RNSET Initialize a random seed for use in the IMSL
randomnumber generators.

L7......... Analysis of variance (including analysis of covariance)

L7a....... One-way

L7a1..... Parametric
AONEC Analyze a one-way classification model with covariates.
AONEW Analyze a one-way classification model.
CTRST Compute contrast estimates and sums of squares.
SCIPM Compute simultaneous confidence intervals on all pairwise

differences of means.
SNKMC Perform Student-Newman-Keuls multiple comparison test.

L7b....... Two-way (search also class L7d)
ATWOB Analyze a randomized block design or a two-way

balanced design.
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FRDMN Perform Friedman’s test for a randomized complete block
design.

MEDPL Compute a median polish of a two-way table.

L7c....... Three-way (e.g., Latin squares) (search also class L7d)
ALATN Analyze a Latin square design.

L7d ...... Multi-way

L7d1 .... Balanced complete data (e.g., factorial designs)
ABALD Analyze a balanced complete experimental design for a

fixed, random, or mixed model.
ANEST Analyze a completely nested random model with possibly

unequal numbers in the subgroups.
ANWAY Analyze a balanced n-way classification model with fixed

effects.
CIDMS Compute a confidence interval on a variance component

estimated as proportional to the difference in two mean
squares in a balanced complete experimental design.

ROREX Reorder the responses from a balanced complete
experimental design.

L7d2 .... Balanced incomplete data (e.g., fractional factorial designs)
ABIBD Analyze a balanced incomplete block design or a balanced

lattice design.

L7d3 .... General linear models (unbalanced data)
ANEST Analyze a completely nested random model with possibly

unequal numbers in the subgroups.
RGLM Fit a multivariate general linear model.

L7e....... Multivariate
RGLM Fit a multivariate general linear model.

L7f ....... Generate experimental designs
RCOMP Generate an orthogonal central composite design.

L8 ........ Regression (search also classes D5, D6, D9, G, K)

L8a....... Simple linear (e.g., y = β0 + β1x + ε)

L8a1..... Ordinary least squares
RONE Analyze a simple linear regression model.

L8a1a... Parameter estimation

L8a1a1. Unweighted data
RLINE Fit a line to a set of data points using least squares.

L8a1d... Inference (e.g., calibration) (search also class L8a1a)
RINCF Perform response control given a fitted simple linear

regression model.
RINPF Perform inverse prediction given a fitted simple linear

regression model.
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L8a2..... LS for p different from 2 (e.g., least absolute value, minimax)
RLAV Fit a multiple linear regression model using the least

absolute values criterion.
RLLP Fit a multiple linear regression model using the LS norm

criterion.
RLMV Fit a multiple linear regression model using the minimax

criterion.

L8b....... Polynomial (e.g., y = β0 + β1x + β2x2 + ε) (search also class L8c)

L8b1..... Ordinary least squares

L8b1a... Degree determination
RFORP Fit an orthogonal polynomial regression model.
RPOLY Analyze a polynomial regression model.

L8b1b... Parameter estimation

L8b1b2. Using orthogonal polynomials
RCURV Fit a polynomial curve using least squares.
RFORP Fit an orthogonal polynomial regression model.
RPOLY Analyze a polynomial regression model.

L8b1c... Analysis (search also class L8b1b)
RCASP Compute case statistics for a polynomial regression model

given the fit based on orthogonal polynomials.
RPOLY Analyze a polynomial regression model.
RSTAP Compute summary statistics for a polynomial regression

model given the fit based on orthogonal polynomials.

L8b1d... Inference (search also class L8b1b)
RCASP Compute case statistics for a polynomial regression model

given the fit based on orthogonal polynomials.
RPOLY Analyze a polynomial regression model.
RSTAP Compute summary statistics for a polynomial regression

model given the fit based on orthogonal polynomials.
L8c....... Multiple linear (e.g., y = β0 + β1x1 + … + βNxN + ε)

L8c1..... Ordinary least squares

L8c1a ... Variable selection

L8c1a2 . Using correlation or covariance data
GSWEP Perform a generalized sweep of a row of a nonnegative

definite matrix.
RBEST Select the best multiple linear regression models.
RSTEP Build multiple linear regression models using forward

selection, backward selection, or stepwise selection.
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L8c1b... Parameter estimation (search also class L8c1a)

L8c1b1. Using raw data
RGIVN Fit a multivariate linear regression model via fast Givens

transformations.
RGLM Fit a multivariate general linear model.
RLSE Fit a multiple linear regression model using least squares.

L8c1b2. Using correlation data
RCOV Fit a multiple linear regression model given the variance-

covariance matrix.

L8c1c ... Analysis (search also classes L8c1a and L8c1b)
RCASE Compute case statistics and diagnostics given data points,

coefficient estimates $β , and the R matrix for a fitted
general linear model.

RCOVB Compute the estimated variance-covariance matrix of the
estimated regression coefficients given the R matrix.

RLOFE Compute a lack-of-fit test based on exact replicates for a
fitted regression model.

RLOFN Compute a lack-of-fit test based on near replicates for a
fitted regression model.

ROTIN Compute diagnostics for detection of outliers and
influential data points given residuals and the R matrix for
a fitted general linear model.

RSTAT Compute statistics related to a regression fit given the

coefficient estimates $β  and the R matrix.

L8c1d... Inference (search also classes L8c1a and L8c1b)
CESTI Construct an equivalent completely testable multivariate

general linear hypothesis HBU = G from a partially testable
hypothesis HSBU = GS.

RCASE Compute case statistics and diagnostics given data points,

coefficient estimates $β , and the R matrix for a fitted
general linear model.

RHPSS Compute the matrix of sums of squares and crossproducts
for the multivariate general linear hypothesis HBU = G

given the coefficient estimates $B  and the R matrix.
RHPTE Perform tests for a multivariate general linear hypothesis

HBU = G given the hypothesis sums of squares and
crossproducts matrix S+ and the error sums of squares and
crossproducts matrix S(.

RSTAT Compute statistics related to a regression fit given the

coefficient estimates $β  and the R matrix.

L8c3..... LS for p different from 2
RLAV Fit a multiple linear regression model using the least

absolute values criterion.
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RLLP Fit a multiple linear regression model using the LS norm
criterion.

RLMV Fit a multiple linear regression model using the minimax
criterion.

L8d....... Polynomial in several variables
RCOMP Generate an orthogonal central composite design.
TCSCP Transform coefficients from a quadratic regression model

generated from squares and crossproducts of centered
variables to a model using uncentered variables.

L8e....... Nonlinear (i.e., y = f(X; θ) + ε)

L8e1..... Ordinary least squares

L8e1b... Parameter estimation
RNLIN Fit a nonlinear regression model.

L8f ....... Simultaneous (i.e., Y = XB + ε)
RCOV Fit a multiple linear regression model given the variance-

covariance matrix.
RGIVN Fit a multivariate linear regression model via fast Givens

transformations.
RGLM Fit a multivariate general linear model.
RHPSS Compute the matrix of sums of squares and crossproducts

for the multivariate general linear hypothesis HBU = G

given the coefficient estimates $B  and the R matrix.
RHPTE Perform tests for a multivariate general linear hypothesis

HBU = G given the hypothesis sums of squares and
crossproducts matrix S+ and the error sums of squares and
crossproducts matrix S(.

RLEQU Fit a multivariate linear regression model with linear
equality restrictions HΒ  = G imposed on the regression
parameters given results from IMSL routine RGIVN after
IDO = 1 and IDO = 2 and prior to IDO = 3.

L8i........ Service routines (e.g., matrix manipulation for variable selection)
GCLAS Get the unique values of each classification variable.
GCSCP Generate centered variables, squares, and crossproducts.
GRGLM Generate regressors for a general linear model.
RORDM Reorder rows and columns of a symmetric matrix.
RSUBM Retrieve a symmetric submatrix from a symmetric matrix.

L9......... Categorical data analysis
CTGLM Analyze categorical data using logistic, Probit, Poisson,

and other generalized linear models.
CTRAN Perform generalized Mantel-Haenszel tests in a stratified

contingency table.

L9a....... 2-by-2 tables



IMSL STAT/LIBRARY Appendix A: GAMS Index • A-17

CTTWO Perform a chi-squared analysis of a 2 by 2 contingency
table.

L9b ...... Two-way tables (search also class L9d)
CTCHI Perform a chi-squared analysis of a two-way contingency

table.
CTEPR Compute Fisher’s exact test probability and a hybrid

approximation to the Fisher exact test probability for a
contingency table using the network algorithm.

CTPRB Compute exact probabilities in a two-way contingency
table.

CTRHO Estimate the bivariate normal correlation coefficient using
a contingency table.

CTWLS Perform a generalized linear least squares analysis of
transformed probabilities in a two-dimensional contingency
table.

MEDPL Compute a median polish of a two-way table.
TWFRQ Tally observations into a two-way frequency table.

L9c....... Log-linear model
CTASC Compute partial association statistics for log-linear models

in a multidimensional contingency table.
CTLLN Compute model estimates and associated statistics for a

hierarchical log-linear model.
CTPAR Compute model estimates and covariances in a fitted log-

linear model.
CTSTP Build hierarchical log-linear models using forward

selection, backward selection, or stepwise selection.
PRPFT Perform iterative proportional fitting of a contingency table

using a loglinear model.

L9d ...... EDA (e.g., median polish)
MEDPL Compute a median polish of a two-way table.

L10 ...... Time series analysis (search also class J)

L10a..... Univariate

L10a1... Transformations

L10a1b. Stationarity (search also class L8a1)
BCTR Perform a forward or an inverse Box-Cox (power)

transformation.

L10a1c . Filters

L10a1c1Difference (nonseasonal and seasonal)
DIFF Difference a time series.

L10a2... Time domain analysis

L10a2a. Summary statistics
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L10a2a1Autocovariances and autocorrelations
ACF Compute the sample autocorrelation function of a

stationary time series.
LOFCF Perform lack-of-fit test for a univariate time series or

transfer function given the appropriate correlation function.

L10a2a2Partial autocorrelations
PACF Compute the sample partial autocorrelation function of a

stationary time series.

L10a2c . Autoregressive models
SPWF Compute the Wiener forecast operator for a stationary

stochastic process.

L10a2d. ARMA and ARIMA models (including Box-Jenkins methods)

L10a2d2Parameter estimation
ARMME Compute method of moments estimates of the

autoregressive parameters of an ARMA model.
MAMME Compute method of moments estimates of the moving

average parameters of an ARMA model.
NSLSE Compute least squares estimates of parameters for a

nonseasonal ARMA model.
NSPE Compute preliminary estimates of the autoregressive and

moving average parameters of an ARMA model.

L10a2d3Forecasting
NSBJF Compute Box-Jenkins forecasts and their associated

probability limits for a nonseasonal ARMA model.

L10a2e . State-space analysis (e.g., Kalman filtering)
KALMN Perform Kalman filtering and evaluate the likelihood

function for the state-space model.

L10a3... Frequency domain analysis (search also class J1)

L10a3a . Spectral Analysis

L10a3a2Periodogram analysis
PFFT Compute the periodogram of a stationary time series using

a fast Fourier transform.

L10a3a3Spectrum estimation using the periodogram
SSWD Estimate the nonnormalized spectral density of a stationary

time series using a spectral window given the time series
data.

SSWP Estimate the nonnormalized spectral density of a stationary
time series using a spectral window given the periodogram.
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SWED Estimation of the nonnormalized spectral density of a
stationary time series based on specified periodogram
weights given the time series data.

SWEP Estimation of the nonnormalized spectral density of a
stationary time series based on specified periodogram
weights given the periodogram.

L10a3a6Spectral windows
DIRIC Compute the Dirichlet kernel.
FEJER Compute the Fejér kernel.

L10b .... Two time series (search also classes L10c and L10d)

L10b2 .. Time domain analysis

L10b2a. Summary statistics (e.g., cross-correlations)
CCF Compute the sample cross-correlation function of two

stationary time series.

L10b2b Transfer function models
IRNSE Compute estimates of the impulse response weights and

noise series of a univariate transfer function model.
TFPE Compute preliminary estimates of parameters for a

univariate transfer function model.

L10b3 .. Frequency domain analysis (search also class J1)

L10b3a. Cross-spectral analysis

L10b3a3Cross-spectrum estimation using the cross-periodogram
CSSWD Estimate the nonnormalized cross-spectral density of two

stationary time series using a spectral window given the
time series data.

CSSWP Estimate the nonnormalized cross-spectral density of two
stationary time series using a spectral window given the
spectral densities and cross periodogram.

CSWED Estimate the nonnormalized cross-spectral density of two
stationary time series using a weighted cross periodogram
given the time series data.

CSWEP Estimate the nonnormalized cross-spectral density of two
stationary time series using a weighted cross periodogram
given the spectral densities and cross periodogram.

L10c..... Multivariate time series (search also classes J1, L3e3 and L10b)
KALMN Perform Kalman filtering and evaluate the likelihood

function for the state-space model.

L10d .... Two multi-channel time series
MCCF Compute the multichannel cross-correlation function of

two mutually stationary multichannel time series.
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MLSE Compute least squares estimates of a linear regression
model for a multichannel time series with a specified base
channel.

MWFE Compute least squares estimates of the multichannel
Wiener filter coefficients for two mutually stationary
multichannel time series.

L11....... Correlation analysis (search also classes L4 and L13c)
BSCAT Compute the biserial correlation coefficient for a

dichotomous variable and a classification variable.
BSPBS Compute the biserial and point-biserial correlation

coefficients for a dichotomous variable and a numerically
measurable classification variable.

CORVC Compute the variance-covariance or correlation matrix.
COVPL Compute a pooled variance-covariance matrix from the

observations.
CTRHO Estimate the bivariate normal correlation coefficient using

a contingency table.
KENDP Compute the frequency distribution of the total score in

Kendall’s rank correlation coefficient.
PCORR Compute partial correlations or covariances from the

covariance or correlation matrix.
RBCOV Compute a robust estimate of a covariance matrix and

mean vector.
TETCC Categorize bivariate data and compute the tetrachoric

correlation coefficient.

L12....... Discriminant analysis
DMSCR Use Fisher’s linear discriminant analysis method to reduce

the number of variables.
DSCRM Perform a linear or a quadratic discriminant function

analysis among several known groups.
NNBRD Perform a k nearest neighbor discrimination.

L13....... Covariance structures models

L13a..... Factor analysis
FACTR Extract initial factor-loading estimates in factor analysis.
FCOEF Compute a matrix of factor score coefficients for input to

the following IMSL routine (FSCOR).
FDOBL Compute a direct oblimin rotation of a factor-loading

matrix.
FGCRF Compute direct oblique rotation according to a generalized

fourth-degree polynomial criterion.
FHARR Compute an oblique rotation of an unrotated factor-loading

matrix using the Harris-Kaiser method.
FIMAG Compute the image transformation matrix.
FOPCS Compute an orthogonal Procrustes rotation of a factor-

loading matrix using a target matrix.
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FPRMX Compute an oblique Promax or Procrustes rotation of a
factor-loading matrix using a target matrix, including pivot
and power vector options.

FRESI Compute commonalities and the standardized factor
residual correlation matrix.

FROTA Compute an orthogonal rotation of a factor-loading matrix
using a generalized orthomax criterion, including
quartimax, varimax, and equamax rotations.

FRVAR Compute the factor structures and the variance explained
by each factor.

FSCOR Compute a set of factor scores given the factor score
coefficient matrix.

L13b .... Principal components analysis
KPRIN Maximum likelihood or least-squares estimates for

principle components from one or more matrices.
PRINC Compute principal components from a variance-covariance

matrix or a correlation matrix.

L13c..... Canonical correlation
CANCR Perform canonical correlation analysis from a data matrix.
CANVC Perform canonical correlation analysis from a variance-

covariance matrix or a correlation matrix.

L14 ...... Cluster analysis

L14a..... One-way

L14a1... Unconstrained

L14a1a . Nested

L14a1a1Joining (e.g., single link)
CLINK Perform a hierarchical cluster analysis given a distance

matrix.

L14a1b. Non-nested (e.g., K means)
KMEAN Perform a K-means (centroid) cluster analysis.

L14c..... Display
TREEP Print a binary tree.

L14d .... Service routines (e.g., compute distance matrix)
CDIST Compute a matrix of dissimilarities (or similarities)

between the columns (or rows) of a matrix.
CNUMB Compute cluster membership for a hierarchical cluster tree.

L15 ...... Life testing, survival analysis
ACTBL Produce population and cohort life tables.
HAZEZ Perform nonparametric hazard rate estimation using kernel

functions. Easy-to-use version of the previous IMSL
subroutine (HAZRD).
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HAZRD Perform nonparametric hazard rate estimation using kernel
functions and quasi-likelihoods.

HAZST Perform hazard rate estimation over a grid of points using a
kernel function.

KAPMR Compute Kaplan-Meier estimates of survival probabilities
in stratified samples.

KTBLE Print Kaplan-Meier estimates of survival probabilities in
stratified samples.

NRCES Compute maximum likelihood estimates of the mean and
variance from grouped and/or censored normal data.

PHGLM Analyze time event data via the proportional hazards
model.

STBLE Estimate survival probabilities and hazard rates for various
parametric models.

SVGLM Analyze censored survival data using a generalized linear
model.

TRNBL Compute Turnbull’s generalized Kaplan-Meier estimates
of survival probabilities in samples with interval censoring.

L16....... Multidimensional scaling
MSDBL Obtain normalized product-moment (double centered)

matrices from dissimilarity matrices.
MSDST Compute distances in a multidimensional scaling model.
MSIDV Perform individual-differences multidimensional scaling

for metric data using alternating least squares.
MSINI Compute initial estimates in multidimensional scaling

models.
MSSTN Transform dissimilarity/similarity matrices and replace

missing values by estimates to obtain standardized
dissimilarity matrices.

MSTRS Compute various stress criteria in multidimensional
scaling.

L17....... Statistical data sets
GDATA Retrieve a commonly analyzed data set.

N .......... DATA HANDLING (search also class L2)

N1 ........ Input, output
PGOPT Set or retrieve page width and length for printing.

WRIRL Print an integer rectangular matrix with a given format and
labels.

WRIRN Print an integer rectangular matrix with integer row and
column labels.

WROPT Set or retrieve an option for printing a matrix.
WRRRL Print a real rectangular matrix with a given format and

labels.
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WRRRN Print a real rectangular matrix with integer row and column
labels.

N3 ........ Character manipulation
ACHAR Return a character given its ASCII value.
CVTSI Convert a character string containing an integer number

into the corresponding integer form.
IACHAR Return the integer ASCII value of a character argument.
ICASE Return the ASCII value of a character converted to

uppercase.
IICSR Compare two character strings using the ASCII collating

sequence without regard to case.
IIDEX Determine the position in a string at which a given

character sequence begins without regard to case.

N5 ........ Searching

N5a ...... Extreme value
EQTIL Compute empirical quantiles.
ORDST Determine order statistics.

N5b ...... Insertion position
ISRCH Search a sorted integer vector for a given integer and return

its index.
SRCH Search a sorted vector for a given scalar and return its

index.
SSRCH Search a character vector, sorted in ascending ASCII order,

for a given string and return its index.

N5c ...... On a key
IIDEX Determine the position in a string at which a given

character sequence begins without regard to case.
ISRCH Search a sorted integer vector for a given integer and return

its index.
SRCH Search a sorted vector for a given scalar and return its

index.
SSRCH Search a character vector, sorted in ascending ASCII order,

for a given string and return its index.

N6 ........ Sorting

N6a ...... Internal

N6a1 .... Passive (i.e., construct pointer array, rank)

N6a1a .. Integer
SVIGP Sort an integer array by algebraic value and return the

permutations.

N6a1b .. Real
RANKS Compute the ranks, normal scores, or exponential scores

for a vector of observations.
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SCOLR Sort columns of a real rectangular matrix using keys in
rows.

SROWR Sort rows of a real rectangular matrix using keys in
columns.

SVRGP Sort a real array by algebraic value and return the
permutations.

N6a2 .... Active

N6a2a... Integer
SVIGN Sort an integer array by algebraic value.
SVIGP Sort an integer array by algebraically increasing value and

return the permutation that rearranges the array.

N6a2b .. Real
SCOLR Sort columns of a real rectangular matrix using keys in

rows.
SROWR Sort rows of a real rectangular matrix using keys in

columns.
SVRGN Sort a real array by algebraic value.
SVRGP Sort a real array by algebraic value and return the

permutations.

N8 ........ Permuting
MVNAN Move any rows of a matrix with the IMSL missing value

code NaN (not a number) in the specified columns to the
last rows of the matrix.

PERMA Permute the rows or columns of a matrix.
PERMU Rearrange the elements of an array as specified by a

permutation.
RORDM Reorder rows and columns of a symmetric matrix.

Q .......... GRAPHICS (search also classes L3)
BOXP Print boxplots for one or more samples.
CDF2P Print a plot of two sample cumulative distribution

functions.
CDFP Print a sample cumulative distribution function (CDF), a

theoretical CDF, and confidence band information.
HHSTP Print a horizontal histogram.
PLOTP Print a plot of up to ten sets of points.
PROBP Print a probability plot.
SCTP Print a scatterplot of several groups of data.
STMLP Print a stem-and-leaf plot.
TREEP Print a binary tree.
VHS2P Print a vertical histogram with every bar subdivided into

two parts.
VHSTP Print a vertical histogram.

R .......... SERVICE ROUTINES
IDYWK Compute the day of the week for a given date.
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NDAYS Compute the number of days from January 1, 1900, to the
given date.

NDYIN Give the date corresponding to the number of days since
January 1, 1900.

TDATE Get today’s date.
TIMDY Get time of day.
VERSL Obtain STAT/LIBRARY-related version, system and

license numbers.

R1 ........ Machine-dependent constants
AMACH Retrieve machine constants.
IFNAN Check if a floating-point number is NaN (not a number).
IMACH Retrieve integer machine constants.
UMACH Set or retrieve input or output device unit numbers.

R3 ........ Error handling

R3b ...... Set unit number for error messages
UMACH Set or retrieve input or output device unit numbers.

R3c ...... Other utilities
ERSET Set error handler default print and stop actions.
IERCD Retrieve the code for an informational error.
N1RTY Retrieve an error type for the most recently called IMSL

routine.

S........... SOFTWARE DEVELOPMENT TOOLS
CPSEC Return CPU time used in seconds.
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Appendix B: Alphabetical Summary
of Routines

IMSL STAT/LIBRARY
ABALD 396 Analyze a balanced complete experimental design for a

fixed, random, or mixed model.

ABIBD 380 Analyze a balanced incomplete block design or a balanced
lattice design.

ACF 637 Compute the sample autocorrelation function of a stationary
time series.

ACHAR 1289 Return a character given its ASCII value.

ACTBL 992 Produce population and cohort life tables.

AKS1DF 1117 Evaluate the distribution function of the one-sided

Kolmogorov-Smirnov goodness-of-fit D+ or D- test statistic
based on continuous data for one sample.

AKS2DF 1120 Evaluate the distribution function of the Kolmogorov-
Smirnov goodness-of-fit D test statistic based on continuous
data for two samples.

ALATN 386 Analyze a Latin square design.

AMACH 1336 Retrieve machine constants.

AMILLR 1315 Evaluate Mill’s ratio (the ratio of the ordinate to the upper
tail area of the standardized normal distribution).

ANEST 409 Analyze a completely nested random model with possibly
unequal numbers in the subgroups.

ANORDF 1122 Evaluate the standard normal (Gaussian) distribution
function.

ANORIN 1124 Evaluate the inverse of the standard normal (Gaussian)
distribution function.
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ANWAY 390 Analyze a balanced n-way classification model with fixed
effects.

AONEC 364 Analyze a one-way classification model with covariates.

AONEW 362 Analyze a one-way classification model.

ARMME 657 Compute method of moments estimates of the autoregressive
parameters of an ARMA model.

ATWOB 375 Analyze a randomized block design or a two-way balanced
design.

BCTR 629 Perform a forward or an inverse Box-Cox (power)
transformation.

BETDF 1125 Evaluate the beta probability distribution function.

BETIN 1127 Evaluate the inverse of the beta distribution function.

BHAKV 566 Perform a Bhapkar V test.

BINDF 1108 Evaluate the binomial distribution function.

BINES 44 Estimate the parameter p of the binomial distribution.

BINPR 1110 Evaluate the binomial probability function.

BNRDF 1128 Evaluate the bivariate normal distribution function.

BOXP 1083 Print boxplots for one or more samples.

BSCAT 348 Compute the biserial correlation coefficient for a
dichotomous variable and a classification variable.

BSPBS 346 Compute the biserial and point-biserial correlation
coefficients for a dichotomous variable and a numerically
measurable classification variable.

CANCR 844 Perform canonical correlation analysis from a data matrix.

CANVC 857 Perform canonical correlation analysis from a variance-
covariance matrix or a correlation matrix.

CCF 644 Compute the sample cross-correlation function of two
stationary time series.

CDF2P 1090 Print a plot of two sample cumulative distribution functions.

CDFP 1087 Print a sample cumulative distribution function (CDF), a
theoretical CDF, and confidence band information.

CDIST 889 Compute a matrix of dissimilarities (or similarities) between
the columns (or rows) of a matrix.

CESTI 157 Construct an equivalent completely testable multivariate
general linear hypothesis HBU = G from a partially testable
hypothesis HSBU = GS.
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CHFAC 1308 Compute an upper triangular factorization of a real
symmetric nonnegative definite matrix.

CHIDF 1129 Evaluate the chi-squared distribution function.

CHIGF 584 Perform a chi-squared goodness-of-fit test.

CHIIN 1132 Evaluate the inverse of the chi-squared distribution function.

CIDMS 426 Compute a confidence interval on a variance component
estimated as proportional to the difference in two mean
squares in a balanced complete experimental design.

CLINK 892 Perform a hierarchical cluster analysis given a distance
matrix.

CNCRD 350 Calculate and test the significance of the Kendall coefficient
of concordance.

CNUMB 897 Compute cluster membership for a hierarchical cluster tree.

CORVC 314 Compute the variance-covariance or correlation matrix.

COVPL 322 Compute a pooled variance-covariance matrix from the
observations.

CPFFT 750 Compute the cross periodogram of two stationary time series
using a fast Fourier transform.

CPSEC 1295 Return CPU time used in seconds.

CSNDF 1133 Evaluate the noncentral chi-squared distribution function.

CSNIN 1136 Evaluate the inverse of the noncentral chi-squared function.

CSSWD 757 Estimate the nonnormalized cross-spectral density of two
stationary time series using a spectral window given the time
series data.

CSSWP 767 Estimate the nonnormalized cross-spectral density of two
stationary time series using a spectral window given the
spectral densities and cross periodogram.

CSTAT 54 Compute cell frequencies, cell means, and cell sums of
squares for multivariate data.

CSWED 773 Estimate the nonnormalized cross-spectral density of two
stationary time series using a weighted cross periodogram
given the time series data.

CSWEP 782 Estimate the nonnormalized cross-spectral density of two
stationary time series using a weighted cross periodogram
given the spectral densities and cross periodogram.

CTASC 482 Compute partial association statistics for log-linear models in
a multidimensional contingency table.



B-4 • Appendix B: Alphabetical Summary of Routines IMSL STAT/LIBRARY

CTCHI 446 Perform a chi-squared analysis of a two-way contingency
table.

CTEPR 459 Compute Fisher’s exact test probability and a hybrid
approximation to the Fisher exact test probability for a
contingency table using the network algorithm.

CTGLM 510 Analyze categorical data using logistic, Probit, Poisson, and
other generalized linear models.

CTLLN 467 Compute model estimates and associated statistics for a
hierarchical log-linear model.

CTPAR 476 Compute model estimates and covariances in a fitted log-
linear model.

CTPRB 456 Compute exact probabilities in a two-way contingency table.

CTRAN 502 Perform generalized Mantel-Haenszel tests in a stratified
contingency table.

CTRHO 339 Estimate the bivariate normal correlation coefficient using a
contingency table.

CTRST 417 Compute contrast estimates and sums of squares.

CTSTP 489 Build hierarchical log-linear models using forward selection,
backward selection, or stepwise selection.

CTTWO 436 Perform a chi-squared analysis of a 2 by 2 contingency table.

CTWLS 526 Perform a generalized linear least squares analysis of
transformed probabilities in a two-dimensional contingency
table.

CVTSI 1294 Convert a character string containing an integer number into
the corresponding integer form.

DCUBE 609 Perform a triplets test.

DESKN 1044 Perform nonparametric probability density function
estimation by the kernel method.

DESPL 1040 Perform nonparametric probability density function
estimation by the penalized likelihood method.

DESPT 1052 Estimate a probability density function at specified points
using linear or cubic interpolation.

DIFF 633 Difference a time series.

DIRIC 719 Compute the Dirichlet kernel.

DMSCR 876 Use Fisher’s linear discriminant analysis method to reduce
the number of variables.
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DNFFT 1047 Compute Gaussian kernel estimates of a univariate density
via the fast Fourier transform over a fixed interval.

DSCRM 863 Perform a linear or a quadratic discriminant function analysis
among several known groups.

DSQAR 607 Perform a D-square test.

ENOS 1314 Evaluate the expected value of a normal order statistic.

EQTIL 35 Compute empirical quantiles.

ERSET 1327 Set error handler default print and stop actions.

FACTR 801 Extract initial factor-loading estimates in factor analysis.

FCOEF 833 Compute a matrix of factor score coefficients for input to the
following IMSL routine (FSCOR).

FDF 1137 Evaluate the F distribution function.

FDOBL 815 Compute a direct oblimin rotation of a factor-loading matrix.

FEJER 721 Compute the Fejér kernel.

FGCRF 825 Compute direct oblique rotation according to a generalized
fourth-degree polynomial criterion.

FHARR 822 Compute an oblique rotation of an unrotated factor-loading
matrix using the Harris-Kaiser method.

FIMAG 829 Compute the image transformation matrix.

FIN 1139 Evaluate the inverse of the F distribution function.

FOPCS 812 Compute an orthogonal Procrustes rotation of a factor-
loading matrix using a target matrix.

FPRMX 818 Compute an oblique Promax or Procrustes rotation of a
factor-loading matrix using a target matrix, including pivot
and power vector options.

FRDMN 568 Perform Friedman’s test for a randomized complete block
design.

FREQ 13 Tally multivariate observations into a multi-way frequency
table.

FRESI 840 Compute commonalities and the standardized factor residual
correlation matrix.

FROTA 809 Compute an orthogonal rotation of a factor-loading matrix
using a generalized orthomax criterion, including quartimax,
varimax, and equamax rotations.

FRVAR 831 Compute the factor structures and the variance explained by
each factor.
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FSCOR 838 Compute a set of factor scores given the factor score
coefficient matrix.

GAMDF 1140 Evaluate the gamma distribution function.

GAMIN 1142 Evaluate the inverse of the gamma distribution function.

GCDF 1150 Evaluate a general continuous cumulative distribution
function given ordinates of the density.

GCIN 1152 Evaluate the inverse of a general continuous cumulative
distribution function given ordinates of the density.

GCLAS 207 Get the unique values of each classification variable.

GCSCP 272 Generate centered variables, squares, and crossproducts.

GDATA 1302 Retrieve a commonly analyzed data set.

GFNIN 1155 Evaluate the inverse of a general continuous cumulative
distribution function given in a subprogram.

GIRTS 1305 Solve a triangular (possibly singular) set of linear systems
and/or compute a generalized inverse of an upper triangular
matrix.

GRGLM 210 Generate regressors for a general linear model.

GRPES 51 Compute basic statistics from grouped data.

GSWEP 230 Perform a generalized sweep of a row of a nonnegative
definite matrix.

HAZEZ 1061 Perform nonparametric hazard rate estimation using kernel
functions. Easy-to-use version of the previous IMSL
subroutine (HAZRD).

HAZRD 1054 Perform nonparametric hazard rate estimation using kernel
functions and quasi-likelihoods.

HAZST 1069 Perform hazard rate estimation over a grid of points using a
kernel function.

HHSTP 1078 Print a horizontal histogram.

HYPDF 1111 Evaluate the hypergeometric distribution function.

HYPPR 1113 Evaluate the hypergeometric probability function.

IACHAR 1290 Return the integer ASCII value of a character argument.

ICASE 1291 Return the ASCII value of a character converted to
uppercase.

IDYWK 1300 Compute the day of the week for a given date.

IERCD 1328 Retrieve the code for an informational error.

IFNAN 1337 Check if a floating-point number is NaN (not a number).
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IICSR 1292 Compare two character strings using the ASCII collating
sequence without regard to case.

IIDEX 1293 Determine the position in a string at which a given character
sequence begins without regard to case.

IMACH 1335 Retrieve integer machine constants.

INCLD 561 Perform an includance test.

IRNSE 685 Compute estimates of the impulse response weights and
noise series of a univariate transfer function model.

ISRCH 1286 Search a sorted integer vector for a given integer and return
its index.

KALMN 705 Perform Kalman filtering and evaluate the likelihood
function for the state-space model.

KAPMR 938 Compute Kaplan-Meier estimates of survival probabilities in
stratified samples.

KENDL 353 Compute and test Kendall’s rank correlation coefficient.

KENDP 357 Compute the frequency distribution of the total score in
Kendall’s rank correlation coefficient.

KMEAN 900 Perform a K-means (centroid) cluster analysis.

KPRIN 797 Maximum likelihood or least-squares estimates for principle
components from one or more matrices.

KRSKL 564 Perform a Kruskal-Wallis test for identical population
medians.

KSONE 580 Perform a Kolmogorov-Smirnov one-sample test for
continuous distributions.

KSTWO 598 Perform a Kolmogorov-Smirnov two-sample test.

KTBLE 942 Print Kaplan-Meier estimates of survival probabilities in
stratified samples.

KTRND 574 Perform a k-sample trends test against ordered alternatives.

LETTR 29 Produce a letter value summary.

LILLF 591 Perform Lilliefors test for an exponential or normal
distribution.

LOFCF 716 Perform lack-of-fit test for a univariate time series or transfer
function given the appropriate correlation function.

MAMME 660 Compute method of moments estimates of the moving
average parameters of an ARMA model.

MCCF 649 Compute the multichannel cross-correlation function of two
mutually stationary multichannel time series.
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MCHOL 1311 Compute an upper triangular factorization of a real
symmetric matrix A plus a diagonal matrix D, where D is
determined sequentially during the Cholesky factorization in
order to make A + D nonnegative definite.

MEDPL 59 Compute a median polish of a two-way table.

MLSE 694 Compute least squares estimates of a linear regression model
for a multichannel time series with a specified base channel.

MSDBL 1024 Obtain normalized product-moment (double centered)
matrices from dissimilarity matrices.

MSDST 1017 Compute distances in a multidimensional scaling model.

MSIDV 1003 Perform individual-differences multidimensional scaling for
metric data using alternating least squares.

MSINI 1028 Compute initial estimates in multidimensional scaling
models.

MSSTN 1020 Transform dissimilarity/similarity matrices and replace
missing values by estimates to obtain standardized
dissimilarity matrices.

MSTRS 1035 Compute various stress criteria in multidimensional scaling.

MVIND 842 Compute a test for the independence of k sets of multivariate
normal variables.

MVMMT 594 Compute Mardia’s multivariate measures of skewness and
kurtosis and test for multivariate normality.

MVNAN 1269 Move any rows of a matrix with the IMSL missing value
code NaN (not a number) in the specified columns to the last
rows of the matrix.

MWFE 700 Compute least squares estimates of the multichannel Wiener
filter coefficients for two mutually stationary multichannel
time series.

N1RTY 1328 Retrieve an error type for the most recently called IMSL
routine.

NCTRD 548 Perform the Noether test for cyclical trend.

NDAYS 1297 Compute the number of days from January 1, 1900, to the
given date.

NDYIN 1299 Give the date corresponding to the number of days since
January 1, 1900.

NGHBR 1320 Search a k-d tree for the k nearest neighbors of a key.

NNBRD 880 Perform a k nearest neighbor discrimination.
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NRCES 48 Compute maximum likelihood estimates of the mean and
variance from grouped and/or censored normal data.

NSBJF 680 Compute Box-Jenkins forecasts and their associated
probability limits for a nonseasonal ARMA model.

NSLSE 669 Compute least squares estimates of parameters for a
nonseasonal ARMA model.

NSPE 664 Compute preliminary estimates of the autoregressive and
moving average parameters of an ARMA model.

NTIES 555 Compute tie statistics for a sample of observations.

OPOLY 269 Generate orthogonal polynomials with respect to x values
and specified weights.

ORDST 31 Determine order statistics.

OWFRQ 3 Tally observations into a one-way frequency table.

PACF 641 Compute the sample partial autocorrelation function of a
stationary time series.

PAIRS 604 Perform a pairs test.

PCORR 327 Compute partial correlations or covariances from the
covariance or correlation matrix.

PERMA 1266 Permute the rows or columns of a matrix.

PERMU 1265 Rearrange the elements of an array as specified by a
permutation.

PFFT 723 Compute the periodogram of a stationary time series using a
fast Fourier transform.

PGOPT 1263 Set or retrieve page width and length for printing.

PHGLM 951 Analyze time event data via the proportional hazards model.

PLOTP 1096 Print a plot of up to ten sets of points.

POIDF 1114 Evaluate the Poisson distribution function.

POIES 46 Estimate the parameter of the Poisson distribution.

POIPR 1115 Evaluate the Poisson probability function.

PRINC 793 Compute principal components from a variance-covariance
matrix or a correlation matrix.

PROBP 1092 Print a probability plot.

PRPFT 463 Perform iterative proportional fitting of a contingency table
using a loglinear model.

QTEST 572 Perform a Cochran Q test for related observations.
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QUADT 1317 Form a k-d tree.

RANKS 24 Compute the ranks, normal scores, or exponential scores for
a vector of observations.

RBCOV 331 Compute a robust estimate of a covariance matrix and mean
vector.

RBEST 214 Select the best multiple linear regression models.

RCASE 191 Compute case statistics and diagnostics given data points,

coefficient estimates $β , and the R matrix for a fitted general
linear model.

RCASP 263 Compute case statistics for a polynomial regression model
given the fit based on orthogonal polynomials.

RCOMP 248 Generate an orthogonal central composite design.

RCOV 104 Fit a multiple linear regression model given the variance-
covariance matrix.

RCOVB 152 Compute the estimated variance-covariance matrix of the
estimated regression coefficients given the R matrix.

RCURV 237 Fit a polynomial curve using least squares.

RFORP 252 Fit an orthogonal polynomial regression model.

RGIVN 107 Fit a multivariate linear regression model via fast Givens
transformations.

RGLM 117 Fit a multivariate general linear model.

RHPSS 163 Compute the matrix of sums of squares and crossproducts for
the multivariate general linear hypothesis HBU = G given the

coefficient estimates $B  and the R matrix.

RHPTE 170 Perform tests for a multivariate general linear hypothesis
HBU = G given the hypothesis sums of squares and
crossproducts matrix S+ and the error sums of squares and
crossproducts matrix S(.

RINCF 90 Perform response control given a fitted simple linear
regression model.

RINPF 94 Perform inverse prediction given a fitted simple linear
regression model.

RLAV 293 Fit a multiple linear regression model using the least absolute
values criterion.

RLEQU 131 Fit a multivariate linear regression model with linear equality
restrictions HΒ  = G imposed on the regression parameters
given results from IMSL routine RGIVN after IDO = 1 and
IDO = 2 and prior to IDO = 3.
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RLEQU 131 Fit a multivariate linear regression model with linear equality
restrictions HΒ  = G imposed on the regression parameters
given results from IMSL routine RGIVN after IDO = 1 and
IDO = 2 and prior to IDO = 3.

RLINE 79 Fit a line to a set of data points using least squares.

RLLP 297 Fit a multiple linear regression model using the LS norm
criterion.

RLMV 308 Fit a multiple linear regression model using the minimax
criterion.

RLOFE 176 Compute a lack-of-fit test based on exact replicates for a
fitted regression model.

RLOFN 182 Compute a lack-of-fit test based on near replicates for a
fitted regression model.

RLSE 98 Fit a multiple linear regression model using least squares.

RNARM 1232 Generate a time series from a specified ARMA model.

RNBET 1191 Generate pseudorandom numbers from a beta distribution.

RNBIN 1173 Generate pseudorandom numbers from a binomial
distribution.

RNCHI 1193 Generate pseudorandom numbers from a chi-squared
distribution.

RNCHY 1194 Generate pseudorandom numbers from a Cauchy
distribution.

RNCOR 1215 Generate a pseudorandom orthogonal matrix or a correlation
matrix.

RNDAT 1218 Generate pseudorandom numbers from a multivariate
distribution determined from a given sample.

RNEXP 1196 Generate pseudorandom numbers from a standard
exponential distribution.

RNEXT 1197 Generate pseudorandom numbers from a mixture of two
exponential distributions.

RNGAM 1198 Generate pseudorandom numbers from a standard gamma
distribution.

RNGCS 1200 Set up table to generate pseudorandom numbers from a
general continuous distribution.

RNGCT 1202 Generate pseudorandom numbers from a general continuous
distribution.

RNGDA 1174 Generate pseudorandom numbers from a general discrete
distribution using an alias method.
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RNGDS 1177 Set up table to generate pseudorandom numbers from a
general discrete distribution.

RNGDT 1181 Generate pseudorandom numbers from a general discrete
distribution using a table lookup method.

RNGEF 1167 Retrieve the current value of the array used in the IMSL
GFSR random number generator.

RNGEO 1183 Generate pseudorandom numbers from a geometric
distribution.

RNGES 1167 Retrieve the current value of the table in the IMSL random
number generators that use shuffling.

RNGET 1167 Retrieve the current value of the seed used in the IMSL
random number generators.

RNHYP 1185 Generate pseudorandom numbers from a hypergeometric
distribution.

RNISD 1168 Determine a seed that yields a stream beginning 100,000
numbers beyond the beginning of the stream yielded by a
given seed used in IMSL multiplicative congruential
generators (with no shufflings).

RNKSM 557 Perform the Wilcoxon rank sum test.

RNLGR 1186 Generate pseudorandom numbers from a logarithmic
distribution.

RNLIN 280 Fit a nonlinear regression model.

RNLNL 1204 Generate pseudorandom numbers from a lognormal
distribution.

RNMTN 1222 Generate pseudorandom numbers from a multinomial
distribution.

RNMVN 1223 Generate pseudorandom numbers from a multivariate normal
distribution.

RNNBN 1188 Generate pseudorandom numbers from a negative binomial
distribution.

RNNOA 1205 Generate pseudorandom numbers from a standard normal
distribution using an acceptance/rejection method.

RNNOF 1207 Generate a pseudorandom number from a standard normal
distribution.

RNNOR 1208 Generate pseudorandom numbers from a standard normal
distribution using an inverse CDF method.

RNNOS 1229 Generate pseudorandom order statistics from a standard
normal distribution.
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RNNPP 1236 Generate pseudorandom numbers from a nonhomogeneous
Poisson process.

RNOPG 1166 Retrieve the indicator of the type of uniform random number
generator.

RNOPT 1165 Select the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

RNPER 1240 Generate a pseudorandom permutation.

RNPOI 1189 Generate pseudorandom numbers from a Poisson
distribution.

RNSEF 1167 Initialize the array used in the IMSL GFSR random number
generator.

RNSES 1167 Initialize the table in the IMSL random number generators
that use shuffling.

RNSET 1167 Initialize a random seed for use in the IMSL randomnumber
generators.

RNSPH 1225 Generate pseudorandom points on a unit circle or K-
dimensional sphere.

RNSRI 1241 Generate a simple pseudorandom sample of indices.

RNSRS 1242 Generate a simple pseudorandom sample from a finite
population.

RNSTA 1209 Generate pseudorandom numbers from a stable distribution.

RNSTT 1210 Generate pseudorandom numbers from a Student’s t
distribution.

RNTAB 1227 Generate a pseudorandom two-way table.

RNTRI 1212 Generate pseudorandom numbers from a triangular
distribution on the interval (0,1).

RNUN 1171 Generate pseudorandom numbers from a uniform (0,1)
distribution.

RNUND 1190 Generate pseudorandom numbers from a discrete uniform
distribution.

RNUNF 1172 Generate a pseudorandom number from a uniform (0, 1)
distribution.

RNUNO 1231 Generate pseudorandom order statistics from a uniform (0,
1) distribution.

RNVMS 1213 Generate pseudorandom numbers from a von Mises
distribution.

RNWIB 1214 Generate pseudorandom numbers from a Weibull
distribution.
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RONE 82 Analyze a simple linear regression model.

RORDM 1268 Reorder rows and columns of a symmetric matrix.

ROREX 429 Reorder the responses from a balanced complete
experimental design.

ROTIN 201 Compute diagnostics for detection of outliers and influential
data points given residuals and the R matrix for a fitted
general linear model.

RPOLY 241 Analyze a polynomial regression model.

RSTAP 258 Compute summary statistics for a polynomial regression
model given the fit based on orthogonal polynomials.

RSTAT 141 Compute statistics related to a regression fit given the

coefficient estimates $β  and the R matrix.

RSTEP 221 Build multiple linear regression models using forward
selection, backward selection, or stepwise selection.

RSUBM 233 Retrieve a symmetric submatrix from a symmetric matrix.

RUNS 600 Perform a runs up test.

SCIPM 419 Compute simultaneous confidence intervals on all pairwise
differences of means.

SCOLR 1277 Sort columns of a real rectangular matrix using keys in rows.

SCTP 1081 Print a scatterplot of several groups of data.

SDPLC 551 Perform the Cox and Stuart sign test for trends in dispersion
and location.

SIGNT 542 Perform a sign test of the hypothesis that a given value is a
specified quantile of a distribution.

SMPPR 906 Compute statistics for inferences regarding the population
proportion and total, given proportion data from a simple
random sample.

SMPPS 909 Compute statistics for inferences regarding the population
proportion and total, given proportion data from a stratified
random sample.

SMPRR 911 Compute statistics for inferences regarding the population
mean and total using ratio or regression estimation, or
inferences regarding the population ratio, given a simple
random sample.

SMPRS 918 Compute statistics for inferences regarding the population
mean and total using ratio or regression estimation, given
continuous data from a stratified random sample.
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SMPSC 923 Compute statistics for inferences regarding the population
mean and total using single-stage cluster sampling with
continuous data.

SMPSR 927 Compute statistics for inferences regarding the population
mean and total, given data from a simple random sample.

SMPSS 930 Compute statistics for inferences regarding the population
mean and total, given data from a stratified random sample.

SMPST 933 Compute statistics for inferences regarding the population
mean and total, given continuous data from a two-stage
sample with equisized primary units.

SNKMC 424 Perform Student-Newman-Keuls multiple comparison test.

SNRNK 544 Perform a Wilcoxon signed rank test.

SPWF 677 Compute the Wiener forecast operator for a stationary
stochastic process.

SPWLK 589 Perform a Shapiro-Wilk W-test for normality.

SRCH 1284 Search a sorted vector for a given scalar and return its index.

SROWR 1280 Sort rows of a real rectangular matrix using keys in columns.

SSRCH 1287 Search a character vector, sorted in ascending ASCII order,
for a given string and return its index.

SSWD 729 Estimate the nonnormalized spectral density of a stationary
time series using a spectral window given the time series
data.

SSWP 736 Estimate the nonnormalized spectral density of a stationary
time series using a spectral window given the periodogram.

STBLE 985 Estimate survival probabilities and hazard rates for various
parametric models.

STMLP 1085 Print a stem-and-leaf plot.

SVGLM 967 Analyze censored survival data using a generalized linear
model.

SVIGN 1275 Sort an integer array by algebraic value.

SVIGP 1276 Sort an integer array by algebraic value and return the
permutations.

SVRGN 1273 Sort a real array by algebraic value.

SVRGP 1274 Sort a real array by algebraic value and return the
permutations.
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SWED 741 Estimation of the nonnormalized spectral density of a
stationary time series based on specified periodogram
weights given the time series data.

SWEP 747 Estimation of the nonnormalized spectral density of a
stationary time series based on specified periodogram
weights given the periodogram.

TCSCP 277 Transform coefficients from a quadratic regression model
generated from squares and crossproducts of centered
variables to a model using uncentered variables.

TDATE 1297 Get today’s date.

TDF 1143 Evaluate the Student’s t distribution function.

TETCC 342 Categorize bivariate data and compute the tetrachoric
correlation coefficient.

TFPE 689 Compute preliminary estimates of parameters for a univariate
transfer function model.

TIMDY 1296 Get time of day.

TIN 1145 Evaluate the inverse of the Student’s t distribution function.

TNDF 1146 Evaluate the noncentral Student’s t distribution function.

TNIN 1149 Evaluate the inverse of the noncentral Student’s t distribution
function.

TREEP 1098 Print a binary tree.

TRNBL 946 Compute Turnbull’s generalized Kaplan-Meier estimates of
survival probabilities in samples with interval censoring.

TWFRQ 7 Tally observations into a two-way frequency table.

TWOMV 37 Compute statistics for mean and variance inferences using
samples from two normal populations.

UMACH 1338 Set or retrieve input or output device unit numbers.

UVSTA 16 Compute basic univariate statistics.

VERSL 1301 Obtain STAT/LIBRARY-related version, system and license
numbers.

VHS2P 1076 Print a vertical histogram with every bar subdivided into two
parts.

VHSTP 1074 Print a vertical histogram.

WRIRL 1254 Print an integer rectangular matrix with a given format and
labels.

WRIRN 1253 Print an integer rectangular matrix with integer row and
column labels.
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WROPT 1257 Set or retrieve an option for printing a matrix.

WRRRL 1250 Print a real rectangular matrix with a given format and
labels.

WRRRN 1248 Print a real rectangular matrix with integer row and column
labels.



IMSL STAT/LIBRARY Appendix C: References • C-1

Appendix C: References

Abraham and Ledolter

Abraham, Bovas, and Johannes Ledolter (1983), Statistical Methods for
Forecasting, John Wiley & Sons, New York.

Abramowitz and Stegun

Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical Tables,
National Bureau of Standards, Washington.

Afifi and Azen

Afifi, A.A. and S.P. Azen (1979), Statistical Analysis : A Computer Oriented
Approach, second edition, Academic Press, New York.

Agresti, Wackerly, and Boyette

Agresti, Alan, Dennis Wackerly, and James M. Boyette (1979), Exact conditional
tests for cross-classifications: Approximation of attained significance levels,
Psychometrika, 44, 75-83.

Ahrens and Dieter

Ahrens, J.H., and U. Dieter (1974), Computer methods for sampling from
gamma, beta, Poisson, and binomial distributions, Computing, 12, 223−246.

Ahrens, J.H., and U. Dieter (1985), Sequential random sampling, ACM
Transactions on Mathematical Software, 11, 157−169.

Aird and Howell

Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103,
IMSL, Houston.



C-2 • Appendix C: References IMSL STAT/LIBRARY

Akima

Akima, Hirosha (1970), A new method of interpolation and smooth curve fitting
based on local procedures, Journal of the ACM, 17, 589−602.

Anderberg

Anderberg, Michael R. (1973), Cluster Analysis for Applications, Academic
Press, New York.

Anderson

Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley &
Sons, New York.

Anderson and Bancroft

Anderson, R.L., and T.A. Bancroft (1952), Statistical Theory in Research,
McGraw-Hill Book Company, New York.

Anderson and Rubin

Anderson, T., and H. Rubin (1956), Statistical inference in factor analysis,
Proceedings of the Third Berkely Symposium on Mathematical Statistics and
Probability, Volume 5, University of California Press, Berkeley, 111–150.

Atkinson

Atkinson, A.C. (1973), Testing transformations to normality, Journal of the Royal
Statistical Society, Series B: Methodological, 35, 473−479.

Atkinson, A.C. (1979), A family of switching algorithms for the computer
generation of beta random variates, Biometrika, 66, 141−145.

Atkinson, A.C. (1985), Plots, Transformations, and Regression, Claredon Press,
Oxford.

Atkinson, A.C. (1986), Diagnostic tests for transformations, Technometrics, 28,
29−37.

Baker, Clarke, and Lane

Baker, R.J., M.R.B. Clarke, and P.W. Lane (1985). Zero entries in contingency
tables, Computational Statistics and Data Analysis , 3, 33-45.

Bartlett

Bartlett, M.S. (1935), Contingency table interactions, Journal of the Royal
Statistics Society Supplement, 2, 248−252.

Bartlett, M. (1937), The statistical conception of mental factors, British Journal
of Psychology, 28, 97–104.



IMSL STAT/LIBRARY Appendix C: References • C-3

Bartlett, M.S. (1946), On the theoretical specification and sampling properties of
autocorrelated time series, Supplement to the Journal of the Royal Statistical
Society, 8, 27–41.

Bartlett, M.S. (1978), Stochastic Processes, 3rd. ed., Cambridge University Press,
Cambridge.

Barrodale and Roberts

Barrodale, I., and F.D.K. Roberts (1973), An improved algorithm for discrete L1
approximation, SIAM Journal on Numerical Analysis, 10, 839−848.

Barrodale, I., and C. Phillips (1975), Algorithm 495. Solution of an
overdetermined system of linear equations in the Chebyshev norm, ACM
Transactions on Mathematical Software, 1, 264−270.

Barrodale, I., and F.D.K. Roberts (1974), Solution of an overdetermined system
of equations in the l1 norm, Communications of the ACM, 17, 319−320.

Barlow et al.

Barlow, R.E., D.J. Bartholomew, J.M. Bremner, and H.D. Brunk (1972),
Statistical Inference under Order Restrictions, John Wiley & Sons, London.

Bendel and Mickey

Bendel, Robert B., and M. Ray Mickey (1978), Population correlation matrices
for sampling experiments, Communications in Statistics, B7, 163−182.

Berk

Berk, Kenneth. N. (1976), Tolerance and condition in regression computations,
Proceedings of the Ninth Interface Symposium on Computer Science and
Statistics, Prindle, Weber and Schmidt, Boston, 202−203.

Best and Fisher

Best, D.J., and N.I. Fisher (1979), Efficient simulation of the von Mises
distribution, Applied Statistics, 28, 152−157.

Bhapkar

Bhapkar, V.P. (1961), A nonparametric test for the problem of several samples,
Annals of Mathematical Statistics, 32, 1108−1117.

Bishop, Feinberg, and Holland

Bishop, Yvonne M. M., Stephen E. Feinberg, and Paul W. Holland (1975),
Discrete Multivariate Analysis, The MIT Press, Cambridge, Mass.



C-4 • Appendix C: References IMSL STAT/LIBRARY

Bjorck and Golub

Bjorck, Ake, and Gene H. Golub (1973), Numerical Methods for Computing
Angles Between Subspaces, Mathematics of Computation, 27, 579−594.

Blackman and Tukey

Blackman, R.B., and J. W. Tukey (1958), The Measurement of Power Spectra
from the Point of View of Communications Engineering , Dover Publications,
New York.

Blom

Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables ,
John Wiley & Sons, New York.

Boisvert, Howe, and Kahaner

Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1985), GAMS: A
framework for the management of scientific software, ACM Transactions on
Mathematical Software, 11, 313-355.

Boisvert, Howe, Kahaner, and Springmann

Boisvert, Ronald F., Sally E. Howe, David K. Kahaner, and Jeanne L.
Springmann (1990), Guide to Available Mathematical Software , NISTIR 90-
4237, National Institute of Standards and Technology, Gaithersburg, Maryland.

Bosten and Battiste

Bosten, Nancy E., and E.L. Battiste (1974), Incomplete beta ratio,
Communications of the ACM 17, 156–157.

Box and Cox

Box, G.E.P., and D.R. Cox (1964), An analysis of transformations, Journal of the
Royal Statistical Society, Series B: Methodological, 26, 211–243.

Box and Jenkins

Box, George E.P., and Gwilym M. Jenkins (1976), Time Series Analysis:
Forecasting and Control, rev. ed., Holden-Day, Oakland, Calif.

Box and Pierce

Box, G.E.P., and David A. Pierce (1970), Distribution of residual
autocorrelations in autoregressive-integrated moving average time series models,
Journal of the American Statistical Association , 65, 1509–1526.



IMSL STAT/LIBRARY Appendix C: References • C-5

Box and Tidwell

Box, G.E.P., and P.W. Tidwell (1962), Transformation of the independent
variables, Technometrics, 4, 531−550.

Boyette

Boyette, James M. (1979), Random RC tables with given row and column totals,
Applied Statistics, 28, 329−332.

Bradley

Bradley, J.V. (1968), Distribution-Free Statistical Tests, Prentice-Hall, New
Jersey.

Bradley, J.V. (1968), Distribution-Free Statistical Inference, Prentice-Hall, New
Jersey.

Breslow

Breslow, N.E. (1974), Covariance analysis of censored survival data, Biometrics,
30, 89−99.

Brillinger

Brillinger, David R. (1981), Time Series: Data Analysis and Theory, expanded
ed., Holden-Day, San Francisco.

Bross

Bross, I. (1950), Fiducial intervals for variance components, Biometrics, 6, 136−
144.

Brown

Brown, Morton B. (1983), BMDP4F, two-way and multiway frequency tables
measures of association and the log-linear model (complete and incomplete
tables), in BMDP Statistical Software, 1983 Printing with Additions, (edited by
W. J. Dixon), University of California Press, Berkeley.

Brown and Benedetti

Brown, Morton B, and Jacqualine K. Benedetti (1977), Sampling behavior and
tests for correlation in two-way contingency tables, Journal of the American
Statistical Association, 42, 309-315.



C-6 • Appendix C: References IMSL STAT/LIBRARY

Brown and Fuchs

Brown, Morton B., and C. Fuchs (1983), On maximum likelihood estimation in
sparse contingency tables, Computational Statistics and Data Analysis , 1, 3−15.

Bryson and Johnson

Bryson, Maurice C. and Mark E. Johnson (1981), The incidence of monotone
likelihood in the Cox model, Technometrics, 23, 381–384.

Cantor

Cantor, Alan B. (1979), A computer algorithm for testing significance in M K
contingency tables, Proceedings of the Statistical Computing Section, American
Statistical Association, Washington, D.C., 220−221.

Carroll and Chang

Carroll, J.D., and J.J. Chang (1970), Analysis of individual differences in
multidimensional scaling via an n-way generalization of “Eckart-Young”
decomposition, Psychometrika, 35, 283–319.

Chambers et al.

Chambers, J.M., C.L. Mallows, and B.W. Stuck (1976), A method for simulating
stable random variates, Journal of the American Statistical Association, 71, 340−
344.

Chambers, John M., William S. Cleveland, Beat Kleiner, and Paul A. Tukey
(1983), Graphical Methods for Data Analysis, Wadsworth, Belmont, Calif.

Chatfield

Chatfield, C. (1980), The Analysis of Time Series: An Introduction, 2d ed.,
Chapman and Hall, London.

Chiang

Chiang, Chin Long (1968), Introduction to Stochastic Processes in Statistics,
John Wiley & Sons, New York.

Chiang, Chin Long (1972), On constructing current life tables, Journal of the
American Statistical Association, 67, 538–541.

Cheng

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape
parameters, Communications of the ACM, 21, 317−322.



IMSL STAT/LIBRARY Appendix C: References • C-7

Christensen

Christensen, Ronald (1989), Lack-of-fit tests based on near or exact replicates,
Annals of Statistics, 17, 673−683.

Clarke

Clarke, M.R.B. (1982), The Gauss-Jordan sweep operator with detection of
collinearity, Applied Statistics, 31, 166−168.

Clarkson

Clarkson, Douglas B. (1988a), Remark on Algorithm AS 211: The F-G
diagonalization algorithm, Applied Statistics, 38, 147−151.

Clarkson, Douglas B. (1988b), A least-squares version of AS 211: The F-G
diagonalization algorithm, Applied Statistics, 38, 317−321.

Clarkson and Fan

Clarkson, Douglas B. and Yuan-An Fan (1989), Some improvements to the
network algorithm for exact probabilities in contingency tables , IMSL Technical
Report 8903, IMSL, Houston.

Clarkson and Gentle

Clarkson, Douglas B. and James E. Gentle (1986), Methods for multidimensional
scaling, in Computer Science and Statistics, Proceedings of the Seventeenth
Symposium on the Interface, (D.M. Allen, editor), North-Holland, Amsterdam,
185–192.

Clarkson and Jennrich

Clarkson, Douglas B. and Robert I. Jennrich (1988), Computing extended
maximum likelihood estimates for linear parameter models, IMSL Technical
Report 8804, IMSL, Houston.

Clarkson, Douglas B. and Robert I. Jennrich (1988), Quartic rotation criteria and
algorithms, Psychometrika, 53, 251–259.

Clarkson, Douglas B. and Robert I. Jennrich (1991), Computing extended
maximum likelihood estimates for linear parameter models, submitted to Journal
of the Royal Statistical Society, Series B, 53, 417-426.

Cochran

Cochran, William G. (1977), Sampling Techniques, 3rd ed., John Wiley & Sons,
New York.



C-8 • Appendix C: References IMSL STAT/LIBRARY

Conover

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley &
Sons, New York.

Conover and Iman

Conover, W.J., and Ronald L. Iman (1983), Introduction to Modern Business
Statistics, John Wiley & Sons, New York.

Cook and Weisberg

Cook, R. Dennis, and Sanford Weisberg (1982), Residuals and Influence in
Regression, Chapman and Hall, New York.

Cooper

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution
integrals, (Applied Statistics), 17, 190–192.

Coveyou and MacPherson

Coveyou, R.R., and R.D. MacPherson (1967), Fourier analysis of uniform
random number generators, Journal of the ACM, 14, 100−119.

Cox

Cox, David R. (1970), The Analysis of Binary Data, Methuen, London.

Cox, D.R. (1972), Regression models and life tables (with discussion), Journal of
the Royal Statistical Society, Series B, Methodology, 34, 187–220.

Cox and Lewis

Cox, D.R., and P.A.W. Lewis (1966), The Statistical Analysis of Series of Events,
Methuen, London.

Cox and Oakes

Cox, D.R., and D. Oakes (1984), Analysis of Survival Data, Chapman and Hall,
London.

Cox and Stuart

Cox, D.R., and A. Stuart (1955), Some quick sign tests for trend in location and
dispersion, Biometrika, 42, 80−95.

Craddock

Craddock, J.M. (1969), Statistics in the Computer Age, American Elsevier, New
York.



IMSL STAT/LIBRARY Appendix C: References • C-9

Crawford and Ferguson

Crawford, C.B. and G.A. Ferguson (1970), A general rotation criteria and its use
in orthogonal rotation, Psychometrika, 35, 321–332.

D’Agostino and Stevens

D’Agostino, Ralph B. and Michael A. Stevens (1986) Goodness-of-Fit
Techniques, Marcel Dekker, New York.

Dahlquist and Bjorck

Dahlquist, Germund, and Ake Bjorck (1974), Numerical Methods, translated by
Ned Anderson, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Dallal and Wilkinson

Dallal, Gerald E. and Leland Wilkinson (1986), An analytic approximation to the
distribution of Lilliefor’s test statistic for normality, The American Statistician,
40, 294−296.

Davison

Davison, Mark L. (1983), Multidimensional Scaling, John Wiley & Sons, New
York.

De Leeuw and Pruzansky

De Leeuw, Jan and Sandra Pruzansky (1978), A new computational method to fit
the weighted Euclidean distance model, Psychometrika, 43, 479–490.

Deming and Stephan

Deming, W.E., and F.F. Stephan (1940), On the least-squares adjustments of a
sampled frequency table when the expected marginal totals are known, Annals of
Mathematical Statistics, 11, 427−444.

Demspter, Nan, and Rubin

Demspter, Arthur P., Nan, Laird, and Donald B. Rubin (1977), Maximum
likelihood from incomplete data via the EM algorithm (with discussion), Journal
of the Royal Statistical Society, Serie B, 39, 1–38.

Dennis and Schnabel

Dennis, John E., Jr., and Robert B. Schnabel (1983), Numerical Methods for
Unconstrained Optimization and Nonlinear Equations , Prentice-Hall, Englewood
Cliffs, New Jersey.



C-10 • Appendix C: References IMSL STAT/LIBRARY

Dewey

Dewey, Michael E. (1984), A remark on Algorithm AS 169: An improved
algorithm for scatter plots, Applied Statistics, 33, 370–372.

Draper and Smith

Draper, N.R., and H. Smith (1981), Applied Regression Analysis, 2d ed., John
Wiley & Sons, New York.

Durbin

Durbin, J. (1960), The fitting of time series models, Revue Institute
Internationale de Statistics, 28, 233–243.

Efroymson

Efroymson, M.A. (1960), Multiple regression analysis, in Mathematical Methods
for Digital Computers, Volume 1, (edited by A. Ralston and H. Wilf), John Wiley
& Sons, New York, 191−203.

Ekblom

Ekblom, Hakan (1973), Calculation of linear best LS-approximations, BIT, 13,

292−300.

Ekblom, Hakan (1987), The L1-estimate as limiting case of an LS or Huber-
estimate, in Statistical Data Analysis Based on the L1-Norm and Related Methods
(edited by Yadolah Dodge), North-Holland, Amsterdam, 109−116.

Elandt-Johnson and Johnson

Elandt-Johnson, Regina C., and Norman L. Johnson (1980), Survival Models and
Data Analysis, John Wiley & Sons, New York, 172—173.

Emerson and Hoaglin

Emerson, John D., and David C. Hoaglin (1983), Analysis of two-way tables by
medians, in Understanding Robust and Exploratory Data Analysis  (edited by
David C. Hoaglin, Frederick Mosteller, and John W. Tukey), John Wiley & Sons,
New York, 166–210.

Emmett

Emmett W.G. (1949), Factor analysis by Lawley’s method of maximum
likelihood, British Journal of Psychology, 2, 90-97.

Fisher

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems,
The Annals of Eugenics, 7, 179−188.



IMSL STAT/LIBRARY Appendix C: References • C-11

Fishman

Fishman, George S. (1978), Principles of Discrete Event Simulation, John Wiley
& Sons, New York.

Fishman et al.

Fishman, George F., and Louis R. Moore, III (1982), A statistical evaluation of
multiplicative random number generators with modulus 2311, Journal of the
American Statistical Association, 77, 129−136.

Fishman, George F., and Louis R. Moore, III (1986), An exhaustive analysis of

multiplicative congruential random number generators with modulus 231 − 1,
SIAM Journal on Scientific and Statistical Computing , 7, 24−45.

Flury

Flury, Bernard H. (1984), Common principal components in k groups, Journal of
the American Statistical Association, 79, 892−898.

Flury, Bernard H. (1988), Common Principal Components & Related
Multivariate Models, John Wiley & Sons, New York.

Flury and Constantine

Flury, Bernard H. and Gregory Constantine (1985), The F-G diagonalization
algorithm, Applied Statistics, 35, 177−183.

Flury and Gautschi

Flury, Bernard H. and Walter Gautschi (1986), An algorithm for simultaneous
orthogonal transformation of several positive definite symmetric matrices to
nearly diagonal form, SIAM Journal of Scientific and Statistical Computing , 7,
169−185.

Forsythe

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting
data with a digital computer, SIAM Journal on Applied Mathematics , 5, 74−88.

Forthofer and Koch

Forthofer, Ronald N., and Gary G. Koch (1973), An analysis of compounded
functions of categorical data, Biometrics, 29, 143−157.

Fox, Hall, and Schryer

Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical
subroutine library, ACM Transactions on Mathematical Software, 4, 104−126.



C-12 • Appendix C: Reference IMSL STAT/LIBRARY

Frane

Frane, James W. (1977), A note on checking tolerance in matrix inversion and
regression, Technometrics, 19, 513− 514.

Freeman and Halton

Freeman, G.H., and J.H. Halton (1951), Note on the exact treatment of
contingency, goodness of fit, and other problems of significance, Biometrika, 38,
141− 149.

Friedman, Bentley, and Finkel

Friedman, Jerome H., Jon Louis Bentley, and Raphael Ari Finkel (1977), An
algorithm for finding best matches in logarithmic expected time, ACM
Transactions on Mathematical Software, 3, 209− 226.

Fuller

Fuller, Wayne A. (1976), Introduction to Statistical Time Series, John Wiley &
Sons, New York.

Furnival and Wilson

Furnival, G.M., and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds,
Technometrics, 16, 499− 511.

Fushimi

Fushimi, Masanori (1990), Random number generation with the recursion
Xt = Xt-3p ⊕Xt-3q, Journal of Computational and Applied Mathematics, 31, 105− 118.

Gentle

Gentle, James E. (1981), Portability considerations for random number
generators, in Computer Science and Statistics: The Interface, (edited by
William F. Eddy), SpringerVerlag, New York, 158− 161.

Gentle, James E. (1990), Computer implementation of random number
generators, Journal of Computational and Applied Mathematics, 31, 119− 125.

Gentleman

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted
linear least squares problems, Applied Statistics, 23, 448− 454.

Gibbons

Gibbons, J.D. (1971), Nonparametric Statistical Inference, McGraw-Hill,
New York.



IMSL STAT/LIBRARY Appendix C: References • C-13

Girshick

Girshick, M.A. (1939), On the sampling theory of roots of determinantal
equations, Annals of Mathematical Statistics, 10, 203–224.

Golub

Golub, Gene H. (1969), Matrix computations and statistical calculations, in
Statistical Computation, (edited by Roy C. Milton and John A. Nelder),
Academic Press, New York. 365–398.

Golub and Van Loan

Golub, Gene H. and Charles F. Van Loan (1983), Matrix Computations, The
Johns Hopkins University Press, Baltimore, Maryland.

Gonin and Money

Gonin, Rene, and Arthur H. Money (1989), Nonlinear LS-Norm Estimation,
Marcel Dekker, New York.

Goodnight

Goodnight, James H. (1979), A tutorial on the SWEEP operator, The American
Statistician, 33, 149−158.

Granger and Newbold

Granger, C.W.J., and Paul Newbold (1977), Forecasting Economic Time Series,
Academic Press, Orlando, Florida.

Graybill

Graybill, Franklin A. (1976), Theory and Application of the Linear Model ,
Duxbury Press, North Scituate, Mass.

Griffin and Redish

Griffin, R., and K.A. Redish (1970), Remark on Algorithm 347: An efficient
algorithm for sorting with minimal storage, Communications of the ACM, 13, 54.

Grizzle, Starmer, and Koch

Grizzle, J.E., C.F. Starmer, and G.G. Koch, (1969), Analysis of categorical data
by linear models, Biometrics, 28, 489-504.



C-14 • Appendix C: References IMSL STAT/LIBRARY

Gross and Clark

Gross, Alan J., and Virginia A. Clark (1975), Survival Distributions: Reliability
Applications in the Biomedical Sciences , John Wiley & Sons, New York.

Gruenberger and Mark

Gruenberger, F., and A.M. Mark (1951), The d2 test of random digits,
Mathematical Tables and Other Aids in Computation , 5, 109−110.

Guerra et al.

Guerra, Victor O., Richard A. Tapia, and James R. Thompson (1976), A random
number generator for continuous random variables based on an interpolation
procedure of Akima, in Proceedings of the Ninth Interface Symposium on
Computer Science and Statistics, (edited by David C. Hoaglin and Roy E.
Welsch), Prindle, Weber & Schmidt, Boston, 228−230.

Haberman

Haberman, S.J. (1972), Log-linear fit for contingency tables, Applied Statistics,
21, 218−225.

Haldane

Haldane, J.B.S. (1939), The mean and variance of χ 2 when used as a test of
homogeneity, when expectations are small, Biometrika, 31, 346.

Hancock

Hancock, T.W. (1975), Remark on Algorithm 434: Exact probabilities for R × C
contingency tables, Communications of the ACM, 18, 117−119.

Hand

Hand, D.J. (1981), Discrimination and Classification, John Wiley & Sons, New
York.

Harman

Harman, Harry H. (1976), Modern Factor Analysis, 3rd. ed. revised, University
of Chicago Press, Chicago.

Harris and Kaiser

Harris, C., and H. Kaiser (1964), Oblique factor analysis solutions by orthogonal
transformations, Psychometrika, 29, 347–362.



IMSL STAT/LIBRARY Appendix C: References • C-15

Hart, et al.

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K.
Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968),
Computer Approximations, John Wiley & Sons, New York.

Hartigan

Hartigan, John A. (1975), Clustering Algorithms, John Wiley & Sons, New York.

Hartigan and Wong

Hartigan, J.A., and M.A. Wong (1979), Algorithm AS 136: A K-means clustering
algorithm, Applied Statistics, 28, 100−108.

Harvey

Harvey, A.C. (1981a), The Econometric Analysis of Time Series, Philip Allen
Publishers, Deddington, England.

Harvey, A.C. (1981b), Time Series Models, John Wiley & Sons, New York.

Hayter

Hayter, Anthony J. (1984), A proof of the conjecture that the Tukey-Kramer
multiple comparisons procedure is conservative, Annals of Statistics, 12, 61−75.

Heiberger

Heiberger, Richard M. (1978), Generation of random orthogonal matrices,
Applied Statistics, 27, 199−206.

Hemmerle

Hemmerle, William J. (1967), Statistical Computations on a Digital Computer ,
Blaisdell Publishing Company, Waltham, Mass.

Hendrickson and White

Hendrickson, A., and P. White (1964), PROMAX: A quick method for rotation to
oblique simple structure, British Journal of Statistical Psychology , 17, 65–70.

Herraman

Herraman, C. (1968), Sums of squares and products matrix, Applied Statistics,
17, 289−292.



C-16 • Appendix C: References IMSL STAT/LIBRARY

Hill

Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM, 13,
617–620.

Hinkley

Hinkley, David (1977), On quick choice of power transformation, Applied
Statistics, 26, 67−69.

Hoaglin

Hoaglin, David C. (1983), Letter values: A set of selected order statistics, in
Understanding Robust and Exploratory Data Analysis  (edited by David C.
Hoaglin, Frederick Mosteller, and John W. Tukey), John Wiley & Sons, New
York, 33–57.

Hoaglin et al.

Hoaglin, David C., Frederick Mosteller, and John W. Tukey (editors) (1983),
Understanding Robust and Exploratory Data Analysis , John Wiley & Sons, New
York.

Hoaglin and Welsch

Hoaglin, D.C., and R. Welsch (1978), The hat matrix in regression and ANOVA,
American Statistician, 32, 17−22.

Hocking

Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one
should be used?, Technometrics, 14, 967−970.

Hocking, R.R. (1973), A discussion of the two-way mixed model, The American
Statistician, 27, 148−152.

Hocking, R.R. (1985), The Analysis of Linear Models, Brooks/Cole Publishing
Company, Monterey, California.

Huber

Huber, Peter J. (1977), Robust covariances, in Statistical Decision Theory and
Related Topics, S.S. Gupta and D.S. Moore (editors), Academic Press, New
York.

Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hughes and Saw

Hughes, David T., and John G. Saw (1972), Approximating the percentage points

of Hotelling’s generalized T0
2  statistic, Biometrika, 59, 224−226.



IMSL STAT/LIBRARY Appendix C: References • C-17

Hurley and Cattell

Hurley, J., and R. Cattell (1962), The Procrustes program: Producing direct
rotation to test a hypothesized factor structure, Behavioral Science, 7, 258–262.

IEEE

ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point
Arithmetic, The IEEE, Inc., New York.

Iman and Davenport

Iman, R.L., and J.M. Davenport (1980), Approximations of the critical region of
the Friedman statistic, Communications in Statistics, A9(6), 571−595.

Isogai

Isogai, Takafumi (1983), On measures of multivariate skewness and kurtosis,
Mathematica Japonica, 28, 251−261.

Jenkins and Watts

Jenkins, Gwilym M., and Donald G. Watts (1968), Spectral Analysis and Its
Applications, Holden-Day, Oakland, Calif.

Jennrich

Jennrich, Robert I. (1973), Standard errors for obliquely rotated factor loadings,
Psychometrika, 38, 593–604.

Jennrich and Robinson

Jennrich, R.I., and S.M. Robinson (1969), A Newton-Raphson algorithm for
maximum likelihood factor analysis, Psychometrika, 34, 111–123.

Jennrich and Sampson

Jennrich, R.I. and P.F. Sampson (1966), Rotation for simple loadings,
Psychometrika, 31, 313–323.

John (1971)

John, Peter W.M. (1971), Statistical Design and Analysis of Experiments,
Macmillan Company, New York.

Johnk

Johnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten
Zufallszahlen, Metrika, 8, 5−15.



C-18 • Appendix C: References IMSL STAT/LIBRARY

Johnson and Kotz

Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton
Mifflin Company, Boston.

Johnson, Norman L., and Samuel Kotz (1970a), Continuous Univariate
Distributions-1, John Wiley & Sons, New York.

Johnson, Norman L., and Samuel Kotz (1970b), Continuous Univariate
Distributions-2, John Wiley & Sons, New York.

Johnson and Welch

Johnson, D.G., and W.J. Welch (1980), The generation of pseudo-random
correlation matrices, Journal of Statistical Computation and Simulation , 11, 55−
69.

Jonckheere

Jonckheere, A.R. (1954), A distribution-free k-sample test against ordered
alternatives, Biometrika, 41, 133−143.

Joreskog

Joreskog, K.G. (1977), Factor analysis by least squares and maximum-likelihood
methods, in Statistical Methods for Digital Computers, (edited by Kurt Enslein,
Anthony Ralston, and Herbert S. Wilf), John Wiley & Sons, New York, 125–153.

Kachitvichyanukul

Kachitvichyanukul, Voratas (1982), Computer generation of Poisson, binomial,
and hypergeometric random variates, Ph.D. dissertation, Purdue University,
West Lafayette, Indiana.

Kaiser

Kaiser, H.F. (1958), The varimax criterion for analytic rotation in factor analysis,
Psychometrika, 23, 187–200.

Kaiser, H.F. (1963), Image analysis, in Problems in Measuring Change, (edited
by C. Harris), University of Wisconsin Press, Madison, Wisconsin.

Kaiser and Caffrey

Kaiser, H.F., and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30, 1–
14.

Kalbfleisch and Prentice

Kalbfleisch, John D., and Ross L. Prentice (1980), The Statistical Analysis of
Failure Time Data, John Wiley & Sons, New York.



IMSL STAT/LIBRARY Appendix C: References • C-19

Kalman

Kalman, R. E. (1960), A new approach to linear filtering and prediction
problems, Journal of Basic Engineering, 82, 35–45.

Kelly

Kelly, L.G. (1967), Handbook of Numerical Methods and Applications,  Addison-
Wesley, Reading, Mass.

Kemp

Kemp, A.W., (1981), Efficient generation of logarithmically distributed pseudo-
random variables, Applied Statistics, 30, 249−253.

Kempthorne

Kempthorne, Oscar (1975), The Design and Analysis of Experiments, Robert E.
Krieger Publishing Company, Huntington, New York.

Kendall

Kendall, Maurice G. (1962), Rank Correlation Methods, Charles Griffin &
Company, 94−100.

Kendall, Stuart, and Ord

Kendall, Maurice G., Alan Stuart, and J. Keith Ord (1983), The Advanced Theory
of Statistics, Volume 3: Design and Analysis, and Time Series, 4th ed., Oxford
University Press, New York.

Kendall, Maurice G., Alan Stuart, and J. Keith Ord (1987), The Advanced Theory
of Statistics, Volume 1: Distribution Theory, 5th ed., Oxford University Press,
New York.

Kendall and Stuart

Kendall, Maurice G., and Alan Stuart (1979), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 4th ed., Oxford University Press, New
York.

Kennedy and Gentle

Kennedy, William J., and James E. Gentle (1980), Statistical Computing, Marcel
Dekker, New York.



C-20 • Appendix C: References IMSL STAT/LIBRARY

Kim and Jennrich

Kim, P.J., and R.I. Jennrich (1973), Tables of the exact sampling distribution of
the two sample Kolmogorov-Smirnov criterion DPQ (m < n), in Selected Tables in
Mathematical Statistics, Volume 1, (edited by H. L. Harter and D.B. Owen),
American Mathematical Society, Providence, Rhode Island.

Kinderman

Kinderman, A.J., and J.G. Ramage (1976), Computer generation of normal
random variables, Journal of the American Statistical Association , 71, 893−896.

Kinderman, A.J., J.F. Monahan, and J.G. Ramage (1977), Computer methods for
sampling from Student’s t distribution, Mathematics of Computation 31, 1009−
1018.

Kinnucan and Kuki

Kinnucan, P., and H. Kuki (1968), A single precision inverse error function
subroutine, Computation Center, University of Chicago. Strecok, Anthony J.
(1968), On the calculation of the inverse of the error function, Mathematics of
Computation, 22, 144–158.

Kirk

Kirk, Roger E. (1982), Experimental Design: Procedures for the Behavioral
Sciences, 2d. ed., Brooks/Cole Publishing Company, Monterey, Calif.

Knuth

Knuth, Donald E. (1973), The Art of Computer Programming, Volume 3: Sorting
and Searching, Addison-Wesley Publishing Company, Reading, Mass.

Knuth, Donald E. (1981), The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, 2d ed., Addison-Wesley, Reading, Mass.

Koch, Amara, and Atkinson

Koch, G.G., I.A. Amara, and S.S. Atkinson (1983), Mantel-Haenszel and related
methods in analyzing ordinal categorical data with concomitant information, 39th
Annual Conference on Applied Statistics, Newark, New Jersey.

Kotz and Johnson

Kotz, Samuel, and Norman L. Johnson (Editors) (1986), Encyclopedia of
Statistical Sciences, 7, John Wiley & Sons, New York.



IMSL STAT/LIBRARY Appendix C: References • C-21

Kronmal and Peterson

Kronmal, Richard A., and Arthur J. Peterson, Jr. (1979), On the alias method for
generating random variables from a discrete distribution, The American
Statistician, 33, 214−218.

Kruskal

Kruskal, J.B. (1964), Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis, Psychometrika, 29, 1–27.

Kruskal, Young, and Seery

Kruskal J.B., F.W. Young, and J.B. Seery (1977), How to use KYST, a very
flexible program to do multidimensional scaling and unfolding, Unpublished
manuscript, Bell Telephone Laboratories, Murray Hill, New Jersey.

Kshirsagar

Kshirsagar, Anant M. (1972), Multivariate Analysis, Marcel Dekker, New York.

Lachenbruch

Lachenbruch, Peter A. (1975), Discriminant Analysis, Hafner Press, London.

Landis, Cooper, Kennedy, and Koch

Landis, J. Richard, Murray M. Cooper, Thomas Kennedy, and Gary G. Koch
(1979), A computer program for testing average partial association in three-way
contingency tables (PARCAT), Computer Programs in Biomedicine, 9, 223−246.

Landis, Stanish, Freeman, and Koch

Landis, J. Richard, William M. Stanish, Jean L. Freeman, and Gary G. Koch
(1976), A computer program for the generalized chi-square analysis of
categorical data using weighted least squares (GENCAT), Computer Programs in
Biomedicine, 6, 196−231.

Lawless

Lawless, J.F. (1982), Statistical Models and Methods for Lifetime Data, John
Wiley & Sons, New York.

Lawley and Maxwell

Lawley, D.N., and A.E. Maxwell (1971), Factor Analysis as a Statistical Method,
2d ed., Butterworth, London.



C-22 • Appendix C: References IMSL STAT/LIBRARY

Learmonth et al.

Learmonth, G.P., and P.A. W. Lewis (1973a), Naval Postgraduate School
Random Number Generator Package LLRANDOM, NPS55LW73061A , Naval
Postgraduate School, Monterey, Calif.

Learmonth, G. P., and P. A. W. Lewis (1973b), Statistical tests of some widely
used and recently proposed uniform random number generators, in Computer
Science and Statistics: 7th Annual Symposium on the Interface , (edited by
William J. Kennedy), Statistical Laboratory, Iowa State University, Ames, Iowa,
163−171.

Lee (1977)

Lee, S. Keith (1977), On the asymptotic variances of $µ  terms in log-linear
models of multidimensional contingency tables, Journal of the American
Statistical Association, 72, 412−419.

Lee (1980)

Lee, Elisa T. (1980), Statistical Methods for Survival Data Analysis , Lifetime
Learning Publications, Belmont, Calif.

Lehmann

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks ,
Holden-Day, San Francisco.

Levenberg

Levenberg, K. (1944), A method for the solution of certain problems in least
squares, Quarterly of Applied Mathematics, 2, 164−168.

Levin and Marascuilo

Levin, J.R., and L.A. Marascuilo (1983), Multivariate Statistics in the Social
Sciences: A Researcher’s Guide, Wadsworth, Inc., California.

Lewis et al.

Lewis, P.A.W., A. S. Goodman, and J.M. Miller (1969), A pseudorandom
number generator for the System/360, IBM Systems Journal, 8, 136−146.

Lewis, P.A.W., and G.S. Shedler (1979), Simulation of nonhomogeneous Poisson
processes by thinning, Naval Logistics Quarterly, 26, 403−413.

Lilliefors

Lilliefors, H.W. (1967), On the Kolmogorov-Smirnov test for normality with
mean and variance unknown, Journal of the American Statistical Association , 62,
534−544.



IMSL STAT/LIBRARY Appendix C: References • C-23

Lilliefors, H.W. (1969), On the Kolmogorov-Smirnov test for the exponential
distribution with mean unknown, Journal of the American Statistical Association ,
64, 387−389.

Lin and Bendel

Lin, Shang P., and Robert B. Bendel (1985), Generation of population correlation
matrices with specified eigenvalues, Applied Statistics, 34, 193−198.

Longley

Longley, James W. (1967), An appraisal of least-squares programs for the
electronic computer from the point of view of the user, Journal of the American
Statistical Association, 62, 819-841.

Ljung and Box

Ljung, G.M., and G.E.P. Box (1978), On a measure of lack of fit in time series
models, Biometrika, 65, 297–303.

McCormack

McCormack, R.L. (1965), Extended tables of the Wilcoxon matched pair signed
rank test, Journal of the American Statistical Association , 60, 96−102.

McCullagh and Nelder

McCullagh, P., and J.A. Nelder, (1983), Generalized Linear Models, Chapman
and Hall, London.

McKean and Schrader

McKean, Joseph W., and Ronald M. Schrader (1987), Least absolute errors
analysis of variance, in Statistical Data Analysis Based on the L1-Norm and
Related Methods (edited by Yadolah Dodge), North-Holland, Amsterdam, 297−
305.

McKeon

McKeon, James J. (1974), F approximations to the distribution of Hotelling’s

T0
2 , Biometrika, 61, 381−383.

Maindonald

Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New
York.



C-24 • Appendix C: References IMSL STAT/LIBRARY

Mandel

Mandel, J. (1961), Non-additivity in two-way analysis of variance, Journal of the
American Statistical Association, 69, 859−866.

Marazzi

Marazzi, Alfio (1985), Robust affine invariant covariances in ROBETH,
ROBETH-85 document No. 6, Division de Statistique et Informatique, Institut
Universitaire de Medecine Sociale et Preventive, Laussanne.

March

March, D.L. (1972), Algorithm 434: Exact probabilities for R × C contingency
tables, Communications of the ACM, 15, 991−992.

Mardia et al.

Mardia, K.V. (1970), Measures of multivariate skewness and kurtosis with
applications, Biometrics, 57, 519−530.

Mardia, K.V., J.T. Kent, J.M. Bibby (1979), Multivariate Analysis, Academic
Press, New York.

Mardia and Foster

Mardia, K.V. and K. Foster (1983), Omnibus tests of multinormality based on
skewness and kurtosis, Communications in Statistics A, Theory and Methods , 12,
207−221.

Marquardt

Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear
parameters, SIAM Journal on Applied Mathematics, 11, 431−441.

Marsaglia

Marsaglia, George (1964), Generating a variable from the tail of a normal
distribution, Technometrics, 6, 101−102.

Marsaglia, G. (1968), Random numbers fall mainly in the planes, Proceedings of
the National Academy of Sciences , 61, 25−28.

Marsaglia, G. (1972), The structure of linear congruential sequences, in
Applications of Number Theory to Numerical Analysis , (edited by S. K.
Zaremba), Academic Press, New York, 249−286.

Marsaglia, George (1972), Choosing a point from the surface of a sphere, The
Annals of Mathematical Statistics, 43, 645−646.



IMSL STAT/LIBRARY Appendix C: References • C-25

Marsaglia and Bray

Marsaglia, G. and T.A. Bray (1964), A convenient method for generating normal
variables, SIAM Review, 6, 260−264.

Marsaglia et al.

Marsaglia, G., M.D. MacLaren, and T.A. Bray (1964), A fast procedure for
generating normal random variables, Communications of the ACM, 7, 4−10.

Martinson and Hamdan

Martinson, E.O., and M.A. Hamdan (1972), Maximum likelihood and some other
asymptotically efficient estimators of correlation in two way contingency tables,
Journal of Statistical Computation and Simulation , 1, 45−54.

McLeod and Bellhouse

McLeod, A.I., and D.R. Bellhouse (1983), A convenient algorithm for drawing a
simple random sample, Applied Statistics, 32, 182−184.

Mehta and Patel

Mehta, Cyrus R., and Nitin R. Patel (1983), A network algorithm for performing
Fisher’s exact test in r c contingency tables, Journal of the American Statistical
Association, 78, 427−434.

Mehta, C.R. and N.R. Patel (1986a), Algorithm 643: FEXACT: A FORTRAN
subroutine for Fisher’s exact test on unordered r × c contingency tables, ACM
Transactions on Mathematical Software, 12, 154−161.

Mehta, C.R. and N.R. Patel (1986b), A hybrid algorithm for Fisher’s exact test in
unordered r × c contingency tables, Communication in Statistics, Series A, 15,
387−404.

Merle and Spath

Merle, G., and H. Spath (1974), Computational experiences with discrete LS
approximation, Computing, 12, 315−321.

Meyers

Meyers, Raymond H. (1971), Response Surface Methodology, Allyn and Bacon,
Boston.

Miller

Miller, Rupert G., Jr. (1980), Simultaneous Statistical Inference, 2d ed.,
SpringerVerlag, New York.



C-26 • Appendix C: References IMSL STAT/LIBRARY

Milliken and Johnson

Milliken, George A., and Dallas E. Johnson (1984), Analysis of Messy Data:
Volume 1, Designed Experiments, Van Nostrand Reinhold, New York.

Moran

Moran, P.A.P. (1947), Some theorems on time series I, Biometrika, 34, 281–291.

More and Hillstrom

More, J.J., B.S. Garbow, and K. E. Hillstrom (1980), User Guide for MINPACK-
1, Argonne National Labs Report ANL-80-74, Argonne, Ill.

Morrison

Morrison, Donald F. (1976), Multivariate Statistical Methods, 2nd. ed. McGraw-
Hill Book Company, New York.

Mosier

Mosier, C. (1939), Determining a simple structure when loadings for certain tests
are known, Psychometrika, 4, 149–162.

Muller

Muller, M.E. (1959), A note on a method for generating points uniformly on N-
dimensional spheres, Communications of the ACM, 2, 19−20.

Neter and Wasserman

Neter, John, and William Wasserman (1974), Applied Linear Statistical Models,
Richard D. Irwin, Homewood, Ill.

Neter, Wasserman, and Kutner

Neter, John, William Wasserman, and Michael H. Kutner (1983), Applied Linear
Regression Models, Richard D. Irwin, Homewood, Ill.

Noether

Noether, G.E. (1956), Two sequential tests against trend, Journal of the American
Statistical Association, 51, 440−450.

Null and Sarle

Null, Cynthia H., and Warren S. Sarle (1982), Multidimensional Scaling by Least
Squares, in Proceedings of the Seventh Annual SAS Users Group International
Conference, SAS Institute Inc., Cary, North Carolina.



IMSL STAT/LIBRARY Appendix C: References • C-27

Owen

Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing
Company, Reading, Mass.

Owen, D.B. (1965), A special case of the bivariate non-central t-distribution,
Biometrika, 52, 437–446.

Pagano and Halvorsen

Pagano, Marcello, and Katherine Taylor Halvorsen (1981), An algorithm for
finding the exact significance levels in r × c contingency tables, Journal of the
American Statistical Association, 76, 931−934.

Park and Miller

Park, Stephen K., and Keith W. Miller (1988), Random number generators: good
ones are hard to find, Communications of the ACM, 31, 1192−1201.

Patefield

Patefield, W.M. (1981), An efficient method of generating R × C tables with
given row and column totals, Applied Statistics, 30, 91−97.

Peixoto

Peixoto, Julio L. (1986), Testable hypotheses in singular fixed linear models,
Communications in Statistics: Theory and Methods, 15, 1957−1973.

Peto

Peto, R. (1973), Experimental survival curves for interval-censored data, Applied
Statistics, 22, 86–91.

Petro

Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting
with minimal storage, Communications of the ACM, 13, 624.

Pike

Pike, M.C. (1966), A method of analysis of a certain class of experiments in
carcinogenesis, Biometrics, 22, 1–39.

Pillai

Pillai, K.C.S. (1985), Pillai’s trace, in Encyclopedia of Statistical Sciences,
Volume 6, (edited by Samuel Kotz and Norman L. Johnson), John Wiley & Sons,
New York, 725−729.



C-28 • Appendix C: References IMSL STAT/LIBRARY

Pregibon

Pregibon, Daryl (1981), Logistic regression diagnostics, The Annals of Statistics,
9, 705−724.

Priestley

Priestley, M.B. (1981), Spectral Analysis and Time Series, Volumes 1 and 2,
Academic Press, New York.

Prentice

Prentice, Ross L. (1976), A generalization of the probit and logit methods for
dose response curves, Biometrics, 32, 761−768.

Ramsey

Ramsey, James O. (1977), Maximum likelihood estimation in multidimensional
scaling, Psychometrika, 42, 241–266.

Ramsey, J.O. (1978), Confidence regions for multidimensional scaling analysis,
Psychometrika, 43, 145–160.

Ramsey, J.O. (1983), Multiscale II Manual, Unpublished manuscript, McGill
University, Montreal, Quebec, Canada.

Rao

Rao, C. Radhakrishna (1973), Linear Statistical Inference and Its Applications,
2d ed., John Wiley & Sons, New York.

Robinson

Robinson, Enders A. (1967), Multichannel Time Series Analysis with Digital
Computer Programs, Holden-Day, San Francisco.

Romesburg and Marshall

Romesburg, C., and K. Marshall (1974), LIFE: A computer program for
stochastic life table analysis, US/IBP Desert Research Memorandum 74-68, Utah
State University, Logan, Utah.

Royston

Royston, J.P. (1982a), An extension of Shapiro and Wilk’s W test for normality to
large samples, Applied Statistics, 31, 115−124.

Royston, J.P. (1982b), The W test for normality, Applied Statistics, 31, 176−180.

Royston, J.P. (1982c), Expected normal order statistics (exact and approximate),
Applied Statistics, 31, 161−165.



IMSL STAT/LIBRARY Appendix C: References • C-29

Sallas

Sallas, William M. (1988), Some Remarks on Algorithm AS 164. Least squares
subject to linear constraints, Applied Statistics, 37, 484−489.

Sallas, William M. (1990), An algorithm for an LS norm fit of a multiple linear
regression model, American Statistical Association 1990 Proceedings of the
Statistical Computing Section, 131−136.

Sallas and Harville

Sallas, William M., and David A. Harville (1981), Best linear recursive
estimation for mixed linear models, Journal of American Statistical Association ,
76, 860−869.

Sallas, William M., and David A. Harville (1988), Noninformative priors and
restricted maximum likelihood estimation in the Kalman filter, in Bayesian
Analysis of Time Series and Dynamic Models (edited by James C. Spall), Marcel
Dekker, New York, 477–508.

Sallas and Lionti

Sallas, William M. and Abby M. Lionti (1988), Some useful computing formulas
for the nonfull rank linear model with linear equality restrictions, IMSL Technical
Report 8805, IMSL, Houston.

Satterthwaite

Satterthwaite, F.E. (1946), An approximate distribution of estimates of variance
components, Biometrics Bulletin, 2, 110−114.

Savage

Savage, I. Richard (1956), Contributions to the theory of rank order statistics|the
twosample case, Annals of Mathematical Statistics, 27, 590−615.

Scheffe

Scheffe, Henry (1959), The Analysis of Variance, John Wiley & Sons, New York.

Schiffman, Reynolds, and Young

Schiffman, Susan S., M. Lance Reynolds, and Forrest W. Young (1981),
Introduction to Multidimensional Scaling: Theory, Methods, and Applications,
Academic Press, New York.



C-30 • Appendix C: References IMSL STAT/LIBRARY

Schmeiser et al.

Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation via
exponential majorizing functions, Operations Research, 28, 917−926.

Schmeiser, Bruce W., and Ram Lal (1980), Squeeze methods for generating
gamma variates, Journal of the American Statistical Association , 75, 679−682.

Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson Random
Variate Generation, Research Memorandum 81-4, School of Industrial
Engineering, Purdue University, West Lafayette, Indiana.

Schmeiser, Bruce (1983), Recent advances in generating observations from
discrete random variates, in Computer Science and Statistics: Proceedings of the
Fifteenth Symposium on the Interface , (edited by James E. Gentle), North-
Holland Publishing Company, Amsterdam, 154−160.

Schoneman

Schoneman, P.H. (1966), A generalized solution of the orthogonal Procrustes
problem, Psychometrika, 31, 1–10.

Scott

Scott, David W. (1976), Nonparametric probability density estimation by
optimization theoretic techniques, Technical Report 476 131-1, Rice University,
Houston, Texas.

Scott, Tapia, and Thompson

Scott, D.W., R.W. Tapia, and J.R. Thompson (1980), Nonparametric probability
density estimation by discrete penalized-likelihood criteria, The Annals of
Statistics, 8, 820– 832.

Searle

Searle, S.R. (1971), Linear Models, John Wiley & Sons, New York.

Seber

Seber, G.A.F. (1984), Multivariate Observations, John Wiley & Sons, New York.

Shampine

Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications
of the ACM, 18, 179−180.

Siegel

Siegel, Sidney (1956), Nonparametric Statistics for the Behavioral Sciences ,
McGraw-Hill, New York.



IMSL STAT/LIBRARY Appendix C: References • C-31

Silverman

Silverman, Bernard W. (1982), Kernel density estimation using the fast Fourier
transform, Applied Statistics, 31, 93–99.

Silverman, Bernard W. (1986), Density Estimation for Statistics and Data
Analysis, Chapman and Hall, London.

Singleton

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with
minimal storage, Communications of the ACM, 12, 185−187.

Smirnov

Smirnov, N.V. (1939), Estimate of deviation between empirical distribution
functions in two independent samples (in Russian), Bulletin of Moscow
University, 2, 3−16.

Snedecor and Cochran

Snedecor, George W., and William G. Cochran (1967), Statistical Methods, 6th.
ed., Iowa State University Press, Ames, Iowa.

Sposito

Sposito, Vincent A. (1989), Some properties of LS-estimators, in Robust
Regression: Analysis and Applications (edited by Kenneth D. Lawrence and
Jeffrey L. Arthur), Marcel Dekker, New York, 23−58.

Spurrier and Isham

Spurrier, John D. and Steven P. Isham (1985), Exact simultaneous confidence
intervals for pairwise comparisons of three normal means, Journal of the
American Statistical Association, 80, 438−442.

Stablein, Carter, and Novak

Stablein, D.M, W.H. Carter, and J.W. Novak (1981), Analysis of survival data
with nonproportional hazard functions, Controlled Clinical Trials, 2, 149–159.

Stahel

Stahel, W. (1981), Robuste Schatzugen: Infinitesimale Opimalitat und
Schatzugen von Kovarianzmatrizen, Dissertation no. 6881, ETH, Zurich.



C-32 • Appendix C: References IMSL STAT/LIBRARY

Stephens

Stephens, M.A. (1974), EDF statistics for goodness of fit and some comparisons,
Journal of the American Statistical Association , 69, 730−737.

Stirling

Stirling, W.D. (1981), Algorithm AS 164. Least squares subject to linear
constraints, Applied Statistics, 30, 204−212 (see correction, page 357).

Stirling, W.D. (1981), Algorithm AS 169: An improved algorithm for scatter
plots, Applied Statistics, 30, 345—349.

Stoline

Stoline, Michael R. (1981), The status of multiple comparisons: simultaneous
estimation of all pairwise comparisons in one-way ANOVA designs, The
American Statistician, 35, 134−141.

Swan

Swan, A.V. (1969a), Computing maximum-likelihood estimates for parameters of
the normal distribution from grouped and censored data, Applied Statistics, 18, 65
−69.

Swan, A.V. (1969b), Maximum likelihood estimation from grouped and censored
normal data, Applied Statistics, 18, 110−114.

Takane and Carroll

Takane, Yoshio, and J. Douglas Carroll (1981), Nonmetric maximum likelihood
multidimensional scaling from directional ranking of similarities, Psychometrika,
46, 389–405.

Takane, Young, and De Leeuw

Takane, Y., F.W. Young, and J. De Leeuw (1977), Nonmetric individual
differences multidimensional scaling: An alternating least-squares method with
optimal scaling features, Psychometrika, 42, 7–67.

Tanner

Tanner, Martin A. (1983), A note on the variable kernel estimator of the hazard
function from censored data, Annals of Statistics, 11, 994–998.

Tanner and Thisted

Tanner, Martin A., and Ronald A. Thisted (1982), Generation of random
orthogonal matrices, Applied Statistics, 31, 190−192.



IMSL STAT/LIBRARY Appendix C: References • C-33

Tanner and Wong

Tanner, Martin A., and Wing H. Wong (1983), The estimation of the hazard
function from randomly censored data by the kernel method, Annals of Statistics,
11, 989–993.

Tanner, Martin A., and Wing H. Wong (1984), Data-based nonparametric
estimation of the hazard function with applications to model diagnostics and
exploratory analysis, Journal of the American Statistical Association , 79, 123–
456.

Tapia

Tapia, R.A. (1974), A stable approach to Newton’s method for general

mathematical programming problems in RQ, Journal of Optimization Theory and
Applications, 14, 453– 476.

Tapia and Thompson

Tapia, Richard A., and James R. Thompson (1978), Nonparametric Probability
Density Estimation, Johns Hopkins University Press, Baltimore.

Tatsuoka

Tatsuoka, Maurice M. (1971), Multivariate Analysis: Techniques for Educational
and Psychological Research, John Wiley & Sons, New York.

Taylor and Thompson

Taylor, Malcolm S., and James R. Thompson (1986), Data based random number
generation for a multivariate distribution via stochastic simulation,
Computational Statistics & Data Analysis, 4, 93−101.

Thompson

Thompson, James R, (1989), Empirical Model Building, John Wiley & Sons,
New York.

Tucker and Lewis

Tucker, Ledyard, and Charles Lewis (1973), A reliability coefficient for
maximum likelihood factor analysis, Psychometrika, 38, 1–10.

Tukey

Tukey, J.W. (1949), One degree of freedom for nonadditivity, Biometrics, 5, 232.



C-34 • Appendix C: References IMSL STAT/LIBRARY

Tukey, John W. (1962), The future of data analysis, Annals of Mathematical
Statistics, 33, 1−67.

Tukey, John W. (1977), Exploratory Data Analysis, Addison-Wesley Publishing
Company, Reading, Mass.

Turnbull

Turnbull, Bruce W. (1976), The empirical distribution function with arbitrary
grouped, censored, and truncated data, Journal of the Royal Statistical Society ,
Series B: Methodology, 38, 290−295.

Van de Geer

Van de Geer, John P. (1971), Introduction to Multivariate Analysis for the Social
Sciences, W.H. Freeman and Company, San Francisco.

Velleman and Hoaglin

Velleman, Paul F., and David C. Hoaglin (1981), Applications, Basics, and
Computing of Exploratory Data Analysis,  Duxbury Press, Boston.

Verdooren

Verdooren, L.R. (1963), Extended tables of critical values for Wilcoxon’s test
statistic, Biometrika, 50, 177−186.

Walker

Walker, A.J. (1974), New fast method for generating discrete random numbers
with arbitrary frequency distributions, Electronics Letters, 10, 127−128.

Wallace

Wallace, D.L. (1959), Simplified Beta-approximations to the Kruskal-Wallis H-
test, Journal of the American Statistical Association , 54, 225−230.

Weisberg

Weisberg, S. (1985), Applied Linear Regression, 2d ed., John Wiley & Sons,
New York.

Weeks and Bentler

Weeks, David G., and P.M. Bentler (1982), Restricted multidimensional scaling
models for asymmetric proximities, Psychometrika, 47, 201–208.

Wilks

Wilks, S.S. (1935), On the independence of k sets of normally distributed
statistical variables, Econometrika, 3, 309−326.



IMSL STAT/LIBRARY Appendix C: References • C-35

Williams

Williams, J.S. (1962), A confidence interval for variance component, Biometrika,
49, 278− 281.

Woodfield

Woodfield, Terry J. (1990), Some notes on the Ljung-Box portmanteau statistic,
American Statistical Association 1990 Proceedings of the Statistical  Computing
Section, 155–160.

Young and Lewyckyj

Young, F.W., Y. Takane, and R. Lewyckyj (1978), Three notes on ALSCAL,
Psychometrika, 43, 433–435.

Young, Forrest W., and Rostyslaw Lewyckyj (1979), ALSCAL-4 Users Guide,
second edition, Data Analysis and Theory Associates, Chapel Hill, North
Carolina.



IMSL STAT/LIBRARY Product Support • ix

Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use of
the IMSL Libraries. Visual Numerics can consult on the following topics:

• Clarity of documentation

• Possible Visual Numerics-related programming problems

• Choice of IMSL Libraries functions or procedures for a particular problem

• Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting
and debugging of your program.

Consultation
Contact Visual Numerics Product Support by faxing 713/781-9260 or by
emailing:

• for PC support, pcsupport@houston.vni.com.

• for non-PC support, support@houston.vni.com.

Electronic addresses are not handled uniformly across the major networks, and
some local conventions for specifying electronic addresses might cause further
variations to occur; contact your local E-mail postmaster for further details.

The following describes the procedure for consultation with Visual Numerics.

1. Include your serial (or license) number

2. Include the product name and version number: IMSL Numerical Libraries
Version 3.0

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a description
of the problem.
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discrete uniform distribution 1190
dissimilarity matrices 1024
dissimilarity/similarity matrices 1020
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domain of study 927
double precision iii
DOUBLE PRECISION types v
dummy variables 124

E

empirical
quantiles 35
tests 1164

equamax rotation 809
error handling vi, 1327
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informational 1326
severity 1325
terminal 1325

exact probabilities 456
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fast Fourier transforms 615, 723,
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exact test 440
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regression model 176, 182

fixed
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model 396

forecast 615
forecasting 616
forward selection 221, 489
fourth-degree polynomial criterion

825
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distribution 1200, 1202
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Hotelling’s trace 71, 173
Huber’s conjugate-gradient

algorithm 332
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IMACH 1334
image transformation matrix 829
impulse response weights 685
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independence 842
initial estimates 1028
INTEGER types v
interval censoring 946
inverse

CDF method 1208
prediction 94

iterative proportional-fitting
algorithm 466

J
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K

K cluster means 900
k-d tree 1317, 1320
K-dimensional sphere 1225
K-means cluster analysis 887, 900
k-sample trends test 574
Kalman filtering 705
Kaplan-Meier estimates 938, 942,
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analysis 434
statistic 439, 444, 454

Kendall’s rank correlation
coefficient 353, 357

Kendall coefficient of concordance
350

Kendall test 353
kernel

functions 1055, 1062, 1069
method 1044

Kolmogorov-Smirnov
goodness of fit 1117, 1120
test 579, 580, 598, 599

Kruskal-Wallis
statistic 444, 454
test 564

kurtosis 21, 594

L

lack of fit 75
lack of fit test 176, 182, 717
Latin square design 386
least absolute values criterion 293
least squares 79, 98, 237, 615
least-squares estimates 669, 694,

700, 797
left censored 49
letter value summary 29
Lilliefors test 591
linear

discriminant function analysis 863
interpolation 1052
least-squares analysis 527
regression 64, 65, 90, 94, 98, 104,

107, 131, 214, 221, 293, 297,
308

regression model 82, 695
systems 1305

log-linear models 467, 476, 482, 489
logarithmic distribution 1186
logistic linear model 510
loglinear model 463
lognormal distribution 1204

M

machine-dependent constants 1334
Mantel-Haenszel statistics 435
Mantel-Haenszel test 502
Mardia’s multivariate measures 594,

596
matrices 889

band 1342
Hermitian 1344, 1348
symmetric 1343, 1346
triangular 1345

general 1340
Hermitian 1341
printing 1248, 1250, 1253, 1254,

1257
rectangular 1340
symmetric 234, 1340
triangular 1341
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matrix storage modes 1340
maximum 21
maximum likelihood 797
McNemar test 439, 445, 448, 454
mean 20, 37, 49
mean vector 331
measures of association 441, 451
median 61
method of moments 615
method of moments estimates 657,

660
Mill’s ratio 1315
minimax criterion 308
minimum 21
missing value code 1269
missing values viii, 79, 1020, 1339
mixed model 396
model estimates 468, 476
modified Bartlett 623
Monte Carlo applications 1164
moving average parameters 660
multichannel 615

cross-correlation function 618
time series 618, 649, 694, 700

multidimensional
scaling 1035
scaling models 1017, 1028

multinomial distribution 1222
multiple linear regression model 293,

297, 308
multiplicative congruential generator

1161
multiplicative generator 1161
multivariate

data 54
distribution 1218
general linear hypothesis 157, 163,

170
general linear model 67, 69, 117
normal distribution 1223
normal variables 842
time series 618

multiway frequency tables 13

N

naming conventions v
NaN viii, 79, 1269, 1339
nearest neighbor 1320

nearest neighbor discrimination 880
negative binomial distribution 1188
nested random model 409
network algorithm 459
Newton-Raphson iterations 50
Noether test 548
noncentral chi-squared function

1136
nonhomogeneous Poisson process

1236
nonlinear regression 280
nonlinear regression model 71
nonmissing observations 20
nonnormalized spectral density 729,

736, 741
nonparametric

hazard rate estimation 1054, 1061
probability density function

estimation 1040, 1044
nonseasonal ARMA model 615, 669,

680
nonuniform generators 1163
normal

distribution 591
order statistic 1314
populations 37
scores 24

normalized product-moment
matrices 1024

O

oblique
Promax rotation 818
rotation 822

observations 75
one-way

classification model 362, 364
frequency tables 3

order statistics 31
ordinates of the density 1150, 1152
orthogonal

central composite design 248
polynomials 252, 258, 263, 269
Procrustes rotation 812
rotation 809

outliers 201
overflow vi
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P

padded 627
padding 620
page length 1263
page width 1263
pairs test 604
parametric estimates 2, 616
parametric models 985
partial association statistics 482
partial correlations 327
Parzen 624
Pearson chi-squared statistic 439
penalized likelihood method 1040
periodogram 615, 621, 723, 736,

741, 747, 773, 782
permutation 1265, 1266, 1274, 1276
phase spectrum 627
Pillai’s trace 71
pivot 818
Poisson

distribution 47
distribution function 1114
linear model 510
probability function 1115

polar form 627
polynomial

curve 237
model 66
regression model 241, 258, 263

pooled variance-covariance matrix
322

population 992
mean 911, 918, 923, 927, 930, 933
proportion 906, 909

power vector option 818
preliminary estimates 664, 690
prewhitening 627
primary unit 935
principal components 793, 797
printing 1263

matrices 1248, 1250, 1253, 1254,
1257

results vii
probability density function 1052
probability plot 1092
Probit linear model 511
Procrustes rotation 818
product-moment correlation 441,

451
programming conventions vi

proportional fitting 463
proportional hazards model 951
pseudorandom

number generators 579
numbers 1171, 1172, 1173, 1174,

1177, 1181, 1186, 1188, 1189,
1191, 1193, 1194, 1195, 1196,
1197, 1198, 1200, 1202, 1204,
1205, 1208, 1209, 1210, 1212,
1213, 1214, 1215, 1218, 1222,
1223, 1236

order statistics 1229, 1231
orthogonal matrix 1215
permutation 1240
points 1225
sample 1242
sample of indices 1241
two-way table 1227

Q

quadratic discriminant function
analysis 863

quartimax rotation 809
quasi-likelihoods 1054

R

random
model 396, 409
number generators 1165
sample 906, 909, 911, 918, 927,

930
randomized

block design 375
complete block design 568

ranks 24, 26
order statistics 2

real rectangular matrix 1277, 1280
REAL types v
regression

coefficients 152
estimation 911, 918
fit 141
models 70
parameters 131

regressors 210
related observations 572
reordering matrices 1268
replicates 176, 182
reserved names 1349
residuals 201
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response control 90
right censored 50
robust estimate 331
Roy’s maximum root 71, 173
runs up test 601

S

sample correlation functions 615
Savage scores 27
scatter plot 1081
searching 1284, 1286, 1287
second order response surface model

277
serial number 1301
sets of points 1096
Shapiro-Wilk W-test 589
sign test 542
simultaneous confidence intervals

419
single precision iii
skewness 21, 594
sorting 1273, 1274, 1275, 1276,

1277, 1280
Spearman correlation 441, 451
specified weights 269
spectral

analysis 618
density 621, 729, 747, 767, 782
window 623, 729, 736, 757, 767

squares 272
stable distribution 1209
Stahel’s algorithm 332
standard

errors 440, 451
exponential distribution 1196
gamma distribution 1198
normal (Gaussian) distribution

function 1122, 1124
normal distribution 1205, 1208,

1207, 1229
standardized factor residual

correlation matrix 840
starting values 1166
statespace model 706
stationary

stochastic process 677
time series 637, 641, 644, 723,

729, 736, 741, 747, 750, 757

statistics
basic univariate 16
univariate summary 2
for inferences 906, 909, 911, 918,

923, 927, 930, 933
stem-and-leaf plot 1085
stepwise selection 221, 489
stratified

random sample 909
samples 938, 942

stress criteria 1035
Student’s t distribution 1210
Student’s t distribution function

1143, 1145, 1147, 1149
Student-Newman-Keuls method 425
Student-Newman-Keuls multiple

comparison test 424
summary statistics 258
sums of squares 72, 164, 170, 417
survival probabilities 938, 942, 946,

985
symmetric submatrix 233

T

t statistic 40
table lookup method 1181
target matrix 818
tests for randomness 579
tetrachoric correlation coefficient

342
theoretical CDF 1087
tie statistics 555
time 1296

domain methodology 616
event data 951
interval 625
series 614, 615, 633, 649, 694,

700, 716, 723, 729, 736, 741,
747, 750, 757, 767, 773, 782,
1234

transfer
function 615
function model 617, 686, 689

transformations 77, 615
trends in dispersion and location 551
triangular distribution 1212
triplets test 610
Tukey 623
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Tukey normal scores 26
Turnbull’s generalized Kaplan-Meier

estimates 946
two-way

balanced design 375
frequency tables 7
table 59

U

uncentered variables 277
uncertainty coefficient 444
underflow vi
uniform (0, 1) distribution 1171,

1172, 1232
uniform (0, 1) numbers 1165
unique values 207
unit circle 1225
univariate

density 1047
summary statistics 2
time series 618, 716

user
errors 1325
interface iii

V

Van der Waerden normal scores 27
variance 20, 37, 48, 831
variance-covariance matrix 104, 152,

314, 322, 793, 858
varimax rotation 809
version 1301
vertical histogram 1074, 1076
von Mises distribution 1213

W

Weibull distribution 1214
weights 615
Wiener

filter coefficients 700
forecast function 618
forecast operator 677

Wilcoxon
rank sum test 557
signed rank test 544
two-sample test 565

Wilks’ lambda 71, 173
work arrays vii
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