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Printing an onlinefile: Select Print from the File menu to print an onlinefile. The dialog box that opens allows you
to print full text, range of pages, or selection.

Important Note: The last blank page of each chapter (appearing in the hard copy documentation) has been deleted
from the on-line documentation causing a skip in page numbering before the first page of the next chapter, for
instance, Chapter 1 in the on-line documentation ends on page 317 and Chapter 2 begins on page 319.

Numbering Pages. When you refer to a page number in the PDF online documentation, be aware that the page
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Viewing Multiple Online Manuals: Select Open from the File menu, and open the .PDF file you need.
Select Cascade from the Window menu to view multiplefiles.
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Resizing the Bookmark Areain UNIX: Click and drag the button i that appears on the area’ s border at the
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back icon ﬂl on the toolbar. Note: If you zoomed in or out after jumping to a topic, you will return to the
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Let'stry it, click on the following green color text: Chapter 11: Cluster Analysis

If you clicked on the green color in the example above, Chapter 11: Cluster Analysis opened.
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Chapter 8: Time Series Analysis
and Forecasting

Routines

8.1. General Methodology
8.1.1 Transformation of Data

BOX-CoX transformation ..............oeeeiiiiieiiiiee e BCTR 629

Nonseasonal and seasonal difference.........cccocoovvveeveiiveeeennnnn. DIFF 633
8.1.2 Sample Correlation Function

Autocorrelation FUNCLION ..........oiviiie e ACF 637

Partial autocorrelation funNCtioN............cceeevivviiiiiiiiiiiieeeeeee. PACF 641

Cross-correlation fUNCHON .........eeiiiiie e, CCF 644

Multichannel cross-correlation function..........c.cccceevvvvvveerenen. MCCF 649

8.2. Time Domain Methodology
8.2.1 Nonseasonal Autoregressive Moving Average Model

Method of moments estimation of AR parameters ............. ARMME 657

Method of moments estimation of MA parameters............ MAMME 660

Preliminary estimation of parameters ..........ccccceeevveeeeiiieeeennnn. NSPE 664

Least-squares estimation of parameters ...........ccccccceeeennnen. NSLSE 669

Wiener forecast operator estimates............cvvvvvvvvevniieninnnnn. SPWF 677

BoX-JenKins fOreCast........cccvvueiiieeeiiiiiiieie e NSBJF 680
8.2.2 Transfer Function Model

Estimation of impulse response and noise series................. IRNSE 685

Preliminary estimation of parameters .........ccccccceeeiiiiivee e, TFPE 689
8.2.3  Multichannel Time Series

Least-squares estimation of parameters ...........ccccceeeeiieeeennnn. MLSE 694

Estimation of multichannel Wiener filter..........c..ccooeevvvvennn.n. MWFE 700

Kalman filter ........eveeeiie e KALMN 705
8.2.4 Diagnostics

Lack of fit test based on the correlation function ................. LOFCF 716
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8.3. Frequency Domain Methodology
8.3.1 Smoothing Functions

Dirichlet kernel function ..., DIRIC 719
Fejér kernel function .........cccceoviiiiiieeie e FEJER 721
8.3.2 Spectral Density Estimation
Periodogram using fast Fourier transform.............ccccccoeeees PFFT 723
Using spectral window given data...............cccoeeeeeeeeeeeeeeeennn. SSWD 729
Using spectral window given periodogram ..........ccccccovveeeenns SSWP 736
Using weight sequence given data................ccccoeeeeeeeeeeeeen. SWED 741
Using weight sequence given periodogram............ccccoevveeeenne SWEP 747
8.3.3  Cross-Spectral Density Estimation
Cross periodogram using fast Fourier transform.................. CPFFT 750
Using spectral window given data ..........cccoevveeeiiiiineeennnn, CSSWD 757
Using spectral window given cross periodogram ............... CSSWP 767
Using weight sequence given data...........c.occveveeiiiivineeennne. CSWED 773
Using weight sequence given cross periodogram.............. CSWEP 782

Usage Notes

The name of atime seriesroutine is a combination of three sets of one or two
letters. Thefirst set specifies the type of model. The second set identifies the
particular method. The final set specifies the general procedure. The table below
summarizes the naming convention of the time series analysis and forecasting
routines.

The names and meanings of arguments are consistent within a set of routines
pertaining to a particular topic. For example, XCNTR corresponds to the constant

used to center the time series X in all of the spectral analysis routines. Note that

| PRI NT always represents the printing option, the values and possible choices of
output necessarily depend on the given routine. An option argument always

begins with the letteh ,” and a leading dimension argument always begins with
“LD.”

The routines in this chapter assume the time series does not contain any missing
observations. If missing values are present, they should be set to NaN (see the
routineAMACH, page 1334), and the routine will return an appropriate error
message. To enable fitting of the model, the missing values must be replaced by
appropriate estimates.
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Naming Conventions in Chapter 8
Meaning Abbreviation
Nonseasonal ARMA NS*
Transfer Function TF*
Multichannel g
Periodogram o
Cross Periodogram S*
Spectral Density cS*
Cross-Spectral Density
Preliminary *P*
Method of Moments > M
L east-Squares . :_55’*
Box-Jenkins « SW
Spectral Window * \\E*
Weights
Estimation *E
Forecast F
Fast Fourier Transform N EFT
Periodogram “D
Data

The *” represents one or more letters.

General Methodology

A major component of the model identification step concerns determining if a
given time series is stationary. The sample correlation functions computed by
routinesACF (page 637)PACF (page 641)CCF (page 644), andiCCF (page 649)

may be used to diagnose the presence of nonstationarity in the data, as well as to
indicate the type of transformation require to induce stationarity. The family of
power transformations provided by routiB&TR (page 629) coupled with the

ability to difference the transformed data using roufiner (page 633) affords a
convenient method of transforming a wide class of nonstationary time series to
stationarity.

The “raw” data, transformed data, and sample correlation functions also provide
insight into the nature of the underlying model. Typically, this information is
displayed in graphical form via time series plots, plots of the lagged data, and
various correlation function plots. The routines in Chapter 16, “Line Printer
Graphics,” provide the necessary tools to produce the visual displays of this
guantitative information.

The observed time series may also be compared with time series generated from
various theoretical models to help identify possible candidates for model fitting.
The routineRNARM (page 1232) in Chapter 18, “Random Number Generation”
may be used to generate a time series according to a specified autoregressive
moving average model.
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Time Domain Methodology

Once the data are transformed to stationarity, a tentative model in the time
domain is often proposed and parameter estimation, diagnostic checking and
forecasting are performed.

Autoregressive Moving Average Model

A parsimonious, yet comprehensive, class of stationary time series models
consists of the nonseasonal autoregressive moving average (ARVA) processes
defined by

WB)(W, - W) =6(B)A, tDZZ
where
7z={...,-2,-1,0,1,2, ...}
denotes the set of integers, B is the backward shift operator defined by
BkWt =W,_y, M isthe mean of W,
@B) =1-@B- @B - ...-@B" p=0
6(B)=1-6B-0,8"-... -9, q=0
The model is of order (p, q) and isreferred to as an ARMA(p, g) model.
An equivalent version of the ARVA(p, ) model is given by
@BW, =8, +8(B)A, tO0ZZ

where 6, is an overall constant defined by

p
B = H(l— > o J
=1
See Box and Jenkins (1976, pages 92—-93) for a discussion of the meaning and

usefulness of the overall constant.

If the “raw” data {Z,} are homogeneous nonstationary, then differencing induces

stationarity and the model is called autoregressitegrated moving average
(ARIMA). Parameter estimation is performed on the stationary time series

W, =0,
where
0= (-B)¢
is the backward difference operator with period 1 and aidér 0.

Typically, routineNSPE (page 664) is first applied to the transformed data to
provide preliminary parameter estimates. These estimates are used as initial
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valuesin an estimation procedure. In particular, routine NSLSE (page 669) may
be used to compute conditional or unconditional |east-squares estimates of the
parameters, depending on the choice of the backcasting length. Parameter
estimates from either NSPE or NSLSE may be input to routine NSBJ F (page 680)
to produce forecasts with associated probability limits. The routines for
preliminary parameter estimation, least squares parameter estimation, and
forecasting follow the approach of Box and Jenkins (1976, programs 2—4,
pages 498-509).
Transfer Function Model
Define {x;} and {y;} by
_ X -fx d=0
"Tlod%, d>0
and
_ Y% -fy d=0
“Tlody, dso
where {X;} and {Y} for t = (-d + 1), ..., n represent the undifferenced input and
undifferenced output series with

Hx and fy
estimates of their respective means. The differenced input and differenced output

series may be obtained using the roubheF (page 633) following any
preliminary transformation of the data.

The transfer function model is defined by
Y, =8 (B)w(B)X, s
or equivalently,

y, =8 (B)w(B)X._p + N,

wheren, = D‘[N, for d = 0, and the left-hand side and right-hand side transfer
function polynomial operators are, respectively,

3B)=1-3B-5B -...- 3B’

W(B) =w - wB-wB - ... ~wB’

withr = 0,520, andb = 0. The noise procesN{} and the input process{} are
assumed to be independent, with the noise process given by the ARIMA model

@«B)n, = B(B)A,
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where
@B) =1-@B- @B - ...-@B"
6(B)=1-6B-6,8"-... -9,
withp=0andg=0.

The impulse response weights{v,} of the transfer function
v(B) =3 (B)w(B) =V, + VB + V,B* + ...

and the differenced noise series{n;} are estimated using routine | RNSE
(page 685). Preliminary estimates of the transfer function parameters and noise
model parameters are computed by routine TFPE (page 689).

Multichannel Time Series

A multichannel time series X is simply a multivariate time serieswhose channels
correspond to interrelated univariate time series. In this setting, the model-
building processisalogical extension of the procedures used to identify,
estimate, and forecast univariate time series. In particular, the multichannel cross-
correlation function computed by routine MCCF (page 649) may help identify a
tentative model. A particular regression model may be fit using routine M_SE
(page 694), with the Wiener filter estimated using routine MAFE (page 700). The
Wiener forecast function for a single channel may be obtained by routine SPWr
(page 677). The state space approach to fitting many time domain modelsis
available through routine KALMN (page 705).

Frequency Domain Methodology

An alternative method of time series analysis with much less emphasis on the
form of the model may be performed in the frequency domain.

Spectral Analysis
Let {X(t)} denote a continuous-parameter stationary process with mean
H = E[X(1)]
and autocovariance function
a(k) = cov{ X(t), X(t + K)} = E{[X(t) —p][X(t+ k) -]} kOR
Similarly, let {X;} denote a discrete-parameter stationary process with mean
H=E[X]
and autocovariance function
(k) = cov{ X, Xuid = E{[X, = W][Xeux — 11} kOzz

Note that 6(0) = 0” is the variance of the process.
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The routines for the spectral analysis of time series are concerned with the
estimation of the spectral density of a stationary process given afinite realization
{X} fort=1, ..., nwheren = NOBS. This realization consists of values sampled
at equally spaced time intervals in the continuous-parameter case or of values
observed consecutively in the discrete-parameter case. Hence, we need only
develop methodology concerned with the spectral analysis of discrete-parameter
stationary processes and later account for the time sampling in the continuous-
parameter model.

The nonnormalized spectral density h(w) and the autocovariance function o(k) of
the stationary process form a Fourier transform pair. The relationship in the
continuous-parameter case is given by

h(w) = %T [© o(ke™*dk

T[ .
(k) = [ h(w)e™*dw
Tt
Similarly, the normalized spectral density f(w) and the autocorrelation function p

(K) = a(k)/a(0) of the stationary process form a Fourier transform pair. The
relationship in the continuous-parameter case is given by

fw) = %

1 oo N
= - j_m p(k)e gk

p(k) = J'_T[n f (00)e'“* doo

The discrete-parameter analogs of the above equations involve summation over k
instead of integration over dk. Also, the normalized spectral density f(w) satisfies

fn f(w)dw =1

Discrete Fourier Transform. The discrete Fourier transform of the sequence
{z} fort=1, ..., Nisdefined by

N .
{(wp) = Z Zie
t=1
over the discrete set of frequencies
w,=—— p=0zx1..,£[N/2]

where the function [ Odetermines the greatest integer lessthan or equal tor. An
aternative representation of {(w,) in terms of cosine and sine transformsiis
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{(ay) = a(w,) —iB(wy,)

where

N
a(wp) = Z Zicos(wpt)
t=1

N
B(wp) = Y Zisin(wpt)
t=1

The fast Fourier transform algorithm implemented in the IMSL
MATH/LIBRARY routine FFTCF is used to compute the discrete Fourier
transform. All of the frequency domain routines that output a periodogram utilize
the fast Fourier transform algorithm.

Centering and Padding. Consider the centered and padded realization
{Xi}
fort=1, ..., Ndefined by
~ Xt - l’:l t = l, ooy n
X, = _ )
0 t=(n+1,...,N

whereN = (n + n,) and

(= XCNTR
is
U K known
A~ n
p=11gy &)
— M unknown

Centering the data simplifies the formulas for estimation of the periodogram and
spectral density. The addition of n, = NPAD zeros to the end of the dataiis called
padding. This procedure increases the effective length of the datafromnto N in
an effort to

e increase the computational efficiency of the Fourier transformation of the series
by providing a more suitable series length N (Priestley 1981, page 577).

«  obtain the periodogram ordinates required to give the exact expression of the
sample autocovariances in terms of the inverse Fourier transformation of the
periodogram (Priestley 1981, page 579).

*  produce periodogram ordinates over a more refined range of frequencies .

Any desired filtering, prewhitening, or data tapering should be performed prior to
estimating the spectral density. The resulting estimate may be adjusted
accordingly.
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Periodogram. The periodogram of the sample sequence {X;},t=1, ...,n
computed with the centered and padded sequence

{X}, t=1,..,N
is defined by
2

N _
long(@p) =K tZlXte “r = K‘Zi(‘*’p)‘z

whereK is the scale factor
2 :
— for the usual periodogram

1 for the modified periodogram
2™

The scale factor of the usual periodogram relates the ordinates to the sum of
squares of

X -l

(Fuller 1976, pages 276-277). If the first ordinate (correspondipg-t0) is
replaced by one-half of its value, themifs odd, the sum of théN/2(0+ 1
ordinates corresponding o= 0, 1, ...,[IN/2[is

N 2 .
— 3 (X )’
=i

The modified periodogram is an asymptotically unbiased estimate of the
nonnormalized spectral density function at each frequep¢riestley 1981,
page 417). The argumenPVER is used to specify the version of the
periodogram.

Spectral Density. The relationship between the sample autocovariance function
and estimate of the nonnormalized spectral density function is similar to the
theoretical situation previously discussed.

Define the sample autocovariance function ofXpprocess by

n-|K
6(K) =% tZl{[xt = A X —ﬁ]} k=0,£1, ..., +(n-1)
where
Q
is given by Equation 2. Note that
6(0) = 62
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is the sample variance. The nonnormalized spectral density may be estimated
directly from the sample autocovariances by

- 1 @ A 1ok
hw=-- 5 AKd(ke
k==-(n-1)
The sequence of weights{A,,(k)} called the lag window decreases at arate
appropriate for consistent estimation of h(w).

An algebraically equivalent method of estimating h(w) consists of locally
smoothing the modified periodogram in a neighborhood of w. Let

In,N,)A(~

denote the modified periodogram of the centered and padded realization

{Xi}
defined in Equation 1. Then, an estimate of the nonnormalized spectral density is
given by

o vz
h(w):_ g ln’N,)Z(wp)Wn(w_wp) ©)
p=-[N/2]

where
1 (D) y
W@ == 5 An(ke™
T="tm-1)

The spectral window W,,(6) is the discrete Fourier transform of the lag window
A,(K). We note that for N = 2n - 1, the modified periodogram and
autocovariances,

I (0p) and 6(k)

n,2n—1,)g(~
form the discrete Fourier transform pair
n-1

1 i
g @) =2 > 6(Qe ™, p=0+1.. +(n-1)
k=—(n-1)
Ak_2n n—1I ok o s
W=y ;Dn,N,f((wp)e , k=0,%1...,+(n-1)
p:—n_

Thisrelationship is exact and recoversthe (n — 1) sample autocovariances only
when n, = (n — 1) zeros are padded, since then [IN/200= (n - 1).

Another method of estimating h(w) is given by
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h(w) =y wil | 3(@p)) @
J

where

2 2mp(@) i)
PsJ N
and p(w) istheinteger such that w), , is closest to w. The sequence of mweights
{wj} forj=~[m2], ..., (m- [m/2] - 1) is fixed in the sense that they do not
depend on the frequenay, and satisfyy w; = 1. Priestley (1981, page 581)
notes that if we write

w

_2n
w; —an(w—oop,j)

then Equation 4 and Equation 3 are quite similar except that the weights {
depend orw. In fact, ifp(w) = 0 andm = N, these equations are equivalent.
Given estimates

h() and 6(0)
the estimate of the normalized spectral density is given by
h(w)
6(0)

This follows directly from the definition dfw).

f(w) =

Spectral Window. The following spectral windowg/,(6) are available in
routines containing the argumergwWeER.

Modified Bartlett
2

W, (6) = } =Fu(6)

1 {s‘n(l\/le/Z)
21M | sin(8/2)

whereF,, (8) corresponds to the Fejér kernel of orbier

Daniell
M/2t -TYM <6< TUM
0 otherwise

W, (6) ={

Tukey

W, (6) = aDy (9 —%) +(1-2a)Dy, (6) + aD, (e +%)
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for 0 < a<0.25, where D,,(8) represents the Dirichlet kernel. The Tukey-

Hanning window is obtained when a = 0.23, and the Tukey-Hamming window is
obtained when a = 0.25.

Parzen

o1t 2 2 .
W,(8) = S Fy2(6)] {1—— n2(6/2)}
M 3
where M iseven. If M isodd, then M + 1 isused instead of M in the above
formula.

Bartlett-Priestley

3M MB)?
w@ =] () } A<M
0 6> Ty M

The window parameter M isinversely proportional to the bandwidth of the

spectral window. Priestley (1981, pages 520-522) discusses a humber of
definitions of bandwidth and concludes that the particular definition adopted is of
little significance. The choice of spectral window bandwidth, and hence, the
choice ofM, is a more important problem. One practical choicéfas the last

lag at which the estimated autocorrelation function

p(k)
is significantly different from zero, i.e.,
p(k) = Ofor k> M

The estimated autocorrelations and their associated estimated standard errors can
be computed using routimeF (page 637). See Priestley (1981, pages 528-556)
for alternative strategies of determining the window paran&ter

Since the spectral window is the Fourier transform of the lag window, we estimate
the spectral density function by application of a particular spectral window to the
periodogram. Note thadl is directly related to the rate of decay of the lag

window.

TimeInterval. Consider the continuous-parameter stationary procgsg énd
let {X;} denote a realization of this process sampled at equal time intétvals
TI NT. Although the spectral density Xft) extends over the frequency range,(
™M), the spectral density of; is unique over the restricted frequency rangeAt,
TUAt). This problem of aliasing @pectrum folding is inherent to spectral
analysis, see Blackman and Tukey (1958) and Priestley (1981) for further
discussion.
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In practice, the { X;} realization is treated as a discrete parameter process with
spectral density

h} ()

defined over the frequency range (=1, 7). This corresponds to setting At = 1. The
transformation of the spectral density to the restricted frequency range
(-TUAt, TUAL) isgiven by

hy () = Athl (@A) | < T/ At

Priestley (1981, pages 507-508) considers a method of chassiAgimilar
transformation is performed for the estimated spectral density.

Frequency Scale. The argumenitFSCAL is used to specify the scale of the
frequencies at which to estimate the spectral densityNFlfiequencies are
contained in the argument

Approximate Confidence Intervalsfor Spectral Ordinates. An approximate (1

- a)100% confidence interval for the value of the nonnormalized spectral density
functionh(w) at a particular frequenay is given by the formula (Priestley 1981,
page 468)

DF x h(w) DF x h(w)

2 2
XDF1-a/2  XDFa/2

RoutineCH I N (page 1132) using argumént 1 - a/2 andP = a/2 can be used
to compute the percentage point

2
XDF,P

Also, routineCHI I N should be used with degrees of freed@f) (which depend
upon the version of the spectral winddv({WER), as given in the following table
(Priestley 1981, page 467).

| SWVER Window DF

1 Modified Bartlett M

2 Daniell /M

3 Tukey-Hamming 2.5164M

4 Tukey-Hanning 2 2[@3M

5 Parzen 3.7086 1M
6 Bartlett-Priestley 14/M

If one of the windows above is not specified and the user provides relative
weights, such as with routit8\ED (page 741), the weights are normalized to sum
to one in the actual computations. Givemalm odd) normalized weights;,

then for 2tm/20n < w < (1 — 2[/2[In) the degrees of freedom for a

confidence interval oh(w) are given by Fuller (1976, page 296)
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i={m2) Vi

Frequently, confidence intervals on the In h(w) are suggested because this
produces fixed width intervals. Theinterval is

DF

Inﬁ(u))+ln2L,lnﬁ(w)+ln ZDF
XDF 1-a/2 XDF,a/2

Cross-Spectral Analysis

Theroutines for cross-spectral analysis are concerned with the estimation of the
crossspectral density of two jointly stationary processes given finite realizations
{X} and{Y} fort =1, ...,n. These realizations consist of values sampled at

equally spaced time intervals in the continuous-parameter case or of values
observed consecutively in the discreteparameter case. Again, we develop
methodology concerned with the cross-spectral analysis of discrete-parameter
stationary processes and later account for the time sampling in the continuous-
parameter model.

Let py andoyy(k) denote the mean and autocovariance function oXtheocess;
similarly, defineuy andayy(k), with respect to th¥, process. Define the cross-
covariance function betweéf andy, by

Oxy(K) = CoV{[X, = Ml Yo — ]} kKD ZZ

Then, the nonnormalized cross-spectral dergiyw) and the cross-covariance
functionoyy(K) form a Fourier transform pair. The relationship in the continuous-
parameter case is given by

1 (e -
hyy (W) = E_[J‘_mcxv(k)e Xk

Oxy(K) = j_nnhxv (w)e'“*dow

Similarly, the normalized cross-spectral denkifw) and the cross-correlation
functionpyy(k) = oy y(K)/[0xx(0)oyy(0)] form a Fourier transform pair. The
relationship in the continuous-parameter case is given by

__ hyy(w) _ 1 —icok
@)= @~ 2P (e

Pxy (k) = _[_T[n iy (w)e'*do

The discrete-parameter analogs of the above equations involve summatikn over
instead of integration ovelk.
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The cross-spectral density function is often written in terms of real and imaginary
components, since in general, the function is complex-valued. In particular,

hyr(@) = Cxy(w) — igyy(w)
where the cospectrum and quadrature spectrum of the X, and Y, process are
respectively defined by

1 foo
O (@) = o | 310y (K) + Oy (-K)lcoskwdk

1 (= .
Uy (@) = 5[ 31030 (K) = 0y (K)Isinkeock
The polar form of hyy(w) is defined by

hyy () = 0 xy (0)e'®x ()

where the cross-amplitude spectrumis

12
A xy (@) =|hyy (W) = [C>2<Y (@) +a%y (00)]
and the phase spectrumis

Py (W) = tan =0y (W) / Cxy (W)]
The coherency spectrum s defined by
hyy (@)
[y (@)hyy (W)]*2

For a given frequency w, the coherency [wyy(w)| lies between zero and one,

inclusive, and reflects the linear relationship between the random coefficients.
See Priestley (1981, pages 654—661) for additional information concerning the
interpretation of the components of the cross-spectral density.

Wy (W) =

Centering and Padding. The centered and padded realizations
{Xi} and {¥,]
are defined as in Equation 1 with centering constants
ﬁx = XCNTR and ﬁY =YCNTR

Any desired filtering, prewhitening, or data tapering should be performed prior to
estimating the crossspectral density. The resulting estimate may be adjusted
accordingly.

Cross Periodogram. The cross periodogram of the sample sequergsfd
{Y}, t=1, ...,n computed with the padded sequences
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{X} and {¥]

t=1, ...,Nis defined by

N . N .
S —iwgt ~ t
oy @) - [zl e J[zv ] KL @)
t= t=
whereK is the scale factor

= for the usual cross periodogram

K =
1 for the modified cross periodogram
2m

The scale factor option is maintained for compatibility with the spectral routines.
The argument PVER is used to specify the version of the periodogram used to
compute the cross periodogram.

Cross-Spectral Density Estimation. The relationship between the sample cross-
covariance function and estimate of the nonnormalized cross-spectral density
function is similar to the theoretical situation previously discussed.

Define the sample cross-covariance function betweek, thiedY, process by

z{ x[ Y —Av]} k=01...(n-1)
Oxy (K) = 1 n
o 3 XM Av]E k=22 - (n-D)
t=1-k

The nonnormalized cross-spectral density may be estimated directly from the
sample cross-covariances by

- 1 (n-1) . Ciek
hyy (W) = — z A (K)o xy (K)e
k=—(n-1)

The sequence of weight {k)} called thelag window decreases at a rate
appropriate for consistent estimationhgf(c).

An algebraically equivalent method of estimatipg(w). consists of locally
smoothing the modified cross periodogram in a neighborhoad loét

LoNXY

denote the modified cross periodogram of the centered and padded realizations
{Xi} and{;}

Then, an estimate of the nonnormalized cross-spectral density is given by
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. o LN2J
hXY(w) - g InlN,)'Z\?(wp)Wn(w_wp) ©®)
p=-[N/2]

where W,,(0) is the spectral window.
Another method of estimating hyy(w) is given by

Ay (@) = ij Longy(@pj)  (©
j

where w, ;, p(w), and the weights{w;} are as defined in the univariate setting.
Given estimates
hyy (00), 6 xx (0),and G yy (0)
the estimate of the normalized cross-spectral density is given by
hyy (@)
xx (0)0 vy (0)

Thisfollows directly from the definition of fyy (w).

fXY (W) = 5

BCTR/DBCTR (Single/Double precision)

Perform aforward or an inverse Box-Cox (power) transformation.

Usage
CALL BCTR (NOBS, Z, IPRINT, IDIR PONER, SH FT, X)

Arguments

NOBS — Number of observations i (Input)
NOBS must be greater than or equal to one.

Z — Vector of lengtiNOBS containing the data. (Input)
IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Printz and the transformed dat4,

IDIR — Direction of transformation option. (Input)

IDIR Action
0 Forward transformation.
1 Inverse transformation.

POWER — Exponent parameter in the power transformation. (Input)

IMSL STAT/LIBRARY Chapter 8: Time Series Analysis and Forecasting « 629



SHIFT — Shift parameter in the power transformation. (Input)
SHI FT must satisfy the relation miz(f)) + SH FT > 0.

X — Vector of lengtiNOBS containing the transformed data. (Output)
If Z is not needed, thexandz can occupy the same storage locations. In this
case] PRI NT = 1 will print two identical vectors.

Comments
1. Informational errors
Type Code
4 1 For the specified forward transformation, the
minimum element oX will underflow.
4 2 For the specified forward transformation, the
maximum element of will overflow.
4 3 For the specified inverse transformation, the maximum
element oK will overflow.
4 4 For the specified inverse transformation, the minimum
element o will underflow.
2. The forward transformation is performed prior to fitting a model.

Differencing of the data is done after the data are transformed.

3. The inverse transformation is performed on results such as forecasts and
their corresponding probability limits.

Algorithm

RoutineBCTR performs a forward or inverse Box-Cox transformation of the
n = NOBS observationsZ} for t=1, 2, ...,n.

The forward transformation is useful in the analysis of linear models or models
with nonnormal errors or nonconstant variance (Draper and Smith 1981,

page 222). In the time series setting, application of the appropriate transformation
and subsequent differencing of a series may enable model identification and
parameter estimation in the class of homogeneous stationary autoregressive-
moving average models. The inverse transformation may later be applied to
certain results of the analysis, such as forecasts and probability limits of forecasts,
in order to express the results in the scale of the original data. A brief note
concerning the choice of transformations in ARIMA models is given in Box and
Jenkins (1976, page 328). The class of power transformations discussed by Box
and Cox (1964) is defined by

A _
X, = CRLEE
In(Z, +§) A =0

whereZ+ & > 0 for allt. Since
A
. (4 + -1
lim (Z+8)" -1
A

—

=In(Z; +§)
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the family of power transformations is continuous.

Let A = POAER and & = SHI FT; then, the computational formula utilized by
routine BCTRis given by

¥ = (Z,+&* A#0
" linz, +8) A=0

where Z+ & > 0 for al t. The computational and Box-Cox formulas differ only in

the scale and the origin of the transformed data. Consequently, the general
analysis of the datais unaffected (Draper and Smith 1981, page 225).

Theinverse transformation is computed by
zh -8 Az0
exp(Z;)-¢ A=0

where{Z;} now represents the result computed by BCTR for aforward
transformation of the original data using parameters A and €.

Example 1

Consider the Airline Data (Box and Jenkins 1976, page 531) consisting of the
monthly total number of international airline passengers from January 1949
through December 1960. Routine BCTRis used to compute a forward Box-Cox
transformation of the first 12 observations. In the transformation SHI FT and
POVER are each set to zero, which corresponds to taking natural logarithms of the
data.

I NTEGER | PRI NT, NOBS
PARAMETER (| PRI NT=1, NOBS=12)

C
| NTECER IDIR, NCOL, NROW
REAL PONER, SHI FT, X(NOBS), Z(144)
EXTERNAL BCTR, GDATA
C Airline Data
CALL GDATA (4, 0, NROW NCO., Z, 144, 1)
C Forward direction
IDDR=0
C Transformati on paraneters
POAER = 0.0
SH FT = 0.0
C Conput e natural |ogarithmns of
C first 12 observations in Z
CALL BCTR (NOBS, Z, IPRINT, ID R POAER, SH FT, X)
C

END

Output

CQut put from BCTR

| z

1 112. 00

X

4.7185
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[@X@)

[EEY

118. 00 4.7707
132. 00 4.8828
129. 00 4. 8598
121. 00 4.7958
135. 00 4.9053
148. 00 4.9972
148. 00 4.9972
136. 00 4.9127
119. 00 4.7791
104. 00 4.6444
118. 00 4. 7707

Example 2

The estimated standard errors of forecasts (lead times 1 through 12 at origin July
1957) using the transformed Airline Data (Box and Jenkins 1976, page 311) may
be converted back to their original scale using routine BCTR. The backward Box-
Cox transformation with SHI FT and POVNER each set to zero corresponds to using
the exponential function.

INTEGER  NOBS
PARAVETER ( NOBS=12)

| NTEGER IDIR, | PRINT
REAL POVWER, SD(NOBS), SH FT, X(NOBS)
EXTERNAL BCTR, SSCAL
St andard errors of forecasts
DATA SD/3.7, 4.3, 4.8, 5.3, 5.8, 6.2, 6.6, 6.9, 7.2, 7.6, 8.0,
& 8.2/

CALL SSCAL (NOBS, 1.0E-02, sD, 1)
Backward direction

IDR=1
Transformati on paraneters

POAER = 0.0

SHFT = 0.0
Transform standard errors from
|l og scale to original scale

IPRINT = 1

CALL BCTR (NOBS, SD, IPRINT, IDR POXR, SH FT, X)

END

Output
Qut put from BCTR
z X

0. 037000 1.0377

0. 043000 1.0439

0. 048000 1. 0492

0. 053000 1. 0544

0. 058000 1. 0597

0. 062000 1. 0640

0. 066000 1.0682

0. 069000 1.0714

0. 072000 1.0747

0. 076000 1.0790

QOWONOOUTPA~,WNE—
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11 0. 080000
12 0. 082000

1.0833
1. 0855

DIFF/DDIFF (Single/Double precision)

Difference atime series.

Usage
CALL DI FF (NOBSZ, Z, NDIFF, IPER, 10ORD, |IPRINT,IMSS,

NLOST, NOBSX, X)
Arguments

NOBSZ — Number of observations in the time seées(Input)
NOBSZ must be greater than or equal to one.

Z — Vector of lengtiNOBSZ containing the time series. (Input)

NDIFF — Number of differences to perform. (Input)
NDI FF must be greater than or equal to one.

IPER — Vector of lengtiNDI FF containing the periods at whizhis to be
differenced. (Input)
The elements dfPER must be greater than or equal to one.

IORD — Vector of lengtiNDI FF containing the order of each difference given in
| PER. (Input)
The elements dfORD must be greater than or equal to zero.

IPRINT — Printing option. (Input)

I PRI NT Action

0 No printing is performed.

1 Print the number of observations lost because of differe&Acitige
number of observations in the differenced sexjeand the differenced
seriesx.

IMISS — Missing value option. (Input)

IMSS Action
0 Include missing values
1 Exclude missing values from

NLOST — Number of observations lost because of differencing the time geries
(Output)
NLOST =1 PER(1) * | ORD(1) + ... + | PER(NDI FF ) * | ORD(NDI FF).

NOBSX — Number of observations in the differenced sexiegOutput)
NOBSX =NOBSZ — I M SS* NLOST.

X — Vector of lengttNOBSX containing the differenced series. (Output)
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Comments
1 Automatic workspace usageis

DI FF  NOBSZ units, or
DDI FF 2 * NOBSZ units.

Workspace may be explicitly provided, if desired, by use of
D2FF/DD2FF. The referenceis

CALL D2FF (NOBSZ, Z, NDIFF, |PER, |1ORD, |PRINT,
IMSS, NLOST, NOBSX, X, XWK)

The additional argument is
XWK — Work vector of length equal 0BSZ.

2. A value is considered to be missing if it is not itself in the data set or if it
is the result of an operation involving missing value(s). In differencing,
missing values occur at the beginning of the differenced seriesxihce
=2Zz(i) - z(i - K) is not defined fok greater than or equal io

Algorithm

RoutineDI FF performsm = NDI FF successive backward differences of peged
| PER(i) and orded,; =1 ORD(i) fori = 1, ...,mon then = NOBSZ observations
{Z}fort=1,2,...n

Consider the backward shift operaBgiven by
B¥z,=7,,, forallk
Then, thebackward difference operator with periodsis defined by
0,Z=01-BYZ,=2-2.,520

Note thatB*Z, and[],Z, are defined only for= (s+ 1), ...,n. Repeated
differencing with periodis simply

d
d! .
0§z, =(1-8%2 = y ———(-1)BYZ,
) Jzo jld-j)
whered = 0 is the order of differencing. Note that
0S8z,

is defined only fot = (sd + 1), ...,n.
The general difference formula used in roudh€F is given by
{NaN t=14...,n_
Xt =1q%pnd%.. g _
Dlesz”'Dstt t=n_+1...,n
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| NTEGER
PARAMETER

| NTEGER
&

REAL

EXTERNAL

wheren; = NLOST represents the number of observations “lost” because of
differencing and NaN (not a number) represents the missing value code. See the
routineAMACH (page 1334) in the “Machine-Dependent Constants” section of the
Reference Material. Note that = 3 ;5d,.

A homogeneous stationary time series may be arrived at by appropriately
differencing a homogeneous nonstationary time series (Box and Jenkins 1976,
page 85). Preliminary application of an appropriate transformation followed by
differencing of a series may enable model identification and parameter estimation
in the class of homogeneous stationary autoregressive-moving average models.

Example

Consider the Airline Data (Box and Jenkins 1976, page 531) consisting of the
monthly total number of international airline passengers from January 1949
through December 1960. RoutibeFF is used to compute

X =00 00X = &= 2Z3) = (2 —Z145)

For the first invocation obl FF with I M SS=0,X;, X,, ..., X3 are set to the
missing value code (NaN) and the equation is applieti#$dt4, 15, ..., 24. For
the second invocation ®f FF with | M SS = 1, the missing values are excluded
from the output array containing the differenced series.

I PRI NT, NDI FF, NOBSZ
(1 PRINT=1, NDI FF=2, NOBSZ=24)

IMSS, |ORD(NDIFF), |PER(NDIFF), NCOL, NLOST, NOBSX,
NROW
X(NOBSZ), Z(144)
Dl FF, CDATA
Peri ods of differencing

DATA | PER/ 1, 12/

Orders of differencing

DATA IORD/ 1, 1/

Airline Data

CALL GDATA (4, 0, NROW NCOL, Z, 144, 1)

IMSS =0
CALL DI FF
&

IMSS =1
CALL DI FF
&

END

Nonseasonal and seasonal difference
first 24 observations in Z

I ncl ude mssing values in result X
(NOBSz, Z, NDIFF, IPER 1ORD, |IPRINT, IMSS, NLOST,
NOBSX, X)
Excl ude missing values in result X

(NOBSzZ, Z, NDIFF, IPER, 1ORD, IPRINT, IMSS, NLOST,
NOBSX,

e

Output

CQut put from DI FF/ D2FF
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NLOST = 13
NOBSX = 24

[ Z(1) X(1)
1 112.00 NaN
2 118.00 NaN
3 132.00 NaN
4 129.00 NaN
5 121.00 NaN
6 135.00 NaN
7 148.00 NaN
8  148.00 NaN
9 136.00 NaN
10  119.00 NaN
11 104.00 NaN
12 118.00 NaN
13 115.00 NaN
14 126.00  5.000
15  141.00 1. 000
16  135.00 -3.000
17 125.00 -2.000
18  149.00  10.000
19 170.00  8.000
20 170.00  0.000

21 158. 00 0. 000
22 133. 00 -8.000
23 114. 00 -4.000
24 140. 00 12. 000

Cut put from DI FF/ D2FF

NLOST = 13
NOBSX = 11

Z(1) X(1)

112.00 . 000

|

1 5

2 118. 00 1. 000
3 132. 00 -3.000
4 129. 00 -2.000
5 121. 00 10. 000
6 135. 00 8. 000
7 148. 00 0. 000
8 148. 00 0. 000
9 136. 00 -8.00
10 119. 00 -4.000
11 104. 00 12. 000
12 118. 00

13 115. 00

14 126. 00

15 141. 00

16 135. 00

17 125. 00

18 149. 00

19 170. 00

20 170. 00

21 158. 00

22 133. 00

23 114. 00

24 140. 00
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ACF/DACF (Single/Double precision)

Compute the sample autocorrel ation function of a stationary time series.

Usage
CALL ACF (NOBS, X, |IPRINT, |SEOCPT, |MEAN, XMEAN, MAXLAG

ACV, AC, SEAQ
Arguments

NOBS — Number of observations in the time sedes (Input)
NOBS must be greater than or equal to two.

X — Vector of lengtiNOBS containing the time series. (Input)

IPRINT — Printing option. (Input)

I PRI NT Action

0 No printing is performed.

1 Print the mean and variance.

2 Print the mean, variance, and autocovariances.

3 Print the mean, variance, autocovariances, autocorrelations, and standard

errors of autocorrelations.

| SEOPT — Option for computing standard errors of autocorrelations. (Input)

| SEOPT Action

0 No standard errors of autocorrelations are computed.

1 Compute standard errors of autocorrelations using Bartlett’s formula.
2 Compute standard errors of autocorrelations using Moran’s formula.

IMEAN — Option for computing the mean. (Input)

| MEAN Action
0 XMEAN is user specified.
1 XMEAN is set to the arithmetic meanXf

XMEAN — Estimate of the mean of time senes (Input, ifl MEAN = O; output,
if | MEAN = 1)

MAXLAG — Maximum lag of autocovariances, autocorrelations, and standard
errors of autocorrelations to be computed. (Input)
MAXLAG must be greater than or equal to one and lesSNbB®

ACV — Vector of lengtiVAXLAG + 1 containing the variance and
autocovariances of the time senes (Output)

ACV(0) contains the variance of the setke®\CV(K) contains the autocovariance
of lagk wherek =1, ...,MAXLAG.

AC — Vector of lengthVAXLAG + 1 containing the autocorrelations of the time
seriesX. (Output)
AC(0) = 1.AC(K) contains the autocorrelation of lagvherek = 1, ..., MAXLAG.
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SEAC — Vector of lengthvAXLAG containing the standard errors of the
autocorrelations of the time seriés (Output)

The standard error @C(k) is SEAC(K) wherek = 1, ...,MAXLAG. If | SECPT = 0,
thenSEAC may be dimensioned of length 1.

Algorithm

RoutineACF estimates the autocorrelation function of a stationary time series
given a sample af = NOBS observations X} for t =1, 2, ...,n.

Let
(= XMEAN
be the estimate of the mearnf the time seriesX;} where
U, p known
= 1 n
H —Z X; | unknown
=

The autocovariance functiar(k) is estimated by

1 n-k

G(k):HZ(xt_u)(xt+k_u)’ k:0,:L..., K
=1
whereK = MAXLAG. Note that
6(0)

is an estimate of the sample variance. The autocorrelation fup¢kipis
estimated by

6(K)

50)’ k=01...,K

p(k) =

Note that

p(0)=1
by definition.

The standard errors of the sample autocorrelations may be optionally computed
according to argumemtSECPT. One method (Bartlett 1946) is based on a general
asymptotic expression for the variance of the sample autocorrelation coefficient
of a stationary time series with independent, identically distributed normal errors.
The theoretical formula is

var{p(K)} = % 3 [p%(0) + p(i ~ K)p(i +1) ~ 4p()p(k)p(i ~ k) + 207 (i)p (k)]

j=—0c0

where
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| NTEGER

p(k)
assumes [ is unknown. For computational purposes, the autocorrelations p(k) are
replaced by their estimates

p(k)
for |k < K, and the limits of summation are bounded because of the assumption
that p(k) = O for al k such that k| > K.

A second method (Moran 1947) utilizes an exact formulafor the variance of the
sample autocorrelation coefficient of arandom process with independent,
identically distributed normal errors. The theoretical formulais

var[p(k)} = n(”n;fz)

where 1 is assumed to be egqual to zero. Note that this formula does not depend on
the autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Routine ACF computes the estimated autocovariances, estimated
autocorrelations, and estimated standard errors of the autocorrelations.

I PRI NT, MAXLAG NOBS

PARAMETER (| PRI NT=3, MAXLAG=20, NOBS=100)

| NTEGER

EXTERNAL

| SEOPT =

| MEAN = 1

| MEAN, | SEOPT, NCOL, NROW

AC(0: MAXLAG), ACV(0: MAXLAG), RDATA(176, 2),
SEAC( MAXLAG), X(NOBS), XNMEAN

ACF, GDATA

EQUI VALENCE (X(1), RDATA(22,2))

Wl fer Sunspot Data for
years 1770 through 1869

CALL GDATA (2, 0, NROW NCOL, RDATA, 176, 2)

Conput e standard errors
1
Center on arithnetic nean

Conput e sanpl e ACF

CALL ACF (NOBS, X, |PRINT, |SECPT, | MEAN, XMEAN, NMAXLAG, ACV,

C
REAL
&
C
C
C
C
C
C
&
C
END

AC, SEAQ)

Output

Qut put from ACF/ A2F

Mean
Vari ance

46. 976
1382.9
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Lag ACV AC SEAC

0 1382.9 1. 00000
1 1115.0 0. 80629 0. 03478
2 592.0 0. 42809 0. 09624
3 95. 3 0. 06891 0.15678
4 -236.0 -0. 17062 0. 20577
5 -370.0 -0. 26756 0. 23096
6 -294.3 -0.21278 0. 22899
7 -60. 4 -0. 04371 0. 20862
8 227.6 0. 16460 0.17848
9 458. 4 0. 33146 0. 14573
10 567. 8 0. 41061 0. 13441
11 546. 1 0. 39491 0. 15068
12 398.9 0. 28848 0. 17435
13 197.8 0. 14300 0. 19062
14 26.9 0. 01945 0. 19549
15 -77.3 -0. 05588 0. 19589
16 -143.7 -0.10394 0. 19629
17 -202.0 -0. 14610 0. 19602
18 -245. 4 -0.17743 0.19872
19 -230.8 -0. 16691 0. 20536
20 -142.9 -0. 10332 0. 20939
1.00 o
0.80
0.60
0.40
0.20 LI
=~ 0.00 ] L} FJ @jflng IAI
—0.20 :
—0.40
—0.60
-0.80 H
—1.00 -

I N N R O I
123456 78 91011121314151617181920

Figure 8-1 Sample Autocorrelation Function
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PACF/DPACEF (Single/Double precision)

Compute the sample partial autocorrelation function of a stationary time series.

Usage
CALL PACF (MAXLAG AC, PAQ)

Arguments
MAXLAG — Maximum lag of partial autocorrelations to be computed. (Input)

AC — Vector of lengtiVAXLAG+ 1 containing the autocorrelations of the time
seriesx. (Input)
AC(0) = 1.AC(K) contains the autocorrelation of lagvherek = 1, ...,MAXLAG.

PAC — Vector of lengthvAXLAG containing the partial autocorrelations of the
time seriexX. (Output)

The partial autocorrelation of ldgcorresponds t@AC(k) wherek =1, ...,
MAXLAG.

Comments

Automatic workspace storage is

PACF  2* MAXLAG units, or
DPACF 4 * NMAXLAG Units.

Workspace may be explicitly provided, if desired, by use2af~/DP2CF. The
reference is

CALL P2CF (MAXLAG, AC, PAC, WK)
The additional argument is
WK — Work vector of length 2 MAXLAG.

Algorithm

RoutinePACF estimates the partial autocorrelations of a stationary time series
given theK = MAXLAG sample autocorrelations

p(k)
fork=0, 1, ...,K. Consider the AR process defined by
Xt = @ Xiog T Qo Xp—o -+ P Xy + A
whereq,; denotes th¢th coefficient in the process. The set of estimates
{0}
fork=1, ...,Kis the sample partial autocorrelation function. The autoregressive
parameters
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1@}
forj =1, ...,k are approximated by Yule-Walker estimates for successivk)AR(
models wher& =1, ...,K. Based on the sample Yule-Walker equations

B(I) = bl ~D + @2P(i — 2+ +Pu(i =K), [ =12,...,k
a recursive relationship fér= 1, ...,K was developed by Durbin (1960). The
equations are given by

p(D) k=1
P = 1000 = 55 @Ak~ )
1- 353 Qg1 00))

and
AP T P Preak-j 1=12,.., k-1
P =12 -
U j=k
This procedure is sensitive to rounding error and should not be used if the
parameters are near the nonstationarity boundary. A possible alternative would be
to estimate §,,} for successive AR{) models using least squares (IMSL routine

NSLSE, page 669) or maximum likelihood. Based on the hypothesis that the true
process is AR{), Box and Jenkins (1976, page 65) note

V<’:\f{(APkk}21 kzp+1l
n

See Box and Jenkins (1976, pages 82—84) for more information concerning the
partial autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. RoutindPACF to used to compute the estimated partial autocorrelations.

| NTEGER I MEAN, | PRINT, |SEOPT, MAXLAG NOBS
PARAMETER (1 MEAN=1, | PRINT=0, |SEOPT=0, MAXLAG=20, NOBS=100)

C
| NTEGER NCOL, NROW
REAL AC(0: MAXLAG), ACV(0: MAXLAG), PAC(MAXLAG ,

& RDATA(176, 2), SEAC(1), X(NOBS), XMEAN

CHARACTER CLABEL(2)*4, RLABEL(1)*6
EXTERNAL ACF, GDATA, PACF, WRRRL

C
EQUI VALENCE (X(1), RDATA(22,2))

C

DATA RLABEL/'NUMBER’/, CLABEL/'Lag ', 'PACF/
C Wolfer Sunspot Data for
C years 1770 through 1869

CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
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CALL ACF (NOBS, X, |PRINT,
& AC, SEAQ)

CALL PACF (MAXLAG, AC, PAC)

Conput e sanpl e ACF

| SEOPT,

I MEAN, XVMEAN, MAXLAG ACV,

Conput e sanpl e PACF

Print

results

CALL WRRRL ("', 20, 1, PAC, 20, 0, '(F8.3)", RLABEL, CLABEL)

END
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Figure 8-2 Sample Partial Autocorrelation Function

CCF/DCCF (Single/Double precision)

Compute the sample cross-correl ation function of two stationary time series.

Usage
CALL CCF (NOBS, X, Y, MAXLAG | PRINT, |SEOPT, | MEAN, XMEAN,

YMEAN, XVAR, YVAR, CCV, CC, SECC)
Arguments

NOBS — Number of observations in each time series. (Input)
NOBS must be greater than or equal to two.

X — Vector of lengthNOBS containing the first time series. (Input)
Y — Vector of lengtiNOBS containing the second time series. (Input)

MAXLAG — Maximum lag of cross-covariances and cross-correlations to be
computed. (Input)
MAXLAG must be greater than or equal to one and lesSN\NbB®

IPRINT — Printing option. (Input)
| PRI NT Action
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No printing is performed.

Print the means and variances.

Print the means, variances, and cross-covariances.

Print the means, variances, cross-covariances, cross-correlations, and
standard errors of cross-correlations.

wWNPEFkO

I SEOPT — Option for computing standard errors of cross correlations. (Input)

| SEOPT Action

0 No standard errors of cross-correlations are computed.

1 Compute standard errors of cross-correlations using Bartlett's formula.
2 Compute standard errors of cross-correlations using Bartlett’s formula

with the assumption of no cross-correlation.

IMEAN — Option for computing the mean. (Input)

| MEAN Action
0 XMEAN andYMEAN are user specified.
1 XMEAN andYMEAN are set to the arithmetic meansxafndy.

XMEAN — Estimate of the mean of time senes (Input, ifl MEAN = O; output,
if | MEAN = 1)

YMEAN — Estimate of the mean of time series (Input, ifl MEAN = O; output,
if | MEAN = 1)

XVAR — Variance of the time series (Output)

YVAR — Variance of the time serias (Output)

CCV — Vector of length 2 MAXLAG + 1 containing the cross-covariances
between the time serig@sandy. (Output)

The cross-covariance betwe¢mandy at lagk corresponds t@Cv(k) where
k=-MAXLAG, ...,-1,0, 1, ... MAXLAG.

CC — Vector of length 2 MAXLAG + 1 containing the cross-correlations between
the time serieX andy. (Output)

The cross-correlation betwe&randy at lagk corresponds t@C(k) where
k=-MAXLAG, ...,-1,0, 1, ... MAXLAG.

SECC — Vector of length 2 MAXLAG + 1 containing the standard errors of the
crosscorrelations between the time sexiandY. (Output)

The standard error @c(k) is SECC(K) wherek = -MAXLAG, ...,-1,0, 1, ...,
MAXLAG.

Comments

1. Automatic workspace usage is

CCF 2* (MAXLAG+ 1) units, or
DCCF  4* (MAXLAG+ 1) units.
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Workspace may be explicitly provided, if desired, by use of C2F/DC2F.
Thereferenceis

CALL C2F (NGBS, X, Y, MAXLAG, |PRINT, |SECPT, | MEAN,
XMEAN, YMEAN, XVAR, YVAR, CCV, CC, SECC,
ACX, ACY)

The additional arguments are as follows:

ACX — Work vector of length equal tAXLAG + 1.

ACY — Work vector of length equal 1AXLAG + 1.

2. If | SEOPT = 0, then no workspace is needed 8AGC, ACX, andACY
can be dimensioned with length 1.

3. Autocovariances, autocorrelations, and standard errors of
autocorrelations may be obtained by setting the first and second time
series equal.

Algorithm

RoutineCCF estimates the cross-correlation function of two jointly stationary time
series given a sample 0= NOBS observations X} and {Y} for t=1, 2, ... n.

Let
i, = XMEAN
be the estimate of the meapof the time seriesX;} where

M My known

~ n
X~ EZ X; My unknown
Nz

The autocovariance function oK§, oy(K), is estimated by

17K . .
= Z(xt_UX)(xt+k_UX)’ kZO,L...,K
=1

6x() ==
t

whereK = MAXLAG. Note that
0x(0)

is equivalent to the sample variancgAR. The autocorrelation functigmy(k) is
estimated by

o x (k)

5 (K) =
Px (k) &4(0)

k=01...,K

Note that
px(0) =1
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by definition. Let

Hy = YMEAN, Gy (k),andpy (k)
be similarly defined.
The cross-covariance function oyy(K) is estimated by

1n—k . R
—Z(Xt_lix)(YHk_UY) k=01..., K

~ k) = rlt=l

O xy (K) 1 N
= > (K =) (Mak —Ry) k=-1-2,...,-K
t=1-k

The cross-correlation function pyy(K) is estimated by

N 0 yy (K)
k) = XY k=0%1...,tK
Pxy (K) [6X(O)6y(0)]1/2 1.,

The standard errors of the sample cross-correlations may be optionally computed
according to argument | SECPT. One method is based on a general asymptotic
expression for the variance of the sample cross-correlation coefficient of two
jointly stationary time series with independent, identically distributed normal
errors given by Bartlett (1978, page 352). The theoretical formulais

var{pxy (9} == 3 [ox Py () +Pxe(i=Ipxy (i +K)

|=—00

205y (P x Py +19 + Py (py (1 + W}
ke ox)+ 2o )+ 5030

For computational purposes, the autocorrelations p (k) and py(k) and the cross-
correlations pyy(k) are replaced by their corresponding estimates for |k| < K, and
the limits of summation are equal to zero for all k such that |k| > K.

A second method evaluates Bartlett’s formula under the additional assumption
that the two series have no cross-correlation. The theoretical formula is

N 1 2 . .
var K)p =—— [ i k=0
{va( )} n—kizpr()pY()
For additional special cases of Bartlett's formula, see Box and Jenkins (1976,
page 377).
An important property of the cross-covariance coefficientigk) = oy (—k) for
k= 0. This result is used in the computation of the standard error of the sample

crosscorrelation for lag < 0. In general, the cross-covariance function is not
symmetric about zero so both positive and negative lags are of interest.
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Example

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532-533Xwhere
is the input gas rate in cubic feet/minute arid the percent COn the outlet

gas. Routin€CF is used to computed the cross-covariances and cross-
correlations between time serdésndY with lags from-MAXLAG = -10 through

lag MAXLAG = 10. In addition, the estimated standard errors of the estimated
cross-correlations are computed. In the first invocation M8EOPT = 1, the

standard errors are based on the assumption that autocorrelations and cross-
correlations for lags greater thBAXLAG or less tharrMAXLAG are zero. In the
second invocation withSEOPT = 1, the standard errors are based on the
additional assumption that all cross-correlationsfandyY are zero.

| NTEGER I PRI NT, MAXLAG NOBS
PARAMETER (| PRI NT=3, MAXLAG=10, NOBS=296)

INTEGER | MEAN, | SEOPT, NCOL, NROW

REAL OC( - MAXLAG MAXLAG), CCV(- MAXLAG MAXLAG)

& RDATA( 296, 2), SECC(- MAXLAG MAXLAG), X(NOBS), XMEAN,
& XVAR, Y(NOBS), YMEAN, YVAR

EXTERNAL  CCF, GDATA

EQUI VALENCE (X(1), RDATA(1,1)), (Y(1), RDATA(1,2))

CALL GDATA (7, 0, NROW NCOL, RDATA, 296, 2)
Option to estinmate neans.
| MEAN = 1
Bartlett's formula (general case)
ISEOPT =1

O O o0 O 0O

Compute cross correlation function
CALL CCF (NOBS, X, Y, MAXLAG, IPRINT, ISEOPT, IMEAN, XMEAN,
& YMEAN, XVAR, YVAR, CCV, CC, SECC)
C Bartlett's formula (independent case)
ISEOPT =2
C Compute cross correlation function
CALL CCF (NOBS, X, Y, MAXLAG, IPRINT, ISEOPT, IMEAN, XMEAN,
& YMEAN, XVAR, YVAR, CCV, CC, SECC)

END

Output
Output from CCF/C2F

Mean of series X = -0.056834
Variance of series X = 1.1469

53.509
10.219

Mean of series Y
Variance of series Y

Lag Cccv cC SECC

-10 -0.40450 -0.11815 0.158148
-9 -0.50849 -0.14853 0.155750
-8 -0.61437 -0.17946 0.152735
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-7 -0. 70548
-6 -0. 77617
-5 -0. 83147
-4 -0. 89132
-3 - 0. 98060
-1.12477
-1. 34704
-1. 65853
- 2. 04865
-2.48217
-2.88541
. 16536
- 3. 25344
-3.13113
-2.83919
- 2.45302
- 2. 05269
-1. 69466

QOWWONOURWNRERLORLN
'
w

[EnY

Cut put from CCF/ C2F

Mean of series X
Vari ance of series X

Mean of series Y
Vari ance of series Y

Lag ccv
-10 - 0. 40450
-9 -0.50849
-8 -0. 61437
-7 -0. 70548
-6 -0.77617
-5 -0. 83147
-4 -0.89132
-3 - 0. 98060
-2 -1.12477
-1 -1.34704
0 -1. 65853
1 - 2. 04865
2 -2.48217
3 -2.88541
4 - 3. 16536
5 - 3. 25344
6 -3.13113
7 -2.83919
8 -2.45302
9 -2. 05269
10 -1. 69466

-0
-0
-0
-0
-0
-0
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
-0.
- 0.
- 0.
- 0.

. 20607
. 22672
. 24287
. 26035
. 28643
. 32854
. 39347
. 48445
. 59841
. 72503
. 84282
. 92459
. 95032
. 91459
. 82932
. 71652
. 59958
. 49500

0. 056834
1.1469

53. 509
10. 219

cC

11815
14853
17946
20607
22672
24287
26035
28643
32854
39347
48445
59841
72503
84282
92459
95032
91459
82932
71652
59958
49500

©C00000000000000000

[eloolojojojoojoolololojololololoNoNeNe]

. 149087
. 145055
. 141300

138421
136074
132159
123531
107879
087341
064141
046946
044097
048234
049155

. 047562
. 053478
. 071566
. 093933

SECC

. 16275
. 16247
. 16219
. 16191
. 16163
. 16135
. 16107
. 16080
. 16052
. 16025
. 15998
. 16025
. 16052
. 16080
. 16107
. 16135
. 16163
. 16191
. 16219
. 16247
. 16275

MCCF/DMCCF (Single/Double precision)

Compute the multichannel cross-correlation function of two mutually stationary

multichannél time series
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Usage

CALL MCCF (NOBSX, NCHANX, X, LDX, NOBSY, NCHANY, Y, LDy,
MAXLAG | PRINT, | MEAN, XMEAN, YMEAN, XVAR, YVAR,
CCv, LDCCv, MXCCV, CC, LDCC, NMDCC)

Arguments

NOBSX — Number of observations in each channel of the first time séries

(Input)
NOBSX must be greater than or equal to two.

NCHANX — Number of channels in the first time sepes (Input)
NCHANX must be greater than or equal to one.

X — NOBSX by NCHANX matrix containing the first time series. (Input)
Each row ofX corresponds to an observation of a multivariate time series and
each column oX corresponds to a univariate time series.

LDX — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)
LDX must be greater than or equaN@BSX.

NOBSY — Number of observations in each channel of the second time eries
(Input)
NOBSY must be greater than or equal to two.

NCHANY — Number of channels in the second time sefiegInput)
NCHANY must be greater than or equal to one.

Y — NOBSY by NCHANY matrix containing the second time series. (Input)
Each row ofy corresponds to an observation of a multivariate time series and
each column oY corresponds to a univariate time series.

LDY — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)
LDY must be greater than or equaN@BSY.

MAXLAG — Maximum lag of cross-covariances and cross-correlations to be
computed. (Input)

MAXLAG must be greater than or equal to one and less than the mininNoBSXf
andNOBSY.

IPRINT — Printing option. (Input)

| PRI NT Action

0 No printing is performed.

1 Print the means and variances.

2 Print the means, variances, and cross-covariances.

3 Print the means, variances, cross-covariances, and cross-correlations.

IMEAN — Option for computing the means. (Input)

| MEAN Action
0 XMEAN andYMEAN are user-specified.
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1 XMEAN and YMEAN are set to the arithmetic means of their respective
channels.

XMEAN — Vector of lengtitNCHANX containing the means of the channelX.of
(Input, if | MEAN = 0; output, ifi MEAN = 1)

YMEAN — Vector of lengttNCHANY containing the means of the channels.of
(Input, if | MEAN = O; output, ifl MEAN = 1)

XVAR — Vector of lengttNCHANX containing the variances of the channelX.of
(Output)

YVAR — Vector of lengtiNCHANY containing the variances of the channels.of
(Output)

CCV — Array of sizeNCHANX by NCHANY by 2* MAXLAG + 1 containing the
cross-covariances between the channelsafdy. (Output)

The cross-covariance between chanméltheX series and channgbf they
series at lagf corresponds taCVv(i, j, k) wherei = 1, ...,NCHANX, j = 1, ...,
NCHANY, andk = -MAXLAG, ...,-1, 0, 1, ... MAXLAG.

LDCCV — Leading dimension aiCV exactly as specified in the dimension
statement in the calling program. (Input)
LDCCV must be greater than or equaNECHANX.

MDCCV — Middle dimension ofCV exactly as specified in the dimension
statement in the calling program. (Input)
MDCCV must be greater than or equaNCHANY.

CC — Array of sizeNCHANX by NCHANY by 2* MAXLAG + 1 containing the cross-
correlations between the channelX@ndy. (Output)

The cross-correlation between chaningfl theX series and channgbf they
series at lagy corresponds teC(i, j, k) wherei =1, ...,NCHANX, j = 1, ...,

NCHANY, andk = -MAXLAG, ...,-1, 0, 1, ... MAXLAG.

LDCC — Leading dimension afC exactly as specified in the dimension
statement in the calling program. (Input)
LDCC must be greater than or equaNEHANX.

MDCC — Middle dimension ofC exactly as specified in the dimension
statement in the calling program. (Input)
MDCC must be greater than or equaNEHANY.

Comments

1. For a given lag, the multichannel cross-covariance coefficient is
defined as the array of dimensi’@HANX by NCHANY whose
components are the single-channel cross-covariance coeffic@sitsj,
k). A similar definition holds for the multichannel cross-correlation
coefficient.

2. Multichannel autocovariances and autocorrelations may be obtained by
setting the first and second time series equal.
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Algorithm

Routine MCCF estimates the multichannel cross-correlation function of two
mutually stationary multichannel time series. Define the multichannel time series

X by

X= (X, X, s X))
where

Xi = (X js Xojs +vs an)T1 =12 ..,p

with n = NOBSX and p = NCHANX. Similarly, define the multichannel time seriesY
by

Y=, Yy .y Yp)
where

Y= (Y Yy Yu) o i=12, 000

with m= NOBSY and g = NCHANY. The columns of X and Y correspond to
individual channels of multichannel time series and may be examined from a
univariate perspective. The rows of X and Y correspond to observations of
p-variate and g-variate time series, respectively, and may be examined from a
multivariate perspective. Note that an alternative characterization of a
multivariate time series X considers the columns to be observations of the
multivariate time series while the rows contain univariate time series. For
example, see Priestley (1981, page 692) and Fuller (1976, page 14).

Let
Ij-x = XMEAN
be the row vector containing the means of the channels of X. In particular,
M x :(le’sz’ --ullxp)
whereforj=1, 2, ...,p

Hx, Hx, known
1 n

] =y X ~ unknown
n tZl §  Hx;

Let
fly = YMEAN

be similarly defined. The cross-covariance ofkdgetween channélof X and
channej of Y is estimated by
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1 .\ .\

NZ(Xti_uxi)(YHk,j ~Hy) k=01..K
Oy (=11 C ) )
NZ(Xti_uXi)(YHk,j_“Yj) k=-1-2,..,-K

wherei =1, ...,p,j =1, ...,q, andK = MAXLAG. The summation ohextends
over all possible cross-products withequal to the number of cross-products in
the sum.

Let
Gy (0) = XVAR

be the row vector consisting of the estimated variances of the chanKels of

particular,
Gx(0) :(6x1(0),6x2 0),..., CA’xp (0))
where
~ 1 n n 2 .
OXJ(O)‘Ethj_ij) j=12,...,p
t=1
Let

6y(0) = YVAR

be similarly defined. The cross-correlation of lalgetween channélof X and
channej of Y is estimated by

G x.v, (k)

FA)xin(k): k=0,£1...,£K

65 05y O]

Example

Consider the Wolfer Sunspot Daté)((Box and Jenkins 1976, page 530) along
with data on northern light activity() and earthquake activitX{) (Robinson
1967, page 204) to be a three-channel time series. Routilfeis used to
computed the cross-covariances and cross-correlations beXyvaedY and
betweenX, andY with lags from—-MAXLAG = —-10 through lagVAXLAG = 10:

| NTEGER I PRI NT, LDCC, LDCCV, LDX, LDY, MAXLAG MDCC, MDCCV,
& NCHANX, NCHANY, NOBSX, NOBSY
PARAMETER (| PRI NT=3, MAXLAG=10, NCHANX=2, NCHANY=1, NOBSX=100,

& NOBSY=100, LDCC=NCHANX, LDCCV=NCHANX, LDX=NOBSX,
& LDY=NOBSY, NMDCC=NCHANY, MDCCV=NCHANY)

c
INTEGER | MEAN, NCOL, NROW
REAL CC( LDCC, MDCC, - MAXLAG: MAXLAG),  CCV( LDCCV, MDCCV, -
& MAXLAG MAXLAG), RDATA(100, 4), X(LDX, NCHANX)
& XVEAN( NCHANX) ,  XVAR( NCHANX) , Y( LDY, NCHANY)
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& YMEAN( NCHANY) ,  YVAR( NCHANY)

&
&

EXTERNAL GDATA, MCCF

EQUI VALENCE (X(1,1), RDATA(1,3)), (X(1,2), RDATA(1,4))
EQUI VALENCE (Y(1, 1), RDATA(1,?2))

CALL GDATA (8, 0, NROW NCOL, RDATA, 100, 4)
Option to estimate channel neans
| MEAN = 1
Conpute mul ti channel CCVF and CCF
CALL MCCF (NOBSX, NCHANX, X, LDX, NOBSY, NCHANY, Y, LDY, MAXLAG,
I PRINT, | MEAN, XMEAN, YMEAN, XVAR, YVAR, CCv, LDCCV,
MDCCV, CC, LDCC, MDCC)

END

Output

Channel neans of X from MCCF

1 2
63. 43 97. 97

Channel variances of X

1 2

2643.7 1978. 4

Channel neans of Y from MCCF

46. 94

Channel variances of Y

1383.8

Mul ti channel cross-covari ance between X and Y from MCCF

Lag

Lag

Lag

Lag

Lag

Lag

Lag

K
1
2

NFEX NRFEPX NPEPX NRPX NPFEX

~

= -10
-20.51
70. 71

= -9

65. 02
38. 14

216.6
135.6

246. 8
100. 4

142. 1
45.0

50.70
-11.81

= -4
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Lag

Lag

Lag

Lag

Lag

Lag

Lag

Lag

Lag

Lag

Lag

Lag

Lag

Lag

NFEX NFEFX NPFEPX NRX NRPRX NPX NEPEX NRPX NRPX NRPX NFEX NPX NRX NBR

N~ X

72.68
32.69

217.
- 40.

355.
152.

579.
213.

821.
104.

810.
55.

628.

438.
76.

238.
200.

143.
283.

253.
234.

479.
223.

724.
124.

925.
-79.

922.
- 279.

o1 © oo » O oo A oo [@NV) [oo >N N -

01O

10
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Mul ti channel cross-correlation between X and Y from MCCF

Lag K = -10
1 -0.01072
2 0.04274
Lag K = -9
1 0. 03400
2 0. 02305
Lag K = -8
1 0.1133
2 0. 0819
Lag K = -7
1 0. 1290
2 0. 0607
Lag K = -6
1 0.07431
0.02718
Lag K = -5
1 0. 02651
2 -0.00714
Lag K = -4
1 0. 03800
2 0. 01976
Lag K = -3
1 0.1139
2 -0.0242
Lag K = -2
1 0. 1860
2 -0.0923
Lag K = -1
1 0. 3031
2 -0.1287
Lag K = 0
1 0. 4296
2 -0.0633
Lag K = 1
1 0.4236
2 0. 0333
Lag K = 2
1 0. 3285
2 0. 0512
Lag K = 3
1 0.2291
2 0. 0459
Lag K = 4
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N

Lag
1
Lag
1
Lag

Lag
1

ool ool ool ool oo

ool

. 1248
L1211

. 0751
. 1710

. 1323
. 1417

. 2507
. 1348

. 3790
. 0752

. 4836
. 0481

. 4825
. 1688

10

ARMME/DARMME (Single/Double precision)

Compute method of moments estimates of the autoregressive parameters of an
ARMA model.

Usage
CALL ARMVE (MAXLAG ACV, |PRINT, NPMA, NPAR, PAR)

Arguments

MAXLAG — Maximum lag of the sample autocovariances of the time $&fries
(Input)

MAXLAG must be greater than or equaNRAR + NPVA.

ACV — Vector of lengtivAXLAG + 1 containing the sample autocovariances of
W. (Input)

Thek-th sample autocovariance \&fis denoted bycv(k), k=0, 1, ..., MAXLAG.

IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Print the estimates of the autoregressive parameters.

NPMA — Number of moving average parameters. (Input)
NPMA must be greater than or equal to zero.
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NPAR — Number of autoregressive parameters. (Input)
NPAR must be greater than or equal to one.

PAR — Vector of lengthNPAR containing the estimates of the autoregressive
parameters. (Output)

Comments

1. Automatic workspace usage is

ARMMVE 2* NPAR* (NPAR + 1) units, or
DARMMVE NPAR* (4* NPAR+ 3) units.

Workspace may be explicitly provided, if desired, by use of
A2MVE/DA2MVE. The reference is

CALL A2MVE (MAXLAG, ACV, |PRINT, NPMA, NPAR PAR A
FAC, |PVT, VK)

The additional arguments are as follows:
A — Work vector of length equal NPAR’.
FAC — Work vector of length equal t{PAR’.
IPVT — Work vector of length equal t¢PAR.
WK — Work vector of length equal t6PAR.

2. Informational error
Type Code
4 1 The problem is ill-conditioned. Transformation of the
data or increased precision in the calculations may be
appropriate.
3. The sample autocovariance function may be obtained using the routine
ACF (page 637).
4, The first element 0ACV must be the sample variance of the time series.
Algorithm

RoutineARMMVE determines the autoregressive parameters of an ARMA process
using the extended Yule-Walker equations giverktkeVAXLAG
autocovariances(k) fork=1, ...,K.

Suppose the time serie®/} is generated by an ARMAY g) model
W=8) +@W; +... +QW,, +A-6A, -...-0,A,, tO{0, £1,+2,..}

wherep = NPAR andq = NPMVA. SinceW, depends only on the innovatioAsthat

have occurred up through tiheghep autoregressive parameters are related to
the autocovariances of lags q + 1, ...,q + p by the set of equations

o(@+1)=q@o(g +®o(@-1) +... +@o(q-p+1)
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| NTEGER

o(d+2)=q@o(+)+@o(@+..+@o(Q-p+2)

o(@+p=@o(@+p-1)+@o(q+p-2)+... +@0(q)
This genera system of linear equationsiis called the extended Y ule-Walker

equations. For q = 0, the system is referred to as the Y ule-Walker equations. The
equivalent matrix version is given by

2p=0
where
0= (P, .., 9p)"
Yij=o(a+i-i) i,i=%..,p
o; =o(q+i) i=L..,p
The overall constant 6, is defined by

. [ p=0
0_{U(1_zip:1(pi) p>0

where 1 is the mean of W,.

In practice, the autocovariance function is estimated by the sample
autocovariances

o(k)
for k=1, ...,K. The solution of the extended Yule-Walker equations using these
sample moments yields thethod of moments estimates of the autoregressive
parameters. The overall constant may then be estimated given an estimate of
Note that the extended Yule-Walker equations may be analogously defined in
terms of autocorrelations instead of autocovariances. See Box and Jenkins (1976,

pages 189-191) for some comments concerning the initial estimation of
autoregressive parameters using the Yule-Walker equations.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. RoutineARMME is invoked first to compute the method of moments

estimates for the autoregressive parameters of an ARMA(2, 0) model given the
sample autocovariances computed from routitie (page 637). TherBRMVE is

invoked a second time to compute estimated autoregressive parameters for an
ARMA(2, 1) model.

I MEAN, | PRINT, |SEOPT, MAXLAG NOBS
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PARAMETER (1 MEAN=1, |PRINT=1, |SEOPT=0, MAXLAG=4, NOBS=100)

INTEGER ~ NCOL, NOUT, NPAR NPMA, NROW

REAL AC(0: MAXLAG), ACV(0: MAXLAG), PAR(2), RDATA(176,2),
& SEAC(1), W 100), WWEAN

EXTERNAL  ACF, ARWMVE, GDATA, UMACH

EQUI VALENCE (W 1), RDATA(22,2))

CALL UMACH (2, Naum)
Wl fer Sunspot Data for
years 1770 through 1869
CALL GDATA (2, 0, NROW NCOL, RDATA, 176, 2)
Conput e sanmpl e ACV
CALL ACF (NOBS, W 0, |SECPT, |MEAN, WWEAN, MAXLAG, ACV, AC,
& SEAC)

O o0 o o0

Conput e estimates of autoregressive
parameters for ARMA(2,0) nodel
(Box and Jenkins, page 83)

000

WRITE (NOUT,*) '"ARMA(2,0) Model’

NPAR =2

NPMA =0

CALL ARMME (MAXLAG, ACV, IPRINT, NPMA, NPAR, PAR)
Compute estimates of autoregressive
parameters for ARMA(2,1) model

WRITE (NOUT,*) "’

WRITE (NOUT,*) '"ARMA(2,1) Model’

NPMA =1

CALL ARMME (MAXLAG, ACV, IPRINT, NPMA, NPAR, PAR)

[@X@)

END

Output
ARMA(2,0) Model

Output PAR
1 2
1.318 -0.635

ARMA(2,1) Model
Output PAR

1 2
1.244 -0.575

MAMME/DMAMME (Single/Double precision)

Compute method of moments estimates of the moving average parameters of an
ARMA model.

Usage

CALL MAMME (MAXLAG, ACV, IPRINT, NPAR, PAR, RELERR, MAXIT,
NPMA, PMA)
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Arguments

MAXLAG — Maximum lag of the sample autocovariances of the time 3&fries
(Input)

MAXLAG must be greater than or equaNRAR + NPNVA.

ACV — Vector of lengtivAXLAG + 1 containing the sample autocovariances of
W. (Input)

Thek-th sample autocovariance \&fis denoted bycv(k), k=0, 1, ..., MAXLAG.

IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Print the estimates of the moving average parameters.

NPAR — Number of autoregressive parameters. (Input)
NPAR must be greater than or equal to zero.

PAR — Vector of lengtiNPAR containing the estimates of the autoregressive
parameters. (Input)

RELERR — Stopping criterion for use in the nonlinear equation solver. (Input)
If RELERR = 0.0, then the default val®RELERR = 100.0* AMACH(4) is used. See
the documentation for routim@vACH (page 1334).

MAXIT — The maximum number of iterations allowed in the nonlinear equation
solver. (Input)
If MAXI T = 0, then the default valuedxi T = 200 is used.

NPMA — Number of moving average parameters. (Input)
NPMA must be greater than or equal to one.

PMA — Vector of lengtiNPMA containing the estimates of the moving average
parameters. (Output)
Comments
1. Automatic workspace usage is
MAMVE NPAR+ 1+ (NPMA + 1)* (12 + 15* NPMA) units, or
DVAMME 2 * (NPAR+ 1 + (N\PVA + 1)* (12 + 15* NPMA)) units.

Workspace may be explicitly provided, if desired, by use of
M2MVE/DMPMVE. The reference is

CALL M2MVE (MAXLAG, ACV, |PRINT, NPAR, PAR RELERR
MAXI T, NPMA, PMA, PARVWK, ACVMOD, TAUI NI,
TAU, FVEC, FJAC, R QIF, VKNLN)

The additional arguments are as follows:
PARWK — Work vector of length equal PAR + 1.
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ACVMOD — Work vector of length equal tdPVA + 1.
TAUINI — Work vector of length equal tPVA + 1.
TAU — Work vector of length equal tPVA + 1.
FVEC — Work vector of length equal tPVA + 1.

FJAC — Work vector of length equal toMA + 1)2.

R — Work vector of length equal toiMA + 1)* (NPMVA + 2)/2.
QTF — Work vector of length equal taPMVA + 1.

WKNLN — Work vector of length equal to*5(NPMA + 1).

2. Informational error
Type Code
4 1 The nonlinear equation solver did not converge to

RELERR within MAXI T iterations.

3. The sample autocovariance function may be computed using the routine
ACF (page 637).

4, The autoregressive parameter estimates may be computed using the
routineARMMVE (page 657).
Algorithm

RoutineMAMMVE estimates the moving average parameters of an ARMA process
based on a system of nonlinear equations dgivemMAXLAG autocovariances(k)
fork=1, ...,K andp = NPAR autoregressive parametggdori =1, ...,p.

Suppose the time serie®/} is generated by an ARMAY(g) model
@eB)W=6, + 8(B)A, td2{0,+1,+2,..}

wherep = NPAR andq = NPMA Let

W = (B)W
then the autocovariances of ttieived moving average proce®4 = 6(B)A, are
given by
o(k) p=0
IM=1sp P woolksioil 0>Llo. =1
3202 =0 @i@jo(k+i-j)) p=Lleg=

whereo(k) denotes the autocovariance function of the oridigrocess. The

iterative procedure for determining the moving average parameters is based on
the relation

(1+6F +--- +03)04 k=0

o'(k) = 2
(—Gk +916k+1+ +9q_k9q)oA k>1
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| NTEGER
&
PARAMETER
&

| NTEGER

Lett= (19, Ty, ...,Tq)Tandf: (fo, Ty, ...,fq)TWhere

Op ]=0
T, = :
V-6 /19 ]

1...,q

and
g-j . .
fj = zTiTHj _0’(1) J :O’:L--"q
i=0

Then, the value of at the { + 1)-th iteration is determined by
e :_L_i_(-l-i)—l fi

The estimation procedure begins with the initial value
1% =(/0'(0),0,...,0)7

and terminates at iteratiorwhen eitherﬂ|i|| is less thaRELERR ori equals

MAXI T. The moving average parameters are determined from the final estimate of
T by settingd; = -1,/1, forj = 1, ...,q. The random shock variance is determined
according to

o(0)- Y @o(i) g=0

04 =
A t% g=0

In practice, both the autocovariances and the autoregressive parameters are
estimated. The solution of the system of nonlinear equations using these sample
moments yields the method of moments estimates of the moving average
parameters and the random shock variance. Note that autocorrefgkipmay

be used instead of autocovarianoéls) to computes’(k) fork =1, ...,K. See

Box and Jenkins (1976, pages 203-204) for additional motivation concerning the
initial estimation of moving average parameters using a Newton-Raphson
algorithm.

Example

Consider the Wolfer Sunspot Data (Box and Jenkins 1976, page 530) consisting
of the number of sunspots observed each year from 1770 through 1869. Routine
MAMVE is invoked to compute the method of moments estimates for the moving
average parameter of an ARMA(2,1) model given the sample autocovariances
computed from routin@CF (page 637) and given the estimated autoregressive
parameters computed from routil@E (page 657).

I MEAN, |PRINT, |SECPT, LDX, MAXLAG NDX, NOBS,

NOPRI N, NPAR, NPNMA

(I MEAN=1, | PRINT=1, |SEOPT=0, LDX=176, MAXLAG=4,

NDX=2, NOBS=100, NOPRI N=0, NPAR=2, NPMA=1)

MAXI T, NCOL, NROW
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REAL AC(0: MAXLAG), ACV(0: MAXLAG), PAR(2), PMA(1),
& RDATA(LDX, NDX), RELERR, SEAC(1), W100), WWVEAN
EXTERNAL  ACF, ARWMVE, GDATA, MAMMVE

C
EQUI VALENCE (W 1), RDATA(22,2))
C Wl fer Sunspot Data for
C years 1770 through 1869
CALL GDATA (2, NOPRIN, NROW NCOL, RDATA, LDX, NDX)
C Conput e sanpl e ACV
CALL ACF (NOBS, W NOPRIN, |SECPT, | MEAN, WWEAN, NMAXLAG, ACV,
& AC, SEAQ)
C Conput e estimates of autoregressive
C parameters for ARMVA(2,1) nodel
CALL ARMVE (MAXLAG, ACV, NOPRIN, NPMA, NPAR, PAR)
C Conver gence paraneters
MXIT =0
RELERR = 0.0
C Conput e estimate of noving average
C parameter for ARMA(2, 1) nodel
CALL MAMVE (MAXLAG, ACV, |PRINT, NPAR PAR RELERR NMAXI T, NPMA,
& PVA)
C
END
Output
CQut put PMA from MAMVE/ MMVE
-0.1241

NSPE/DNSPE (Single/Double precision)

Compute preliminary estimates of the autoregressive and moving average
parameters of an ARMA model.

Usage

CALL NSPE (NOBS, W |PRINT, |MEAN, WWEAN, NPAR, NPMA,
RELERR, MAXI T, CONST, PAR, PMA, AVAR)

Arguments

NOBS — Number of observations in the stationary time sakles(Input)
NOBS must be greater thauPAR + NPVA + 1.

W — Vector of lengtiNOBS containing the stationary time series. (Input)

IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Print the mean of the time series, the estimate of the overall constant, the

estimates of the autoregressive parameters, the estimates of the moving
average parameters, and the estimate of the random shock variance.

IMEAN — Option for centering the time serigs (Input)
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| MEAN Action
0 WVEAN is user specified.
1 WVEAN is set to the arithmetic mean of X.

WMEAN — Constant used to center the time sexieqInput, ifl MEAN = 0;
output, ifl MEAN = 1)

NPAR — Number of autoregressive parameters. (Input)
NPAR must be greater than or equal to zero.

NPMA — Number of moving average parameters. (Input)
NPMA must be greater than or equal to zero.

RELERR — Stopping criterion for use in the nonlinear equation solver. (Input)
If RELERR = 0.0, then the default val®RELERR = 100.0* AMACH(4) is used. See
the documentation for routim@vVACH (page 1334).

MAXIT — The maximum number of iterations allowed in the nonlinear equation
solver. (Input)
If MAXI T = 0, then the default valuedxi T = 200 is used.

CONST — Estimate of the overall constant. (Output)

PAR — Vector of lengtiNPAR containing the autoregressive parameter estimates.
(Output)

PMA — Vector of lengtiNPVA containing the moving average parameter
estimates. (Output)

AVAR — Estimate of the random shock variance. (Output)

Comments
1. Automatic workspace usage is
NSPE 14 +NPVA* (14.5 + 1.5 NPMA) + 2* NPAR* (NPAR + 2)

units, or
DNSPE 28 +NPMA* (14 + 3* NPMA) + NPAR* (4* NPAR + 7) units.

Workspace may be explicitly provided, if desired, by use of
N2PE/DN2PE. The reference is

CALL N2PE (NOBS, W |PRINT, |MEAN, WVEAN, NPAR,
NPMVA, RELERR, MAXI T, CONST, PAR, PMA,
AVAR, ACV, PARW, ACVMOD, TAU NI, TAU,
FVEC, FJAC, R QTF, WKNLN, A, FAC, |PVT,
VKARMV)

The additional arguments are as follows:

ACV — Work vector of length equal tPAR + NPVA + 1.

PARWK — Work vector of length equal PAR + 1.

ACVMOD — Work vector of length equal tdPVA + 1.
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TAUINI — Work vector of length equal tPVA + 1.
TAU — Work vector of length equal tPVA + 1.
FVEC — Work vector of length equal tPVA + 1.

FJAC — Work vector of length equal tomNA + 1)2.

R — Work vector of length equal toiMA + 1)* (NPMVA + 2)/2.
QTF — Work vector of length equal tePMVA + 1.

WKNLN — Work vector of length equal to*5(NPMA + 1).

A — Work vector of length equal WPAR’.

FAC — Work vector of length equal IPAR.
IPVT — Work vector of length equal tPAR.
WKARMM — Work vector of length equal tPAR.

2. Informational error
Type Code
4 1 The nonlinear equation solver did not converge to

RELERR within MAXI T iterations.

3. The value ofWEAN is used in the computation of the sample
autocovariances aff/in the process of obtaining the preliminary
autoregressive parameter estimates. AlEAN is used to obtain the
value of CONST.

Algorithm

RoutineNSPE computes preliminary estimates of the parameters of an ARMA
process given a samplemf NOBS observations\V} for t =1, 2, ...,n.

Suppose the time serie®/f} is generated by an ARMAYq) model of the form
®B)W,= 6, + B(B)A, t0{0, +1,+2, ...}
whereB is the backward shift operator,
®B)=1-¢(B) - %(B) - ... - 9,(B)"
6(B) =1-6,(B) - 6,(B)’ - ... - 6,(B)*
p = NPAR andq = NPMA. Let
i =WMEAN

be the estimate of the mean of the time seié} {vhere
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K known

n
ZV\4 1 unknown

The autocovariance function o(k) is estimated by
n-k

6(k) == — (W, — [ =01...,
500 =1 5 (W -y~ k=01....K
t=1

whereK = p + g. Note that
6(0)
is an estimate of the sample variance.

Given the sample autocovariances, the routine ARMVE (page 657) is used to
compute the method of moments estimates of the autoregressive parameters using
the extended Y ule-Walker equations

>9=6
where
é\p:(é\p]_’""Epp)-r
i =6(a+i=i) ii=L...p
0; =06(q+i) i=1...,p
The overall constant 6, is estimated by
A R p=0
8p=1" -
HA-3i59) p>0

The moving average parameters are estimated using the routine MVAMVE
(page 660). Let

W' = e(B)W
then the autocovariances of the derived moving average process
W' = 8(B) A
are estimated by
6%m:{am B p=0_
Yo 2 o @@0(k+i-j)) p2Lgy=-1

The iterative procedure for determining the moving average parametersis based
on therelation
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® (1+6f ++63)0% k=0
o =

(=Bk +0164q +---+ eq—keq)GZA k=1
where o(k) denotes the autocovariance function of the original W, process.

LetT=(T0, Ty, .., T,) " and f=(f, , ..., f,) " where

= Oa ]=0
-6/t j=1....q

and
q-j o _
fj = ZTiTHj -6'(j)) j=0,1...,q
i=0

Then, the value of T at the (i + 1)-thiteration is determined by
Ti+1 - .l.i _ (TI )—1 f i
The estimation procedure begins with the initial value

1% =(/6'(0),0,...,0)7

and terminates at iteration i when either |[f i|| islessthan RELERR or i equals
MAXI T. The moving average parameter estimates are obtained from the final
estimate of T by setting

]

The random shock variance is estimated by
62 = 6(0)-3 2, ®6() q=0
13 q=0

j=-T1;/ty forj=1...q

See Box and Jenkins (1976, pages 498-500) for a description of a similar routine.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. RoutineNSPE (page 664) is used to compute preliminary estimates

6, (output in CONST)
@1, 9, (output in PAR)
él (output in PMA)
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64 (outputin AVAR)
for the following ARMA (2, 1) model
W =8 + QW g + QoW p — 01 A1 + A

where the errors A, are independently distributed each normal with mean zero and

variance
oA
| NTEGER I PRINT, LDX, NDX, NOBS, NOPRI N, NPAR, NPNA
PARAMETER (| PRINT=1, LDX=176, NDX=2, NOBS=100, NOPRI N=0, NPAR-=2,
& NPVA=1)
C
| NTEGER I MEAN, MAXI T, NCOL, NROW
REAL AVAR, CONST, PAR(NPAR), PMA(NPMA), RDATA(LDX, NDX),
& RELERR, W NOBS), WVEAN
EXTERNAL  GDATA, NSPE
C
EQUI VALENCE (W 1), RDATA(22,2))
C Wl fer Sunspot Data for
C years 1770 through 1869
CALL GDATA (2, NOPRIN, NROW NCOL, RDATA, LDX, NDX)
C Conver gence paraneters
MXXIT =0
RELERR = 0.0
C Conput e prelimnnary paramneter
C estimates for ARMA(2, 1) nodel
| MEAN = 1
CALL NSPE (NOBS, W |PRINT, |MEAN, WVEAN, NPAR, NPMA, RELERR,
& MAXI T, CONST, PAR, PMA, AVAR)
C
END
Output
Resul ts from NSPE/ N2PE
WVEAN = 46. 9760
CONST = 15. 5440
AVAR = 287. 242
PAR
1 2
1.244 -0.575
PNVA
-0.1241

NSLSE/DNSLSE (Single/Double precision)

Compute |east-squares estimates of parameters for a nonseasonal ARMA model.
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Usage

CALL NSLSE (NOBS, W |PRINT, |MEAN, WEAN, NPAR PAR
LAGAR, NPMA, PMA, LAGVA, MAXBC, TOLBC, TOLSS,
CONST, COV, LDCOV, NA, A, AVAR)

Arguments

NOBS — Number of observations in the stationary time s&xieginput)
NOBS must be greater thamARDEG + | MADEG wherel ARDEG = max(AGAR(i))
andl MADEG = max(AGVA(j)).

W — Vector of lengtiNOBS containing the stationary time series. (Input)
IPRINT — Printing option. (Input)

I PRI NT Action

0 No printing is performed.

1 Print the least-squares estimates of the parameters, their associated
standard errors, and the residual sum of squares at the final iteration.

2 Print the least-squares estimates of the parameters and the residual sum

of squares at each iteration and at the final iteration. Print the standard
errors of the parameters at the final iteration.

IMEAN — Option for centering the time serias (Input)

I MEAN Action
0 Wis not centered.
1 Wis centered aboMVEAN. Centering the time seriggaboutWWEAN is

equivalent to inclusion of the overall constant in the model.

WMEAN — Estimate of the mean of the time sexes (Input/Output, if MEAN
=1; not used if MEAN = 0)

For1 MEAN = 1, on input\WEAN contains the preliminary estimate, on output,
WWEAN contains the final estimate.

NPAR — Number of autoregressive parameters. (Input)
NPAR must be greater than or equal to zero.

PAR — Vector of lengtiNPAR containing the autoregressive parameters.(Input/
Output)

On input,PAR contains the preliminary estimate. On outp4R contains the
final estimate.

LAGAR — Vector of lengtiNPAR containing the order of the autoregressive
parameters. (Input)
The elements dfAGAR must be greater than or equal to one.

NPMA — Number of moving average parameters. (Input)
NPMA must be greater than or equal to zero.

PMA — Vector of lengtiNPMA containing the moving average
parameters.(Input/Output)
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Oninput, PMA contains the preliminary estimate. On output, PMA contains the
final estimate.

LAGMA — Vector of lengttNPMA containing the order of the moving average
parameters. (Input)
The elements afAGVA must be greater than or equal to one.

MAXBC — Maximum length of backcasting. (Input)
MAXBC must be greater than or equal to zero.

TOLBC — Tolerance level used to determine convergence of the backcast
algorithm. (Input)

Backcasting terminates when the absolute value of a backcast is |es6LtB@n
Typically, TOLBC is set to a fraction OABTDEV whereWSTDEV is an estimate of
the standard deviation of the time serieg.dfBC = 0.0, thenrOLBC = 0.01*
WSTDEV is used.

TOLSS — Tolerance level used to determine convergence of the nonlinear least-
squares algorithm. (Input)

TOLSS represents the minimum relative decrease in sum of squares between two
iterations required to determine convergence. HERAESS must be greater than

or equal to zero and less than one wh&leSS = 0.0 specifies the default value

is to be used. The default value is

max{10"°, Eps**} for single precision and

max{10%°, Ers**} for double precision

whereEPS = AVACH(4) for single precision anBPS = DMACH(4) for double
precision. See the documentation for routN\MaCH (page 1334).

CONST — Estimate of the overall constant. (Output)
For| MEAN = 0, CONST is set to zero. FArMEAN = 1, CONST = WVEAN *
(1 - PAR(1) - PAR(2) - ... - PAR(NPAR)).

COV — NP by NP variance-covariance matrix of the estimates of the parameters
whereNP = | MEAN + NPAR + NPMA.  (Output)

The ordering of variables @OV is WEAN (if defined),PAR, andPMA. NP must 1

or more.

LDCOV — Leading dimension afov exactly as specified in the dimension
statement in the calling program. (Input)

NA — Number of residuals computed (including backcasts). (Output)
If NB values of the time series are backcast, tfen NOBS — | ARDEG + NB.

A — Vector of lengtiNOBS — | ARDEG + MAXBC containing the residuals
(including backcasts) at the final parameter estimate point in thlirst
locations. (Output)

AVAR — Estimate of the random shock variance. (Output)

AVAR = (ALY + ... + A(NA)Y)/(NOBS — | NEAN — NPAR — NPMA).
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Comments
1 Automatic workspace usageis
NSLSE (14 + M * NP +4M+ NOBS + 2 * MAXBC + | MADEG - 1 units, or

DNSLSE 2 * ((13+M * NP + 4M+ NOBS + 2 * MAXBC + | MADEG -1) + NP
units where NP = NPAR + NPMA + | MEAN and M= NOBS -
| ARDEG + MAXBC,

Workspace may be explicitly provided, if desired, by use of
N2LSE/DN2LSE. The referenceis

CALL N2LSE (NOBS, W |PRINT, | MEAN, WVEAN, NPAR,
PAR, LAGAR, NPMA, PMA, LAGVA, MAXBC,
TOLBC, TOLSS, CONST, COV, LDCOV, NA, A
AVAR, XGUESS, XSCALE, FSCALE, X, FVEC,
FIJAC, LDFJAC, RWKUNL, |WKUNL, WKNSRE,
Al , FCST)

The additional arguments are as follows:

XGUESS — Work vector of lengtine.

XSCALE — Work vector of lengtiNp.

FSCALE — Work vector of lengtim

X — Work vector of lengtinp.

FVEC — Work vector of lengtiv

FJAC — Work vector of lengti* NP.

LDFJAC — Integer scalar equal ta

RWKUNL — Work vector of length 16 NP + 2* M— 1.

IWKUNL — Work vector of lengtinp.

WKNSRE — Work vector of lengtiNOBS + MAXBC.

Al — Work vector of lengtt MADEG.

FCST — Work vector of lengtivaxBC.

2 Informational error
Type Code
3 1 Least-squares estimation of the parameters has failed

to converge. IncreaséxBC and/orTOLBC and/or
TOLSS. The estimates of the parameters at the last
iteration may be used as new starting values.
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Algorithm

Routine NSL SE computes | east-squares estimates of parameters for a nonseasonal
ARMA model given asample of n = NOBS observations{W} fort=1, 2, ...,n.

Suppose the time serie®/} is generated by a nonseasonal ARMA model of the
form

@B)(W - =8(B)A  t11{0,£1%2,..}

whereB is the backward shift operatqr,is the mean ofV,,
I, (L
oB) =1-¢,8"" -

lg (L In(2 |

6(B) =1-06,8°® - 9,8 —..._g B"@ g0

with p = NPAR andqg = NPMA. Without loss of generality, we assume
1<ly@) <ly(2) =---<1y(p)

1<lg) <1g(2) <---<1g(q)

so that the nonseasonal ARMA model is of orgere() wherep' =1,(p) and
g =1¢(g). Note that the usual hierarchal model assumes

lp()=i 1<is<p
lg(J)=] 1l<j=q

Consider the sum of squares function

lo(2 I
0B" ——g B"P  pz0

Sr(k8) =

-T+1
where

[A]=EAlne6,W

andT is thebackward origin. The random shocks\f} are assumed to be
independent and identically distributed

N(0,0%)
random variables. Hence, thag-likelihood function is given by
) le
1.00.0,) = F(@8)~nIn o, - TR0
A

wheref(,1, ¢,0) is a function ofi, ¢, and®6.

ForT = 0, the log-likelihood function isonditional on the past values of boif,
andA, required to initialize the model. The method of selecting these initial
values usually introduces transient bias into the model (Box and Jenkins 1976,
pages 210-211). For T, this dependency vanishes, and the estimation
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problem concerns maximization of the unconditional log-likelihood function.
Box and Jenkins (1976, page 213) argue that

So(,0.0)/ 205

dominates

(1, 9.6,03)

The parameter estimates that minimize the sum of squares function are called
least-squares estimates. For large n, the unconditional |east-squares estimates are
approximately egual to the maximum likelihood estimates.

In practice, afinite value of T will enable sufficient approximation of the
unconditional sum of squares function. The values of [A;] needed to compute the
unconditional sum of squares are computed iteratively with initial values of W,
obtained by back-forecasting. The residuals (including backcasts), estimate of
random shock variance, and covariance matrix of the final parameter estimates
are also computed. Note that application of an appropriate transformation using
routine BCTR (page 629) followed by differencing using routine DI FF (page 633)
alowsfor fitting of nonseasonal ARIMA models. The algorithm for nonseasonal
ARIMA modelsis developed in Chapter 7 of Box and Jenkins (1976). The
extension to multiplicative seasonal ARIMA modelsis given in Box and Jenkins
(1976, pages 500-504).

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. RoutineNSPE (page 664) is first invoked to compute preliminary estimates
for an ARMA(2, 1) model. Them\SLSE is invoked with the preliminary

estimates as input in order to compute the least-squares estimates

6, (output in CONST)
fpl , fpz,(output in PAR)
6, (outputin PMA)
62A (output in AVAR)
for the ARMA(2, 1) model
Wy =00 + QW g + QoW o —01 A4 + A

where the errorg, are independently distributed each normal with mean zero and
variance

oA

674 « Chapter 8: Time Series Analysis and Forecasting IMSL STAT/LIBRARY



Note at the end of the output awarning error appears. Most of the time this error
message can be ignored. There are three general reasons this error can occur.

1. Convergence was declared using the criterion based on TOLSS, but the
gradient of the residual sum of squares function was nonzero. This
occurred in this example. Either the message can beignored or TOLSS
can be reduced to allow more iterations and a slightly more accurate
solution.

2. Convergence is declared based on the fact that avery small step was
taken, but the gradient of the residual sum of squares function was
nonzero. The message can usually be ignored. However, sometimes the
algorithm is making very slow progress and is not near a minimum.

3. Convergence is not declared after 100 iterations.

Examination of the history of iterations using | PRI NT = 2 and trying a smaller
value for TOLSS can help you determine what caused the error message.
| NTEGER | ARDEG, | MEAN, LDCOvV, LDX, MAXBC, MDX, NOBS, NP,

& NPAR, NPMA
PARAMETER (| ARDEG=2, | MEAN=1, LDX=176, MAXBC=10, MDX=2,

& NOBS=100, NPAR=2, NPMA=1, NP=NPAR+NPMA+| MEAN,
& LDCOV=NP)
C
| NTEGER I PRINT, LAGAR(NPAR), LAGVA(NPMA), MAXIT, NA, NCOL,
& NROW
REAL A(NOBS- | ARDEG+MAXBC), AVAR, CONST, COV(LDCOV, NP),
& PAR(NPAR), PMA(NPMA), RELERR, TOLBC, TOLSS, WNOBS),
& WVEAN, X( LDX, MDX)
EXTERNAL  GDATA, NSLSE, NSPE
C
EQUI VALENCE (W 1), X(22,2))
C
DATA LAGAR/ 1, 2/, LAGW 1/
C Wl fer Sunspot Data for
C years 1770 through 1869
IPRINT = 0
CALL GDATA (2, |PRINT, NROWN NCOL, X, LDX, MDX)
C Conver gence paraneters
MXIT =0
RELERR = 0.0
C Conmput e prelimnary paraneter
C estimates for ARMA(2, 1) nodel
IPRINT = 1
CALL NSPE (NOBS, W |PRINT, |MEAN, WWEAN, NPAR, NPMA, RELERR
& MAXI T, CONST, PAR PMA, AVAR)
C
TOLBC = 0.0
TOLSS = 0.125
IPRINT = 2
C
CALL NSLSE (NOBS, W |PRINT, |MEAN, WWEAN, NPAR, PAR, LAGAR
& NPMA, PMA, LAGVA, MAXBC, TOLBC, TOLSS, CONST, Cov,
& LDCOV, NA, A, AVAR
C
END
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Output
Resul ts from NSPE/ N2PE

WVEAN = 46. 9760
CONST = 15. 5440
AVAR = 287. 242
PAR
1 2
1.244 -0.575
PVA
-0.1241
Iteration 1
WVEAN = 52. 638233185
PAR
1 2
1.264 -0.606
PVA
-0.1731

Resi dual SS (including backcasts) = 23908.66210937500
Nunber of residuals = 108
Nunber of backcasts = 10

Iteration 2
WVEAN = 54. 756504059
PAR
1 2
1.360 -0.688

PMA
-0. 1411

Resi dual SS (including backcasts) = 23520.71484375000
Nunmber of residuals = 108

Nunber of backcasts 10

Final Results, lteration 3

Par anet er Esti mate Std. Error t-ratio

WWVEAN 53.9187279 5.5178852 9.7716293
PAR

1 1. 3925704 0. 0960639 14. 4962845

2 -0.7329484 0. 0866115 - 8.4624796
PMVA

1 -0.1375125 0. 1223797 -1.1236545

CONST = 18. 3527489
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AVAR = 243. 4830170

23374. 3691406
108

Resi dual SS (includi ng backcasts)
Nunmber of residuals

20931. 7519531
98

Resi dual SS (excludi ng backcasts)
Nunmber of residuals

*** WARNING ERROR 1 from NSLSE. Least squares estimation of the paraneters

*x % has failed to converge. |ncrease MAXBC and/ or TOLBC and/ or
*x ok TOLSS. The estinmates of the paraneters at the last iteration
*x ok may be used as new starting val ues.

SPWF/DSPWF (Single/Double precision)

Compute the Wiener forecast operator for a stationary stochastic process.

Usage

CALL SPWF (NOBS, W |WEAN, WEAN, WNADJ, EPS, M.FOP, LFOP,
FOP)

Arguments

NOBS — Number of observations in the stationary time s&xieginput)
NOBS must be greater than or equal to two.

W — Vector of lengtiNOBS containing the stationary time series. (Input)

IWMEAN — Option for estimation of the meanwf (Input)

| WWEAN Action
0 WWEAN is user specified.
1 WWVEAN is set equal to the arithmetic meanof

WMEAN — Estimate of the mean of the time sewes(Input, ifl WWEAN = 0O;
output, ifl WWEAN = 1)

WWEAN is used to center the time senggrior to estimation of the forecast
operator.

WNADJ — White noise adjustment factor. (Input)
VNADJ must be greater than or equal to zero.

EPS — Bound on the normalized mean square error. (Input)
EPS must be in the range (0, 1) inclusive.

MLFOP — Maximum length of the forecast operator. (Input)
MLFOP must be greater than or equal to one and lessS\bB®

LFOP — Length of the estimated forecast operator. (Output)

FOP — Vector of lengtiLFOP containing the estimated forecast operator
coefficients. (Output)
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Comments
1 Automatic workspace storage is

SPWF  NOBS+2* MLFOP + 1 units, or
DSPW 2 * (NGBS +2* MLFOP + 1) units.

Workspace may be explicitly provided, if desired, by use of
S2WF/DS2WF. The referenceis

CALL S2WF (NOBS, W | WVEAN, WWVEAN, WNADJ, EPS,
MLFOP, LFOP, FOP, CW VK)

The additional arguments are as follows:

CW — Vector of lengtiNOBS containing the centered time sengs
(Output)

WK — Vector of length 2 MLFOP + 1. (Output)

2. Informational error
Type Code
3 5 No operator could be found of length less than or

equal toMLFOP that produced a normalized mean
square error less tha&s.

3 The length of the forecast operator is determined by the arguBRshts
andM_FOP. Iteration to a longer forecast operator stops when either the
normalized mean square error is less @ or the operator reaches
the maximum allowable lengthil.FOP.

4, The white noise adjustment factéNADJ, is used to modify the the
estimate of the variance of the time seviesed in the computation of
the autocorrelation function & In the absence of white noisAD]
should be set to zero.

Algorithm

RoutineSPWF performs least-squares estimation of parameters for successive
autoregressive models of a stationary stochastic process given a sample of
n = NOBS observations} for t=1,..., n.

Let
i =WMEAN
be the estimate of the mearof the stochastic proces®f} where

K known

H
(1={1¢
—ZW 1 unknown
nNi=

Consider the autoregressive model of otddefined by
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O 00 O

@]

| NTEGER
PARAMETER
| NTEGER

REAL

EXTERNAL

a(BW =A k=0
where
W =W —{i
and
O (B) =1~ @y B— @y B? —-- -y B k=1

Successive AR(k) models are fit to the centered data using Durbin’s algorithm
(1960) based on the sample autocovariances

n—-k

600 == (W~ ) (W —f) k20
n
=1

Note that the variance
6-(0)
used in the fitting algorithm is adjusted by the am@umt\NADJ according to
6(0) = (1+8) 6(0)

See Robinson (1967, page 96).

Iteration to the next higher order model terminates when either the expected mean
square error of the model is less tiEas or whenk = MLFOP. The forecast

operatorg= (@, @, ..., )" for K = LFOP is contained ifFOP. See also
Craddock (1969).

Example

Consider the Wélfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Application of routin&PWF to these data produces the following results:

MLFOP, NOBS

(MLFOP=1, NOBS=100)

I, I MEAN, LFOP, NCOL, NOUT, NROW

EPS, FOP(M.FOP), RDATA(176,2), WNOBS), WWVEAN, WNADJ
GDATA, SPW, UVACH

EQUI VALENCE (W 1), RDATA(22,2))

Wl fer Sunspot Data for
years 1770 through 1869

CALL GDATA (2, 0, NROW NCOL, RDATA, 176, 2)

| MEAN
WVEAN

VWNADJ

Center on arithnetic nean

46. 976

Whi t e noi se adj ust nent

0.0

Bound on nornalized NMSE
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EPS = 0.1
Det er mi ne aut or egressi ve nodel
CALL SPW (NOBS, W | MEAN, WVEAN, WNADJ, EPS, M.FOP, LFOP, FOP)
Print results
CALL UMACH (2, NOUT)
VR TE (NOUT, 99997) LFOP
99997 FORMAT (/, 1X, 'Forecast operator length, LFOP =", 12)
WRITE (NOUT,99998)
99998 FORMAT (/, 1X, ' | FOP(I))
DO 10 I=1, LFOP
WRITE (NOUT,99999) I, FOP
99999 FORMAT (1X, 12, 2X, F12.4)
10 CONTINUE
C
END

Output
*** \WARNING ERROR 5 from SPWF. No operator could be found of length less
ek than or equal to 1 which produced a normalized mean square
ok error less than 1.000000E-01.

Forecast operator length, LFOP = 1

| FOP(l)
1 0.8063

NSBJF/DNSBJF (Single/Double precision)

Compute Box-Jenkins forecasts and their associated probability limits for a
nonseasonal ARMA model.

Usage

CALL NSBJF (NOBS, W, IPRINT, NPAR, PAR, LAGAR, NPMA, PMA,
LAGMA, ICONST, CONST, AVAR, ALPHA, MXBKOR,
MXLEAD, FCST, LDFCST)

Arguments

NOBS — Number of observations in the time seki¢s (Input)
NOBS must be greater tharCONST + max(AGAR(i)) + max(CAGVA(j)).

W — Vector of lengtiNOBS containing the time series. (Input)
IPRINT — Printing option. (Input)

I PRI NT Action
0 No printing is performed.
1 Print the forecasts for lead timles 1, ...,MXLEAD at each origin

t = (NOBS — MXBKOR), ..., NOBS, the 100(1- ALPHA)% probability limit
deviations, and the psi weights.

NPAR — Number of autoregressive parameters. (Input)
NPAR must be greater than or equal to zero.
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PAR — Vector of lengtiNPAR containing the autoregressive parameters. (Input)

LAGAR — Vector of lengtiNPAR containing the order of the autoregressive
parameters. (Input)
The elements dfAGAR must be greater than zero.

NPMA — Number of moving average parameters. (Input)
NPMA must be greater than or equal to zero.

PMA — Vector of lengtiNPMA containing the moving average parameters.
(Input)

LAGMA — Vector of lengttNPMA containing the order of the moving average
parameters. (Input)
The elements afAGVA must be greater than zero.

| CONST — Option for including the overall constant in the model. (Input)

| CONST Action
0 No overall constant is included.
1 The overall constant is included.

CONST — Estimate of the overall constant. (Input)

AVAR — Estimate of the random shock variance. (Input)
AVAR must be greater than 0.

ALPHA — Value in the exclusive interval (0, 1) used to specify the
100(1- ALPHA)% probability limits of the forecasts. (Input)
Typical choices foALPHA are 0.10, 0.05, and 0.01.

MXBKOR — Maximum backward origin. (Input)

MXBKOR must be greater than or equal to zero and less than or equal to
NOBS — max{VAXAR, MAXMA) whereMAXAR = max(AGAR(i)) and

MAXMA = max(CAGVA(j)). Forecasts at origimndOBS — MXBKOR throughNOBS are
generated.

MXLEAD — Maximum lead time for forecasts. (Input)
MXLEAD must be greater than zero.

FCST — MXLEAD by (MXBKOR + 3) matrix defined below. (Output)

Column Content

i Forecasts for lead timés= 1, ...,MXLEAD at origins
NOBS — MKBKOR— 1 +j,j =1, ..., MXBKOR + 1.

MXBKOR + 2 Deviations from each forecast that give the 1604LPHA)%
probability limits.

MXBKOR + 3 Psi weights of the infinite order moving average form of the
model.

LDFCST — Leading dimension ¢fCST exactly as specified in the dimension
statement in the calling program. (Input)
LDFCST must be greater than or equaM¢.EAD.
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Comments
1 Automatic workspace usageis
NSBJF 5+ 1 ARDEG+ | MADEG+ 3 * MXLEAD units, or

DNSBJF 7+2* | ARDEG+ 2* | MADEG + 5 * MXLEAD units, where
| ARDEG = max(LAGAR(i)) and | MADEG = max(LAGVA(j)).

Workspace may be explicitly provided, if desired, by use of
N2BJF/DN2BJF. Thereferenceis

CALL N2BJF (NOBS, W |PRINT, NPAR, PAR, LAGAR, NPMA,
PMA, LAGVA, | CONST, CONST, AVAR, ALPHA,
MXBKOR, MXLEAD, FCST, LDFCST, PARH,
PMAH, PSIH, PSI, LAGPSI)

The additional arguments are as follows:

PARH — Work vector of length equal 10ARDEG + 1.

PMAH — Work vector of length equal 1avADEG + 1.

PSIH — Work vector of length equal 1eXLEAD + 1.

PSI — Work vector of length equal teXLEAD + 1.

LAGPSI — Work vector of length equal taXLEAD + 1.

2. If thewseries has been transformed using a Box-Cox transformation
with parameterBOAER andSHI FT, the forecasts and probability limits
for the original series may be obtained by application of roBIT&®
(page 629) with the same parameters and argurbeRtset equal to
one.

Algorithm

RoutineNSBJF computes Box-Jenkins forecasts and their associated probability
limits for a nonseasonal ARMA model given a sample ®NOBS observations
{Wifort=1,2,...n.

Suppose the time serie®/f} is generated by a nonseasonal ARMA model of the
form

®B)W =0, +6(B)A t{0,+1+2,..}

whereB is the backward shift operatd, = CONST,
oB)=1- (plBlcp(l) - @, B|<p(2) R (pkap(p)
— lg(1 lg(2 I
8(B) _1_9159( ) _(sze( ) _,,__que(Q)

p = NPAR andg = NPMA. Without loss of generality, we assume
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11y £ 14(2) << y(p)
1<lg(®) <1g(2) << lg(q)

so that the nonseasonal ARMA model is of order (p', q') where p’ = 1,(p) and
g =1y(g). Note that the usual hierarchal model assumes

=i 1si<p
le(j)=] 1<j=q

The Box-Jenkins forecast at origin t for lead time | of W,,, is defined in terms of
the difference equation

W) =8g + QW@ ] o+ Ol Wi ()]
AT =01 Aoy ] = = B[ Ai-iy(q]

where
Wy k=0,-1,-2,...
[V\4+k]={A K0T
W) k=12...
_ W ~Whya () k=0-1-2,..
[Avsi] {0 (=12
The 100(1 - )% probability limits for W, are given by
2

-1

W) £ 2291+ S Wi 04
j=1

where z; _, ) is the 100(1 — a/2) percentile of the standard normal distribution,
03 =AVAR

and {Y;} arethe parameters of the random shock form of the difference equation.
Note that the forecasts are computed for lead times| = 1, 2, ...,L at originst = (n
-b), (n—b+ 1), ...,nwhereL = MXLEAD andb = MXBKCR.

The Box-Jenkins forecasts minimize the mean square error

E[W — W (1)]%

Also, the forecasts may be easily updated according to the equation

W (1) =W +D + Y Ay (7)

This approach and others are given in Chapter 5 of Box and Jenkins (1976).
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Example

Consider the Wélfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. RoutineNSBJF is used to computed forecasts and 95% probability limits

for the forecasts for afRMA(2, 1) model fit using routin®SPE (page 664). With
MXBKOR = 3, columns one through four BEST give forecasts given the data

through 1866, 1867, 1868, and 1869, respectively. Column 5 gives the deviations
from the forecast for computing probability limits, and column six gives the psi
weights, which can be used to update forecasts once more data is available. For
example, the forecast for the 102-nd observation (year 1871) given the data
through the 100-th observation (year 1869) is 77.21, and 95% probability limits
are given by 77.2% 56.30. After observation 101\, for year 1870) is

available, the forecast can be updated by using equation 7 with the psi weight (

= 1.37) and the one-step-ahead forecast error for observatiom]1-(83.72)

to give

77.21 + 1.37\(, - 83.72)

Since this updated forecast is one step ahead, the 95% probability limits are now
given by the forecast 33.22.

| NTEGER LDFCST, MXBKOR, MXLEAD, NOBS, NPAR, NPNA
PARAMETER ( MXBKOR=3, MXLEAD=12, NOBS=100, NPAR=2, NPMA=1,

& L DFCST=MXLEAD)
C
INTEGER | CONST, |MEAN, |PRINT, LAGAR(NPAR), LAGVA(NPMA),
& MAXI T, NCOL, NROW
REAL ALPHA, AVAR, CONST, FCST(LDFCST, MKBKOR+3), PAR(NPAR),
& PMA(NPMA), RDATA(176,2), RELERR W NOBS), WEAN
CHARACTER CLABEL( MXBKOR+4) *40, RLABEL( 1) *6
EXTERNAL  GDATA, NSBJF, NSPE, WRRRL
C

EQUI VALENCE (W 1), RDATA(22,2))

DATA LAGAR(1), LAGAR(2)/1, 2/

DATA LAGVA(1)/1/
DATA RLABEL/'NUMBER’/, CLABEL/'%/Lead%/Time’,
& '%/Forecast%/From 1866’, '%/Forecast%/From 1867’,
& ’'%/Forecast%/From 1868’, '%/Forecast%/From 1869’,
& ' Deviation %/ for 95% %/Prob. Limits’, '%/%/Psi’'/

C Wolfer Sunspot Data for
C years 1770 through 1869
CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
C Compute preliminary parameter
C estimates for ARMA(2,1) model
IMEAN =1
MAXIT =0
RELERR = 0.0
IPRINT =0
CALL NSPE (NOBS, W, IPRINT, IMEAN, WMEAN, NPAR, NPMA, RELERR,
& MAXIT, CONST, PAR, PMA, AVAR)
C
C Include constant in forecast model
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I CONST = 1

C Specify 95 percent probability
C limts for forecasts
ALPHA = 0. 05
C Conmput e forecasts
IPRINT = 0
CALL NSBJF (NOBS, W |PRINT, NPAR, PAR, LAGAR, NPMA, PMA, LAGVA
& | CONST, CONST, AVAR, ALPHA, MXBKOR, MXLEAD, FCST,
& LDFCST)
C Print results
CALL WRRRL (FCST’, MXLEAD, MXBKOR+3, FCST, LDFCST, 0,
& '(5F9.2,F6.3)’, RLABEL, CLABEL)
C
END
Output
FCST

Deviation
Lead Forecast Forecast Forecast Forecast for 95%
Time From 1866 From 1867 From 1868 From 1869 Prob. Limits Psi
18.28 16.62 55.19 83.72 33.22 1.368
28.92 32.02 6276 77.21 56.30 1.127
41.01 4583 61.89 63.46 67.62 0.616
4994 54,15 56.46 50.10 70.64 0.118
54.09 56.56 50.19 41.38 70.75 -0.208
54,13 5478 4553 38.22 71.09 -0.326
51.78 51.17 43.32 39.30 71.91 -0.286
48.84 47.71 43.26 42.46 72.53 -0.169
46.53 45.47 44.46  45.77 72.75 -0.045
4535 4469 4598 48.08 72.77 0.041
4521 4499 47.18 49.04 72.78 0.077
12 4571 4582 4781 4891 72.82 0.072

P
FEBoo~NourwNER

IRNSE/DIRNSE (Single/Double precision)

Compute estimates of the impulse response weightsand noise series of a
univariate transfer function model.

Usage

CALL IRNSE (NOBS, X, Y, IPRINT, NPAR, PAR, NPMA, PMA,
MWTIR, MWTSN, WTIR, SNOISE, XPW, YPW)

Arguments

NOBS — Number of observations in each time series. (Input)
NOBS must be greater than or equal to two.

X — Vector of lengthNOBS containing the input time series. (Input)
Y — Vector of lengtiNOBS containing the output time series. (Input)
IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
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1 Print the estimates of the impulse response weights and the noise series.

NPAR — Number of prewhitening autoregressive parameters. (Input)
NPAR must be greater than or equal to zero.

PAR — Vector of lengthNPAR containing the prewhitening autoregressive
parameters. (Input)

NPMA — Number of prewhitening moving average parameters. (Input)
NPMA must be greater than or equal to zero.

PMA — Vector of lengtiNPVA containing the prewhitening moving average
parameters. (Input)

MWTIR — Maximum index of the impulse response weights. (Input)
MATI R must be greater than or equal to zero and less than or eqitaE3e 1.

MWTSN — Maximum index of the impulse response weights used to compute
the noise series. (Input)
MATSN must be greater than or equal to zero and less than or equdl te.

WTIR — Vector of lengthMATI R + 1 containing the impulse response weight
estimates. (Output)

The impulse response weight estimate of indiesxgiven bywri R(k) fork =0, 1,
.oy, MM R

SNOI SE — Vector of lengttNOBS — MATSN containing the noise series based on
the impulse response weight estimates. (Output)

XPW — Vector of lengtiNOBS — NPAR containing the prewhitened input time
seriesx. (Output)

YPW — Vector of lengthNOBS — NPAR containing the prewhitened output time
seriesy. (Output)

Comments
1. Automatic workspace usage is

| RNSE 3 + 4* MATI Runits, or
DI RNSE 6 + 8* MATI R units.

Workspace may be explicitly provided, if desired, by use of
| 2NSE/DI 2NSE. The reference is

CALL |1 2NSE (NOBS, X, Y, |PRINT, NPAR, PAR, NPMA,
PMA, MM R, MMSN, WIR SNO SE, XPW
YPW ACPWK, ACPWY, CCPW

The additional arguments are as follows:

ACPWX — Vector of lengthiwATl R + 1 containing the estimated
autocorrelation function ¢?#WK. (Output)

ACPWY — Vector of lengthwiTl R + 1 containing the estimated
autocorrelation function dwy. (Output)
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CCPW — Vector of length 2 MATI R + 1 containing the estimated
cross-correlation function WX andPWy. (Output)

2. The input serieX and output serieg are assumed to be the result of
transforming and differencing the raw input and output series. The
routinesBCTR (page 629) andl FF (page 633) may be used,
respectively, to perform a Box-Cox transformation and difference the
raw input and output series.

3. Note that the prewhitened input and output are computed at time
t = NPAR + 1 throught = NOBS. Also, the noise series is computed at
timet = MATSN + 1 through = NOBS.

Algorithm

Routinel RNSE estimates the impulse response weights and noise series of a
transfer function model given a samplenaf NOBS observations of the inpuk
and output §,} for t = 1, 2, ...,n. Define {x} and {y,}, respectively, by

Xi—fix d=0
“Tlovx, d>0
t
and
_ Y% -fy d=0
“Tlody, dso

where {X;} and {Y} for t = (-d + 1), ...,n represent the undifferenced input and
output series with

Hy andfly
estimates of their respective means. The differenced input and output series may

be obtained using the routibeFF (page 633) following any preliminary
transformation of the data.

The transfer function model is defined by

Y, =v(B)X, + N,
or, equivalently,

Y =V(B)x +n,
with transfer function

v(B) = v, +le+sz2 +..

and differenced noise serips= D‘ZN,.

The prewhitened input and output series are computdd=f¢p + 1), ...,n
according to
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a, = @B)x + 6,(B)a,
B, = @By, + 6,(B)B,

where

®B)=1-@B-@B -..-@B’
6(B) =6,B+ 6,8 + ... +6,B7
The parameters of the prewhitening transformation may be estimated roughly
using the routine NSPE (page 664) or more precisely using the routine NSLSE
(page 669). The correlation relationship between { o}, {3}, and {n} may be

further examined using the routines ACF (page 637), PACF (page 641), and CCF
(page 644).

The impulse response weights{v,} are estimated by

Og

Vg = 5 Pp(k) k=01..,K
where K = MATI R,
Gy and G
denote the standard deviation of { a,;} and {3} ;
Pap(K)fork=01...,K

represents the cross-correlation function between {a,;} and { B,}. The differenced
noise series{n;} fort=(K' + 1), ...,nis reconstructed using the model

Ny =Yr =VoX; =V1Xg-1 = " = Vg X
whereK' = MATSN.

Example

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532-533Xwhere
is the input gas rate in cubic feet/minute arid the percent COn the outlet
gas. Application of routineRNSE to these data produces the following results:

INTEGER  |PRINT, LDX, MATIR MASN, NDX, NOBS, NCPRIN, NPAR
& NPVA
PARAMETER (| PRI NT=0, LDX=296, MATI R=10, NDX=2, NOBS=296,
& NOPRI N=0, NPAR=3, NPMA=0, MATSN=MATI R)
C
INTEGER  NCOL, NROW
REAL PAR(NPAR), PMA(1), RDATA(296,2), SNO SE(NOBS- MATSN),
& W R(MATT R+1), X(NOBS), XPW NOBS- NPAR), Y( NOBS),
& YPW NOBS- NPAR)
EXTERNAL  GDATA, |RNSE, WRRRN
C

EQUI VALENCE (X(1), RDATA(1,1)), (Y(1), RDATA(1,2))
Gas Furnace Data
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CALL GDATA (7, NOPRIN, NROW NCOL, RDATA, LDX, NDX)

(eXe!

PAR( 1)
PAR( 2)
PAR( 3)

(eXe!

Specify AR paraneters for
prewhi teni ng transfornation
1.97
-1.37
0.34
Conput e estimates of inpul se
response wei ghts and noi se series

CALL I RNSE (NOBS, X, Y, |IPRINT, NPAR PAR, NPMA, PMA MATIR

&

CALL WRRRN (
CALL WRRRN (

END

1 2 3

-0.0355 0.0716 -0.

9 10 11

-0.0782 0.0277 -0.

1 2 3 4
53.21 53.49 53.72

MATSN, WIT R, SNO SE, XPW YPW
Print results

'WTIR’, 1, 11, WTIR, 1, 0)
'SNOISE’, 1, 20, SNOISE, 1, 0)

Output

WTIR

4 5 6 7 8
0764 -0.5655 -0.6549 -0.8936 -0.5358 -0.3482

1364

SNOISE

5 6 7 8 9 10
54.05 53.98 53.95 53.69 53.02 52.56 52.33

11 12 13 14 15 16 17 18 19 20

52.47 52.69 52.57

52.63 52.81 53.14 53.21 53.20 53.05 52.88

TFPE/DTFPE (Single/Double precision)

Compute preliminary estimates of parameters for a univariate transfer function
model.

Usage

CALL TFPE (IPRINT, NPLHS, NPRHS, NPNAR, NPNMA, NDELAY,
MWTIR, WTIR, NSNOIS, SNOISE, RELERR, MAXIT,
PLHS, PRHS, PNAR, PNMA, AVAR)

Arguments

IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Print estimates of transfer function parameters, estimates of noise model

parameters, and an of the random shock variance.

NPLHS — Number of left-hand side transfer function parameters. (Input)
NPLHS must be greater than or equal to zero.
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NPRHS — Number of right-hand side transfer function parameters (excluding
the index O parameter). (Input)
NPRHS must be greater than or equal to zero.

NPNAR — Number of noise autoregressive parameters. (Input)
NPNAR must be greater than or equal to zero.

NPNMA — Number of noise moving average parameters. (Input)
NPNVA must be greater than or equal to zero.

NDELAY — Time delay parameter. (Input)
NDELAY must be greater than or equal to zero.

MWTIR — Maximum index of the impulse response weights. (Input)
MATI R must be greater than or equaNRLHS + NPRHS + NDELAY.

WTIR — Vector of lengttMWTl R + 1 containing the impulse response weight
estimates. (Input)

The impulse response weight estimate of indmsxgiven bywr' R(k) for k = 0, 1,
wooy MM R

NSNOIS — Number of elements in the noise series. (Input)
NSNO S must be greater than or equaNeNAR + NPNVA + 1,

SNOI SE — Vector of lengtitNSNO' S containing the noise series. (Input)

RELERR — Stopping criterion for use in the nonlinear equation solver. (Input)
If RELERR = 0.0, then the default val®RELERR = 100.0* AMACH(4) is used. See
the documentation for routidACH (page 1334).

MAXIT — The maximum number of iterations allowed in the nonlinear equation
solver. (Input)
If MAXI T = 0, then the default valugXi T = 200 is used.

PLHS — Vector of lengtiNPLHS containing the estimates of the left-hand side
transfer function parameters. (Output)
TheLHS weight estimates arLHS(K), k = 1, ...,NPLHS.

PRHS — Vector of lengttNPRHS + 1 containing the estimates of the right-hand
side transfer function parameters. (Output)
TheRHS weight estimates arRHS(K), k = 0, ...,NPRHS.

PNAR — Vector of lengtiNPNAR containing the estimates of the noise
autoregressive parameters. (Output)

PNMA — Vector of lengtiNPNVA containing the estimates of the noise moving
average parameters. (Output)

AVAR — Estimate of the random shock variance. (Output)

Comments

1. Automatic workspace usage is
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TFPE  2* max(NPLHS, NPNAR) * (max(NPLHS, NPNAR) + 1) + 2 *
NPNAR + 1+ (NPNVA + 1) * (13 + 1.5 * NPNMA) + NPLHS units,
or

DTFPE 2* (2* max(NPLHS, NPNAR) * (max(NPLHS, NPNAR) + .75) +
2* NPNAR+ 1+ (NPNVA + 1) * (13 + 1.5 * NPNMA) + NPLHS)
units.

Workspace may be explicitly provided, if desired, by use of
T2PE/DT2PE. Thereferenceis

CALL T2PE (I PRINT, NPLHS, NPRHS, NPNAR, NPNMA,
NDELAY, MATI R, WITR NSNO'S, SNO SE,
RELERR, MAXI T, PLHS, PRHS, PNAR, PNWA,
AVAR, A, FAC, IPVT, WK, ACV, PARVK,
ACVMOD, TAUI NI, TAU, FVEC, FJAC, R QTF,
VKNLN, H)

The additional arguments are as follows:
A — Work vector of length (maxPLHS, NPNAR))?.

FAC — Work vector of length (maxeLHS, NPNAR))2 .
IPVT — Work vector of length makPLHS, NPNAR).
WK — Work vector of length maXPLHS, NPNAR).
ACV — Work vector of lengtiNPNAR + NPNVA + 1.
PARWK — Work vector of lengtiNPNAR + 1.
ACVMOD — Work vector of lengtiNPNVA + 1.
TAUINI — Work vector of lengtiNPNVA + 1.

TAU — Work vector of lengtiNPNVA + 1.

FVEC — Work vector of lengtiNPNVA + 1.

FJAC — Work vector of lengthNPNVA + 1Y

R — Work vector of lengthNPNVA + 1) * (NPNMVA + 2)/2.
QTF — Work vector of lengtihNPNVA + 1.

WKNLN — Work vector of length 5 (NPNVA + 1).

H — Work vector of lengtiNPLHS.

Informational error
Type Code
4 1 The nonlinear equation solver did not converge to
RELERR within MAXI T iterations.

The impulse response weight estimates and the noise series may be
computed using routineRNSE (page 685).
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Algorithm

Routine TFPE computes preliminary estimates of the parameters of a transfer
function model given a sample of n = NOBS observations of the differenced input
{x} and differenced output {y,} fort=1, 2, ...,n.

Define {x;} and {y,}, respectively, by
Xi—fix d=0
U™ X¢ d>0

and

_ Y% -fy d=0
"Tlody,  d>o0

where {X;} and {Y} for t = (-d + 1), ...,n represent the undifferenced input and
output series with

Hy and fy
estimates of their respective means. The differenced input and output series may

be obtained using the routibeFF (page 633) following any preliminary
transformation of the data.

The transfer function model is defined by
Y, =8 B)(B)X, 5 + N,
or, equivalently,

Y, =8 (B)w(B)X_p + N

wheren, = D‘[N, and the left-hand side and right-hand side transfer function
polynomial operators are
3B)=1-3B-5B -...- 5 B
W(B) =w - wB-wB - ... -wB’

with r = NPLHS, s = NPRHS, andb = NDELAY. The noise process\{} and the
input process X;} are assumed to be independent with the noise process given by
the ARIMA model

@B)n, = 6(B)A,
where
@B) =1-@B-@B - .. -g,B"
6(B)=1-6,B-6,8"-... -6, B

with p = NPNAR andg = NPNVA.
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o0 o O

| NTEGER

&

The impul se response weights and the transfer function parameters are related by
0 k=0,1...,b-1
|38V twe k=D
T 3528V ~ Wy k=b+1b+2,..,b+s
Y 210 V- k=b+s+Lb+s+2,...

Vi

See Abraham and L edolter (1983, page 341). The r left-hand side transfer
function parameters are estimated using the difference equation given as the last
case above. The resulting estimates

A

3y,.., 0,
are then substituted into the middle two cases to determine the s + 1 estimates
@, Oy, ..., B

The noise series parameters are estimated using the routine NSPE (page 664). The
impulse response weights {v,} and differenced noise series{n,;} may be computed
using the routine | RNSE (page 685). See Box and Jenkins (1976, pages 511-513).

Example

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532-533Xwhere
is the input gas rate in cubic feet/minute arid the percent CQn the outlet

gas. The data is retrieved by rout®&@@ATA (page 1302). RoutineRNSE

(page 685) computes the impulse response weights. Application of robfBEe

to these weights produces the following results:

MATI R, MAWTSN, NDELAY, NOBS, NPAR, NPLHS, NPMA, NPNAR,
NPNMA, NPRHS, NSNO S

PARAMETER (MWTI R=10, NDELAY=3, NOBS=100, NPAR=3, NPLHS=2,

&
&

| NTEGER

REAL
&
&
&

EXTERNAL

NPMA=0, NPNAR=2, NPNMA=0, NPRHS=2, MATSN=MATI R
NSNOI S=NOBS- MATSN)

I PRINT, MAXIT, NCOL, NROW
AVAR, PAR(NPAR), PLHS(NPLHS), PMA(1), PNAR(NPNAR),
PNVA( 1), PRHS(NPRHS+1), RDATA(296,2), RELERR
SNO| SE( NOBS- MATSN),  WIT R( MATI R+1),  X( NOBS),

XPW NOBS- NPAR) , Y(NOBS), YPW NOBS- NPAR)

GDATA, |RNSE, TFPE, WROPT

EQUI VALENCE (X(1), RDATA(1,1)), (Y(1), RDATA(1,?2))

Gas Furnace Data

CALL GDATA (7, 0, NROW NCOL, RDATA, 296, 2)

PAR( 1)
PAR( 2)
PAR( 3)

Specify AR paraneters for
prewhi teni ng transfornmation
1.97
-1.37
0.34
Conput e estimates of inpulse
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C response wei ghts and noi se series

IPRINT = 0
CALL I RNSE (NOBS, X, Y, |IPRINT, NPAR PAR, NPMA, PMA MATIR
& MAMTSN, WITR, SNO SE, XPW YPW
C Conver gence paraneters
RELERR = 0.0
MXIT =0
C Conput e prelimnary estimtes of
C transfer function paraneters
CALL WROPT (-6, 1, 1)
IPRINT = 1
CALL TFPE (1 PRI NT, NPLHS, NPRHS, NPNAR, NPNVA, NDELAY, MM R
& WIIR, NSNO S, SNO SE, RELERR, MAXIT, PLHS, PRHS,
& PNAR, PNMVA, AVAR)
C
END
Output
PLHS from TFPE/ T2PE
1 2
0. 120342 0. 326149
PRHS from TFPE/ T2PE
1 2 3
-0. 623240 0. 318698 0. 362488

PNAR from TFPE/ T2PE
1 2
1.64679 -0.70916
PNVA is not witten since NPNVA = 0

AVAR from TFPE/ T2PE = 2. 85408E- 02

MLSE/DMLSE (Single/Double precision)

Compute |east-squares estimates of alinear regression model for a multichannel

time series with a specified base channel.

Usage

CALL MLSE (NOBSX, NCHANX, X, LDX, | MEAN, XMEAN, NDI FF,

NDPREG, LAG CONST, NPREG PREG

Arguments

NOBSX — Number of observations in each channel of the time serigénput)
NOBSX must be less than or equaiX and greater than madPREGQ(i) + LAG(i))

fori=1, 2, ...,NCHANX.

NCHANX — Number of channels in the time serkes (Input)
NCHANX must be greater than or equal to one.
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X — NOBSX by NCHANX matrix containing the time series. (Input)

Each row ofX corresponds to an observation of a multivariate time series, and
each column oX corresponds to a univariate time series. The base time series or
output channel is contained in the first column.

LDX — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

IMEAN — Option for computation of the means of the channeks ofinput)

| MEAN Action
0 XMEAN is user specified.
1 XMEAN is set to the vector of arithmetic means of the channéds of

XMEAN — Vector of lengtitNCHANX containing the means of the channelX.of
(Input, if | MEAN = O; output, ifl MEAN = 1)

NDIFF — Vector of lengtiNCHANX containing the order of differencing for each
channel ofX. (Input)
The elements afiDl FF must be greater than or equal to zero.

NDPREG — Vector of lengtiNCHANX containing the number of regression
parameters in the differenced form of the model for each chankel @ihput)
The elements dfiDPREG must be greater than or equal to zero.

LAG — Vector of lengtiNCHANX containing the amount of time that each
channel oiX is to lag the base series. (Input)
The elements dfAG must be greater than or equal to zero.

CONST — Estimate of the overall constant. (Output)

NPREG — Number of regression parameters in the undifferenced model.
(Output)

NPREG = | ADD + (NDPREG(1) + NDI FF(1)) + ... + (NDPREG(NCHANX) +

NDI FF(NCHANX)

where

| ADD = NDI FF(1), if NDPREG(1) = 0
I ADD = max (0, minfAG(1) — 1, NDI FF(1))), if NDPREG(1) > O.
PREG — Vector of lengtiNPREG containing the regression parameters in the

undifferenced model. (Output)
The parameter estimates are concatenated as follows.

Channel 1: REX(i),i =1, 2, ...,| ADD + NDPREG(1) + NDI FF(1)
Channei: PREG(i), i =1 () + 1,1 (j) + 2, ...,1 (j) + NDPREG(j) + NDI FF(j)
where

I(j) = | ADD + NDPREG(1) + NDI FF(1) + ... + NDPREG(j — 1) +NDI FF(j — 1)
forj =2, 3, ...,NCHANX.
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Comments

1 Automatic workspace storage is

M.SE  NOBSX* NCHANX + 2 * NSUM + NSUM+ max (I ADD, NCHANX +
NSUM) units, or

DMLSE 2* (NOBSX * NCHANX + 2 * NSUM + max(l ADD, NCHANX +
NSUM) + NSUMunits.

Workspace may be explicitly provided, if desired, by use of
M2 SE/DMRSE. The referenceis

CALL M2SE (NOBSX, NCHANX, X, LDX, |MEAN, XVEAN,
NDI FF, NDPREG LAG, CONST, NPREG PREG
XVK, | VK)

The additiona arguments are as follows:

XWK — Work vector of lengtiNOBSX * NCHANX+ 2 * NSUM +
max( ADD, NCHANX + NSUM), whereNSUM= NDPREG(1) + ... +
NDPREG(NCHANX).

IWK — Work vector of lengtiNSUM

2. Prior to parameter estimation, the channels afe centered and/or
differenced according t&VEAN andNDI FF, respectively.

3. The undifferenced predictive form of the model is

X(t, 1) =CONST + PREG(1) * X(t - 1, 1) +... + PREG(I ADD) * X(t —
| ADD, 1) +PREG(I ADD + 1)* X(t — LAG(1), 1) +... +
PREG(I ADD + NDPREG(1) + NDI FF(1)) * X(t — LAG(1) + 1-
NDPREG(1) = NDI FF(1), 1) +... + PREG((j) + 1)* X(t -
LAG(j), j) + ... + PREG(I(j)+NDPREG(j)+NDI FF(j)) * X(t —
LAG(j) + 1 - NDPREG(j) — NDI FF(j), ) + ...

where

I(j) =1 ADD + NDPREG(1) + NDI FF(1) +... + NDPREG(j — 1) +
NDI FF(j — 1)

forj =2, 3, ...,NCHANX.

Algorithm

RoutineM_SE performs least-squares estimation of a linear regression model for a
multichannel time series with a specified base channel.

Define the multichannel time serigdy
X=X, X, ..y X,)

where

T .
Xj:(le,ij, ...,an) ji=1,2,...m
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with n = NOBSX and m = NCHANX. The columns of X correspond to individual
channels of amultichannel time series and may be examined from a univariate
perspective. The rows of X correspond to observations of an m-variate time series
and may be examined from a multivariate perspective. Note that an aternative
characterization of the multivariate time series X considers the columns of X to be
observations of an m-variate time series with the rows of X containing univariate
time series. For example, see Priestley (1981, page 692) and Fuller (1976, page
14).

The model isformed by regressing the base series X; on its previous values and
on the remaining channels X,, ..., X,,. The differenced form of the model is given

by

_ & ph dz gl2

Xip =69 + @ (B)I™B* X1 + 9 (B)I B2 X,
+.. 4+ Q(B)O% B X,
where 6, = CONST isthe overall constant, d, = NDI FF(K) is the order of
differencing X;, |, = LAG(K) isthe amount X, lags X,
— -1

O (B) = @y + @B +...+ @, (B
and p, = NDPREG(K) for k=1, 2, ...,m.
The undifferenced form of the model is given by

Xi1 =80 +91(B) Xy 1+ $2(B) Xicy, 2 -+ O m(B) Xy m

where the undifferenced paramet¢rs PREGK) are defined by

0 (B) = o (B)O%
= ¢1 +¢ZB+...+¢.pk+dkBpk+dk—l

fork=1, 2, ...,m Note that ifi; > d, =0, the base series teriXs;, atlagg = 1,
..., (I, — 1) are omitted from the right-hand side of the above model dihen.
In the actual computations, these terms are included.

Example 1

Consider the Wolfer Sunspot Data (Box and Jenkins 1976, page 530) along with
data on northern light activity and earthquake activity (Robinson 1967, page 204)
to be a three-channel time series. RoutingE is applied to these data to

examine the regressive relationship between the channels.

| NTEGER LDX, NCHANX, NOBSX
PARAMETER ( NCHANX=3, NOBSX=100, LDX=NOBSX)

C
INTEGER |, |MEAN, LAG(NCHANX), NCOL, NDI FF( NCHANX),
& NDPREG( NCHANX) , NOUT, NPREG, NROW
REAL CONST, PREG(20), RDATA(100,4), X(LDX, NCHANX),
& XVEAN( NCHANX)
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EXTERNAL GDATA, M.SE, UVACH

C
EQUI VALENCE (X(1,1), RDATA(1,2)), (X(1,2), RDATA(L,3)),
& (X(1,3), RDATA(1L,4))

C
DATA NDI FF(1), NDIFF(2), NDIFF(3)/1, 1, 0O/
DATA LAG(1), LAY 2), LAG3)/1, 2, 1
DATA NDPREG( 1), NDPREGQ(2), NDPREG(3)/2, 1, 3/

C
CALL GDATA (8, 0, NROW NCOL, RDATA, 100, 4)

C Option to estimate channel neans
| MEAN = 1

C Conput e regressi on paraneters
CALL MLSE (NOBSX, NCHANX, X, LDX, | MNMEAN, XMEAN, NDI FF, NDPREG
& LAG CONST, NPREG PREG

C

C Print results

CALL UMACH (2, NauT)
VRI TE ( NOUT, 99993)

99993 FORMAT (//, 1X,’ Results of MLSE/M2SE’)

WRITE (NOUT,99994)
99994 FORMAT (1X,’ | NDIFF(l) LAG(l) NDPREG(l) XMEAN(I)")

DO 10 I=1, NCHANX

WRITE (NOUT,99995) I, NDIFF(I), LAG(l), NDPREG(I), XMEAN(I)
99995 FORMAT (1X, 4(13,6X), F12.4)
10 CONTINUE

WRITE (NOUT,99996) CONST
99996 FORMAT (1X, 'Overall constant, CONST =", F12.4)

WRITE (NOUT,99997) NPREG
99997 FORMAT (//, 1X, 'Total number of parameters, NPREG =", I2)

WRITE (NOUT,99998)
99998 FORMAT (//, 1X, " | PREG(1))

DO 20 I=1, NPREG

WRITE (NOUT,99999) |, PREG(I)
99999 FORMAT (1X, 12, 5X, F12.4)
20 CONTINUE

C

END

Output
Results of MLSE/M2SE
| NDIFF() LAG(l) NDPREG(l) XMEAN(l)
1 1 2

1 46.9400
2 1 2 1 63.4300
3 0 1 3 97.9700
Overall constant, CONST =  -7.2698

Total number of parameters, NPREG = 8

| PREG(l)
1 -0.1481
2 -1.3444
3 0.4925
4 -0.0302
5 0.0302
6 -0.0210
7 0.0187
8 0.0765
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Example 2

Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532-533%,where
is the percent CQOn the outlet gas anX, is the input gas rate in cubic

feet/minute. Application of routinigl SE to these data produces the following
results:

| NTEGER LDX, NCHANX, NOBSX
PARAMETER (NCHANX=2, NOBSX=296, LDX=NOBSX)

INTEGER |, |MEAN, LAG(NCHANX), NCOL, NDI FF( NCHANX),
& NDPREG( NCHANX) , NOUT, NPREG, NROW

REAL CONST, PREG(20), RDATA(296,2), X(LDX, NCHANX),
& XVEAN( NCHANX)

EXTERNAL  GDATA, M.SE, SCOPY, UMACH

DATA NDI FF(1), NDIFF(2)/0, 0/
DATA LAG(1), LAG2)/1, 3/
DATA NDPREG( 1), NDPREGQ(2)/2, 3/
Gas Furnace Data
CALL GDATA (7, 0, NROWN NCOL, RDATA, 296, 2)
Mul ti channel X consists of
Colum 1: Qutput percent CO2
Colum 2: Input gas rate
CALL SCOPY (NOBSX, RDATA(1,2), 1, X(1,1), 1)
CALL SCOPY (NOBSX, RDATA(1,1), 1, X(1,2), 1)
Option to estinmate channel neans

o000 O

@]

| MEAN = 1
C Conput e regressi on paraneters
CALL MLSE (NOBSX, NCHANX, X, LDX, | MEAN, XMEAN, NDI FF, NDPREG,
& LAG CONST, NPREG PREG
C
C Print results
CALL UMACH (2, NoUT)
VWRI TE ( NOUT, 99993)
99993 FORMAT (1X, 'Results of MLSE/M2SE on Gas Furnace Data’)
WRITE (NOUT,99994)
99994 FORMAT (1X,’ | NDIFF(l) LAG(l) NDPREG(I) XMEAN(1)")
DO 10 I=1, NCHANX
WRITE (NOUT,99995) I, NDIFF(I), LAG(l), NDPREG(I), XMEAN(I)
99995 FORMAT (1X, 4(13,6X), F12.4)
10 CONTINUE
WRITE (NOUT,99996) CONST
99996 FORMAT (1X, 'Overall constant, CONST =", F12.4)
WRITE (NOUT,99997) NPREG
99997 FORMAT (1X, 'Total number of parameters, NPREG =", 12)
WRITE (NOUT,99998)
99998 FORMAT (1X, 1 PREG(l))
DO 20 I=1, NPREG
WRITE (NOUT,99999) |, PREG(l)
99999 FORMAT (1X, 12, 5X, F12.4)
20 CONTINUE
C
END

Output
Results of MLSE/M2SE on Gas Furnace Data
| NDIFF() LAG(l) NDPREG(l)  XMEAN(l)
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1 0 1 2 53. 5091
2 0 3 3 - 0. 0568
Overal |l constant, CONST = 2. 6562

Total nunber of paraneters, NPREG = 5

| PREG( 1)

1 1. 6063

2 - 0. 6561

3 - 0. 4837

4 -0. 1653

5 0. 5052

MWFE/DMWEFE (Single/Double precision)

Compute least-squares estimates of the multichannel Wiener filter coefficientsfor
two mutually stationary multichannel time series

Usage

CALL MAFE (NCHX, MLFIL, CXX, LDCXX, MDCXX, NCHZ, CZX,
LDCZX, MDCZX, EPS, TRACE, LFIL, FIL, LDFIL,
MDFI L ENMB)

Arguments

NCHX — Number of input channels. (Input)
NCHX must be greater than or equal to one.

MLFIL — Maximum length of the Wiener filter. (Input)
MLFI L must be greater than or equal to one.

CXX — Array of sizeNCHX by NCHX by MLFI L containing the autocovariances of
the input time series. (Input)

LDCXX — Leading dimension a&xX exactly as specified in the dimension
statement of the calling program. (Input)
LDCXX must be greater than or equaNeHX.

MDCXX — Middle dimension o€XX exactly as specified in the dimension
statement of the calling program. (Input)
MDCXX must be greater than or equaN@HX.

NCHZ — Number of channels in desired output time series. (Input)
NCHz must be greater than or equal to one.

CZX — Array of sizeNCHz by NCHX by MLFI L containing the cross-covariances
between the desired output time sedemnd the input time seriés (Input)

LDCZX — Leading dimension afzX exactly as specified in the dimension
statement of the calling program. (Input)
LDCZX must be greater than or equaN@HZ.

MDCZX — Middle dimension o€zX exactly as specified in the dimension
statement of the calling program. (Input)
MDCZX must be greater than or equaNeHX.
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EPS — Lower bound for the normalized mean square error. (Input)

TRACE — Trace of the autocovariance matrix of the desired output time Zeries
at time lag zero. (Input)

LFIL — Length of the Wiener filter. (Output)

FIL — Array of sizeNCHZ by NCHX by MLFI L containing the multichannel
Wiener filter coefficients. (Output)

LDFIL — Leading dimension dfl L exactly as specified in the dimension
statement of the calling program. (Input)
LDFI L must be greater than or equaNeHZ.

MDFIL — Middle dimension ofl L exactly as specified in the dimension
statement of the calling program. (Input)
MDFI L must be greater than or equaN@HX.

ENMS — Vector of lengttMLFI L containing the normalized mean square error
corresponding to each filter length. (Output)

Comments
1. Automatic workspace usage is

MFFE  NCHX* NCHX* (2* M.FI L + 12) +NCHZ + NCHX units,
DMAFE 2* (NCHX* NCHX* (2* M.FI L + 12) +NCHZ) + NCHX units

Workspace may be explicitly provided, if desired, by use of
M2FE/DMRFE. The reference is
CALL MRFE (NCHX, M.FIL, CXX, LDCXX, MDCXX, NCHz,

CzZX, LDCZX, MDCZX, EPS, TRACE, LFIL, FIL,
LDFI L, MDFIL, ENMS, |WK WK)

The additional arguments are as follows:
IWK — Work vector of lengthNCHX.
WK — Work vector of lengttNCHX * NCHX * (2* MLFI L + 12) +NCHZ.

2. The length of the filter is determined by the argumeERSandM_FI L.
Iteration to a longer filter stops when either the normalized mean square
errorENVE is less tharePs, or the filter reaches the maximum allowable
length,M_FI L.

3. The routineMCCF (page 649) may be used to obtain the input arguments
CXX, CZX, andTRACE. For TRACE, routineMCCF may be used to obtain
the autocovariances of the desired output seriés particular, TRACE =
ZVAR(1) + ... + ZVAR(NCHZ).

4. For a given lag, the multichannel cross-covariance coefficient between
Z andX is defined as the array of sikeHz by NCHX whose elements are
the single-channel crosscovariance coefficiea(i, j, k).
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Algorithm

Routine MFFE computes | east-squares estimates of the multichannel Wiener filter
coefficients for two mutually stationary multichannel time series.

Define the multichannel time series X by
X= (X, Xy, -0y X,)
where
X = Ko Xop o %) 1=1,2, 0P
with p = NCHX. Similarly, define the multichannel time serieby
2=Z,2, ... 2,)
where
Zj:(zljrzzja---yzmj)T i=1,2,...9

with g = NCHzZ. The columns oK andZ correspond to individual channels of
multichannel time series and may be examined from a univariate perspective. The
rows ofX andZ correspond to observationsmf/ariate andyj-variate time series

and may be examined from a multivariate perspective. Note that an alternative
characterization of a multivariate time sefiesonsiders the columns ¥fto be
observations of p-variate time series with the rowsXtontaining univariate

time series. For example, see Priestley (1981, page 692) and Fuller (1976, page
14).

Let
Hx
be the row vector containing the means of the chann&slofparticular,
Hx = (ﬁxl’ﬁxz'---’ﬁxp)
where forj =1, 2, ...,p
Hx M known

Ay =91
% HZXU- Mx, unknown
=

Let
Mz
be similarly defined. In what follows, assume the channels obbatidZ have
been centered about their respective means
Hx andfiz
Suppose the desired output is the multichannel time s&defined by the
model
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Zio = X1 @ + X(t-1),. @1 +... + X1-k), Px
where
Xio = (Xi1, X2, - Xip)

Zi. =(Zy,Zips -5 Zyp)

and @, isthe array of dimension p x q containing the Wiener filter coefficients

Pk P2k - Pk
| Pk P2k Pogi

O = : : :
(pplk (pp2k o (I)qu

fork=1, ...,K. The arrayp, is the k + 1)-st level of the 3-dimensional array
FI L.

The filter coefficients are computed by solving a set of normal equations. The
algorithm utilizes the block Toeplitz (or Toplitz) matrix structure of these
equations and is given by Robinson (1967, pages 238-246). In particular, the
required input consists of the multichannel autocovariance malicEs and

the multichannel cross-covariance mattjx. The routinevCCF (page 649) may
be used to estimate these covariance matrices.

Note that successively longer filters are estimated until either the normalized
mean square error is less ttems or the filter lengtiK = LFI L equalsSvLFI L.
The normalized mean square error is defined by

3o Y ax (K)o
tr3z(0)

where t&,(0) = TRACE is the trace of the multichannel autocorrelation coefficient
of the desired output at lag zero. The values pfdQthe successive filters of
lengthk =1, 2, ...,K are contained iENVS.

Q=1

Example

Consider the Wélfer Sunspot Data (Box and Jenkins 1976, page 530) along with
data on northern light activity and earthquake activity (Robinson 1967, page 204)
to be a three-channel time series. ROUMMEE applied to these data determines

the following Wiener filter:

C SPECI FI CATI ONS FOR PARAMETERS

| NTEGER I MEAN, | PRINT, LDCXX, LDCZX, LDFIL, LDX, LDZ, NMAXLAG
MDCXX, MDCZX, MNDFIL, MFIL, NCHANX, NCHANZ, NOBSX,
NOBSZ

PARAMETER (1 MEAN=1, | PRINT=0, M.FIL=3, NCHANX=3, NCHANZ=3,
NOBSX=99, NOBSZ=99, LDCXX=NCHANX, LDCZX=NCHANZ,
LDFI L=NCHANX, LDX=NOBSX, LDZ=NOBSZ, NAXLAG=M_FIL-1,
MDCXX=NCHANX, NMDCZX=NCHANX, NDFI L=NCHANZ)

R R0 R0 __RoRo

| NTEGER I, J, K LFIL, NCOL, NOUT, NROW
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REAL CVXX( LDCXX, MDCXX, - MAXLAG. MAXLAG), CVXX1(3, 3, 3),
& CVZX( LDCZX, MDCZX, - MAXLAG. MAXLAG), CVZX1(3, 3, 3),
& CXX( LDCXX, MDCXX, - MAXLAG: MAXLAG) ,
& CZX( LDCZX, NDCZX, - MAXLAG: MAXLAG), ENMS(MLFI L), EPS,
& FI L(LDFI L, MDFI L, MLFI L), R(0:2), RDATA(100,4), SSuM
& TRACE, X(LDX, NCHANX), XMEAN( NCHANX), XVAR(NCHANX),
& YMEAN, YVAR, Z(LDZ, NCHANZ), ZMEAN(NCHANZ),
& ZVAR( NCHANZ)
EXTERNAL  GDATA, MCCF, MAFE, SCOPY, SSUM UVACH
C
EQUI VALENCE (CVXX(1,1,0), CvXX1(1,1,1)), (CvZX(1,1,0), CvZX1(1,1,
& 1)
C Wl f er sunspot numnbers
C Northern lights activity
C Eart hquake activity
CALL GDATA (8, 0, NROW NCOL, RDATA, 100, 4)
C
CALL SCOPY (NOBSX, RDATA(1,2), 1, X(1,1), 1)
CALL SCOPY (NOBSX, RDATA(1,3), 1, X(1,2), 1)
CALL SCOPY (NOBSX, RDATA(1,4), 1, X(1,3), 1)
C
CALL SCOPY (NOBSZ, RDATA(2,2), 1, Z(1,1), 1)
CALL SCOPY (NOBSZ, RDATA(2,3), 1, Z(1,2), 1)
CALL SCOPY (NOBSZ, RDATA(2,4), 1, Z(1,3), 1)
C Conput e mul ti channel ACF of Z
CALL MCCF (NOBSZ, NCHANZ, Z, LDZ, NOBSZ, NCHANZ, Z, LDZ, MAXLAG,
& I PRINT, | MEAN, XMEAN, YMEAN, XVAR, YVAR, CVXX, LDCXX,
& MDCXX, CXX, LDCXX, MDCXX)
C Comput e TRACE
TRACE = SSUM NCHANZ, XVAR, 1)
C Conput e mul ti channel ACF of X
CALL MCCF (NOBSX, NCHANX, X, LDX, NOBSX, NCHANX, X, LDX, MAXLAG,
& I PRINT, | MEAN, XMEAN, ZMEAN, XVAR, ZVAR, CVXX, LDCXX,
& LDCXX, CXX, LDCXX, LDCXX)
C Conpute mul tichannel CCF of Z and X
CALL MCCF (NOBSZ, NCHANZ, Z, LDZ, NOBSX, NCHANX, X, LDX, MAXLAG,
& I PRINT, | MEAN, XMEAN, ZMEAN, XVAR, ZVAR, CVZX, LDCZX,
& MDCZX, CZX, LDCZX, MDCZX)
C Bound normalized MSE to be positive
EPS = 0.0
C Reverse the LAG direction and scal e
C to agree with Robinson (1967)
R(0) = 99.D0
R(1) = 98.D0
R(2) = 97.D0
TRACE = TRACE*R(0)
DO 10 K=0, MAXLAG
DO 10 J=1, NCHANX
DO 10 1=1, NCHANX
CVXX(1,3,K) = CVXX(I1,J, -K)*R(K)
CVZX(1,3,K) = CvzZX(1, J, - K) *R(K)
10 CONTI NUE
C Conpute mul ti channel Wener filter
CALL MAFE (NCHANX, M.FIL, CVXX1, LDCXX, MDCXX, NCHANZ, CVZX1,
& LDCZX, MDCZX, EPS, TRACE, LFIL, FIL, LDFIL, MDFIL,
& ENVS)
C Print results

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99994) LFI L
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99994 FORMAT (1X, 'Number of filter coefficients, LFIL =", I3)
DO 30 K=1, LFIL
WRITE (NOUT,99995) K
99995 FORMAT (//, 1X, 'Wiener filter coefficient of index K =", I3)
DO 20 I=1, NCHANX
WRITE (NOUT,99996) (FIL(1,J,K),J=1,NCHANZ)
99996 FORMAT (1X, 3F12.4)
20 CONTINUE
30 CONTINUE
WRITE (NOUT,99997)
99997 FORMAT (//, 1X, 'Normalized mean square error’)
WRITE (NOUT,99998)
99998 FORMAT (1X, 'K ENMS(K)")
DO 40 K=1, LFIL
WRITE (NOUT,99999) K, ENMS(K)
99999 FORMAT (1X, 12, 5X, F12.4)
40 CONTINUE
C
END

Output
Number of filter coefficients, LFIL = 3

Wiener filter coefficient of index K= 1
1.3834 0.0348 0.0158
0.0599 0.8266 0.0629
-0.1710 -0.0332 -0.1205

Wiener filter coefficient of index K= 2
-0.7719 -0.0183 -0.0318
-0.0040 -0.2328 0.0484
-0.2170 0.1912 -0.0667

Wiener filter coefficient of index K= 3
0.0516 0.0563 -0.0138
-0.0568 0.1084 -0.1731
0.0007 0.2177 -0.0152

Normalized mean square error
K ENMS(K)

1 0.6042

2 0.5389

3 0.5174

KALMN/DKALMN (Single/Double precision)

Perform Kalman filtering and evaluate the likelihood function for the state-space
model.

Usage

CALL KALMN (NY, Y, NB, Z, LDZ, R, LDR, IT, T, LDT, 1Q, Q,
LDQ, TOL, B, COVB, LDCOVB, N, SS, ALNDET, V,
COVV, LDCOVV)
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Arguments

NY — Number of observations for current update. (Input)
If NY = 0, no update is performed.

Y — Vector of lengtiNY containing the observations. (Input)
NB — Number of elements in the state vector. (Input)

Z — NY by NB matrix relating the observations to the state vector in the
observation equation. (Input)

LDZ — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

R — NY by NY matrix such thaR * o’ is the variance-covariance matrix of errors
in the observation equation. (Input)

o’isa positive unknown scalar. Only elements in the upper trianglaref
referenced.

LDR — Leading dimension a& exactly as specified in the dimension statement
in the calling program. (Input)

IT — Transition matrix option. (Input)

IT Action
0 T is the transition matrix in the state equation.
1 The identity is the transition matrix in the state equation.

T — NB by NB transition matrix in the state equation. (Input,Tif= 0)
If 1 T=1, thenT is not referenced and can be a vector of length one.

LDT — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

| Q — State equation error option. (Input)

IQ Action
0 There is an error term in the state equation.
1 There is no error term in the state equation.

Q — NB by NB matrix such tha@* o is the variance-covariance matrix of the
error vector in the state equation. (Input,df= 0)

disa positive unknown scalar.ll® = 1, thenQis not referenced and can be a
vector of length one. IfQ= 0, only the elements in the upper triangl®afe
referenced.

LDQ — Leading dimension a exactly as specified in the dimension statement
in the calling program. (Input)

TOL — Tolerance used in determining linear dependence. (Input)

For KALMN, TOL = 100.0* AMACH(4) is a common choice. FOKALWN,

TOL = 100.0* DMACH(4) is a common choice. See the documentation for routine
AVACH/DMACH (Reference Material).
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B — Estimated state vector of lengtB. (Input/Output)

The input is the estimated state vector at tigéven the observations thru tirke
- 1. The output is the estimated state vector at kind given the observations
thru timek. On the first call ta&KALM\, the inputB must be the prior mean of the
state vector at time 1.

COVB — NB by NB matrix such thatovB * o’ is the mean squared error matrix
for B. (Input/Output)

Before the first call t&cALMN, COVB * ¢ must equal the variance-covariance
matrix of the state vector.

LDCOVB — Leading dimension afOvB exactly as specified in the dimension
statement in the calling program. (Input)

N — Rank of the variance-covariance matrix for all the observations.
(Input/Output)

N must be initialized to zero before the first calki MN. In the usual case when
the variance-covariance matrix is nonsinguleegquals the sum of thér’s from
the invocations t&ALMN.

SS — Generalized sum of squares. (Input/Output)

SS must be initialized to zero before the first calk.M\. The estimate af” is
given bySs/N.

ALNDET — Natural log of the product of the nonzero eigenvaluéswhere

P * o’ is the variance-covariance matrix of the observations. (Input/Output)
AlthoughALNDET is computedKALMN avoids the explicit computation Bf
ALNDET must be initialized to zero before the first calki@.M\. In the usual case
whenP is nonsingularALNDET is the natural log of the determinantrof

V — Vector of lengtiNY containing the one-step-ahead prediction error.
(Output)
If Y is not needed, thewandY can occupy the same storage locations.

COVV — NY by NY matrix such thatowv * o’ is the variance-covariance matrix
of v. (Output)
If Ris not needed, the@OvV andR can occupy the same storage locations.

LDCOVV — Leading dimension afOvV exactly as specified in the dimension
statement in the calling program. (Input)
Comments
1. Automatic workspace usage is
KALMN NY® +NB? + NB * NY + max(B, NY) units, or
DKALMN 2* (NY* + NB”+ NB* NY + max(\B, NY)) units.

Workspace may be explicitly provided, if desired, by use of
K2LM\/DK2LMN. The reference is
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CALL K2LMN (NY, Y, NB, Z, LDz, R LDR IT, T, LDT,
1Q Q LDQ TO., B, COVB, LDCOVB, N, SS,
ALNDET, V, COW, LDCOW, COWCH, WK1,
VK2)

The additiona arguments are as follows.

COVVCH — Work vector of lengtiNy * NY containing the Cholesky
factor of theCOvV matrix. If R andCOvV are not needed;OVWCH, R, and
COWV can occupy the same storage locationsLaimust equal
LDCOWV.

WK1 — Work vector of lengtiNB * NB.
WK2 — Work vector of lengtiNB * NY + max(B, NY).

2. Informational errors
Type Code
4 1 R+Zz* covB* 2T is not nonnegative definite within

the tolerance defined ByOL. EitherTOL is too small,
or Ror COVB is not nonnegative definite.

4 2 The system of equaticB®VCH * x =V is
inconsistent. The variance-covariance matrix of the
observations is inconsistent with the observations
inputiny.

4 3 The system of equaticB®VCH * x =Z * COVB is
inconsistent. The Cholesky factorization to compute
COVWCH may be based on too large a valueTior.

The input of a smaller value foIOL may be
appropriate.

3. If R, @ andT are known functions of unknown paramet&rs, N can
be used in conjunction with routiu NF (IMSL MATH/LIBRARY)
to perform maximum likelihood estimation of these unknown
parametersuM NF should be used to minimize the function

N* ALOG(SS/N) + ALNDET:

4, In order to maintain acceptable numerical accuracy, the double precision
routine,DKALM, is usually required.

Algorithm

RoutineKALMN is based on a recursive algorithm given by Kalman (1960), which

has come to be known as the Kalman filter. The underlying model is known as the
state-space model. The model is specified stage by stage where the stages
generally correspond to time points at which the observations become available.
The routineKALMN avoids many of the computations and storage requirements

that would be necessary if one were to process all the data at the end of each stage
in order to estimate the state vector. This is accomplished by using previous
computations and retaining in storage only those items essential for processing of
future observations.
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The notation used here follows that of Sallas and Harville (1981). Let y, (input in
Y) bethe n; x 1 vector of observations that become available atkiriae
subscripk is used here rather tharwhich is more customary in time series, to
emphasize that the model is expressed in stagels 2,... and that these stages
need not correspond to equally spaced time points. In fact, they need not
correspond to time points of any kind. Tdteservation equation for the state-
space model is

yk:Zkbk+ek k:]., 2,

Here,Z; (input inZ) is ann, x g known matrix andb, is theq x 1 state vector.
The state vectds, is allowed to change with time in accordance withsthie
equation

Bt = Thern g + Wiy k=1, 2,...
starting withby =, +w;.

The change in the state vector from tikte k + 1 is explained in part by the
transition matrix T, ;(input inT), which is assumed known. It is assumed that the
g-dimensionalv;’s (k =1, 2,...).are independently distributed multivariate

normal with mean vector 0 and variance-covariance mat€, that then;-
dimensionak;’s (k =1, 2,..).are independently distributed multivariate normal

with mean vector 0 and variance-covariance mati, and that thev,’s and
g,/'s are independent of each other. Hexés the mean db, and is assumed

known,a” is an unknown positive scald@;.(input inQ andR; (input inR) are
assumed known.

Denote the estimator of the realization of the state végtgiven the
observationy;, y,, ..., Y; by

B
By definition, the mean squared error matrix for

Bij

2 - A T
0°Cy; = EByj ~b)Byj —0y)
At the time of the&k-th invocation, we have
Bk\k—l

andCy;_;, which were computed from thie{ 1)-st invocation, input i and
COVB, respectively. During thieth invocation, routin&ALMN computes the
filtered estimate
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Bk
aong with Cy ;. These quantities are given by the update equations:
6 _A T -1
Bik = Byk-1 + Ck-1Zk Hi Vi
_ Ty -1
Cigk = Cgk-1 ~ Cigk14k Hi " ZkCigiet
where
Vk = Yk ~ ZkBigk-1
and where
_ T
Hy = Re + 24 G2k

Here, v, (stored in V) is the one-step-ahead prediction error, and o’H risthe
variance-covariance matrix for v;. H; is stored in COvv. The “start-up values”
needed on the first invocation WALVN are

ﬁﬂo =l

andC,, = Q, input viaB andCOVB, respectively. Computations for tkeh
invocation are completed B$ALMN computing the one-step-ahead estimate

ﬁkﬂJk

along withCy,, |, given by theprediction equations:
Brrak = TkeaPugk
— T
Crrtk = TkaaCic Tiwn + Qu

If both the filtered estimates and one-step-ahead estimates are needed by the user
at each time poinkKALIN can be invoked twice for each time point—first with
=1 and Q=1 to produce

Bk
andCy, and second witNyY = 0 to produce
Bk+JJk

andCy,; x (With I T =1 and Q= 1, the prediction equations are skipped. With
NY = 0, the update equations are skipped.)

Often, one desires the estimate of the state vector more than one-step-ahead, i.e.,
an estimate of
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By
isneeded wherek > j + 1. At timej, KALMN isinvoked to compute

Bjsaj
Subsequent invocations of KALMN with NY = 0 can compute

BjsajBiagyr - By

Computations for

By
and Cy; assume the variance-covariance matrices of the errorsin the observation
equation and state equation are known up to an unknown positive scalar

multiplier, o°. The maximum likelihood estimate of o> based on the observations
Vi Y2y -oos Yo IS given by

62 =SS/N
where
N =30 and SS= 3 L) vy Hiti
If o* is known, theR;’s andQ,’s can be input as the variance-covariance matrices

exactly. The earlier discussion is then simplified by Ietﬁ%g 1.

In practice, the matricel, Q,, andR, are generally not completely known. They
may be known functions of an unknown parameter véctorthis caseKALMN

can be used in conjunction with an optimization program (see roiNing-,

(IMSL MATH/LIBRARY) to obtain a maximum likelihood estimate @&fThe
natural logarithm of the likelihood function far, y,, ..., Yy, differs by no more
than an additive constant from

1
L(e,oz;yl,yz, v Ym) = —§N|n02

BERS In[det(H )]—10‘2 3 v Hi v
2|<Zl k 2 kZl k "'k Yk

(Harvey 1981, page 14, equation 2.21). Here,
Y kg In[det(H,)]

(stored inALNDET) is the natural logarithm of the determinanvofherea®V is
the variance-covariance matrix of the observations.

Minimization of—2L(8, ; y;, ¥, ..., Y,,) over allg ando” produces maximum
likelihood estimates. Equivalently, minimization-#L.(6; v;, V5, ..., ¥,,) Where
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S

Le(®Y1You oY) = =3 NI )= 2 5 It )]
k=1

produces maximum likelihood estimates
fand 6% = SS/ N

The minimization of —=2L.(6; v;, 3, ..., ¥,,) instead of —2L(8, o’ Vis Y2 ooor Yo)s
reduces the dimension of the minimization problem by one. The two optimization
problems are equivalent since

62(0) = S6)/ N
minimizes—2L(8, *; Y, Vs, ..., Y,,) for al 6, consequently,
6%(8)
can be substituted for o” in L(o, o’ Y\ Yo, .-+, Yp) tO give afunction that differs
by no more than an additive constant fromL.(6; v;, Y2, ---, Yin)-

The earlier discussion assumed H,, to be nonsingular. If H, issingular, a
modification for singular distributions described by Rao (1973, pages 527-528) is
used. The necessary changes in the preceding discussion are as follows:

1. Replace
Ht
by a generalized inverse.
Replace deK,) by the product of the nonzero eigenvaluebl pf

ReplaceN by
m
Zkzl rank(H,)

Maximum likelihood estimation of parameters in the Kalman filter is discussed by
Sallas and Harville (1988) and Harvey (1981, pages 111-113).

Example 1

RoutineKALMN is used to compute the filtered estimates and one-step-ahead
estimates for a scalar problem discussed by Harvey (1981, pages 116-117). The
observation equation and state equation are given by

Yk = by e

by =b +wWeyy  k=1,234
where theg,’s are identically and independently distributed normal with mean 0
and variance”, thew,’s are identically and independently distributed normal
with mean 0 and variance% andb is distributed normal with mean 4 and
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variance 160°. Two invocations of KALMN are needed for each time point in order
to compute the filtered estimate and the one-step-ahead estimate. The first
invocation uses| Q=1and | T = 1 so that the prediction equations are skipped in
the computations. The second invocation uses NY = 0 so that the update equations
are skipped in the computations.

This example also computes the one-step-ahead prediction errors. Harvey (1981,
page 117) contains amisprint for the value v, that he gives as 1.197. The correct
value of v, = 1:003 is computed by KALMN.

| NTEGER LDCOVB, LDCOvV, LDQ LDR, LDT, LDZ, NB, NOBS, NY
PARAMETER (NB=1, NOBS=4, NY=1, LDCOVB=NB, LDCOVV=NY, LDQ=NB,

& LDR=NY, LDT=NB, LDZ=NY)
C
| NTEGER I, 1Q IT, N, NOUT
REAL ALNDET, AMACH, B(NB), COVB(LDCOVB, NB),
& COW/(LDCOW, NY), QLDQ NB), R(LDR NY), SS, T(LDT,NB),
& TOL, V(NY), Y(NY), YDATA(NOBS), Z(LDZ, NB)
EXTERNAL AVACH, KALMN, UMACH
C
DATA YDATA/ 4.4, 4.0, 3.5, 4.6/, zZ/1.0/, R1.0/, Q4.0/, T/1.0/
C
TOL = 100. * AVACH( 4)
CALL UMACH (2, NaoUT)
C Initial estimates for state vector
C and vari ance-covariance matri x.
C Initialize SS and ALNDET.
B(1) = 4.0
COVB(1,1) = 16.0
N =0
SS =0.0
ALNDET = 0.
VWRI TE ( NOUT, 99998)
DO 10 1=1, NOBS
Updat e
Y(1) = YDATA(I)
IQ =1
| T =1
CALL KALMN (NY, Y, NB, Z, LDZ, R LDR IT, T, LDT, IQ Q
& LDQ TOL, B, COvB, LDCOVB, N, SS, ALNDET, V,
& covw, L
VRI TE (NOUT, 99999) |, |, B(1l), COVB(1,1), N, SS, ALNDET,
& V(1), COW(1,1)
C Prediction
1Q=0
IT=0
CALL KALMN (0, Y, NB, Z, LDZ, R LDR IT, T, LDT, 1Q Q LDQ
& TOL, B, COvB, LDCOVB, N, SS, ALNDET, V, COw,
& LDCOWV)
VRI TE (NOUT, 99999) | + 1, I, B(1), COVvB(1,1), N, SS, ALNDET,
& V(1), COW(1,1)
10 CONTI NUE

99998 FORMAT (" kij,” B ' COVB ’,'N,’ SS
& "ALNDET’,” V '’ COVV )

99999 FORMAT (12, '/, 11, 2F8.3, 12, 4F8.3)
END
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K/ j
1/1
2/1
2/ 2
312
3/3
4/ 3
4/ 4
5/ 4

Output

B COvB N SS ALNDET \% cow
4.376 0.941 1 0. 009 2.833 0.400 17.000
4.376 4.941 1 0. 009 2.833 0.400 17.000
4.063 0.832 2 0. 033 4.615 -0.376 5.941
4.063 4.832 2 0. 033 4.615 -0.376 5.941
3. 597 0.829 3 0. 088 6.378 -0.563 5.832
3. 597 4.829 3 0. 088 6.378 -0.563 5.832
4.428 0.828 4 0. 260 8.141 1. 003 5. 829
4.428 4.828 4 0. 260 8.141 1. 003 5. 829
Example 2
Routine KALMN is used with routine UM NF (IMSL MATH/LIBRARY) to find a
maximum likelihood estimate of the parameter 8 in aMA (1) time series
represented by y, = €, — 6¢;_, . Routine RNARM (page 1232) is used to generate
200 random observations from an MA(1) time serieswith 6 = 0.5 and o” = 1.
The MA(1) time seriesis cast as a state-space model of the following form (see
Harvey 1981, pages 103-104, 112):
Yk =1 0)by
b 01 b
4 tWw
k 00 k-1 k
where the two-dimensional,’s are independently distributed bivariate normal
with mean 0 and variancg Qy and
o = 1+6% -8
-8 @2
o =[* 9 k=2,3,...,200
k _e 62 ] tECRN |
The warning error that is printed as part of the output is not serious and indicates
thatUM NF is generally used for multi-parameter minimization.
| NTEGER NOBS, NTHETA
PARAMETER ( NOBS=200, NTHETA=1)
| NTEGER | ADI ST, | PARAM 7), |SEED, LAGAR(1), LAGVA(1), NOUT,
& NPAR, NPNVA
REAL A(NOBS+1), AVAR CONST, FSCALE, FVALUE, PAR(1),
& PMA(1), RPARAM 7), THETA(NTHETA), W (1), XGUESS(1),
& XSCALE(1), YDATA(NOBS), SNRM2
COVMON / MA1l/ YDATA
EXTERNAL FCN, RNARM RNSET, UMACH, UM NF, SNRWR

| SEED = 123457
CALL RNSET (| SEED)

PMA( 1)
LAGVA( 1)
CONST

0.5

1
0.0

714 « Chapter 8: Time Series Analysis and Forecasting IMSL STAT/LIBRARY



NPAR =0

NPNVA =1

| ADI ST =0

AVAR =1.0

CALL RNARM (NOBS, CONST, NPAR, PAR, LAGAR, NPMA, PMA, LAGWA,

& | ADI ST, AVAR, A, W, YDATA)
C Use UM NF to find maxi mum likelihood
C estimate of the MA paraneter THETA

XGUESS(1) = 0.0

XSCALE(1) = 1.0

FSCALE = 1.0

| PARAM(1) = 0

CALL UM NF (FCN, NTHETA, XGUESS, XSCALE, FSCALE, |PARAM RPARAM

& THETA, FVALUE)

CALL UMACH (2, NaoUT)
WRITE (NOUT*) "’
WRITE (NOUT,*) ™ * * Final Estimate for THETA * * *'
WRITE (NOUT,*) '"Maximum likelihood estimate, THETA =", THETA(1)
END
C Use KALMN to evaluate the likelihood.
SUBROUTINE FCN (NTHETA, THETA, FUNC)
INTEGER NTHETA
REAL THETA(NTHETA), FUNC

INTEGER LDCOVB, LDCOVV, LDQ, LDR, LDT, LDZ, NB, NOBS, NY
PARAMETER (NB=2, NOBS=200, NY=1, LDCOVB=NB, LDCOVV=NY, LDQ=NB,
& LDR=NY, LDT=NB, LDZ=NY)

INTEGER 1,1Q, IT, N

REAL  ABS, ALNDET, ALOG, AMACH, B(NB), COVB(LDCOVB,NB),
& COVV(LDCOVV,NY), Q(LDQ,NB), R(LDR,NY), SS, T(LDT,NB),
& TOL, V(NY), Y(NY), YDATA(NOBS), Z(LDZ,NB)

COMMON  /MA1/ YDATA

INTRINSIC ABS, ALOG

EXTERNAL AMACH, KALMN

DATA T/0.0, 0.0, 1.0, 0.0/, Z/1.0, 0.0/
IF (ABS(THETA(1)) .GT. 1.0) THEN

Estimate out of parameter space.
Set function to a large number.

o0 o 0O

FUNC = 1.E10
RETURN
END IF
TOL =100.*AMACH(4)
IQ =0
Q1,1 =10
Q(1,2) =-THETA(1)
Q(2,1) =-THETA(1)
Q(2,2) = THETA(1)**2
IT =0
No error in the
observation equation.
R(1,1) =0.0
Initial estimates for state vector
and variance-covariance matrix.
Initialize SS and ALNDET.

o000 00

B(1)
B(2)

o
oo
oo
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COVB(1, 1)
COVB( 1, 2)
COVB( 2, 1)
COVB( 2, 2)
N

1.0 + THETA(1)**2
- THETA( 1)

- THETA( 1)

THETA( 1) ** 2

0

0.0

0.0

SS
ALNDET

DO 10 =1, NOBS
Y(1) = YDATA(I)
CALL KALMN (NY, Y, NB, Z, LDz, R LDR IT, T, LDT, IQ Q
& LDQ TOL, B, COVB, LDCOVB, N, SS, ALNDET, V,
& COW, LDCOW)
10 CONTI NUE

FUNC = NFALOG(SS/N) + ALNDET
RETURN
END

Output

*** WARNING ERROR 1 from UsINF. This routine may be inefficient for a
*okx probl em of size N = 1.

Here is a traceback of subprogramcalls in reverse order:

Rout i ne name Error type FError code
(Called internally)
(Called internally)
(Called internally)

USER
* * * Fipal Estimate for THETA * * *
Maxi mum | i kel i hood estimate, THETA = 0. 452842

LOFCF/DLOFCF (Single/Double precision)

Perform lack-of -fit test for a univariate time series or transfer function given the
appropriate correlation function.

Usage
CALL LOFCF (NOBS, LAGM N, LAGVAX, CF, NPFREE, Q PVALUE)

Arguments

NOBS — Number of observations in the stationary time series. (Input)
NOBS must be greater than or equal to two.

LAGMIN — Minimum lag of the correlation function. (Input)

LAGM N corresponds to the lower bound of summation in the lack of fit test
statistic. Generally, AGM Nis set to one i€F is an autocorrelation function and
is set to zero i€F is a cross correlation function.

LAGMAX — Maximum lag of the correlation function. (Input)
LAGVAX corresponds to the upper bound of summation in the lack of fit test
statistic.LAGVAX must be greater than or equal#®GM N and less thaNOBS.
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CF — Vector of length.AGVAX + 1 containing the correlation function. (Input)
The correlation coefficient for lalgis given byCF(k + 1),k = LAGM N, LAGM N+
1, ...,LAGVAX.

NPFREE — Number of free parameters in the formulation of the time series
model. (Input)
NPFREE must be greater than or equal to zero and less . thavax.

Q — Lack of fit test statistic. (Output)

PVALUE — p-value of the test statistic Q. (Output)
Under the null hypothesighas an approximate chi-squared distribution with
LAGVAX — LAGM N + 1 - NPFREE degrees of freedom.

Comments

RoutineLOFCF may be used to diagnose lack of fit in both ARMA and transfer
function models. Typical arguments for these situations are

M odel LAGM N LAGVAX NPFREE
ARMA(p, 0) 1 vNOBS pP+q
Transfer function 0 JNOBS r+s

See the “Algorithm” section for further information.

Algorithm

RoutineLOFCF performs a portmanteau lack of fit test for a time series or transfer
function containingh observations given the appropriate sample correlation
function

p(k)
fork=L,L+1,..., KwhereL = LAGM N andK = LAGVAX.
The basic form of the test statis€xis

K
Q=n(n+2)y (n-k)™p(k)
k=L

with L = 1 if
p(k)
is an autocorrelation function ahd= O if
p(k)

is a cross-correlation function. Given that the model is adedQdtas a chi-
squared distribution witK — L + 1 - m degrees of freedom wheme= NPFREE
is the number of parameters estimated in the model. If the mean of the time
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| NTEGER
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PARAMETER

&
&

| NTEGER

REAL
&
&
&

EXTERNAL

seriesis estimated, Woodfield (1990) recommends not including this in the count
of the parameters estimated in the model. Thus, for an ARMA(p, ) model set
NPFREE = p + g regardless of whether the mean is estimated or not. The original
derivation for time series modelsis due to Box and Pierce (1970) with the above
modified version discussed by Ljung and Box (1978). The extension of the test to
transfer function modelsis discussed by Box and Jenkins (1976, pages 394—395).

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. An ARMA(2,1) with nonzero mean is fitted using routiseSE

(page 669). The autocorrelations of the residuals are estimated using AGRtine
(page 637). A portmanteau lack of fit test is computed using 10 lags QFicHk.

The warning message fradsL SE in the output can be ignored. (See the example
for routineNSLSE for a full explanation of the warning message.)

| ARDEG | MEAN, | PRINT, |SEOPT, LAGVAX, LAGM N, LDCOV,
LDX, MAXBC, MDX, NOBS, NP, NPAR, NPFREE, NPVA

(1 ARDEG=2, | MEAN=1, | PRI NT=0, |SEOPT=0, LAGVAX=10,
LAGM N=1, LDX=176, MAXBC=10, MDX=2, NOBS=100, NPAR=2,
NPFREE=4, NPMA=1, NP=NPAR+NPNMA+l MEAN, LDCOV=NP)

LAGAR(NPAR), LAGVA(NPMA), MAXI T, NA, NCOL, NOUT, NROW
A(NOBS- | ARDEGHMAXBC), ACV( LAGMAX+1), AVAR
CF(LAGVAX+1), CONST, COV(LDCOV, NP), PAR(NPAR),
PMA(NPMA), PVALUE, Q RELERR SEAC(LAGVAX), TOLBC,
TOLSS, WNOBS), WWEAN, X(LDX, MDX)

ACF, GDATA, LOFCF, NSLSE, NSPE, UMACH

EQUI VALENCE (W 1), X(22,2))

DATA LAGAR/ 1, 2/, LAGW 1/

CALL UMACH (2, NOUT)

Wl fer Sunspot Data for
years 1770 through 1869

CALL GDATA (2, IPRINT, NROW NCCL, X, LDX, MDX)

MAXI T

RELERR

Conver gence par aneters

0.0

Conput e prelimnnary paramneter
estimates for ARMA(2, 1) nodel

CALL NSPE (NOBS, W |PRINT, |MEAN, WVEAN, NPAR, NPMA, RELERR,

&

TOLBC
TOLSS

MAXI T, CONST, PAR, PMA, AVAR)
Conput e | east squares estimates
for nodel

0.0
0. 125

CALL NSLSE (NOBS, W |PRINT, |MEAN, WWVEAN, NPAR, PAR, LAGAR,

&

NPMA, PMVA, LAGVA, MAXBC, TOLBC, TOLSS, CONST, Cov,
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& LDCOV, NA, A, AVAR

C Conput e autocorrel ations of the
C residual s
CALL ACF (NOBS-I| ARDEG+MAXBC, A, |PRINT, |SEOPT, | NMEAN, WEAN,
& LAGVAX, ACV, CF, SEAQ)
C
CALL LOFCF (NOBS, LAGM N, LAGWAX, CF, NPFREE, Q PVALUE)
C
VR TE (NOUT, 99998) Q
WRI TE (NQUT, 99999) LAGVAX - LAGM N + 1 - NPFREE, PVALUE
C

99998 FORMAT (/4X, 'Lack of Fit statistic (Q) =, F12.3)

99999 FORMAT (/4X, 'Degrees of freedom (LAGMAX-LAGMIN+1-NPFREE) =",
& 18/4X, 'P-value (PVALUE) ="', F12.4)
END

Output
**WARNING ERROR 1 from NSLSE. Least squares estimation of the parameters
rokk has failed to converge. Increase MAXBC and/or TOLBC and/or
rrx TOLSS. The estimates of the parameters at the last iteration
ek may be used as new starting values.

Lack of Fit statistic (Q) = 14.572

Degrees of freedom (LAGMAX-LAGMIN+1-NPFREE) = 6
P-value (PVALUE) =  0.9761

DIRIC/DDIRIC (Single/Double precision)

Compute the Dirichlet kernel.

Usage
DIRIC(M, RANGLE, EPS)

Arguments
M — Spectral window parameter. (Input)
RANGLE — Angle in radians. (Input)

EPS — Positive bound orRpNGLE| that determines when an approximation to
the Dirichlet kernel is appropriate. (Input)

EPS must be between 0 amdnclusive. The approximation is used when
[RANGLE] is less thagPS.

DIRIC — Function value. (Output)

Comments

1. The Dirichlet kernel is equivalent to the truncated periodogram spectral
window. The spectral window parameter denotes the truncation point in
the weighted sum of sample autocovariances used to estimate the
spectral density.
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2. The Dirichlet kernel produces negative values for certain values of
RANGLE. Thus, spectral windows that use the Dirichlet kernel may also
take on negative values.

3. The Dirichlet kernel is defined between —1tand T, inclusive, and is zero
otherwise.

Algorithm

Routine DI RI C evaluates the Dirichlet kernel, D,,(0), for a given parameter M,
angle 6 = RANGLE, and tolerance € = EPS. The computational form of the function

isgiven by
@u s 3R]} o
21 (M+3)e
| 1 (snl(M+3)e]
DM@%-EE-j;ﬂﬂEY— e<lgsm
0 6] > Tt

Thefirst case is an approximation to D,,(0) for small 6, and the second case isthe
usual theoretical definition.

In spectral analysis, the Dirichlet kernel corresponds to the truncated periodogram

spectral window, and M is called the spectral window parameter. Since the

Dirichlet kernel may be negative for certain values of 6, the truncated

periodogram estimate of the spectral density may also be negative. Thisisan

undesirable property since the true spectral density is a nonnegative function. See
Priestley (1981, pages 437-438) and Anderson (1971, pages 508-511) for further
discussion.

Example

In this exampleDl RI Cis used to compute the Dirichlet kernel at
0=+k/(2M + 1) fork =0, 1,..., (2M + 1) whereM = 5 ande = 0.01.

C SPECI FI CATI ONS FOR LOCAL VARI ABLES
| NTEGER K, M NOUT
REAL DIRIC, EPS, PI, REAL, THETA, W
I NTRINSI C REAL
EXTERNAL DI RI C, UVACH

C

M =5

EPS = .01

Pl = 3.14159
C

CALL UMACH (2, NOUT)
C

VR TE ( NOUT, 99998)
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99998 FORMAT ( K THETA  WEIGHT ")
DO 10 K=0, 2*M + 1
THETA = (PI*REAL(K))/REAL(2*M+1)
WT = DIRIC(M,THETA,EPS)
WRITE (NOUT,99999) K, THETA, WT
99999 FORMAT (1X, 12, 2(3X,F8.5))
10 CONTINUE
C
RETURN
END

Output
THETA WEIGHT
0.00000 1.75070
0.28560 1.11833
0.57120 0.00000
0.85680 -0.38312
1.14240 0.00000
1.42800 0.24304
1.71359 0.00000
1.99919 -0.18919
2.28479 0.00000
2.57039 0.16587
10 2.85599 0.00000
11 3.14159 -0.15915

OCO~NOUIRWNRF OX

FEJER/DFEJER (Single/Double precision)

Compute the Fejér kernel.

Usage
FEJER(M RANGLE, EPS)

Arguments
M — Spectral window parameter. (Input)
RANGLE — Angle in radians. (Input)

EPS — Positive bound orRpNGLE| that determines when an approximation to
the Fejér kernel is appropriate. (Input)

EPS must be between 0 amdnclusive. The approximation is used when
[RANGLE] is less thagPS.

FEJER — Function value. (Output)

Comments

1. The Fejér kernel is equivalent to the modified Bartlett spectral window.
The spectral window parameter denotes the truncation point in the
weighted sum of sample autocovariances used to estimate the spectral
density.
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uces nonnegative values for all valuRSNG_E.

Thus, spectral windows based on the Fejér kernel are always

2. The Fejér kernel prod
nonnegative.

3.
otherwise.

Algorithm

The Fejér kernel is defined betweemandrr, inclusive, and is zero

RoutineFEJER evaluates the Fejér kerngl,,(0), for a given parametd, angle
0 = RANGLE, and tolerance = EPS. The computational form of the function is

given by
M(sin[MG/Z])Z o<
2 Me/2
: 2
Fy(6) = 1 SIr_m[MGIZ] e<lol<m
2mM \ sin(B/2)
0 6] > 1t

The first case is an approximationFgy(6) for small@, and the second case is the

usual theoretical definition.

In spectral analysis, the Fejér

kernel corresponds to the modified Bartlett spectral

window, andM is called the spectral window parameter. Since the Fejér kernel is
nonnegative for all values 6f the modified Bartlett estimate of the spectral

density is also nonnegative. T

his is a desirable property since the true spectral

density is a nonnegative function. See Priestley (1981, pages 439-440) and
Anderson (1971, pages 508-511) for further discussion.

Example

In this exampleFEJER is used to compute the Fejér kerned at+kr/M for
k=0,1,..., MwhereM = 11 anct = 0.01.

C
INTEGER K, M NOUT
REAL EPS, FEJER PI,
I NTRINSI C  REAL
EXTERNAL  FEJER UMACH
C
M =11
EPS = .01
Pl = 3.14159265
CALL UMACH (2, NOUT)
C

WRI TE ( NOUT, 99998)
99998 FORMAT ( K THETA
DO 10 K=0, M
THETA = (PI*REAL(K))/REAL(M)
WT = FEJER(M,THETA,EPS)

WEIGHT )

REAL, THETA, W
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WRI TE (NOUT, 99999) K, THETA, WI
99999 FORMAT (1X, 12, 2(3X, F8.5))

10 CONTI NUE
C
RETURN
END

THETA
. 00000
. 28560
. 57120
. 85680
. 14240
. 42800
. 71360
. 99920
. 28479
. 57039
. 85599
. 14159

RPOOVONOURWNROX
WNNNRRPRRROOOO

e

Output
VEI GHT
. 75070
. 71438
00000
08384
00000
03374
00000
02044
00000
. 01572
. 00000
. 00000

coooocooooo0or

PFFT/DPFFT (Single/Double precision)

Compute the periodogram of a stationary time series using afast Fourier
transform.

Usage

CALL PFFT (NOBS, X, |PRINT, XCNTR NPAD, |FSCAL, |PVER PM
LDPM)

Arguments

NOBS — Number of observations in the stationary time setieglnput)
NOBS must be greater than or equal to two.

X — Vector of lengtiNOBS containing the stationary time series. (Input)
IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Print the periodogram, and the cosine and sine transformations of the

centered and padded time series.
XCNTR — Constant used to center the time sexiegInput)

NPAD — Number of zeroes used to pad the centered time series. (Input)
NPAD must be greater than or equal to zero. The length of the centered and
padded time series ¢ = NOBS + NPAD.

IFSCAL — Option for frequency scale. (Input)
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| FSCAL Action
0 Frequency in radians per unit time
1 Frequency in cycles per unit time

IPVER — Option for version of the periodogram. (Input)

| PVER Action
0 Compute usual periodogram.
1 Compute modified periodogram.

Refer to the algorithm section for further details.

PM — (ON/200+ 1) by 5 matrix that contains a summarization of the periodogram
analysis. (Output)
Fork=0, 1, ...,IN/2[J the k + 1)-st element of theth column ofPM is defined

as

Col. Description

1 Frequencyy, wherew;, = 21;,/N for | FSCAL = 0 andwy, = k/N for
| FSCAL = 1.

2 Period p, wherep, = 21w, for | FSCAL = 0 andp;, = 1/, for
I FSCAL = 1. If wy, = 0, py is set to missing.

3 Periodogram ordinaté(wy).

4 Cosine transformation coefficiedt(wy).

5 Sine transformation coefficier®(wy).

LDPM — Leading dimension dftMexactly as specified in the dimension
statement of the calling program. (Input)
LDPMmust be greater than or equalig2(1+ 1.

Comments
1. Automatic workspace storage is

PFFT 10N + 15 units, or
DPFFT 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
P2FT/DP2FT. The reference is

CALL P2FT (NOBS, X, |PRINT, XCNTR, NPAD, | FSCAL,
I PVER, PM LDPM CX, CCEF, WFFTC, CPY)

The additional arguments are as follows:
CX — Complex work vector of lengt.
COEF — Complex work vector of lengtk.
WFFTC — Work vector of length M + 15.
CPY — Work vector of length 4.
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2. The centered and padded time seriesis defined by
CX(j) = X(j) — XCNTR forj=1, ...,NOBS
CX(j)=0 forj=NOBS +1, ...,N
whereN = NOBS + NPAD.

3. The periodogram(w) is an even function of the frequerwyThe
relationl(-w) = I(w) for w > 0.0 recovers the periodogram for negative
frequencies.

4, Since cosp) is an even function ab and sin) is an odd function o,
the cosine and sine transformations, respectively, satisfy
A(—w) = A(w) andB(-w) = —B(w) for w > 0.0. Similarly, the complex
Fourier coefficients, stored BOEF, satisfyCOEF(-w) = conj(COEF(w)).
5. Computation of the 2 NOBS — 1 autocovariances ofusing the inverse
Fourier transform of the periodogram requires
NPAD = NOBS - 1.

Algorithm

RoutinePFFT computes the periodogram of a stationary time series given a
sample oh = NOBS observations X} for t=1, 2, ...,n.

Let

{Xi}
fort =1, ...,Nrepresent the centered and padded data vithersOBS + NPAD,

S _ Xt_ﬁx t::L,n
X =
0 t=(n+1),...,N
and
ﬁx = XCNTR
is determined by
M My known
fx ={g_1d
*TIX =% X ux unknown
=
The discrete Fourier transform of
{Xi}

fort=1, ...,Nis defined by
N _ ot
—_ -1
(@)= 5 X
t=1

over the discrete set of frequencies
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An alternative representation of
{ (o)
in terms of cosine and sine transformsis
(5 (y) = ag(wy) —if g (wy)

where
n _—
a g (W) = H Xpcos(wyt)
=1
and
n = .
Bz (wy) = Xsin(wyt)
=1

The fast Fourier transform algorithm is used to compute the discrete Fourier
transform. The periodogram of the sample sequence { X;},t =1, ...,n computed

with the centered and padded sequence
{Xi}

t=1, ...,Nis defined by

2

honx (@) =K = K‘Z;(((Dk)‘z

N v it
zxte 10y
t=1

whereK is the scale factor

= for the usual periodogram
K=

1 - .
—— for the modified periodogram
2™
The scale factor of the usual periodogram relates the ordinates to the sum of

squares of
X~ ﬁx
(Fuller 1976, pages 276-277). If the first ordinate (correspondikgt0) is

replaced by one-half of its value, themifs odd, the sum of théN/2[0+ 1
ordinates corresponding ko= 0, 1, ...,[IN/2[is

N & N
—3 (X ~fix)?
=
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For N even, if thefirst ordinate (corresponding to k = 0) and the last ordinate
(corresponding to k = N/2) are each replaced by one-half of their values, then the
same relationship holds. The modified periodogram is an asymptotically unbiased
estimate of the nonnormalized spectral density function at each frequency wy
(Priestley 1981, page 417). The argument | PVER is used to specify the version of
the periodogram.

The alternative representation of the discrete Fourier transform implies

| % (@) = AZ(0y) + BZ (@)

where

A (W) = K¥2al 2 (wy)
and

B (0x) = K¥?B s (wy)

represent the (scaled) cosine and sine transforms, respectively. Since the
periodogram is an even function of the frequency, it is sufficient to estimate the
periodogram at the discrete set of nonnegative frequencies

o :% k=0,1...,|N/2]

Use of the centered data
{Xi}

(without padding) instead of the origina data{X;} fort =1, ...,n does not affect
the asymptotic sampling properties of the periodogram. In fact,

Long (@) = lnnx () @ #0
Forw, = 0, both
;(0)=0

nnX

and

2
n
Innx (0) = K[Z xt) = Kn?X?
=1

reflect the mean of the data. See Priestley (1981, page 417) for further discussion.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
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for this example consists of the number of sunspots observed from 1770 through
1869. Application of routine PFFT to these data produces the following results.

| NTEGER | PRI NT, LDPM NOBS

PARAMETER (| PRI NT=0, LDPM=100, NOBS=100)

INTEGER | FSCAL, |PVER NCOL, NPAD, NROW
REAL PM LDPM 5), RDATA(176, 2),
CHARACTER CLABEL(6)*9, FMI*20, RLABEL(1)*6

I NTRINSI C REAL

EXTERNAL GDATA, PFFT, SSUM WRRRL

EQUI VALENCE (X(1), RDATA(22,2))

@)

DATA RLABEL/NONE’/, CLABEL/" ', 'Frequency’, 'Period’,

& I(w(k))', "A(w(K))', "B(w(k))/

Compute the periodogram

Print results
FMT ='(F9.4, F6.2, 3F10.2)

CALL WRRRL (', 20, 5, PM, LDPM, 0, FMT, RLABEL, CLABEL)

@)

END

Output
Frequency Period I(w(k)) Aw(k)) B(w(k))
0.0000 NaN 0.00 0.00 0.00
0.0316 199.00 183.97 3.72 -13.04
0.0631 99.50 1363.37 3545 -10.32
0.0947 66.33 2427.09 29.31 39.60
0.1263 49.75 1346.64 -21.74 29.56
0.1579 39.80 139.74 -11.69 -1.79
0.1894 33.17 44.67 -4.65 4.80
0.2210 28.43 12347 -11.11 -0.33
0.2526 24.88 176.04 -4.79  -12.37
0.2842 22.11  143.06 9.92 -6.69
0.3157 19.90 44.17 6.43 1.68
0.3473 18.09 38.95 5.40 3.13
0.3789 16.58 63.20 7.14 3.49
0.4105 15.31 537.64 0.89 23.17
0.4420 14.21 94468 -30.73 -0.75
0.4736 13.27 162.02 -0.95 -12.69
0.5052 12.44 908.09 -2451 -17.53
0.5368 11.71 3197.84 34.84 -4454
0.5683 11.06 1253.82 19.69 29.43
0.5999 10.47 850.45 -8.75 -27.82

CALL PFFT (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, IPVER, PM, LDPM)

C Wolfer Sunspot Data for

C years 1770 through 1869
CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)

C Center on arithmetic mean
XCNTR = SSUM(NOBS,X,1)/REAL(NOBS)

C Pad standard amount
NPAD = NOBS - 1

C Frequency in radians per unit time
IFSCAL =0

C Modified periodogram version
IPVER =1

C

C

REAL, SSUM X(NOBS), XCNTR
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SSWD/DSSWD (Single/Double precision)

Estimate the nonnormalized spectral density of a stationary time seriesusing a
spectral window given the time series data.

Usage
CALL SSWD (NOBS, X, | PRINT, XCNTR, NPAD, |FSCAL, NF, F,

TINT, ISWER, N\M M PM LDPM SM LDSM
Arguments

NOBS — Number of observations in the stationary time setieglnput)
NOBS must be greater than or equal to two.

X — Vector of lengtiNOBS containing the stationary time series. (Input)
IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Print the periodogram, cosine transform and sine transform of the

centered and padded time series, and the spectral density estimate based
on a specified version of a spectral window for a given set of spectral
window parameters.

XCNTR — Constant used to center the time sexiegInput)

NPAD — Number of zeroes used to pad the centered time series. (Input)
NPAD must be greater than or equal to zero.

|FSCAL — Option for frequency scale. (Input)

| FSCAL Action
0 Frequency in radians per unit time.
1 Frequency in cycles per unit time.

NF — Number of frequencies at which to evaluate the spectral density estimate.
(Input)

F — Vector of lengtiNF containing the frequencies at which to evaluate the
spectral density estimate. (Input)

The units of~ correspond to the scale specifiedII38CAL. The elements df

must be in the range{UTI NT, T¢TI NT), inclusive forl FSCAL = 0 and

(=2/(2* TI NT), 1/(2* TI NT)) inclusive forl FSCAL = 1.

TINT — Time interval at which the series is sampled. (Input)
For a discrete parameter process, ustdINT = 1. For a continuous parameter
processTl NT > 0.TI NT is used to adjust the spectral density estimate.

| SWVER — Option for version of the spectral window. (Input)

| SWER Action
1 Modified Bartlett
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Daniell
Tukey-Hamming
Tukey-Hanning
Parzen
Bartlett-Priestley

O wWN

Refer to the “Algorithm” section for further details.

NM — Number of spectral window parametsrgsed to compute the spectral
density estimate for a given spectral window version. (Input)
NMmust be greater than or equal to one.

M — Vector of lengtiNMcontaining the values of the spectral window
parametersi (Input)

For the Parzen spectral windowSWER = 5), all values of the spectral window
parametersimust be even.

PM — (IN/20+ 1) by 5 matrix that contains a summarization of the periodogram
analysis. (Output)
Fork=0, 1, ...,ON/20J the k + 1)-st element of thieth column ofPMis defined

as

Col. Description

1 Frequencyew, wherewy, = 2rk/N for | FSCAL = 0 orwy, = k/N for
| FSCAL = 1.

2 Period p, wherep, = 2wy, for | FSCAL = 0 andp,, = 1/wy for
| FSCAL = 1. If wy, = 0, py is set to missing.

3 Periodogram ordinaté(wy).

4 Cosine transformation coefficiertwy).

5 Sine transformation coefficier(cwy).

Note N = NOBS + NPAD.

LDPM — Leading dimension cfMexactly as specified in the dimension
statement of the calling program. (Input)
LDPMmust be greater than or equalig2(1+ 1.

SM — NF by NM+ 2 matrix containing a summarization of the spectral analysis.
(Output)
Thek-th element of thgth column ofSMis defined as

Col. Description

1 Frequencyg(k).

2 Period,p, wherep, = 2r/F(k) for | FSCAL = 0 andp, = 1/~(k) for
| FSCAL = 1. If F(K) = O, p; is set to missing.

3 Spectral density estimater{k) using the spectral window parameter
M1).

NM+ 2  Spectral density estimateRgk) using the spectral window parameter
MNM.

wherek =1, ...,NF.
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LDSM — Leading dimension @Mexactly as specified in the dimension
statement of the calling program. (Input)
LDSMmust be greater than or equaN@

Comments
1. Automatic workspace storage is

SSW 10N + 15 units, or
DSSWD 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
S2WDO/DS2WD. The reference is

CALL S2WD (NOBS, X, | PRINT, XCNTR, NPAD, |FSCAL, NF,
F, TINT, ISWER, \M\ M PM LDPM SM
LDSM CX, CCEF, WFFTC, CPY)

The additional arguments are as follows:

CX — Complex vector of lengtN containing the centered and padded

time seriexX. (Output)

COEF — Complex vector of lengtN containing the Fourier
coefficients of the finite Fourier transform@X. (Output)

Note thatCOEF(K) is the appropriately scaled Fourier coefficient at
frequencywy, k=0,1, ....N- 1.

WFFTC — Vector of length ¥ + 15.
CPY — Vector of length R.

2. The normalized spectral density estimate is obtained by dividing the

nonnormalized spectral density estimate in ma&by an estimate of
the variance oX.
Algorithm

RoutineSSWD estimates the nonnormalized spectral density function of a
stationary time series using a spectral window given a sample 86BS
observations X} for t=1, 2, ...,n.

Let
{X)
fort =1, ...,Nrepresent the centered and padded data vithersOBS + NPAD,
S _ Xt—ﬁx t:l,...,n
X =
0 t=(n+1,v..., N
and
ﬁx = XCNTR
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is determined by
X My known

u

A~ - 1 n

Hx —Z X; My unknown
Nz

The modified periodogram of
{Xi}
fort=1, ...,Nis estimated by

| 3 (@) = AZ(0y) + BZ (@)

where
N —~—
Az (wy) = KY2 > Xcos(oyt)
t=1
and

N
—wl2 Y o
By (wy) =K Z Xsin(w,t)

t=1

represent the
X,

cosine and sine transforms, respectively, ltiglthe scale factor equal to
1/(2rm). Since the periodogram is an even function of the frequency, it is

sufficient to estimate the periodogram over the discrete set of nonnegative
frequencies

w0 :% k=01...[N/2]

The routinePFFT (page 723) is used to compute the modified periodogram of
X;
The estimate of the nonnormalized spectral dehsit) is computed according

to

o N2
= L (@) Wh (@ = wy )
k=02

where the spectral window,,(6) is specified by argumenSWER. The
following spectral windowsV,(B) are available.
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Modified Bartlett

_ 1 [snme/2))%
W”(e)'zmvl{ sin(6/2) } =Fu©)

where F;,(8) corresponds to the Fejér kernel of ortier

Daniell

M/2nm -m/M<B<Tt/M
0 otherwise

W (6) ={

Tukey

W, () = aDy, (6—%)+(1—2a)DM (9)+aDM(6+%) 0<a<025

whereD,,(8) represents the Dirichlet kernel. The Tukey-Hamming window is
obtained whem = 0.23 and the Tukey-Hanning window is obtained when
a=0.25.

Parzen
6 2 .

whereM is even. IfM is odd, therM + 1 is used instead ™ in the above
formula.

Bartlett-Priestley

3M MB\?
W, (6) = Tn{l'(?]} o=/ M

0 6> 11/ M

The argumeniiMspecifies the number of window parametdrand corresponds

to the number of spectral density estimates to be computed for a given spectral
window. The nonnormalized spectral density is estimated over the set of
frequencies

w=f i=1,..,n

wheren,= NF. These frequencies are in the scale specified by the argument
| FSCAL but are transformed to the scale of radians per unit time for
computational purposes.

The above formula for
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F‘x (W)

assumes the data{X;} correspond to arealization of a discrete-parameter
stationary process observed consecutively in time. In this case, the observations
are equally spaced in time with interval At = TI NT equivalent to one. However, if
the data correspond to arealization of a continuous-parameter stationary process
recorded at equal time intervals, then the estimate of the nonnormalized spectral
density must be adjusted for the effect of aiasing. In general, the estimate of hy(w
) isgiven by

hy (w) = Athy (w) || < 1T/ At

Note that the frequency w of the desired spectral estimate is assumed to be input
in aform already adjusted for the time interval At. Approximate confidence
intervals for h(w) can be computed using formulas given in the introduction.

Example

Consider the Wélfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Application of routin&sSWD to these data produces the following results:

INTEGER  |PRINT, LDPM LDSM NF, NM NOBS
REAL Pl
PARAMETER (I PRI NT=0, NF=20, NME3, NOBS=100, Pl =3.141592654,
& LDPMENOBS,  LDSMENF)
C
INTEGER |, IFSCAL, |SWER MNM, NCOL, NPAD, NROW
REAL F(NF), PMLDPM 5), RDATA(176,2), FLOAT, SMLDSM 5),
& SSUM TINT, X(NOBS), XCNTR
CHARACTER CLABEL(6)*9, FMI*20, RLABEL(1)*6, TI TLE*60
I NTRI NSI C  REAL
EXTERNAL ~ GDATA, SSUM SSWD, WRRRL
EQUI VALENCE (X(1), RDATA(22,2))
C

DATA RLABEL/'NONE’/, CLABEL/’, 'Frequency’, 'Period’,
& 'M=10,'"M=20,'M =30/

C Wolfer Sunspot Data for
C years 1770 through 1869
CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
C Center on arithmetic mean
XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)
C Pad standard amount
NPAD =NOBS - 1
C Frequency in radians per unit time
IFSCAL =0
C Determine frequencies at which
C to evaluate spectral density
DO 10 I=1, NF
F(1) = PI*FLOAT(I)/FLOAT(NF)
10 CONTINUE
C Time interval for discrete data
TINT=1.0
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C Spectral
10
20
30

wi ndow par aneters

XXX
A

Conput e spectral density using
the Parzen wi ndow

(eXe!

| SWER = 5
CALL SSWD (NOBS, X, |PRINT, XCNTR, NPAD, |FSCAL, NF, F, TINT,
& | SWER, \M\ M PM LDPM SM LDSM
C Print results
TITLE = 'Spectral Density Using the Parzen Window’
FMT ='(F9.4, F6.2, 3F10.2)
CALL WRRRL (TITLE, NF, 5, SM, LDSM, 0, FMT, RLABEL, CLABEL)
Compute spectral density using
the Bartlett-Priestley window

00

ISWVER =6
CALL SSWD (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF, F, TINT,
& ISWVER, NM, M, PM, LDPM, SM, LDSM)
C Print results
TITLE = '%/Spectral Density Using the Bartlett-Priestley ’//
& 'Window’
CALL WRRRL (TITLE, NF, 5, SM, LDSM, 0, FMT, RLABEL, CLABEL)

END

Output
Spectral Density Using the Parzen Window

Frequency Period M=10 M=20 M=30
0.1571 40.00 659.64 617.42 619.73
0.3142 20.00 666.95 554.70 339.61
0.4712 13.33 653.73 770.64 860.49
0.6283 10.00 598.77 857.80 1046.13
0.7854 8.00 497.47 582.85 550.77
0.9425 6.67 367.72 266.33 186.98
1.0996 5.71 240.65 12146 104.79
1.2566 5.00 142.41 76.17 76.74
1.4137 4.44 81.28 54.20 47.19
1.5708 4.00 49.13 40.16 41.39
1.7279 3.64 32.57 27.58 26.46
1.8850 3.33 22.44 16.52 14.40
2.0420 3.08 15.53 10.93 9.87
2.1991 2.86 11.19 8.30 8.32
2.3562 2.67 8.66 6.18 5.86
25133 2.50 6.93 4.75 4.22
2.6704 2.35 5.51 4.62 4.35
2.8274 2.22 4.47 491 5.24
29845 2.11 3.61 4.23 4.75
3.1416 2.00 2.62 2.44 2.27

Spectral Density Using the Bartlett-Priestley Window

Frequency Period M=10 M=20 M=30
0.1571 40.00 604.34 712.73 757.61
0.3142 20.00 564.28 176.81 107.08
0.4712 13.33 767.63 927.14 981.10
0.6283 10.00 900.32 1190.30 1172.23
0.7854 8.00 607.45 49485 571.65
0.9425 6.67 237.16 127.65 87.36
1.0996 5.71 103.34 113.93 135.34
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1. 2566 5.00 75.74 74. 88 57.57
1.4137 4.44 52. 64 44.98 38.59
1.5708 4.00 38.50 44.56 50. 59
1.7279 3. 64 27.35 25.28 21.76
1. 8850 3.33 15. 68 13. 84 13.10
2.0420 3.08 10. 33 9.79 7.41
2.1991 2.86 7.95 8.31 8. 67
2. 3562 2.67 6. 04 5. 86 7.08
2.5133 2.50 4.56 3. 67 2.90
2.6704 2.35 4. 44 4.38 4.06
2.8274 2.22 4.99 5.62 5.40
2.9845 2.11 4.31 5.07 5.08
3. 1416 2.00 2.43 2.23 2.44

SSWP/DSSWP (Single/Double precision)

Estimate the nonnormalized spectral density of a stationary time seriesusing a
spectral window given the periodogram.

Usage
CALL SSWP (N, PX, NF, F, ISWER M SX)

Arguments

N — Number of observations in the centered and padded time Xeri@aput)
N must be greater than or equal to two.

PX — Vector of lengtiIN/2[+ 1 containing the (modified) periodogram>of
(Input)

The periodogram ordinate evaluated at (angular) frequepey2ri/N is given
by Px(k + 1),k =0, 1,..., IN/20

NF — Number of (angular) frequencies. (Input)
NF must be greater than or equal to one.

F — Vector of lengtiNF containing the (angular) frequencies at which the
spectral density is estimated. (Input)
The elements df must be in the range g, 1) inclusive.

| SWVER — Option for version of the spectral window. (Input)

| SWER Action

Modified Bartlett
Daniell
Tukey-Hamming
Tukey-Hanning
Parzen
Bartlett-Priestley

OO0k WNPE

Refer to the “Algorithm” section for further details.
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M — Spectral window parameter. (Input)
Mmust be greater than or equal to one and less\than

SX — Vector of length\NF containing the estimate of the spectral density of the
time seriexX. (Output)

Comments

1. The periodogram of may be computed using the routPfeFT
(page 723). Estimation of the spectral densit¥ abing the modified
periodogram preserves the scale of the spectral density up to adjustment
for the time sampling interval.

2. The time sampling interval] NT, is assumed to be equal to one. This
assumption is appropriate for discrete parameter processes. The
adjustment for continuous parameter procesHasI(> 0.0) involves
multiplication of the frequency vectérby 1/TI NT and multiplication of
the spectral density estimate TIyNT.

3. To convert the frequency scale from radians per unit time to cycles per
unit time, multiplyF by 1/(2rm).
Algorithm

RoutineSSW estimates the nonnormalized spectral density function of a
stationary time series using a spectral window given the modified periodogram of
the appropriately centered and padded data

{X} fort=1.., N
The routinePFFT (page 723) may be used to obtain the modified periodogram
I w
over the discrete set of nonnegative frequencies
w, =——, k=01..., |_N/2J
The symmetry of the periodogram is used to recover the ordinates at negative

frequencies.

The estimate of the nonnormalized spectral dehgity) is computed according
to

[ N/2]

. 2

hy (w) =<l g I (0 )W, (w—wy)
k="N/2]

n,N, X

where the spectral window,,(6) is specified by argumenSWER. The
following spectral windowsV,(B) are available.
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Modified Bartlett

_ 1 [snMe/2))%
W”(e)'zmvl{ sin(6/2) } =Fu®)

where F;,(8) corresponds to the Fejer kernel of order M.

Daniell

M/2nm -m/M<B<Tt/M
0 otherwise

W (6) ={

Tukey

W, () = aD,, (6—%)+(1—2a)DM (6) +aDy, (e+%), 0<a<025

where D,;,(0) represents the Dirichlet kernel. The Tukey-Hamming window is

obtained when a = 0.23, and the Tukey-Hanning window is obtained when
a=0.25.

Parzen

W, (8) :%T[FM,Z(G)]Z{l—% 'nZ(G/Z)}

where M iseven. If M isodd, then M + 1 isused instead of M in the above
formula.

Bartlett-Priestley

3M MB)?

My (M) L g <mm
W, (8) = | 4 (nj} o

0 6] >t/ M

Only one window parameter M may be specified so that only one estimate of
hy(w) is computed. The nonnormalized spectral density is estimated over the set
of frequencies

w=f, i=1..n
where n; = NF. These frequencies are in the scale of radians per unit time. The
time sampling interval At is assumed to be equal to one.
Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set

738 « Chapter 8: Time Series Analysis and Forecasting IMSL STAT/LIBRARY



for this example consists of the number of sunspots observed from 1770 through
1869. Application of routine SSWP to these data produces the following results:

| NTECER | PRINT, LDPM LDSM NF, NM NOBS
REAL Pl
PARAMETER (1 PRINT=0, NF=20, NM=3, NOBS=100, PI=3.141592654,
& LDPM=NOBS, LDSM=NF)
C
| NTECER I, IFSCAL, IPVER |ISWER, J, MNM, N NCOL, NPAD,
& NROW
REAL F(NF), PMLDPM 5), PX(LDPM, RDATA(176,2), FLOAT,
& SMINF, 5), SSUM SX(NF), X(NOBS), XCNTR
CHARACTER CLABEL(6)*9, FMI*20, RLABEL(1)*6, TITLE*60
I NTRINSI C FLOAT
EXTERNAL  GDATA, PFFT, SCOPY, SSUM SSWP, WRRRL
C
EQUI VALENCE (PX(1), PM1,3)), (F(1), SM1,1))
EQUI VALENCE (X(1), RDATA(22,2))
C
DATA RLABEL/'NONE’/, CLABEL/’, 'Frequency’, 'Period’,
& ’'M=10,'M=20,'M =30/
C Wolfer Sunspot Data for
C years 1770 through 1869
CALL GDATA (2, 0, NROW, NCOL, RDATA, 176, 2)
C Center on arithmetic mean
XCNTR = SSUM(NOBS, X,1)/FLOAT(NOBS)
C Pad standard amount
NPAD = NOBS - 1
C Frequency in radians per unit time
IFSCAL =0
C Modified periodogram version
IPVER =1
C Compute periodogram
CALL PFFT (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, IPVER, PM, LDPM)
C Number of observations used to
C compute the periodogram
N = NOBS + NPAD
C Determine frequency and period
C at which to evaluate the spectral
C density
DO 10 I=1, NF
SM(1,1) = PI*FLOAT(I)/FLOAT(NF)
SM(1,2) = 2.0*FLOAT(NF)/FLOAT(l)
10 CONTINUE
C Spectral window parameters
M(1) =10
M(2) = 20
M(3) =30
C Compute spectral density using
C the Parzen window
ISWVER =5
DO 20 J=1,NM
CALL SSWP (N, PX, NF, F, ISWVER, M(J), SX)
C Copy into SM
CALL SCOPY (NF, SX, 1, SM(1,2+J), 1)
20 CONTINUE
C Print results

TITLE = 'Spectral Density Using the Parzen Window’
FMT ='(F9.4, F6.2, 3F10.2)
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CALL WVRRRL (TITLE, NF, 5, SM LDSM 0, FMI, RLABEL, CLABEL)

C Conput e spectral density using
C the Bartlett-Priestley w ndow
| SWER = 6
DO 30 J=1, NM
CALL SSWP (N, PX, NF, F, |ISWER MJ), SX)
C Copy into SM
CALL SCOPY (NF, SX, 1, SM1,2+J3), 1)
30 CONTI NUE
C Print results
TITLE = '%/Spectral Density Using the Bartlett-Priestley ’//
& 'Window’
CALL WRRRL (TITLE, NF, 5, SM, LDSM, 0, FMT, RLABEL, CLABEL)
C

END

Output
Spectral Density Using the Parzen Window
Frequency Period M=10 M=20 M=30

0.1571 40.00 659.64 617.42 619.73
0.3142 20.00 666.95 554.70 339.61
0.4712 13.33 653.73 770.64 860.49
0.6283 10.00 598.77 857.80 1046.13
0.7854 8.00 497.47 582.85 550.77
0.9425 6.67 367.72 266.33 186.98
1.0996 5.71 240.65 12146 104.79
1.2566 5.00 142.41 76.17 76.74
1.4137 4.44 81.28 54.20 47.19
1.5708 4.00 49.13 40.16 41.39
1.7279 3.64 32.57 27.58 26.46
1.8850 3.33 22.44 16.52 14.40
2.0420 3.08 15.53 10.93 9.87
2.1991 2.86 11.19 8.30 8.32
2.3562 2.67 8.66 6.18 5.86
25133 2.50 6.93 4.75 4.22
2.6704 2.35 5.51 4.62 4.35
2.8274 2.22 4.47 491 5.24
2.9845 2.11 3.61 4.23 4.75
3.1416 2.00 2.62 2.44 2.27

Spectral Density Using the Bartlett-Priestley Window
Frequency Period M=10 M=20 M=30
0.1571 40.00 604.34 712.73 757.61
0.3142 20.00 564.28 176.81 107.08
0.4712 13.33 767.63 927.14 981.10
0.6283 10.00 900.32 1190.30 1172.23
0.7854 8.00 607.45 49485 571.65

0.9425 6.67 237.16 127.65 87.36
1.0996 5.71 103.34 113.93 135.34
1.2566 5.00 75.74 74.88 57.57
1.4137 4.44 52.64 44.98 38.59
1.5708 4.00 38.50 44.56 50.59
1.7279 3.64 27.35 25.28 21.76
1.8850 3.33 15.68 13.84 13.10

2.0420 3.08 10.33 9.79 7.41
2.1991 2.86 7.95 8.31 8.67
2.3562 2.67 6.04 5.86 7.08
25133 2.50 4.56 3.67 2.90
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2.6704 2.35 4.44 4.38 4.06

2.8274 2.22 4.99 5.62 5.40
2.9845 2.11 4.31 5. 07 5.08
3. 1416 2.00 2.43 2.23 2.44

SWED/DSWED (Single/Double precision)

Estimation of the nonnormalized spectral density of a stationary time series based
on specified periodogram weights given the time seriesdata.

Usage

CALL SVED (NOBS, X, |PRINT, XCNTR, NPAD, |FSCAL, NF, F,
TINT, NAT, WI, PM LDPM SM LDSM

Arguments

NOBS — Number of observations in the stationary time setieginput)
NOBS must be greater than or equal to two.

X — Vector of lengthNOBS containing the stationary time series. (Input)
IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Print the periodogram, cosine and sine transforms of the centered and

padded time series, and the spectral density estimate based on a
specified weight sequence.

XCNTR — Constant used to center the time sexieqInput)

NPAD — Number of zeroes used to pad the centered time series. (Input)
NPAD must be greater than or equal to zero. The length of the centered and
padded time series i = NOBS + NPAD.

|FSCAL — Option for frequency scale. (Input)

| FSCAL Action
0 Frequency in radians per unit time.
1 Frequency in cycles per unit time.

NF — Number of frequencies at which to evaluate the spectral density estimate.
(Input)

NF must be greater than zero.

F — Vector of lengtiNF containing the frequencies at which to evaluate the
spectral density estimate. (Input)

The units ofF correspond to the scale specifiedIlR8CAL. The elements df

must be in the range{yTI NT, TUTI NT), inclusive, fon FSCAL = 0 and

(=1/(2* TI NT), 1/(2* TI NT)), inclusive, forl FSCAL = 1.
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TINT — Time interval at which the series is sampled. (Input)
For a discrete parameter process, ustalNT = 1.0. For a continuous parameter
processTI NT > 0.0.TI NT is used to adjust the spectral density estimate.

NWT — Number of weights. (Input)
NWI must be greater than or equal to one.

WT — Vector of lengti\\WI' containing the weights used to smooth the
periodogram. (Input)

The actual weights are the valuesiinnormalized to sum to 1 with the current
periodogram ordinate taking the middle weightN@r odd or the weight to the
right of the middle foNWI' even.

PM — (IN/20+ 1) by 5 matrix that contains a summarization of the periodogram
analysis. (Output)
Fork=0, 1,..., IN/20J the k + 1)-st element of thieth column ofPMis defined

as

Cal. Description

1 Frequencyw, wherewy, = 2ri/N for | FSCAL = 0 orwy, = k/N for
| FSCAL = 1.

2 Period,p, wherep, = 2wy, for | FSCAL = 0 andp; = 1/wy for | FSCAL =
1. If w, = 0,p, is set to the missing value or NaN (not a number).

3 Periodogram ordinaté(wy).

4 Cosine transformation coefficiert(wy).

5 Sine transformation coefficier(cwy).

LDPM — Leading dimension dftMexactly as specified in the dimension
statement in the calling program. (Input)
LDPMmust be greater than or equalig2[1+ 1.

SM — NF by 3 matrix containing a summarization of the spectral analysis.
(Output)
Thek-th element of thegth column ofSMis defined as

Cal. Description

1 Frequencyg(K).

2 Period,p, wherep, = 2r/F(k) for | FSCAL = 0 andp, = 1/~(k) for
| FSCAL = 1. If F(K) = O, p; is set to missing.

3 Spectral density estimateR{k) using the specified weightd.

wherek =1, ..., NF.

LDSM — Leading dimension dMexactly as specified in the dimension
statement in the calling program. (Input)
LDSMmust be greater than or equaN@
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Comments
1 Automatic workspace storage is

SWED 10N+ 15o0r
DSWED 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
S2ED/DS2ED. Thereferenceis

CALL S2ED (NOBS, X, |PRINT, XCNTR, NPAD, | FSCAL,
NF, F, TINT, NWI, W, PM LDPM SM LDSM
CX, COEF, WFFTC, CPY)

The additiona arguments are as follows:

CX — Complex vector of lengtN containing the centered and padded
time seriexX. (Output)

COEF — Complex vector of lengtN containing the Fourier
coefficients of the finite Fourier transform@f. (Output)

Note thatCOEF(k + 1) is the appropriately scaled Fourier coefficient at
frequencywy, k=0,1,...,N- 1.

WFFTC — Work vector of length M + 15.
CPY — Work vector of length 4.

2. The centered and padded time series is defined by
CX(j) = X(j) — XCNTR forj=1,..., NOBS
cX(H) =0 forj=NOBS+1,...,N

whereN = NOBS + NPAD.

3. The normalized spectral density estimate is obtained by dividing the
nonnormalized spectral density estimate in ma&by an estimate of
the variance oX.

Algorithm

RoutineSVED estimates the nonnormalized spectral density function of a
stationary time series using a fixed sequence of weights, given a sample of
n = NOBS observations X}, for t =1, 2,..., n.

Let

{X}fort=1,...,N
represent the centered and padded data WherROBS + NPAD,
% :{Xt -y, t=1...,n
0, t=(n+1),...,N
and
fyx = XCNTR
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is determined by

i X Ky known
x 1 X unknown
n Z tr Hx

t=1
The modified periodogram of
{X}fort=1,...,N

is estimated by
|k (@) = A% (0) + BZ (@)
where
N e
Az (wy) = KY2 > Xcos(oyt)
t=1
and
v2 A
Bz (wy) =K z Xisin(w,t)
t=1
represent the
X;

cosine and sine transforms, respectively, and K is the scale factor equal to
1/(2rm). Since the periodogram is an even function of the frequency, it is
sufficient to estimate the periodogram at the discrete set of nonnegative
frequencies
21K
U)k—W k:O,l,,l_N/ZJ

(Here, dOmeans the greatest integer less than or equal to a.) The routine PFFT
(page 723) is used to compute the modified periodogram of

{X}
Consider the sequence of m= NWI weights
{w} forj=-0m20 ..., (m- 0n20- 1)
where
2w =1
These weights are fixed in the sense that they do not depend on the frequency w

at which to estimate the nonnormalized spectral density hy(w). The estimate of
the nonnormalized spectral density is computed according to
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hy (@) = > ol (@)
]
where
_ 2mk(@)+ i}
- N

and k(w) isthe integer such that wy ( is closest to w. The weights specified by
argument WI may be relative since they are normalized to sum to one in the actual
computation of

K,j

F‘x (w)

Usually, mis odd with the weights symmetric about the middle weightw,. If mis
even, the weight to the right of the middle is considered w;,. Note that
periodogram ordinate

! n,N,X (©)
isreplaced by
l n,N,X (0‘)1)
and the sum reflects at each end. The nonnormalized spectral density is estimated
over the set of frequencies
w=f, i=1..,n
where n,= NF. These frequencies are in the scale specified by the argument

| FSCAL but are transformed to the scale of radians per unit time for
computational purposes.

The above formulafor
hy (w)

assumes the data{X;} correspond to arealization of a discrete-parameter
stationary process observed consecutively in time. In this case, the observations
are equally spaced in time with interval At = TI NT equivalent to one. However, if
the data correspond to a realization of a continuous-parameter stationary process
recorded at equal time intervals, then the estimate of the nonnormalized spectral
density must be adjusted for the effect of aliasing. In general, the estimate of hy{w
) isgiven by

hy (w) = Athy (), o] < 1T/ At

Note that the frequency w of the desired spectral estimate is assumed to be input
in aform already adjusted for the time interval At.

Approximate confidence intervals for h(w) can be computed using formulas given
in the introduction.
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Example

Consider the Wélfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Application of routin&VED to these data produces the following results:

| NTEGER LDPM LDRDAT, LDSM NDRDAT, NF, NOBS, NPAD, NWI
PARAMETER (LDRDAT=176, NDRDAT=2, NF=20, NOBS=100, NWI=7,
& LDSM=NF, NPAD=NOBS- 1, LDPM=( NOBS+NPAD)/ 2+1)

INTEGER |, IFSCAL, |PRINT, NROW NVAR
REAL ASIN, F(NF), PI, PMLDPM 5), RDATA(LDRDAT, NDRDAT),

& REAL, SMLDSM 3), SSUM TINT, WI(NW), X(NOBS), XCNTR
CHARACTER CLABEL(4)*20, FMr*20, RLABEL(1)*4, TITLE*28
INTRINSIC ASIN, FLOAT

EXTERNAL ~ GDATA, SSUM SWED, WRRRL

EQUI VALENCE (X(1), RDATA(22,2))

DATA WI/1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0/
DATA | PRINT/ 0/, | FSCAL/ 0/, TINT/1.0/
DATA FMT/(F9.4, F6.2, F9.4)'/
DATA RLABEL/'NONE’/
DATA CLABEL/" ", '%/Frequency’, '%/Period’, 'Spectral%/Estimates’
& |/
DATA TITLE/'Results of Spectral Analysis’/
C Initializations
Pl = 2.0*ASIN(1.0)
DO 10 I1=1, NF
F(l) = PI*FLOAT(I)/FLOAT(NF)
10 CONTINUE
Wolfer Sunspot Data for years
1770 through 1869
CALL GDATA (2, 0, NROW, NVAR, RDATA, LDRDAT, NDRDAT)
Center on arithmetic mean
XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)
Spectral density
CALL SWED (NOBS, X, IPRINT, XCNTR, NPAD, IFSCAL, NF, F, TINT,
& NWT, WT, PM, LDPM, SM, LDSM)
C Print Results
CALL WRRRL (TITLE, NF, 3, SM, LDSM, 0, FMT, RLABEL, CLABEL)
C

O O 00

END

Output

Results of Spectral Analysis
Spectral
Frequency Period Estimates
0.1571 40.00 710.8386
0.3142 20.00 116.3940
0.4712 13.33 937.1508
0.6283 10.00 1209.8268
0.7854 8.00 538.9236
0.9425 6.67 84.9561
1.0996 5.71 128.0791
1.2566 5.00 55.0304
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. 4137
5708
7279
8850
0420
1991
3562
5133
6704
8274
9845
. 1416

WINNDNNDNONE R PR
NP WLWE S

44 40. 2022
00 46. 4240
64 21. 0053
33 12. 1449

08 8. 8654
86 7.2589
67 6. 8078
50 3. 3873
35 3. 9504
22 5.7418
11 4. 4652
00 4.1216

SWEP/DSWEP (Single/Double precision)

Estimation of the nonnormalized spectral density of a stationary time series based
on specified periodogram weights given the periodogram.

Usage
CALL SVEEP (N, PX, NF, F, NW, W, SX)

Arguments

N — Number of observations in the appropriately centered and padded time
seriesX.  (Input)
N must be greater than or equal to two.

PX — Vector of lengtiHIN/2[+ 1 containing the (modified) periodogram>of
(Input)

The periodogram ordinate evaluated at (angular) frequepey2rk/N is given
by Px(k + 1),k =0, 1,..., IN/20

NF — Number of (angular) frequencies. (Input)
NF must be greater than or equal to one.

F — Vector of lengtiNF containing the (angular) frequencies at which the
spectral density is estimated. (Input)
The elements df must be in the range1q, ) inclusive.

NWT — Number of weights. (Input)
NWI must be greater than or equal to one.

WT — Vector of lengtt\WI' containing the weights used to smooth the
periodogram. (Input)

The actual weights are the valuesiihnormalized to sum to 1 with the current
periodogram ordinate taking the middle weightN@fr odd or the weight to the
right of the middle foNWI' even.

SX — Vector of lengthNF containing the estimate of the spectral density of the
time seriexX. (Output)
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Comments

1 The periodogram of X may be computed using the routine PFFT
(page 723). Estimation of the spectral density of X using the modified
periodogram preserves the scale of the spectral density up to adjustment
for the time sampling interval.

2 The time sampling interval, TI NT, is assumed to be equal to one. This
assumption is appropriate for discrete parameter processes. The
adjustment for continuous parameter processes (TI NT > 0) involves
multiplication of the frequency vector F by 1/TI NT and multiplication of
the spectral density estimate by TI NT.

3. To convert the frequency scale from radians per unit time to cycles per
unit time, multiply F by 1/(2m).
Algorithm

Routine SWEP estimates the nonnormalized spectral density function of a
stationary time series using a fixed sequence of weights given the modified
periodogram of the appropriately centered and padded data

{X}fort=1,...,N

Theroutine PFFT (page 723) may be used to obtain the modified periodogram

Lonx (@)
over the discrete set of nonnegative frequencies
Wi :%, k=01...[N/2]

(Here, (@Omeans the greatest integer less than or equal to a.) The symmetry of the
periodogram is used to recover the ordinates at negative frequencies.

Consider the sequence of m= NWI weights{w;} forj = -[nv/20] ..., (m - /20~ 1)
where 3 w; = 1. These weights are fixed in the sense that they do not depend on
the frequency w at which to estimate the nonnormalized spectral density hy{(w).
The estimate of the nonnormalized spectral density is computed according to

hy(@) =3 o)l ()
At

where
_ 2m{k(w) +j}
KTNSO
and k(w) isthe integer such that wy,, is closest to w. The weights specified by

argument WI may be relative since they are normalized to sum to one in the actual
computation of
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F‘x (W)

Usually, mis odd with the weights symmetric about the middle weightw,. If mis
even, the weight to the right of the middle is considered w;. Note that
periodogram ordinate

In,N,)?(O)

isreplaced by

In,N 5('((‘)1)

and the sum reflects at each end.

The nonnormalized spectral density estimate is computed over the set of
frequencies

w=f, i=1..,n
wheren,= NF. These frequencies are in the scale of radians per unit time. The
time sampling interval At is assumed to be equal to one.

Approximate confidence intervals for h(w) can be computed using formulas given
in the introduction.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for
this example consists of the number of sunspots observed from 1770 through
1869. Application of routin€WEP to these data produces the following results:

| NTEGER LDPM LDRDAT, N, NDRDAT, NF, NOBS, NPAD, NWI
PARAMVETER (LDRDAT=176, NDRDAT=2, NF=20, NOBS=100, NWI=7,

& NPAD=NOBS- 1, LDPM=( NOBS+NPAD)/2+1, N=NOBS+NPAD)
C
| NTECER I, IFSCAL, |IPRINT, |IPVER NROWN NVAR
REAL ASIN, F(NF), PI, PMLDPM 5), RDATA(LDRDAT, NDRDAT),
& FLOAT, SMNF, 2), SSUM SX(NF), TINT, WI(NW), X(NOBS),
& XCNTR
CHARACTER CLABEL(3)*30, FMI*20, RLABEL(1)*4, TITLE*28
INTRINSIC ASIN, FLOAT
EXTERNAL  GDATA, PFFT, SCOPY, SSUM SWEP, WRRRL
C
EQUI VALENCE (X(1), RDATA(22,2))
DATA W/1., 2., 3., 4., 3., 2., 1./
DATA I PRINT/ O/, TINT/1.0/, |1PVER/ 1/, |FSCAL/O/
DATA FMT/'(F9.4)/
DATA CLABEL/" ’, '%/Frequency’, 'Spectral%/Estimates’/
DATA RLABEL/'NONE’/
DATA TITLE/'Results of Spectral Analysis’/
C Initialization
Pl = 2.0*ASIN(1.0)
DO 10 I=1, NF

F(l) = PI*FLOAT(I)/FLOAT(NF)
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10 CONTI NUE

C Wol fer Sunspot Data for years
C 1770 through 1869

CALL GDATA (2, 0, NROW NVAR, RDATA, LDRDAT, NDRDAT)
C Conput e nean

XCNTR = SSUM NOBS, X, 1) / FLOAT( NOBS)
C Conput e nodi fi ed periodogram

CALL PFFT (NOBS, X, |PRINT, XCNTR, NPAD, |FSCAL, |PVER PM LDPM
C
C Conput e spectral density

CALL SVEP (N, PM1,3), NF, F, NW, W, SX)
C
C Print results
C
C Copy the frequencies to the output
C matri x

CALL SCOPY (NF, F, 1, SM1,1), 1)
C Copy the spectral estimates to the
C out put matrix

CALL SCOPY (NF, SX, 1, SM1,2), 1)
C Call printing routine

CALL WVRRRL (TITLE, NF, 2, SM Nr, 0, FMI, RLABEL, CLABEL)
C

END

Output
Results of Spectral Analysis
Spectral

Frequency Estinmates

0.1571 710. 8386
0.3142 116. 3940
0.4712 937. 1508
0.6283 1209. 8268
0. 7854 538. 9236
0. 9425 84. 9561
1. 0996 128. 0791
1. 2566 55. 0304
1. 4137 40. 2022
1.5708 46. 4240
1.7279 21. 0053
1. 8850 12. 1449
2.0420 8. 8654
2.1991 7.2589
2.3562 6. 8078
2.5133 3.3873
2.6704 3. 9504
2.8274 5.7418
2.9845 4. 4652
3. 1416 4.1216

CPFFT/DCPFFT (Single/Double precision)

Compute the cross periodogram of two stationary time seriesusing a fast Fourier
transform.
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Usage

CALL CPFFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, |FSCAL,
| PVER, CPM LDCPM

Arguments

NOBS — Number of observations in each stationary time sgragsdY. (Input)
NOBS must be greater than or equal to two.

X — Vector of lengthNOBS containing the first stationary time series. (Input)
Y — Vector of lengtiNOBS containing the second stationary time series. (Input)
IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Print the periodogram, cosine and sine series, and the real and imaginary

components of the cross periodogram.
XCNTR — Constant used to center the time seXieqInput)
YCNTR — Constant used to center the time seyieqInput)

NPAD — Number of zeroes used to pad each centered time series. (Input)
NPAD must be greater than or equal to zero. The length of each centered and
padded time series is= NOBS + NPAD.

|FSCAL — Option for frequency scale. (Input)

| FSCAL Action
0 Frequency in radians per unit time
1 Frequency in cycles per unit time

IPVER — Option for version of the periodogram. (Input)

| PVER Action
0 Compute usual periodogram.
1 Compute modified periodogram.

Refer to the algorithm section for further details.

CPM — (IN/200+ 1) by 10 matrix containing a summarization of the results of the
cross periodogram analysis. (Output)
Fork=0, 1,..., IN/2[J the k + 1)-st element of theth column ofCPMis defined

as
Cal. Description
1 Frequencyew, wherew, = 2rk/N for | FSCAL = 0 orwy, = k/N for
| FSCAL = 1.
2 Period,p, wherep, = 2wy, for | FSCAL = 0 andp; = 1/wy for | FSCAL =

1. If wy, = 0, py is set to missing.
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X periodogram ordinate, | y(wy)

X cosine transformation coefficient, Ay(wy)

X sine transformation coefficient, By(y)

Y periodogram ordinate, | y(wy)

Y cosine transformation coefficient, Ay(wy)

Y sine transformation coefficient, By(wy)

Real part of the XY cross periodogram ordinate | yy(wy).

10 Imaginary part of the XY cross periodogram ordinate | yy(wy).

© 00N O~ W

LDCPM — Leading dimension aiPMexactly as specified in the dimension
statement of the calling program. (Input)
LDCPMmust be greater than or equald20+ 1.

Comments
1. Automatic workspace storage is

CPFFT 10N + 15 units, or
DCPFFT 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
C2FFT/DC2FFT. The reference is

CALL C2FFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD,
| FSCAL, | PVER, CPM LDCPM CX, CCEF,
WFFTC, CPY)

The additional arguments are as follows:

CX — Complex work vector of lengtK.

COEF — Complex work vector of lengt.

WFFTC — Work vector of lengthM + 15.

CPY — Work vector of length 8.

2. The centered and padded time series are defined by
CX(j) = X(j) — XCNTR forj=1,..., NOBS
CX(j)=0 forj=NOBS +1,...,N
and
cy(j) = Y(j) - YCNTR forj=1,..., NOBS
cy()=0 forj=NOBS +1,...,N

whereN = NOBS + NPAD.

3. The cross periodograhgy(w) is complex valued in general. The relation
| yy(—w) = conj( yy(w)) for w> 0.0 recovers the cross periodogram for
negative frequencies since régj(—w)) = real( yy{(w)) and imagiyy(-

w)) = —imag( yy(w)). The periodogranyw) is an even function of the

frequencyw. The relation (—w) = I1(w) for w > 0.0 recovers the
periodogram for negative frequencies.
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4, Since cos(w) isan even function of w and sin(w) is an odd function of v,
the cosine and sine transformations, respectively, satisfy
A(—w) = A(w) and B(-w) = —B(w) for w > 0.0. Similarly, the complex
Fourier coefficients, stored in COEF, satisfy COEF(—w) = conj(COEF(w)).

5. Computation of the 2 * NOBS — 1 cross-covariances of X and Y using the
inverse Fourier transform of the cross periodogram requires
NPAD = NOBS - 1.

Algorithm

Routine CPFFT computes the cross periodogram of two jointly stationary time
series given asample of n = NOBS observations{ X} and{Y;} fort=1,2,...,n

Let
{X}fort=1,...,N
represent the centered and padded data where N = NOBS + NPAD,

)'*(- _{Xt_ﬁx t:L...,n
0

¢ =

t=(n+1,...,N
and
fy = XCNTR
is determined by
M My known
ix=1lg
= unknown
n 2% X
Similarly, let

{Y}fort=1,...,N

represent the centered and padded data where

v :{Yt—ﬁy t=1..,n
0

t=(n+1,...,N
and
iy = YCNTR
is determined by
My Hy known
fy =41 C
HZ Wy unknown
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The periodogram of the sample sequence { X}, t =1, ..., n computed with the

padded sequence
{X}fort=1,...,N
is defined by
— A2 2
I on g (@) = AZ () + B (wy)
where
N —~
Az (wy) = KY? > Xcos(oyt)
t=1
and
12 A
Bz (wy) =K z Xisin(w,t)
t=1
represent the

X4
cosine and sine transforms, respectively, and K is the scale factor

for the usual periodogram,

K="
1 - .
—— for the modified periodogram
21
The periodogram of the sample sequence{Y,},t=1, ..., n computed with the
padded sequence
{Y}fort=1,...,N
is defined by
— A2 2
Loy (@) = A () + BG (wy )
where
N —~
Ac (0 ) = K2 > Yrcos(wyt)
t=1
and
2 A
B () = K¥ > Yesin(wyt)
t=1
represent the

3
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| NTEGER
PARAMETER

| NTEGER
REAL

CHARACTER

cosine and sine transforms, respectively. Since the periodogram is an even
function of the frequency, it is sufficient to estimate the periodogram at the
discrete set of nonnegative frequencies

o :% k=0,1...,|N/2]

(Here, (dOmeans the greatest integer less than or equal to a). The routine PFFT
(page 723) is used to compute the periodograms of both

{X;} and {Y}

according to the version specified by the argument | PVER. The computational
formulafor the cross periodogram is given by

o7 @0 = O s @ T s (00
where
D{ln,N‘)"('\?(wk)} = Ag (W) AG (@) + By (00 ) By (00 )
and
17 @] = Az (001 By (601) = By (@) Ay (@)

The real part of the (modified) cross periodogram represents the 'raw’ sample
cospectrum and the negative of the imaginary part of the (modified) cross
periodogram represents the ‘raw’ sample quadrature spectrum (Priestley 1981,
page 695). The relationship between the cross periodogram and its complex
conjugate is given by

-4
(- = L < <
Lo (C) = 1 s (@), OSwg<T
and may be used to recover the cross periodogram at negative frequencies.

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967,
page 204) wher¥ is the Wolfer sunspot number a¥ids the northern light
activity for the time period from 1770 through 1869. Application of routine
CPFFT to these data produces the following results. NoteQPRET setsCPM(1,
2) to the missing value code via routiiegACH (page 1334). The printing aPM
(1, 2) depends on the computer.

I PRI NT, LDCPM LDRDAT, NDRDAT, NOBS, NPAD

(1 PRINT=0, LDRDAT=100, NDRDAT=4, NOBS=100,
NPAD=NOBS- 1, LDCPM=( NOBS+NPAD) / 2+1)

| FSCAL, |PVER NRCOL, NRROW
CPM LDCPM 10), FLOAT, RDATA(LDRDAT, NDRDAT), SSUM
X(NOBS), XCNTR, Y(NOBS), YCNTR

CLABEL1(6)*9, CLABEL2(6)*9, FMI*7, RLABEL(1)*86,
TI TLE* 41
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I NTRINSI C FLOAT
EXTERNAL CPFFT, GDATA, SSUM WRRRL

EQUI VALENCE (X(1), RDATA(L,2)), (Y(1), RDATA(1,3))

DATA TITLE/'Results of the Cross Periodogram Analysis’/
DATA FMT/(F10.3)"/

DATA CLABEL1/'k+1’, 'w(k)", 'p(k)’, "IX(w(K))", "AX(w(K)),
&  'BX(w(k))/

DATA CLABEL2/k+1", 'IY(W(K))', "AY(W(K))', 'BY (w(K))’,

& ’'Real IXY’, 'Imag. IXY’/

DATA RLABEL/'NUMBER’/

00

Robinson Data
CALL GDATA (8, 0, NRROW, NRCOL, RDATA, LDRDAT, NDRDAT)
C Center on arithmetic means
XCNTR = SSUM(NOBS, X,1)/[FLOAT(NOBS)
YCNTR = SSUM(NOBS,Y,1)/FLOAT(NOBS)

C Frequency in radians per unit time
IFSCAL =0

C Modified periodogram version
IPVER =1

C Compute the cross periodogram

CALL CPFFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL,
& IPVER, CPM, LDCPM)

[@X@)

Print results (First 10 rows)
CALL WRRRL (TITLE, 10, 5, CPM, LDCPM, 0, FMT, RLABEL, CLABEL1)
CALL WRRRL ("%!/’, 10, 5, CPM(1,6), LDCPM, 0, FMT, RLABEL,
& CLABEL2)

END

Output
Results of the Cross Periodogram Analysis
k+1 w(k) p(k) IX(w(k)) AX(w(k)) BX(w(Kk))
1 0.000 NaN 0.000 0.000 0.000
2 0.032 199.000 184.159 3.742 -13.044
3 0.063 99.500 1364.408 35.457 -10.354
4 0.095 66.333 2433.933 29.411 39.610
5 0.126  49.750 1351.002 -21.749 29.631
6 0.158 39.800 140.421 -11.716 -1.773
7 0.189 33.167 44.117 -4.671 4,722
8 0.221 28.429 121.186 -11.003 -0.343
9 0.253 24.875 176.275 -4.782 -12.386
10 0.284 22.111 144.867 10.038 -6.642

k+1 1IY(w(k)) AY(Ww()) BY(Ww(k)) ReallXY Imag.IXY
1 0.000 0.000 0.000 0.000 0.000

2 1689.212 -37.480 -16.866 79.776 -552.014
3 4113.003 41.232 -49.122 1970.577 -1314.779
4 3255.785 44.214 36.068 2729.031 -690.474
5 1757.663 -8.162 41.122 1396.006 -652.513
6 1002.050 -30.107 9.778 335.410 -167.954
7 62360 -6.825 3.972 50.636 13.678

8 1481.396 -38.096 5.487 417.288 -73.451

9 1274161 -17.176 -31.291 469.704 -63.095
10 488.479 -12.442 -18.267 -3.570 -265.992
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CSSWD/DCSSWD (Single/Double precision)

Estimate the nonnormalized cross-spectral density of two stationary time series
using a spectral window given the time series data.

Usage

CALL CSSWD (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, | FSCAL,
NF, F, TINT, ISWER, \M M CPM LDCPM CSM
LDCSM

Arguments

NOBS — Number of observations in each stationary time s&raslY. (Input)
NOBS must be greater than or equal to two.

X — Vector of lengtiNOBS containing the first stationary time series. (Input)
Y — Vector of lengtiNOBS containing the second stationary time series. (Input)
IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Print the cross periodogram and cross-spectral density estimate based on

a specified version of a spectral window for a given set of spectral
window parameters.

XCNTR — Constant used to center the time sexieqInput)
YCNTR — Constant used to center the time sevieqInput)

NPAD — Number of zeroes used to pad each centered time series. (Input)
NPAD must be greater than or equal to zero. The length of each centered and
padded time series ¢ = NOBS + NPAD.

IFSCAL — Option for frequency scale. (Input)

| FSCAL Action
0 Frequency in radians per unit time.
1 Frequency in cycles per unit time.

NF — Number of frequencies at which to evaluate the cross-spectral density
estimate. (Input)

F — Vector of lengtiNF containing the frequencies at which to evaluate the
cross-spectral density estimate. (Input)

The units ofF correspond to the scale specifiedIlR8CAL. The elements df
must be in the range{yTI NT, TUTI NT), inclusive, fon FSCAL = 0 and

(=1/(2* TI NT), 1/(2* TI NT)), inclusive, forl FSCAL = 1.
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TINT — Time interval at which the series are sampled. (Input)
For a discrete parameter process, ustdINT = 1. For a continuous parameter
processTI NT > 0. Tl NT is used to adjust the cross-spectral density estimate.

I SWVER — Option for version of the spectral window. (Input)

I SWER Action

Modified Bartlett
Daniell
Tukey-Hamming
Tukey-Hanning
Parzen
Bartlett-Priestley

O wWNPE

Refer to the “Algorithm” section for further details.

NM — Number of spectral window parametdrgsed to compute the cross-
spectral density estimate for a given spectral window version. (Input)
NMmust be greater than or equal to one.

M — Vector of lengtiNMcontaining the values of the spectral window parameter
M (Input)

For the Parzen spectral windowSWER = 5), all values of the spectral window
parametersimust be even.

CPM — (IN/200+ 1) by 10 matrix containing a summarization of the cross
periodogram analysis. (Output)
Fork=0, 1,..., IN/2[J the k + 1)-st element of thieth column ofCPMis defined

as

Cal. Description

1 Frequencyew, wherewy, = 2rk/N for I FSCAL = 0 orwy, = k/N for
| FSCAL = 1.

2 Period,p, wherep, = 2wy for | FSCAL = 0 andp,, = L/, for | FSCAL =
1. If w,= 0, py is set to missing.

3 X periodogram ordinaté (k)

4 X cosine transformation coefficiem;{(wy)

5 X sine transformation coefficierBy(wy)

6 Y periodogram ordinaté(w,)

7 Y cosine transformation coefficier;(w,)

8 Y sine transformation coefficierB,(w,)

9 Real part of th&Y cross periodogram ordinaltgy(w).

10 Imaginary part of th®Y cross periodogram ordinatey(wy).

Note N = NOBS + NPAD.

LDCPM — Leading dimension aiPMexactly as specified in the dimension
statement of the calling program. (Input)
LDCPMmust be greater than or equall2[] + 1.
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CSM — NF by (NM* 7 + 2) matrix containing a summarization of the cross-
spectral analysis. (Output)
Thek-th element of theth column ofCSMis defined as

Col. Description

1 Frequencyf(k).

2 Period,p, wherep, = 2r/F(k) for | FSCAL = 0 andp, = 1/~(k) for
| FSCAL = 1. If F(k) = 0, p is set to missing.

3 X spectral density estimateR(k) using the spectral window parameter
M1).

4 Y spectral density estimateR(k) using the spectral window parameter
M1).

5 Cospectrum estimate k) using the spectral window parameit).

6 Quadrature spectrum estimaté@) using the spectral window
parameteM1).

7 Cross-amplitude spectrum estimate@j using the spectral window
parameteM1).

8 Phase spectrum estimaté=é{) using the spectral window parameter
M1).

9 Coherence estimate (k) using the spectral window parametgt).

NM* 7 + 2 Coherence estimater{k) using the spectral window parameter
MNM.
wherek =1, ..., NF.

LDCSM — Leading dimension afSMexactly as specified in the dimension
statement of the calling program. (Input)
LDCSMmust be greater than or equaN®@

Comments

1. Automatic workspace storage is

CSSWD 10N + 15 units, or
DCSSWD 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
C2SW/DC2SWD. The reference is

CALL C2SWD (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD,
| FSCAL, NF, F, TINT, ISWER, N\M M CPM
LDCPM CSM LDCSM CX, COEF, WFFTC, CPY)

The additional arguments are as follows:

CX — Complex work vector of lengtk. (Output)

COEF — Complex work vector of lengti. (Output)
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WFFTC — Vector of length Ml + 15.
CPY — Vector of length RI.

2. The centered and padded time series are defined by
CX(j) = X(j)XCNTR forj=1,..., NOBS

CX(j)=0 forj=NOBS +1,...,N

and

cY(j) = Y(j)YCNTR forj=1,..., NOBS

Cy(j)=0 forj=NOBS +1,...,N

whereN = NOBS + NPAD.

3. The normalized cross-spectral density estimate is obtained by dividing
the nonnormalized cross-spectral density estimate in nGakiby the
product of the estimated standard deviatioX eahd the estimated
standard deviation of.

Algorithm

RoutineCSSWD estimates the nonnormalized cross-spectral density function of
two jointly stationary time series using a spectral window given a sample of
n = NOBS observations X} and {Y}fort=1,2,...,n

Let
{X}fort=1,...,N

represent the centered and padded data WherSOBS + NPAD,

)'*(- :{Xt_ﬁx t:L...,n
0

t

t=(n+1,...,N
and
iy = XCNTR
is determined by
M My known
il ={1g
EZ Wy unknown

Similarly, let
{Y}fort=1,...,N
represent the centered and padded data where
5 Yt_ﬁY t:l,...,l’l
Yt =
0 t=(n+1,...,N

and
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ﬁy =YCNTR
is determined by

v Ky known
n

M
iy =<1
Hy —ZYt Ky unknown
n
t=1
The modified periodogram of

{X}fort=1,...,N

is estimated by
_ a2 2
I on g (@) = AS () + B (wy)
where
N —~
As (wy) = KY? > Xcos(oyt)
t=1
and
2 A
By (wy) = K¥ Y Xsin(id)
t=1
represent the

X,
cosine and sine transforms, respectively, and K is the scale factor equal to

1/(2rm). The modified periodogram of
{Y}fort=1...,N

is estimated by
|y (@) = AZ (@) + BE(wy)
where
N ~
A (wy) = K¥? > Yecos(wyt)
t=1
and
N ~
By (wy) = K¥? > Yesin(wyt)
t=1
represent the
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Yt
cosine and sine transforms, respectively. Since the periodogram is an even

function of the frequency, it is sufficient to estimate the periodogram at the
discrete set of nonnegative frequencies

we==", k=01,...,|N/2]

Theroutine PFFT (page 723) is used to compute the modified periodograms of
both

{X} and {¥;}
The computational formulafor the cross periodogram is given by
Loy (@) = D{|n,N,;\7(wk)} +iD{|n,N])“(\?(wk)}
where
D{'n,N,)Z\?(wk)} = Az (@) Ay (@) + By () By (wy)
and
D{'n,N,)?V(wk)} = Ax (W) By (W) ~ By (k) Ay (wy)

The routine CPFFT (page 750) is used to compute the modified cross
periodogram between

{Xi} and {Y;}
The nonnormalized spectral density of X, is estimated by
. orp LN2]
hy (w) N g L on g (@i)WG (0 = )
k= N/2|
and the nonnormalized spectral density of Y, is estimated by
. or IN2]
hY(w):W ? L ny (@)W (0= wy)
k=—[N/2]

where the spectral window W,,(8) is specified by argument | SWER. The
following spectral windows W, (6) are available.

Modified Bartlett

W, (6) =

1 [snme/2))* _
2n|v|{ sin(6/2) } =Fu©)

where F,,(6) corresponds to the Fejér kernel of ortier
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Daniell

M/2nt -t/M<B<1t/M
W, (6) = :
0 otherwise
Tukey
W, () = aD,, (e —&j +(1-2a)Dy, (6) + aDy, (e +&j 0<a<025

where D,;,(0) represents the Dirichlet kernel. The Tukey-Hamming window is

obtained when a = 0.23, and the Tukey-Hanning window is obtained when
a=0.25.

Parzen

W, (8) :%T[FM,Z(G)]Z{l—% 'n2(6/2)}

where M iseven. If M isodd, then M + 1 isused instead of M in the above
formula.

Bartlett-Priestley

3M MB)?

SME M g < m
W, (8) = | 4 (nj}”

0 6] >t/ M

The argument NMspecifies the number of window parametersM and, hence,
corresponds to the number of spectral density estimates to be computed for a
given spectral window. Note that the same spectral window W, (8) and set of
parameters M are used to obtain both

iy () and by (w)
The above spectral density formulas assume the data{X;} and{Y,} correspond to
aredlization of abivariate discrete-parameter stationary process observed
consecutively in time. In this case, the observations are equally spaced in time
with interval At = TI NT equal to one. However, if the data correspond to a
realization of a bivariate continuous-parameter stationary process recorded at
equal time intervals, then the spectral density estimates must be adjusted for the
effect of aliasing. In general, the estimate of hy{(w) is given by

hy (w) = Athy (), o] < 1T/ At
and the estimate of hy(w) is given by
hy (w) = Athy (w), [w] < Tt/ At
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The nonnormalized spectral density is estimated over the set of frequencies
w=f, i=1..,n

where n,= NF. These frequencies are in the scale specified by the argument
| FSCAL but are transformed to the scale of radians per unit time for
computational purposes. The frequency w of the desired spectral estimateis
assumed to be input in aform already adjusted for the time interval At.

The cross-spectral density function is complex-valued in general and may be
written in the following form:

hyy (@) = Cxy () —igxy (W)
The cospectrum is estimated by

X o LN2]
Cxy (W) =— g D{In,N‘)Zf(wk)}Wn(w_wk)
k="N/2]

and the quadrature spectrum s estimated by

X o LN2]
Oxy (W) = N D{ln,N,)Z\?(wk)}Wn(w_wk)
k="T/2]

Note that the same spectral window W,,(6) and window parameter M used to
derive

hy (w)and hy ()

are also used to compute

F‘XY (w)

The nonnormalized cross-spectral density estimate is computed over the same set
of frequencies as the nonnormalized spectral density estimates with asimilar
adjustment for At.

An equivalent representation of hyy(w) isthe polar form defined by
iy () = 0y ()€ ¥ ()
The cross-amplitude spectrum is estimated by
A (a2 ~2 12
O xy (w) = {CXY (@) +Axy (00)}
and the phase spectrum s estimated by

Py (00) = tan™ =Gy (W) / Exy (W)}

Finally, the coherency spectrum s estimated by
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éxt (w) +AQXY (w) v
hy (w)hy (w)

The coherence or squared coherency is output.

|WXY (00)| =

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967,
page 204) where X is the Wdlfer sunspot number axids the northern light
activity for the time period from 1770 through 1869. Application of routine
CSSWD to these data produces the following results:

| NTEGER | PRINT, LDCPM LDCSM LDRDAT, N, NDRDAT, NF, NM

& NOBS, NPAD
PARAMETER (| PRI NT=0, LDRDAT=100, NDRDAT=4, NF=10, NM=2,

& NOBS=100, LDCSMENF, NPAD=NOBS-1, N=NOBS+NPAD,
& LDCPMEN 2+1)

C
INTEGER |, IFSCAL, ISWER J, JPT, MNM, NOUT, NRCOL, NRROW
REAL ASIN, CPM LDCPM 10), CSM LDCSM NMF7+2), F(NF), FLOAT,
& Pl, RDATA(LDRDAT, NDRDAT), SSUM TINT, X(NOBS), XCNTR,
& Y(NOBS), YCNTR

CHARACTER CLABEL1(3)*9, CLABEL2(6)*16, FMI*7, RLABEL(1)*8,
& TI TLE*80

INTRINSIC ASIN, FLOAT

EXTERNAL  CSSWD, GDATA, SSUM UMACH, WRRRL

EQUI VALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))

DATA FMT/'(F10.4)"/

DATA CLABELL/ K', 'Frequency’, 'Period’/

DATA CLABEL2/'%/ k', "%/Cospectrum’, '%/Quadrature’,

& 'Cross%/Amplitude’, '%/Phase’, '%/Coherence’/

DATA RLABEL/’'NUMBER’/
C Initialization

CALL UMACH (2, NOUT)

Pl = 2.0*ASIN(1.0)

DO 10 I1=1, NF

F(1) = PIPFLOAT(I)/FLOAT(NF)
10 CONTINUE

C Robinson Data

CALL GDATA (8, 0, NRROW, NRCOL, RDATA, LDRDAT, NDRDAT)
C Center on arithmetic means

XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)

YCNTR = SSUM(NOBS,Y,1)/FLOAT(NOBS)

C Frequency in radians per unit time
IFSCAL =0

C Spectral window parameters
M(1) = 10
M(2) = 30

Time interval for discrete data

TINT=1.0

C Compute cross-spectral density

C using the Parzen window
ISWVER =5

CALL CSSWD (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL, NF,
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& F, TINT,

ISWER, N\M M CPM LDCPM CSM LDCSM
Print results

TITLE = 'Cross-Spectral Analysis Using Parzen Window’
CALL WRRRL (TITLE, NF, 2, CSM, LDCSM, 0, FMT, RLABEL, CLABEL1)

DO 20 J=1, NM
JPT =7*J-1)+5

TITLE = '%/Results of the Cross-Spectral Analysis With '//
& 'Spectral Window Parameter M =’
WRITE (TITLE(77:78),'(12)) M(J)
CALL WRRRL (TITLE, NF, 5, CSM(1,JPT), LDCSM, 0, FMT, RLABEL,

& CLABELZ2)
20 CONTINUE
C
END
Output

Cross-Spectral Analysis Using Parzen Window

k Frequency Period
0.3142  20.0000
2 0.6283 10.0000
3 09425 6.6667
4 12566 5.0000
5 15708 4.0000
6 1.8850 3.3333
7 2.1991 2.8571
8 25133 2.5000
9 2.8274 2.2222
10 3.1416 2.0000

Results of the Cross-Spectral Analysis With Spectral Window Parameter M = 10

Cross

k Cospectrum Quadrature Amplitude Phase Coherence
1 463.5888 -65.9763 468.2600 0.1414 0.2570
2 286.5450 -75.0209 296.2029 0.2561 0.1710
3 150.1073 -57.8263 160.8604 0.3677 0.1438
4 529840 -32.3642 62.0866 0.5483 0.0998
5 215435 -15.0888 26.3020 0.6110 0.0794
6 214228 -9.8188 23.5658 0.4298 0.1716
7 15.7005 -5.3704 16.5936 0.3296 0.2112
8 8.0118 -1.8887 8.2314  0.2315 0.1272

9 2.7682 0.2007 2.7754 -0.0724 0.0446
10 0.5777 0.1008 0.5864 -0.1727 0.0091

Results of the Cross-Spectral Analysis With Spectral Window Parameter M = 30

Cross

k Cospectrum Quadrature Amplitude

Phase Coherence

1 169.7542 -193.4384 257.3615 0.8505 0.1620
2 4526187 32.3813 453.7755 -0.0714 0.2213
3 945221 -90.8159 131.0800 0.7654  0.2629
4 -0.2096 -6.1127 6.1163 1.6051 0.0019

5 274711 -22.1946 35.3166 0.6796 0.2492
6 29.1329 -4.0128 29.4080 0.1369 0.3170

7 11.2058 -9.3403 14.5881 0.6948 0.2594

8 8.0017 0.8813 8.0501 -0.1097 0.1928

9 -0.4199 2.2893 23275 -1.7522  0.0468

10 05570 -1.0767 1.2123 1.0934 0.0678
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CSSWP/DCSSWP (Single/Double precision)

Estimate the nonnormalized cross-spectral density of two stationary time series
using a spectral window given the spectral densities and cross periodogram.

Usage

CALL CSSW, (N, SX, SY, CPREAL, CPIMAG NF, F, |SWER M
COSPEC, QUADRA, CRAMPL, PHASE, COHERE)

Arguments

N — Number of observations in each of the appropriately centered and padded
time seriex andy. (Input)
N must be greater than or equal to two.

SX — Vector of lengthNF containing the estimate of the spectral density of the
first time serieX. (Input)

SY — Vector of length NF containing the estimate of the spectral density of the
second time series Y.  (Input)

CPREAL — Vector of lengthIN/2[0+ 1 containing the real part of the cross
periodogram betweexandy. (Input)

The real part of the cross periodogram evaluated at (angular) frequency
w, = 2rk/N is given byCPREAL(k + 1),k =0, 1,..., IN/20

CPIMAG — Vector of lengtiIN/200+ 1 containing the imaginary part of the
cross periodogram betwegrandy. (Input)

The imaginary part of the cross periodogram evaluated at (angular) frequency
w; = 2rk/N is given bycPl MAGk + 1), k=0, 1,..., IN/2[J

NF — Number of (angular) frequencies. (InpNE)must be greater than or
equal to one.

F — Vector of lengtiNF containing the (angular) frequencies at which the
spectral and cross-spectral densities are estimated. (Input)
The elements df must be in the range, 1) inclusive.

I SWVER — Option for version of the spectral window. (Input)

SWER Action

Modified Bartlett
Daniell
Tukey-Hamming
Tukey-Hanning
Parzen
Bartlett-Priestley

O wWNPE

Refer to the “Algorithm” section for further details.
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M — Spectral window parameter. (Input)
Mmust be greater than or equal to one and less\thaor the Parzen spectral
window ( SWER = 5), the spectral window paramekémust be even.

COSPEC — Vector of lengtiNF containing the estimate of the cospectrum.
(Output)

QUADRA — Vector of lengtiNF containing the estimate of the quadrature
spectrum. (Output)

CRAMPL — Vector of lengtiNF containing the estimate of the cross-amplitude
spectrum. (Output)

PHASE — Vector of lengtiNF containing the estimate of the phase spectrum.
(Output)

COHERE — Vector of length NF containing the estimate of the coherence or
squared coherency. (Output)

Comments

1 The periodograms of X and Y and cross periodogram between X and Y
may be computed using the routine CPFFT (page 750). The spectral
densities of X and Y may then be estimated using any of the routines
SSW{page 729), SWEL{page 741), SSWHpage 736), or SWEP
(page 747). Thus, different window types and/or weight sequences may
be used to estimate the spectral and cross-spectral densities given either
the series or their periodograms. Note that use of the modified
periodograms and modified cross periodogram ensures that the scale of
the spectral and cross-spectral densities and their estimates is equivalent.

2 The time sampling interval, TINT, is assumed to be equal to one. This
assumption is appropriate for discrete parameter processes. The
adjustment for continuous parameter processes (TINT > 0.0) involves
multiplication of the frequency vector F by LTINT and multiplication of
the spectral and cross-spectral density estimates by TINT .

3. To convert the frequency scale from radians per unit time to cycles per
unit time, multiply F by 1/(2m).
Algorithm

Routine CSSWHstimates the nonnormalized cross-spectral density function of
two jointly stationary time series using a spectral window given the modified
cross-periodogram and spectral densities of the appropriately centered and
padded data

{X;} and {Y}

fort=1,...,N.
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The routine CPFFT (page 750) may be used to compute the modified
periodograms

'n,N,)’(‘(wk) and 'n,N,\?(wk)
and cross periodogram
| (k)

over the discrete set of nonnegative frequencies

wk:%, k:O,l,,LN/ZJ

(Here, (dOmeans the greatest integer less than or equal to a.) Either routine SSWp
(page 736) or routine SWEP (page 747) may be applied to the periodograms to
obtain nonnormalized spectral density estimates

hy () and hy (w)
over the set of frequencies
w=f, i=1..,n

where n,= NF. These frequencies are in the scale of radians per unit time. The

time sampling interval At is assumed to be equal to one. Note that the spectral
window or weight sequence used to compute

hy (w)
may differ from that used to compute
hy (w)

The cross-spectral density function is complex-valued in general and may be
written as

hyy (@) = Cxy () —igxy (W)
The cospectrum is estimated by

X o LN2]
CXY((*)):W g D{In,N‘)Zf(wk)}Wn(w_wk)
k="N/2]

and the quadrature spectrum s estimated by
X o LN2]
Ay (W) = N %\1/2] D{I AN (wk)}Wn (w-wy)

where the spectral window W,,(6) is specified by argument | SWER. The
following spectral windowsW,,(6) are available.
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Modified Bartlett

_ 1 [snme/2))%
W”(e)'zmvl{ sin(6/2) } =Fu©)

where F;,(8) corresponds to the Fejér kernel of ortier

Daniell
M/2nm -T/M<B<smt/ M
0 otherwise

W (6) ={

Tukey

W, () = aDy, (6—%)+(1—2a)DM (8) +aD,, (e+%], 0<a<025

whereD,,(8) represents the Dirichlet kernel. The Tukey-Hamming window is
obtained wherm = 0.23, and the Tukey-Hanning window is obtained when
a=0.25.

Parzen

W, (6) = %[[FM,Z(G)]Z{l—%sinZ(G/Z)}

whereM is even. IfM is odd, therM + 1 is used instead & in the above
formula.

Bartlett-Priestley

3M M6\?

M (MOY'L g <m/m
W, (8) =1 an (n]} 9

0 6> 1t/ M

Only one window parametéf may be specified so that only one estimate of

hyy (w) is computed. The nonnormalized cross-spectral density estimate is
computed over the same set of frequencies as the nonnormalized spectral density
estimates discussed above. However, the particular spectral window used to
compute

F‘XY (w)

need not correspond to either the spectral window or the weight sequence used to
compute either

hy (w) or hy (w)
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An equivalent representation of hy,{(w) isthe polar form defined by

iy () = 0ty ()€ v ()
The cross-amplitude spectrum is estimated by
N a2 . 12
A xy (W) = {CXY (w) +Axy (00)}
and the phase spectrum is estimated by
A TN .
Py (00) = tan™{ =Gy (@) / Cxy (W)}

Finally, the coherency spectrum s estimated by

) X y2
CX\X (w) +Aq xy ()
hy (w)hy (w)

The coherence or squared coherency is output.

|WXY (00)| =

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967,

page 204) where X is the Wolfer sunspot number a¥ids the northern light
activity for the years 1770 through 1869. Application of rou@aswp to these
data produces the following results.

INTEGER  |PRINT, LDCPM LDCSM LDRDAT, N, NDRDAT, NF, NM
& NOBS, NPAD
PARAMETER (| PRI NT=0, LDRDAT=100, NDRDAT=4, NF=10, NM:2,
& NOBS=100, LDCSMENF, NPAD=NOBS-1, N=NOBS+NPAD,
& LDCPMEN 2+1)
C
INTEGER |, IFSCAL, IPVER |SWER J, JPT, JST, MNM, NRCOL,
& NRROW
REAL ASIN, COHERE(NF), COSPEC(NF), CPl MAG(LDCPM,
& CPM LDCPM 10), CPREAL(LDCPM), CRAMPL(NF),
& CSM LDCSM 7*NWk2) , F(NF), FLOAT, P(NF), PHASE(NF),
& Pl, PX(LDCPM, PY(LDCPM, QUADRA(NF),
& RDATA( LDRDAT, NDRDAT), SSUM SX(NF), SY(NF), X(NOBS),
& XCNTR, Y(NOBS), YCNTR
CHARACTER CLABEL1(3)*9, CLABEL2(6)*16, FMI*8, RLABEL(1)*8,
& TI TLE*80
INTRINSIC ASIN, FLOAT
EXTERNAL  CPFFT, CSSWP, GDATA, SCOPY, SSUM SSWP, WRRRL
C
EQUI VALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(L,3))
EQUI VALENCE (PX(1), CPM1,3)), (PY(1), CPM1,6))
EQUI VALENCE ( CPREAL(1), CPM1,9)), (CPIMAG(1), CPM1,10))
EQUI VALENCE (CSM(1,1), F(1)), (CSM1,2), P(1))
C
DATA FMT/(F12.4)/

DATA CLABELL/ K, 'Frequency’, 'Period’/

DATA CLABEL2/'%/ k', "%/Cospectrum’, '%/Quadrature’,
& 'Cross%/Amplitude’, '%/Phase’, '%/Coherence’/
DATA RLABEL/’NUMBER’/
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C Initialization
Pl = 2.0*ASI N(1.0)
DO 10 =1, NF
F(1) = PI*FLOAT(1)/FLOAT(NF)
P(1) = 2.0*FLOAT(NF)/FLOAT(I)

10 CONTI NUE
C Robi nson Dat a
CALL GDATA (8, 0, NRROW NRCOL, RDATA, LDRDAT, NDRDAT)
C Center on arithnetic neans
XCNTR = SSUM NOBS, X, 1) / FLOAT( NOBS)

YCNTR = SSUM NOBS, Y, 1) / FLOAT( NOBS)
C Frequency in radians per unit tine
IFSCAL = 0
C Modi fi ed peri odogram version
IPVER = 1
C Conput e cross periodogram
CALL CPFFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, |FSCAL,
& | PVER, CPM LDCPM
C Spectral w ndow paraneters
M1) = 10
M2) = 30
C Conput e cross-spectral density
C usi ng the Parzen wi ndow
C
C Print frequency and period
TITLE = 'Cross-Spectral Analysis Using Parzen Window’
CALL WRRRL (TITLE, NF, 2, CSM, LDCSM, 0, FMT, RLABEL, CLABEL1)
ISWVER =5
DO 20 J=1,NM
C Estimate the spectral densities
CALL SSWP (N, PX, NF, F, ISWVER, M(J), SX)
CALL SSWP (N, PY, NF, F, ISWVER, M(J), SY)
C Estimate the cross-spectral density
CALL CSSWP (N, SX, SY, CPREAL, CPIMAG, NF, F, ISWVER, M(J),
& COSPEC, QUADRA, CRAMPL, PHASE, COHERE)
C Copy results to output matrices
JPT =7*(J-1) + 2
JST=7*J-1)+5
CALL SCOPY (NF, SX, 1, CSM(1,JPT+1), 1)
CALL SCOPY (NF, SY, 1, CSM(1,JPT+2), 1)
CALL SCOPY (NF, COSPEC, 1, CSM(1,JPT+3), 1)
CALL SCOPY (NF, QUADRA, 1, CSM(1,JPT+4), 1)
CALL SCOPY (NF, CRAMPL, 1, CSM(1,JPT+5), 1)
CALL SCOPY (NF, PHASE, 1, CSM(1,JPT+6), 1)
CALL SCOPY (NF, COHERE, 1, CSM(1,JPT+7), 1)
C Print results
TITLE = '%/Results of the Cross-Spectral Analysis With '/
& 'Spectral Window Parameter M ="’
WRITE (TITLE(77:78),(12)") M(J)
CALL WRRRL (TITLE, NF, 5, CSM(1,JST), LDCSM, 0, FMT, RLABEL,
& CLABEL2)
20 CONTINUE
C
END
Output

Cross-Spectral Analysis Using Parzen Window
k  Frequency Period
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1 0. 3142 20. 0000

2 0. 6283 10. 0000

3 0. 9425 6. 6667

4 1. 2566 5. 0000

5 1.5708 4.0000

6 1. 8850 3.3333

7 2.1991 2.8571

8 2.5133 2.5000

9 2.8274 2.2222

10 3. 1416 2. 0000

Resul ts of the Cross-Spectral Analysis Wth Spectral Wndow Paraneter M= 10
Cross
k Cospect rum Quadrat ure Anpl i t ude Phase Coher ence
1 463. 5888 -65.9763 468. 2600 0. 1414 0. 2570
2 286. 5450 -75.0209 296. 2029 0. 2561 0.1710
3 150. 1073 -57. 8263 160. 8604 0.3677 0. 1438
4 52. 9840 -32. 3642 62. 0866 0. 5483 0. 0998
5 21. 5435 -15. 0888 26. 3020 0.6110 0.0794
6 21. 4228 -9.8188 23. 5658 0. 4298 0.1716
7 15. 7005 -5.3704 16. 5936 0. 3296 0. 2112
8 8.0118 -1.8887 8.2314 0. 2315 0.1272
9 2.7682 0. 2007 2.7754 -0.0724 0. 0446
10 0.5777 0. 1008 0. 5864 -0.1727 0. 0091
Results of the Cross-Spectral Analysis Wth Spectral Wndow Paraneter M= 30
Cross

k Cospect rum Quadr at ure Anpl i t ude Phase Coher ence
1 169. 7542 -193. 4384 257. 3615 0. 8505 0. 1620
2 452. 6187 32. 3813 453. 7755 -0.0714 0. 2213
3 94. 5221 -90. 8159 131. 0800 0. 7654 0. 2629
4 -0. 2096 -6.1127 6.1163 1.6051 0. 0019
5 27.4711 -22.1946 35. 3166 0.6796 0. 2492
6 29. 1329 -4.0128 29. 4080 0. 1369 0. 3170
7 11. 2058 -9. 3403 14. 5881 0. 6948 0. 2594
8 8. 0017 0. 8813 8. 0501 -0.1097 0. 1928
9 -0.4199 2. 2893 2.3275 -1.7522 0. 0468
10 0. 5570 -1.0767 1.2123 1.0934 0.0678

CSWED/DCSWED (Single/Double precision)

Estimate the nonnormalized cross-spectral density of two stationary time series
using aweighted cross periodogram given the time series data.

Usage

CALL CSVEED (NOBS, X, Y, |IPRINT, XCNTR, YCNTR, NPAD, | FSCAL
NF, F, TINT, NW, W, CPM LDCPM CSM LDCSM

Arguments

NOBS — Number of observations in each stationary time sgraasdY. (Input)
NOBS must be greater than or equal to two.
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X — Vector of lengthNOBS containing the first stationary time series. (Input)
Y — Vector of lengtiNOBS containing the second stationary time series. (Input)
IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Print the periodogram, cosine and sine transformations of each centered

and padded time series, the real and imaginary components of the cross
periodogram, and the cross-spectral density estimate based on a
specified weight sequence.

XCNTR — Constant used to center the time seXieqInput)
YCNTR — Constant used to center the time seyieqInput)

NPAD — Number of zeroes used to pad each centered time series. (Input)
NPAD must be greater than or equal to zero. The length of each centered and
padded time series i = NOBS + NPAD.

|FSCAL — Option for frequency scale. (Input)

| FSCAL Action
0 Frequency in radians per unit time.
1 Frequency in cycles per unit time.

NF — Number of frequencies at which to evaluate the cross-spectral density
estimate. (Input)

F — Vector of lengtiNF containing the frequencies at which to evaluate the
cross-spectral density estimate. (Input)

The units of~ correspond to the scale specifiedII38CAL. The elements df
must be in the range /Tl NT, TUTI NT) inclusive, forl FSCAL = 0 and {1/(2*
TI NT), 1/(2* TI NT)) inclusive, forl FSCAL = 1.

TINT — Time interval at which the series are sampled. (Input)
For a discrete parameter process, ustalNT = 1.0. For a continuous parameter
processTI NT > 0.0.TI NT is used to adjust the cross-spectral density estimate.

NWT — Number of weights. (Input)
NWI must be greater than or equal to one.

WT — Vector of lengti\WI' containing the weights used to smooth the
periodogram. (Input)

The actual weights are the valuesiinnormalized to sum to 1 with the current
periodogram ordinate taking the middle weightN@r odd or the weight to the
right of the middle foNWI' even.

CPM — (IN/200+ 1) by 10 matrix containing a summarization of the cross
periodogram analysis. (Output)
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Fork=0,1, ..., IN/20 the (k + 1)-st element of the j-th column of CPMis defined

as

Col. Description

1 Frequency, wy; where wy, = 21/N for | FSCAL = 0 or wy, = k/N for
| FSCAL =1

2 Period, p; wherep, = 21wk for | FSCAL = 0 and p, = L/wy, for | FSCAL =
1. If w =0, p; isset to missing.

3 X periodogram ordinate, | y(wy)

4 X cosine transformation coefficient, Ay(wy)

5 X sine transformation coefficient, By(cy)

6 Y periodogram ordinate, | y(wy)

7 Y cosine transformation coefficient, Ay(wy)

8 Y sine transformation coefficient, By(wy)

9 Real part of the XY cross periodogram ordinate | yy(wy).

10 Imaginary part of the XY cross periodogram ordinate | yy(wy).

LDCPM — Leading dimension aiPMexactly as specified in the dimension
statement of the calling program. (Input)
LDCPMmust be greater than or equal®d200+ 1.

CSM — NF by 9 matrix containing a summarization of the cross-spectral analysis.
(Output)
Thek-th element of theth column ofcSMis defined as

Col. Description

1 Frequencyg(k).

2 Period,p, wherep, = 2r/F(k) for | FSCAL = 0 andp, = 1/~(k) for
I FSCAL = 1. If F(k) = 0, p; is set to missing.

3 X spectral density estimateR{k) using the specified relative weights
contained inAT.

4 Y spectral density estimateR(k) using the specified relative weights
contained inAT.

5 Co-spectrum estimate k) using the specified relative weights
contained inAT.

6 Quadrature spectrum estimaté&@d using the specified relative weights
contained inAT.

7 Cross-amplitude spectrum estimate(&}.

8 Phase spectrum estimatd-k).

9 Coherence estimate B(K).

wherek =1, ..., NF.

LDCSM — Leading dimension afSMexactly as specified in the dimension
statement of the calling program. (Input)
LDCSMmust be greater than or equaNm@
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Comments
1 Automatic workspace storage is

CSWED 10N + 15 units, or
DCSWED 20N + 30 units.

Workspace may be explicitly provided, if desired, by use of
C2VED/DC2VED. The referenceis

CALL C2VEED (NOBS, X, Y, [ PRINT, XCNTR, YCNTR, NPAD,
| FSCAL, NF, F, TINT, NW, W, CPM
LDCPM CSM LDCSM CWK, COEFWK, WFFTC,
CPY)

The additiona arguments are as follows:

CWK — Complex work vector of lengtl. (Output)

COEFWK — Complex work vector of lengfd. (Output)

WFFTC — Vector of length Bl + 15.

CPY — Vector of length R.

2. The normalized cross-spectral density estimate is obtained by dividing
the nonnormalized cross-spectral density estimate in n@stkbby the
product of the estimated standard deviatioX ahd the estimated
standard deviation of.

Algorithm

RoutineCSVED estimates the nonnormalized cross-spectral density function of
two jointly stationary time series using a fixed sequence of weights given a
sample of = NOBS observations X} and {Y;} for t =1, 2, ...,n. Let

{X}
fort =1, ...,Nrepresent the centered and padded data vithersOBS + NPAD,
~ Xi—fy t=1..,n
X, = { t ~Hx 1

0 t=(n+1,...,N
and
fx = XCNTR
is determined by
V% My known

jy e
X
11

1 n
= z Xi  Hyx unknown
U=

Similarly, let

776 « Chapter 8: Time Series Analysis and Forecasting IMSL STAT/LIBRARY



{%}
fort=1, ...,N represent the centered and padded data where

V_{Yt,—ﬁY, t=1...,n

i =

0} t=(n+1),...,N
and
iy = YCNTR
is determined by
Hy Ky known

A n
A\ 12\4 Ky unknown
Nz

The modified periodogram of
{Xi}
fort=1, ...,Nis estimated by
— A2 2
I on g (@) = AZ () + B (wy)
where

N
Az (o) =K*2y X, cos(wy )
=

and

N
— 2 Y o
By (wy) = K¥ Y Xsin(wid)
t=1
represent the

X;
cosine and sine transforms, respectively, liglthe scale factor equal to
1/(2rm). The modified periodogram oM} for t =1, ...,Nis estimated by

|y (@) = AZ (@) + BE(wy)
where

Ac (0 ) = K2 % Y, cos(wyt)
=

and
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N _—
Bg (wy) = K*? > Yesin(wyt)
=

represent the
Yt
cosine and sine transforms, respectively. Since the periodogram is an even

function of the frequency, it is sufficient to estimate the periodogram at the
discrete set of nonnegative frequencies

we ===, k=01..,|N/2]

(Here, (@Omeans the greatest integer less than or equal to a). The routine PFFT
(page 723) is used to compute the modified periodograms of both

{Xi} and {\}
The computational formulafor the cross periodogram is given by
T (@) = D{'n,N,)?V(wk)} +iD{|n,N])“(\?(wk)}
where
D{'n,N,)?\?'(wk)} = Az (W) Ag (W) + By (wy ) By (wy)

and
D{'n,N,)?V(wk)} = Ax (W) By (wy) ~ By (0 ) Ay (wy)

The routine CPFFT (page 750) is used to compute the modified cross
periodogram between

{X} and {Y}
The nonnormalized spectral density of X, is estimated by

hy (w) = ij Lon g (@)
J
and the nonnormalized spectral density of Y, is estimated by
hy (w) = ij long (@)
J

where
_ 2m{k(w) + j}

K,j N
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and k(w) isthe integer such that wy ( is closest to w. The sequence of m = NWT
weights{w;} for j = -liw20] ..., (m - [W200-1) satisfiesy w; = 1. These weights
are fixed in the sense that they do not depend on the frequestoyhich to
estimate the spectral density. Usuathyis odd with the weights symmetric about
the middle weighty,. If mis even, the weight to the right of the middle is
consideredy,. The argumen® may contain relative weights since they are

normalized to sum to one in the actual computations. The above spectral density
formulas assume the datd,} and {Y;} correspond to a realization of a bivariate
discrete-parameter stationary process observed consecutively in time. In this case,
the observations are equally spaced in time with intétvalTl NT equivalent to

one. However, if the data correspond to a realization of a bivariate continuous-
parameter stationary process recorded at equal time intervals, then the spectral
density estimates must be adjusted for the effect of aliasing. In general, the
estimate ohy(w) is given by

hy (w) = Athy (), o] < 1T/ At
and the estimate dfy(w) is given by
hy (w) = Athy (w), [o] < Tt/ AL
The nonnormalized spectral density is estimated over the set of frequencies
w=f, i=1..,n

wherenf = NF. These frequencies are in the scale specified by the argument

| FSCAL but are transformed to the scale of radians per unit time for
computational purposes. The frequencgf the desired spectral estimate is
assumed to be input in a form already adjusted for the time infervEthe cross-
spectral density function is complex-valued in general and may be written as

(@) = Cyy (@) — igyy(0)
The cospectrum is estimated by

Exr(@) = 3 w01, 57 (@)
J
and thequadrature spectrum is estimated by
Axy (W) = ZWJ D{ln,Nl)z\?(wk,j )}
J

Note that the same sequence of weighi$ §ised to estimate

hy () and by (w)
is used to estimate

Cxy (W) and Gy (W)
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The nonnormalized cross-spectral density estimate is computed over the same set
of frequencies as the nonnormalized spectral density estimates discussed above
with asimilar adjustment for At. An equivalent representation of hy(w) isthe
polar form defined by

iy () = 0ty ()€ v ()
The cross-amplitude spectrum is estimated by
N a2 . 12
A xy (W) = {CXY (w) +Axy (00)}
and the phase spectrum is estimated by
N 3 A[ A R
Pxy (w) = tan {_qXY () / Cxy (00)}
Finally, the coherency spectrum s estimated by
A ~2 12
Cxy (W) + Gy (w)
hy (w)hy (w)

The coherence or squared coherency is output.

|WXY (UJ)| =

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967,
page 204) where X is the Wolfer sunspot number axids the northern light
activity for the years 1770 through 1869. Application of routi8eED to these
data produces the following results.

| NTEGER | PRI NT, LDCPM LDCSM LDRDAT, N, NDRDAT, NF, NOBS,

& NPAD, NWI
PARAMETER (| PRI NT=0, LDRDAT=100, NDRDAT=4, NF=10, NOBS=100,

& NW=7, LDCSMENF, NPAD=NOBS- 1, N=NPAD+NOBS,
& LDCPMEN 2+1)

c
INTEGER |, |FSCAL, NRCOL, NRROW
REAL ASIN, CPMLDCPM 10), CSM LDCSM 9), F(NF), FLOAT, PI,
& RDATA( LDRDAT, NDRDAT), SSUM TINT, WI(NWI), X(NOBS),
& XCNTR, Y(NOBS), YCNTR

CHARACTER CLABEL1(5)*24, CLABEL2(6)*16, FMI*7, RLABEL(1)*6,
& TI TLE1*32, TITLE2*40

INTRINSIC ASIN, FLOAT

EXTERNAL CSVED, GDATA, SSUM WRRRL

EQUI VALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(1,3))

DATA WI/1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0/
DATA FMT/(F12.4)'/
DATA CLABEL1/'%/%/ k', '%/%/Frequency’, '%/%/Period’,
& ’'Spectral%/Estimate%/of X', 'Spectral%/Estimate%/of Y’/
DATA CLABEL2/'%/ K', "%/Cospectrum’, '%/Quadrature’,
& 'Cross%/Amplitude’, '%/Phase’, '%/Coherence’/
DATA RLABEL/’'NUMBER’/
DATA TITLE1/'Results of the Spectral Analyses’/
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DATA TITLE2/'%/Results of the Cross-Spectral Analysis’/
C Initialization

PI = 2.0*ASIN(1.0)

DO 10 I=1, NF

F(l) = PI*FLOAT(I)/FLOAT(NF)
10 CONTINUE

C Robinson data

CALL GDATA (8, 0, NRROW, NRCOL, RDATA, LDRDAT, NDRDAT)
C Center on arithmetic means

XCNTR = SSUM(NOBS,X,1)/FLOAT(NOBS)

YCNTR = SSUM(NOBS,Y,1)/FLOAT(NOBS)

C Frequency in radians per unit time
IFSCAL =0
C Time interval for discrete data
TINT=1.0
C Compute the cross periodogram
CALL CSWED (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL, NF,
& F, TINT, NWT, WT, CPM, LDCPM, CSM, LDCSM)
C Print results

CALL WRRRL (TITLEL, NF, 4, CSM, LDCSM, 0, FMT, RLABEL, CLABEL1)
CALL WRRRL (TITLE2, NF, 5, CSM(1,5), LDCSM, 0, FMT, RLABEL,

& CLABEL2)
C
END
Output
Results of the Spectral Analyses
Spectral  Spectral
Estimate  Estimate
k  Frequency Period of X of Y
1 0.3142 20.0000 116.9550 1315.8370
2 0.6283 10.0000 1206.6086 1005.1219
3 0.9425 6.6667 84.8369  317.2589
4 1.2566 5.0000 55.2120  270.2111
5 1.5708 4.0000 46.5748 115.6768
6 1.8850 3.3333 12.4050 250.0125
7 2.1991 2.8571 7.0934 82.6773
8 2.5133 2.5000 3.4091 62.3267
9 2.8274 2.2222 5.6828 12.8970
10 3.1416 2.0000 4.0346 17.6441
Results of the Cross-Spectral Analysis
Cross
k Cospectrum Quadrature  Amplitude Phase Coherence
1 94.0531 -254.0125  270.8659 1.2162 0.4767
2 702.5118 21.9823  702.8557 -0.0313 0.4073
3 70.2379  -31.4431 76.9547 0.4209 0.2200
4 -1.8715  -36.1639 36.2123 1.6225 0.0879
5 36.6366  -18.5925 41.0843 0.4696 0.3133
6 32.7071 -6.6569 33.3776 0.2008 0.3592
7 9.4887 -9.1692 13.1950 0.7683 0.2969
8 9.2534 -0.3000 9.2583 0.0324 0.4034
9 -0.5568 2.9455 2.9977 -1.7576 0.1226
10 1.7640 -1.8321 2.5433 0.8043 0.0909
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CSWEP/DCSWEP (Single/Double precision)

Estimate the nonnormalized cross-spectral density of two stationary time series
using aweighted cross periodogram given the spectral densities and cross
periodogram.

Usage

CALL CSVEEP (N, SX, SY, CPREAL, CPIMAG NF, F, NAT, W,
COSPEC, QUADRA, CRAMPL, PHASE, COHERE)

Arguments

N — Number of observations in each of the appropriately centered and padded
time seriex andy. (Input)
N must be greater than or equal to two.

SX — Vector of lengthNF containing the estimate of the spectral density of the
first time serieX. (Input)

SY — Vector of lengtiNF containing the estimate of the spectral density of the
second time series  (Input)

CPREAL — Vector of length IN/2[+1 containing the real part of the cross
periodogram between X and Y. (Input)

Therea part of the cross periodogram evaluated at (angular) frequency

wy, = 21k/N is given by CPREALK + 1), k=0, 1, ...,0IN/20

CPIMAG — Vector of lengtHIN/2[] + 1 containing the imaginary part of the
cross periodogram betwe&randy. (Input)

The imaginary part of the cross periodogram evaluated at (angular) frequency
Wy, = 2rk/N is given bycPl MGk + 1), k=0, 1, ...,[IN/2[]

NF — Number of (angular) frequencies. (Input)
F must be greater than or equal to one.

F — Vector of lengtiNF containing the (angular) frequencies at which the
spectral density is estimated. (Input)
The elements df must be in the range, 1) inclusive.

NWT — Number of weights. (Input)
NWI must be greater than or equal to one.

WT — Vector of lengti\WI' containing the weights used to smooth the
periodogram. (Input)

The actual weights are the valuesiinnormalized to sum to 1 with the current
periodogram ordinate taking the middle weightN@r odd or the weight to the
right of the middle foNWI' even.

COSPEC — Vector of lengthNF containing the estimate of the cospectrum.
(Output)
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QUADRA — Vector of lengthNF containing the estimate of the quadrature
spectrum. (Output)

CRAMPL — Vector of lengtiNF containing the estimate of the cross-amplitude
spectrum. (Output)

PHASE — Vector of lengtiNF containing the estimate of the phase spectrum.
(Output)

COHERE — Vector of lengthNF containing the estimate of the coherence.
(Output)

Comments

1. The periodograms of andY and cross periodogram betweeandy
may be computed via the routiGBFFT (page 750). The spectral
densities oK andY may then be estimated using any of the routines
SSWD (page 729)SVED (page 741)SSWP (page 736), 0BVEP
(page 747). Thus, different window types and/or weight sequences may
be used to estimate the spectral and cross-spectral densities given either
the series or their periodograms. Note that use of the modified
periodograms and modified cross periodogram ensures that the scales of
the spectral and cross-spectral densities and their estimates are
equivalent.

2 The time sampling intervat] NT, is assumed to be equal to one. This
assumption is appropriate for discrete parameter processes. The
adjustment for continuous parameter processeasT(> 0.0) involves
multipication of the frequency vectbrby 1/TI NT and multiplication of
the spectral and cross-spectral density estimat@s Ny

3. To convert the frequency scale from radians per unit time to cycles per
unit time, multiplyF by 1/(2m).
Algorithm

RoutineCSVEP estimates the nonnormalized cross-spectral density function of
two jointly stationary time series using a fixed sequence of weights given the
modified cross-periodogram and spectral densities of the appropriately centered
and padded data

{X¢}
and

{"}
fort=1,..., N. The routineCPFFT (page 750) may be used to compute the
modified periodograms

'n,N,)’(‘(wk) and 'n,N,\?(wk)

and cross-periodogram

IMSL STAT/LIBRARY

Chapter 8: Time Series Analysis and Forecasting « 783



gy (@)

over the discrete set of nonnegative frequencies

wk:%F,k:Q1m¢NpJ

(Here, (@Omeans the greatest integer less than or equal to a.) Either routine SSWp
(page 736) or routine SWEP (page 747) may be applied to the periodograms to
obtain nonnormalized spectral density estimates

Ay (@) and hy (w)
over the set of frequencies
w=f, i=1..,n

where ny= NF. These frequencies are in the scale of radians per unit time. The
time sampling interval At is assumed to be equal to one. Note that the spectral
window or weight sequence used to compute

hy (w)
may differ from that used to compute
hy (w)

The cross-spectral density function is complex-valued in general and may be
written as

hyy (@) = Cxy () —igxy (W)
The cospectrum is estimated by

Cxy (W) = w; D{' AN g7 (@i g )}
i
and the quadrature spectrumis estimated by
Oxy (@) = 3 W = [RFIC)
J

where
_ 2mk(w) + i}
B N

and k(w) isthe integer such that wy  is closest to w. The sequence of m= NWI
weights{w;} for j =—[m/20) ..., (m- [/20- 1) satisfies 3 w; = 1. These
weights are fixed in the sense that they do not depend on the frequency w at
which to estimate hyy(w). Usually, mis odd with the weights symmetric about
the middle weight w;,. If mis even, the weight to the right of the middleis

K,j
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| NTEGER
PARAMETER

R0 Ro

| NTEGER
REAL

R0 Ro Ro Ro Ro

CHARACTER

considered w,. The argument WI may contain relative weights since they are
normalized to sum to one in the actual computations. The nonnormalized cross-
spectral density estimate is computed over the same set of frequencies as the
nonnormalized spectral density estimates. However, the particular weight
seguence used to compute

ﬁXY (w)

need not correspond to either the weight sequence or spectral window used to
compute either

Ay (@) o hy (w)
An equivalent representation of hy,{(w) isthe polar form defined by
iy () = 0y ()€ ¥ ()
The cross-amplitude spectrum is estimated by
A (A2 N 12
O xy (w) = {CXY (@) +Axy (00)}
and the phase spectrum is estimated by
N 3 A[ & .
Pxy (W) = tan {_qXY () / Cxy (00)}

Finally, the coherency spectrum s estimated by

V2
A _ Cy (@) + A%y (w)
Nww'{&wM@}

The coherence or squared coherency is output.

Example

Consider the Robinson Multichannel Time Series Data (Robinson 1967,

page 204) where X is the Wolfer sunspot number a¥ids the northern light
activity for the years 1770 through 1869. Application of rouG8@EP to these
data produces the following results.

I PRINT, LDCPM LDCSM LDRDAT, N, NDRDAT, NF, NOBS,
NPAD, NWT

(1 PRINT=0, LDRDAT=100, NDRDAT=4, NF=10, NOBS=100,
NW=7, LDCSMENF, NPAD=NOBS- 1, N=NOBS+NPAD,
LDCPMEN/ 2+1)

I, IFSCAL, |PVER NROW NVAR
ASIN, COHERE(NF), COSPEC(NF), CPl MAG(LDCPM,

CPM LDCPM 10), CPREAL(LDCPM), CRAMPL(NF),

CSM LDCSM 9), F(NF), FLOAT, PHASE(NF), PI, PX(LDCPM,
PY(LDCPM), QUADRA(NF), RDATA( LDRDAT, NDRDAT), SSUM
SX(NF), SY(NF), WI(NW), X(NOBS), XCNTR Y(NOBS),
YCNTR

CLABEL1(5)*24, CLABEL2(6)*16, FMI*8, RLABEL(1)*6,
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C

[eXeXe)

& TI TLE1*32, TITLE2*40
INTRINSIC ASIN, FLOAT

EXTERNAL CPFFT, CSWEP, GDATA, SCOPY, SSUM SWEP, WRRRL

EQUI VALENCE (X(1), RDATA(1,2)), (Y(1), RDATA(L,3))
EQUI VALENCE (PX(1), CPM1,3)), (PY(1), CPM1,6))

EQUI VALENCE ( CPREAL(1), CPM1,9)), (CPIMAG(1), CPM1,10))

DATA W/ 1.0, 2.0, 3.0, 4.0, 3.0, 2.0, 1.0/
DATA FMT/'(F12.4)'/
DATA CLABEL1/'%/%/ k', "%/%/Frequency’, '%/%/Period’,
& ’'Spectral%/Estimate%/of X', 'Spectral%/Estimate%/of Y’/
DATA CLABEL2/'%/ k', "%/Cospectrum’, '%/Quadrature’,
& 'Cross%/Amplitude’, '%/Phase’, '%/Coherence’/
DATA RLABEL/’'NUMBER’/
DATA TITLE1/'Results of the Spectral Analyses’/
DATA TITLE2/'%/Results of the Cross-Spectral Analysis’/
Initialization

Pl = 2.0*ASIN(1.0)
DO 10 I=1, NF

F(I) = PI*FLOAT(I)/FLOAT(NF)

CALL SCOPY (NF, F, 1, CSM(1,1), 1)

CSM(1,2) = 2.0*FLOAT(NF)/FLOAT(l)

10 CONTINUE

Robinson data
CALL GDATA (8, 0, NROW, NVAR, RDATA, LDRDAT, NDRDAT)
Center on arithmetic means
XCNTR = SSUM(NOBS, X,1)/[FLOAT(NOBS)
YCNTR = SSUM(NOBS,Y,1)/FLOAT(NOBS)
Frequency in radians per unit time
IFSCAL =0
Modified periodogram version
IPVER =1
Compute the cross periodogram
CALL CPFFT (NOBS, X, Y, IPRINT, XCNTR, YCNTR, NPAD, IFSCAL,
& IPVER, CPM, LDCPM)
Estimate the spectral densities
CALL SWEP (N, PX, NF, F, NWT, WT, SX)
CALL SWEP (N, PY, NF, F, NWT, WT, SY)
Estimate the cross-spectral density
CALL CSWEP (N, SX, SY, CPREAL, CPIMAG, NF, F, NWT, WT, COSPEC,
& QUADRA, CRAMPL, PHASE, COHERE)
Print results

Copy results to output matrices
CALL SCOPY (NF, SX, 1, CSM(1,3), 1)
CALL SCOPY (NF, SY, 1, CSM(1,4), 1)
CALL SCOPY (NF, COSPEC, 1, CSM(1,5), 1)
CALL SCOPY (NF, QUADRA, 1, CSM(1,6), 1)
CALL SCOPY (NF, CRAMPL, 1, CSM(1,7), 1)
CALL SCOPY (NF, PHASE, 1, CSM(1,8), 1)
CALL SCOPY (NF, COHERE, 1, CSM(1,9), 1)
Call printing routines
CALL WRRRL (TITLE1, NF, 4, CSM, NF, 0, FMT, RLABEL, CLABEL1)
CALL WRRRL (TITLE2, NF, 5, CSM(1,5), NF, 0, FMT, RLABEL, CLABEL?2)

END
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Output
Results of the Spectral Anal yses

Spectral Spectra

Estimat e Estimat e
k Frequency Peri od of X of Y
1 0. 3142 20. 0000 116. 9550 1315. 8370
2 0. 6283 10. 0000 1206. 6086 1005. 1219
3 0. 9425 6. 6667 84. 8369 317. 2589
4 1. 2566 5. 0000 55. 2120 270. 2111
5 1.5708 4.0000 46. 5748 115. 6768
6 1. 8850 3. 3333 12. 4050 250. 0125
7 2.1991 2.8571 7.0934 82.6773
8 2.5133 2. 5000 3.4091 62. 3267
9 2.8274 2.2222 5. 6828 12. 8970
10 3. 1416 2. 0000 4.0346 17. 6441

Results of the Cross-Spectral Analysis
Cross

k Cospect rum Quadrature Anpl i tude Phase Coher ence
1 94. 0531 -254. 0125 270. 8659 1.2162 0. 4767
2 702.5118 21.9823 702. 8557 -0.0313 0. 4073
3 70. 2379 -31.4431 76. 9547 0. 4209 0. 2200
4 -1.8715 -36. 1639 36. 2123 1.6225 0. 0879
5 36. 6366 -18. 5925 41. 0843 0. 4696 0. 3133
6 32.7071 - 6. 6569 33. 3776 0. 2008 0. 3592
7 9. 4887 -9.1692 13. 1950 0. 7683 0. 2969
8 9. 2534 -0. 3000 9. 2583 0. 0324 0. 4034
9 -0.5568 2. 9455 2.9977 -1.7576 0.1226
10 1.7640 -1.8321 2. 5433 0. 8043 0. 0909

IMSL STAT/LIBRARY Chapter 8: Time Series Analysis and Forecasting « 787



Chapter 9: Covariance Structures
and Factor Analysis

Routines
9.1. Principal Components
Principal component analysSiS.........ccccccvvvviviiiiiiiiiiiieieieeeeeee PRINC 793
Common principal components
for several covariance MatriCes .........ccceevrriiiviireeeeenniiiiiee KPRIN 797

9.2. Factor Analysis
9.2.1 Factor Extraction

Unrotated factor esStimatesS.....cccooeevveveeiviiiee e FACTR 801
9.2.2 Factor Rotation and Summarization

Orthomax rotationsS .........eeieieeeiiiiiiee e FROTA 809

Procrustes rotation ........cooveevevieeieeeeeeeeeeee e FOPCS 812

Direct oblimin rotation ..........ccooevieeiiiiiiiiiee e FDOBL 815

Promax or Procrustes rotation .............cceeeeeieeeeeieevviieieneeenens FPRMX 818

Harris-Kaiser rotation .............cccoeeeeeiiiiiiiiiii e FHARR 822

Generalized Crawford-Ferguson rotation............cccccceveuveeee. FGCRF 825

IMAgE ANAIYSIS ..v.vvvvveiiiiiiiiiiieiiiiieievevebeiebeaeveveb e rernannes FIMAG 829

FaCtOr VANANCES ...vvvniiiiiiieeeeee e FRVAR 831
9.2.3 Factor Scores

Factor score CoeffiCientS ........coevveeiiiiiiiiiiii e, FCOEF 833

FACLOr SCOMES ....iviiii e FSCOR 838
9.2.4 Residual Correlation

The residual correlation MatriX.............oevvvieiieeeieieeiiiiieeeeeeeees FRESI 840
9.3. Independence of Sets of Variables and Canonical Correlation

Analysis

Test of independence of several sets of variates ................ MVIND 842

Canonical correlation analysis from raw data..................... CANCR 844

Canonical correlation analysis from covariance matrix....... CANVC 857
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Usage Notes

Notation that is consistently used throughout this chapter is given in the following
table. The FORTRAN equivalent of the symbols used are also given.

Notation Used

Symbol FORTRAN Meaning
Symbol
p NVAR Number of variablesin the
observed variables
NF Number of factors
)2 cov Population (or sample)
covariance (correlation) matrix
A A Unrotated factor loadings
B B Rotated factor loadings
T T Factor rotation matrix
Tl Image transformation matrix
B SCOEF Factor score coefficients

Theroutines in this chapter can generally be used for one or more of severa
purposes. Among these purposes are the following:

1. Datadescription: The information in the data is summarized by the factor
loadings or by the eigenvectors and eigenval ues.

2. Datareduction: Theinformation in amultivariate sample is reduced to a much
smaller number of factors or principal components.

3. Variable clustering: The principal component coefficients or factor loadings lead
to agrouping (clustering) of the variables.

4. Modd building: Linear models relating the variables to the factors or principal
components are estimated. Hypothesis tests may be used to obtain parsimonious
and/or other descriptions of the data.

Principal Components

Theideain principal componentsisto find asmall number of linear combinations
of the original variables that maximize the variance accounted for in the original
data. This amounts to an eigensystem analysis of the covariance (or correlation)
matrix. In addition to the eigensystem analysis, routine PRI NC (page 793)
computes standard errors for the eigenvalues. Correlations of the original
variables with the principal component scores are also computed.

The computation of common principal components via routine KPRI N (page 797)
is equivalent to finding the “eigenvectors” that best simultaneously
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diagonalize one or more variance-covariance matrices. For only one input
variance-covariance matrix, the vectors computed actually are the eigenvectors of
the matrix.

Factor Analysis

Factor analysis and principal component analysis, while quite different in
assumptions, often serve the same ends. Unlike principal componentsin which
linear combinations yielding the highest possible variances are obtained, factor
analysis generally obtains linear combinations of the observed variables
according to amodel relating the observed variables to hypothesized underlying
factors, plus arandom error term called the unique error or uniqueness. In factor
analysis, the unique errors associated with each variable are usually assumed to
be independent of the factors. In addition, in the common factor model, the
unique errors are assumed to be mutually independent. The factor analysis model
is

X—u=~Af+e

where x isthe p vector of observed variables, |1 isthe p vector of variable means,
N isthe p x k matrix of factor loadings, f is the k vector of hypothesized
underlying random factors, and e isthe p vector of hypothesized unique random
errors.

Because much of the computation in factor analysis was originally done by hand
or was expensive on early computers, quick (but dirty) algorithms that made the
calculations possible were developed. One result is the many factor extraction
methods available today. Generally speaking, in the exploratory or model
building phase of afactor analysis, a method of factor extraction that is not
computationally intensive (such as principal components, principal factor, or
image analysis) isused. If desired, acomputationally intensive method is then
used to obtain (what is hoped will be) the final factors.

In exploratory factor analysis, the unrotated factor loadings obtained from the
factor extraction are generally transformed (rotated) to simplify the interpretation
of the factors. Rotation is possible because of the overparameterization in the
factor analysis model. The method used for rotation may result in factorsthat are
independent (orthogonal rotations) or correlated (oblique rotations). Prior
information may be available (or hypothesized) in which case a Procrustes
rotation could be used. When no prior information is available, an analytic
rotation can be performed.

Once the factor loadings have been extracted and rotated (if desired), estimates
for the hypothesized underlying factors can be computed. First, one of several
available methods in routine FCOEF (page 833) is used to compute the factor
score coefficients. Routine FSCOR (page 838) is then called with these factor
score coefficients to compute the factor scores.

The steps generally used in afactor analysis are summarized as follows:
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Steps in a Factor Analysis

Step 1

Calculate Covariance (Correlation) Matrix
IMSL routine CORVC (page 314)

Step 2

Initial Factor Extraction
FACTR, page 801

Step 3
Factor Rotation
Orthogonal Oblique
No Prior Info. Prior Info. No Prior Info. Prior Info.

FROTA, page 809 | FOPCS, page 812 | FPRWKX, page 818 | FPRWVX, page 818
FDOBL, page 815
FHARR, page 822
FGCRF, page 825

Step 3a

Image Analysis
FI MAG, page 829

Step 3b

Factor Variances
FRVAR, page 831

Step 4

Factor Coefficients
FCOEF, page 833

Step 5

Factor Scores
FSCOR, page 838
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Independence of Sets of Variables and Canonical Correlation
Analysis

Routine MVI ND (page 842) computes the Wilks likelihood-ratio test of
independence among several sets of variables. Routines CANCR (page 844) and
CANVC (page 857) compute some other tests of independence between exactly
two sets of variables. Routine CANCR uses the raw data as input while CANVC uses
the sample variance-covariance matrix. Furthermore, CANCR and CANVC perform
acanonical correlation analysis. Since CANCR uses a better algorithm in terms of
numerical stability (it does not compute the covariance matrix), CANCR should be
used if possible. However, if the raw datais not available, or if there istoo much
datafor al of it to reside in memory at the same time, or if multiple canonical
correlation analyses are to be performed based on the same pre-computed sample
variance-covariance matrix, then the use of CANVC may be necessary. Canonical
correlation analysisis useful for characterizing the independent linear statistical
relationships that exist between the two sets of variables. Thisinvolves computing
linear combinations of the variablesin the two separate sets and their associated
correlation. The coefficients of the variablesin the linear combinations are called
the “canonical coefficients,” and the correlations are called “canonical
correlations.” Evaluation of the linear combinations using the canonical
coefficients gives the “canonical scores.” RouttadICR computes the canonical
scores for the observed data. ROUESEOR can be used to compute the
canonical scores for new data or for the observed darNifC is used.

PRINC/DPRINC (Single/Double precision)

Compute principal components from a variance-covariance matrix or a
correlation matrix.

Usage
CALL PRI NC (NDF, NVAR, COv, LDCOvV, |COV, EVAL, PCT, STD,

EVEC, LDEVEC, A, LDA)
Arguments

NDF — Number of degrees of freedomaav. (Input)
If NDF is less than or equal tg D00 degrees of freedom are assumed.

NVAR — Order of matrixCov. (Input)

COV — NVAR by NVAR matrix containing the covariance or correlation matrix.
(Input)
Only the upper triangular part abv is referenced.

LDCOV — Leading dimension afOv exactly as specified in the dimension
statement in the calling program. (Input)
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| COV — Covariance/Correlation matrix option parameter. (Input)
I COv = 0 means that a covariance matrix is input. Otherwise, a correlation matrix
is input.

EVAL — Vector of lengthNVAR containing the eigenvalues from mattiav
ordered from largest to smallest. (Output)

PCT — Vector of lengtiNVAR containing the cumulative percent of the total
variance explained by each principal component. (Output)

STD — Vector of lengthNVAR containing the estimated asymptotic standard
errors of the eigenvalues. (Output)

EVEC — NVAR by NVAR matrix containing the eigenvectorsagv, stored

columnwise. (Output)

Each vector is normalized to have Euclidean length equal to the value one. Also,
the sign of each vector is set so that the largest component in magnitude (the first
of the largest if there are ties) is made positive.

LDEVEC — Leading dimension &VEC exactly as specified in the dimension
statement in the calling program. (Input)

A — NVAR by NVAR matrix containing the correlations of the principal

components (the columns) with the observed/standardized variables (the rows).
(Output)

If 1 COv = 0, then the correlations are with the observed variables. Otherwise, the
correlations are with the standardized (to a varianceQ)fvariables. In the

principal component model for factor analysis, ma#ris the matrix of unrotated
factor loadings.

LDA — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

Comments
Informational errors
Type Code

3 1 BecauskDF is zero or less, 100 degrees of freedom will be
used.

3 2 One or more eigenvalues much less than zero are computed.
The matrixCOV is not nonnegative definite. In order to continue
computations o8TD andA, these eigenvalues are treated as
zero.

Algorithm

RoutinePRI NC finds the principal components of a set of variables from a sample
covariance or correlation matrix. The characteristic roots, characteristic vectors,
standard errors for the characteristic roots, and the correlations of the principal
component scores with the original variables are computed. Principal components
obtained from correlation matrices are the same as principal components obtained
from standardized (to unit variance) variables.
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The principal component scores are the elements of the vector y =T Tx whereT is
the matrix whose columns are the characteristic vectors (eigenvectors) of the
sample covariance (or correlation) matrix and x is the vector of observed (or
standardized) random variables. The variances of the principal component scores
are the characteristic roots (eigenvalues) of the the covariance (correlation)
matrix.

Asymptotic variances for the characteristic roots were first obtained by Girshick
(1939) and are given more recently by Kendall, Stuart, and Ord (1983, page 331).
These variances are computed either for covariance matrices (I COv = 0) or for
correlation matrices (1 Cov # 0).

The correlations of the principal components with the observed (or standardized)

variables are given in the matrix A. When the principal components are obtained

from a correlation matrix, A isthe same as the matrix of unrotated factor loadings
obtained for the principal components model for factor analysis.

Example

Principal components are computed for a nine-variable matrix.

| NTEGER I COV, LDA, LDCOV, LDEVEC, NDF, NVAR
PARAMETER (1 COv=1, LDA=9, LDCOv=9, LDEVEC=9, NDF=100, NVAR=9)

C
REAL A(LDA, NVAR), COV(LDCOV, N\VAR), EVAL(NVAR),
& EVEC( LDEVEC, NVAR), PCT(NVAR), STD( NVAR)
EXTERNAL  PRINC, WRRRN

C
DATA COV/
& 1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
& 0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
& 0.395, 0.479, 1.000, 0.355, 0.270, 0.254, 0.452, 0.219, 0.504,
& 0.471, 0.506, 0.355, 1.000, 0.691, 0.791, 0.443, 0.285, 0.505,
& 0.346, 0.418, 0.270, 0.691, 1.000, 0.679, 0.383, 0.149, 0.409,
& 0.426, 0.462, 0.254, 0.791, 0.679, 1.000, 0.372, 0.314, 0.472,
& 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680,
& 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, O.470,
& 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470, 1.000/

C
CALL PRINC (NDF, NVAR, COV, LDCOV, |COV, EVAL, PCT, STD, EVEC,
& LDEVEC, A, LDA)

C

CALL WRRRN (EVAL’, 1, NVAR, EVAL, 1, 0)

CALL WRRRN ('PCT’, 1, NVAR, PCT, 1, 0)

CALL WRRRN ('STD’, 1, NVAR, STD, 1, 0)

CALL WRRRN (EVEC’, NVAR, NVAR, EVEC, LDEVEC, 0)
CALL WRRRN ('A’, NVAR, NVAR, A, LDA, 0)

END

Output
EVAL
1 2 3 4 5 6 7 8 9
4.677 1.264 0.844 0.555 0.447 0.429 0.310 0.277 0.196
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PCT
1 2 3 4 5 6 7 8 9
0.520 0.660 0.754 0.816 0.865 0.913 0.947 0.978 1. 000

STD
1 2 3 4 5 6 7 8
0. 6498 0.1771 0. 0986 0. 0879 0. 0882 0. 0890 0. 0944 0. 0994
9
0.1113
EVEC

1 2 3 4 5 6 7 8
1 0.3462 -0.2354 0.1386 -0.3317 -0.1088 0.7974 0.1735 -0.1240
2 0.3526 -0.1108 -0.2795 -0.2161 0.7664 -0.2002 0.1386 -0.3032
3 0.2754 -0.2697 -0.5585 0.6939 -0.1531 0. 1511 0. 0099 -0.0406
4 0. 3664 0. 4031 0. 0406 0.1196 0. 0017 0.1152 -0.4022 -0.1178
5 0. 3144 0.5022 -0.0733 -0.0207 -0.2804 -0.1796 0. 7295 0. 0075
6 0. 3455 0. 4553 0. 1825 0.1114 0. 1202 0.0696 -0.3742 0. 0925
7 0.3487 -0.2714 -0.0725 -0.3545 -0.5242 -0.4355 -0.2854 -0.3408
8 0.2407 -0.3159 0. 7383 0.4329 0.0861 -0.1969 0.1862 -0.1623
9 0.3847 -0.2533 -0.0078 -0.1468 0.0459 -0.1498 -0.0251 0. 8521

9
1 -0.0488
2 -0.0079
3 -0.0997
4 0. 7060
5 0. 0046
6 -0.6780
7 -0.1089
8 0. 0505
9 0. 1225

A

1 2 3 4 5 6 7 8
1 0.7487 -0.2646 0.1274 -0.2471 -0.0728 0. 5224 0.0966 -0.0652
2 0.7625 -0.1245 -0.2568 -0.1610 0.5124 -0.1312 0.0772 -0.1596
3 0.5956 -0.3032 -0.5133 0.5170 -0.1024 0. 0990 0.0055 -0.0214
4 0.7923 0. 4532 0. 0373 0. 0891 0. 0012 0.0755 -0.2240 -0.0620
5 0. 6799 0.5646 -0.0674 -0.0154 -0.1875 -0.1177 0. 4063 0. 0039
6 0.7472 0. 5119 0. 1677 0. 0830 0. 0804 0.0456 -0.2084 0. 0487
7 0.7542 -0.3051 -0.0666 -0.2641 -0.3505 -0.2853 -0.1589 -0.1794
8 0.5206 -0.3552 0.6784 0. 3225 0.0576 -0.1290 0.1037 -0.0854
9 0.8319 -0.2848 -0.0072 -0.1094 0.0307 -0.0981 -0.0140 0. 4485

9
1 -0.0216
2 -0.0035
3 -0.0442
4 0. 3127
5 0. 0021
6 -0.30083
7 -0.0482
8 0. 0224
9 0. 0543
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KPRIN/DKPRIN (Single/Double precision)

Maximum likelihood or least-squares estimates for principal components from
one or more matrices.

Usage

CALL KPRI'N (NVAR, NWVAT, COv, LDCOV, AN, |METH, EVEC,
LDEVEC)

Arguments

NVAR — Number of variables in each matrix. (Input)
NVAR must be 2 or greater.

NMAT — Number of matrices. (Input)

COV — NVAR by NVAR by NMAT array containing thBMAT covariance or
correlation matrices. (Input)
Only the upper triangular elements of each matrix are referenced.

LDCOV — Leading and second dimensionsCof/ exactly as specified in the
dimension statement of the calling program. (Input)
The first two dimensions @OV must be equal.

ANI — Vector of lengthNVAT containing the number of observations in each of
the covariance matrices. (Input)

For least-squares estimation, the square roalofl ) is the weight to be used
for thel -th covariance matrix. Since the elementanif are used as weights,
they need not be integers.

IMETH — Method to be used for extracting the estimated principal components.
(Input)

Forl METH = 0, maximum likelihood estimation is used. FOETH = 1, least-
squares estimation is used.

EVEC — NVAR by NVAR matrix containing the estimated principal components.
(Output)

Each column oEVEC contains a principal component vector (an “eigenvector”).
The ordering of the eigenvectors is such that the sum of the corresponding
eigenvalues are ordered from largest to smallest. Each vector is normalized to
have Euclidean length equal to the value one.

LDEVEC — Leading dimension &VEC exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

KPRIN NVAR * (NVAT + 1) + 2% NVAR + 4* NVAT +
max(3* NVAT, NVAR’) units, or
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DKPRI N 2* (NVAR® * (NVAT + 1) + 2 * NVAR+ 4 * NVAT +
max(3* NVAT, NVARY)) units.

Workspace may be explicitly provided, if desired, by use of
K2RI N'DK2RI N. Thereferenceis

CALL K2RI'N (NVAR, NMAT, COV, LDCOV, AN, | METH,
EVEC, LDEVEC, H, AUX, BOLD, G T)

The additiona arguments are as follows:

H — Work vector of IengthN\/AR2 * NMAT. On return fronkK2RI N, H
may be treated as an array dimensiondd(l8AR, NVAR, NVAT). Each

NVAR by NVAR matrix inH is computed aﬂ/EC)T * COv(l) * EVEC,
i.e.,Hcontains the “eigenvalues” and the “residuals” for each covariance
matrix. Here COV(1 ) is thel -th covariance matrix.

AUX — Work vector of length max(8 NVAT, NVARY).

BOLD — Work vector of IengthNVARz.
G — Work vector of length 2 NVAR.
T — Work vector of length 4 NVAT.

2. Informational errors
Type Code
3 1 Convergence did not occur within 50 iterations.
Convergence is assumed.
4 2 An input matrix is singular. Singular input matrices are

not allowed in maximum likelihood estimation.

3. If user specified initial estimates flBvEC are desired (and argument
error checking is not needed), then the roukigRl N (DK3RI N) may be
used. The calling sequence is
CALL K3RI'N (NVAR, NWVAT, COv, LDCOV, AN, | METH,

EVEC, LDEVEC, AUX, BOLD, G T)
On input,EVEC contains the initial estimates of the common principal
componentsEVEC must be an orthogonal matrix). On outpzay

contains the\MAT matrices IEVEC)T* COV (1) * EVEC. The user should
be wary of stationary points in the likelihooK&RI Nis used.

Algorithm

RoutineKPRI Nis the IMSL version of the F-G diagonalization routine of Flury
and Constantine (1985) with modifications as discussed by Clarkson (1988a,
1988b). Letk = NVAT. RoutineKPRI N computes the common principal
components ok = 1 covariance (or correlation) matrices using either a least-
squares or a maximum likelihood criterion. Computing common principal
components is equivalent to finding the “eigenvectors” that best simultaneously
diagonalizek symmetric matrices. (Note that when 1, both least-squares and
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maximum likelihood estimation yield the eigenvectors of the input matrix.) See
Flury (1988) for applications of common principal components.

The algorithm proceeds by accumulating simple rotations as follows: Initial
estimates of the diagonalizing principal components are found as the eigenvectors
of the summed covariance matrices (unlessk3RI Nis used, see Comment 3
above). The covariance matrices are then pre- and post-multiplied by the initial
estimates to obtain approximately diagonal matrices. Let

w
denote the I-th 2 x 2 matrix obtained from the (i, j), (i, i), and (j, j) elements of S,
where § is the I-th covariance matrix in COV. Then, for each i and j, a Jacobi

rotation is found and applied such that the least-squares or maximum likelihood
criterion is optimized over al k matricesin

w
An iteration consists of computing and applying a Jacobi rotation for all
p(p — 1)/2 possible off-diagonal elements (i, j) where p = NVAR. A maximum of
50 iterations are allowed before convergence. Convergence is assumed when the

maximum change in the any element in the eigenvectors from one iteration to the
next isless than 0.0001.

Let I' denote the current estimates of the optimizing principal components. Then,
maximizing the multivariate normal likelihood is equivalent to minimizing the
criterion

K (dets. )
"= s
i=1
where S isthei-th covariance matrix, n; isits degrees of freedom, and
5
is tZZI estimate of the covariance matrix under the common principal components
model.

During each Jacobi iteration, an optimal orthogonal matrix T;; is found that
rotates the two vectorsin columnsi and j of I". When restricted to Ty, the criterion
above becomes

& (det(diag(TTTTSNT) )
I‘! det(S)

I isupdated as I'T;. When convergence has been reached (the maximum change
inT islessthan 0.0001), I' contains the optimizing principal components.
Initidly, I istaken as the eigenvectors of the matrix Y ;S.

IMSL STAT/LIBRARY

Chapter 9: Covariance Structures and Factor Analysis+ 799



In |east-squares estimation, the matrices T;; are found such that the sum of the
squared off-diagonal elements in the resulting “diagonalized” matrices are
minimized. That isT;; is found to minimize

T
Vij Vij

wherev;; is the vector of lengtk containing the off-diagonal elements in the

matrices

w
See Flury and Gautschi (1986) for further details on the general algorithm,

especially in maximum likelihood estimation. See Clarkson (1988b) for details of
the least-squares algorithm.

If the “residual” matrice§ TS,F are desired, they may be obtained in the work
vectorH returned fronk2RI N or from the matrixCOV returned fromk3RI N. If the
least-squares criterion is needed, it is easily computed as the sum of the squared
off-diagonal elements iH (or COV). To compute the likelihood ratio criterion, the
eigenvalues of each matrix @V first need to be computed. Denote the
eigenvalues from thieth matrix byA; , and let

be the eigenvalues obtained under the common principal component model (and

returned as the diagonal elementsiair, fromK3RI N, COV). Then, the log-
likelihood-ratio statistic for testing,

Ho:FT 3, T
is diagonal] = 1, ..., k, is computed as:
P A
(= n log—-
> 3 mlogs!

The distribution of¢ underH, is asymptotically(2 with (k= 1L)p(p — 1)/2
degrees of freedom (see Flury 1984).

Example

The following example is taken from Flury and Constantine (1985). It involves
two 4 by 4 covariance matrices. The two covariance matrices are given as:

13 -03 -06 0
-03 21 0 -06
-0.6 0 29 -03

0 -06 -03 37
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1 00O
0 2 00O
0 03O0
0O 0 0 4
C SPECI FI CATI ONS FOR PARAMETERS
| NTEGER | METH, LDCOV, LDEVEC, NGROUP, NVAR
PARAMETER (| METH=0, LDCOV=4, LDEVEC=4, NGROUP=2, NVAR=4)
C
REAL ANl (NGROUP) , COV( LDCOV, LDCOV, NGROUP) ,
& EVEC( LDEVEC, NVAR)
EXTERNAL KPRI'N, WVRRRN
C
DATA COv/ 1.3, -0.3, -0.6, O, -0.3, 2.1, 0, -0.6, -0.6, 0, 2.9,
& -0.3, 0, -0.6, -0.3, 3.7, 1, 0, O, O, O, 2, O, O, O, O, 3,
& o, o, 0, 0, 4/
C
ANI (1) =1
ANI(2) =1
C
CALL KPRI'N (NVAR, NGROUP, COvV, LDCOV, AN, |METH, EVEC, LDEVEC)
C
CALL WRRRN ('EVEC’, NVAR, NVAR, EVEC, LDEVEC, 0)
C
END
Output
EVEC
1 2 3 4
1 0.9743 -0.1581 -0.1581 0.0257
2 0.1581 0.9743 -0.0257 -0.1581
3 0.1581 -0.0257 0.9743 -0.1581
4 0.0257 0.1581 0.1581 0.9743

FACTR/DFACTR (Single/Double precision)

Extract initial factor loading estimates in factor analysis.

Usage
CALL FACTR (NVAR, COV, LDCOV, NF, IMTH, NDF, INIT, MAXIT,

MAXSTP, EPS, EPSE, IPRINT, UNIQ, A, LDA, EVAL,
STAT, DER)

Arguments

NVAR — Number of variables. (Input)

COV — NVAR by NVAR matrix containing the variance-covariance or correlation
matrix. (Input)

LDCOV — Leading dimension afov exactly as specified in the dimension
statement in the calling program. (Input)
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NF — Number of factors in the model. (Input)
IMTH — Method used to obtain the estimates. (Input)

IMIH Method

0 Principal component (principal component model) or principal factor
(common factor model). IfNI T = 1 andUNI Q contains zeros, then this
option results in the principal component method. Otherwise, the
principal factor method is used.

Unweighted least squares (common factor model).

Generalized least squares (common factor model).

Maximum likelihood (common factor model).

Image factor analysis (common factor model).

Alpha factor analysis (common factor model).

G wWN P

NDF — Number of degrees of freedomaav. (Input)
NDF is not required whenMrH =0, 1, or 4.NDF defaults to 100 ifNDF = 0.

INIT — Method used to obtain initial estimates of the unique variances. (Input)

INNT Method

0 Initial estimates are taken as the constaniNE/(2 * NVAR) divided by
the diagonal elements of the inversecof.

1 Initial estimates are input in vectoxl Q.

MAXIT — Maximum number of iterations in the iterative procedure. (Input)
Typical for methods 1 to 3 is 3@hile 60 is typical for method BAXI T is not
referenced whehMTH = 0 or 4.

MAXSTP — Maximum number of step halvings allowed during any one
iteration. (Input)
Typical is 8.MAXSTP is not referenced whamMrH = 0, 4, or 5.

EPS — Convergence criterion used to terminate the iterations. (Input)

For methods 1 to,3onvergence is assumed when the relative change in the
criterion is less thaBPS. For method 5, convergence is assumed when the
maximum change (relative to the variance) of a uniqueness is les&Ptha&PS
is not referenced whdrMTH = 0 or 4.EPS = 0.0001 is typical.

EPSE — Convergence criterion used to switch to exact second derivatives.
(Input)

When the largest relative change in the unique standard deviation vector is less
thanEPSE, exact second derivative vectors are used. Typicalli€@SE is not
referenced whehMrH =0, 4, or 5.

IPRINT — Printing option. (Input)

If 1 PRI NT = 0, then no printing is performed.IIPRI NT = 1, then printing of the
final results is performed. IfPRI NT = 2, then printing of an iteration summary
and the final results is performed.
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UNIQ — Vector of lengtiNVAR containing the unique variances. (Input/Output,
if I NI T =1, output, otherwise)

If I NI T =1,UNl Qcontains the initial estimates of these variances on input. On
output,UNI Q contains the estimated unique variances. MH = 0, the unique
variances are assumed to be known and are not changed from the input values
when NI T = 1.

A — NVAR by NF matrix of unrotated factor loadings. (Output)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

EVAL — Vector of lengtlNVAR containing the eigenvalues of the matrix from
which the factors were extracted. (Output)

If 1 MTH = 5, then the firsiF positions ofEVAL contain theALPHA coefficients.
Note thatEVAL does not usually contain eigenvalues for maiex.

STAT — Vector of length 6 containing some output statistics. (Output)
STAT(1)

|

1 Value of the function minimum.

2 Tucker reliability coefficient.

3 Chi-squared test statistic for testing tklicommon factors are adequate
for the data.

4 Degrees of freedom in chi-squared. This is computedNasR(- NF)2 -
NVAR — NF)/2.

5 Probability of a greater chi-squared statistic.

6 Number of iterations.

STAT is not used whenMrH =0, 4, or 5.
DER — Vector of length\VAR containing the parameter updates when
convergence was reached (or the iterations terminated). (Output)
Comments
1. Automatic workspace usage is

FACTR 3* NVAR+ 3* NVAR® units, or

DFACTR 5* NVAR + 6* NVAR® units.

Workspace may be explicitly provided, if desired, by use of
F2CTR/DF2CTR. The reference is

CALL F2CTR (NVAR, COv, LDCOV, NF, IMIH, NDF, INT,
MAXI T, MAXSTP, EPS, EPSE, |PRINT, UN Q
A, LDA, EVAL, STAT, DER, IS, COVI, WK,
OLD, EVEC, HESS)

The additional arguments are as follows:

| S— Integer work vector of length equalNwAR.

COVI — Real work vector of length equal VAR,
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WK — Real work vector of length equal KvAR.
OLD — Real work vector of length equal KvAR.

EVEC — Real work vector of length equal KVAR'.

HESS — Real work vector of length equal VAR,

2. Informational errors
Type Code
3 1 Too many iterations. Convergence is assumed.
3 2 Too many step halvings. Convergence is assumed.
3 4 There are no degrees of freedom for the significance
testing.
Algorithm

RoutineFACTR computes unrotated factor loadings in exploratory factor analysis
models. Models available FACTR are the principal component model for factor
analysis and the common factor model with additions to the common factor
model in alpha factor analysis and image analysis. Methods of estimation include
principal components, principal factor, image analysis, unweighted least squares,
generalized least squares, and maximum likelihood.

In the factor analysis model used for factor extraction, the basic model is given as

> = AT + W wheres is thep x p population covariance matriR, is thep x k

matrix of factor loadings relating the factgrto the observed variablesand¥

is thep x p matrix of covariances of the unique errerslere,p = NVAR and

k =NF. The relationship between the factors, the unique errors, and the observed
variables is given as=Af + e where, in addition, it is assumed that the expected
values ofe, f, andx are zero. (The sample means can be subtractedxfiitine
expected value ofis not zero.) It is also assumed that each factor has unit
variance, the factors are independent of each other, and that the factors and the
unique errors are mutually independent. In the common factor model, the
elements of the vector of unique errerare also assumed to be independent of
one another so that the matkikis diagonal. This is not the case in the principal
component model in which the errors may be correlated.

Further differences between the various methods concern the criterion that is
optimized and the amount of computer effort required to obtain estimates.
Generally speaking, the least-squares and maximum likelihood methods, which
use iterative algorithms, require the most computer time with the principal factor,
principal component and the image methods requiring much less time since the
algorithms in these methods are not iterative. The algorithm in alpha factor
analysis is also iterative, but the estimates in this method generally require
somewhat less computer effort than the least-squares and maximum

likelihood estimates. In all algorithms, one eigensystem analysis is required on
each iteration.
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The Principal Component and Principal Factor Methods

Both the principal component and the principal factor methods compute the factor
loading estimates as

FAY2
where " and the diagonal matrix A are the eigenvectors and eigenvalues of a
matrix. In the principal component model, the eigensystem analysis is performed
on the sample covariance (correlation) matrix Swhilein the principal factor
model the matrix (S— W) isused. If the unique error variances W are not known
(i.e.,if I NI T=0) inthe principal factor model, then FACTR obtains estimates for
them as discussed in Comment 3. If the principal components model is to be used,
thenthel NI T = 1 option should be set, and the vector UNI Q should be set so that

all elements are zero. If UNI Qis not set, principal factor model estimates are
computed.

The basic ideain the principal component method is to find factors that maximize
the variancein the original data that is explained by the factors. Because this
method allows the unique errors to be correlated, some factor analystsinsist that
the principal component method is not a factor analytic method. Usually however,
the estimates obtained via the principal component model and other modelsin
factor analysis will be quite similar.

It should be noted that both the principal component and the principal factor
methods give different results when the correlation matrix is used in place of the
covariance matrix. Indeed, any rescaling of the sample covariance matrix can lead
to different estimates with either of these methods. A further difficulty with the
principal factor method is the problem of estimating the unique error variances.
Theoretically, these must be known in advance and passed to FACTR through

UNI Q In practice, the estimates of these parameters produced viathe | NI T =0
option in FACTR are often used. In either case, the resulting adjusted covariance
(correlation) matrix

(S- W)

may not yield the NF positive eigenvalues required for NF factors to be obtained.
If this occurs, the user must either lower the number of factors to be estimated or
give new unique error variance values.

The Least-Squares and Maximum Likelihood Methods

Unlike the previous two methods, the algorithm used to compute estimates in this
section isiterative (see Joreskog 1977). As with the principal factor model, the
user may either initialize UNI Qor allow FACTR to compute initial estimates for
the unique error variances. Unlike the principal factor method, FACTR then
optimizes the criterion function with respect to both W and I'. (In the principal
factor method, W is assumed to be known. Given W, estimates for A may be
obtained.)
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The major differences between the methods discussed in this section are in the
criterion function that is optimized. Let S denote the sample covariance
(correlation) matrix, and let 3 denote the covariance matrix that isto be estimated
by the factor model. In the unweighted |east-squares method, also called the
iterated principa factor method or the minres method (see Harman 1976, page
177), the function minimized is the sum of the squared differences between Sand

5. Thisiswritten as ®,, = .5 trace((S - %)).

Generalized least-squares and maximum likelihood estimates are asymptotically
equivalent methods. Maximum likelihood estimates maximize the (normal theory)

likelihood { ®,,, = trace(X ') — log (|=' §)} while generalized least squares
optimizes the function ®,, = trace(ZS " ~1)°).

In all three methods, atwo-stage optimization procedure is used. This proceeds
by first solving the likelihood equations for A in terms of W and substituting the
solution into the likelihood. This gives a criterion (¥, A(W)), which is optimized
with respect to W. In the second stage, the estimates

A

N
are obtained from the estimates for V.

The generalized | east-squares and the maximum likelihood methods allow for the
computation of astatistic (STAT(3)) for testing that NF common factors are
adeguate to fit the model. Thisis a chi-squared test that all remaining parameters
associated with additional factors are zero. If the probability of alarger chi-
squared is small (see STAT(5)) so that the null hypothesisis regjected, then
additional factors are needed (although these factors may not be of any practical
importance). Failure to reject does not | egitimize the model. The statistic STAT(3)
isalikelihood ratio statistic in maximum likelihood estimation. As such, it
asymptotically follows a chi-squared distribution with degrees of freedom given
in STAT(4).

The Tucker and Lewis (1973) reliability coefficient, p, is returned in STAT(2)
when the maximum likelihood or generalized |east-squares methods are used.
This coefficient is an estimate of the ratio of explained to the total variation in the
data. It is computed as follows:

_ MMy - mM
oMM, -1
m:d—2p+5—2—k
6 6
_ —In(s)
° p(p-1)/2
Q

M, =
“ T (p-KZ-p-k)/2
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where |§ is determinant of COV, p = NVAR, k = NVAR, @is the optimized criterion,
and d = NDF.

Image Analysis

The term “image analysis” is used here to denote the noniterative image method
of Kaiser (1963). It is not the image factor analysis discussed by Harman (1976,
page 226). The image method (as well as the alpha factor analysis method) begins
with the notion that only a finite number from an infinite number of possible
variables have been measured. The image factor pattern is calculated under the
assumption that the ratio of the number of factors to the number of observed
variables is near zero so that a very good estimate for the unique error variances
(for standardized variables) is given as one minus the squared multiple correlation
of the variable under consideration with all variables in the covariance matrix.

First, the matrixD” = (diagS"))™" is computed where the operator “diag” results
in a matrix consisting of the diagonal elements of its argumen§ rthe
sample covariance (correlation) matrix. Then, the eigenvaAlsesl eigenvectors

[ of the matrixD'SD™ are computed. Finally, the unrotated image factor
pattern matrix is computed as= DI [(A- 1)*A™]'2.

Alpha Factor Analysis

The alpha factor analysis method of Kaiser and Caffrey (1965) finds factor-
loading estimates to maximize the correlation between the factors and the
complete universe of variables of interest. The basic idea in this method is as
follows: only a finite number of variables out of a much larger set of possible
variables is observed. The population factors are linearly related to this larger set
while the observed factors are linearly related to the observed variablgs. Let
denote the factors obtainable from a finite set of observed random variables, and
let & denote the factors obtainable from the universe of observable variables.
Then, the alpha method attempts to find factor-loading estimates so as to
maximize the correlation betweg¢rand€. In order to obtain these estimates, the
iterative algorithm of Kaiser and Caffrey (1965) is used.

Comments

1. FACTR makes no attempt to solve fd¥, the number of factors. In
general, ifNF is not known in advance, several different valuasrof
should be used, and the most reasonable value kept in the final solution.

2. The iterative methods are generally thought to be superior from a
theoretical point of view but, in practice, often lead to solutions which
differ little from the noniterative methods. For this reason, it is usually
suggested that a non-iterative method be used in the initial stages of the
factor analysis, and that the iterative methods be used when issues such
as the number of factors have been resolved.
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3. Initial estimates for the unique variances are input when| NI T = 1. If the
iterative methods fail for these values, new initial estimates should be
tried. These may be obtained by use of another factoring method (use the
final estimates from the new method asinitial estimatesin the old
method).

Another alternative isto let FACTR computeinitial estimates of the
unique error variances. When | NI T = 0, theinitial estimates are taken as

aconstant
[1 _K )
2p

divided by the diagonal elements of the
< -1
2

matrix. When the correlation matrix is factor analyzed, thisis a constant
times one minus the squared multiple correlation coefficient.

Example

The following data were originally analyzed by Emmett (1949). There are 211
observations on 9 variables. Following Lawley and Maxwell (1971), three factors
will be obtained by the method of maximum likelihood.

| NTEGER IMH, INIT, IPRINT, LDA, LDCOV, MAXIT, MAXSTP, NDF,
& NF, NVAR
REAL EPS, EPSE

PARAMETER ( EPS=0. 000001, EPSE=0.01, |IMIH=3, IN T=0, |PRINT=1,

& LDA=9, LDOOV=9, MAXI T=30, MAXSTP=10, NDF=210, NF=3,
& NVAR=9)
C
REAL A(LDA, NF), COV(LDCOV, NVAR), DER(NVAR), EVAL(NVAR),
& STAT(6), UNI Q NVAR)
EXTERNAL  FACTR
C
DATA COV/
& 1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
& 0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0. 645,
& 0.395, 0.479, 1.000, 0.355, 0.270, 0.254, 0.452, 0.219, 0.504,
& 0.471, 0.506, 0.355, 1.000, 0.691, 0.791, 0.443, 0.285, 0.505,
& 0.346, 0.418, 0.270, 0.691, 1.000, 0.679, 0.383, 0.149, 0.409,
& 0.426, 0.462, 0.254, 0.791, 0.679, 1.000, 0.372, 0.314, 0.472,
& 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.000, 0.385, O0.680,
& 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, O0.470,
& 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470, 1.000/
C
CALL FACTR (NVAR COV, LDCOV, NF, IMIH, NDF, INIT, MAXIT,
& MAXSTP, EPS, EPSE, IPRINT, UNIQ A LDA EVAL, STAT,
& DER)
END
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Output

Uni que Error Variances
1 2 3 4 5 6 7 8
0.4505 0.4271 0.6166 0.2123 0.3805 0.1769 0.3995 0.4615

9
0. 2309

Unr ot at ed Loadi ngs

1 2 3
1 0.6642 -0.3209 0. 0735
2 0.6888 -0.2471 -0.1933
3 0.4926 -0.3022 -0.2224
4 0. 8372 0.2924 -0.0354
5 0. 7050 0.3148 -0.1528
6 0. 8187 0. 3767 0. 1045
7 0.6615 -0.3960 -0.0777
8 0.4579 -0.2955 0. 4913
9 0.7657 -0.4274 -0.0117

Ei genval ues
1 2 3 4 5 6 7 8 9
0.063 0.229 0.541 0.865 0.894 0.974 1.080 1.117 1. 140

STAT
1 2 3 4 5
0. 0350 1. 0000 7.1494 12. 0000 0. 8476
6
5. 0000

Fi nal Paraneter Updates
1 2 3 4 5
2.02042E-07 2. 95010E- 07 1. 80908E-07  6.38808E-08 2.00809E-07

6 7 8 9
1. 48762E- 07 1. 73797E- 08 3. 95484E- 07 1. 42415E- 07

FROTA/DFROTA (Single/Double precision)

Compute an orthogonal rotation of afactor loading matrix using a generalized
orthomax criterion, including quartimax, varimax, and equamax rotations.

Usage

CALL FROTA (NVAR, NF, A LDA, NORM MAXIT, W EPS, B, LDB
T, LDT)

Arguments

NVAR — Number of variables. (Input)
NF — Number of factors. (Input)
A — NVAR by NF matrix of unrotated factor loadings. (Input)
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LDA — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

NORM — Row normalization option. (Input)
If NORM= 1, then row (i.e., Kaiser) normalization is performed. Otherwise, row
normalization is not performed.

MAXIT — Maximum number of iterations. (Input)
MAXI T = 30 is typical MAXI T < 30 defaults to 30 iterations.

W — Nonnegative constant used to define the rotation. (Input)

W= 0.0 results in quartimax rotation#/= 1.0 results in varimax rotations, and
W= NF/2.0 results in equamax rotations. Other nonnegative valu&saly also
be used, but the best values¥eare in the range (@, 5* NF).

EPS — Convergence constant. (Input)

When the relative change in the criterion function is lessgRarfrom one
iteration to the next, convergence is assureeg.= 0.0001 is typicalEPS < 0.0
defaults to MOO1.

B — NVAR by NF matrix of rotated factor loadings. (Output)
If Ais not neededd andB may share the same storage locations.

LDB — Leading dimension @& exactly as specified in the dimension statement
in the calling program. (Input)

T — NF by NF matrix containing the rotation transformation matrix. (Output)
LDT — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

Comments

Automatic workspace usage is

FROTA NVAR units, or
DFROTA 2 * NVAR units.

Workspace may be explicitly provided, if desired, by use2aiTA/DF2C0TA. The
reference is

CALL F20TA (NVAR, NF, A, LDA NORM MAXIT, W EPS, B, LDB,
T, LDT, WORK)

The additional argument is
WORK — Real work vector of length equal XvAR.

Algorithm

RoutineFROTA performs an orthogonal rotation according to an orthomax
criterion. In this analytic method of rotation, the criterion function
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is minimized by finding an orthogonal rotation matrix T such that (A;;) = A = AT
where A isthe matrix of unrotated factor loadings. Here, y = 0 is a user-specified
constant (W) yielding afamily of rotations, and p is the number of variables.

Kaiser (row) normalization can be performed on the factor loadings prior to

rotation via the option parameter NORM In Kaiser normalization, the rows of A are
first “normalized” by dividing each row by the square root of the sum of its
squared elements (Harman 1976). After the rotation is complete, each Bagv of
“denormalized” by multiplication by its initial normalizing constant.

The method for optimizin@ proceeds by accumulating simple rotations where a
simple rotation is defined to be one in whi@hs optimized for two columns ifx

and for which the requirement thabe orthogonal is satisfied.single iteration

is defined to be such that each of HFNF — 1)/2 possible simple rotations is
performed wherd®F is the number of factors. When the relative changg firom
one iteration to the next is less tHrs (the user-specified convergence
criterion), the algorithm stopg&PS = 0.0001 is usually sufficient. Alternatively,

the algorithm stops when the user-specified maximum number of iterations,
MAXI T, is reachedvAXI T = 30 is usually sufficient.

The parameter in the rotatiop,is used to provide a family of rotations. When
y = 0.0, a direct quartimax rotation results. Other valuegyaéld other rotations.

Example

The example is taken from Emmett (1949) and involves factors derived from nine
variables. In this example, the varimax method is chosen with row normalization
by usingw= 1.0 andNORM= 1, respectively. The results correspond to those

given by Lawley and Maxwell (1971, page 84).

INTEGER  LDA, LDB, LDT, MAXIT, NF, NORM NVAR

REAL EPS, W

PARAMETER (EPS=0.0, LDA=9, LDB=9, LDT=3, MAXI T=30, NF=3,
& NORMEL, NVAR=9, W&L.0)

REAL A(LDA, NF), B(LDB, NF), T(LDT, NF)

EXTERNAL  FROTA, WRRRN

&
&
&

DATA A/ . 6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
. 7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
-.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
. 1045, -.0778, .4914, -.0117/

CALL FROTA (NVAR, NF, A LDA, NORM MAXIT, W EPS, B, LDB, T,

&

LDT)

CALL WRRRN ('B’, NVAR, NF, B, LDB, 0)
CALL WRRRN ('T’, NF, NF, T, LDT, 0)
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1
. 2638
. 3423
. 1625
. 8124
. 7356
. 8510
. 2164
. 1144
. 2687

O©CoO~NOURAWNE
[elojolojojolooNe)

1
. 7307
. 6816
. 0382

WN -
[eNoNe]

Output

2 3
-0.5734 0. 3888
-0. 6610 0. 1370
-0.5943 0. 0622
- 0. 3197 0. 1594
- 0. 2800 0. 0036
-0.1890 0. 2513
- 0. 6906 0. 2768
-0. 2431 0. 6828
-0.7431 0. 3804

2 3
-0.5939 0. 3367
0.6623 -0.3112
0. 4569 0. 8887

FOPCS/DFOPCS (Single/Double precision)

Compute an orthogonal Procrustes rotation of a factor-loading matrix using a
target matrix.

Usage
CALL FOPCS (NVAR, NF, A, LDA, X, LDX, B, LDB, T, LDT)

Arguments

NVAR — Number of variables. (Input)

NF — Number of factors. (Input)

A — NVAR by NF matrix of unrotated factor loadings. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

X — NVAR by NF target matrix of the rotation. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

B — NVAR by NF matrix of rotated factor loadings. (Output)

LDB — Leading dimension @& exactly as specified in the dimension statement
in the calling program. (Input)

T — NF by NF factor rotation matrix. (Output)

LDT — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)
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Comments
1 Automatic workspace usage is

FOPCS (NF* (3* NF +4)) — 1 units, or
DFOPCS (NF * (6 * NF + 8)) — 2 units.

Workspace may be explicitly provided, if desired, by use of
F2PCS/DF2PCS. Thereferenceis

CALL F2PCS (NVAR, NF, A LDA X, LDX, B, LDB, T,
LDT, WK, S)

The additiona arguments are as follows:
WK — Work vector of lengtiNF * (2* NF + 3)— 1.
S — Work vector of lengtiNF * (NF + 1).

2. Informational errors
Type Code
4 1 NF = 1. No rotation is possible.
4 2 The rank oi” * X is less thamF.
3. The target matrix is a hypothesized rotated factor loading matrix with

loadings chosen (based on prior knowledge) to enhance interpretability.
A simple structure solution will have most of the elemenxsriear zero
or one (for correlation matrix loadings).

4, This routine may also be used to refine a solution obtained by analytic
rotation in routine=ROTA (page 809). Choose the target matrix so that it
closely resembles the analytic solution but modified to have a simple
structure.

Algorithm

RoutineFOPCS performs orthogonal Procrustes rotation according to a method
proposed by Schoneman (1966). ket NF denote the number of factors,

p = NVAR denote the number of variablésdenote the x k matrix of unrotated
factor loadingsT denote thé x k orthogonal rotation matrix (orthogonality

requires thaT” T be ak x k identity matrix), and leX denote the target matrix.

The basic idea in orthogonal Procrustes rotation is to find an orthogonal rotation
matrix T such thaB = AT andT provides a least-squares fit between the target
matrix X and the rotated loading mati« Schéneman’s algorithm proceeds by

finding the singular value decomposition of the matixx = Usv’. The
rotation matrix is computed 8s= uv’,

Example

The following example is taken from Harman (1976, page 355). It involves the
orthogonal Procrustes rotation of ax  unrotated factor loading matrix. The
original variables are measures of physical features (“lankiness” and
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“stockiness”). The target matriis also printed. Note that because different
methods are used, Harman (1976) gets slightly different results.

| NTEGER LDA, LDB, LDT, LDX, NF, NVAR
PARAMETER (LDA=8, LDB=8, LDT=2, LDX=8, NF=2, NVAR=8)

REAL A(LDA, NF), B(LDB, NF), T(LDT, NF), X(LDX, NF)
EXTERNAL  FOPCS, WRRRN

DATA A/ 0. 856, 0.848, 0.808, 0.831, 0.750, 0.631, 0.569, 0.607,
-0.324, -0.412, -0.409, -0.342, 0.571, 0.492, 0.510, 0.351/

DATA X/0.9, 0.9, 0.9, 0.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

& 0.0, 0.9, 0.9, 0.9, 0.9/

Ro

CALL FOPCS (NVAR, NF, A, LDA, X, LDX, B, LDB, T, LDT)

CALL WRRRN ('A’, NVAR, NF, A, LDA, 0)
CALL WRRRN (X', NVAR, NF, X, LDX, 0)
CALL WRRRN ('B’, NVAR, NF, B, LDB, 0)
CALL WRRRN ('T’, NF, NF, T, LDT, 0)
END

Output

0.8560 -0.3240
0.8480 -0.4120
0.8080 -0.4090
0.8310 -0.3420
0.7500 0.5710
0.6310 0.4920
0.5690 0.5100
0.6070 0.3510

ONOUORAWNBE

X

1 2
0.9000 0.0000
0.9000 0.0000
0.9000 0.0000
0.9000 0.0000
0.0000 0.9000
0.0000 0.9000
0.0000 0.9000
0.0000 0.9000

ONOUTRAWNE

B
2
0.8763 0.264
0.9235 0.1896
0.8900 0.1677
0.8674 0.2348
0.2471 0.9096
0.2009 0.7745
0.1407 0.7510
0.2677 0.6481

O~NOURARWNERLE

T
1 2
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1 0.7932 0.6090
2 -0.6090 0.7932

FDOBL/DFDOBL (Single/Double precision)

Compute adirect oblimin rotation of afactor loading matrix.

Usage
CALL FDOBL (NVAR, NF, A LDA, NORM W MAXIT, EPS, B, LDB,

T, LDT, FCOR, LDFCOR)
Arguments
NVAR — Number of variables. (Input)
NF — Number of factors. (Input)
A — NVAR by NF matrix of unrotated factor loadings. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

NORM — Row normalization option. (Input)
If NORM= 1, then row (i.e., Kaiser) normalization is performed. Otherwise, row
normalization is not performed.

W — Nonpositive constant used to define the rotation. (Input)

MAXIT — Maximum number of iterations. (Input)
MAXI T = 30 is typicalMAXI T = 0 defaults to 30 iterations.

EPS — Convergence constant. (Input)

When the relative change in the criterion function is lessgRarfrom one
iteration to the next, convergence is assuried.= 0.0001 is typicalEPS = 0
defaults to A001.

B — NVAR by NF matrix of rotated factor loadings. (Output)
If Ais not neededd andB may share the same storage locations.

LDB — Leading dimension @& exactly as specified in the dimension statement
in the calling program. (Input)

T — NF by NF matrix containing the rotation transformation matrix. (Output)

LDT — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

FCOR — NF by NF matrix of factor correlations. (Output)

LDFCOR — Leading dimension gfCOR exactly as specified in the dimension
statement in the calling program. (Input)
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Comments
1 Automatic workspace usageis

FDOBL NF + 2* NVAR units, or
DFDOBL 2 * NF + 4 * NVAR units.

Workspace may be explicitly provided, if desired, by use of
F20BL/DF20BL. Thereferenceis

CALL F20BL (NVAR, NF, A LDA, NORM W MAXI T, EPS,
B, LDB, T, LDT, FCOR, LDFCOR WK1, WK2,
VK3)

The additional arguments are as follows:

WK1 — Real work vector of length equaltWAR.

WK2 — Real work vector of length equal 6.

WK3 — Real work vector of length equaltWAR.

2 Informational errors
Type Code
3 1 The algorithm did not converge withxi T
iterations.
4 1 NF = 1. No rotation is possible.
3. The parametawvdetermines the type of dire@BLI M N rotation to be

performed. In generalymust be negativav= 0.0 yields direct
quartimin rotation. AsvVapproaches negative infinity, the orthogonality
among the factors will increase.

Algorithm

RoutineFDOBL performs direct oblimin rotation. In this analytic method of
rotation, the criterion function

= )\izr)\izs_l )‘%r }\?s
SHIPIEE

r#sf 1

is minimized by finding a rotation matrixsuch thatx;,) = A = AT and (I'TT )‘1

is a correlation matrix. Herg< O is a user-specified constak)(yielding a

family of rotations, ang is the number of variables. The rotation is said to be
direct because it minimiz&3 with respect to the factor loadings directly, ignoring
the reference structure.

Kaiser normalization can be performed on the factor loadings prior to rotation via
the option paramet®ORM In Kaiser normalization (see Harman 1976), the rows
of A are first “normalized” by dividing each row by the square root of the sum of
its squared elements. After the rotation is complete, each rBvisof

“denormalized” by multiplication by its initial normalizing constant.
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| NTEGER

REAL

PARAMETER
&

REAL
EXTERNAL

The method for optimizing Q is essentially the method first proposed by Jennrich
and Sampson (1966). It proceeds by accumulating simple rotations where a
simple rotation is defined to be one in which Q is optimized for a given factor in
the plane of a second factor, and for which the requirement that

(TT'IT1 be a correlation matrix is satisfied. An iteration is defined to be such that
each of the NF(NF — 1) possible simple rotationsis performed, where NF is the
number of factors. When the relative change in Q from one iteration to the next is
less than EPS (the user-specified convergence criterion), the algorithm stops.

EPS = .0001 is usually sufficient. Alternatively, the algorithm stops when the
user-specified maximum number of iterations, MAXI T, isreached. MAXI T = 30 is
usually sufficient.

The parameter in the rotation, v, is used to provide a family of rotations. Harman
(1976) recommends that y be strictly less than or equal to zero. When

y = 0.0, adirect quartimin rotation results. Other values of y yield other rotations.
Harman (1976) suggests that the direct quartimin rotations yield the most highly
correlated factors while more orthogonal factors result as y approaches —co.

Example

The example is a continuation of the example given in routine FACTR. It involves
factors derived from nine variables and usesy = 1.

LDA, LDB, LDFCOR, LDT, MAXIT, NF, NORM NVAR

EPS, W

(EPS=0. 00001, LDA=9, LDB=9, LDFCOR=3, LDT=3,

MAXI T=30, NF=3, NORME1l, NVAR=9, W-1.0)

A(LDA, NF), B(LDB, NF), FCOR(LDFCOR, NF), T(LDT, NF)
FDOBL, \\RRRN

DATA A/ . 6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
& . 7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
& -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
& . 1045, -.0778, .4914, -.0117/

CALL FDOBL (NVAR, NF, A, LDA, NORM W MAXIT, EPS, B, LDB, T,

&

LDT, FCOR, LDFCOR)

CALL WRRRN ('B’, NVAR, NF, B, LDA, 0)
CALL WRRRN ('T’, NF, NF, T, LDT, 0)
CALL WRRRN (FCOR’, NF, NF, FCOR, LDFCOR, 0)

END

B
1 2 3

Output

0.1127 -0.5145 0.2917
0.1847 -0.6602 -0.0019
0.0128 -0.6354 -0.0585
0.7797 -0.1751 0.0598
0.7147 -0.1813 -0.0959
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. 8520
. 0355
. 0276
. 0729

©owo~NO
[ejoloNe)]

T

1
. 611
. 923
. 042

WN -
(el oNe]

1
1 1. 000
2 -0.427
3 0.217

0.0038 0.1820

-0.6845 0.1509
-0. 0941 0.6824
-0.7100 0.2493
2 3
-0. 462 0. 203
0.813 -0.249
0.728 1. 050
FCOR
2 3
-0. 427 0. 217
1.000 -0.411
-0.411 1. 000

FPRMX/DFPRMX (Single/Double precision)

Compute an oblique Promax or Procrustes rotation of a factor loading matrix
using atarget matrix, including pivot and power vector options.

Usage
CALL FPRMX (NVAR, NF, A, LDA, IMIH, NORM W MAXIT, EPS, F,

X, LDX, B, LDB, T, LDT, FCOR, LDFCOR)
Arguments

NVAR — Number of variables. (Input)
NVAR must be greater than or equal to 2.

NF — Number of factors. (Input)
NF must be greater than or equal to 2.

A — NVAR by NF matrix of unrotated factor loadings. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IMTH — Method used for rotation. (Input)

IMIH Method

1 The Promax method.

2 The pivotal Promax method.
3 Oblique Procrustes method.

NORM — Normalization option parameter. (Input)

NORM= 0 indicates that no row (Kaiser) normalization is to be performed in the
orthomax orthogonal rotation. Otherwise, row normalization is performed. Not
used whem MrH = 3.
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W — Constant used to define the orthomax orthogonal rotation. (Input)
Values forware discussed in the Commem#&nust be nonnegative. Not used if
| MTH= 3.

MAXIT — Maximum number of iterations. (Input)
Thirty is typical. Not used if MTH = 3.

EPS — Convergence constant for the orthogonal rotation. (Input)

When the relative change in the orthomax criterion function is les&Hsainom
one iteration to the next, convergence is assuffsi= 0.0001 is typical EPS
nonpositive defaults tBPS = 0.0001.

F — Vector of lengtiNF containing the power vector or the pivot constants
depending upon whetheMrH = 1 orl MTH = 2, respectively. (Input)
Not used ifil MTH = 3.

X — NVAR by NF target matrix for the rotation. (Output) fTH= 1 or 2; input,

if 1 MTH = 3)

Forl MTH=1 or 2 X is the target matrix derived from the orthomax rotation. For
| MTH = 3, X is input.

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

B — NVAR by NF matrix of rotated factor loadings. (Output)

LDB — Leading dimension @& exactly as specified in the dimension statement
in the calling program. (Input)

T — NF by NF factor rotation matrix. (Output)

LDT — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

FCOR — NF by NF matrix of factor correlations. (Output)

LDFCOR — Leading dimension gfCOR exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

FPRMX (NVAR + 4)* NF units, or
DFPRMX (2 * NVAR + 7)* NF units.

Workspace may be explicitly provided, if desired, by use of
F2RMX/DF2RWX. The reference is

CALL F2RMX (NVAR, NF, A LDA, IMIH NORM W NAXIT,
EPS, F, X, LDX B, LDB, T, LDT, FCOR,
LDFCOR, QR, QRAUX, | PVT, WORK)

The additional arguments are as follows:

QR — Work vector of lengtiNvAR * NF.
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QRAUX — Work vector of lengtiNF.
IPVT — Work vector of lengthnF.
WORK — Work vector of length 2 NF.

2. Argumenty EPS, andNORMare input arguments to routifr@0TA
(page 809) whehMrH = 1 or 2. (They are not used whiemTH = 3.) See
FROTA for common values off Generallywcan be any positive real
number, but the best values lie in the range, 80 * NF). Generally,
the variances accounted for by the factors approach the same value as
increases.

3. Forl MTH = 1, all F(j) should be greater than0] typically 4.0.
Generally, the larger the valuesFgf), the more oblique the solution
will be. Forl MTH = 2, F(j) should be in the interval @, 10).

4. Whenl MTH = 3, the target matrixx, is a hypothesized rotated factor
loading matrix based upon prior knowledge with loadings chosen to
enhance interpretability. A simple structure solution will have most of
the weights(i, j) either zero or large in magnitude. Note that the two
optionsl MTH = 1 or 2 attempt to achieve this simple structure based
upon an initial orthogonal rotation.

Algorithm

RoutineFPRMX performs oblique rotations via the Promax, the pivotal Promax, or
the oblique Procrustes methods. In all of these methods, a target Xniatfirxst

either computed or specified by the user. The differences in the methods relate to
how the target matrix is first obtained.

Given ap x k target matrix, X, and ap x k orthogonal matrix of unrotated factor
loadings, A, compute the rotation matrix T as follows: First regress each column

of Aon Xyielding ak x k matrix 3. Then, lety = diag(BT ) where diag denotes

the diagonal matrix obtained from the diagonal of the square matrix. Standardize

B to obtain T =y B. The rotated loadings are computed as B = AT while the

factor correlations can be computed asthe inverse of the T T matrix.

In the Promax method, the unrotated factor loadings are first rotated according to
an orthomax criterion via routine FROTA (page 809). The target matrix X istaken
as the elements of the B raised to a power greater than one but retaining the same
sign asthe original loadings. In FPRMX, column i of the rotated matrix B israised
to the power F(i). A power of four is commonly used. Generaly, the larger the
power, the more oblique the solution.

In the pivotal Promax method, the unrotated matrix is first rotated to an orthomax
orthogonal solution asin the Promax case. Then, rather than raising the i-th
column in B to the power F(i), the elements x;; of X are obtained from the
elements b;; of B by raising the ij element of B to the power F(i)/b;;. This has
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the effects of greatly increasing in X those elementsin B that are greater in
magnitude than the pivot elementsF(i), and of greatly decreasing those elements
that are less than F(i).

In the oblique Procrustes method, the elements of X are specified by the user as
input to the FPRWX routine. No orthogonal rotation is performed in the oblique
Procrustes method.

Example

The following example is a continuation of the example in the FACTR (page 801)
procedure. It involves nine variables and three factors. The pivotal Promax
method is illustrated.

| NTEGER | MTH, LDA, LDB, LDFCOR, LDT, LDX, MAXIT, NF, NORM
& NVAR
REAL EPS, W
PARAMETER (EPS=0.0, |MIH=2, LDA=9, LDB=9, LDFCOR=3, LDT=3,
& LDX=9, MAXI T=30, NF=3, NORME1l, NVAR=9, Ws1.0)
C
REAL A(LDA, NF), B(LDB, NF), F(NF), FCOR(LDFCOR, NF),
& T(LDT, NF), X(LDX, NF)
EXTERNAL FPRMX, WRRRN
C
DATA A/ . 6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
& . 7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
& -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
& . 1045, -.0778, .4914, -.0117/
C
DATA F/ 0.5, 0.5, 0.5/
C
CALL FPRMX (NVAR, NF, A LDA, IMIH NORM W MAXIT, EPS, F, X
& LDX, B, LDB, T, LDT, FCOR, LDFCOR)
C
CALL WRRRN ('X’, NVAR, NF, X, LDX, 0)
CALL WRRRN ('B’, NVAR, NF, B, LDB, 0)
CALL WRRRN ('T’, NF, NF, T, LDT, 0)
CALL WRRRN ('"FCOR’, NF, NF, FCOR, LDFCOR, 0)
END
Output
X
1 2 3
1 0.0800 -0.6157 0.2967
2 0.2089 -0.7311 0.0007
3 0.0037 -0.6454 0.0000
4 0.8800 -0.1681 0.0032
5 0.8116 -0.1030 0.0000
6 0.9096 -0.0122 0.0640
7 0.0291 -0.7649 0.0982
8 0.0001 -0.0546 0.7563
9 0.0866 -0.8189 0.2807
B
1 2 3

1 0.0997 -0.5089 0.3038
2 0.1900 -0.6463 0.0077
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-0.6270 -0.0421
-0. 1469 0. 0285
-0.1531 -0.1256
0.0308 0.1436
-0.6777 0. 1699
-0.1017 0.6911
-0.7031 0. 2683
T
2 3

-0. 464 0. 316
1.000 -0.395
-0.395 1. 000

FHARR/DFHARR (Single/Double precision)

Compute an oblique rotation of an unrotated factor loading matrix using the
Harris-Kaiser method.

Usage
CALL FHARR (NVAR, NF, A, LDA, NORM MAXIT, W C, EPS

SCALE, B, LDB, T, LDT, FCOR, LDFCOR)
Arguments
NVAR — Number of variables. (Input)
NF — Number of factors. (Input)
A — NVAR by NF matrix of unrotated factor loadings. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

NORM — Row normalization option. (Input)
If NORM= 1, then row (i.e., Kaiser) normalization is performed. Otherwise, row
normalization is not performed.

MAXIT — Maximum number of iterations. (Input)
A typical value is 30.

W — Constant used to define the rotation. (Input)
The value of¥must be nonnegative. See Comments.

C — Constant between zero and one used to define the rotation. (Input)
See Comments.
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EPS — Convergence constant for the rotation angle. (Input)
EPS = 0.0001 is typical. IfEPS is less that or equal to@) thenEPS = 0.0001 is
used.

SCALE — Vector of lengtiNVAR containing a scaling vector. (Input)

All elements inSCALE should be set to one if principal components or
unweighted least squares was used to obtain the unrotated factor loadings. The
elements oB8CALE should be set to the unique error variances (vedoQ in
subroutine=ACTR) if the principal factor, generalized least squares, maximum
likelihood, or the image method was used. Finally, in alpha factor analysis, the
elements oBCALE should be set to the communalities (one minus the
uniquenesses in standardized data).

B — NVAR by NF matrix containing the rotated factor loadings. (Output)

LDB — Leading dimension @& exactly as specified in the dimension statement
in the calling program. (Input)

T — NF by NF factor rotation matrix. (Output)

LDT — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

FCOR — NF by NF matrix containing the factor correlations. (Output)

LDFCOR — Leading dimension dfCOR exactly as specified in the dimension
statement in the calling program. (Input)

Comments
1. Automatic workspace usage is

FHARR 2* NF + NVAR units, or
DFHARR 4 * NF + 2* NVAR Units.

Workspace may be explicitly provided, if desired, by use of
F2ARR/DF2ARR. The reference is
CALL F2ARR (NVAR, NF, A LDA, NORM MAXIT, W C,

EPS, SCALE, B, LDB, T, LDT, FCOR,
LDFCOR, RWK1, RWK2)

The additional arguments are as follows:
RWK1 — Real work vector of length equal ta 2\F.
RWK2 — Real work vector of length equal fvAR.

2. ArgumeniC must be between®@and 10. The largecCis, the more
orthogonal the rotated factors are. Rarely, shaude greater than.D.

3. Argumentdy EPS, andNORMare arguments to routiff&kOTA
(page 809). SeeROTA for common values afvin orthogonal rotations.
For FHARR, the best values af/are in the range (0, 5.0 * NF).
Generally, the variances of the factors converge to the same value as
increases.
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Algorithm

Routine FHARR performs an oblique analytic rotation of unrotated factor loadings
viaamethod proposed by Harris and Kaiser (1964). In this method of rotation,

the eigenvectors obtained from the factor extraction are weighted by afactor A
where A isthe diagonal matrix of eigenvalues obtained in the factor extraction

and c is a specified constant. These transformed eigenvectors are then rotated
according to an orthomax criterion.

c/2

The transformation used to obtain the weighted eigenvectors, I *, from the

unrotated loadings, A, isgivenasl " = W2 AACD2 Where W is the matrix of
unique error variances output by routine FACTR (page 801). The matrix should be
set to an identity matrix if the principal component, unweighted least squares, or
alphafactor analysis method is used in routine FACTR to obtain the unrotated
factor loadings (I MTH = 0,1, or 5). Thisis required because in these methods of
factor analysis, the eigenvectors are not premultiplied by a diagonal matrix when
obtaining the unrotated factor loadings.

After I * has been computed, it is rotated according to a user-selected orthomax
criterion. The member of the orthomax family to be used is selected via a constant

W (See the description of routine FROTA, page 809.) Because I' * is used in place
of A (the unrotated factor loadings in routine FROTA), the matrix resulting from
the rotation is (after standardizing by preand postmultiplication by the diagonal
matrices U™ and A' ™) amatrix of obliquely rotated loadings.

Note that the effect of Wisless pronounced than the effect of C. Usingc = 1.0
yields an orthogonal orthomax rotation while ¢ = 0.0 yields the most oblique
factors. A common choice for cisgiven by ¢ = 0.5. One good choice for Wis 1.0.
W= 1.0 yields avarimax rotation on the weighted eigenvectors.

Example

The example is a continuation of the example in routine FACTR (page 801). It
involves 9 variables. A rotation with row normalization and 3 factorsis

performed.
| NTEGER LDA, LDB, LDFCOR, LDT, MAXIT, NF, NORM NVAR
REAL C, EPS, W
PARAMETER (C=0.5, EPS=0.0001, LDA=9, LDB=9, LDFCOR=3, LDT=3,
& MAXI T=30, NF=3, NORME1l, NVAR=9, W:l.O0)
C
REAL A(LDA, NF), B(LDB, NF), FCOR(LDFCOR, NF), SCALE(NVAR),
& T(LDT, NF)
EXTERNAL FHARR, WRRRN
C
DATA A/ . 6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
& . 7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
& -. 2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
& . 1045, -.0778, .4914, -.0117/
C
DATA SCALE/ . 4505, .4271, .6165, .2123, .3805, .1769, .3995,
& .4616, .2309/
C

824 « Chapter 9: Covariance Structures and Factor Analysis IMSL STAT/LIBRARY



CALL FHARR (NVAR, NF, A, LDA, NORM MAXIT, W C, EPS, SCALE, B,
& LDB, T, LDT, FCOR, LDFCOR)

CALL WRRRN ('B’, NVAR, NF, B, LDB, 0)

CALL WRRRN ('T’, NF, NF, T, LDT, 0)

CALL WRRRN (FCOR’, NF, NF, FCOR, LDFCOR, 0)
END

Output
B
1 2 3
0.1542 -0.5103 0.2749
0.2470 -0.6477 -0.0233
0.0744 -0.6185 -0.0750
0.7934 -0.1897 0.0363
0.7329 -0.1909 -0.1175
0.8456 -0.0194 0.1610
0.0966 -0.6713 0.1320
0.0198 -0.1067 0.6773
0.1340 -0.6991 0.2285

O©CO~NOUAWNPE

T
1 2 3

0.649 -0.469 0.175

0.850 0.777 -0.249

-0.053 0.687 1.065

WN P~

FCOR

1 2 3
1.000 -0.335 0.250
-0.335 1.000 -0.413
0.250 -0.413 1.000

WN P~

FGCRF/DFGCREF (Single/Double precision)

Compute direct oblique rotation according to a generalized fourth-degree
polynomial criterion.

Usage
CALL FGCRF (NVAR, NF, A, LDA, NORM, W, MAXIT, EPS, B, LDB,

T, LDT, FCOR, LDFCOR)
Arguments
NVAR — Number of variables. (Input)
NF — Number of factors. (Input)
A — NVAR by NF matrix of unrotated factor loadings. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)
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NORM — Row normalization option. (Input)
If NORM= 1, then row (i.e., Kaiser) normalization is performedidfM= O, row
normalization is not performed.

W — Vector of length 4 containing the constamtsw,, ws, W, necessary to
define the rotation. (Input)

Some common rotations are

Rotation W1) W2) W3) W4)
Quartimin 0 1 0 -1
Covarimin —-1/NVAR 1 INVAR -1
Oblimin -Y/NVAR 1 V/NVAR -1
Crawford-Ferguson 0 K, K, -K; = K,

whereK;, K,, andy are constants (determined by the user).

MAXIT — Maximum number of iterations. (Input)
MAXI T = 30 is typical MAXI T < 30 defaults to 30 iterations.

EPS — Convergence constant. (Input)

When the relative change in the criterion function is lessER&rfrom one
iteration to the next, convergence is assureeg.= 0.0001 is typicalEPS < 0.0
defaults to MOO1.

B — NVAR by NF matrix of rotated factor loadings. (Output)
If Ais not needed andB can share the same storage locations.

LDB — Leading dimension @& exactly as specified in the dimension statement
in the calling program. (Input)

T — NF by NF matrix containing the rotation transformation matrix. (Output)

LDT — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

FCOR — NF by NF matrix of factor correlations. (Output)

LDFCOR — Leading dimension gfCOR exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

FGCRF NVAR* (NF + 2) +NF* units, or
DFGCRF 2* (NVAR* (NF + 2) +NF’) units.

Workspace may be explicitly provided, if desired, by use of
F2CRF/DF2CRF. The reference is
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CALL F2CRF (NVAR, NF, A LDA, NORM W MAXI T, EPS,
B, LDB, T, LDT, FCOR, LDFCOR RWK1,
RWK2, RVK3)

The additional arguments are as follows:

RWK1 — Work vector of lengtihNVAR.

RWK2 — Work vector of lengtiNvAR * (NF + 1).

RWK3 — Work vector of IengthNF2 .

2. Informational error
Type Code
3 1 The algorithm did not converge withiXi T
iterations.
Algorithm

RoutineFGCRF performs direct oblique factor rotation for an arbitrary fourth-
degree polynomial criterion function. Ligt= NVAR denote the number of
variables, and It = NF denote the number of factors. Then, the criterion
function

Pk , 2 p K , 2
Q=w; zz}‘ir +w22 z)‘ir
1=1r=1 i=1\r=1
a i 2 ’ p X 4
Wz | YA | twgy 3 A
r=1\i=1 1=1r=1

is minimized by finding a rotation matrixsuch thatX;) = A = AT and

T (T”l)T is a correlation matrix. Herey,=Wi), i = 1, ..., 4 are user specified
constants. The rotation is said to be direct because it miniiQizéth respect to

the factor loadings directly, ignoring the reference structure (see, e.g., Harman,
1976).

Kaiser normalization (Harman, 1976) is specified when option parameter
NORM = 1. When Kaiser normalization is performed, the rowA afe first
“normalized” by dividing each row by the square root of the sum of its squared
elements. The rotation is then performed. The rovsak then “denormalized”
by multiplying each row by the initial row normalizing constant.

The criterion functiorQ was first proposed by Jennrich (1973). It generalizes
the oblimin criterion function and the criterion function proposed by Crawford
and Ferguson (1970) to an arbitrary fourth degree crite@ds.optimized by
accumulating simple rotations where a simple rotation is defined to be an
optimal factor rotation (with respect @) for two columns of\, and for which

-I\T

the requirement that ™ (T™')" be a correlation matrix is satisfie’CRF
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determines the optimal simple rotation by finding the roots of a cubic polynomial

equation. The details are contained in Clarkson and Jennrich (1988).
Table 1: Specific Criteriain the General Symmetric Family

Criterion W W, oy Wy
Quartimin 0 1 0 -1
Covarimin -1p 1 p -1
Oblimin -vip 1 vip -1
Crawford-Ferguson 0 K, K, K, - K,

An iteration is complete after al possible k(k — 1) simple rotations have been
performed. When the relative change in Q from one iteration to the next isless
than EPS, the algorithm stops. EPS = .0001 is usually sufficient. Alternatively, the
algorithm stops when the user specified maximum number of iterations, MAXI T, is
reached. MAXI T = 30 istypical.

Notes

The parametersin the rotation, wy, provide for atwo-dimensional family of
rotations. When wy = -y/p, w, = 1, wy = y/p, and w, = -1, then adirect oblimin
rotation with parameter y is performed. Direct oblimin rotations are also
performed by routine FDOBL (page 815), which is somewhat faster. For vy =0, w
2 =K,

w; = K,, and w, = —(K; + K,) direct Crawford-Ferguson rotation with parameters
K, and K, results (see Crawford and Ferguson 1970, or Clarkson and Jennrich
1988). Other values of w yield other rotations. Common values for w are asin
Table 1.

Example

The example is a continuation of the example in routine FACTR (page 801). It
involves nine variables. A Crawford-Ferguson rotation with row normalization
and 3 factorsis performed.

INTEGER  LDA, LDB, LDFCOR LDT, MAXIT, NF, NORM NVAR
REAL EPS
PARAMETER ( EPS=0. 0001, LDA=9, LDB=9, LDFCOR=3, LDT=3, MAXI T=30,
& NF=3, NORMEL, NVAR=9)
REAL A(LDA, NF), B(LDB, NF), FCOR(LDFCOR, NF), T(LDT,NF), W4)
EXTERNAL  FGCRF, WRRRN

C
DATA A/ . 6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
& . 7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
& -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
& .1045, -.0778, .4914, -.0117/
DATA W0.0, 7.0, 1.0, -8.0/

C
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CALL FGCRF (NVAR, NF, A, LDA, NORM W MAXIT, EPS, B, LDB, T,

&

CALL WRRRN (’

LDT, FCOR LDFCOR)
B’, NVAR, NF, B, LDA, 0)

CALL WRRRN ('T’, NF, NF, T, LDT, 0)

CALL WRRRN (’

END

B

1 2 3
0.1156 -0.3875
0.2164 -0.5829
0.0426 -0.5858
0.8052 -0.0903
0.7497 -0.1370
0.8638 0.1047
0.0529 -0.5792
-0.0166 0.0776
0.0854 -0.5765

O©CO~NOUAWNPE

T
1 2 3

WN P~

FCOR
1 2 3

WN P~

FCOR’, NF, NF, FCOR, LDFCOR, 0)

Output

0.3992
0.0924
0.0263
0.0887

-0.0838

0.1990
0.2670
0.7748
0.3803

0.633 -0.327 0.290
0.935 0.738 -0.399
-0.061 0.907 1.066

1.000 -0.434 0.366
-0.434 1.000 -0.498
0.366 -0.498 1.000

FIMAG/DFIMAG (Single/Double precision)

Compute the image transformation matrix.

Usage
CALL FIMAG (NF, T, LDT, TI, LDTI)

Arguments
NF — Number of factors. (Input)
T — NF by NF transformation matrix. (Input)

LDT — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

Tl — NF by NF image transformation matrix. (Output)

LDTI — Leading dimension dfl exactly as specified in the dimension
statement in the calling program. (Input)

IMSL STAT/LIBRARY

Chapter 9: Covariance Structures and Factor Analysis+ 829



Comments
1 Automatic workspace usageis

FI MAG 2* NF + NF(NF — 1)/2 units, or
DFI MAG 3 * NF + NF(NF - 1) units.

Workspace may be explicitly provided, if desired, by use of
F2VMAGDF2MAG. Thereferenceis

CALL F2MAG (NF, T, LDT, TI, LDTI, R [|WK)
The additiona arguments are as follows:
RWK — Real work vector of lengthF + NF(NF — 1)/2.

IWK — Integer work vector of lengtkF.

2. Informational Error
Type Code
3 1 T is ill-conditioned. The solution may not be accurate.
Algorithm

RoutineFI MAG computes the image transformation mattixfrom the factor

rotation matrix T). The image transformation matrix takes the unrotated factor
loadings into the factor structure matrix when the unrotated loadings are
computed from a correlation matrix. It is computed as the inverse of the transpose

of the factor rotation matriX. When orthogonal rotations are use'Ef)(l =Tso
there is no reason to compute the image transformation matrix.

Example

This example is a continuation of the example contained in the manual document
for routineFROTA (page 809). The image transformation matrix is obtained from
the orthogonal rotation matrix. Some small differences between the matrix

when compared with the matfixcomputed via routinEROTA can be seen.

These differences are because of roundoff error since for orthogonal rotations, the
image transformation matrix is the same as the rotation matrix.

| NTEGER LDT, LDTI, NF
PARAMETER (LDT=3, LDTI=3, NF=3)

c
REAL T(LDT, NF), TI(LDTI, NF)
EXTERNAL  FI MAG, WARRRN
C
DATA T/.7307, .6816, -.0382, -.5939, .6623, .4569, .3367,
& -.3112, .8887/
C
CALL FIMAG (NF, T, LDT, TI, LDTI)
c
CALL WRRRN ('TI', NF, NF, TI, LDTI, 0)

END
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TI
1

Output

2 3

1 0.7307 -0.5938 0.3367
2 0.6816 0.6622 -0.3112
3 -0.0382 0.4569 0. 8887

FRVAR/DFRVAR (Single/Double precision)

Compute the factor structure and the variance explained by each factor.

Usage
CALL FRVAR (NVAR, NF, A LDA, T, LDT, VAR, S, LDS, FVAR)

Arguments

NVAR — Number of variables. (Input)

NF — Number of factors. (Input)

A — NVAR by NF matrix of unrotated factor loadings. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

T — NF by NF factor rotation matrix. (Input)

LDT — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

VAR — Vector of lengtiNVAR containing the variances of the original variables.
(Input)

If standardized variables were used (i.e., the loadings are from a correlation
matrix), then se¥AR(1) to any negative number. In this casek may be
dimensioned of length one.

S — NVAR by NF factor structure matrix. (Output)

LDS — Leading dimension @& exactly as specified in the dimension statement
in the calling program. (Input)

FVAR — Vector of lengthNF containing the variance accounted for by each of
theNF rotated factors. (Output)

Comments

Automatic workspace usage is

FRVAR NF” +NF* (1 +NVAR) + NF units, or

DFRVAR 2* NF> + 2* NF * (1 +NVAR) + NF units.

Workspace may be explicitly provided, if desired, by use2fAR/DF2VAR. The
reference is
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CALL F2VAR (NVAR, NF, A LDA T, LDT, VAR S, LDS, FVAR
TINV, WK WK

The additional arguments are as follows:

TINV — Work vector of IengthNFz.
WK — Work vector ofNF * (1 + NVAR).
WK — Work vector of lengtiNF.

Algorithm

RoutineFRVAR computes the factor structure matrix (the matrix of correlations
between the observed variables and the hypothesized factors) and the variance
explained by each of the factors (for orthogonal rotations). For oblique rotations,
FRVAR computes a measure of the importance of the factors, the sum of the
squared elements in each column.

Let A denote the diagonal matrix containing the elements of the weralong
its diagonal. The estimated factor structure maixcomputed as

-1 _
S=A AT YHT
while the elements ¢fVAR are computed as the diagonal elements of

T ;
S AZAT
If the factors were obtained from a correlation matrix (or the factor variances for
standardized variables are desired), then the elements of thewsRstould

either all be 1.0, or the first element\R should be set to any negative number.
In either case, variances of 1.0 are used.

The user should be careful to input the unrotated loadings. When obliquely
rotated loadings are input, the output ve&@hR contains a measure of each
factors importance, but it does not contain the variance of each factor.

Example

The following example illustrates the use of routiR¥AR when the structure

and and an index of factor importance for obliquely rotated loadings (obtained
from routineFDOBL, page 815) are desired. Note in this example that the
elements oF VAR are not variances since the rotation is oblique.

| NTEGER LDA, LDS, LDT, NF, NVAR
PARAMETER (LDA=9, LDS=9, LDT=3, NF=3, NVAR=9)

c
REAL A(LDA, NF), FVAR(NF), S(LDS, NF), T(LDT, NF), VAR(NVAR)
EXTERNAL  FRVAR, WRRRN

C
DATA A/ . 6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
& . 7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
& -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
& .1045, -.0778, .4914, -.0117/

c

DATA T/0.611, 0.923, 0.042, -0.462, 0.813, 0.728, 0.203, -0.249,
& 1. 050/
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C
DATA VAR/ 9*1. 0/
C
CALL FRVAR (NVAR, NF, A, LDA, T, LDT, VAR S, LDS, FVAR)
C
CALL WRRRN ('S, NVAR, NF, S, LDS, 0)
CALL WRRRN (FVAR’, 1, NF, FVAR, 1, 0)
END

Output
S
1 2 3
0.3958 -0.6825 0.5274
0.4662 -0.7385 0.3093
0.2715 -0.6171 0.2052
0.8673 -0.5328 0.3010
0.7712 -0.4473 0.1338
0.8897 -0.4348 0.3654
0.3606 -0.7618 0.4397
0.2160 -0.3860 0.7270
0.4303 -0.8437 0.5566

O©CO~NOURAWNPE

FVAR
1 2 3
2.170 2.559 0.915

FCOEF/DFCOEF (Single/Double precision)

Compute amatrix of factor score coefficients for input to the routine FSCOR

Usage
CALL FCOEF (NVAR, NF, A, LDA, IMTH, COV, LDCOV, T,

LDT, SCOEF, LDSCOE)
Arguments
NVAR — Number of variables. (Input)
NF — Number of factors. (Input)
A — NVAR by NF matrix of unrotated factor loadings. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IMTH — Method to be used to obtain the factor scores. (Input)

IMITH Method

Regression method

Least squares method

Bartlett method

Anderson and Rubin method
Image score for image analysis

G WDNPF
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See the Commentsfor atable of the methods that are appropriate for a given type
of factor extraction and rotation.

CQOV — The variance-covariance or correlation matrix of oN&R from which
the factor loadings were obtained. (Input)
COv is not used and may be dimensioned of length LmH = 2 or 5.

LDCOV — Leading dimension afov exactly as specified in the dimension
statement in the calling program. (Input)

T — NF by NF factor rotation matrix or transformation matrix. (Input)

If the image method is being used, then roufineAG (page 829) needs to be
called after the rotation routine to obtain the image transformation meitris.
then input forT in FCOEF. If factor score coefficients for the unrotated loadings
are desiredT should be set to the identity matrix prior to callF@pEF.

LDT — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

SCOEF — NVAR by NF factor score coefficient matrix. (Output)

LDSCOE — Leading dimension (8COEF exactly as specified in the dimension
statement in the calling program. (Input)

Comments
1 Automatic workspace usage fZOEF depends onMTH.
| MTH Usage
1 NVAR* (NVAR + NF) + NF + 2 units
2,3 NF * (NVAR + NF) + NVAR + NF + 1 units
4 NVAR* (NVAR+ 2* NF + 1) +NF * (NF + 1) units
5 NVAR* NF + 4 units

Workspace foDFCOEF is twice the workspace required feCOEF.
Workspace may be explicitly provided, if desired, by use of
F2CEF/DF2CEF. The reference is

CALL F2CEF (NVAR, NF, A, LDA, | MIH, COv, LDCOvV, T,
LDT, SCOEF, LDSCOE, B, RWK1, S, UNQ
RVK2)

The additional arguments are as follows:

B — Real work vector of length®2NvAR* NF if | MTH = 4, and of
lengthNVAR * NF otherwise.

RWK1 — Real work vector of IengINVAR2 if IMTH= 1 or 4 and of
IengthNF2 if | MTH = 2 or 3. OtherwiseRWK1 is of length 1.

S — Real work vector of IenglNF2 if | MTH = 4. Otherwise$ is
dimensioned of length 1.

UNIQ — Real work vector of lengthvAR if | MTH= 2, 3, or 4.
OtherwiseUNI Qis dimensioned of length 1.
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RWK2 — Real work vector of lengthF if | MTH is not 5. Ifl MTH= 5,
thenRWK2 is of length 1.

2. The method used for computing the factor score coefficients depends
both upon the method used to extract the factor loadings in routine
FACTR (page 801) and whether the factor loadings were orthogonally or
obliquely rotated. In the following table, the numbers in parentheses
refer tol MTH in routineFACTR and the numbers in the cells refer to

| MTH in FCOEF.

FACTR No Orthogonal ~ Oblique

Method (I MTH)  Rotation Rotation Rotation

Component (0) 12 12 12

Image (4) 5 5 5

Common Factor

ULS (1) 1,2,3,4 1,2, 3,4 1,2, 3,4

GLS (2) 1,2,3,4 1,2, 3,4 1,2, 3,4

ML (3) 1,2,3,4 1,2, 3,4 1,2, 3,4

Alpha (5) 1,2,3,4 1,2, 3,4 1,2, 3,4
Algorithm

RoutineFCOEF computes factor score coefficients that may subsequently be used
in computing the factor scores in routifGCOR (page 838). Five options for
computing the coefficients are available according to the input paran@ter

The method that should be used depends upon the method used in extracting the
factor loadings. See the Comments section above for values to us&forwhen
various methods of factor extraction are used.

Let Sdenote the covariance (or correlation) matrix from which the factors were

obtained, le3 denote the factor score coefficients,Uét= diagS- AAT) denote
the unique error variances, andBet AT denote the rotated factor loadings (if
coefficients for the unrotated loadings are desired, Bhem\). The various
methods for computing the factor score coefficients are discussed in detail in
Harman (1976, Chapter 16) and are given as follows:

1. The regression method may be used with any method of factor extraction
and rotation (but not with image analysis). The coefficients are
computed as follows:

B=sBT'T)*

2. The least-squares method may also be used with any method of factor
extraction and rotation (but not in image analysis). The factor score
coefficients are computed as

B=B(B"B)™*
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Note that estimated coefficients in the least-squares method yield
different factor scores depending upon the scale of the observed
variables. In particular, factor scores computed from standardized data
(i.e., for the correlation matrix) will be different from factor scores
computed from the raw data (i.e., from a covariance matrix). Generaly,
the differences will not be great. These differences are not observed in
any of the other methods.

3. The Bartlett (1937) method may be used with common factor models
only. The coefficients are computed as

B=U2B(B'U?B)™

4, The Anderson and Rubin (1956) method may also be used with common
factor models only. It isamodification of the Bartlett method where the
modification is used to insure that the factors obtained are orthogonal.
The factor score coefficients are computed as

N _1
B=U2B(B'U 23U 2B) 2

5. Theimage method is appropriate for image analysis. In this method, the
coefficients are computed as

n — — T\-1/4Ty-1

B=BT =AT") (T")
where B; is the image score coefficient matrix, and T, is the image
transformation matrix (the matrix Tl in routine Fl MAG, page 829).

Harman (1976, pages 385-387) discusses choosing a method for computing factor
score coefficients. According to Harman, the most desirable properties of any of
the methods can be summarized as follows

« Validity—The estimated factor scores should have high correlation with the
population factor scores.

» Orthogonality—The estimated factor scores should not correlate highly with one
another.

* Univocal—The estimated factor scores should correlate only with the
corresponding true factor scores.

With these criteria in mind, Harman states that:

1. The regression method yields factor scores which usually have the highest
correlation with the true factor scores.

2. The Bartlett and least-squares methods are univocal but not orthogonal.
3. The Anderson and Rubin method is orthogonal but not univocal.
4. Univocality is of more significance than orthogonality.
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Example

In the following example, the regression method is used to obtain estimated factor
score coefficients for a 9-variable problem with 3 factors. An oblique rotation
method was used with the maximum likelihood common factor model to obtain
the factor loadings. Routine FDOBL (page 815) was used to obtain the oblique
factor loadings.

| NTEGER | MTH, LDA, LDCOV, LDSCCE, LDT, NF, NVAR
PARAMETER (| MTH=1, LDA=9, LDCOv=9, LDSCOE=9, LDT=3, NF=3,
& NVAR=9)
Cc
REAL A(LDA, NF), COV(LDCOV, NVAR), SCOEF(LDSCOE, NF),
& T(LDT, NF)
EXTERNAL FCOEF, WRRRN
c
DATA A/ . 6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
& . 7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960,
& -.2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528,
& . 1045, -.0778, .4914, -.0117/
C
DATA T/0.611, 0.923, 0.042, -0.462, 0.813, 0.728, 0.203, -0.249,
& 1. 050/
C
DATA COV/ 1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434,
& 0.639, 0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547,
& 0.283, 0.645, 0.395, 0.479, 1.000, 0.355, 0.270, 0.254,
& 0.452, 0.219, 0.504, 0.471, 0.506, 0.355, 1.000, O0.691,
& 0.791, 0.443, 0.285, 0.505, 0.346, 0.418, 0.270, 0.691,
& 1.000, 0.679, 0.383, 0.149, 0.409, 0.426, 0.462, 0.254,
& 0.791, 0.679, 1.000, 0.372, 0.314, 0.472, 0.576, 0.547,
& 0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680, 0.434,
& 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470,
& 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470,
& 1. 000/
C
CALL FCOEF (NVAR, NF, A, LDA, | MIH, COv, LDCOV, T, LDT, SCOEF,
& LDSCCE)
C
CALL WRRRN ('SCOEF’, NVAR, NF, SCOEF, LDSCOE, 0)
END
Output
SCOEF
1 2 3
1 -0.0102 -0.1350 0.1781
2 0.0269 -0.2191 -0.0825
3 -0.0080 -0.1536 -0.0791
4 0.3788 -0.0597 -0.0596
5 0.2067 -0.0554 -0.1768
6 0.4885 0.1103 0.2084
7 -0.0258 -0.2317 0.0612
8 -0.0474 0.0345 0.5269
9 -0.0431 -0.3967 0.2507
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FSCOR/DFSCOR (Single/Double precision)

Compute a set of factor scores given the factor score coefficient matrix.

Usage

CALL FSCOR (NVAR, NF, SCOEF, LDSCOE, NOBS, X, LDX, XBAR,
STD, SCOR, LDSCOR)

Arguments
NVAR — Number of variables. (Input)
NF — Number of factors. (Input)

SCOEF — NVAR by NF matrix containing the factor score coefficients as output
from routineFCOEF (page 833). (Input)

LDSCOE — Leading dimension (8COEF exactly as specified in the dimension
statement in the calling program. (Input)

NOBS — Number of observations for which factor scores are to be computed.
(Input)

X — NOBS by NVAR data matrix for which factor scores are to be computed.
(Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

XBAR — Vector of lengthNVAR containing the means of the'AR variables.

(Input)

STD — Vector of lengthNVAR containing the standard deviations of V&R
variables. (Input)

If STD(1) is not positive, then it is assumed that the factor score coefficients are

from a covariance matrix and the observed variables are not standardized to unit
variance.

SCOR — NOBS by NF matrix containing the factor scores. (Output)
If X is not needed¥ andSCOR can share the same memory locations.

LDSCOR — Leading dimension 3COR exactly as specified in the dimension
statement in the calling program. (Input)

Comments

Automatic workspace usage is

FSCOR NVAR units, or
DFSCCOR 2 * NVAR units.

Workspace may be explicitly provided, if desired, by use2@fOR/DF2COR. The
reference is
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CALL F2COR (NVAR, NF, SCOEF, LDSCOE, NOBS, X, LDX, XBAR,
STD, SCOR, LDSCOR, VK)

The additional argument is
WK — Work vector of lengtiNvAR.

Algorithm

RoutineFSCOR computes the factor scores from the factor score coefficient

matrix. INFSCOR, the data are input as originally observed, and standardization is
performed as required according to the valusTai(1). When the factor loadings

are computed from the correlation matrix, the observed data must be standardized
to a mean of zero and a variance of one prior to computing the factor scores. This
requires thaSTD contain the observed standard deviations of the observed data
and thatXBAR contain the means. On the other hand, if the factor loadings are
computed from the covariance matrix, then the observed data must be
standardized to a mean of zero, but the variance must be left unchanged in
computing the factor scores. In this ca®E)(1) must be negative or zero.

After standardizing the observed data, the factor scores are computed as the
product of the factor score coefficient matrix times the standardized data. If factor
scores are computed from the same data from which the covariance matrix was
computed, then the sample variance (using weights and frequencies as required)
of the resulting factor scores will be 1.0.

Example

The following example is a continuation of the example given in the manual
document for routin€ACTR (page 801). The rotated loadings are those obtained
from the manual document for routifROTA (page 809), and the factor score
coefficients are as described in the manual document for rai@oEF
(page 833).

| NTEGER LDSCOE, LDSCOR, LDX, NF, NOBS, NVAR

PARAMETER (LDSCCE=2, LDSCOR=5, LDX=5, NF=1, NOBS=5, NVAR=2)

c
REAL SCOEF( NVAR, NF), SCOR(LDSCOR, NF), STD(NVAR),
& X(LDX, NVAR), XBAR( NVAR)
EXTERNAL  FSCOR, WARRRN
c
DATA X/ 40.0, 60.0, 30.0, 15.0, 45.0, 3.0, 9.0, 2.0, 0.0, 4.0/
DATA SCOEF/ 0. 33563, 0. 33562/
DATA XBAR/ 38.0, 3.6/, STD/ 16.80774, 3.361547/
c
CALL FSCOR (NVAR, NF, SCOEF, LDSCOE, NOBS, X, LDX, XBAR STD,
& SCOR, LDSCOR)
c

CALL WRRRN ('Factor Scores’, NOBS, NF, SCOR, LDSCOR, 0)
END

Output
Factor Scores
1 -0.0200
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0.9785
-0. 3195
-0. 8187

0.1797

O WN

FRESI/DFRESI (Single/Double precision)

Compute communalitiesand the standardized factor residual correlation matrix.

Usage
CALL FRESI (NVAR, COV, LDCOV, NF, A, LDA, Y, RESID, LDRESI)

Arguments
NVAR — Number of variables. (Input)

COV — NVAR by NVAR matrix containing the variance-covariance or correlation
matrix. (Input)
Only the upper triangular part bV is referenced.

LDCOV — Leading dimension afov exactly as specified in the dimension
statement in the calling program. (Input)

NF — Number of factors. (Input)
A — NVAR by NF orthogonal factor-loading matrix. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

Y — Vector of lengtiNVAR containing the communalities. (Output)

RESID — NVAR by NVAR matrix containing the normalized residual variance-
covariance or correlation matrix. (Output)

LDRESI — Leading dimension a®ESI D exactly as specified in the dimension
statement in the calling program. (Input)

Algorithm

RoutineFRESI computes the communalities and a standardized residual
covariance/correlation matrix for input covariance/correlation ma®ix The
user must also input the orthogonal (unrotated) factor loadingbtained from
the matrixCOv. Leta; denote thé-th row of matrixA. Then, the communalities

are given as
— T
Yi =&
wherey; is thei-th communality. The residual covariance/correlation matrix is
given by
— T
fj =Sj —&3
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where s;; denotes an element of the covariance/correlation matrix and R= (r;)
denotes the residual matrix. Standardization is performed by dividing ther;; by

Uin

where u;= s; —y; isthe unique error variance for the i-th variable. If u; is zero (or
dlightly less than zero due to roundoff error), u; = 1.0 is assumed and division by
zero isavoided.

Example

The following example computes the residual correlation matrix with
communalities in a 9-factor problem. The resulting residual correlations do not
seem to exhibit any pattern.

| NTEGER LDA, LDCOV, LDRESI, NF, NVAR
PARAMETER (LDA=9, LDCOV=9, LDRESI=9, NF=3, NVAR=9)

C
REAL A(9,3), COV(9,9), RESID(9,9), Y(9)
EXTERNAL  FRESI, WRRRN
C
DATA COV/ 1.000, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434,
& 0.639, 0.523, 1.000, 0.479, 0.506, 0.418, 0.462, 0.547,
& 0.283, 0.645, 0.395, 0.479, 1.000, 0.355, 0.270, 0.254,
& 0.452, 0.219, 0.504, 0.471, 0.506, 0.355, 1.000, 0.691
& 0.791, 0.443, 0.285, 0.505, 0.346, 0.418, 0.270, 0.691
& 1.000, 0.679, 0.383, 0.149, 0.409, 0.426, 0.462, 0.254,
& 0.791, 0.679, 1.000, 0.372, 0.314, 0.472, 0.576, 0.547,
& 0.452, 0.443, 0.383, 0.372, 1.000, 0.385, 0.680, 0.434,
& 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.000, 0.470,
& 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.680, 0.470,
& 1. 000/
C
DATA A/.6642, .6888, .4926, .8372, .7050, .8187, .6615, .4579,
& . 7657, -.3209, -.2471, -.3022, .2924, .3148, .3767, -.3960
& -. 2955, -.4274, .0735, -.1933, -.2224, -.0354, -.1528
& . 1045, -.0778, .4914, -.0117/
C
CALL FRESI (NVAR COV, LDCOV, NF, A LDA Y, RESID, LDRESI)
C

CALL WRRRN ('Communalities’, 1, NVAR, Y, 1, 0)
CALL WRRRN ('Residuals’, NVAR, NVAR, RESID, LDRESI, 0)
END

Output
Communalities
1 2 3 4 5 6 7 8
0.5495 0.5729 0.3834 0.7877 0.6195 0.8231 0.6005 0.5385

9
0.7691

Residuals
1 2 3 4 5 6 7 8 9
1 1.000 0.001 -0.024 0.037 -0.024 -0.016 0.036 -0.002 -0.018
2 0.001 1.000 0.043 -0.017 -0.048 0.041 -0.052 -0.023 0.031

IMSL STAT/LIBRARY Chapter 9: Covariance Structures and Factor Analysis+ 841



3 -0.024 0.043 1.000 0.064 -0.033 -0.037 -0.022 0.025 -0.013
4 0.037 -0.017 0. 064 1.000 0.012 -0.004 0.008 0.017 -0.052
5 -0.024 -0.048 -0.033 0.012 1.000 -0.003 0.075 -0.014 0.007
6 -0.016 0.041 -0.037 -0.004 -0.003 1.000 -0.046 -0.003 0.036
7 0.036 -0.052 -0.022 0.008 0.075 -0.046 1.000 0.008 0.011
8 -0.002 -0.023 0.025 0.017 -0.014 -0.003 0.008 1.000 -0.004
9 -0.018 0.031 -0.013 -0.052 0. 007 0.036 0.011 -0.004 1. 000

MVIND/DMVIND (Single/Double precision)

Compute atest for the independence of k sets of multivariate normal variables.

Usage
CALL MWVI ND (NDF, NVAR, COV, LDCOV, NGROUP, NVSET, STAT)

Arguments

NDF — Number of degrees of freedomadav. (Input)

NVAR — Number of variables in the covariance matrix. (Input)
COV — NVAR by NVAR variance-covariance matrix. (Input)

LDCOV — Leading dimension afOv exactly as specified in the dimension
statement in the calling program. (Input)

NGROUP — Number of sets of variables to be tested for independence. (Input)

NVSET — Index vector of lengthNGROUP.  (Input)

NVSET(i) gives the number of variables in thil set of variables. The first
NVSET(1) variables incOv define the first set of covariates, the neX8ET(2)
variables define the second set of covariates, etc.

STAT — Vector of length 4 containing the output statistics. (Output)

| STAT(1)

1 StatisticV for testing the hypothesis of independence ofNBROUP sets
of variables.

2 Chi-squared statistic associated With

3 Degrees of freedom f@TAT(2).

4 Probability of exceedin§TAT(2) under the null hypothesis of
independence.

Comments

1. Automatic workspace usage is

M/I ND NVAR* (NVAR + 2) units, or
DWI ND NVAR* (2* NVAR + 3) units.

Workspace may be explicitly provided, if desired, by use of
M2l ND/DVRI ND. The reference is
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CALL M2I ND (NDF, NVAR, COV, LD COV, NGROUP, NVSET,
STAT, FAC, VK, |PVT)

The additiona arguments are as follows:
FAC — Work vector of IengtIN\/ARz.
WK — Work vector of lengtinvAR.
IPVT — Work vector of lengtinvAR.

2. Informational errors
Type Code
4 1 A covariance matrix for a subset of the variables is
singular.
4 2 The covariance matrix for all variables is singular.
Algorithm

RoutinemvI ND computes a likelihood ratio test statistic proposed by Wilks

(1935) for testing the independenceNaROUP sets of multivariate normal

variates. The likelihood ratio statistic is computed as the ratio of the determinant
[§ of the sample covariance matrix to the product of the determiSgnt$y| of

the covariance matrices of each of ke NGROUP sets of variates. An asymptotic
chi-squared statistic obtained from the likelihood ratio, along with corresponding
p-value, is computed according to formulas given by Morrison (1976, pages 258-
259). The chi-squared statistic is computed as:

2 n
= -2 InV
X c/ntv)

wheren = NDF,

_ S

[Sia+|S|
C_1: 1- 202 +303
6n0 5
kK )\ k ,
G2 = zpi _zpi
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Kk \3 «k

3
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a
w
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where [S;| is the determinant of thei-th covariance matrix, k = NGROUP, and
p; = NVSET(i), and |§ is the determinant of COV.

Because determinants appear in both the numerator and denominator of the
likelihood ratio, the test statistic is unchanged when correlation matrices are
substituted for covariance matrices as input to MVl ND.

In using W1 ND, the covariance matrix must first be computed (possibly via
routine CORVC, page 314). The covariance matrix may then need to be rearranged
(possible via routine RORDM page 1268) so that the NVSET(1) variablesin the first
set correspond to the first NVSET(1) columns (and rows) of the covariance matrix,
with the next NVSET(2) columns and rows containing the variables for the second
set of variables, etc. With this specia arrangement of the covariance matrix,
routine W1 ND may then be called.

Example

The example is taken from Morrison (1976, page 258). It involves two sets of
covariates, with each set having two covariates. The null hypothesis of no
relationship is rejected.

| NTEGER LDCOV, NDF, NGROUP, NVAR
PARAMETER (NDF=932, NGROUP=2, NVAR=4, LDCOV=NVAR)

C
| NTEGER NOUT, NVSET( NGROUP)
REAL COV( NVAR, NVAR) , STAT(4)
EXTERNAL MWI ND, UMACH
C
DATA COV/1.00, 0.45, -0.19, 0.43, 0.45, 1.00, -0.02, 0.62,
& -0.19, -0.02, 1.00, -0.29, 0.43, 0.62, -0.29, 1.00/
C
DATA NVSET/ 2, 2/
C
CALL MVI ND (NDF, NVAR, COv, LDCOV, NGROUP, NVSET, STAT)
C
CALL UMACH (2, NaOUT)
WRI TE ( NOUT, 99999) STAT
99999 FORMAT (' Likelihood ratio ........... 'V F12.4,1,"",
& 'Chi-squared ................ ', F9.1, /, " Degrees of ’
& , 'freedom ......... ', F9.1,/, " p-value ’,
& e, ' F12.4)
END
Output
Likelihood ratio ........... 0.5497
Chi-squared ................ 556.2
Degrees of freedom ......... 4.0
p-value .........cccoc..... 0.0000

CANCR/DCANCR (Single/Double precision)

Perform canonical correlation analysis from a data matrix.

844 « Chapter 9: Covariance Structures and Factor Analysis IMSL STAT/LIBRARY



Usage

CALL CANCR (NOBS, NVARL, NVAR2, NCOL, X, LDX, |FRQ
IWI, INDL, IND2, TOL, |IPRINT, XX, LDXX
CORR, LDCORR, COEF1, LDCCOF1l, CCEF2, LDCOF2,
CCEFR1, LDCFR1, COEFR2, LDCFR2, STAT, LDSTAT)

Arguments

NOBS — Number of observations. (Input)

NVAR1 — Number of variables in group 1. (Input)
NVAR2 — Number of variables in group 2. (Input)
NCOL — Number of columns iX. (Input)

X — NOBS by NVARL + NVAR2 + m data matrix wherenis 0, 1, or 2 depending
on whether any columns gfcorrespond to frequencies or weights. (Input)
Each row ofX contains an observation of tNg¢ARL + NVAR2 variables for
which canonical correlations are desired (plus a weight and/or a frequency
variable ifl FRQ and/orl WI'(see below) are not zero). If batk andl FRQare
zero,mis 0; 1, if one of FRQor | WI is positive; and 2, otherwisg.may not
have any missing values (NaN, not a number).

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IFRQ — Frequency option. (Input)
If | FRQ= 0, then all frequencies are 11 FRQis positive, then column number
I FRQ of X contains the nonnegative frequencies.

IWT — Weighting option. (Input)
If | WI = 0, then there is no weighting, i.e., all weights are [IWifis positive,
then column numbemTof X contains the nonnegative weights.

IND1 — Vector of lengtiNVARL containing the column numbersXrof the
group 1 variables. (Input)

IND2 — Vector of lengtiNVAR2 containing the column numbersXrof the
group 2 variables. (Input)

TOL — Constant used for determining linear dependence. (Input)

If the squared multiple correlation coefficient of a variable with its predecessors
in I NDL (or I ND2) is greater than & TQL, then the variable is considered to be
linearly dependent upon the previous variables; it is excluded from the analysis.
TOL =.001 is a typical valuerOL must be in the exclusive range o® @o 1.0.

IPRINT — Printing option. (Input)

| PRI NT Action

0 No printing.

1 Print CORR, COEF1, COEF2, COEFR1, COEFR2, andSTAT.
2 Print all output.
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XX — NOBS by NVARL + NVAR2 + m matrix containing the canonical scores.
(Output)

mis defined in the description fat X andXX may occupy the same storage
locations. Canonical scores are returned in theNwaR1 + NVAR2 columns of

XX. Scores for th&lVARL variables come first. If one 6FRQor | WI are not zero,
then the last column & contains the weight or frequency. If botFRQ and

| WI are not zero, then the frequencies and weights are in the second to last and
last column oKX, respectively.

LDXX — Leading dimension ofX exactly as specified in the dimension
statement in the calling program. (Input)

CORR — NV by 6 matrix of output statistics. (Output)
NV is the minimum oflVARL andNVAR2. CORR has the following statistics.

Col. Statistic

1 Canonical correlations sorted from the largest to the smallest.

2 Wilks’ lambda for testing that the current and all smaller canonical
correlations are zero.

3 Rao’sF corresponding to Wilks’ lambda. If the canonical correlation is
greater than 99999, therF is set to 99999.

4 Numerator degrees of freedom For

5 Denominator degrees of freedom For

6 Probability of a largeF statistic.

If an F statistic is negative, theBORR(i, 6) is set to one. If eith@ORR(i, 4) or
CORR(i, 5) is not positive, the@BORR(i, 6) is set to the missing value code (NaN).

LDCORR — Leading dimension afORR exactly as specified in the dimension
statement in the calling program. (Input)

COEF1 — NVARL by NVAR1 matrix containing the group 1 canonical
coefficients. (Output)
The columns o€OEF1 contain the vectors of canonical coefficients for group 1.

LDCOF1 — Leading dimension afCEF1 exactly as specified in the dimension
statement in the calling program. (Input)

COEF2 — NVAR2 by NVAR2 matrix containing the group 2 canonical
coefficients. (Output)
The columns oEOEF2 contain the vectors of canonical coefficients for group 2.

LDCOF2 — Leading dimension afCEF2 exactly as specified in the dimension
statement in the calling program. (Input)

COEFR1 — NVARL by NV matrix containing the correlations between the group 1
variables and the group 1 canonical scores. (Output)
NV is the minimum oflVARL andNVAR2.

LDCFR1 — Leading dimension afOEFR1 exactly as specified in the dimension
statement in the calling program. (Input)
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COEFR2 — NVAR2 by NV matrix containing the correlations between the group 2
variables and the group 2 canonical scores. (Output)
NV is the minimum oflVARL andNVAR2.

LDCFR2 — Leading dimension afOEFR2 exactly as specified in the dimension
statement in the calling program. (Input)

STAT — 15 byNVARL + NVAR2 matrix containing statistics on all of the
variables. (Output)

The firstNVARL columns ofSTAT correspond to the group one variables with the
lastNVAR2 columns corresponding to the group two variables.

Row  Statistic

1 Means

2 Variances

3 Standard deviations

4 Coefficients of skewness

5 Coefficients of excess (kurtosis)

6 Minima

7 Maxima

8 Ranges

9 Coefficients of variation, when defined) @therwise

10 Numbers of nonmissing observations

11 Lower endpoints of 95% confidence interval for the means
12 Upper endpoints of 95% confidence interval for the means
13 Lower endpoints of 95% confidence interval for the variances
14 Upper endpoints of 95% confidence interval for the variances
15 Sums of the weightslifAT greater than zero, 0.0 otherwise

LDSTAT — Leading dimension BTAT exactly as specified in the dimension
statement in the calling program. (Input)

Comments
1. Automatic workspace usage is

CANCR NVAR1L® + NVAR2” + NVARL + NVAR2 + 1 + max(NoBS, 2 *

(NVARL + NVAR2)) + (max (WARL, NVAR2))® + 3*
max(VARL, NVAR2) units, or

DCANCR 2 * (NVARL” + NVAR2%) + NVARL + NVAR2 + 2* (max(NOBS, 2

* (NVARL + NVAR ))) + 2* (max(WARL, N\VAR2)) + 6*
max@®VARL, NVAR2) units.

Workspace may be explicitly provided, if desired, by use of
C2NCR/DC2NCR. The reference is

CALL C2NCR (NOBS, NVARL, NVAR2, NCOL, X, LDX, |FRQ
IWI, INDL, IND2, TOL, |IPRINT, XX, LDXX
CORR, LDCORR, COEF1, LDCOF1, COEF2,
LDCOF2, COEFR1, LDCFR1, COEFR2, LDCFR2,
STAT, LDSTAT, R S, IND, WORK, VKA, WK)

IMSL STAT/LIBRARY

Chapter 9: Covariance Structures and Factor Analysis+ 847



The additiona arguments are as follows:

R — Work vector of lengthnvAR1L?.

S — Work vector of length\vAR2?.

IND — Work vector of lengtiNvVARL + NVAR2 + 2.

WORK — Work vector of length makiOBS, 2* (NVARL + NVAR2))
WKA — Work vector of length (maxX\{7AR1, N\/AR2))2.

WK — Work vector of length 3 max{\VARL, NVAR2) — 1.

2. Informational errors
Type Code
3 1 The standardized cross covariance matrix is not of full

rank or is very ill-conditioned. Small canonical
correlations may not be accurate.

3 2 One or more variables is linearly dependent upon the
proceeding variables in its group.

4 3 The sum of the frequencies is equal to zero. The sum
of the frequencies must be positive.

4 4 The sum of the weights is equal to zero. The sum of

the weights must be positive.

Algorithm

RoutineCANCR computes the canonical correlations, the canonical coefficients,
the canonical scores, Wilks’ lambda for testing the independence of two sets of
variates, and a series of Bartlett’s tests of the hypothesis tHattiHargest and

all larger canonical correlations are simultaneously zero. A matrix of observations
is used in these computations.

Letx;; denote thg-th variable on théth observationw; denote the observation
weight,f; denote the observation frequenEy;, denote the upper triangular

Cholesky RT R) factorization of the sample covariance matrix of the group 1

variables[ ,, denote the upper triangular ChoIesR{fR) factorization of the
group 2 variables sample covariance matrix, and

_ -1 -T
I_12 - (rll) z12(|_22)
where
212
is the sample estimate of the matrix of covariances between the group 1 and the

group 2 variables. Then, the computational procedure in obtaining the canonical
correlations is as follows:
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1. The weighted mean of each variableis computed viathe standard
formula (see UVSTA, page 16). The means are then subtracted from the

observations.
2. Each element in thei-th row of X ismultiplied by
(w; ;)
3. Gram-Schmidt orthogonalization is used on X to obtain Y, and Y,, where

Y, and Y, are the results of the Gram-Schmidt orthogonalization of the
group 1 and the group 2 variables, respectively. The matrices

I, and I,, are obtained as a by-product of the orthogonalization.
Compute

T
Fo =YY

4, The canonical correlations are obtained as the singular values of the
matrix I, ,. Denote the left and right orthogonal matrices obtained as a
by-product of this decomposition by L and R, respectively.

5. The canonical coefficients are obtained from L and R by multiplying L
and Rby theinverses of I';;and I',,, respectively (see Golub 1969).
6. The correlations of the original variables with the canonical variables are
obtained by multiplying L and R by I';;and I",,, respectively.
7. The canonical scores are obtained by multiplying the matrices Y, and Y,
by the matrices L and R, respectively, and then dividing each row of Y,
and Y, by
(w; f;)
8. Wilks’ lambda, the Bartlett's tests, Rad*scorresponding to these tests,

the numerator and denominator degrees of freeddmarfid the
significance level oF are computed as in Rao (1973, page 556).
Bartlett's tests are computed as

2 2
A =[] @-0?)
=1
whereq = NVAR2 is the number of canonical correlations, the canonical
correlations are ordered from largest to smallest,padenotes theth
largest canonical correlation. Wilks’ lambda is givem\asThe degrees

of freedom in the numerator of the corresponding REGHatistic is
given as

d =pu

wherep=v, —i+1,u=v, —i + 1,v; =NVAR2, andv, = NVARL. Let
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2
wheret isthe degrees of freedom in cov(}; f; — 1), and let

m=t

if p> + U’ =50, and let s = 2 otherwise. Then, RaoBcorresponding
to Bartlett's test is computed as
1
—A\s
F=—5"-(ms-pu/2+1)/ pu
NS

Rao’sF has numerator degrees of freeddnr ms— pu/2 + 1. The
significance level oF is obtained from the standafddistribution.

Example 1

The following example is taken from Levin and Marascuilo (1983), pages 191—
197. It is examining the relationship between the performance of individuals in a
sociology course and predictor variables. The measures of performance in the
sociology course are two midterms examinations, a final examination, and a
course evaluation, the predictor variables are social class, sex, grade point
average, college board test score, whether the student has previously taken a
course in sociology, and the student’s score on a pretest.

| NTEGER IFRQ [ PRINT, W, LDCFR1, LDCFR2, LDCOF1l, LDCOF2,
& LDCORR, LDSTAT, LDX, LDXX, NCOL, NOBS, NV, NVARI,
& NVAR2

REAL TCOL

PARAMETER (1 FRQ=0, | PRINT=1, |W=0, LDSTAT=15, NCOL=10,

& NOBS=40, NVAR1=6, NVAR2=4, TOL=0.0001, LDCFR1=NVARI1,
& LDCFR2=NVAR2, LDCOF1=NVAR1, LDCOF2=NVAR2, LDX=NOBS,
& LDXX=NOBS, NV=NVAR2, LDCORR=NV)

C
INTEGER | NDL(NVARL), | ND2( NVAR2)
REAL COEF1( LDCOF1, NVARL), COEF2( LDCOF2, NVAR2)
& COEFR1( LDCFRL, NV),  COEFR2( LDCFR2, NV), CORR( LDCORR, 6) ,
& STAT( LDSTAT, NVARL+NVAR2) , X(LDX, NCOL), XX( LDXX, NCOL)
CHARACTER FMT*35, NUVBER*6, XLAB(11)*25
EXTERNAL  CANCR, WRRRL
C
DATA INDL/1, 2, 3, 4, 5, 6/, IND2/7, 8, 9, 10/
DATA (X(1,1),1=1,NOBS)/3*2.0, 3.0, 2.0, 3.0, 1.0, 2.0, 3.0,
2%2.0, 3.0, 1.0, 4*2.0, 3.0, 3*2.0, 1.0, 3*2.0, 1.0, 2.0,

1.0, 2.0, 3.0, 2%2.0, 2*1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0/

DATA (X(1,2),1=1,NOBS)/6*1.0, 0.0, 2¥1.0, 3*0.0, 3*1.0, 3*0.0,
1.0, 0.0, 3*1.0, 3*0.0, 4*1.0, 0.0, 8*1.0, 0.0/

DATA (X(1,3),1=1,NOBS)/3.55, 2.70, 3.50, 2.91, 3.10, 3.49, 3.17,
3.57, 3.76, 3.81, 3.60, 3.10, 3.08, 3.50, 3.43, 3.39, 3.76,
3.71, 3.00, 3.47, 3.69, 3.24, 3.46, 3.39, 3.90, 2.76, 2.70,
3.77, 4.00, 3.40, 3.09, 3.80, 3.28, 3.70, 3.42, 3.09, 3.70,

QPR R R RoRo
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2.69, 3.40, 2.95/

DATA (X(1,4),1=1, NOBS)/410. 0, 390.0, 510.0, 430.0, 600.0
2*610.0, 560.0, 700.0, 460.0, 590.0, 500.0, 410.0, 470.0,
210.0, 610.0, 510.0, 600.0, 470.0, 460.0, 800.0, 610.0,
490.0, 470.0, 610.0, 580.0, 410.0, 630.0, 790.0, 490.0,
400.0, 2*610.0, 500.0, 430.0, 540.0, 610.0, 400.0, 390.0,
490. 0/

DATA (X(1,5),1=1, NOBS)/8%0.0, 4*1.0, 0.0, 2*1.0, 0.0, 1.0, 0.0
1.0, 0.0, 1.0, 3*0.0, 1.0, 2*0.0, 2*1.0, 2*0.0, 4*1.0
5%0. 0/

DATA (X(1,6),1=1, NOBS)/17.0, 20.0, 22.0, 13.0, 16.0, 28.0, 14.0
10.0, 28.0, 30.0, 28.0, 15.0, 24.0, 15.0, 26.0, 16.0, 25.0,
3.0, 5.0, 16.0, 28.0, 13.0, 9.0, 13.0, 30.0, 10.0, 13.0
8.0, 29.0, 17.0, 15.0, 16.0, 13.0, 30.0, 2*17.0, 25.0
10.0, 23.0, 18.0/

DATA (X(1,7),1=1, NOBS)/43.0, 50.0, 47.0, 24.0, 47.0, 57.0
2%42.0, 69.0, 48.0, 59.0, 21.0, 52.0, 2*35.0, 59.0, 68.0,
38.0, 45.0, 37.0, 54.0, 45.0, 31.0, 39.0, 67.0, 30.0, 19.0,
71.0, 80.0, 47.0, 46.0, 59.0, 48.0, 68.0, 43.0, 31.0, 64.0,
19.0, 43.0, 20.0/

DATA (X(1,8),1=1, NOBS)/61.0, 47.0, 79.0, 40.0, 60.0, 59.0, 61.0,
79.0, 83.0, 67.0, 74.0, 40.0, 71.0, 40.0, 57.0, 58.0, 66.0,
58.0, 24.0, 48.0, 100.0, 83.0, 70.0, 48.0, 85.0, 14.0,
55.0, 100.0, 94.0, 45.0, 58.0, 90.0, 84.0, 81.0, 49.0
54.0, 87.0, 36.0, 51.0, 59.0/

DATA (X(1,9),1=1, NOBS)/129.0, 60.0, 119.0, 100.0, 79.0, 99.0
92.0, 107.0, 156.0, 110.0, 116.0, 49.0, 107.0, 125.0, 64.0,
100.0, 138.0, 63.0, 82.0, 73.0, 132.0, 87.0, 89.0, 99.0,
119.0, 100.0, 84.0, 166.0, 111.0, 110.0, 93.0, 141.0, 99.0,
114.0, 96.0, 39.0, 149.0, 53.0, 39.0, 91.0/

DATA (X(1,10),1=1,NOBS)/3.0, 3*1.0, 2.0, 1.0, 3.0, 2.0, 4*1.0,
5.0, 1.0, 5.0, 1.0, 2.0, 1.0, 2*3.0, 3*2.0, 1.0, 2.0, 1.0
2.0, 3.0, 2.0, 2*1.0, 2*2.0, 5.0, 2*1.0, 4.0, 3.0, 2*1.0/

RR RRRRRRRR _RQRRRR _RRRRRR QLR QR QRO R

C
DATA XLAB/' ', 'Social%/Class’, '%/Sex’, '%/GPA’,
& 'College%/Boards’, 'H.S.%/Soc.’, 'Pretest%/Score’,
& '%/Exam 1’, '%/Exam 2’, 'Final%/Exam’, 'Course%/Eval.’/
DATA NUMBER/'NUMBER’/, FMT/'(2W3.1,W5.3,W4.1,W3.1,4W5.1,W3.1)"/
C
CALL WRRRL ('First 10 Observations’, 10, NCOL, X, LDX, 0, FMT,
& NUMBER, XLAB)
C
CALL CANCR (NOBS, NVAR1, NVAR2, NCOL, X, LDX, IFRQ, IWT, IND1,
& IND2, TOL, IPRINT, XX, LDXX, CORR, LDCORR, COEF1,
& LDCOF1, COEF2, LDCOF2, COEFR1, LDCFR1, COEFR2,
& LDCFR2, STAT, LDSTAT)
C
END

Output
First 10 Observations
Social College H.S. Pretest Final Course
Class Sex GPA Boards Soc. Score Exam 1l Exam 2 Exam Eval

1 2 1 355 410 0 17 43 61 129 3
2 2 127 39 0 20 50 47 60 1
3 2 1350 510 0 22 47 79 119 1
4 3 1 291 430 0 13 24 40 100 1
5 2 1310 600 0O 16 47 60 79 2
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6 3 1 3.49 610 0 28 57 59 99 1
7 1 0 3.17 610 0 14 42 61 92 3
8 2 1 3.57 560 0 10 42 79 107 2
9 3 1 3.76 700 1 28 69 83 156 1
10 2 0 3.81 460 1 30 48 67 110 1
*** Canoni cal Correlations Statistics ***
Canoni cal Prob. of
Correlations W Iks Lanbda Raos F Num df Denom df Larger F
1 0.9242 0.0612 5.412 24 105.9 0. 0000
2 0.7184 0. 4201 2.116 15 86.0 0. 0162
3 0. 2893 0. 8683 0. 586 8 64.0 0.7861
4 0. 2290 0.9476 0. 609 3 33.0 0. 6142
G oup One Canoni cal Coefficients
1 2 3 4 5 6
1 -0.622 1.158 -0.285 -0.179 0.601 -0.423
2 0.558 -0.739 0.231 -1.278 1.391 -0.024
3 1.796 -0.432 0.765 0.185 -0.643 -3.314
4 0.002 0.006 0.004 -0.002 0.000 0.006
5 -0.059 -0.043 -0.456 1.671 1.463 0.774
6 0.031 0.018 -0.121 -0.058 -0.042 0. 056
G oup Two Canoni cal Coefficients
1 2 3 4
1 0.0233 -0.0365 0.0845 -0.0176
2 0.0257 -0.0057 -0.0352 0.0555
3 0.0073 0.0110 -0.0259 -0.0341
4 0.1034 0.8089 0.2828 0.0260
Correl ati ons Between the Group One Vari abl es
and the Group One Canonical Scores
1 2 3 4
1 -0.3685 0.6795 -0.2291 -0.1854
2 0.2157 -0.3252 0.0521 -0.5985
3 0.8153 0.2770 -0.0692 0.2123
4 0.6144 0.5681 0.4151 -0.0050
5 0.4661 0.0603 -0.3034 0.6530
6 0.5461 0.1768 -0.7915 -0.1375
Correl ati ons Between the Group Two Vari abl es
and the Group Two Canonical Scores
1 2 3 4
1 0.8713 -0.2406 0.3864 -0.1835
2 0.9174 -0.0557 -0.2068 0.3355
3 0.7707 0.0293 -0.3146 -0.5533
4 0.3490 0.8765 0.3077 0.1240
*** Statistics for Goup One Variables ***
Univariate Statistics from U/STA
Vari abl e Mean Vari ance Std. Dev. Skewness Kurtosis
1 1.9750 0. 4353 0. 6597 0. 02476 -0. 6452
2 0.6750 0. 2250 0. 4743 -0.74726 -1. 4416
3 3. 3758 0. 1247 0. 3532 -0. 37911 -0.7521
4 524. 2499 13148. 1377 114. 6653 0. 09897 0. 6494
5 0. 4000 0. 2462 0. 4961 0. 40825 -1.8333
6 18. 1250 55. 1378 7. 4255 0.10633 -0.9358
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Vari abl e M ni num Maxi mum Range Coef. Var. Count

1 1. 0000 3. 0000 2. 0000 0. 3340 40. 0000

2 0. 0000 1. 0000 1. 0000 0. 7027 40. 0000

3 2.6900 4.0000 1. 3100 0. 1046 40. 0000

4 210. 0000 800. 0000 590. 0000 0. 2187 40. 0000

5 0. 0000 1. 0000 1. 0000 1. 2403 40. 0000

6 3. 0000 30. 0000 27. 0000 0. 4097 40. 0000
Vari abl e Lower CLM Upper CLM Lower CLV Upper CLV

1 1.7640 2.1860 0. 29207 0.7176

2 0. 5233 0. 8267 0. 15098 0.3710

3 3.2628 3.4887 0. 08369 0. 2056

4 487.5782 560. 9217 8822. 72168 21677. 9590

5 0. 2413 0. 5587 0.16518 0. 4058

6 15. 7502 20. 4998 36. 99883 90. 9083

*** Statistics for Goup Two Variables ***
Uni variate Statistics from UVSTA

Vari abl e Mean Vari ance Std. Dev. Skewness Kurtosis

1 46. 0500 237.0231 15. 3956 0. 08762 - 0. 5505

2 62. 8750 403. 4967 20. 0872 -0.10762 -0. 3642

3 99. 4750 919. 4864 30. 3230 -0.03483 -0. 2533

4 1. 9500 1.4333 1.1972 1.27704 0. 8407
Vari abl e M ni mum Maxi mum Range Coef. Var. Count

1 19. 0000 80. 0000 61. 0000 0. 3343 40. 0000

2 14. 0000 100. 0000 86. 0000 0. 3195 40. 0000

3 39. 0000 166. 0000 127. 0000 0. 3048 40. 0000

4 1. 0000 5. 0000 4.0000 0. 6140 40. 0000
Vari abl e Lower CLM Upper CLM Lower CLV Upper CLV

1 41. 1263 50. 9737 159. 0483 390. 7912

2 56. 4508 69. 2992 270. 7562 665. 2642

3 89. 7772 109. 1728 616. 9979 1516. 0009

4 1.5671 2.3329 0.9618 2.3632

Example 2

Correspondence analysisis an interesting application of canonical correlation in

the analysis of contingency tables. The example is taken from Kendall and Stuart
(1979, pages 595-599) and involves finding the optimal scores for the values of
two categorical variables to maximize the correlation between the two variables.
The contingency table is given below, along with the more traditional rxawifix
“observations” for which canonical correlations are desired.

821 112 85 35
116 494 145 27
72 151 583 87
43 34 106 331

The data matrix is given as:
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Group 1Var. |Group2Var. |Frequencies
0 0 821
112
85
35
116
494
145
27
72
151
583
87
43
34
106
331

O O OO OO O O O O O Fr F Pk k-
O O OO0 OO0 o kFr kP B P OO O
P O O O P OO0 O r OO0 O r oo

O O OO Fr kP P P OO OO OoO o o o
P P P PO O O OOOOOoO o Oo o o
O O O P OO0 Ok OO0 O PFr OO O P
O OpFPr OO0 O Fr OO0 O PFr OO o -

P O O OpFr OO0 O Fr OO0 O Fr O o o

o
o

For thistable, the optimal correlation turns out to be 0.70 when scores of 2.67,
1.34, 0.62, and 0.00 (see Column 1 of COEF1) are assigned to the variable 1
categories, and scores of 2.72, 1.37, 0.68, and 0.00 are assigned to the variable 2
categories. These scores are obtained as the canonical scores when canonical
correlations are computed between the the row and column variable indicator
variables (variables 1-4 and variables 5-8 in X, respectively). The warning error
appears in the output because the covariance matrix is not of full rank (indeed,
neither the group 1 or the group 2 covariance matrices are of full rank).

| NTEGER IFRQ | PRINT, IW, LDCFR1, LDCFR2, LDCOF1l, LDCOF2,
& LDCORR, LDSTAT, LDX, LDXX, NCOL, NOBS, NV, NVARI,
& NVAR2

REAL TCOL

PARAMETER (| FRQ=9, |PRINT=2, |WI=0, LDCFRl=4, LDCFR2=4,

& LDCOF1=4, LDCOF2=4, LDCORR=4, LDSTAT=15, LDX=16,
& LDXX=16, NOOL=9, NOBS=16, NV=4, NVARL=4, NVAR2=4,
& TOL=0. 0001)

INTEGER | NDL(NVARL), | ND2( NVAR2)

REAL COEF1( LDCOF1, NVARL), COEF2( LDCOF2, NVARR)
COEFR1( LDCFR1L, V), COEFR2( LDCFR2, NV), CORR( LDCORR, 6) ,
STAT(LDSTAT, 8), X(LDX, NCOL), XX(LDXX, NCOL)

EXTERNAL  CANCR

&
&

DATA IND1/1, 2, 3, 4/, IND2/5, 6, 7, 8/

DATA X/ 4*1.0, 16*0.0, 4*1.0, 16*0.0, 4*1.0, 16*0.0, 5*1.0,
& 3*0.0, 1.0, 3*0.0, 1.0, 3*0.0, 1.0, 4*0.0, 1.0, 3*0.0,
& 3*0.0, 1.0, 3*0.0, 1.0, 4*0.0, 1.0, 3*0.0, 1.0, 3*0.0,
& 3*0.0, 1.0, 4*0.0, 1.0, 3*0.0, 1.0, 3*0.0, 1.0, 3*0.0,

il o
coo
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& 821.0, 112.0, 85.0, 35.0, 116.0, 494.0, 145.0, 27.0, 72.0

& 151.0, 583.0, 87.0, 43.0, 34.0, 106.0, 331.0/
C
CALL CANCR (NOBS, NVARL, NVAR2, NCOL, X, LDX, |FRQ |WI, |ND1,
& IND2, TOL, IPRINT, XX, LDXX, CORR, LDCORR, CCEF1
& LDCOF1, CCEF2, LDCOF2, COEFR1, LDCFR1, COEFR2,
& LDCFR2, STAT, LDSTAT)
C
END
Output
*** WARNING ERROR 2 from C2NCR. One or nore Goup 1 variables is linearly
*x ok dependent on the proceeding variables in Goup 1.
Here is a traceback of subprogramcalls in reverse order
Rout i ne name Error type FError code
C2NCR 6 2 (Called internally)
CANCR 0 0
USER 0 0
*** WARNING ERROR 3 from C2NCR. One or nore Goup 2 variables is linearly
*okx dependent on the proceeding variables in Goup 2
Here is a traceback of subprogramcalls in reverse order
Rout i ne nane Error type Error code
C2NCR 6 3 (Called internally)
CANCR 0 0
USER 0 0
*** Canonical Correlations Statistics ***
Canoni cal Prob. of
Correlations W |1 ks Lanbda Raos F Num df Denom df Larger F
1 0. 6965 0.2734 615. 925 9 7875.7 0. 0000
2 0. 5883 0. 5310 602. 598 4 6474.0 0. 0000
3 0. 4336 0. 8120 749. 823 1 3238.0 0. 0000
4 0. 0000 0. 0000 0. 000 0 0.0 0. 0000
G oup One Canonical Coefficients

1 2 3 4

1 2.670 1.100 1.023 0.000
2 1.341 2.905 -0.460 0.000
3 0.624 2.222 2.147 0.000
4 0.000 0.000 0.000 O0.000
G oup Two Canoni cal Coefficients
1 2 3 4
1 2.715 1.164 1.053 0.000
2 1.366 2.972 -0.393 0.000
3 0.676 2.250 2.182 0.000
4 0.000 0.000 0.000 O0.000

Correl ati ons Between the Group One Vari abl es
and the Group One Canonical Scores
1 2 3 4
1 0.9068 -0.3954 0.1459 0.0000
2 -0.0121 0.6965 -0.7175 0.0000
3 -0.4555 0.3404 0.8226 0.0000
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4 0.0000 0.0000 0.0000 0.0000

Correl ati ons Between the Group Two Vari abl es
and the Group Two Canonical Scores
1 2 3 4

1 0.9072 -0.3997 0.1310 0.0000
2 -0.0227 0.6995 -0.7143 0.0000
3 -0.4590 0.3205 0.8287 0.0000
4 0.0000 0.0000 0.0000 0.0000
*** Statistics for Goup One Variables ***
Uni variate Statistics from UYSTA
Vari abl e Mean Vari ance Std. Dev. Skewness Kurtosis
1 0. 3248 0. 2194 0. 4684 0. 7482 -1. 4401
2 0. 2412 0.1831 0. 4279 1.2098 -0.5363
3 0. 2754 0. 1996 0. 4468 1. 0053 -0.9894
4 0. 1585 0. 0000 0. 0000 1. 8697 1. 4958
Vari abl e M ni num Maxi mum Range Coef. Var. Count
1 0. 0000 1. 0000 1. 0000 1.4420 3242. 0000
2 0. 0000 1. 0000 1. 0000 1.7739 3242. 0000
3 0. 0000 1. 0000 1. 0000 1.6221 3242. 0000
4 0. 0000 1. 0000 1. 0000 2.3041 3242. 0000
Vari abl e Lower CLM Upper CLM Lower CLV Upper CLV
1 0. 3087 0. 3409 0. 2091 0. 2305
2 0. 2265 0. 2559 0.1745 0. 1923
3 0. 2601 0. 2908 0. 1903 0. 2097
4 0. 1460 0.1711 0.1272 0. 1402
Canoni cal Scores for G oup One
1 2 3 4
1 1.307 -0.570 0.210 0.000
2 1.307 -0.570 0.210 0.000
3 1.307 -0.570 0.210 0.000
4 1.307 -0.570 0.210 0.000
5 -0.021 1.235 -1.272 0.000
6 -0.021 1.235 -1.272 0.000
7 -0.021 1.235 -1.272 0.000
8 -0.021 1.235 -1.272 0.000
9 -0.739 0.552 1.334 0.000
10 -0.739 0.552 1.334 0.000
11 -0.739 0.552 1.334 0.000
12 -0.739 0.552 1.334 0.000
13 -1.362 -1.670 -0.813 0.000
14 -1.362 -1.670 -0.813 0.000
15 -1.362 -1.670 -0.813 0.000
16 -1.362 -1.670 -0.813 0.000
*** Statistics for Goup Two Variables ***
Uni variate Statistics from UVSTA
Vari abl e Mean Vari ance Std. Dev. Skewness Kurtosis
1 0. 3245 0. 2193 0. 4683 0. 7497 -1.4379
2 0. 2440 0. 1845 0. 4296 1.1922 -0.5787
3 0. 2835 0. 2032 0. 4508 0. 9609 -1.0766
4 0. 1481 0. 0000 0. 0000 1.9819 1. 9280
Vari abl e M ni num Maxi mum Range Coef. Var. Count
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1 0. 0000 1. 0000 1. 0000 1. 4430 3242. 0000
2 0. 0000 1. 0000 1. 0000 1. 7606 3242. 0000
3 0. 0000 1. 0000 1. 0000 1.5901 3242. 0000
4 0. 0000 1. 0000 1. 0000 2.3992 3242. 0000
Vari abl e Lower CLM Upper CLM Lower CLV Upper CLV
1 0. 3084 0. 3406 0. 2090 0. 2303
2 0. 2292 0. 2588 0.1758 0. 1938
3 0. 2679 0. 2990 0. 1936 0.2134
4 0. 1358 0. 1603 0.1203 0.1326
Canoni cal Scores for G oup Two
1 2 3 4
1 1.309 -0.577 0.189 0.000
2 -0.040 1.231 -1.257 0.000
3 -0.730 0.509 1.317 0.000
4 -1.406 -1.740 -0.864 0.000
5 1.309 -0.577 0.189 0.000
6 -0.040 1.231 -1.257 0.000
7 -0.730 0.509 1.317 0.000
8 -1.406 -1.740 -0.864 0.000
9 1.309 -0.577 0.189 0.000
10 -0.040 1.231 -1.257 0.000
11 -0.730 0.509 1.317 0.000
12 -1.406 -1.740 -0.864 0.000
13 1.309 -0.577 0.189 0.000
14 -0.040 1.231 -1.257 0.000
15 -0.730 0.509 1.317 0.000
16 -1.406 -1.740 -0.864 0.000
*** WARNING ERROR 1 from CANCR  The standardi zed cross covariance matrix
*oxk is not of full rank or is very ill-conditioned. Smal
*oxk canoni cal correlations nmay not be accurate.

CANVC/DCANVC (Single/Double precision)

Perform canonical correlation analysis from a variance-covariance matrix or a
correlation matrix.

Usage

CALL CANVC (NDF, NVARL, NVAR2, COvV, LDCOV, |ND1, |ND2,
| PRINT, CORR, LDCORR, CCEF1, LDCOF1, CCEF2,
LDCOF2, CCEFR1, LDCFR1, COEFR2, LDCFR2)

Arguments

NDF — Number of degrees of freedom in the covariance or correlation
matrix. (Input)

If NDF is unknown, an estimate ®bF = 100 is suggested in which case the last
four columns ofZORR are meaningless.

NVAR1 — Number of variables in group 1. (Input)
NVAR2 — Number of variables in group 2. (Input)
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COV — NVAR1 + NVAR2 by NVARL + NVAR2 matrix containing the covariance or
correlation matrix. (Input)

RoutinesCOVPL (page 322)RBCOV (page 331), o€ORVC (page 314) may be used
to calculateCOv from a data matrixCOv must be nonnegative definite within a
tolerance of 100 * AMACH(4). Only the upper triangle @V is referenced.

LDCOV — Leading dimension afov exactly as specified in the dimension
statement in the calling program. (Input)

IND1 — Vector of lengtiNVARL containing the column and row numbers in
covfor the group 1 variables. (Input)

IND2 — Vector of lengtiN\VAR2 containing the column and row number€awv
for the group 2 variables. (Input)

IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing.
1 Printing of CORR, COEF1, COEF2, COEFR1, andCOEFR2 is performed.

CORR — NV by 6 matrix containing the output statistics. (Output)
NV is the minimum oflVARL andNVAR2.

Col. Statistic

1 Canonical correlations sorted from the largest to the smallest.

2 Wilks’ lambda for testing that the current and all smaller canonical
correlations are zero.

3 Rao’sF corresponding to Wilks’ lambda. If the canonical correlation is
greater than 0.9999¢, is set to 9999.99.

4 Numerator degrees of freedom for the

5 Denominator degrees of freedom for Ehe

6 Probability of a largeF statistic.

If an F statistic is negative, theBORR(i, 6) is set to one. If eith&@ORR(i, 4) or
CORR(i, 5) is not positive, the@BORR(i, 6) is set to the missing value code (NaN).

LDCORR — Leading dimension afORR exactly as specified in the dimension
statement in the calling program. (Input)

COEF1 — NVARL by NVAR1 matrix containing the group 1 canonical
coefficients. (Output)
The columns o€OEF1 contain the vectors of canonical coefficients for group 1.

LDCOF1 — Leading dimension afCEF1 exactly as specified in the dimension
statement in the calling program. (Input)

COEF2 — NVAR2 by NVAR2 matrix containing the group 2 canonical
coefficients. (Output)
The columns oEOEF2 contain the vectors of canonical coefficients for group 2.

LDCOF2 — Leading dimension afCEF2 exactly as specified in the dimension
statement in the calling program. (Input)
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COEFR1 — NVARL by NV matrix containing the correlations between the group 1
variables and the group 1 canonical scores. (Output)
NV is the minimum oflVARL andNVAR2.

LDCFR1 — Leading dimension afOEFRL exactly as specified in the dimension
statement in the calling program. (Input)

COEFR2 — NVAR2 by NV matrix containing the correlations between the group 2
variables and the group 2 canonical scores. (Output)
NV is the minimum oflVARL andNVAR2.

LDCFR2 — Leading dimension afOEFR2 exactly as specified in the dimension
statement in the calling program. (Input)
Comments

1. Automatic workspace usage is

CANVC NVARL? + NVAR2? + (NVARL + NVAR2)® + NVARL + NVAR2 + 3
* maxf\VARL, NVAR?2) units, or

DCANVC 2 * (NVARL? + NVAR2” + (NVARL + NVAR2)” + NVARL + NVAR2
+ 3* max@\VARL, NVAR2)) units.

Workspace may be explicitly provided, if desired, by use of
C2NVC/DC2NVC. The reference is

CALL C2NVC (NDF, NVARL, NVAR2, COv, LDCOV, |ND1,
I ND2, |PRINT, CORR, LDCORR, CCEF1,
LDCOF1, CCEF2, LDCOF2, CCEFR1, LDCFR1,
CCEFR2, LDCFR2, R, S, STD1, STD2, WKA,
VIK)

The additional arguments are as follows:

R — Work vector of IengtIN\/ARlz.

S— Work vector of lengtinvar2?.
STD1 — Work vector of lengthNvARL.
STD2 — Work vector of lengtiNvAR2.

WKA — Work vector of lengthN\vVARL + NVARZ)Z.
WK — Work vector of length 3 max@\VARL, NVAR2).

2. Informational errors
Type Code
3 1 The standardized cross covariance matrix is not of full

rank or is very ill-conditioned. Small canonical
correlations may not be accurate.
4 2 COV is not nonnegative definite.
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Algorithm

Routine CANVC computes the canonical correlations, the canonical coefficients,

Wilks’ lambda (for testing the independence of two sets of variates), and a series
of tests due to Bartlett for testing that all canonical correlations greater than or
equal to thek-th largest are simultaneously zero. The covariance matrix is used in
these computations.

The group 1 variables covariance matrix is first extracted @owand placed in
the matrixS ;. Similarly, the group 2 variables covariance matrix is plac&},in
The “standardized” cross covariance matrix is then computed as:

_T -1
— 2 2
C= (S_’Ll j S.LZ(%Z )
whereS , is theNVARL x NVAR2 matrix of covariances between the group 1 and

group 2 variables, and“denotes the upper triangular Cholest ®
factorization ofS. In the computation o€ and in the following, it is assumed that
NVARL is greater thanVAR2. The group 1 and group 2 variables should be
interchanged in the following if this is not the case.

The canonical correlations are computed as the singular values of the@natrix
The canonical coefficients are obtained from the left and right orthogonal
matrices resulting from the singular value decompositid &fi particular, for

I, = COEF1.

_1
M= (S_le )'—
wherelL is the left orthogonal matrix from the singular value decomposition.

Similarly, the correlations between the original variables and the canonical
variables R, = COEFR1, are obtained for the group 1 variables as:

3
Ry =Aq7 (S_Ll) L
wherel,is a diagonal matrix containing the diagonafgefalong its diagonal.

Wilks’ lambda, the Bartlett’s tests, Rad*scorresponding to these tests, the
numerator and denominator degrees of freedof,and the significance level
of F are computed as in Rao (1973, page 556). Bartlett’s tests are computed as

A= [ -ed)

whereq = NVAR2 is the number of canonical correlations, the canonical
correlations are ordered from largest to smallest,padenotes theth largest
canonical correlation. Wilks’ lambda is given/as The degrees of freedom in
the numerator of the corresponding Ra®'statistic is given as
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d =pu
wherep=v, —i+1u=v,—i+1 v, =NVAR2, and v, = NVARL. Let
_ptu+l
2
wheret is the degrees of freedom in COv, and let

m=t

if p2 + U’ -5%0, and let s= 2 otherwise. Then, RaoFscorresponding to
Bartlett's test is computed as

1
_1-A; ms-pu/2+1
/\% pu

R

Rao’sF has numerator degrees of freeddm ms — pu/2 + 1. The significance
level of F is obtained from the standafddistribution.

Example

The following example is taken from Van de Geer (1971). There are six group 1
variables and two group 2 variables. The maximum correlation turns out to be

0.609.

INTEGER | PRINT, LDCFRL, LDCFR2, LDCOF1, LDCOF2, LDCORR,

& LDCOV, NDF, NV, NVARL, NVAR2

PARAMETER (I PRI NT=1, LDCFR1=6, LDCFR2=2, LDCOF1=6, LDCOF2=2,

& LDCORR=2, LDCOV=8, NDF=100, NV=2, NVARL=6, NVAR2=2)
C

INTEGER | NDL(NVARL), | ND2( NVAR2)

REAL COEF1( NVARL, NVARL), COEF2( NVAR2, N\VAR?) ,

& COEFRL( NVARL, NVAR2) , COEFR2( NVAR2, NVAR)

& CORR( NVAR2, NVARL) , - COV( LDCOV, NVARL+NVAR2)

EXTERNAL  CANVC
C

DATA COv/ 1. 0000, 0.1839, 0.0489, 0.0186, 0.0782, 0.1147, 0.2137,
. 2742, 0.1839, 1.0000, 0.2220, 0.1861, 0.3355, 0.1021,

. 4105, 0.4043, 0.0489, 0.2220, 1.0000, 0.2707, 0.2302,

. 0931, 0.3240, 0.4047, 0.0186, 0.1861, 0.2707, 1.0000,

. 2950, -0.0438, 0.2930, 0.2407, 0.0782, 0.3355, 0.2302,

. 2950, 1.0000, 0.2087, 0.2995, 0.2863, 0.1147, 0.1021,

. 0931, -0.0438, 0.2087, 1.0000, 0.0760, 0.0702, 0.2137,

. 4105, 0.3240, 0.2930, 0.2995, 0.0760, 1.0000, 0.6247,

. 2742, 0.4043, 0.4047, 0.2407, 0.2863, 0.0702, 0.6247,

. 0000/

Ro Ro Ro Qo Qo Qo Qo Qo Ro
RPOOOOOOOO

DATA IND1/1, 2, 3, 4, 5, 6/, IND2/7, 8/

CALL CANVC (NDF, NVARL, NVAR2, COvV, LDCOV, |ND1, |ND2, |PRINT,
& CORR, LDCORR, COEF1, LDCCOF1, COEF2, LDCOF2, COEFRL,
& LDCFR1, COEFR2, LDCFR2)
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C
END
Output
**%* Canoni cal Correlations
Canoni cal
Correlations W |1 ks Lanbda Raos F

1 0. 6093 0. 6159 4. 250
2 0. 1431 0. 9795 0. 393

G oup One Canoni cal Coefficients

1 2 3 4 5
1 0. 326 0.411 -0.799 0.358 -0.032
2 0.481 -0.340 -0.083 -0.766 -0.484
3 0. 456 0.718 0.625 0.134 -0.056
4 0.202 -0.689 0. 060 0.732 -0.335
5 0.184 -0.125 -0.064 -0.045 1. 079
6 -0.027 -0.174 0.054 -0.086 -0.021
G oup Two Canoni cal Coefficients

1 2
1 0. 464 1.194
2 0.642 -1.108

Statistics ***

Num df
12

Correl ati ons Between the Group One Vari abl es
and the G oup One Canoni cal

1
. 4517
. 7388
. 6733
. 4769
. 5299
. 1319

OUThWN P
[clololoNoNe)

0.
- 0.
0.
- 0.
- 0.
- 0.

2
3408
2932
4313
5799
2811
0903

Scores

Correl ati ons Between the Group Two Vari abl es
and the G oup Two Canoni cal

1
1 0. 8653
2 0. 9320

0.
- 0.

2
5013
3625

Scores

POooOOoOOo

. 017

Prob. of
Larger F
0. 0000
0. 8524

862 « Chapter 9: Covariance Structures and Factor Analysis

IMSL STAT/LIBRARY



Chapter 10: Discriminant Analysis

Routines

10.1.

10.2.

Parametric Discrimination
Linear and quadratic discrimination ...........ccccceeeveviiviieennnn. DSCRM 863
Fisher discriminant SCOreS .........oovvvvieeeiiiiiieeeeeie e DMSCR 876

Nonparametric Discrimination
Nearest neighbor discrimination ..............ccccveiiiiiieiiiinnn. NNBRD 880

Usage Notes

The routine DSCRM (page 863) allows linear or quadratic discrimination and the
use of either reclassification, split sample, or the leaving-out-one methods in
order to evaluate the rule. Moreover, DSCRMcan be executed in an online mode,
that is, one or more observations can be added to the rule during each invocation
of DSCRM

The mean vectors for each group of observations and an estimate of the common
covariance matrix for all groups are input to DVSCR (page 876). These estimates
can be computed via routine DSCRM Output from DMSCR are linear combinations
of the observations, which at most separate the groups. These linear combinations
may subsequently be used for discriminating between the groups. Their usein
graphicaly displaying differences between the groups is possibly more important,
however.

Nearest neighbor discrimination is performed in routine NNBRD (page 880). In
this routine, the user can set the number of nearest neighborsto be used in the
discrimination and the threshold for classification. Split samples can aso be used.

DSCRM/DDSCRM (Single/Double precision)

Perform alinear or a quadratic discriminant function analysis among several
known groups.
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Usage

CALL DSCRM (1 DO, NRON NVAR, NCOL, X, LDX, IND, IFRQ |WI,
| GRP, NGROUP, |MIH, I|PRINT, PRIOR NI, XVEAN,
LDXVEA, COV, LDCOV, COEF, LDCOEF, | CLASS,
PROB, LDPROB, CLASS, LDCLAS, D2, LDD2, STAT,
NRM SS)

Arguments

IDO — Processing option. (Input)

IDO  Action

0 This is the only invocation @SCRM all the data are input at once.

1 This is the first invocation @SCRMwith this data, additional calls will
be made. Initialization and updating for thROWobservations are
performed.

2 This is an intermediate invocation@$CRM updating for the\ROW
observations is performed.

3 All statistics are updated for thROWobservations. The discriminant
functions and other statistics are computed.

4 The discriminant functions are used to classify each oiRrGe/
observations irx.

5 The covariance matrices are computed, and workspace is released. No

further calls tadbSCRMwith | DO greater than 1 should be made without
first calling DSCRMwith | DO = 1.

6 Workspace is released. No further call®seRMwith | DO greater than
1 should be made without first calliD$CRMwith | DO= 1. This option
is not required if a call has been made witlo = 5 or if workspace is
explicitly provided by use db2CRM

See Comments 5 and 6 for further information.

NROW — The absolute value ofR0wis the number of rows of that contain an
observation. (Input)

If NROWis negative, the observations are deleted from the discriminant statistics.
If NROWis positive, they are added.

NVAR — Number of variables to be used in the discrimination. (Input)
NCOL — Number of columns in matrix (Input)

X — INROW by NVAR + m matrix containing the data to be used on this call.
(Input, if NROW > 0;X is not referenced otherwise)

mis 1, 2, or 3 depending upon whether any columpsdontain frequencies or
weights. One column X must contain the group number for each observation.
Group numbers must be 1.0, 2,0, NGROUP. If present] FRQ gives the column
containing the frequencies, whil&T gives the column iX containing the
weights.

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)
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IND — Vector of lengthNVAR containing the column numbersXrio be used in
the discrimination. (Input)

IFRQ — Frequency option. (Input)

I FRQ= 0 means that all frequencies are 1.0. PositiRQ indicates that column
number FRQ of X contains the frequencies. All frequencies should be integer
values. If this is not the case, tieNT (nearest integer) function is used to obtain
integer frequencies.

IWT — Weighting option. (Input)
| WI = 0 means that all weights are 1.0. Positiv& means that columnwr of X
contains the weights. Negative weights are not allowed.

| GRP — Column number ix containing the group numbers. (Input)

The group numbers must be 1.0, 2,0,NGROUP for an observation to be used in
the discriminant functions. An observation will be classified regardless of its
group number when the reclassification method is specified.

NGROUP — Number of groups in the data. (Input)

IMTH — Option parameter giving the method of discrimination. (Input)

| MTH determines whether linear or quadratic discrimination is used whether the
group covariance matrices are computed (the pooled covariance matrix is always
computed) and whether the leaving-out-one or the reclassification method is used
to classify each observation.

I MTH  Discrim. Covariance Classification

1 Linear All Reclassification
2 Quadratic All Reclassification
3 Linear Pooled only Reclassification
4 Linear All Leaving-out-one
5 Quadratic All Leaving-out-one
6 Linear Pooled only Leaving-out-one

In the leaving-out-one method of classification, the posterior probabilities are
adjusted so as to eliminate the effect of the observation from the sample statistics
prior to its classification. In the reclassification method, the effect of the
observation is not eliminated from the classification function. Calbs@Mwith
IMH=1, 2, 4, or 5 can be intermixed, as can calBIoRMwith | MTH= 3 or 6.

Calls toDSCRMwith I MTH= 1, 2, 4, or 5 cannot be intermixed with calls to
DSCRMwith | MTH = 3 or 6 without first callin@pSCRMwith | DO= 1 (or 0).

IPRINT — Printing option. (Input)
For the given combination oDO and! PRI NT, the following arrays are printed.

I PRINT 1 DO Printing

0 Any None
lor2 0 PRI OR NI , XMEAN, COV, CCEF, | CLASS, PROB, CLASS, D2,
STAT, NRM SS
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IPRINT  1DO Printing
lor2 lor2 None

lor2 3 PRI OR, NI , XMEAN, COEF, D2, STAT, NRM SS
1 4 None

2 4 | CLASS, PRCB

lor?2 5 COvV, CLASS

lor2 6 None

Note that the only change from | PRI NT = 1to | PRI NT = 2 is the printing when
I DO= 4. Also, note that PRI ORis printed even though it may be input only.

PRIOR — Vector of lengtiNGROUP containing the prior probabilities for each
group. (Input, ifPRI OR(1) is not-1.0 and DOis 0 or 3; input/output, if

PRI OR(1) is—1.0 andl DOis 0 or 3; input, ifi DOis 4; not referenced ifDOIs 1,

2,5, 0r6)

If PRI OR(1) is not-1.0, then the elements BRI OR should sum to 1.0.
Proportional priors can be selected by setBRgOR(1) =-1.0. In this case, the
prior probabilities will be proportional to the sample size in each group, and the
elements oPRI OR will contain the proportional prior probabilities after the first
call with1 DO=0 or 3.

NI — Vector of lengttNGROUP.  (Input, forl DO = 3, 4, or 5; input/output, for
| DO = 2; output, fon DO= 0 or 1; not referenced ifDO = 6)
Thei-th element ofll contains the number of observations in group

XMEAN — NGROUP by NVAR matrix. (Input, fol DO= 3, 4, or 5; input/output,
for | DO= 2; output, fol DO= 0 or 1; not referenced ifDO = 6)
Thei-th row of XMEAN contains the groupvariable means.

LDXMEA — Leading dimension ofVEAN exactly as specified in the dimension
statement in the calling program. (Input)

COV — NVAR by NVAR by g matrix of covariances. (Output, fobO=0 or 1;
input/output, fon DO= 2, 3, or 5; input, for DO = 4; not referenced ifDO= 6)

g =NGROUP + 1 when MTH=1, 2, 4, or 5, and = 1 otherwise. WhehMIH = 3

or 6, the within-group covariance matrices are not computed. Regardless of the
value ofl MTH, the pooled covariance matrix is always computed and saved as the
g-th covariance matrix igOv.

LDCOV — Leading and second dimensionsCo¥/ exactly as specified in the
dimension statement of the calling program. (Input)
The first two dimensions @OV must be equal.

COEF — NGROUP by NVAR + 1 matrix containing the linear discriminant function
coefficients. (Output, ifDO= 0 or 3; input, ifi DO= 4; not referenced ifDO =
1,2,5,0r6)

The first column ofSCEF contains the constant term, and the remaining columns
contain the variable coefficients. Rowf COEF corresponds to groupCCEF is
always computed as the linear discriminant function coefficients even when
guadratic discrimination is specified.
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LDCOEF — Leading dimension afOEF exactly as specified in the dimension
statement in the calling program. (Input)

| CLASS — Vector of lengthNROW containing the group to which the observation
was classified. (Output, ifbO= 0 or 4; not referenced otherwise)

If an observation has an invalid group number, frequency, or weight when the
leaving-out-one method has been specified, then the observation is not classified
and the corresponding elements G£ ASS andPROB are set to zero.

PROB — |[NROW by NGROUP matrix containing the posterior probabilities for each
observation. (Output, ifDO= 0 or 4; not referenced otherwise)

LDPROB — Leading dimension ¢fROB exactly as specified in the dimension
statement in the calling program. (Input)

CLASS — NGROUP by NGROUP matrix containing the classification table.

(Output, ift DO= 0 or 1, input/output, if DO= 4; not referenced otherwise)

Each observation that is classified and has a group number equal to 1.0, 2.0,
NGROUP is entered into the table. The rows of the table correspond to the known
group membership. The columns refer to the group to which the observation was
classified. Classification results accumulate with each ca@gMwith | DO = 4.

For example, if 2 calls withDO= 4 are made, then the element€linSS sum to

the total number of valid observations in the 2 calls.

LDCLAS — Leading dimension afLASS exactly as specified in the dimension
statement in the calling program. (Input)

D2 — NGROUP by NGROUP matrix containing the Mahalanobis distances
2

between the group means. (Output, wihB@= 0 or 3; not referenced otherwise)
For linear discrimination, the Mahalanobis distance is computed using the pooled
covariance matrix. Otherwise, the Mahalanobis distance

2
Dij

between group meansndj is computed using the within covariance matrix for
groupi in place of the pooled covariance matrix.

LDD2 — Leading dimension di2 exactly as specified in the dimension
statement of the calling program. (Input)

STAT — Vector of length 4 + 2 (NGROUP + 1) containing statistics of interest.
(Input/ Output, ifl DO= 3 or 5; output, if DO= 0 or 1; not referenced otherwise)

The first element o8TAT is the sum of the degrees of freedom for the within-
covariance matrices. The second, third and fourth elemeB®&A@fcorrespond
to the chi-squared statistic, its degrees of freedom, and the probability of a
greater chi-squared, respectively, of a test of the homogeneity of the within-
covariance matrices (not computed MrH = 3 or 6). The 5-th through
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5 + NGROUP elements of STAT contain the log of the determinants of each group’s
covariance matrix (not computed i¥TH = 3 or 6) and of the pooled covariance
matrix (element 5 NGROUP). Finally, the lasNGROUP + 1 elements o$TAT

contain the sum of the weights within each group and, in the last position, the sum
of the weights in all groups.

NRMISS — Number of rows of data encountered in callB$6RM containing
missing values (NaN) for the classification, group, weight, and/or frequency
variables. (Output, ifDO= 0 or 1; input/output, if DO= 2 or 3, not referenced
otherwise)

If a row of data contains a missing value (NaN) for any of these variables, that
row is excluded from the computations.

Comments
1. Automatic workspace usage is

DSCRM (NGROUP + 3)* NVAR units ifl MTHis not 3 or 6. Otherwise,*3
NVAR units.

DDSCRM 2 * (NGROUP + 3)* NVAR units ifl MTHis not 3 or 6. Otherwise,
6* NVAR units.

Workspace may be explicitly provided, if desired, by use of
D2CRMDD2CRM The reference is

CALL D2CRM (1 DO, NRON NVAR NCOL, X, LDX, |ND,
| FRQ |WI, |GRP, NGROUP, |MIH, I|PRINT,
PRICR NI, XVEAN, LDXMVEA, COV, LDCOV,
COEF, LDCCEF, |CLASS, PROB, LDPROB,
CLASS, LDCLAS, D2, LDD2, STAT, NRM SS,
D, OB, OBl)

The additional arguments are as follows:

D — Work vector of length equal toiGROUP + 1) * NVARIf | MTH is not
3 or 6, and of lengthVAR otherwise.

OB — Work vector of length equal tvAR.
OB1 — Work vector of length equal tvAR.

2. Informational errors
Type Code
3 1 A row of the data matrihas an invalid group
number.
4 2 The variance-covariance matrix for a group is singular.
4 3 The pooled variance-covariance matrix is singular.
3 4 The variance-covariance matrix for a group is singular.

STAT(2) cannot be compute8TAT(2) andSTAT(4)
are set to the missing value code (NaN).

3 5 An element ¢RI OR is less than or equal to T
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3 6 The leaving-out-one method is specified, but this
observation does not have avalid weight, or it does
not have avalid frequency. This observation is
ignored.

3 7 The leaving-out-one method is specified, but this
observation does not have avalid group number. This
observation isignored.

3. Common choices for the Bayesian prior probabilities are given by:
PRI OR(i) = 1.0/NGROUP (equal prior probabilities)
PRI OR(i) = NI (i)/NOBS (proportional prior probabilities)
PRI OR(i) = Past history or subjective judgement
In al cases, the prior probabilities should sum to 1.0.

4, Two passes of the data are made. In the first pass, the statistics required
to compute the discriminant functions are obtained (1 DO= 1, 2, and 3).
In the second pass, the discriminant functions are used to classify the
observations. When | DO= 0, all of the data are memory resident, and
both passes are made in one call to DSCRM When | DO> 0 and
workspace is not explicitly provided by use of D2CRM athird call to
DSCRMinvolving no datais required with 1 DO=5 or 6.

5. Here are afew rules and guidelines for the correct value of | DOin a
series of calls.

D Callswith1 DO= 0 or 1 may be made at any time. These calls
destroy all statistics from previous calls.

(2) | DOmay not be 2, 3, 4,5, or 6
(a) immediately after acall wherel DOwas 0,

(b) before acal with | DO= 1 has been made, or

(c) immediately after acall with1 DO=5 or 6 has been made.
©)] | DOmay not be 4 or 5 before acall with | DO= 3 has been

made.

4 Each series of callsto DSCRMwhich begins with1 DO= 1 should
end with | DO= 5 or 6 to ensure the proper release of
workspace.

Thisisavalid sequence of | DCs:

0,1,234,51,34,35/16,1,20,0,1,3,5.

6. Unlike many routines using the parameter | DO, because of the
workspace allocation and saved variables, neither DSCRMor D2CRMcan
be called with | DOgreater than 1 in consecutive invocations with more
than one dataset.

Algorithm

Routine DSCRM performs discriminant function analysis using either linear or
quadratic discrimination. The output from DSCRMincludes a measure of distance
between the groups, a table summarizing the classification results, a matrix
containing the posterior probabilities of group membership for each observation,
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and the within-sample means and covariance matrices. The linear discriminant
function coefficients are also computed.

All observations can be input during one call to DSCRM a method of operation
that has the advantage of simplicity. Alternatively, one or more rows of
observations can be input during separate calls. This method does not require that
al observations be memory resident, a significant advantage with large data sets.
Note, however, that DSCRMrequires two passes of the data. During the first pass
the discriminant functions are computed while in the second pass, the
observations are classified. Thus, with the second method of operation, the data
will usually need to be input into DSCRMtwice.

Because both methods result in the same operations being performed, the
algorithm for DSCRMis discussed asif only afew observations are input during
each call. The operations performed during each call to DSCRMdepend upon the
| DO parameter. | DO= 0 should be used if all observations are to be input at one
time.

The | DO= 1 step isthe initialization step. The variables XMEAN, CLASS, and COV
areinitialized to zero, and other program parameters are set. After thiscal, al
subroutine arguments except | DO, NROW X, LDX and | M'H should not be changed
by the user except via another call to DSCRMwith 1 DO=0or | DO=1. | MTH can
be changed from one call to the next within the two sets{1, 2, 4, 5} or {3, 6} but
not between these setswhen| DO> 1. That is, do not call DSCRMwith I MTH=11in
onecall and | MTH = 3 in another call without first calling DSCRMwith | DO= 1.

After initialization has been performed in the | DO= 1 step, the within-group
means are updated for al valid observationsin X. Observations with invalid
group numbers are ignored, as are observations with missing values. The LU
factorization of the covariance matrices are updated by adding (or deleting)
observations via Givens rotations.

The | DO= 2 step is used solely for adding or deleting observations from the
model asin the above paragraph.

The | DO= 3 step begins by adding all observationsin X to the means and the
factorizations of the covariance matrices. It continues by computing some
statistics of interest: the linear discriminant functions, the prior probabilities (if
PRI OR(1) = —1.0), the log of the determinant of each of the covariance matrices, a
test statistic for testing that all of the within-group covariance matrices are equal,
and amatrix of Mahalanobis distances between the groups. The matrix of
Mahalanobis distances is computed via the pooled covariance matrix when linear
discrimination is specified, the row covariance matrix is used when the
discrimination is quadratic.

Covariance matrices are defined as follows. Let N; denote the sum of the
frequencies of the observationsin group i, and let M; denote the number of
observationsin group i. Then, if S denotes the within-group i covariance matrix,
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where w; is the weight of thej-th observationin group i, f; isits frequency, x; is
the j-th observation column vector (in group i), and X denotes the mean vector of
the observations in group i. The mean vectors are computed as

I
X:—ZWJ' f]XJ
| J:l
where
_<M

Given the means and the covariance matrices, the linear discriminant function for
group i is computed as:

Z = In( p; ) - 0.5)_(iT Sgl)_(i + XTS‘;]')_(i
where In(p;) isthe natural log of the prior probability for the i-th group, x is the
observation to be classified, and S, denotes the pooled covariance matrix.

Let Sdenote either the pooled covariance matrix or one of the within-group
covariance matrices S.. (Swill be the pooled covariance matrix in linear
discrimination, and S; otherwise.) The Mahalanobis distance between group i and
group j is computed as:

DZ = (% -%;)' s7(x - %))

Finally, the asymptotic chi-squared test for the equality of covariance matricesis
computed as follows (Morrison 1976, page 252):

y= (:—1ngi {In(‘SpD -1n(|S |)}

where n; is the number of degrees of freedom in thei-th sample covariance
matrix, k isthe number of groups, and

g 2p° +3p-1(&1 1
_1ni

T e(p+1(k-1) zin

where p isthe number of variables.

When | DO = 4, the estimated posterior probability of each observation x
belonging to group i is computed using the prior probabilities and the sample
mean vectors and estimated covariance matrices under a multivariate normal
assumption. Under quadratic discrimination, the within-group covariance
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matrices are used to compute the estimated posterior probabilities. The estimated
posterior probability of an observation x belonging to groupii is

e‘%DiZ(X)
G (x) = 1020
Zj:1e
where
N B
D?(x) = (x=%) S§H(x-%)+Ing|-2In(p;) IMTH=1or 2

(x=%)" S;Y(x-%)-2In(p;) IMTH =3

For the leaving-out-one method of classification (I MTH = 4, 5, and 6), the sample
mean vector and sample covariance matricesin the formulafor

DZ(X)

are adjusted so as to remove the observation x from their computation. For linear
discrimination (I MTH= 1, 2, 4, and 6), the linear discriminant function
coefficients are actually used to compute the same posterior probabilities.

Using the posterior probabilities, each observationsin X is classified into agroup;
the result is tabulated in the matrix CLASS and saved in the vector | CLASS.
CLASS isnot altered at this stageif X(i, | GRP) contains a group number that is out
of range. If the reclassification method is specified, then all observations with no
missing values in the NVAR classification variables are classified. When the
|eaving-out-one method is used, observations with invalid group numbers,
weights, frequencies or classification variables are not classified. Regardless of
the frequency, a1l is added (or subtracted) from CLASS for each row of X that is
classified and contains avalid group number.

When | MTH > 3, adjustment is made to the posterior probabilities to remove the
effect of the observation in the classification rule. In this adjustment, each
observation is presumed to have aweight of X(i, | WI), if | WI > 0 and a frequency
of 1.0. See Lachenbruch (1975, page 36) for the required adjustment.

Finaly, when | DO =5, the covariance matrices are computed from their LU
factorizations.

Example 1

The following example uses linear discrimination with equal prior probabilities
on Fisher’s (1936) iris data. This example illustrates the executiDBasM
when one call is made.

IDO, IFRQ IGRP, IMIH, |PRINT, W, LDCLAS, LDCOEF,
LDCOv, LDD2, LDPROB, LDX, LDXMEA, NCOL, NGROUP, NROW
NVAR

(1DC=0, |IFR@O0, IGRP=1, |IMH=3, |PRINT=1, |W-=0,
LDCOV=4, NCOL=5, NGROUP=3, NROW150, NVAR=4,
LDCLAS=NGROUP, LDCOEF=NGROUP, LDD2=NGROUP,
LDPROB=NROW LDX=NROW LDXMEA=NGROUP)
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| NTEGER | CLASS(NROW, IND(4), N (NGROUP), NOBS, NRM SS, NV
REAL CLASS( LDCLAS, NGROUP) , COEF( LDCOEF, NVAR+1) ,
& COV( LDCOV, LDCOV, 1), D2( LDD2, NGROUP), PRI OR(3),
& PROB( LDPROB, NGROUP) , STAT( 6+2* NGROUP) , X(LDX, 5),
& XMEAN( LDXMVEA, NVAR)
EXTERNAL DSCRM GDATA
C
DATA IND/ 2, 3, 4, 5/, PRI OR/0.3333333, 0.3333333, 0.3333333/
C
CALL GDATA (3, 0, NOBS, Nv, X, LDX, 5)
C
CALL DSCRM (I DO, NROW NVAR, NCOL, X, LDX, IND, IFRQ IW, I|IGRP,
& NGROUP, | MIH, |PRINT, PRI OR, N, XMEAN, LDXMEA, COV,
& LDCOV, COEF, LDCOEF, |CLASS, PROB, LDPROB, CLASS,
& LDCLAS, D2, LDD2, STAT, NRM SS)
C
END
Output
PRIOR, the prior probabilities
1 2 3
0.3333 0.3333 0.3333
NI, the nunber in each group
1 2
50 50
XMEAN, the group neans
1 2 3 4
1 5. 006 3.428 1.462 0. 246
2 5. 936 2.770 4. 260 1. 326
3 6.588 2.974 5.552 2.026
The pool ed within-groups covariance matri X
1 2 3 4
1 0.2650 0.0927 0.1675 0.0384
2 0.0927 0.1154 0.0552 0.0327
3 0.1675 0.0552 0.1852 0.0427
4 0.0384 0.0327 0. 0427 0.0419
CCOEF, the discrimnant function coefficients
1 2 3 4 5
1 -86.3 23.5 23.6 -16. 4 -17. 4
2 -72.9 15.7 7.1 5.2 6.4
3 -104.4 12. 4 3.7 12.8 21.1
| CLASS, the classifications
Obs. dass
1 1
2 1
3 1
4 1
5 1
6 1
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145 3
146 3
147 3
148 3
149 3
150 3
PROB, the posterior probabilities
1 2 3
1 1. 000 0. 000 0. 000
2 1. 000 0. 000 0. 000
3 1. 000 0. 000 0. 000
4 1. 000 0. 000 0. 000
5 1. 000 0. 000 0. 000
6 1. 000 0. 000 0. 000
145 0. 000 0. 000 1. 000
146 0. 000 0. 000 1. 000
147 0. 000 0. 006 0.994
148 0. 000 0. 003 0.997
149 0. 000 0. 000 1. 000
150 0. 000 0. 018 0.982

CLASS, the classification table
1 2 3
1 50. 00 0. 00 0. 00
2 0.00 48. 00 2.00
3 0. 00 1.00 49. 00

D2, the di stances between group neans

1 2 3
1 0.0 89.9 179. 4
2 89.9 0.0 17.2
3 179. 4 17.2 0.0
STAT
1 2 3 4 5 6 7 8 9 10
147.0 NaN NaN NaN NaN NaN NaN -10.0 50.0 50.0
11 12
50.0 150.0
NRM SS, nunber of missing observations = 0
Example 2

Continuing with Fisher’s iris data, the following example computes the quadratic
discriminant functions using valuesiddO > 0. In the first loop, all observations

are added to the functions, two observations at a time. In the second loop, each of
three observations is classified, one by one, using the leaving-out-one method.
Output for statistics that are identical to those reported in the first example are not
printed here.
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| NTEGER IFRQ IGRP, IMIH, |IW, LDCLAS, LDCOEF, LDCOv, LDD2,
& LDPROB, LDX, LDXVMEA, NCOL, NGROUP, NROW NVAR
PARAMETER (| FRQ=0, | GRP=1, |MIH=2, |W=0, LDPROB=10, LDX=150,

& NCOL=5, NGROUP=3, NROW1, NVAR=4, LDCLAS=NGROUP,
& LDCOEF=NGROUP, LDCOV=NVAR, LDD2=NGROUP, LDXMEA=NGROUP)
C
| NTEGER I, 1 CLASS(LDPROB), IDO, IND(4), IPRINT, N (NGROUP),
& NOBS, NRM SS, NV
REAL CLASS( LDCLAS, NGROUP) , COEF( LDCOEF, NVAR+1) ,
& COV( LDCOV, LDCOV, NGROUP+1), D2(LDD2, NGROUP), PRI OR(3),
& PROB( LDPROB, NGROUP) , STAT( 6+2* NGROUP) , X(LDX, 5),
& XVEAN( LDXMVEA, NVAR)
EXTERNAL DSCRM GDATA, WRRRN
C
DATA IND/ 2, 3, 4, 5/, PRI OR/0.3333333, 0.3333333, 0.3333333/
C
CALL GDATA (3, 0, NOBS, NV, X, LDX, 5)
C
IPRINT = 0O
| DO =1
CALL DSCRM (1 DO, 0, NVAR, NCOL, X, LDX, IND, IFRQ |IW, |GRP,
& NGROUP, | MIH, |PRINT, PRIOR, N, XMEAN, LDXMEA, COV,
& LDCOV, COEF, LDCOEF, |CLASS, PROB, LDPROB, CLASS,
& LDCLAS, D2, LDD2, STAT, NRM SS)
C Add the observations
IDO = 2
DO 10 1=1, NOBS
CALL DSCRM (1 DO, NROW NVAR, NCOL, X(I,1), LDX, IND, I|FRQ
& IWI, GRP, NGROUP, |MIH, IPRINT, PRIOR N,
& XMEAN, LDXMEA, COV, LDCOV, COEF, LDCCEF, |CLASS,
& PROB, LDPROB, CLASS, LDCLAS, D2, LDD2, STAT,
& NRM SS)
10 CONTI NUE
C Summari ze the statistics
IDO = 3
CALL DSCRM (1 DO, 0, NVAR, NCOL, X, LDX, IND, IFRQ |IW, |GRP,
& NGROUP, | MIH, |PRINT, PRIOR, N, XMEAN, LDXMEA, COV,
& LDCOV, COEF, LDCOEF, |CLASS, PROB, LDPROB, CLASS,
& LDCLAS, D2, LDD2, STAT, NRM SS)
C Classify the first three observations
| PRINT = 2
| DO =4
DO 20 1=1, 3
CALL DSCRM (1 DO, NROW NVAR, NCOL, X(I,1), LDX, IND, I|FRQ
& I WI, |GRP, NGROUP, |MIH, |IPRINT, PRIOR N,
& XMEAN, LDXMEA, COV, LDCOV, COEF, LDCCEF,
& I CLASS(1), PROB(!,1), LDPROB, CLASS, LDCLAS, D2,
& LDD2, STAT, NRM SS)
20 CONTI NUE
C Rel ease Wor kspace
IDO =6
CALL DSCRM (1 DO, 0, NVAR, NCOL, X, LDX, IND, |IFRQ |IW, |GRP,
& NGROUP, | MIH, | PRINT, PRIOR, N, XMEAN, LDXMEA, COV,
& LDCOV, COEF, LDCCEF, |CLASS, PROB, LDPROB, CLASS,
& LDCLAS, D2, LDD2, STAT, NRM SS)
C

END
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Output
| CLASS, the classifications

bs. dass
1 1

PROB, the posterior probabilities
1 2 3
1.000 0.000 0.000

| CLASS, the classifications

bs. dass
1 1

PROB, the posterior probabilities
1 2 3
1.000 0.000 0.000

| CLASS, the classifications
bs. dass
1 1

PROB, the posterior probabilities
1 2 3
1.000 0.000 0.000

DMSCR/DDMSCR (Single/Double precision)

Use Fisher’s linear discriminant analysis method to reduce the number of

variables.

Usage

CALL DMSCR (NGROUP, NVAR, XMEAN, LDXMEA, SUMAT, COV, LDCOV,
NNV, EVAL, COEF, LDCOEF, CMEAN, LDCMEA)

Arguments

NGROUP — Number of groups.
NVAR — Number of variables. (Input)

XMEAN — NGROUP by NVAR matrix containing the means of the variables in

each group. (Input)

LDXMEA — Leading dimension ofVEAN exactly as specified in the dimension

statement in the calling program.

SUMWT — Vector of lengthNGROUP containing the sum of the weights of the

observations in each group. (Input)

COV — NVAR by NVAR matrix containing the pooled within-groups variance-

covariance matri§,. (Input)
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LDCOV — Leading dimension afOv exactly as specified in the dimension
statement in the calling program. (Input)

NNV — Number of eigenvectors extracted from
S
the standardized between-groups variance-covariance matrix. (Output)
S, is the pooled within-groups variance-covariance matrix, sl the between-
groups variance-covariance matmiyV is usually the minimum ®dvAR and

NGROUP - 1, but it may be smaller if any row X{EAN or COV is a linear
combination of the other rows.

EVAL — Vector of lengtitNNV containing the eigenvalues extracted from the
standardized between-means variancecovariance matrix, in descending order.
(Output)

NNV is less than or equal to the minimum\AR and NGROUP - 1).

COEF — NVAR by NNV matrix of eigenvectors from the standardized between-
means variance-covariance matrix. (Output)

The eigenvector coefficients have been standardized such that the canonical
scores can be obtained directly by multiplication of the original daGDbly.

LDCOEF — Leading dimension afOEF exactly as specified in the dimension
statement in the calling program. (Input)

CMEAN — NGROUP by NNV matrix of group means of the canonical variables.
(Output)

LDCMEA — Leading dimension gfVEAN exactly as specified in the dimension
statement in the calling program. (Input)

Comments

1. Automatic workspace usage is

DVMSCR 3* NVAR* (NVAR + 1) units, or
DDVBCR 6 * NVAR* (NVAR + 1) units.

Workspace may be explicitly provided, if desired, by use of
D2SCR/DD2SCR. The reference is

CALL D2SCR (NGROUP, NVAR, XMEAN, LDXMEA, SUMAM, COV,
LDCOV, NNV, EVAL, CCEF, LDCOEF,
CVEAN, LDCMEA, BCOV, EVAL2, EVEC, WKR,
ViK)

The additional arguments are as follows:

BCOV — Work array of lengtiNvAR * NVAR.

EVAL2 — Work array of lengtiNnvAR.

EVEC — Work array of lengtiNvVAR * NVAR.

WKR — Work array of lengtt\VAR * NVAR.
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WK — Work array of length 2 NVAR.

2. IMSL routineDSCRM (page 863) may be used to calculate the input
arrays for this routine from the original data.

Algorithm

RoutineDMSCR is a natural generalization of R.A. Fisher’s linear discrimination
procedure for two groups. This method of discrimination obtains those linear
combinations of the observed random variables that maximize the between-
groups variation relative to the withingroups variation. Denote the first of these
linear combinations by

—nT
21 =By X
wheref; is a column vector of coefficients of lengtftAR andx is an observation
to be classified. On the basis of one linear combination, the discriminant rule

assigns the observatian,to a group (characterized by the group mean) by
minimizing the Euclidean distance betweend the group mean.

To obtainp, (see, e.g., Tatsuoka 1971, page 158)Sjetenote the pooled
within-groups covariance matrigis defined and can be computed via routine
DSCRM page 863) and I&, denote the between-groups covariance matrix
defined by

9
_ —\/— T
$ =Y wi(% X)X -x) /(N-g)
1=1
whereg is the number of groups,
X

is the mean vector for theh group of observation¥ denotes the vector of
means over all observations,is the sum of the weights times the frequencies as

input inSUMA and as used in the computation of
Xi

andN is the total number of observations used in comp@g Then,3;, such

that
T —
B1SB1 =1
can be computed as the maximum of
—nT
W =PSB,

This yieldsp; as the eigenvector associated with the largest eigenvalue from

$'%
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Generally,
5'S
has rank m, wherem=min(g — 1, p) and p = NVAR.
5'S
has m such eigenvectors, and the matrix COEF is obtained as (3;, B,, ----, B
where each f3; is an eigenvector.

The matrix CMEAN is taken as the within-group means vector of the linear
combinations z; defined by the 's. For each observation scores

_qT
z, =i X

can be computed, because of the restrictiofi;othe sample variance of tags

1.0. The observation is classified into the group (as specified by the group mean
of thez’s) to which, on the basis of tlag the Euclidean distance is the least.

Note that the linear combinationshave meaning even when discrimination is

not desired. The linear combination of the observed variables that most separates
theg groups i ; 2, giving the second highest such separation orthogonal to the
first, and so on. Thus, a plot of the mean vectors of the first two variables gives a
good two-dimensional summarization of the relationships between the groups.

Example

The following example illustrates a typical sequence. Fisher’s iris data is used.
(See routingsDATA, page 1302). RoutineSCRMis first used to perform a
discriminant analysis based on all the varialbes, XMEAN, andNl are obtained
from DSCRM FunctionDMSCR, which uses these arrays, is then called.

IDO, IFRQ [GRP, IMIH, IPRINT, |W, LDCLAS, LDCMEA,
LDCO, LDCOEF, LDCOV, LDD2, LDPROB, LDX, LDXMEA, NCOL,
NGROUP, NRON NVAR

(1DO=0, |FRQ=0, | GRP=1, |MIH=3, |PRINT=0, |W=0,
LDOOV=4, NCOL=5, NGROUP=3, NROW:150, NVAR=4,
LDCLAS=NGROUP, LDCMVEA=NGROUP, LDCO=NGROUP,
LDCOEF=NVAR, LDD2=NGROUP, LDPROB=NROW LDX=NROW

L DXVEA=NGROUP)

| CLASS(NROW , I ND(4), NI (NGROUP), NNV, NOBS, NOUT,
NRM SS, NV

CLASS( LDCLAS, NGROUP), CMEAN( LDCVEA, NGROUP- 1),

CO( LDCO, NVAR+1) ,  COEF( LDCOEF, NGROUP- 1) ,

COV( LDCOV, LDCOV, 1), D2(LDD2, NGROUP), EVAL( NGROUP- 1),
PRI OR(3), PROB(LDPROB, NGROUP), REAL,

STAT( 6+2* NGROUP),  SUMAT( NGROUP),  X(LDX, 5),

XVEAN( LDXVEA, NVAR)

REAL

DVBCR, DSCRM GDATA, UMACH, \RRRN
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DATA IND'2, 3, 4, 5/, PRI OR0.3333333, 0.3333333, 0.3333333/
CALL GDATA (3, 0, NOBS, NV, X, LDX, 5)

CALL DSCRM (1 DO, NROW NVAR, NCOL, X, LDX, IND, IFRQ |W, |GRP,
& NGROUP, | MIH, | PRINT, PRIOR N, XMEAN, LDXMEA, COV,
& LDCOv, CO, LDCO, |CLASS, PROB, LDPROB, CLASS,

& LDCLAS, D2, LDD2, STAT, NRM SS)

C
SUMAT(1) = STAT(6+NGROUP)
SUMAT(2) = STAT( 7+NGROUP)
SUMAT(3) = STAT(8+NGROUP)
C
CALL DVBCR (NGROUP, NVAR XMEAN, LDXVMEA, SUMWT, COV, LDCOV, NNV,
& EVAL, COEF, LDCOEF, CMEAN, LDCMVEA)
C

CALL UMACH (2, NOUT)
WRITE (NOUT,’(” NNV = ”,I1)’) NNV
CALL WRRRN (EVAL’, 1, NNV, EVAL, 1, 0)
CALL WRRRN ('COEF’, NVAR, NNV, COEF, LDCOEF, 0)
CALL WRRRN ('CMEAN’, NGROUP, NNV, CMEAN, LDCMEA, 0)
END

Output
NNV =2

EVAL
1 2
32.19 0.29

COEF

1 2
-0.829 0.024
-1.534 2.165
2.201 -0.932
2.810 2.839

ArWNER

CMEAN

1 2
-5.502 6.877
3.930 5.934
7.888 7.174

WN P~

NNBRD/DNNBRD (Single/Double precision)

Perform k nearest neighbor discrimination.

Arguments

CALL NNBRD (NROW, NVAR, NCOL, X, LDX, K, IND, IGRP, NGROUP,
NRULE, NCLASS, METRIC, PRIOR, THRESH, PART,
IDISCR, NI, ICLASS, PROB, LDPROB, CLASS,
LDCLAS)
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Arguments

NROW — Number of rows oK that contain an observation. (Input)
NVAR — Number of variables to be used in the discrimination. (Input)
NCOL — Number of columns in matrix  (Input)

X — NROWby NVAR + 1 matrix containing the data to be used on this call.
(Input/Output)

One column irX must contain the group number for each observation. On output,
X is sorted into &-d tree. The firsNRULE + NCLASS rows ofX must not contain
missing values in the columns specified b§p andl GRP.

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

K — Number of nearest neighbors to be used in the discriminant rule. (Input)

IND — Vector of lengthNVAR containing the column numbersXrio be used in
the discrimination. (Input)

| GRP — Column number ix containing the group numbers. (Input)

The group numbers must be 1.0, 2.0,NGROUP for an observation to be used in
the discriminant functions. (Note, however, that the nearest inteiger)(

function is used to obtain the group numbers.)

NGROUP — Number of groups in the data. (Input)

NRULE — Number of observations Kto be used in the discriminant rule.
(Input)

The first NRULE| observations iX are used as the set defining the rul&RiLE
is positive, then th8RULE observations defining the rule are classifiedNRELE
is negative, th&lRULE observations defining the rule are not classified.

NCLASS — Number of observations kto classify. (Input)

NCLASS is the number of observations in a second sample that may be used to test
the rule formed from the firsRULE observations. If present, this sample is in
rowsNRULE + 1 throughNRULE + NCLASS of X.

METRIC — Metric to be used in computing theearest neighbors. (Input)
METRI C Metric used

0 Euclidean distance
1 L; norm
2 L., norm

PRIOR — Vector of lengtiNGROUP containing the prior probabilities for each
group. (Input, ifPRI OR(1) is not-1.0; input/output, iPRI OR(1) is—1.0)

If PRI OR(1) is not-1.0, then the elements BRI OR should sum to 1.0.
Proportional priors can be selected by setBRgOR(1) =-1.0. In this case, the
prior probabilities will be proportional to the sample size in each group based
upon the firsNRULE observations, and the element$Bf OR will contain the
proportional prior probabilities on return froRNBRD.
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THRESH — Threshold for the posterior probabilities. (Input)
If the maximum posterior probability is less theHiRESH, the observation is
classified into groupGROUP + 1 (the group “other”).

PART — Vector of lengtiNRULE containing the values to be used in the partition
of X for thek-d tree. (Output)

IDISCR — Vector of lengttNRULE containing the element number iRD that
points to the column of to be used as the discriminator in ke tree. (Output)
I DI SCR(i) = 0 if the observation is a terminal nod&D(l DI SCR(i)) is the
column number iX to be used as the discriminator.

NI — Vector of lengttNGROUP containing the number of observations in each
group. (Output)

I CLASS — Vector of lengthm containing the group to which the observation was
classified. (Output)

If NRULE > 0, m = NRULE + NCLASS; otherwisem = NCLASS. Thei-th element in

I CLASS corresponds to toth row in the sorted matrix.

PROB — m by NGROUP matrix containing the posterior probabilities for each
observation. (Output)
Thei-th row inPROB corresponds to thieth row in the in the sorted matri

LDPROB — Leading dimension ¢fROB exactly as specified in the dimension
statement in the calling program. (Input)

CLASS — NGROUP by NGROUP + 1 matrix containing the classification table.
(Output)

Each observation that is classified and has a group number equal to 1.0, 2.0,
NGROUP is entered into the table. The rows of the table correspond to the known
group membership. The columns refer to the group to which the observation was
classified. ColummNGROUP + 1 refers to the column “other” (SEEBRESH).

LDCLAS — Leading dimension afLASS exactly as specified in the dimension
statement in the calling program. (Input)

Comments
Automatic workspace usage is

NNBRD (2 * NVAR + 3)* (log,(NROW + 3) + (2* NROW + (2* K + 2) +NVAR
units, or

DNNBRD (4 * NVAR + 3)* (10g,(NROW + 3) + (4* NROW + (3* K+ 2) + 2*
NVAR units.

Workspace may be explicitly provided, if desired, by usiE2@RD/DN2BRD. The
reference is
CALL N2BRD (NROW NVAR, NCOL, X, LDX, K, IND, |GRP, NGROUP,
NRULE, NCLASS, METRIC, PRI OR, THRESH, PART,
I DI SCR, NI, |ICLASS, PRCB, LDPROB, CLASS,
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LDCLAS, WK, |WK, ILOW IH GH |SIDE BNDL,
BNDH, XKEY, |PQR, PQD)

The additiona arguments are as follows:

WK — Work vector of lengtiNROW

IWK — Work vector of lengtihNROwW

ILOW — Work vector of length logiNROW + 3.

IHIGH — Work vector of length logNROW + 3.

| SIDE — Work vector of length logNROW + 3.

BNDL — Work vector of lengttN\VAR * (log,(NROW + 3).
BNDH — Work vector of lengtiNVAR * (log,(NROW + 3).
XKEY — Work vector of lengtiNvAR.

I PQR — Work vector of lengthK + 1.

PQD — Work vector of lengthK + 1.

Algorithm

RoutineNNBRD performsk-th nearest neighbor discriminant function analysis.
Thek-d tree algorithm of Friedman, Bentley, and Finkel (1977) is used to find the
nearest neighbors. Consult this reference for a discussled wées and how

one goes about finding nearest neighbors in them.

In NNBRD, thek nearest neighbors of any observation used in forming the rule
(i.e., one of the firsNRULE observations iiX), do not include the observation. Let
k(i = 1,..., NGROUP) denote the number of nearest neighbors found from each of
the groups for a given observationK; = k); letp;, = PRI OR(i)(3;p; = 1); and let

A

6
denote the estimated posterior probability of membership in gra@@mmpute
N N ko /n
0, as6, = 5 1YEAL
2 = Kipi/my

whereg = NGROUP. (If n; = O for somg, the associated term in the denominator is
excluded and

8
is set to 0.0.)

Let m denote the index of the maximum

0
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and @ = THRESH. Then if

O >

the observation is classified into group m. If

A

0,50

or if the maximum B is not unique, then the observation is not classified into any
group and | CLASS is set to zero.

Three metrics are available in NNBRD for finding the nearest neighbors. These are
Euclidean (L,) distance, L; norm, and L., norm. In order to use Mahalanobis

distance, x = x, atransformationy = = x is first needed so that Var(y) = 1.
These transformations can be accomplished by use of the mathematical routines.
The L, norm would then be used withy asinput to obtain the Mahalanobis metric.

Example

Fisher's iris data are used to illustrate routihBRD. The data consist of three
types of irisNNBRD is called withk = 5 and Euclidean distance as the metric. The
results show a clear separation of the groups.

| NTEGER I GRP, K, LDCLAS, LDPROB, LDX, METRIC, NCLASS, NCQOL,
& NGROUP, NROW NRULE, NVAR
REAL THRESH

PARAMETER (1 GRP=1, K=5, LDCLAS=3, LDPROB=150, LDX=150,

& METRI C=0, NCLASS=0, NCOL=5, NGROUP=3, NROW:150,
& NRULE=150, NVAR=4, THRESH=0. 10)
C
INTEGER | CLASS(NROW, | DI SCR(NROW, |ND(NVAR), NI (NGROUP),
& NRA, NRB
REAL CLASS( LDCLAS, NGROUP+1), PART(NRULE), PRI OR( NGROUP),
& PROB( LDPROB, NGROUP) , X( LDX, NCOL)
EXTERNAL  GDATA, NNBRD, WRI RN, WRRRN
C
DATA IND/2, 3, 4, 5/
C
CALL GDATA (3, 0, NRA, NRB, X, 150, 5)
C

PRIOR(1) = -1.0
CALL NNBRD (NROW NVAR, NCOL, X, LDX, K, IND, |GRP, NGROUP,
& NRULE, NCLASS, METRIC, PRI OR, THRESH, PART, | DI SCR,
& NI, |1 CLASS, PROB, LDPROB, CLASS, LDCLAS)
CALL WRRRN ("The first 10 rows of X', 10, NCOL, X, LDX, 0)
CALL WRRRN ('PRIOR’, 1, NGROUP, PRIOR, 1, 0)
CALL WRRRN ('The first 10 elements of PART’, 1, 10, PART, 1, 0)
CALL WRIRN ('The first 10 elements of IDISCR’, 1, 10, IDISCR, 1,
& 0)
CALL WRIRN ('NI', 1, NGROUP, NI, 1, 0)
CALL WRIRN ('The first 10 elements of ICLASS’, 1, 10, ICLASS, 1,

& 0)
CALL WRRRN ('The first 10 rows of PROB’, 10, NGROUP, PROB,
& LDPROB, 0)

CALL WRRRN ('CLASS’, NGROUP, NGROUP, CLASS, LDCLAS, 0)
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END
Output
The first 10 rows of X
1 2 3 4 5
1 1. 000 4,500 2.300 1. 300 0. 300
2 1. 000 4. 400 2. 900 1. 400 0. 200
3 1. 000 4. 800 3. 000 1. 400 0. 300
4 1. 000 4. 400 3. 000 1. 300 0. 200
5 1. 000 4. 800 3. 000 1. 400 0. 100
6 1. 000 4. 300 3. 000 1.100 0. 100
7 1. 000 4. 600 3.100 1.500 0. 200
8 1. 000 4,900 3.100 1.500 0. 100
9 1. 000 4,900 3. 000 1. 400 0. 200
10 1. 000 4,900 3.100 1.500 0. 200
PRI OR
1 2 3

0.3333 0.3333 0.3333

The first 10 el enents of PART
1 2 3 4 5 6 7 8 9 10
0.000 0.000 3.000 0. 000 3. 000 0. 000 0. 000 4,900 0. 000 3.100

The first 10 el enents of | DI SCR
1 2 3 4 5 6 7 8 9 10
0 0 2 0 2 0 0 1 0 2

N
1 2 3
50 50 50

The first 10 el enents of | CLASS
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1

The first 10 rows of PROB

1 2 3
1 1.000 0.000 0.000
2 1.000 0.000 0.000
3 1.000 0.000 0.000
4 1.000 0.000 0.000
5 1.000 0.000 0.000
6 1.000 0.000 0.000
7 1.000 0.000 0.000
8 1.000 0.000 0.000
9 1.000 0.000 0.000
10 1.000 0.000 0.000
CLASS

1 2 3

1 50.00 0.00 0.00

2 0.00 47.00 3.00

3 0.00 2.00 48.00
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Chapter 11: Cluster Analysis

Routines

11.1.

11.2.

Hierarchical Cluster Analysis

Compute distance or similarity matrix..........cccccceveeeeeeiiinnnee. CDIST 889
Hierarchical cluster analysSiS.........ccccccccvvviviiiiiiiiiiiiiiiieeeeee CLINK 892
Retrieve cluster numbers in hierarchical cluster analysis...CNUMB 897

K-means Cluster Analysis
The basic K-means algorithm ..........ccccccvvvvviviviiiiiiiiiiieieeee, KMEAN 900

Usage Notes

The routines described in this chapter perform various forms of hierarchical or K-
means cluster analysis. By appropriate manipulation of the input data, either
variables or cases may be clustered. Additionally, for hierarchical clustering,
similarity or dissimilarity (distance) matrices created by routines not included in
this chapter can be clustered. Hartigan (1975) and Anderberg (1973) are general
references that may be used in this chapter.

Thefirst step in agglomerative hierarchical cluster analysisisto compute the
distance between each observation (or variable). Initially, each observation
(variable) istreated as a cluster. The two clusters that are closest to one another in
distance are merged, and the distance of the new cluster from al other clustersis
computed. This process continues until only one cluster remains. No attempt at
finding an optimal clustering (in the sense of minimizing some criterion) is made.

The usual stepsin ahierarchical cluster analysis might proceed as follows:

1 Routine CDI ST (page 889) is used to compute a distance (or possibly a
similarity) matrix from the input data matrix. A scaled matrix of
Euclidean distances is a common choice for a distance matrix, while a
correlation matrix isacommon choice for asimilarity matrix. If a
correlation matrix isto be used, many of the routines described in
Chapter 3, “Correlatit’, may also be used to compute the correlation
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measures for the matrix. In particular, routine CORVC (page 314) from
this chapter may be used.

2. Once the distance matrix has been computed, routine CLI NK (page 892)
is used to perform the agglomerative hierarchical cluster analysis using
either single, complete, average, or Ward’s linkage.

3. The results obtained frogLI NK are examined, and if desired, the
number of clusters is selected. RoufiiReEEP (page 1098) in Chapter
16, “Line Printer Graphics,” may be used to print the cluster tree. This
tree may aid in selecting the number of clusters, assuming that such a
number is desired. Based upon the number of clusters selected, routine
CNUMB (page 897) is used to obtain the cluster number of each of the
clustered observations (or variables).

4, Routines described in Chapter 1, “Basic Statistics,” and other chapters in
the IMSL STAT/LIBRARY are used to obtain descriptive and other
statistics to evaluate the clustering.

Because routineDl ST produces similarity and distance matrices for either rows
or columns, it is easy to cluster either observations or variables. Optionally, the
user may wish to cluster a correlation matrix obtained from one of the routines in
the correlation chapter or to input a matrix of similarities (or dissimilarities)
obtained via experimentation. The objects within such matrices may be clustered
directly in routineCL1 NK.

BasicK-means clustering attempts to find a clustering that minimizes the within-
cluster sums of squares. In this method of clustering the data, mamxouped

so that each observation (rowXhis assigned to one of a fixed number pf

clusters. The sum of the squared difference of each observation about its assigned
clusters mean is used as the criterion for assignment. In the basic algorithm,
observations are transferred from one cluster to another when doing so decreases
the within-cluster sums of squared differences. When, in a pass through the entire
data set, no transfer occurs, the algorithm stops. RokiB&N (page 900) is one
implementation of the basic algorithm.

The usual course of eventsdameans cluster analysis might be to use routine
KMEAN to obtain the optimal clustering. The clustering is then evaluated via
routines described in Chapter 1, “Basic Statistics,” and/or other chapters in the
IMSL STAT/LIBRARY. Often,K-means clustering with more than one value for
K is performed, and the value Kfthat best fits the data is used.

Clustering can be performed either on observations or on variables. The
discussion of the routin€VEAN assumes the clustering is to be performed on the
observations, which correspond to the rows of the input data matrix. If variables,
rather than observations, are to be clustered udiggN, the data matrix should

first be transposed (possibly using roufif®\RR (IMSL MATH/LIBRARY)). In

the documentation fatMEAN, the words “observation” and “variable” would then
be exchanged.
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CDIST/DCDIST (Single/Double precision)

Compute amatrix of dissimilarities (or similarities) between the columns (or
rows) of amatrix.

Usage

CALL CDI ST (NROW NCOL, X, LDX, NDSTM |ND, | METH, |ROW
| SCALE, DI ST, LDDI ST)

Arguments

NROW — Number of rows in the matrix. (Input)
NCOL — Number of columns in the matrix. (Input)

X — NROWby NCOL matrix containing the data. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

NDSTM — Number of rows (columns, lifROW= 1) to be used in computing the
distance measure between the columns (rows). (Input)

IND — Vector of lengtitNDSTMcontaining the indices of the rows (columns, if
| ROW= 1) to be used in computing the distance measure. (Input)
If 1 ND(1) = O; the firsNDSTMrows (columns) are used.

IMETH — Method to be used in computing the dissimilarities or similarities.
(Input)

| MVETH Method

Euclidean distancé_{ norm)

Sum of the absolute differencés fiorm)

Maximum differencel(, norm)

Mahalanobis distance

Absolute value of the cosine of the angle between the vectors
Angle in radians (0f) between the lines through the origin defined by
the vectors

ah~hwWNPEFLO

6 Correlation coefficient
7 Absolute value of the correlation coefficient
8 Number of exact matches

The algorithm section of the manual document has a more detailed description of
each measure.

|ROW — Row or columns option. (Input)
If | ROW= 1, distances are computed betweerNk@nrows ofX. Otherwise,
distances between tiNeoL columns ofX are computed.

| SCALE — Scaling option. (Input)
| SCALE is not used for methods 3 through 8.
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| SCALE Scaling Performed

0 No scaling is performed.

1 Scale each column (row, if | ROW= 1) by the standard deviation of the
column (row).

2 Scale each column (row, if | ROW= 1) by the range of the column (row).

DIST — m by m matrix containing the computed dissimilarities or similarities,
wherem = NROWIf | ROW= 1 andm = NCOL otherwise. (Output)

LDDIST — Leading dimension dfl ST exactly as specified in the dimension
statement in the calling program. (Input)

Comments
1. Automatic workspace usage is

I METH | ROW Workspacein CDI ST
0,1,2 0,1 4 NDSTMunits
1 4* NDSTM+ NDSTM* NDSTMunits
3* NDSTM+ NCOL units
3* NDSTM+ NROWuUnits
4* NDSTM+ 2* NCOL units
4* NDSTM+ 2* NROWUNits
0,1 NDSTMunits

RORrR OO

OO ADSW®
N~ oo

The routineDCDI ST requires twice the workspace requireddor ST.
Workspace may be explicitly provided, if desired, by use of
C21 ST/DC21 ST. The reference is

CALL C21 ST (NROW NCOL, X, LDX, NDSTM |IND, | METH,
| ROl | SCALE, DI ST, LDDI ST, X1, X2,
SCALE, WK, | ND1)

The additional arguments are as follows:

X1 — Work vector of lengtitNDSTM Not used it METH = 8.

X2 — Work vector of lengtitNDSTM Not used it METH = 8.

SCALE — Work vector of lengttNDSTMif | METH is less than 4; of
lengthNCOL or NROWwhenl ROWis 0 or 1, respectively, andvETH s 4
or 5; and of length 2 NCOL or 2* NRONwhenl ROWis 0 or 1 and

| METHIis 6 or 7.SCALE is not used whenhVETH is 8.

WK — Work vector of lengttNDSTM* NDSTMwhenl METH is 3, or of
lengthNDSTMwhenl METH = 6 or 7. Not used otherwise.

IND1 — Integer work vector of lengthDSTM

2. Informational error
Type Code
3 3 A variable is numerically linearly dependent on the

previous variables whanvETH is 3. The variable
detected as being linearly dependent is omitted from
the distance measure.
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Algorithm

Routine CDI ST computes an upper triangular matrix (excluding the diagonal) of
dissimilarities (or similarities) between the columns or rows of a matrix. Nine
different distance measures can be computed. For the first three measures, three
different scaling options can be employed. Output from CDI ST is generally used
asinput to clustering or multidimensional scaling routines.

The following discussion assumes that the distance measure is being computed
between the columns of the matrix, i.e., that | ROWis not 1. If distances between
the rows of the matrix are desired, set | ROWtO 1.

For | METH=0to 2, each row of Xisfirst scaled according to the value of

| SCALE. The scaling parameters are obtained from the values in the row scaled as
either the standard deviation of the row or the row range; the standard deviation is
computed from the unbiased estimate of the variance. If | SCALE is 0, no scaling
is performed, and the parametersin the following discussion are al 1.0. Once the
scaling value (if any) has been computed, the distance between columni and
column j is computed via the difference vector z;, = (X, — y,)/S, i = 1, ..., NDSTM
where x, denotes the k-th element in the i-th column, and y;, denotes the
corresponding element in the j-th column. For given z, the metrics 0 to 2 are
defined as:

| METH Metric

0 (ZNDSTM ziz) Euclidean distance

i=1
1 z:\i[l)STM z| L, norm
2 max; |z| L, norm

Distance measures corresponding to | METH= 3 to 8 do not allow for scaling.
These measures are defined via the column vectors X = (x;), Y = (y;), and

Z=(x;—Y,) asfollows:
| METH Metric

3 Z' 5717 = Mahalanobis distance, where 2 is the usual unbiased
sampl e estimate of the covariance matrix of the rows.

4 cos(8) = XY/ (mm) = the dot product of X and Y
divided by the length of X timesthe length of Y .

5 0, where 0 isdefined in 4.

6 p = the usual (centered) estimate of the correlation between X and Y.
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C

C

ArWNER

ArWONER

| NTEGER
PARAMETER

&

| NTEGER

REAL

EXTERNAL

7 The absolute value of p (where p is defined in 6).
8 The number of timesx; = y;, where x; and y; are elements of X and Y.

For the Mahalanobis distance, any variable used in computing the distance
measure that is (humerically) linearly dependent upon the previous variables in
the | ND vector is omitted from the distance measure.

Example

The following example illustrates the use of CDI ST for computing the Euclidean
distance between the rows of a matrix.

I METH, | ROW | SCALE, LDDI ST, LDX, NCOL, NDSTM NROW

(I METH=0, | ROWE1l, |SCALE=0, NCOL=2, NDSTM=2, NROW4,

LDDI ST=NROW LDX=NROW

I ND( 1)
DI ST(LDDI ST, NROW, X( NROW NCOL)
CDI ST, WRRRN

DATA | NDJ 0/

DATA X/ 1,

1, 1, 1,1, 0, -1, 2/

DATA DI ST/ 16*0. 0/

Print input matrix

CALL WRRRN (X', NROW, NCOL, X, LDX, 0)

CALL CDIST (NROW, NCOL, X, LDX, NDSTM, IND, IMETH, IROW, ISCALE,
DIST, LDDIST)

&

Print distance matrix

CALL WRRRN ('DIST’, NROW, NROW, DIST, LDDIST, 0)

END

X
1

2

1.000 1.000
1.000 0.000
1.000 -1.000
1.000 2.000

2

DIST

3

Output

4

1.000 2.000 1.000
0.000 1.000 2.000
0.000 0.000 3.000
0.000 0.000 0.000

CLINK/DCLINK (Single/Double precision)

Perform a hierarchical cluster analysis given a distance matrix.
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Usage

CALL CLINK (NPT, |METH, IDIST, DI ST, LDDIST, CLEVEL,
| CLSON, | CRSON)

Arguments
NPT — Number of data points to be clustered. (Input)
IMETH — Option giving the method to be used for clustering. (Input)

| METH Method

0 Single linkage (minimum distance)

1 Complete linkage (maximum distance)

2 Average distance within (average distance between objects within the
merged cluster)

3 Average distance between (average distance between objects in the two
clusters)

4 Ward’s method (minimize the within-cluster sums of squares). For
Ward’'s method, the elementsfST are assumed to be Euclidean
distances.

IDIST — Option giving the type of transformation to be applied to the measures
in DI ST. (Input)

I DI ST Transformation

0 No transformation is required. The elementBI®T are distances.
1 Convert similarities to distances by multiplication+iy0.
2 Convert similarities (usually correlations) to distances by taking the

reciprocal of the absolute value.

DI ST — NPT by NPT matrix containing the distance (or similarity)
matrix.(Input/Output)

DI ST is a symmetric matrix. On input, only the upper triangular part needs to be
present. The routin€L| NK saves the upper triangular partDpiST in the lower
triangle. On return fron@LI NK, the upper triangular part of ST is restored, and
the matrix has been made symmetric.

LDDIST — Leading dimension dfl ST exactly as specified in the dimension
statement in the calling program. (Input)

CLEVEL — Vector of lengtiNPT — 1 containing the level at which the clusters
are joined. (Output)

CLEVEL(K) contains the distance (or similarity) level at which clusear + k was
formed. If the original data ibl ST was transformed via the option parameter

| DI ST, the inverse transformation is applied to the valu&t BVEL prior to exit
from CLI NK.

ICLSON — Vector of lengtitNPT — 1 containing the left sons of each merged
cluster. (Output)
ClusterNPT + k is formed by merging cluster€LSON(k) andl CRSON(K).
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| CRSON — Vector of lengtiNPT — 1 containing the right sons of each merged
cluster. (Output)
ClusterNPT + k is formed by merging cluster€LSON(k) andl CRSON(K).

Comments
1. Automatic workspace usage is

CLINK 2* NPT units ifl METH= 0 or 1, and 4 NPT units otherwise,
or
DCLI NK 2 * NPT units ifl METH= 0 or 1, and 6 NPT units otherwise.

Workspace may be explicitly provided, if desired, by use of
C2I NK/DC21 NK. The reference is

CALL C2I NK (NPT, IMETH, 1DIST, DI ST, LDDI ST, CLEVEL,
I CLSON, | CRSON, |PTR, |ICLUS, CW, CSUM

The additional arguments are as follows:

IPTR — Integer work vector of lengthPT.

I CLUS — Integer work vector of lengthPT.

CWT — Work vector of lengtiNPT. Not used iff METH= 0 or 1.

CSUM — Work vector of lengtiNPT. Not used ifi METH=0 or 1.

2. The clusters corresponding to the original data points are numbered from
1 toNPT. TheNPT - 1 clusters formed by merging clusters are numbered
NPT + 1 toNPT + (NPT - 1).

3. Raw correlations, if used as similarities, should be made positive and
transformed to a distance measure. One such transformation can be
performed by specifyingDl ST = 2 inCLI NK.

4, The user may cluster either variables or observatio@isl iRK since a
dissimilarity matrix, not the original data, is used. RouGbeST
(page 889) may be used to compute the mbtrsa.

5. RoutineTREEP (page 1098) in the graphics chapter can be used to obtain
a line printer plot of the clustering tree. RoutZNUVB (page 897) can
be used to obtain the cluster number assigned to each of the original
clusters when a specified number of clusters is desired.

Algorithm

RoutineCLI NK performs hierarchical cluster analysis based upon a distance
matrix, or by appropriate use of thel ST option, based upon a similarity matrix.
Only the upper triangular part of the matrix needs to be inpTitittik.

Hierarchical clustering i€LI NK proceeds as follows. Initially, each data point is
considered to be a cluster, numbered f toNPT.

1. If the data matrix contains similarities, they are converted to distances by
the method specified inDI ST. Setk = 1.
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2. A search is made of the distance matrix to find the two closest clusters.
These clusters are merged to form anew cluster, numbered n + k. The
cluster numbers of the two clustersjoined at this stage are saved in
I CRSON and | CLSON, and the distance measure between the two clusters
isstored in CLEVEL.

3. Based upon the method of clustering, updating of the distance measure
in the row and column of DI ST corresponding to the new cluster is
performed.

4, Setk=k+ 1. If k<n,goto Step 2.

The five methods differ primarily in how the distance matrix is updated after two
clusters have been joined. The | METH option parameter specifies how the

distance of the cluster just merged with each of the remaining clusters will be
updated. Routine CLI NK allows five methods of computing the distances. To
understand these measures, suppose in the following discussion that clisters
and ‘B” have just been joined to form clustet’; and interest is in computing the
distance o with another cluster calledC".

Z%distﬁ
-

|
A B ¢

| METH Method

0 This is the single linkage method. The distance #amC is the
minimum of the distanceé ¢o C, B to C).

1 This is the complete linkage method. The distance #d¢aC is the
maximum of the distanceA o C, B to C).

2 This is the average-distance-within-clusters method. The distanc& from
to Cis the average distance of all objects that would be within the cluster
formed by merging cluste&andC. This average may be computed
according to formulas given by Anderberg (1973, page 139).

3 This is the average-distance-between-clusters method. The distance from
Zto Cis the average distance of objects within clugter objects
within clusterC. This average may be computed according to methods
given by Anderberg (1973, page 140).

4 This is Ward’'s method. Clusters are formed so as to minimize the
increase in the within-cluster sums of squares. The distance between two
clusters is the increase in these sums of squares if the two clusters were
merged. A method for computing this distance from a squared Euclidean
distance matrix is given by Anderberg (1973, pages-143).
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In general, single linkage will yield long thin clusters while complete linkage will
yield clusters that are more spherical. Average linkage and Ward’s linkage tend to
yield clusters that are similar to those obtained with complete linkage.

RoutineCLI NK produces a unique representation of the binary cluster tree via the
following three conventions; the fact that the tree is unique should aid in
interpreting the clusters. First, when two clusters are joined and each cluster
contains two or more data points, the cluster that was initially formed with the
smallest level (ircLEVEL) becomes the left son. Second, when a cluster
containing more than one data point is joined with a cluster containing a single
data point, the cluster with the single data point becomes the right son. Finally,
when two clusters containing only one object are joined, the cluster with the
smallest cluster number becomes the right son.

Example

In the following example, the average distance within clusters method is used to
perform a hierarchical cluster analysis of the Fisher iris data. RGHIATEA

(page 1302) is first used to obtain the Fisher iris data. The example is typical in
that after the program obtains the data, roufibleST (page 889) computes the
distance matrixdfl ST) prior to callingCLI NK.

INTEGER | DATA, IDIST, IMETH, |MIH, |PRINT, |RON |SCALE,

& LDDI ST, LDX, NCOL, NPT, NRON NVAR

PARAMETER (| DATA=3, |IDIST=0, |METH=2, |MTH=0, |PRINT=0, | ROWEL,
& | SCALE=1, NCOL=5, NROA£150, NVAR=4, LDX=NROW
& NPT=NROW LDDI ST=LDX)
INTEGER |, | CLSON(NROW 1), | CRSON(NROW 1), |ND(4), NOUT,
& NXCOL, NXROW

REAL CLEVEL(NROW 1), DI ST(LDDI ST, LDDI ST), X(LDX, NCOL)
EXTERNAL  CDI ST, CLINK, GDATA, UMACH

DATA IND/ 2, 3, 4, 5/

CALL GDATA (I DATA, |PRINT, NXROW NXCOL, X, LDX, NCQOL)
Conput e the distances
CALL CDI ST (NROW NCOL, X, LDX, NVAR, IND, |MIH, |ROW | SCALE,
& DI ST, LDDI ST)
C Clustering
CALL CLINK (NPT, IMETH, |DIST, DI ST, LDDI ST, CLEVEL, | CLSON,
& | CRSON)
C Print sonme results
CALL UMACH (2, NOUT)
VWRI TE (NOUT, 99996) (I, 1=1, 149, 15)
WRI TE ( NOUT, 99997) (CLEVEL(1),1=1, 149, 15)
VWRI TE (NOUT, 99998) (I CLSON(I), =1, 149, 15)
VWRI TE (NOUT, 99999) (I CRSON(I), =1, 149, 15)
C
99996 FORMAT (' OBS #, 1016)
99997 FORMAT (' CLEVEL', 10F6.2)
99998 FORMAT (' ICLSON’, 1016)
99999 FORMAT (' ICRSON’, 1016)
C
END
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Output
OBS # 1 16 31 46 61 76 91 106 121 136
CLEVEL 0.00 0.17 0.23 0.27 0.31 0.37 0.41 0.48 0.60 0.78
| CLSON 143 153 17 140 53 198 186 218 261 249
| CRSON 102 29 6 113 51 91 212 243 266 262

CNUMB

Compute cluster membership for a hierarchical cluster tree.

Usage
CALL CNUMB (NCDE, | CLSON, |CRSON, K, ICLUS, NCLUS)

Arguments
NODE — Number of data points clustered. (Input)

| CLSON — Vector of lengtitNODE - 1 containing the left son cluster numbers.

(Input)
ClusterNODE + 1 is formed by merging cluster€LSON(I ) andl CRSON(I ).

| CRSON — Vector of lengtiNCDE — 1 containing the right son cluster numbers.

(Input)
ClusterNODE + | is formed by merging cluster€LSON(I ) andl CRSON(I ).

K — Desired number of clusters. (Input)

ICLUS — Vector of lengtiNODE containing the cluster membership of each
observation. (Output)
Observation is in cluster CLUS(I ) whenK clusters are specified.

NCLUS — Vector of lengttK containing the number of observations in each
cluster. (Output)
Comments
1. Automatic workspace usage is
CNUMB 2 * NODE units.

Workspace may be explicitly provided, if desired, by use2afvB. The
reference is

CALL C2UMB (NODE, | CLSON, |CRSON, K, |CLUS, NCLUS,
| PT)

The additional argument is
IPT — Work vector of length 2 NODE.

2. Informational errors
Type Code
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4 1 The tree structure specified by | CLSON and | CRSONis
invalid because an attempt to assigh an observation to
more than one cluster is being made.

4 2 The tree structure specified by | CLSON and | CRSONis
incorrect because an observation is not assigned to a
cluster.
Algorithm

Given afixed number of clusters (K) and the cluster tree (vectors | CRSON and

| CLSON) produced by the hierarchical clustering algorithm (see routine CLI NK,
page 892), routine CNUMB determines the cluster membership of each observation.
The routine CNUMSB first determines the root nodes for the K distinct subtrees
forming the K clusters and then traverses each subtree to determine the cluster
membership of each observation. The routine CNUMB also returns the number of
observations found in each cluster.

Example 1

In the following example, cluster membership for K = 2 clustersis found for the
displayed cluster tree. The output vector |1 CLUS contains the cluster numbers for
each observation.

| NTEGER K, NODE
PARAMETER (K=2, NODE=5)

I NTEGER | CLSON( NODE- 1), | CLUS(NODE), | CRSON( NCDE- 1), NCLUS(K)
EXTERNAL  CNUMB, W\RI RN

DATA I CLSON'5, 6, 4, 7/
DATA ICRSON 3, 1, 2, 8/
Conmput e cl uster menbership
CALL CNUMB (NODE, |CLSON, |ICRSON, K, |CLUS, NCLUS)
Print output

CALL WRIRN (ICLUS’, 1, NODE, ICLUS, 1, 0)
CALL WRIRN ('NCLUS’, 1, K, NCLUS, 1, 0)

END

Output

RN
NN —
W
[ SENL]
o
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1 2
3 2
| NTEGER
&
PARAMETER
&
&
C
| NTEGER
&
&
REAL
&
CHARACTER
I NTRI NSI C
EXTERNAL
C

Example 2

This exampleillustrates the typical usage of CNUMB. The Fisher iris data (see
routine GDATA, page 1302) is clustered. First the distance between theirises are
computed using routine CDI ST (page 889). The resulting distance matrix is then
clustered using routine CLI NK (page 892). The cluster membership for 5 clusters
is then obtained via routine CNUVB using the output from CLI NK. The need for 5
clusters can be obtained either by theoretical means or by examining a cluster
tree. Because the cluster tree istoo large to be included in this example, the call
to routine TREEP (page 1098) that would ordinarily print the cluster tree has been
commented in the example code. The cluster membership for each of theiris
observationsis printed.

| DATA, 1D ST, IMETHD, | MIH, IPRINT, |IRON |SCALE, K,

LDDI ST, LDX, NCOL, NCDE, NODEX, NROW NVAR

(1 DATA=3, |DI ST=0, | METHD=0, | MIrH=1, | PRI NT=0,

| ROM1, | SCALE=0, K=5, LDDI ST=150, LDX=150, NCOL=5,

NODE=150, NODEX=5, NROW:150, NVAR=4)

I, 1 CLSON(NROW 1), | CLUS(NODE), | CRSON( NROW 1),

IMETH, IND(4), |ROOT, J, NCLUS(K), NFILL, NSCALE,
NXCOL, NXROW

AVAX1, CLEVEL(NROW 1), DI ST(LDDI ST, LDDI ST), RNUNF,
SCALE(2), X(LDX, NOOL)

NODENM_ NODE) * 7

AVAXL

CDI ST, CLINK, CNUMB, GDATA, RNSET, RNUNF, SCOPY, WRI RN

DATA IND/ 2, 3, 4, 5/
DATA | METH, | ROOT, NSCALE, NFILL/1, O, 1, 1/
DATA SCALE/ 0.0, 3.5/

Cet I RIS data.

CALL GDATA (I DATA, I PRINT, NXROW NXCOL, X, LDX, NCQL)

Conpute the dissimlarities.

CALL CDI ST (NROW NCOL, X, LDX, NVAR, [IND, | METHD, | ROW | SCALE,

DI ST, LDDI ST)
Make sure each di stance is unique,
then copy the upper triangle matrix
to the lower triangle matrix.

J=I + 1, NCDE

DI ST(1,J) = AMAXL(0.0, DI ST(1, J) +(0. 001* RNUNF()))

.0
CALL SCOPY (I-1, DIST(1,1), 1, DIST(l,1), LDDIST)

The initial clustering

CALL CLINK (NODE, | METHD, |DI ST, DI ST, LDDI ST, CLEVEL, | CLSON,

| CRSON)

C
C
&
C
C
C
CALL RNSET (4)
DO 20 =1, NODE
DO 10
10  CONTI NUE
DIST(I,1) =
20 CONTI NUE
C
&
c

Print the tree.

NODENM(1) = 'DEFAULT’
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CALL TREEP (NODE, | CLSON, | CRSON,
| MTH, CLEVEL, | ROOT, NSCALE,
& NFI LL, SCALE, NODENM

CALL CNUMB (NODE, | CLSON, |CRSON, K,

0O 0000

CALL WRIRN (ICLUS’, 1, NODE, ICLUS, 1, 0)
CALL WRIRN (NCLUS’, 1, K, NCLUS, 1, 0)

| CLUS, NCLUS)

Print out put

END

Output

ICLUS
1234567891011 12 13 14 15 16 17 18 19 20
555555555 55555555555
21222324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
5555555555555 5555555
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
5555555555 2222222122
61626364 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
1222 2 2 2 2222222222222

97 98 99

107 108 109 110 111
2 2 2 2 2 2 2

116 117 118 119 120 121 122 123 124 125 126 127
2242 2 2 2 2 2 2 2 2 2 2 2 2

132 133 134 135 136 137 138 139 140 141 142 143
4 222 2 2 2 2 2 2 2 2 2 2 2 2

148 149 150
2 2 2

NCLU
2 3
93 1

I
NP
ax

112 113 114 115

128 129 130 131

144 145 146 147

Conmput e nmenbership for 5 clusters

KMEAN/DKMEAN (Single/Double precision)

Perform a K-means (centroid) cluster analysis.

Usage

CALL KMEAN (NOBS, NCOL, NVAR, X, LDX, IFRQ, IWT, IND, K,

MAXIT, CM, LDCM, SWT, LDSWT, IC, NC, WSS)

Arguments

NOBS — Number of observations. (Input)
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NCOL — Number of columns iX. (Input)
NVAR — Number of variables to be used in computing the metric. (Input)

X — NOBS by NCOL matrix containing the observations to be clustered. (Input)
The only columns ok used are those indicated biyD and possibly FRQ and/or
| WI.

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IFRQ — Frequency option. (Input)
I FRQ= 0 means all frequencies are 1. For positiFRQ, column number FRQ
of X contains the nonnegative frequencies.

IWT — Weighting option. (Input)
I WI = 0 means all weights are 1. For positivd, column numberWr contains
the nonnegative weights.

IND — Vector of lengthNVAR containing the columns ofto be used in
computing the metric. (Input)

In the usual case in whichis the data matrix, no observation has multiple
frequency, and unequal weighting is not desiréih = (1, 2, 3,..., NVAR).

K — Number of clusters. (Input)

MAXIT — Maximum number of iterations. (Input)
MAXI T = 30 is usually sufficient.

CM — K by NVAR matrix containing, on input, the cluster seeds, i.e., estimates for
the cluster centers, and the cluster means on output. (Input/Output)
The cluster seeds must be unique.

LDCM — Leading dimension aifMexactly as specified in the dimension
statement in the calling program. (Input)

SWT — K by NVAR matrix containing the sum of the weights used to compute
each cluster mean. (Output)
Missing observations are excluded frem.

LDSWT — Leading dimension &WI exactly as specified in the dimension
statement in the calling program. (Input)

| C — Vector of lengttNOBS containing the cluster membership for each
observation. (Output)

NC — Vector of lengtfK containing the number of observations in each cluster.
(Output)

WSS — Vector of lengttK containing the within sum of squares for each cluster.
(Output)
Comments

1. Automatic workspace usage is
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KMEAN 2 * NOBS + 3 * K units, or
DKMEAN 3 * NOBS + 3 * K units.

Workspace may be explicitly provided, if desired, by use of

K2EAN/DK2EAN. The referenceis

CALL K2EAN (NOBS, NCOL, NVAR, X, LDX, IFRQ [|Wr,
IND, K, MAXIT, CM LDCM SWI, LDSW, |IC,
NC, WBS, I C2, NCP, D, |ITRAN, LIVE)

The additional arguments are as follows:

| C2 — Work vector of lengtiNOBS.

NCP — Work vector of lengtlk.

D — Work vector of lengtihNOBS.

ITRAN — Work vector of lengttK.

LIVE — Work vector of length.

2. Informational Error
Type Code
3 1 Convergence did not occur withiX! T iterations.
Algorithm

RoutineKMEAN is an implementation of Algorithm AS 136 by Hartigan and Wong
(1979). It compute&-means (centroid) Euclidean metric clusters for an input
matrix starting with initial estimates of tKecluster means. Routin@dVEAN

allows for missing values (coded as NaN, “not a number”) and for weights and
frequencies.

Let p = NVAR denote the number of variables to be used in computing the

Euclidean distance between observations. The id€aneans cluster analysis is

to find a clustering (or grouping) of the observations so as to minimize the total
within-cluster sums of squares. In this case, the total sums of squares within each
cluster is computed as the sum of the centered sum of squares over all nonmissing
values of each variable. That is,

K p n 2
0= > Y T W Bu i (X = %)

i=1 j=1 m=1
wherev,,, denotes the row index of tineth observation in thieth cluster in the
matrix X; n; is the number of rows of assigned to grouip f denotes the
frequency of the observatiow;denotes its weighd is zero if thg-th variable on
observatiorv,,, is missing, otherwis@is one; and
is the average of the nonmissing observations for varjablgroupi. This

method sequentially processes each observation and reassigns it to another
cluster if doing so results in a decrease in the total within-cluster sums of
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sguares. The user in referred to Hartigan and Wong (1979) or Hartigan (1975) for
the details.
Example

This example performs K-means cluster analysis on Fisher’s iris data, which is
first obtained via routin€DATA (page 1302). The initial cluster seed for each iris

WN -

WN -

P

type is an observation known to be in the iris type.

INTEGER  |FRQ IPRINT, |W, K LDCM LDSWI, LDX, MAXIT, NCOL,
& NOBS, NV, NVAR

PARAMETER (I FRQ=0, |PRINT=0, |W=0, K=3, MAXI T=30, NCOL=5,

& NOBS=150, NV=5, NVAR=4, LDCMEK, LDSWI=K, LDX=NOBS)
INTEGER | C(NOBS), IND(NVAR), NC(K), NXCOL, NXROW

REAL CM K, N\VAR), SWI(K, NVAR), WSS(K), X(NOBS, NV)
EXTERNAL  GDATA, KMEAN, SCOPY, WRI RN, WRRRN

DATA IND/ 2, 3, 4, 5/

CALL GDATA (3

, IPRINT, NXROW NXCOL, X, NOBS, Nv)

Copy the cluster seeds into CM
CALL SCOPY (NVAR, X(1,2), LDX, CM1,1), LDCM
CALL SCOPY (NVAR, X(51,2), LDX, CM2,1), LDCM
CALL SCOPY (NVAR, X(101,2), LDX, CM3,1), LDCM
CALL KMEAN (NOBS, NCOL, NVAR, X, LDX, IFRQ IWI, IND K, MAXIT,
& CM LDCM SWI, LDSWI, IC, NC, WBS)
CALL WRRRN ('CM’, K, NVAR, CM, LDCM, 0)
CALL WRRRN ('SWT’, K, NVAR, SWT, LDSWT, 0)
CALL WRIRN (IC", 1, NOBS, IC, 1, 0)
CALL WRIRN ('NC’, 1, K, NC, 1, 0)
CALL WRRRN ('WSS’, 1, K, WSS, 1, 0)
END
Output
CM
1 2 3 4
5.006 3.428 1.462 0.246
5.902 2.748 4.394 1.434
6.850 3.074 5.742 2.071
SWT
1 2 3 4
50.00 50.00 50.00 50.00
62.00 62.00 62.00 62.00
38.00 38.00 38.00 38.00
IC
23 456 7 8 91011 12 13 14 15 16 17 18 19 20
111111111111 1111111
222324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
11111111111 11111111
42 4344 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

IMSL STAT/LIBRARY

Chapter 11: Cluster Analysis+ 903



1 1 11 1 1 1 1
61 62 63 64 65 66 67 68 69 70 71
2 2 2 2 2 2 2 2
81 82 83 84 85 86 87 88
2 2 2 2 2 2 2 2
100 101 102 103 104 105 106
2 3 2 3 3 3 3
116 117 118 119 120 121 122
3 3 3 3 2 3 2
132 133 134 135 136 137 138
3 3 2 3 3 3 3
148 149 150
3 3 2
NC
1 2 3
50 62 38
WES
1 2 3
15.15 39.82 23.88

1

2

1 2 2 3

2 2 2 2

89 90 91 92 093

2 2 2 2 2
107 108 109 110
2 3 3 3
123 124 125 126
3 2 3 3
139 140 141 142
2 3 3 3

2

2

2 2 2 2

2 2 2 3

94 95 96 97 098

2 2 2 2 2
111 112 113 114
3 3 3 2
127 128 129 130
2 2 3 3
143 144 145 146
2 3 3 3

2

2

2

72 73 74 75 76 77 78 79 80

2
99
2

115

131

147
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Chapter 12: Sampling

Routines

Proportions, simple random sample ........ccccceeeeeiiiiiiieeenennn. SMPPR 906
Proportions, stratified random sample .........cccccooeviiviienen... SMPPS 909
Ratio or regression estimates, simple random sample....... SMPRR 911
Ratio or regression estimates, stratified random sample.... SMPRS 918

Single-stage cluster sSample.........ccccvvvvieiiiiiiieiiieii, SMPSC 923
Simple random sample ... SMPSR 927
Stratified random sample ..........cccccvvieiiiiiiiiiei, SMPSS 930
Two-stage sample with equisized primary units.................. SMPST 933

Usage Notes

The routines for inferences regarding proportions require only counts as the input
data. The other routines described in this chapter require the actual data. Since the
amount of data may be quite large, these routines allow for the datato be input in
small quantities (or even to be deleted after it has already been passed to the
subroutine). Thisis accomplished by means of the processing option parameter,

I DO, and an indicator of the number of observations being passed in, NRON | DO
has the following meaning;:

| DO Action

0 Thisisthe only invocation of the subroutine for this data set, and all the
data are input at once.

1 Thisisthefirst invocation, and additional calls to the subroutine will be
made. Initialization and updating for the data are performed.

2 Thisisan intermediate invocation of the subroutine, and updating for the
datais performed.

3 Thisisthefina invocation of the routine. Updating for the data and any

wrap-up computations are performed.

NROWCcan be positive or negative or zero. Its absolute value is the number of
sample values being input. If NROWis negative, it is assumed that the
observations being input have already been input once and now it is desired to
delete them from the analysis. When | DOis 3, NROWcan be set to 0. In this case,
only postprocessing is performed; no accumulation of statisticsis done. This
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allowsinput of summary statistics rather than the actual data. See Example 2in
the documentation for the routine SMPSR (page 927).

There are other variables used by several routinesin this chapter that have a
common meaning in all routines:

Y — The variable of interest.

X — The auxiliary variable.

NSAMP — The sample size.

NPOP — The population size.

CONPER — Confidence level.

STAT — Output statistics.

For stratified sampling, the following variables are often used:
NSTRAT — Number of strata.

NROWS — Vector with elements liksROwWfor strata.
NSAMPS — The strata sample sizes.

NPOPS — The population sizes for strata.
YBARS — The strata sample means.

YVARS — The strata sample variances.

SMPPR/DSMPPR (Single/Double precision)

Compute statistics for inferences regarding the population proportion and total
given proportion data from a simple random sample.

Usage
CALL SMPPR (NI NT, NSAMP, NPOP, CONPER, STAT)

Arguments

NINT — Number of sample units in the class of interest, for the population (or
subpopulation) of interest. (Input)

NSAMP — Number of units in the entire random sample. (Input)
NPOP — Number of units in the population. (Input)

CONPER — Confidence level for two-sided interval estimates, in percent.
(Input)

A CONPER percent confidence interval is computed; he@EBIPER must be
greater than or equal to 0.0 and less than 1@MYPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence taN@tL, set
CONPER = 100.0- 2.0* (100.0— ONECL).
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STAT — Vector of length 10 containing the resulting statistics. (Output)
These are

STAT(1)

Estimate of the proportion.

Estimate of the total.

Variance estimate of the proportion estimate.
Variance estimate of the total estimate.
Lower confidence limit for the proportion.
Upper confidence limit for the proportion.
Lower confidence limit for the total.

Upper confidence limit for the total.

Estimate (expressed as a percentage) of the coefficient or variation of the
total estimate. Not defined i NT = 0.

O©CoO~NOOULA WNPEFE —

10 Indicator of the distribution used to approximate the hypergeometric
distribution for the confidence interval calculationsSTAT(10) = 0,
then the normal is used.SfAT(10) = 1, then the Poisson is used. If
STAT(10) = 2, then the binomial is used.

Algorithm

The routineSMPPR computes point and interval estimates for the population
proportion and total from a simple random sample. The simplest and most
common case for which this routine is appropriate is one in which the population
sampled contains two or more classes, and it is desired to estimate the proportion
of the population falling into a particular class (“class of interest”). The data
required bySMPPR consist of counts of the number of sample items in the class of
interest, the sample size, and the population size. If there are more than two
classes in the population, some of the classes may not be of interest.

Since the hypergeometric distribution is the appropriate probability model for the
sampling for proportions in a finite population without replacement, exact
confidence limits could be computed using that distribution. For populations with
sizes that occur in practice (more than a hundred, often in the thousands or even
millions), the confidence limits can be approximated very well by use of the
normal, the binomial, or the Poisson distribution. RouskMerR uses one of

these distributions in setting confidence limits, following the guidelines in the
table on page 58 of Cochran (1977).

Example 1

The first example is from Cochran (1977, page 52). A simple random sample of
size 200 was drawn from a list of 3042 names and addresses. Verification of the
addresses in the sample showed 38 to be wrong. The objective is to estimate the
total number of incorrect addresses.

| NTEGER NI NT, NOUT, NPOP, NSAWP

REAL CONPER, SQRT, STAT(10), STDP, STDT
I NTRINSI C  SQRT
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EXTERNAL SMPPR, UVACH

CALL UMACH (2, NaUT)
NI NT 38
NSAMP 200
NPCP 3042
CONPER = 0.0
CALL SMPPR (NI NT, NSAMP, NPOP, CONPER, STAT)
STDP = SQRT( STAT(3))
STDT = SQRT(STAT(4))
VRI TE ( NOUT, 99999) STAT(1), STAT(2), STDP, STDT, STAT(9)
99999 FORMAT (' Estimate of proportion bad: ', F5.3,/,
& ' Estimate of total bad: ', F5.0,/,
& ' Standard deviation estimate, proportion: ’, F5.3, /,
& ' Standard deviation estimate, total: ', F5.1, /,
& ' Coefficient of variation: ', F5.1,
&
E

1%1)
ND

Output
Estimate of proportion bad: 0.190
Estimate of total bad: 578.
Standard deviation estimate, proportion: 0.027
Standard deviation estimate, total: 81.8
Coefficient of variation: 14.1%

Example 2

The next example is also from Cochran (1977, page 68). A simple random sample
of size 200 from 2000 colleges showed 120 collegesto bein favor of acertain
proposal, 57 to be opposed, and 23 to have no opinion. We wish to estimate the
number of colleges, out of the 2000, that favor the proposal.

INTEGER NINT, NOUT, NPOP, NSAMP
REAL  CONPER, STAT(10)
EXTERNAL SMPPR, UMACH

CALL UMACH (2, NOUT)
NINT =120
NSAMP =200
NPOP = 2000
CONPER =95.0
CALL SMPPR (NINT, NSAMP, NPOP, CONPER, STAT)
WRITE (NOUT,99999) STAT(2), STAT(7), STAT(8)
99999 FORMAT (' Estimate of number in favor: ’, F5.0,/, " 95% ’,
& ‘confidence interval: (’, F5.0, '), F5.0, "))
END

Output
Estimate of number in favor: 1200.
95% confidence interval: (1066.,1334.)
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SMPPS/DSMPPS (Single/Double precision)

Compute statistics for inferences regarding the population proportion and total
given proportion data from a stratified random sample.

Usage

CALL SMPPS (NSTRAT, NINTS, NSAMPS, NPOPS, CONPER, PROPOR,
STAT)

Arguments

NSTRAT — Number of strata into which the sample is divided. (Input)
In the vectors of lengtRSTRAT, the elements are all ordered in the same way.

NINTS — Vector of lengtiNSTRAT containing the observed number of units in
each stratum from the class of interest. (Input)

NSAMPS — Vector of lengtiNSTRAT containing the sample size in each
stratum. (Input)

NPOPS — Vector of lengtiNSTRAT containing the population in the strata.
(Input)

If the population strata sizes are not known, estimates must be entered in their
place.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)

A CONPER percent confidence interval is computed; he@EBIPER must be
greater than or equal to 0.0 and less than 1@MYPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence teN@tL, set
CONPER = 100.0- 2.0* (100.0— ONECL).

PROPOR — Vector of lengtiNSTRAT containing the within-strata proportion
estimates. (Output)

STAT — Vector of length 10 containing the resulting statistics. (Output)
These are

STAT(1)

Estimate of the proportion.

Estimate of the total.

Variance estimate of the proportion estimate.
Variance estimate of the total estimate.
Lower confidence limit for the proportion.
Upper confidence limit for the proportion.
Lower confidence limit for the total.

Upper confidence limit for the total.

Estimate (expressed as a percentage) of the coefficient of variation of the
total estimate.

O©CoO~NOULA WNPEFE —
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10 Variance estimate of the proportion estimate assuming that sampling was
simple random instead of stratified random.

Algorithm

Routine SMPPS computes point and interval estimates for the population
proportion and total from a stratified random sample. If the strata are formed so
that the proportions differ greatly from one stratum to the next, considerable gain
in statistical efficiency can be realized by use of stratified sampling (see Cochran
1977, page 107).

Let N, be the number in the population in the h-th stratum, let n, be the number
in the sample from the h-th stratum, let a;, be the number of the class of interest in
the sample from the h-th stratum, let N be the population size (5> N,), let p, bethe
proportion in the h-th stratum, a;,/n,,, and let L be the number of strata. Then, the
estimate of the proportionis

L Nhah
Pst = _

and the estimate of the varianceis

1 L
v(Pst) =th=1 Nn(Nh = np)

The confidence intervals are computed using a normal approximation.

Pn(1- Pn)
nh -1

Example

This example isan artificial modification of an example used in routine SMPPR

(page 906), which is from Cochran (1977, page 52). A list of 3042 names and

addresses was built by an experienced secretary and a part-time student worker.

The secretary entered 1838 names and addresses, and the student entered the

remainder. Samples of size 100 were taken from the names entered by each.

Verification of the addresses in the sample from the secretary’s work showed 12
to be wrong, and verification of the student’s sample showed 26 to be wrong. The
objective is to estimate the total number of incorrect addresses.

INTEGER  NSTRAT
PARAVETER ( NSTRAT=2)

C
INTEGER NI NTS(NSTRAT), NOUT, NPOPS(NSTRAT), NSAMPS(NSTRAT)
REAL CONPER, PROPOR(NSTRAT), SQRT, STAT(10), STDP, STDSRS,
& STDT
I NTRINSI C  SQRT
EXTERNAL  SMPPS, UMACH
C
CALL UMACH (2, NOUT)
NINTS(1) = 12
NINTS(2) = 26
NSAVPS(1) = 100
NSAVPS(2) = 100
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NPOPS(1) = 1838
NPOPS(2) = 1204
CONPER ~ = 0.0

CALL SMPPS (NSTRAT, NI NTS, NSAMPS, NPOPS, CONPER, PROPOR, STAT)

STDP = SQRT(STAT(3))
STDT = SQRT(STAT(4))
STDSRS = SQRT( STAT(10))
C
WRI TE (NOUT, 99999) STAT(1), STAT(2), STDP, STDT, STAT(9), STDSRS
99999 FORMAT (' Estimate of proportion bad: L F7.3,1,
& ' Estimate of total bad: ', F4.0, /,
& ' Standard deviation estimate, proportion: ’, F7.3, /,
& ' Standard deviation estimate, total: ', F5.1, /,
& ' Coefficient of variation: ', F5.1,
& "%, /,’ Std. dev. under simple random sampling: ',
& F7.3)
END
Output
Estimate of proportion bad: 0.175
Estimate of total bad: 534.
Standard deviation estimate, proportion: 0.025
Standard deviation estimate, total: 77.4
Coefficient of variation: 14.5%

Std. dev. under simple random sampling: 0.027

SMPRR/DSMPRR (Single/Double precision)

Compute statistics for inferences regarding the population mean and total using
ratio or regression estimation, or inferences regarding the population ratio given a
simple random sample.

Usage

CALL SMPRR (IDO, NROW, X, Y, NPOP, IOPT, XMEAN, COEF,
CONPER, STAT)

Arguments

IDO — Processing option. (Input)

IDO  Action

0 This is the only invocation &VPRR for this data set, and all the data are
input at once.

1 This is the first invocation, and additional callsSiPRR will be made.
Initialization and updating for the dataXrandy are performed.

2 This is an intermediate invocation®¥PRR and updating for the data in
X andy is performed.

3 This is the final invocation of this routine. Updating for the dataand

Y, and wrap-up computations are performed.
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NROW — The absolute value of0Wis the number of observations currently
input inX andY. (Input)

NROWmay be positive, zero, or negative. NegatidROwWmeans delete thdrOW
rows of data from the analysis.

X — Vector of lengthNROW containing the data for the auxiliary variable in the
random sample. (Input)

Y — Vector of lengthNROW containing the data for the variable of interest in the
random sample. (Input)
The value ofy(1') corresponds to that ofI ).

NPOP — Size of the population (number of pairs of elements in the sampled
population). (Input)

|OPT — Estimation option. (Input)

| OPT  Action

0 Ratio estimation is used for inference about the population mean, total,
and ratio.

1 The population mean of the auxiliary variable is not used, and only
inference about the population ratio is desired.

2 Regression estimation with preassigned regression coefficiaOgR)
is used for inference about the population mean and total.

3 Regression estimation with estimated regression coefficient (returned in

STAT(18)) is used for inference about the population mean and total.

XMEAN — Population mean of the auxiliary variable. (Input)
XMEAN is not used if OPT = 1.

COEF — Reassigned regression coefficient. (Input)
CCEF is used only whehOPT = 2.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)

A CONPER percent confidence interval is computed, he@CBIPER must be
greater than or equal to 0.0 and less than 1@MWPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence taN@tL, set
CONPER = 100.0- 2.0* (100.0— ONECL).

STAT — Vector of length 20 containing the resulting statistics. (Output, if
I DO= 0 or 1; input/output, if DO= 2 or 3)

STAT(l)

Estimate of the mean.

Estimate of the total.

Variance estimate of the mean estimate.
Variance estimate of the total estimate.
Lower confidence limit for the mean.
Upper confidence limit for the mean.
Lower confidence limit for the total.

~NOoO o~ WNE T
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8 Upper confidence limit for the total.

9 Estimate of theratio.

10 Variance estimate of the estimate of the ratio. The population mean of
the auxiliary variable is used in STAT(10) if the mean is known;
otherwise, the sample estimate of the population mean is used.

11 Lower confidence limit for theratio.

12 Upper confidence limit for the ratio.

13 Estimate (expressed as a percentage) of the coefficient of variation of the
mean, total, and ratio and regression coefficient estimates that are
defined, as controlled by | OPT. The standard deviation in the numerator
of this quantity has been divided by the square root of the sample size.
The coefficients of variation in STAT(14) and STAT(15) use the sample
standard deviations without that divisor.

14 Estimate (expressed as a percentage) of the coefficient of variation of the
auxiliary variable.

15 Estimate (expressed as a percentage) of the coefficient of variation of the
variable of interest.

16 Sample mean of the auxiliary variable.

17 Sample mean of the variable of interest.

18 Estimate of the regression coefficient.

19 Sample size.

20 Number of pairsin the sample with one or both values missing.

STAT(1) through STAT(8) and STAT(13) are undefined when | OPT = 1. STAT(9)
through STAT(12) are undefined when | OPT = 2 or 3. STAT(18) isdefined only
when | OPT = 3. The elements of STAT that are undefined dueto | OPT or an error
are set to NaN (not a number).

Algorithm

Routine SMPRR computes point and interval estimates for the population mean,
total, and (optionally) ratio or regression coefficient, using a simple random
sample of avariable of interest and an auxiliary variable. Routine SVPRR allows
various options for the estimation techniques, which are discussed in Chapters 3,
6, and 7 of Cochran (1977). Let

X and y
be the sample means of the auxiliary variable and the variable of interest,
respectively. Let

X

be the population mean of the auxiliary variable. Then, the ratio estimate of the
population mean is

<

yR:x)_<

The linear regression estimate of the population mean is
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Yir =¥ +b(X %)

where b isthe regression coefficient, which can be either preassigned, based on
previous knowledge, or estimated from the data using least squares. The least-
squares estimate of b is

S (% = 9)(% = %)
Zinzl(xi - 7)2

The confidence limits for the mean and for the total are computed using the
normal approximation. If the coefficient of variation of either variable exceeds
10%, then this approximation may not be very accurate.

The parameters | DOand NROwallow either al or part of the datato be brought in.

Examples

The data for these examples come from Cochran (1977, Table 6.1, page 152).

The variable of interest is the population of large U.S. citiesin 1930; the auxiliary
variable is the 1920 population of the same cities. There are 196 (NPOP) cities

that are sampled (that is, that are in the population of interest). (Note that the

word “population” is being used in two ways in this discussion.) The total 1920
population of these cities is 22,9T@VEAN = 116.934). There are 49 cities in the
sample. The data can be seen inONEA statements in the programs below
(actual values are 1000 times greater). There are no “missing data”; therefore, the
sample sizeSTAT(19), is 49. Because the coefficient of variation is larger than
10%, SMPRR produces an informational “warning error” message in each
example. When the coefficient of variation is larger than 10% (generally
speaking), the confidence limits computed using the normal approximation are
likely to be shorter than the actual limits at the same confidence level.

Example 1

In this example, ratio estimation is used, as on page 151 of Cochran (1977).

| NTEGER NROW
PARAMETER  ( NROW:49)

C
INTEGER |, I1DO |1OPT, NOUT, NPCP
REAL CCEF, CONPER, STAT(20), X(NROW, XMEAN, Y(NROW
EXTERNAL ~ SMPRR UMACH

C

DATA X/ 76., 138., 67., 29., 381., 23., 37., 120., 61., 387.
93., 1v2., 78., 66., 60., 46., 2., 507., 179., 121., 50.
44., 77., 64., 64., 56., 40., 40., 38., 136., 116., 46.,
243., 87., 30., 71., 256., 43., 25., 94., 43., 298., 36.
161., 74., 45., 36., 50., 48./

DATA Y/ 80., 143., 67., 50., 464., 48., 63., 115., 69., 459.
104., 183., 106., 86., 57., 65., 50., 634., 260., 113.,

R R0 RoRoRo
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& 64., 58., 89., 63., 77., 142., 60., 64., 52., 139., 130.,
& 53., 291., 105., 111., 79., 288., 61., 57., 85., 50., 317.,
& 46., 232., 93., 53., 54., 58., 75./

DATA NPOP/ 196/, XMEAN 116.934/, CONPER/ 95./

C Al'l data are input at once.
IDO=0

C Ratio estinmation.
IOPT = 0
CALL SMPRR (I DO, NROW X, Y, NPOP, |OPT, XMEAN, COEF, CONPER,
& STAT)

C Print results

CALL UMACH (2, NaoUT)
WRI TE (NOUT, 99999) (STAT(1),1=1,17), STAT(19), STAT(20)
99999 FORMAT (/,’ RATIO ESTIMATION’, /,
"Mean estimate =, F8.1,"  Total estimate =,
F8.1,/,’ Vhatof mean ="', F8.1,” Vhat of total ’
,'=",F8.1, /," Confidence limits for mean ’, F8.1,
"', F8.1, /,  Confidence limits for total ’, F8.1,
', F8.1, /," Ratio estimate ="', F8.3,"  Vhat of’
, 'ratio ="', F8.4, /,’ Confidence limits for ratio ’,
F8.3,", F8.3, /, ' Coefficient of variation of mean’,
‘estimate =’, F8.1,/, ' CVof X = ', F8.1,
! CVofY="F8.1,/ "Meanof X=",
F8.1,’ Mean of Y =, F8.1, /,’ Sample size’
, ="', F8.1," Number missing ="', F8.1)
ND

T R0 R0 R0 Ro Ro Ro Ro Ro Ro Ro Ro

Output
*** WARNING ERROR 7 1E)rom SMPRR. The coefficient of variation of one or
Kk both of the variables exceeds 10%. The confidence limits,
Fohk which are computed using a normal approximation, may not be
rkx very accurate.

RATIO ESTIMATION
Mean estimate = 144.9 Total estimate = 28397.1
Vhatof mean = 9.5 Vhat of total = 364860.1
Confidence limits for mean 138.8, 150.9
Confidence limits for total 27213.3, 29581.0
Ratio estimate = 1.239  Vhat of ratio = 0.0007
Confidence limits for ratio 1.187, 1.291
Coefficient of variation of mean estimate = 2.1
CVofX= 89.3 CVofY= 096.3
Mean of X = 103.1 Meanof Y = 127.8
Sample size= 49.0 Number missing= 0.0

Example 2

In this example, regression estimation with an estimated coefficient isused, asin
Exercise 7.3 of Cochran (1977).

INTEGER NROW
PARAMETER (NROW=49)

INTEGER |, IDO, IOPT, NOUT, NPOP
REAL  COEF, CONPER, STAT(20), X(NROW), XMEAN, Y(NROW)
EXTERNAL SMPRR, UMACH

DATA XI/76., 138., 67., 29., 381., 23., 37., 120, 61., 387,
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& 93., 172., 78., 66., 60., 46., 2., 507., 179., 121., 50.,
& 44., 77., 64., 64., 56., 40., 40., 38., 136., 116., 46.,
& 243., 87., 30., 71., 256., 43., 25., 94., 43., 298., 36.,
& 161., 74., 45., 36., 50., 48./
DATA Y/ 80., 143., 67., 50., 464., 48., 63., 115., 69., 459.,
& 104., 183., 106., 86., 57., 65., 50., 634., 260., 113.,
& 64., 58., 89., 63., 77., 142., 60., 64., 52., 139., 130.,
& 53., 291., 105., 111., 79., 288., 61., 57., 85., 50., 317.,
& 46., 232., 93., 53., 54., 58., 75./
DATA NPOP/ 196/, XMEAN 116.934/, CONPER/ 95./
C Al'l data are input at once.
IDO=0
C Regression estimation, with esti mated
C coefficient (Cochran, Exercise 7.3)
IOPT = 3
CALL SMPRR (I DO, NROW X, Y, NPOP, |OPT, XMEAN, COEF, CONPER,
& STAT)
C Print results

CALL UMACH (2, NaOUT)

WRI TE (NOUT, 99999) (STAT(1),1=1,8), (STAT(l),I1=13,20)
99999 FORMAT (/,’ REGRESSION ESTIMATION’, /,
"Mean estimate =, F8.1,"  Total estimate =,
F8.1,/," Vhatof mean =’, F8.1," Vhat of total ’
,'=",F8.1, /," Confidence limits for mean ’, F8.1,
"', F8.1, /, ’ Confidence limits for total ’, F8.1,
'), F8.1, /, " Coefficient of variation of mean ’,
‘estimate =", F8.1,/,"CVof X = ', F8.1,
' CVofY=",F8.1,/, "Meanof X=",
F8.1,’ Mean of Y ="', F8.1, /, ' Estimated ’,
‘regression coefficient =, F8.1, /,* Sample size =,
F8.1,” Number missing =’, F8.1)

m R0 R0 R0 Ro Ro Ro Ro Ro Ro Ro

Output
*** WARNING ERROR 7 from SMPRR. The coefficient of variation of one or
il both of the variables exceeds 10%. The confidence limits,
rxx which are computed using a normal approximation, may not be
Fxx very accurate.

REGRESSION ESTIMATION
Mean estimate = 143.8  Total estimate = 28177.4
Vhatof mean = 8.6  Vhat of total =329372.3
Confidence limits for mean 138.0, 149.5
Confidence limits for total 27052.6, 29302.3

Coefficient of variation of mean estimate = 2.0

CVof X = 89.3 CVofY= 96.3

Mean of X = 103.1 Meanof Y = 127.8

Estimated regression coefficient= 1.2

Sample size= 49.0 Number missing= 0.0
Example 3

In this example, regression estimation with apreassigned coefficient isused, asin
Exercise 7.4 of Cochran (1977).
INTEGER NROW

PARAMETER (NROW=49)
C
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| NTEGER I, 1DO, 1 OPT, NOUJT, NPOP

REAL COEF, CONPER, STAT(20), X(NROW, XMEAN, Y(NROW
EXTERNAL SMPRR, UVACH
C
DATA X/ 76., 138., 67., 29., 381., 23., 37., 120., 61., 387.,
& 93., 172., 78., 66., 60., 46., 2., 507., 179., 121., 50.,
& 44., 77., 64., 64., 56., 40., 40., 38., 136., 116., 46.,
& 243., 87., 30., 71., 256., 43., 25., 94., 43., 298., 36.,
& 161., 74., 45., 36., 50., 48./
DATA Y/ 80., 143., 67., 50., 464., 48., 63., 115., 69., 459.,
& 104., 183., 106., 86., 57., 65., 50., 634., 260., 113.,
& 64., 58., 89., 63., 77., 142., 60., 64., 52., 139., 130.,
& 53., 291., 105., 111., 79., 288., 61., 57., 85., 50., 317.,
& 46., 232., 93., 53., 54., 58., 75./
DATA NPOP/ 196/, XMEAN 116. 934/, CONPER/ 95./
Al'l data are input at once.
IDO=0
C Regression estimation, with assigned
C coefficient (Cochran, Exercise 7.4)
| OPT = 2
COEF = 1.0
CALL SMPRR (I DO, NROW X, Y, NPOP, |OPT, XMEAN, COEF, CONPER,
& STAT)
C Print results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) (STAT(1),1=1,8), (STAT(1),1=13,17), STAT(19),
& STAT( 20)
99999 FORMAT (/,’ REGRESSION ESTIMATION, FIXED ’,
& 'COEF’, /, " Mean estimate =’, F8.1,"  Total ’,
& ‘estimate =, F8.1, /, " Vhat of mean =", F8.1,
& Vhat of total =’, F8.1, /, ' Confidence limits ’
& , formean ’, F8.1,",, F8.1, /,’ Confidence limits’
& , 'for total ’, F8.1, ", F8.1, /, ’ Coefficient of ’,
& 'variation of mean estimate =’, F8.1,/,’ CV of X =
& ,F8.1," CVofY=",F8.1,/, ' Meanof’
& X =",F8.1,’ Mean of Y ="', F8.1, /,
& " Sample size =', F8.1,"  Number missing =, F8.1)
END
Output
*** WARNING ERROR 7 from SMPRR. The coefficient of variation of one or
il both of the variables exceeds 10%. The confidence limits,
rxx which are computed using a normal approximation, may not be
Fxx very accurate.

REGRESSION ESTIMATION, FIXED COEF
Mean estimate = 141.6  Total estimate = 27751.1
Vhat of mean = 125 Vhat of total =481977.4
Confidence limits for mean 134.6, 148.5
Confidence limits for total 26390.4, 29111.8

Coefficient of variation of mean estimate = 2.5
CVofX= 89.3 CVofY= 96.3
Mean of X = 103.1 Meanof Y = 127.8
Sample size= 49.0 Number missing= 0.0
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SMPRS/DSMPRS (Single/Double precision)

Compute statistics for inferences regarding the population mean and total using
ratio or regression estimation given continuous data from a stratified random
sample.

Usage

CALL SMPRS (1 DO, NSTRAT, NROWS, X, Y, NPOPS, |OPT, |TOPT,
XMEANS, CONPER, CCEFS, XBARS, XVARS, XCVS,
YBARS, YVARS, YCVS, XYCOVS, NSAWPS, STAT)

Arguments

IDO — Processing option. (Input)

IDO  Action

0 This is the only invocation &VPRS for this data set, and all the data are
input at once.

1 This is the first invocation, and additional callsSiPRS will be made.
Initialization and updating for the dataXrandy are performed.

2 This is an intermediate invocation®¥PRS, and updating for the data in
X andy is performed.

3 This is the final invocation of this routine. Updating for the dataand

Y and wrap-up computations are performed.

NSTRAT — Number of strata into which the population is divided. (Input)

In the vectors of lengtRSTRAT, the elements are all ordered in the same way.
That is, the first stratum is always the first, the second is always the second, and
S0 on.

NROWS — Vector of lengtiNSTRAT in which NROWS(1 )| is the number of items
from thel -th stratum currently input ik andy. (Input)

Each element afROAS may be positive, zero, or negative. A negative value for
NROWS(1 ) means delete theNROWS(I ) elements of the-th stratum i andy

from the analysis.

X — Vector containing the data for the auxiliary variable in the stratified random
sample. (Input)

The observations within any one stratum must appear contiguous|ylire first
[NROWS(1)| elements oX are from the first stratum, and so on.

Y — Vector containing the data for the variable of interest in the stratified
random sample. (Input)

The observations within any one stratum must appear contiguows|y e first
[NROAB(1)| elements of are from the first stratum, and so on. The valug(lbf
corresponds to that of(I ).

NPOPS — Vector of lengtiINSTRAT containing the sizes of the population in the
strata. (Input)
The entries INSTRAT must be ordered in correspondence with the ordering of
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stratain the other vectors. If the population strata sizes are not known, estimates
must be entered in their place.

|OPT — Estimation option. (Input)

I OPT  Action

0 Ratio estimation used for inference about the population mean and total.

1 Regression estimation used with the preassigned regression
coefficient(s) contained iBOEFS.

2 Regression estimation used with the regression coefficient(s) estimated

from the data.

ITOPT — Estimation technique option. (Input)

| TOPT Action
0 Separate ratio or regression estimation.
1 Combined ratio or regression estimation.

XMEANS — Vector of lengtiNSTRAT containing, for each stratum, the
population mean of the auxiliary variate, providg®PT = 0. (Input)

If | TOPT = 1, onlyXMEANS(1) is defined and it must contain the population mean
of the auxiliary variate.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)

A CONPER percent confidence interval is computed; he@SBPER must be
greater than or equal to 0.0 and less than 1@M@PER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence @n@tL, set
CONPER = 100.0- 2.0* (100.0— ONECL).

COEFS — Vector of lengtiNSTRAT containing the ratio estimates or the
regression coefficients. (Input,li&PT = 1; output, ifit OPT =0 or 2 and DO= 0

or 1; input/output, if OPT =0 or 2 and DO= 2 or 3)

If | OPT = 0, COEFS contains ratio estimates. WheTOPT = 0, COEFS contains

the estimate of the ratio for each stratum. WHEBPT = 1, onlyCCOEFS(1) is

defined and contains the combined estimate of the rati@Pif = 1, COEFS

contains preassigned regression coefficients. WRERT = 0, COEFS contains

the preassigned regression coefficient for each stratum. Wi@sT = 1, only
CCEFS(1) is defined and contains the preassigned regression coefficient common
to all strata. Iff OPT = 2, CCEFS contains estimated regression coefficients. When
| TOPT = 0, COEFS contains the estimated regression coefficient for each stratum.
Whenl TOPT = 1, onlyCCEFS(1) is defined and contains the estimated regression
coefficient common to all strata.

XBARS — Vector of lengtiNSTRAT containing the strata means for the auxiliary
variable. (Output, if DO= 0 or 1; input/output, if DO= 2 or 3.)

XVARS — Vector of lengtiNSTRAT containing the within-strata variances of the
auxiliary variable. (Output, ifDO= 0 or 1; input/output, if DO= 2 or 3.)
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XCVS — Vector of lengtiINSTRAT containing the within-strata coefficients of
variation for the auxiliary variable. (Output)ibO= 0 or 1; input/output, if
I DO=2or3.)

YBARS — Vector of lengtiNSTRAT containing the strata means for the variable
of interest. (Output, ifDO= 0 or 1; input/output, ifFDO= 2 or 3.)

YVARS — Vector of lengtiNSTRAT containing the within-strata variances of the
variable of interest. (Output,lifbo= 0 or 1; input/output, if DO= 2 or 3.)

YCVS — Vector of lengtiNSTRAT containing the within-strata coefficients of
variation for the variable of interest. (Outputl BO= 0 or 1; input/output, if
I DO=2or3.)

XYCOVS — Vector of lengtiNSTRAT containing the within-strata covariances of
the auxiliary variable and the variable of interest. (Outpu)d@= 0 or 1; input/
output, ifl DO= 2 or 3.)

NSAMPS — Vector of lengtitNSTRAT containing the number of nonmissing
observations from each stratum. (OutpuitDO= 0 or 1; input/output, if DO= 2

or3.)

STAT — Vector of length 12 containing the resulting statistics. (Output)
These are

| STAT(l)

1 Estimate of the mean.

2 Estimate of the total.

3 Variance estimate of the mean estimate.

4 Variance estimate of the total estimate.

5 Lower confidence limit for the mean.

6 Upper confidence limit for the mean.

7 Lower confidence limit for the total.

8 Upper confidence limit for the total.

9 Estimate of the coefficient of variation for the mean and total estimate.
10 Unstratified mean of the auxiliary variate.

11 Unstratified mean of the variable of interest.

12 The number of pairs in the sample that had one or both values missing.
Algorithm

RoutineSMPRS computes point and interval estimates for the population mean
and total from a stratified random sample of a variable of interest and an auxiliary
variable. RoutinéSMPRS allows for either ratio estimation, regression estimation
with preassigned coefficients, or regression estimation with estimated
coefficients.

This routine follows the standard methods discussed in Chapters 6 and 7 of
Cochran (1977). The statistics are similar to those discussed in the
documentation for routinBVPRR (page 911), except that they are computed
from stratified data. The option paramet@PT allows selection of either ratio
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| NTEGER

PARAMETER

| NTEGER
REAL

RoRoRo R

EXTERNAL

DATA X/ 77
381.
132.
DATA Y/ 82
464.
170.

RoRo RoRo

NPOPS( 1)
NPOPS( 2)

| DO
NROWS( 1)
NROWS( 2)
CONPER

| OPT
| TOPT

XVEANS( 1)
XVEANS( 2)

3.

)

)

2

)

)

or regression estimation, and the parameter 1 TOPT allows selection of separate or
combined estimators. “Separate” estimators means that each stratum is allowed to
have different ratios or regression coefficients, while “combined” means these are
assumed to be the same over all strata.

The confidence limits for the mean and for the total are computed using the
normal approximation. If the coefficient of variation of either variable exceeds
10%, then this approximation may not be very accurate.

The parametensDO andNROWallow either all or part of the data to be brought in
at one time.

Example 1

In the following example, we use a stratified sample from the data in Table 5.1 of
Cochran (1977), which consists of the 1920 and the 1930 population (in 1000's)
of 64 cities in the United States. The objective is to estimate the mean and total
1930 population of the 64 cities, using a sample of size 24 of the 1920 and 1930
populations. There are two strata: the largest 16 cities and the remaining cities.
We use stratified sampling with equal sample sizes. The same example is also
used to illustrate routin@vPSS (page 930), except here we have an auxiliary
variable.

In this example, separate ratio estimation is used.

NSTRAT
(NSTRAT=2)

I, 1DO, 10PT, I TOPT, NOUT, NPOPS(NSTRAT),

NROWS( NSTRAT) , NSAMPS( NSTRAT)

COEFS( NSTRAT), CONPER, STAT(12), X(24),

XBARS( NSTRAT),  XCVS(NSTRAT), XVEANS( NSTRAT),

XVARS( NSTRAT),  XYCOVS(NSTRAT), Y(24), YBARS(NSTRAT),
YCVS(NSTRAT) ,  YVARS( NSTRAT)

SMPRS, UMVACH

, 748., 734., 577., 507., 438., 415., 401., 387.,
324., 315., 258., 237., 235., 216., 201., 179., 136.,
118., 118., 106., 104./

, 781., 805., 1238., 634., 487., 442., 451., 459.
400., 366., 302., 291., 272., 284., 270., 260., 139.,
154., 140., 163., 116./

16
48
Al'l data are input at once.
0
12
12
95.0
Use separate ratio estimation.

o o

521.8
165.4
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CALL SMPRS (1 DO NSTRAT, NROAB, X, Y, NPOPS, |COPT, | TOPT,
& XMEANS, CONPER, COCEFS, XBARS, XVARS, XCVS, YBARS,
& YVARS, YCVS, XYCOVS, NSAMPS, STAT)
C Print results
CALL UMACH (2, NaUT)
WRI TE (NOUT, 99999) (STAT(1),1=1,9), STAT(12), COEFS
99999 FORMAT (' Mean estimate =’, F8.3,”  Total estimate =,
F8.1,/," Vhat of mean ="', F8.5,” Vhat of total ’
,'=",F8.1, /," Confidence limits for mean ’, F8.3,
'), F8.3, /, " Confidence limits for total ’, F8.1,
'V, F8.1,/,"C. V. =',F8.2,"” Number’,
'missing =, F8.1, /, ’ Estimated ratios =, 2F10.3)
ND

m & R R R R

Output
Mean estimate = 315.511  Total estimate = 20192.7
Vhat of mean =55.56254  Vhat of total =227584.2
Confidence limits for mean 300.901, 330.120
Confidence limits for total 19257.7, 21127.7
C.V. = 2.36 Numbermissing= 0.0
Estimated ratios = 1.225 1.255

Example 2

In the following example, we use a stratified sample from the datain Table 5.1 of
Cochran (1977), which consists of the 1920 and the 1930 population (in 1000’s)
of 64 cities in the United States. The objective is to estimate the mean and total
1930 population of the 64 cities, using a sample of size 24 of the 1920 and 1930
populations. There are two strata: the largest 16 cities and the remaining cities.
We use stratified sampling with equal sample sizes. The same example is also
used to illustrate routin@VPSS (page 930), except here we have an auxiliary
variable.

In this example, regression estimation is used, and it is assumed that the
regression equation is the same in the two strata.

| NTEGER NSTRAT
PARAMETER ( NSTRAT=2)

C
INTEGER |, I1DO, |1 OPT, | TOPT, NOUT, NPOPS(NSTRAT),
& NROWS( NSTRAT) , NSAMPS( NSTRAT)
REAL COEFS( NSTRAT), CONPER, STAT(12), X(24),
& XBARS( NSTRAT),  XCVS( NSTRAT), XVEANS(1),
& XVARS( NSTRAT), XYCOVS(NSTRAT), Y(24), YBARS(NSTRAT),
& YCVS(NSTRAT),  YVARS( NSTRAT)
EXTERNAL  SMPRS, UMACH

C
DATA X/ 773., 748., 734., 577., 507., 438., 415., 401., 387.,
& 381., 324., 315., 258., 237., 235., 216., 201., 179., 136.,
& 132., 118., 118., 106., 104./
DATA Y/ 822., 781., 805., 1238., 634., 487., 442., 451., 459.,
& 464., 400., 366., 302., 291., 272., 284., 270., 260., 139.,
& 170., 154., 140., 163., 116./

C

NPOPS(1) = 16
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NPOPS(2) = 48
C Al data are input at once.
| DO =0
NROWS( 1) = 12
NROWS(2) = 12
CONPER = 95.0
C Use conbi ned regression estination.
| OPT =2
| TOPT =1
XMVEANS(1) = 254.5

CALL SMPRS (1 DO NSTRAT, NROWB, X, Y, NPOPS, |COPT, | TOPT,
& XMEANS, CONPER, CCEFS, XBARS, XVARS, XCVS, YBARS,
& YVARS, YCVS, XYCOVS, NSAMPS, STAT)
C Print results
CALL UMACH (2, NaUT)
WRI TE (NOUT, 99999) (STAT(1),1=1,9), STAT(12), COEFS(1)
99999 FORMAT (' Mean estimate =’, F8.3,”  Total estimate =,
F8.1,/," Vhatof mean ="', F8.5," Vhat of total’
,'=",F8.1, /,’ Confidence limits for mean ’, F8.3,
'), F8.3, /, ' Confidence limits for total ’, F8.1,
'V, F8.1,/," C. V. =’ F8.1,"’ Number ’,
'missing ="', F8.1, /, ' Estimated combined regression ’,
‘coefficient =, F8.3)

m R R0 R0 R0 R0 R

Output
Mean estimate = 315.517  Total estimate = 20193.1
Vhat of mean =54.84098 Vhat of total =224628.6
Confidence limits for mean 301.003, 330.031
Confidence limits for total 19264.2, 21122.0
C. V. = 2.3 Numbermissing= 0.0
Estimated combined regression coefficient = 1.175

SMPSC/DSMPSC (Single/Double precision)

Compute statistics for inferences regarding the population mean and total using
single stage cluster sampling with continuous data.

Usage

CALL SMPSC (IDO, NCLSTR, NROWS, Y, IOPT, NCLPOP, NPOP,
SIZE, TSIZE, CONPER, CLMEAN, CLVAR, NSAMPS,
STAT)

Arguments

IDO — Processing option. (Input)

| DO Action

0 This is the only invocation &VPSC for this data set, and all the data are
input at once.

1 This is the first invocation, and additional callssMPSC will be made.

Initialization and updating for the dataYrare performed.
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2 Thisis an intermediate invocation of SMPSC and updating for the datain
Y is performed.

3 Thisisthefinal invocation of this routine. Updating for the datain Y and
wrap-up computations are performed.

NCLSTR — Number of clusters into which the sample is divided. (Input)

In the vectors of lengtRCLSTR, the elements are all ordered in the same way.
That is, the first cluster is always the first, the second always the second, and so
on.

NROWS — Vector of lengtitNCLSTR in which NROWS(1 )| is the number of items
from thel -th cluster currently input id.  (Input)

Each element dfiROWS may be positive, zero, or negative. A negative value for
NROWS(1 ) means delete theNROAS(I ) elements of the-th cluster iny from the
analysis.

Y — Vector containing the cluster sample. (Input)
The observations within any one cluster must appear contiguouslyf e first
[NROWB(1)| elements of are from the first cluster, and so on.

|OPT — Estimation option. (Input)

| OPT  Action

0 Ratio-to-size estimation is used.

1 Unbiased estimation is used.

2 Probability-proportional-to-size estimation is used and all clusters in
population are of known size.

3 Probability-proportional-to-size estimation is used and the cluster sizes

are known only approximately or a measure of cluster size other than the
number of elements per cluster is to be used.

NCLPOP — Number of clusters in the sampled population. (Input)

NPOP — Number of elements in the population (sum of all the cluster sizes in
the population). (Input)
NPCP is not required whehOPT = 3.

SIZE — If 1 OPT = 3, vector of lengtiNCLSTR containing a measure of cluster

size for each cluster in the sample. (Input)

The sampled cluster size measures must be ordered in correspondence with the
ordering of clusters iN. SI ZE is required only whehOPT = 3.

TSIZE — If 1 OPT = 3, measure of total size of all clusters in the population.
(Input) TSI ZE is required only whehOPT = 3.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)

A CONPER percent confidence interval is computed; he@EBIPER must be
greater than or equal to 0.0 and less than 1@MYPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence taN@tL, set
CONPER = 100.0- 2.0* (100.0— ONECL).
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CLMEAN — Vector of lengtiNCLSTR containing the cluster means. (Output, if
I DO= 0 or 1; input/output, ifDO= 2 or 3.)

CLVAR — Vector of lengtiNCLSTR containing the within-cluster variances.
(Output, ifl DO= 0 or 1; input/output, if DO= 2 or 3.)

NSAMPS — Vector of lengtiNCLSTR containing the number of nonmissing
observations from each cluster. (Output,00= 0 or 1; input/output, ifDO= 2
or3.)

STAT — Vector of length 11 containing the resulting statistics. (Outpubaf
=0 or 1; input/output, if DO= 2 or 3.)
These are

STAT(l)

Estimate of the mean.

Estimate of the total.

Variance estimate of the mean estimate.
Variance estimate of the total estimate.
Lower confidence limit for the mean.
Upper confidence limit for the mean.
Lower confidence limit for the total.
Upper confidence limit for the total.
Estimate (expressed as a percentage) of the coefficient of variation of the
mean and total estimate.

O©COoO~NOOUIAWNEFE —

10 The total sample size.
11 The number of missing values.
Algorithm

RoutineSMPSC computes point and interval estimates for the population mean
and total from a single-stage cluster sample. The routine uses the standard
methods discussed in Chapters 9 and 9A of Cochran (1977). The sample means
for the individual clusters are accumulate@imnveAN, and the corrected sums of
squares are accumulateddovAR. In the postprocessing phase, the quantities in
STAT are computed using the cluster statistioSLINEAN, CLVAR, andNSANPS.

The parametensDO andNROWS allow either all or part of the data to be brought

in at one time.

Following the notation of Cochran (1977), Mbe the number of clusters in the
population, letM, be the number of elements in ik cluster unit, leM, be the

total number of elements in the populationyjebe thej-th element in theth

cluster, and leh be the number of clusters in the sample. Any of three different
estimators of the population total may be useful. An unbiased estimate of the total
is

. Yij

N n Mi
1=

1 =1

—
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The ratio-to-size estimate is

=1
The probability-proportional -to-size estimate is

wln)

The confidence limits for the mean and total are computed using the normal
approximation.

Example

In this example, we have a sample of two clusters from a population that contains
20 clusters. The sizes of the clustersin the sample are four and six, and thereisa
total of 100 elements in the population.

| NTEGER NCLSTR
PARAMETER (NCLSTR=2)
C
| NTEGER 1 DO, | OPT, NCLPOP, NOUT, NPOP, NROWS(NCLSTR),
& NSAMPS( NCLSTR)
REAL CLMEAN(NCLSTR), CLVAR(NCLSTR), CONPER, SIZE(NCLSTR),
& STAT(11), TSI ZE, Y(10)
EXTERNAL SMPSC, UMACH
C
DATA Y/ 2.7, 5.1, 4.3, 2.8, 1.9, 6.2, 4.8, 5.1, 7.2, 6.5/
C
| OPT =0
NCLPOP = 20
NPOP = 100
C Al'l data are input at once.
| DO =0
NRONB(1) = 4
NRONB(2) = 6
CONPER = 95.0
CALL SMPSC (I DO, NCLSTR, NROWS, Y, | OPT, NCLPOP, NPOP, SIZE,
& TSI ZE, CONPER, CLMEAN, CLVAR, NSAMPS, STAT)
C Print results

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99999) STAT
99999 FORMAT (' Mean estimate =’, F8.3,"  Total estimate =,
F8.1,/," Vhat of mean ="', F8.3," Vhat of total ’
,' =", F8.1, /,” Confidence limits for mean ’, F8.3,
'), F8.3, /, " Confidence limits for total ’, F8.1,

m R R R0 R0 R R

ND

"V, F8.1,/,"C. V. =", F8.1, "%, /,
" Sample size = ', F8.0,"  Number missing =,
F8.0)
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Output

Mean estinmate = 4,660 Total estimate = 466. 0
Vhat of nmean = 0. 504 Vhat of total = 5035.5
Confidence limts for nean 3. 269, 6. 051
Confidence linmts for total 326. 9, 605.1

C V. = 15. 2%

Sanpl e size = 10. Nunmber m ssing = 0.

SMPSR/DSMPSR (Single/Double precision)

Compute statistics for inferences regarding the population mean and total, given
data from a simple random sample.

Usage
CALL SMPSR (1 DO, NROW Y, NPOP, |OPT, NSAWMPO CONPER, STAT)

Arguments

IDO — Processing option. (Input)

IDO  Action

0 This is the only invocation &VPSR for this data set, and all the data are
input at once.

1 This is the first invocation, and additional callsSiPSR will be made.
Initialization and updating for the dataYrare performed.

2 This is an intermediate invocation®¥PSR, and updating for the data in
Y is performed.

3 This is the final invocation of this routine. Updating for the dataand

wrap-up computations are performed.

NROW — The absolute value ofR0wis the number of rows of data currently
inputinY. (Input)

NROWMay be positive, zero, or negative. Negati@Owmeans delete thdROW
rows of data from the analysis.

Y — Vector of lengthNROW containing the sample data. (Input)
NPOP — Size of the (full) population. (Input)

|OPT — Subpopulation option. (Input)
If | OPT = 0, no subpopulation is assumed.@PT = 1, the input data come from
a subpopulation (“domain of study”) of unknown size.

NSAMPO — Size of the sample from the full population, if a subpopulation is
sampled (that is, ifOPT = 1). (Input)

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)

A CONPER percent confidence interval is computed; he@SBPER must be
greater than or equal to 0.0 and less than 1@M@PER is often 90.0, 95.0, or
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| NTEGER
PARAMETER

| NTEGER
REAL
EXTERNAL

DATA Y/ 21.

99.0. For aone-sided confidence interval with confidence level ONECL, set
CONPER = 100.0 — 2.0 * (100.0 — ONECL).

STAT — Vector of length 11 containing the resulting statistics.
=0 or 1; input/output, if DO= 2 or 3.)
These are

STAT(l)

Estimate of the mean.

Estimate of the total.

Within-sample variance estimate.
Variance estimate of the mean estimate.
Variance estimate of the total estimate.
Lower confidence limit for the mean.
Upper confidence limit for the mean.
Lower confidence limit for the total.
Upper confidence limit for the total.
The sample size.

The number of missing values.

(Outpunadf

PPRPOO~NOOORWNE —

[ ]

Algorithm

RoutineSMPSR computes point and interval estimates for the population mean

and total from a simple random sample of one variable. The routine uses the
standard methods discussed in Chapter 2 of Cochran (1977). The sample mean is
accumulated iSTAT(1) and the corrected sum of squares is accumulated in
STAT(3). In the postprocessing phaSgAT(3) is divided by the sample size

minus one, and then the other quantitieSTIAT are computed. The parameters

| DO andNROWallow either all or part of the data to be brought in at one time.

By use ofi OPT andNSAMPO, SMPSR can also be used to analyze data from a
subpopulation or “domain of study”. (See Cochran 1977, page383/in the

case of a subpopulation, only the estimates relating to the subpopulation total
differ from the corresponding estimates when no subpopulation is assumed. Of
course, if a subpopulation is of known size, it should be considered the full
population.

Example 1

This example uses artificial data to illustrate a simple usa®$R to compute
point and interval estimates of the population mean and total. The sample size is
15, from a population of size 150.

NROW
( NROWELS5)

DO, | OPT, NOUT, NPOP, NSAMPO
CONPER, STAT(11), Y(NROW
SMPSR, UNMACH

, 14., 17., 22., 19., 21., 20., 15., 24., 28., 20.,
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& 17., 16., 22., 19./

C
NPOP = 150
CONPER = 95.0
C Al'l data are input at once.
IDO=0
C No subpopul ation is assuned.
IOPT = 0
CALL SMPSR (I DO, NROW Y, NPOP, | OPT, NSAMPO, CONPER, STAT)
C Print results

CALL UMACH (2, NOUT)

VWRI TE ( NOUT, 99999) STAT
99999 FORMAT (' Mean estimate =’, F8.3,”  Total estimate =,
F8.1, /, " Within-sample variance estimate ="', F8.3, /,
"VHAT of mean =", F85,” VHAT oftotal =",
F8.1, /, ' Confidence limits for mean ’, F8.3,
'), F8.3, /, ' Confidence limits for total ’, F8.1,
'V, F8.1,/," Sample size =", F8.1,"  Number’,
'missing ="', F8.0)

m R R0 R0 R0 R0 R0

Output
Mean estimate = 19.667  Total estimate = 2950.0
Within-sample variance estimate = 13.238
VHAT of mean = 0.79429  VHAT of total = 17871.4
Confidence limits for mean 17.755, 21.578
Confidence limits for total 2663.3, 3236.7
Sample size= 15.0 Number missing = 0.

Example 2

This exampleis a problem of estimation in a subpopulation described on page 37
of Cochran (1977). The exampleillustrates how the IDO and NROVparameters
can be used to alow input other than the actual data. Cochran gives only the
sample total and uncorrected sum of squares, so these values are transformed to
the mean and corrected sum of squares prior to input as STAT(1) and STAT(3).

INTEGER DO, IOPT, NOUT, NPOP, NROW, NSAMPO
REAL  CONPER, SQRT, STAT(11), Y(1)

INTRINSIC SQRT

EXTERNAL SMPSR, UMACH

NPOP =2422

CONPER =95.0
There are 180 items in the complete
sample, but only a subpopulation is
of interest.

000

IOPT =1

NSAMPO = 180
For this example, STAT is
initialized as if the data
have been already processed and only
the postprocessing computations are
to be done. There are 152 items of
interest in the sample. The sample
total is 343.5 and the uncorrected

0O000000
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sum of squares is 1491. 38.

STAT(1) is initialized to the sanple
mean by dividing the total by the
sanpl e size, and STAT(3) is
initialized to the corrected sum of

000000

squar es.

STAT(1) = 343.5/152.0

STAT(3) = 1491.38 - 152. 0*STAT(1)**2

STAT(10) = 152.0

STAT(11) = 0.0

| DO =3

NROW =0

CALL SMPSR (I DO, NROW Y, NPOP, | OPT, NSAMPO, CONPER, STAT)
C Print results

CALL UMACH (2, NauT)
VRI TE (NOUT, 99999) STAT(2), SQRT(STAT(5))
99999 FORMAT (*  Total estimate =’, F8.1,/,”  Standard ',
& ‘deviation of the estimate =, F8.1)
END

Output
Total estimate = 4622.0
Standard deviation of the estimate = 375.3

SMPSS/DSMPSS (Single/Double precision)

Compute statistics for inferences regarding the population mean and total, given
data from a stratified random sample.

Usage

CALL SMPSS (IDO, NSTRAT, NROWS, Y, NPOPS, IVOPT, CONPER,
YBARS, YVARS, NSAMPS, STAT)

Arguments

IDO — Processing option. (Input)

IDO  Action

0 This is the only invocation &vPSS for this data set, and all the data are
input at once.

1 This is the first invocation, and additional callsStiPSS will be made.
Initialization and updating for the dataYrare performed.

2 This is an intermediate invocation®¥PSS, and updating for the data in
Y is performed.

3 This is the final invocation of this routine. Updating for the dataand

wrap-up computations are performed.

NSTRAT — Number of strata into which the population is divided. (Input)

In the vectors of lengtRSTRAT, the elements are all ordered in the same way.
That is, the first stratum is always the first, the second always the second, and so
on.
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NROWS — Vector of lengtiNSTRAT in which NROWS(1 )| is the number of items
from thel -th stratum currently input ivi. (Input)

Each element afROAS may be positive, zero, or negative. A negative value for
NROWS(1 ) means delete theNROAS(I ) elements of the-th stratum iny from the
analysis.

Y — Vector containing the stratified random sample. (Input)
The observations within any one stratum must appear contiguowslylire first
[NROWS(1)| elements of are from the first stratum, and so on.

NPOPS — Vector of lengtiINSTRAT containing the sizes of the population in the
strata. (Input)

The entries must be ordered in correspondence with the ordering of strata in the
other vectors. If the population strata sizes are not known, estimates must be
entered in their place.

IVOPT — Within-stratum variance assumption indicator. (Input)

If 1 VOPT = 0, the true within-stratum variance is assumed constant, and a pooled
estimate of that variance is returneditAT(12). If | VOPT = 1, separate within-
strata variance estimates are assumed.

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)

A CONPER percent confidence interval is computed; he@EBIPER must be
greater than or equal to 0.0 and less than 1@MWPER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence teN@tL, set
CONPER = 100.0- 2.0* (100.0— ONECL).

YBARS — Vector of lengtiNSTRAT containing the strata means. (Output, if
I DO= 0 or 1; input/output, if DO= 2 or 3.)

YVARS — Vector of lengtiNSTRAT containing the within-strata variances.
(Output, ift DO= 0 or 1; input/output, ifDO= 2 or 3.)

NSAMPS — Vector of lengtitNSTRAT containing the number of nonmissing
observations from each stratum. (OutpuitDO= 0 or 1; input/output, if DO= 2
or 3.)

STAT — Vector of length 13 containing the resulting statistics. (Output, if
I DO= 0 or 1; input/output, if DO= 2 or 3.)
These are

STAT(1)

Estimate of the mean.

Estimate of the total.

Variance estimate of the mean estimate.
Variance estimate of the total estimate.
Lower confidence limit for the mean.
Upper confidence limit for the mean.
Lower confidence limit for the total.
Upper confidence limit for the total.

oO~NO OB WNE —
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9 Estimate of the coefficient of variation of the mean and total estimates.

10 Number of degrees of freedom associated with the variance estimates of
the mean and total estimates. When | VOPT = 1, STAT(10) contains an
effective number of degrees of freedom determined according to the
Satterthwaite approximation.

11 Variance estimate of the mean estimate assuming that sampling was
simple random instead of stratified random.

12 Pooled estimate of the common variance, when | VOPT = 0. If
| VOPT = 1, STAT(12) is not defined.

13 The number of missing values.

Comments

Information Error

Type Code

4 1 The population size for each stratum is equal to one.
Algorithm

Routine SMPSS computes point and interval estimates for the population mean
and total from a stratified random sample of one variable. The routine uses the
standard methods discussed in Chapters 5 and 5A of Cochran (1977). The sample
means for the individual strata are accumulated in YBARS, and the corrected sums
of squares are accumulated in YVARS. |n the postprocessing phase, the quantities
in STAT are computed using the strata statistics in YBARS, YVARS, and NSAMPS.
The parameters | DOand NROWS allow either all or part of the data to be brought
in at one time.

Example

In this example, we use a stratified sample from the datain Table 5.1 of Cochran

(1977): the 1930 population (in 1000's) of 64 cities in the United States. The 64
cities are the “population”, and our objective is to estimate the mean and total
number of inhabitants in these 64 cities. There are two strata: the largest 16 cities
and the remaining cities. We use stratified sampling with equal sample sizes. To
choose the random sample, we use rolRNERI (page 1241), as follows:

I NTEGER | SEED, NSAMP, NPOP, | NDEX(12)
NSAWP = 12
NPOP = 16

| SEED = 123457
CALL RNSET(| SEED)

CALL RNSRI (NSAVP, NPOP, | NDEX)
WRI TE(*, *) | NDEX

NPOP = 48

CALL RNSRI (NSAVP, NPOP, | NDEX)
WRI TE(*, *) | NDEX

END
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C

I R0 R0 R9 R9 Ro Ro

| NTEGER
PARAMETER

| NTEGER
&

REAL

EXTERNAL

DATA Y/ 822.
& 464. ,
& 170.,

NPOPS( 1)
NPOPS( 2)
| VOPT

| DO
NROWS( 1)
NROWS( 2)
CONPER

Thisyields the populationindices{2, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16} for the
first stratum and {4, 8, 10, 11, 13, 16, 29, 30, 36, 37, 45, 46} for the second
stratum. The corresponding values from Table 5.1 are encoded in the program
below.

NSTRAT
(NSTRAT=2)

I, 1DO, 1VOPT, NOUT, NPOPS(NSTRAT), NROWS(NSTRAT),
NSAMPS( NSTRAT)

CONPER, STAT(13), Y(24), YBARS(NSTRAT), YVARS(NSTRAT)
SMPSS, UVACH

, 781., 805., 1238., 634., 487., 442., 451., 459.,
400., 366., 302., 291., 272., 284., 270., 260., 139.,
154., 140., 163., 116./

Al'l data are input at once.

95.0

CALL SMPSS (I DO, NSTRAT, NROAS, Y, NPCPS, |VCPT, CONPER, YBARS,

&

YVARS, NSAMPS, STAT)
Print results

CALL UMACH (2, NOUT)

WRI TE (NQUT, 99999) (STAT(Il),1=1,11), STAT(13)
99999 FORMAT (' Mean estimate =", F8.3,"’ Total estimate =,
F9.1,/,’ Vhat of mean ="', F8.3,’ Vhat of total ’
,'=",F9.1, /,’ Confidence limits for mean ’, F8.3,

"', F8.3, /, ' Confidence limits for total ’, F8.1,

' F8.1,/," C. V. =’ F8.1,’ Degrees’

, 'of freedom

="', F8.1,/,’ SRS var. estimate =,

F8.3,” Number missing =", F8.0)

Output

Mean estimate = 313.167  Total estimate = 20042.7
Vhat of mean = 264.703 Vhat of total =1084224.6
Confidence limits for mean 279.180, 347.153
Confidence limits for total 17867.5, 22217.8

C.v.

= 52

Degrees of freedom =  19.6

SRS var. estimate = 1288.075 Number missing = 0.

SMPST/DSMPST (Single/Double precision)

Compute statistics for inferences regarding the population mean and total given
continuous data from a two-stage sample with equisized primary units.

IMSL STAT/LIBRARY

Chapter 12: Sampling - 933



Usage

CALL SMPST (1 DO, NUNSAM NELSAM NOBS, Y, NUNPOP, NELPOP,
CONPER, PUMEAN, PUVAR, STAT)

Arguments

IDO — Processing option. (Input)

| DO Action

0 This is the only invocation &VPST for this data set, and all the data are
input at once.

1 This is the first invocation, and additional callsSiPST will be made.
Initialization and updating for the dataYrare performed.

2 This is an intermediate invocation®¥PST, and updating for the data in
Y is performed.

3 This is the final invocation of this routine. Updating for the dataand

wrap-up computations are performed.
NUNSAM — Number of primary units into which the sample is divided. (Input)

NELSAM — Number of elements in the sample in each sampled primary unit.
(Input)

NOBS — The number of observations currently inpuYin (Input)
NOBS may be positive or zero. NOBS = 0,1 DO must equal 3, and only wrap-up
computations are performed.

Y — Vector of lengtiNOBS containing the elements of the two-stage sample.
(Input)

The elements from each primary unit must occur contiguously witt8imce
there must be an equal number from each primary\unitjst contain no missing
values.

NUNPOP — Number of primary units in the sampled population. (Input)
NELPOP — Number of elements in each primary unit in the population. (Input)

CONPER — Confidence level for two-sided interval estimate, in percent.
(Input)

A CONPER percent confidence interval is computed; he@SBPER must be
greater than or equal to 0.0 and less than 1@M@PER is often 90.0, 95.0, or
99.0. For a one-sided confidence interval with confidence @n@tL, set
CONPER = 100.0- 2.0* (100.0— ONECL).

PUMEAN — Vector of lengtiNUNSAM containing the means of the primary units

in the sample. (Output, ifbo= 0 or 1; input/output, if DO= 2 or 3)

The estimates are ordered in correspondence with the ordering of primary units in
Y.
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PUVAR — Vector of lengtiNUNSAM containing the sample variances of the

primary units in the sample. (Output| BO= 0 or 1; input/output, if DO= 2 or

3)

The estimates are ordered in correspondence with the ordering of primary units in
Y.

STAT — Vector of length 9 containing the resulting statistics. (Outpubd&
0 or 1; input/output, if DO= 2 or 3)

STAT(1)

Estimate of the mean.

Estimate of the total.

Variance of the mean estimate.
Variance estimate of the total estimate.
Lower confidence limit for the mean.
Upper confidence limit for the mean
Lower confidence limit for the total.
Upper confidence limit for the total.
Estimate (expressed as a percentage) of the coefficient of variation of the
mean and total estimates.

O©CoOoO~NOOULA WNPEFE —

Algorithm

RoutineSMPST computes point and interval estimates for the population mean

and total from a two-stage sample with primary units that are all equal in size. A
two-stage sample might be taken if each unit (“primary unit’) in the population
can be divided into smaller units. Primary units are selected first, and then those
selected are subsampled. The routine uses the standard methods discussed in
Chapter 10 of Cochran (1977). The sample means for the individual primary units
are accumulated iIPUMEAN, and the corrected sums of squares are accumulated in
PUVAR. In the postprocessing phase, the quantiti€&T AT are computed using

the primary unit statistics. The parameteb® andNOBS allow either all or part

of the data to be brought in at one time.

Following the notation of Cochran (1977), fefNUMSAM be the number of
primary units in the sample, let (NELSAM) be the number of elements (subunits)
subsampled from each primary unit, Ne(NUMPOP) be the total number of
primary units in the population, I&t (NELPOP) be the total number of elements
in each primary unit (in the population), andyigbe thej-th element in theth
primary unit. The sample mean per subunit initthkeprimary unit is

1 m
=3
[ ij:l ij

The estimate of the population mean is
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The estimate of the variance of

n

n
- 2
is
NN(n - 1; m(m 1HMnN

‘<I|

m
z (yu yi )
i=1j=1
Example

In this example, we have a sample of two primary units, with fivesubunits from
each. The population consists of 10 primary units with 15 elements each.

| NTEGER I DO, NELPOP, NELSAM NOBS, NOUT, NUNPOP, NUNSAM
REAL CONPER, PUMEAN(2), PUVAR(2), STAT(9), Y(10)
EXTERNAL SMPST, UVACH
C
DATA Y/ 2.7, 5.1, 4.3, 2.8, 1.9, 6.2, 4.8, 5.1, 7.2, 6.5/
C
NUNSAM = 2
NELSAM = 5
NOBS = 10
NUNPOP = 10
NELPOP = 15
C Al'l data are input at once.
| DO =0
CONPER = 95.0
CALL SMPST (I DO, NUNSAM NELSAM NOBS, Y, NUNPOP, NELPCP,
& CONPER, PUMEAN, PUVAR, STAT)
C Print results

CALL UMACH (2, NaQUT)
VWRI TE ( NOUT, 99999) STAT
99999 FORMAT (' Mean estimate =’, F8.3,”  Total estimate =,
& F8.1,/," Vhatof mean =, F8.3,” Vhat of total’

& ,'=",F8.1,/," Confidence limits for mean ’, F8.3,
& '), F8.3, /, " Confidence limits for total ’, F8.1,
& 'V, F8.1,/," C. V. ="', F8.1, '%)
END
Output

Mean estimate = 4.660  Total estimate = 699.0
Vhat of mean = 1.370 Vhat of total = 30823.7
Confidence limits for mean 2.366, 6.954
Confidence limits for total 354.9, 1043.1

C. V. = 251%
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Chapter 13: Survival Analysis, Life
Testing, and Reliability

Routines
13.1. Survival Analysis
Kaplan-Meier eStimates ..........ccovvveveviviviiiiiiiiiiiiiiiieieeeeeeeee KAPMR 938
Print Kaplan-Meier estimates..........ccccccceeeiiiiiiiiieiee e KTBLE 942
Turnbull’s generalized Kaplan-Meier estimates................... TRNBL 946
Analyze time event data using
a proportional hazards model...............cccoe e, PHGLM 951
Analyze survival data using a generalized linear model...... SVGLM 967
Estimates using various parametric models ........................ STBLE 985

13.2. Actuarial Tables
Current and cohort tables ..........oooviiieiiiii e ACTBL 992

Usage Notes

The routines described in this chapter have primary application in the areas of
reliability and life testing, but they may find application in any situation in which
timeisavariable of interest. Kalbfleisch and Prentice (1980), Elandt-Johnson and
Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless (1982), and

Chiang (1968) are general references for discussing the models and methods used
here.

Kaplan-Meier (product-limit) estimates of the survival distribution in asingle
population is available through routine KAPMR (page 938), and these can be
printed using KTBLE (page 942). Routine TRNBL (page 946) computes
generalized Kaplan-Meier estimates. Routine PHGLM (page 951) computes the
parameter estimates in a proportional hazards model. Routine SVGLM(page 967)
fits any of severa generalized linear models, and STBLE (page 985) computes
estimates of survival probabilities based on the same models. Routine ACTBL
(page 992) computes and (optionally) prints an actuaria table based either upon a
cohort followed over time or a cross-section of a population.
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KAPMR/DKAPMR (Single/Double precision)

Compute Kaplan-Meier estimates of survival probabilitiesin stratified samples.

Usage

CALL KAPMR (NOBS, NCOL, X, LDX, IRT, IFRQ |CEN, |GRP,
| SRT, SPROB, LDSPRO, NRM SS)

Arguments

NOBS — Number of observations. (Input)

NCOL — Number of columns iX. (Input)

X — NOBS by NCOL matrix containing the data. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IRT — Column number iiX containing the response variable. (Input)
For thei-th right-censored observatiox(j, | RT) contains the right-censoring
time. OtherwiseX(i, | RT) contains the failure time. (SE€EN.)

IFRQ — Column number iX containing the frequency of response for this
observation. (Input)
If | FRQ= 0, a response frequency of 1 for each observation is assumed.

ICEN — Column number iX containing the censoring code for this observation.
(Input)

If | CEN = 0, a censoring code of 0 is assumed. Valid censoring codes are:
Code Meaning

0 Exact failure ax(i, | RT).

1 Right censored. The response is greater X(ianh RT).

If X(i, I CEN) is not O or 1, then thieth observation is omitted from the analysis.

| GRP — Column number iX containing the stratum number for this

observation. (Input)

If 1 GRP = 0, the data is assumed to be from one stratum. Otherwise, doiRPn

of X contains a unique value for each stratum in the data. Kaplan-Meier estimates
are computed within each stratum.

| SRT — Sorting option. (Input)

If 1| SRT =1, column RT of X is assumed to be sorted in ascending order within
each stratum. Otherwise, a detached sort will be performedrnR . If sorting

is performed bYAPMR, all censored individuals are assumed to follow tied
failures.

SPROB — NOBS by 2 matrix. (Output)
SPROB(i, 1) contains the estimated survival probability at tkfiel RT) in thei-th
observation’s stratum, whi&PROB(i, 2) contains Greenwood’s estimate of
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the standard deviation of this estimated probability. If the i-th observation
contains censor codes out of range or if avariableis missing, then the
corresponding elements of SPROB are set to missing (NaN, not a number).
Similarly, if an element in SPROB is not defined, then it is set to missing.

LDSPRO — Leading dimension 8PROB exactly as specified in the dimension
statement in the calling program. (Input)

NRMISS — Number of rows of data ixthat contain any missing values.
(Output)

Comments

1. Automatic workspace usage is

KAPMVR 4* NOBS +NCOL + 3* m, or
DKAPMR 4 * NOBS + NCOL + 5* m, wherem = max(OBS, NCOL).

Workspace may be explicitly provided, if desired, by use of
K2PMR/DK2PMR. The reference is

CALL K2PMR (NOBS, NCOL, X, LDX, IRT, IFRQ | CEN,
| GRP, | SRT, SPROB, LDSPRO, NRM SS,
I GP, IPERM [INDDR, |WK, WK, |PER)

The additional arguments are as follows:

|GP — Work vector of lengtiNOBS.

IPERM — Work vector of lengtiNOBS + NCOL.
INDDR — Work vector of lengtiNoBS.

IWK — Work vector of length maX(OBS, NCOL).
WK — Work vector of length 2 max{NOBS, NCQOL).
IPER — Work vector of lengtiNOBS.

2. Missing values may occur in any of the columns. &ny row ofX that
contains missing values in th&T, | CEN, or| FRQ columns (when the
I CEN andl FRQ columns are present) is omitted from the analysis.
Missing values in theGRP column, if present, are classified into an
additional “missing” group.

Algorithm

RoutineKAPMR computes Kaplan-Meier (or product-limit) estimates of survival
probabilities for a sample of failure times that possibly contain right censoring. A
survival probabilityS(t) is defined as * F(t), whereF(t) is the cumulative
distribution function of the failure timey.(Greenwood’s estimate of the standard
errors of the survival probability estimates are also computed. (See Kalbfleisch
and Prentice, 1980, pages 13 and 14.)
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Let (t;, 9,), fori = 1,...,n denote the failure/censoring times and the censoring
codes for then observations in a single sample. Hére, X(i, | RT) is a failure
time if §; is 0, whered; = X(i, | CEN). Also, t; is a censoring time ; is 1. Rows in
X containing values other than 0 or 1 &are ignored. Let the number of
observations in the sample that have not failed by $jyige denoted by,,),
wheres, is an ordered (from smallest to largest) listing of the distinct failure
times (censoring times are omitted). Then the Kaplan-Meier estimate of the
survival probabilities is a step function, which in the interval fegpto 5.4
(including the lower endpoint) is given by

. L (ngiy —dg;

_ () — &)
=[]
i=1 (i)

whered;;) denotes the number of failures occurring at t§peNote that one row

of X may correspond to more than one failed (or censored) observation when the
frequency option is in effect ERQis not zero). The Kaplan-Meier estimate of the
survival probability prior to time,, is 1.0, while the Kaplan-Meier estimate of

the survival probability after the last failure time is not defined.

Greenwood’s estimate of the variance of

S(t)
in the interval fromg;, to 5,4, is given as

o = &2y 90
est.var((t)) = §? )Y 12 ;.
=0 (ngy ~dg)

RoutineKAPMR computes the single sample estimates of the survival probabilities
for all samples of data includedXduring a single call. This is accomplished
through tha GRP column ofX, which if present, must contain a distinct code for

each sample of observationsl RP = 0, there is no grouping column, and all
observations are assumed to be from the same sample.

When failures and right-censored observations are tied and the data are to be
sorted byKAPMR (I SRT is not 1), KAPMR assumes that the time of censoring for
the tied-censored observations is immediately after the tied failure (within the
same sample). When theRT = 1 option is in effect, the data are assumed to be
sorted from smallest to largest according to coluiRn of X within each stratum.
Furthermore, a small increment of time is assumed (theoretically) to elapse
between the failed and censored observations that are tied (in the same sample).
Thus, when thé SRT = 1 option is in effect, the user must sort all of the da¥ in
from smallest to largest according to colun®T (and column GRP, if present).

By appropriate sorting of the observations, the user can handle censored and
failed observations that are tied in any manner desired.
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Example

The following example is taken from Kalbfleisch and Prentice (1980, page 1).
The first column in X contains the death/censoring times for rats suffering from
vaginal cancer. The second column contains information as to which of two forms
of treatment were provided, while the third column contains the censoring code.
Finally, the fourth column contains the frequency of each observation. The
product-limit estimates of the survival probabilities are computed for both groups
with one call to KAPMR. In this example, the output in SPROB has been
equivalenced with columns 5 and 6 of X so that the input and output matrices
could be printed together. Routine KAPMR could have been called with the

I SRT = 1 option in effect if the censored observations had been sorted with
respect to the failure time variable.

INTEGER  ICEN, IFRQ IGRP, IRT, ISRT, LDSPRO, LDX, NCOL, NOBS
PARAMETER (I CEN=3, |FRQ=4, |GRP=2, |RT=1, |SRT=0, LDSPRO=33,
& LDX=33, NCOL=6, NOBS=33)
C
INTEGER ~ NOUT, NRM SS
REAL SPROB( LDSPRO, 2), X(LDX, NCOL)
CHARACTER XLABEL(7)*6, YLABEL(1)*6
EXTERNAL  KAPMR UMVACH, WRRRL
C
EQUI VALENCE (X(1,5), SPROB)
C
DATA XLABEL/'OBS’, 'TIME’, 'GROUP’, 'CENSOR’, 'FREQ’, 'S-HAT’,
& 'SE/

DATA YLABEL/'NUMBER'/
DATA X/143, 164, 188, 190, 192, 206, 209, 213, 216, 220, 227,
& 230, 234, 246, 265, 304, 216, 244, 142, 156, 163, 198, 205,
& 232,233,239, 240, 261, 280, 296, 323, 204, 344, 18*5,
& 15*7, 16%0, 21, 13*0, 4*1, 2, 20*1, 2, 4, 3*1, 2*2, 3*1,
& 66%0/
C
CALL KAPMR (NOBS, NCOL, X, LDX, IRT, IFRQ, ICEN, IGRP, ISRT,
& SPROB, LDSPRO, NRMISS)
C
CALL WRRRL ('X/SPROB’, NOBS, 6, X, LDSPRO, 0, '(W10.6)’, YLABEL,
& XLABEL)
CALL UMACH (2, NOUT)
WRITE (NOUT, (/" NRMISS =", I5)") NRMISS
END

Output
XI/ISPROB
OBS TIME GROUP  CENSOR FREQ S-HAT SE
1 143.000 5.000 0.000 1.000 0.947 0.051
2 164.000 5.000 0.000 1.000 0.895 0.070
3 188.000 5.000 0.000 2.000 0.789  0.094
4 190.000 5.000 0.000 1.000 0.737 0.101
5 192.000 5.000 0.000 1.000 0.684  0.107
6 206.000 5.000 0.000 1.000 0.632 0.111
7 209.000 5.000 0.000 1.000 0.579 0.113
8 213.000 5.000 0.000 1.000 0.526 0.115
9 216.000 5.000 0.000 1.000 0.474 0.115
10 220.000 5.000 0.000 1.000 0.414 0.115
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11 227.
12 230.
13 234.
14 246.
15 265.
16 304.
17 216.
18 244,
19 142.
20 156.
21 163
22 198
23 205.
24 232
25 233.
26 239
27 240
28 261.
29 280
30 296.
31 323.
32 204.
33 344.
NRM SS =

000
000

000
000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

5. 000 0. 000 1. 000 0. 355 0.112
5. 000 0. 000 1. 000 0. 296 0.108
5. 000 0. 000 1. 000 0. 237 0.101
5. 000 0. 000 1. 000 0. 158 0. 093
5. 000 0. 000 1. 000 0. 079 0. 073
5. 000 0. 000 1. 000 0. 000 NaN
5. 000 1. 000 1. 000 0.474 0. 115
5. 000 1. 000 1. 000 0. 237 0.101
7. 000 0. 000 1. 000 0. 952 0. 046
7.000 0. 000 1. 000 0. 905 0. 064
7.000 0. 000 1. 000 0. 857 0. 076
7.000 0. 000 1. 000 0. 810 0. 086
7.000 0. 000 1. 000 0.759 0. 094
7.000 0. 000 2.000 0. 658 0. 105
7.000 0. 000 4.000 0. 455 0.111
7.000 0. 000 1. 000 0. 405 0. 110
7.000 0. 000 1. 000 0. 354 0. 107
7.000 0. 000 1. 000 0. 304 0. 103
7.000 0. 000 2.000 0. 202 0. 090
7.000 0. 000 2.000 0.101 0. 068
7.000 0. 000 1. 000 0. 051 0. 049
7.000 1. 000 1. 000 0. 810 0. 086
7.000 1. 000 1. 000 NaN NaN

KTBLE/DKTBLE (Single/Double precision)

Print Kaplan-Meier estimates of survival probabilities in stratified samples.

Usage
CALL KTBLE (NOBS, NCOL, X, LDX, IRT, IFRQ ICEN, |IGRP

| SRT, SPROB, LDSPRO)
Arguments
NOBS — Number of observations. (Input)
NCOL — Number of columns iX. (Input)
X — NOBS by NCOL matrix containing the data. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IRT — Column number of containing the response variable. (Input)
For thei-th right-censored observatiox(i, | RT) contains the right-censoring
time. OtherwiseX(i, | RT) contains the failure time. See argumeEN.

IFRQ — Frequency option. (Input)
I FRQ= 0 means that all frequencies are 1.0. For poditiR®), column number
| FRQ of X contains the frequencies.
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I CEN — Column number ok containing the censoring code for this observation.
(Input)

If | CEN = 0, a censoring code of 0 is assumed. Valid censoring codes are:
Code Meaning

0 Exact failure ax(i, | RT).

1 Right censored. The response is greater X(ianhRT).

If X(i, | CEN) is not zero or one, then tivh observation is omitted from the
analysis.

| GRP — Column number aX containing the stratum number for this
observation. (Input)

If 1 GRP = 0, the data are assumed to be from one stratum. Otherwise, column
| GRP of X contains a unique value for each stratum in the data. Kaplan-Meier
estimates are computed within each stratum.

| SRT — Sorting option. (Input)

If 1 SRT = 1, column RT of X is assumed to be sorted in ascending order within
each stratum. Otherwise, a detached sort will be perform&@ByE. If sorting

is performed bKTBLE, all censored observations are assumed to follow failing
observations with the same response time(inl RT).

SPROB — NOBS hy 2 matrix. (Input)

SPROB (i, 1) contains the estimated survival probability at tkfiel RT) in thei-

th observation’s stratum, whi#R0OB(i, 2) contains Greenwood’s estimate of the
standard deviation of this estimated probabiyROB will usually be computed
by routineKAPMR (page 938). It may contain missing values after the last failed
observation in each group.

LDSPRO — Leading dimension 8PROB exactly as specified in the dimension
statement in the calling program. (Input)

Comments
1. Automatic workspace usage is

KTBLE 4* NOBS + 3* max{NOBS, NCOL) units, or
DKTBLE 6* NOBS + 5* max{NOBS, NCOL) units.

Workspace may be explicitly provided, if desired, by use of
K2BLE/DK2BLE. The reference is

CALL K2BLE (NOBS, NCOL, X, LDX, IRT, IFRQ | CEN,
| GRP, | SRT, SPROB, LDSPRO, ALG., |PERM
I NDDR, WK, WK1, |WK)

The additional arguments are as follows:

ALGL — Work vector of lengtiNOBS that contains the log likelihoods
of the Kaplan-Meier estimates. If the number of groups is knowntio be
or less, theLGL can be of lengtm.

IPERM — Work vector of lengtiNOBS.
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INDDR — Work vector of lengtiNOBS.

WK — Work vector of lengtiNOBS.

WK1 — Work vector of length 2 max{NOBS, NCOL).
IWK — Work vector of length max(OBS, NCOL).

2. Informational errors
Type Code
4 1 An invalid value foBPROB has been detected. The

estimated survival probability must be between zero
and one, inclusive, and nonincreasing with failure time
within each group.

4 2 A negative frequency has been detected.

4 3 A missing value f@PROB has been detected but later
failures occur. Missing values are not allowed prior to
the last failed observation.

3. Missing values may occur in any of the columns. &ny row ofX that
contains missing values in th&T, | CEN, or| FRQ columns (when the
I CEN andl FRQ columns are present) is omitted from the analysis.
Missing values in theGRP column, if present, are classified into an
additional “missing” group.

Algorithm

RoutineKTBLE prints life tables based upon the Kaplan-Meier estimates of the
survival probabilities (see routin\PVR, page 938). One table for each stratum

is printed. In addition to the survival probabilities at each failure point, the
following is also printed: the number of individuals remaining at risk,
Greenwood’s estimate of the standard errors for the survival probabilities, and the
Kaplan-Meier log-likelihood. The Kaplan-Meier log-likelihood is computed as:

=7 dgj) Indgj)y +(ngj) — dgj))In(ng)y = djy) = negyInngg)
J

where the sum is with respect to the distinct failure tigpesl; is the number of
failures occurring at timg)), andn; is the number of observations that had not
yet failed immediately prior tg;). Note that sorting is performed by bathPVR

(page 938), and by routin@BLE. The user may sort the data to be increasing in
failure time and then use th&RT = 1 option to avoid this double sorting.

Example

This example illustrates the typical usek@BLE. First, routineKAPMR (page 938)
is used to compute the survival probabilities. This is followed by a c&liRbE
that performs the printing. The input data is given as:
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143, 164, 188(2), 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246,
265, 304, 216* , 244* , 142, 156, 163, 198, 205, 232(2), 233(4), 239,
240, 261, 280(2), 296(2), 323, 204+ , 344+

where items marked with an* are right censored; and the frequency of each
failuretime, if different from 1, is given in parenthesis.

| NTECER ICEN, IFRQ IGRP, IRT, ISRT, LDSPRO, LDX, NCOL, NOBS
PARAMETER (1 CEN=3, | FRQ=4, |GRP=2, |RT=1, |SRT=0, LDSPRO=33,
& LDX=33, NCOL=4, NOBS=33)
C
| NTECER NRM SS
REAL SPROB( LDSPRO, 2), X(LDX, NCOL)
EXTERNAL  KAPMR, KTBLE
C
DATA X/ 143, 164, 188, 190, 192, 206, 209, 213, 216, 220, 227,
& 230, 234, 246, 265, 304, 216, 244, 142, 156, 163, 198, 205,
& 232, 233, 239, 240, 261, 280, 296, 323, 204, 344, 18*5,
& 15*7, 16*0, 2*1, 13*0, 4*1, 2, 20*1, 2, 4, 3*1, 2*2, 3*1/
C
CALL KAPMR (NOBS, NCOL, X, LDX, IRT, IFRQ |ICEN, |IGRP, |SRT,
& SPROB, LDSPRO, NRM SS)
C
CALL KTBLE (NOBS, NCOL, X, LDX, IRT, IFRQ |ICEN, |IGRP, |SRT,
& SPROB, LDSPRO)
END
Output
Kapl an Meier Survival Probabilities
For Group Value = 5. 00000
Nunber Nunber Survi val Esti mat ed
at risk Fai ling Time Probability Std. Error
19 1 143 0.94737 0. 05123
18 1 164 0.89474 0. 07041
17 2 188 0. 78947 0. 09353
15 1 190 0.73684 0.10102
14 1 192 0. 68421 0. 10664
13 1 206 0. 63158 0.11066
12 1 209 0.57895 0.11327
11 1 213 0.52632 0. 11455
10 1 216 0.47368 0. 11455
8 1 220 0. 41447 0. 11452
7 1 227 0. 35526 0.11243
6 1 230 0. 29605 0.10816
5 1 234 0.23684 0.10145
3 1 246 0. 15789 0. 09343
2 1 265 0. 07895 0. 07279
1 1 304 0. 00000 NaN
Total nunber in group = 19
Total nunber failing = 17
Product Limt Likelihood = -49. 1692
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Kapl an Mei er Survival Probabilities

For Group Value = 7. 00000
Nunber Nunber Survi val Esti mat ed
at risk Fai ling Time Probability Std. Error
21 1 142 0. 95238 0. 04647
20 1 156 0.90476 0. 06406
19 1 163 0.85714 0. 07636
18 1 198 0. 80952 0. 08569
16 1 205 0. 75893 0. 09409
15 2 232 0. 65774 0. 10529
13 4 233 0. 45536 0.11137
9 1 239 0. 40476 0. 10989
8 1 240 0. 35417 0.10717
7 1 261 0. 30357 0.10311
6 2 280 0.20238 0. 09021
4 2 296 0.10119 0.06778
2 1 323 0. 05060 0. 04928
Total nunber in group = 21
Total nunber failing = 19
Product Limt Likelihood = -50. 4277

TRNBL/DTRNBL (Single/Double precision)

Compute Turnbull's generalized Kaplan-Meier estimates of survival probabilities
in samples with interval censoring.

Usage

CALL TRNBL (NOBS, NCOL, X, LDX, ILT, IRT, IFRQ ICEN,
MAXI T, EPS, |PRINT, NI NTVL, SPROB, LDSPRO,
ALGL, NRM SS)

Arguments

NOBS — Number of observations. (Input)

NCOL — Number of columns iX. (Input)

X — NOBS by NCOL matrix containing the data. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

ILT — For interval-censored and left-censored observations, the column number
in X that contains the upper endpoint of the failure interval. (Input)

See argumentCEN. If I LT = 0, left-censored and interval-censored observations
cannot be input.

IRT — For interval-censored and right-censored observations, the column
number inX that contains the lower endpoint of the failure interval. (Input)
See argumentCEN. | RT must not be zero.
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IFRQ — Frequency option. (Input)

If | FRQ= 0, a response frequency of 1 for each observation is assumed. For
positivel FRQ, column number FRQ contains the frequency of response for each
observation.

ICEN — Censoring code option. (Input)

If | CEN =0, a censoring code of 0 is assumed. For positt&\, column number

I CEN contains the censoring code for each observation. Valid censoring codes
are:

Code Meaning

0 Exact failure ax(i, | RT).

1 Right censored. The response is greaterXianRT).

2 Left censored. The response is less than or eqiél, 1d_T).

3 Interval censored. The response is greaterXianRT), but less than or

equal tox(i, I LT).
MAXIT — Maximum number of iterations. (Input)

EPS — Convergence criterion. (Input)

Convergence is assumed when the relative change in the log-likelihood from one
iteration to the next is less thars. EPS = 0.00001 is typical.

IPRINT — Printing option. (Input)

| PRI NT = 0 means that no printing is performe8RI NT = 1 means that printing

is performed.

NINTVL — Number of failure intervals found. (Output)

SPROB — NI NTVL by 4 matrix. (Output)

Coal. Description

1 Lower endpoint of the failure interval

2 Upper endpoint of the failure interval

3 Estimated change in the survival probability density within the failure
interval

4 Estimate of the survival probability for the interval

The estimated survival probability is a constant equaPROB(i, 4) from SPROB
(i, 2) toSPROB(i + 1, 1). The estimated survival probability is 1 prioSRROB(1,
1). The estimated survival probability is undefined in the inte3RROB(i, 1) to
SPROB(i, 2). If theNI NTVL-th interval is fromSPROB(NI NTVL, 1) to infinity, then
SPROB(NI NTVL, 2) is set to positive machine infinity.

LDSPRO — Leading dimension 8PROB exactly as specified in the dimension
statement in the calling program. (Input)

If LDSPROIs less thamil NTVL, only the first. DSPROintervals are returned in
SPROB.

ALGL — Optimized log-likelihood for the input data. (Output)
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NRMISS — Number of rows of data ixthat contain missing values. (Output)
Any row of X that contains missing values in tHeT, | RT, | CEN, or | FRQ
columns (when theLT, | CEN or | FRQis positive) is omitted from the analysis.

Comments

1. Automatic workspace usage is

TRNBL 9* NOBS + 3* max{NOBS, 7) units, or
DTRNBL 16* NOBS + 5* max{NOBS, 7) units.

Workspace may be explicitly provided, if desired, by use of
T2NBL/DT2NBL. The reference is

CALL T2NBL (NOBS, NCOL, X, LDX, ILT, IRT, |FRQ
I CEN, MAXIT, EPS, |PRINT, NI NTVL, SPROB,
LDSPRO, ALGL, NRM SS, WK, |PERM | NDDR
WAK, | VIK)

The additional arguments are as follows:

WK — Work vector of length 7 NOBS.

IPERM — Work vector of lengtiNOBS.

INDDR — Work vector of lengtiNOBS.

WWK — Work vector of length 2 maxfNOBS, 7).
WK — Work vector of length max(BS, 7).

2. Informational errors
Type Code
3 3 The maximum number of iterations was exceeded.
Convergence is assumed.
4 1 There are no valid observations.
4 2 There are no finite failure intervals present in the data.
Algorithm

RoutineTRNBL computes nonparametric maximum likelihood estimates of a
survival distribution based upon a random sample of data containing exact failure,
right-censored, leftcensored (interval censored with a left endpoint of zero), or
interval-censored observations. The computational method of Turnbull (1976) is
used in computing the probability estimates. The model used is also discussed by
Peto (1973).

RoutineTRNBL begins by finding a set of regions or “failure intervals” (to
distinguish them from “observation failure intervals”) on the positive real axis in
which a change in the survival probability occurs. The survival probability is
constant outside of these regions, and undefined within them. Each region
(failure interval) is composed of a single left and a single right endpoint
obtained from the left and right endpoints of the observation failure intervals
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(for exact failure times, the left and right endpoints are equal). The regions are
defined by the fact that no observation interval endpoints are allowed within a
region, except at its endpoints. Note that the endpoints of the intervals need not
correspond to a single observation. Regions defined by endpoints from two
distinct observations are often obtained.

Letp;, i =1, ...,Nl NTVL denote the change in the survival probability within the
i-th region, and let the region be denotedcby.etn = NOBS and suppose that the
observation failure interval for observatipis denoted by;. The EM

(expectation, maximization) algorithm of Dempster, Laird and Rubin (1977) is
used to find the optimal

bi's
The algorithm is defined as follows:
For given
P
compute the expected contribution of the j-th observation to the i-th change
interval as

o= PO
ij ~
> fibidy
whered; = 1if ¢; I I; and 9;; = O otherwise, and f; is the observation frequency.

For given expectations

ﬁij
compute the new probability estimate as
5 = > i Hjj
=
2 i

Iterate in this manner until convergence. Convergence is assumed when the
relative change in the log-likelihood

(¢=%; f;In(%; 9 p;))

issmall (Iess than EPS). Because the algorithm is slow to converge, 5
expectation-maximization cycles are considered to be one iteration of the
algorithm. Theinitial estimate for all the

p’s

is taken to be one divided by the number of regions (failure intervals).
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Example

The following example contains exact failure, right-, left-, and interval-censored
observations. The 20 observations yield 15 change intervals. The last interval is
from 192 to o, and corresponds to a right-censored observation. When the last
interval isinfinite, asis the case here, the second column of SPROB contains +co
in the NI NTVL-th position. Left-or right-censored observations input in X are
arbitrarily assigned the value 0.0 for the non-specified endpoint.

| NTEGER ICEN, IFRQ ILT, IPRINT, IRT, LDSPRO LDX, MAXIT,
& NCOL, NOBS
REAL EPS
PARAMETER (EPS=0. 00001, |CEN=4, |FRQ@=3, ILT=1, |PRINT=1, |RT=2,
& LDSPRO=20, LDX=20, MAXI T=30, NCOL=4, NOBS=20)
| NTEGER NI NTVL, NRM SS
REAL ALGL, SPROB(LDSPRO, 4), X(LDX, NCOL)
EXTERNAL TRNBL, WRRRN
DATA X/ 0.9, 1.9, 2.5, 3.5, 6.3, 7.1, 18., 25.1, 25.3, 30.3, 45.9,
& 63.5, 70.1, 73.0, 93.0, 94.4, 96.0, 0.0, 191.4, 0.0, 0.9,
& 0.0, 0.0, 0.0, 6.3, 1.9, 1.8, 25.1, 9.5, 30.3, 45.9,
& 60.7, 70.1, 71.0, 74.0, 94.4, 96.0, 96.0, 191.4, 192.0,
& 17*1.0, 5.0, 1.0, 1.0, 0.0, 2.0, 2.0, 2.0, 0.0, 3.0, 3.0,
& 0.0, 3.0, 0.0, 0.0, 3.0, 0.0, 3.0, 3.0, 0.0, 0.0, 1.0, 0.0,
& 1.0/
CALL WRRRN ('X’, NOBS, NCOL, X, LDX, 0)
CALL TRNBL (NOBS, NCOL, X, LDX, ILT, IRT, IFRQ, ICEN, MAXIT,
& EPS, IPRINT, NINTVL, SPROB, LDSPRO, ALGL, NRMISS)
END
Output
X
1 2 3 4
09 09 1.0 0.0
19 00 10 20
25 00 10 20
35 00 1.0 20
6.3 63 1.0 0.0
71 19 10 3.0
180 18 1.0 3.0
251 251 10 0.0
253 95 10 3.0
30.3 303 1.0 0.0
459 459 10 0.0
63.5 60.7 1.0 3.0
701 70.1 1.0 0.0
73.0 710 1.0 3.0
93.0 740 10 3.0
944 944 10 0.0
96.0 96.0 1.0 0.0
0.0 9.0 50 10
1914 1914 10 0.0
0.0 1920 10 10
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Iteration Log- Li kel i hood Rel ati ve convergence

0 -54.94 L.

1 -52.14 0. 5367E-01

2 -52.09 0. 8407E- 03

3 -52.09 0. 1372E- 03

4 -52.09 0. 2476E- 04

5 -52.08 0. 4614E- 05

SPROB

Lower Upper I nterval Sur vi val
I nterval Endpoi nt Endpoint Probability Probability
1 0. 9000 0. 9000 0. 0972 0.9028
2 1. 9000 1.9000 0.1215 0. 7813
3 6. 3000 6. 3000 0.0729 0. 7083
4 9. 5000 18. 0000 0. 0000 0. 7083
5 25.1000 25.1000 0. 0833 0. 6250
6 30. 3000 30. 3000 0. 0417 0. 5833
7 45. 9000 45. 9000 0. 0417 0. 5417
8 60. 7000 63. 5000 0. 0417 0. 5000
9 70. 1000 70. 1000 0. 0417 0. 4583
10 71. 0000 73. 0000 0. 0417 0. 4167
11 74. 0000 93. 0000 0. 0417 0. 3750
12 94. 4000 94. 4000 0. 0417 0. 3333
13 96. 0000 96. 0000 0.1111 0. 2222
14 191. 4000 191. 4000 0.1111 0.1111
15 192. 0000 I nf 0.1111 0. 0000

PHGLM/DPHGLM (Single/Double precision)

Analyze time event dataviathe proportional hazards model.

Usage

CALL PHGLM (NOBS, NCOL, X, LDX, IRT, IFRQ |IFIX, |CEN,
| STRAT, MAXI T, EPS, RATIO NCLVAR, | NDCL, NEF,
NVEF, INDEF, INIT, ITIE, |PRI NI, MAXCL, NCLVAL
CLVAL, NCCEF, COEF, LDCCEF, ALG., COvV, LDCOv,
XMEAN, CASE, LDCASE, GR, | GRP, NRM SS)

Arguments
NOBS — Number of observations. (Input)

NCOL — Number of columns iX. (Input)

X — NOBS by NCOL matrix containing the data. (Input)
Whenl Tl E = 1, the observations kmust be grouped by stratum and sorted
from largest to smallest failure time within each stratum, with the strata separated.

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IRT — Column number iiX containing the response variable. (Input)
For point observation(i, | RT) contains the time of theth event. For right-
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censored observations, X(i, | RT) contains the right-censoring time. Note that
because PHG_Monly uses the order of the events, negative “times” are allowed.

| FRQ — Column number iX containing the frequency of response for each
observation. (Input)
If 1 FRQ= 0, a response frequency of 1 for each observation is assumed.

| FIX — Column number iX containing a constant to be added to the linear
response. (Input)
The linear response is taken to be

Wi +Zif5

wherew; is the observation constagtjs the observation design row vector, and

A

B

is the vector of estimated parameters. The “fixed” constant allows one to test
hypotheses about parameters via the log-likelihoodsI 1K = 0, the fixed
parameter is assumed to be O.

| CEN — Column number iX containing the censoring code for each
observation. (Input)

If 1 CEN = 0 a censoring code of 0 is assumed for all observations.

X(i, | CEN) Censoring
0 Point observation af(i, | RT).
1 Right censored. The response is greater Xfam RT).

| STRAT — Column number iX containing the stratification variable. (Input)

If 1 STRAT = 0, all observations are considered to be in one stratum. Otherwise,
columnl STRAT in X contains a unique number for each stratum. The risk set for
an observation is determined by the its stratum.

MAXIT — Maximum number of iterations. (Input)

MAXI T = 30 will usually be sufficient. UeAXI T = 0 to compute the Hessian and
gradient, stored i@OV andGR, at the initial estimates. Wheé#XI T=0,INI T

must be 1.

EPS — Convergence criterion. (Input)
Convergence is assumed when the relative changesnfrom one iteration to
the next is less theEPS. If EPS is zero,EPS = 0.0001 is assumed.

RATIO — Ratio at which a stratum is split into two strata. (Input)
Let

Ne = exp(zp +wy)
be the observation proportionality constant, wieiie the design row vector for
thek-th observation andy, is the optional fixed parameter specified by
X(k, 1 FI X). Letr,;, be the minimum value, in a stratum, where, for failed
observations, the minimum is over all times less than or equal to the time of
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occurrence of the k-th observation. Let r,,, be the maximum vaue of r, for the
remaining observations in the group. Then, if r.;, > RATI Or,,,, the
observations in the group are divided into two groups a k. RATI O= 1000 s
usually agood value. Set RATI O=-1.0if no division into stratais to be made.

NCLVAR — Number of classification variables. (Input)
Dummy variables are generated for classification variables usin@tivdy = 2
option of IMSL routineGRG_M(page 210). See Comment 3.

INDCL — Index vector of lengthNCLVAR containing the column numbers>of
that are the classification variables. (Input\GL VAR is positive, not used
otherwise)

If NCLVAR s 0,1 NDCL is not referenced and can be dimensioned of length 1 in
the calling program.

NEF — Number of effects in the model. (Input)
In addition to effects involving classification variables, simple covariates and the
product of simple covariates are also considered effects.

NVEF — Vector of lengtiNEF containing the number of variables associated
with each effect in the model. (Input)

INDEF — Index vector of lengtRVEF(1) + ... + NVEF(NEF) containing the
column numbers of associated with each effect. (Input)

The firstNVEF(1) elements of NDEF contain the column numbersXfor the
variables in the first effect. The neWEF(2) elements im NDEF contain the
column numbers for the second effect, etc.

INIT — Initialization option. (Input)
If I NI T =1, then the\COEF elements of column 1 @OEF contain the initial
estimates on input teHGLM Forl NI T = 0, all initial estimates are taken to be 0.

ITIE — Option parameter containing the method to be used for handling ties.

(Input)

ITIE Method

0 Breslow's approximate method

1 Failures are assumed to occur in the same order as the observations input

in X. The observations ik must be sorted from largest to smallest
failure time within each stratum, and grouped by stratum. Al
observations are treated as if their failure/censoring times were distinct
when computing the log-likelihood.

IPRINT — Printing option. (Input)

| PRI NT Action

0 No printing is performed.

1 Printing is performed, but observational statistics are not printed.
2 All output statistics are printed.
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MAXCL — An upper bound on the sum of the number distinct values taken by
the classification variables. (Input)

NCLVAL — Vector of lengtiNCLVAR containing the number of values taken by
each classification variable. (OutputNELVAR is positive, not used otherwise)
NCLVAL (i) is the number of distinct values for tith classification variable. If
NCLVAR is zero,NCLVAL is not used and can be dimensioned of length 1 in the
calling program.

CLVAL — Vector of lengtiNCLVAL (1) + NCLVAL(2) + ... +NCLVAL(NCLVAR)
containing the distinct values of the classification variables. (Outpgi, ifAR
is positive, not used otherwise)

The firstNCLVAL(1) elements o€LVAL contain the values for the first
classification variable, the neXCLVAL(2) elements contain the values for the
second classification variable, etcNELVAR is zero, themMCLVAL is not
referenced and can be dimensioned of length 1 in the calling program.

NCOEF — Number of estimated coefficients in the model. (Output)

COEF — NCCEF by 4 matrix containing the parameter estimates and associated
statistics. (Output, ifNI T = 0; input, ifl NI T = 1 andvaxi T = 0, input/output,
if INNT=1andvAXI T > 0)

Col. Statistic

1 Coefficient estimate

2 Estimated standard deviation of the estimated coefficient.

3 Asymptotic normal score for testing that the coefficient is zero against
the two-sided alternative.

4 p-value associated with the normal score in column 3.

WhenCCEF is input, only column 1 needs to be given.

LDCOEF — Leading dimension afOEF exactly as specified in the dimension
statement in the calling program. (Input)

ALGL — The maximized log-likelihood. (Output)

COV — NCOEF by NCCEF matrix containing the estimated asymptotic variance-
covariance matrix of the parameters. (Output)

For MAXI T = 0, COV is the inverse of the Hessian of the negative of the log-
likelihood, computed at the estimates inpuCOEF.

LDCOV — Leading dimension afOv exactly as specified in the dimension
statement in the calling program. (Input)

XMEAN — Vector of lengtitNCOEF containing the means of the design variables.
(Output)

CASE — NOBS by 5 matrix containing the case statistics for each observation.
(Output ifMAXI T > 0; used as working storage otherwise)
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Col. Statistic

1 Estimated survival probability at the observation time.
2 Estimated observation influence or leverage.

3 A residual estimate.

4 Estimated cumulative baseline hazard rate.

5 Observation proportionality constant.

LDCASE — Leading dimension afASE exactly as specified in the dimension
statement in the calling program. (Input)

GR — Vector of lengtiNCCEF containing the last parameter updates (excluding
step halvings). (Output)

For MAXI T = 0, GR contains the inverse of the Hessian times the gradient vector
computed at the estimates inputCipEF.

| GRP — Vector of lengtiNOBS giving the stratum number used for each
observation. (Output)

If RATI Ois not—1.0, additional “strata” (other than those specified by column
| STRAT of X) may be generatetdGRP also contains a record of the generated
strata. See the algorithm section for more detail.

NRMISS — Number of rows of data ix that contain missing values in one or
more column$ RT, | FRQ, | FI X, I CEN, | STRAT, | NDCL, or| NDEF of X.
(Output)

Comments

1. Automatic workspace usage is

PHGLM 2* NOBS + 3* NCOEF + max(NCOEF * NCCEF, 2) +
3* MAX(NOBS, NCOL) + 1 units, or
DPHGLM 2 * NOBS + 5* NCCOEF + 2* max{(NCOEF * NCCEF,
2) + 3* max{NOB, NCOL) + 2 units.
Workspace may be explicitly provided, if desired, by use of
P2GLMDP2G.M The reference is

CALL P2GLM (NOBS, NCOL, X, LDX, IRT, IFRQ |IFIX,
I CEN, |STRAT, MAXIT, EPS, RATIO, NCLVAR,
I NDCL, NEF, NVEF, INDEF, INIT, ITIE,
| PRI NT, MAXCL, NCLVAL, CLVAL, NCOCEF,
COEF, LDCCEF, ALGL, COvV, LDCOV, XMEAN,
CASE, LDCASE, GR, IGRP, NRM SS, GBS,
SM5, SVH, | PTR, | DT, |VWK)

The additional arguments are as follows:

OBS — Work vector of lengtiNCOEF + 1.

SMG — Work vector of lengtiNCOEF.

SMH — Work vector of length maXCOEF * NCOEF, 2).
IPTR — Work vector of lengtiNOBS + NCOEF.

IDT — Work vector of lengtiNOBS.

IMSL STAT/LIBRARY

Chapter 13: Survival Analysis, Life Testing, and Reliability « 955



IWK — Work vector of length 3 max{OBS, NCOL)

2. Informational errors
Type Code
3 1 Too many iterations required. Convergence assumed.
3 2 Too many step halvings. Convergence assumed.
3 3 Additional strata were formed as required because of
the detection of infinite parameter estimates.
4 4 The number of distinct values of the classification
variables exceed#AXCL.
4 5 The model specified IEF, NVEF, andl NDEF yields
no covariates.
4 6 After eliminating observations with missing values, no
valid observations remain.
4 7 After eliminating observations with missing values,
only one covariate vector remains.
4 8 The number of distinct values for each classification
variable must be greater than one.
4 9 LDCOEF or LDCOV must be greater or equalNGOEF.
3. Dummy variables are generated for the classification variables as

follows: An ascending list of all distinct values of the classification
variable is obtained and storedGhVAL. Dummy variables are then
generated for each but the last of these distinct values. Each dummy
variable is zero unless the classification variable equals the list value
corresponding to the dummy variable, in which case, the dummy
variable is one. See argumemUMVY for | DUMWY = 2 in routineGRGLM
(page 210) in Chapter 2.

4, The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

5. The “product” of two classification variables yields dummy variables in
the usual manner. Each dummy variable associated with the first
classification variable multiplies each dummy variable associated with
the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Algorithm

RoutinePHGLMcomputes parameter estimates and other statistics in Proportional
Hazards Generalized Linear Models. These models were first proposed by Cox
(1972). Two methods for handling ties are allowe8H®.M Time-dependent
covariates are not allowed. The user is referred to Cox and Oakes (1984),
Kalbfleisch and Prentice (1980), Elandt-Johnson and Johnson (1980), Lee
(1980), or Lawless (1982), among other texts, for a thorough discussion of the
Cox proportional hazards model.
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Let A(t, ) represent the hazard rate at time t for observation number i with
covariables contained as el ements of row vector z.. The basic assumption in the
proportional hazards model (the proportionality assumption) is that the hazard
rate can be written as a product of atime varying function A,(t), which depends
only on time, and a function f(z;), which depends only on the covariable values.
The function f(z;) used in PHGLMis given as f(z) = exp(w; + Bz) wherew; isa
fixed constant assigned to the observation, and 3 is a vector of coefficients to be
estimated. With this function one obtains a hazard rate A(t, z) = Ay(t) exp(w; +
z). Theform of A(t) is not important in proportional hazards models.

The constants w; may be known theoretically. For example, the hazard rate may
be proportional to aknown length or area, and the w; can then be determined
from this known length or area. Alternatively, thew; may be used to fix a subset
of the coefficients 3 (say, 3;) at specified values. When w; is used in thisway,
constants w; = 3,z ; are used, while the remaining coefficientsin 3 are freeto vary

in the optimization algorithm. If user-specified constants are not desired, the user
should set | FI X to O so that w; = O will be used.

With this definition of A(t, z), the usual partial (or marginal, see Kalbfleisch and

Prentice (1980)) likelihood becomes
n

L= &P +Pz)

=1 2 imRey) eXp(w; +Bz;)

where R(t;) denotes the set of indices of observations that have not yet failed at
timet; (therisk set), t; denotes the time of failure for the i-th observation, n, isthe
total number of observations that fail. Right-censored observations (i.e.,
observations that are known to have survived to timet;, but for which no time of
failure is known) are incorporated into the likelihood through the risk set R(t;).
Such observations never appear in the numerator of the likelihood. When | TI E =
0, al observations that are censored at time t; are not included in R(t;), while all
observations that fail at timet; areincluded in R(t;).

If it can be assumed that the dependence of the hazard rate upon the covariate
values remains the same from stratum to stratum, while the time-dependent term,
Ao(t), may be different in different strata, then PHGLMallows the incorporation of
strata into the likelihood as follows. Let k index the m = NSTRAT strata. Then, the
likelihood is given by

LR exp(wii +Bz)

k=] i=1 2 jOR(t,) EXP(Wy; +Bzy)
In PHGLM thelog of the likelihood is maximized with respect to the coefficients 3

. A gquasi-Newton agorithm approximating the Hessian via the matrix of sums
of squares and cross products of the first partial derivativesisused in theinitia

Lg =
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iterations (the “Q-N" method in the output). When the change in the log-
likelihood from one iteration to the next is less than*ElS, Newton-Raphson
iteration is used (the “N-R” method). If, during any iteration, the initial step does
not lead to an increase in the log-likelihood, then step halving is employed to find
a step that will increase the log-likelihood.

Once the maximum likelihood estimates have been compuiediv computes
estimates of a probability associated with each failure. Within stigtam
estimate of the probability that theh observation fails at timggiven the risk

setR(t,;) is given by
o = exp(wii +2,4P)
2 iR(t,) EXP(Wy; +24B)

A diagnostic “influence” or “leverage” statistic is computed for each noncensored
observation as:

— I _1 I
li =9k Hs 9
whereH;, is the matrix of second partial derivatives of the log-likelihood, and
ki

is computed as:
z3exp(wy; +24P)
2 iCR(t;) XP(Wy +24B)

Influence statistics are not computed for censored observations.

Ok = Zi ~

A “residual” is computed for each of the input observations according to methods
given in Cox and Oakes (1984, page 108). Residuals are computed as

dy
J0RG) Z1R() SXPWig +24P)

whered,; is the number of tied failures in grokg@t timet;;. Assuming that the
proportional hazards assumption holds, the residuals should approximate a
random sample (with censoring) from the unit exponential distribution. By
subtracting the expected values, centered residuals can be obtaingeth(The
expected order statistic from the unit exponential with censoring is given as

hg = exp(Wwy +24)

— 1
€ = 2i<j e

whereh is the sample size, and censored observations are not included in the
summation.)

An estimate of the cumulative baseline hazard within gkaggiven as

. dy
Hyo(tik) = -
tysty 2ICR(tg) XPWig +24P)
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The observation proportionality constant is computed as

exp(wy; + 2z B)

Programming Notes

1.

The covariate vectors z;,; are computed from each row of the input matrix
X viaroutine GRGLM(page 210). Thus, class variables are easily
incorporated into the z;;. The reader is referred to the document for
GRGLMin the regression chapter for a more detailed discussion. Note that
PHGLMcalls GRGLMwith the option | DUMWY = 2.

The average of each of the explanatory variablesis subtracted from the
variable prior to computing the product z,,3. Subtraction of the mean
values has no effect on the computed log-likelihood or the estimates
since the constant term occurs in both the numerator and denominator of
the likelihood. Subtracting the mean values does help to avoid invalid
exponentiation in the a gorithm and may also speed convergence.

Routine PHGLMallows for two methods of handling ties. In the first
method (I TI E = 1), the user is allowed to break tiesin any manner
desired. When this method is used, it is assumed that the user has sorted
therowsin X from largest to smallest with respect to the
failure/censoring times X(i, | RT) within each stratum (and across strata),
with tied observations (failures or censored) broken in the manner
desired. The same effect can be obtained with | TI E = 0 by adding (or
subtracting) a small amount from each of the tied observations failure/
censoring timest; = X(i, | RT) so asto break the tiesin the desired

manner.

The second method for handling ties (I TI E = 0) uses an approximation

for the tied likelihood proposed by Breslow (1974). The likelihood in
Breslow’'s method is as specified above, with the risk set at time
tiincluding all observations that fail at timewhile all observations that

are censored at time tiare not included. (Tied censored observations are
assumed to be censored immediately prior to thetjme

If I NI T =1, then it is assumed that the user has provided initial
estimates for the model coefficieftsn the first column of the matrix

CCEF. When initial estimates are provided by the user, care should be
taken to ensure that the estimates correspond to the generated covariate
vectorzy. If I NI T = 0, then initial estimates of zero are used for all of

the coefficients. This corresponds to no effect from any of the covariate
values.

If a linear combination of covariates is monotonically increasing or
decreasing with increasing failure times, then one or more of the
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estimated coefficientsis infinite and extended maximum likelihood
estimates must be computed. Such estimates may be written as

B=Bs +py
where p = o at the supremum of the likelihood so that
B

isthefinite part of the solution. In PHGLM, it is assumed that extended
maximum likelihood estimates must be computed if, within any groupk,
for any timet,

min exp(wy; + z4B) > pmax exp(Wy; +z4B)
tki <t tkI <t

where p = RATI Ois specified by the user. Thus, for example, if
p = 10000, then PHG_Mdoes hot compute extended maximum likelihood
estimates until the estimated proportionality constant

exp(Wy; +z5)

is 10000 times larger for all observations prior to t than for al
observations after t. When this occurs, PHGLMcomputes estimates for

B
by splitting the failuresin stratum k into two strata at t (see Bryson and

Johnson 1981). Censored observations in stratum k are placed into a
stratum based upon the associated value for

exp(Wy; +z5)
The results of the splitting are returned in | GRP.
The estimates
By
based upon the stratified likelihood represent the finite part of the

extended maximum likelihood solution. Routine PHGLMdoes not
compute

y
explicitly, but an estimate for

A

Y

may be obtained in some circumstances by setting RATI O= -1 and
optimizing the log-likelihood without forming additional strata. The
solution

B
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obtained will be such that

B=Bs +py
for some finite value of p > 0. At this solution, the Newton-Raphson
algorithm will not have “converged” because the Newton-Raphson step
sizes returned igR will be large, at least for some variables.

Convergence will be declared, however, because the relative change in
the log-likelihood during the final iterations will be small.

Example 1

The following data are taken from Lawless (1982, page 287) and involve the
survival of lung cancer patients based upon their initial tumor types and treatment
type. In the first example, the likelihood is maximized with no strata present in

the data. This corresponds to Example 7.2.3 in Lawless (1982, page 367). The
input data is printed in the output. The model is given as:

IN(A) =B1Xq +PBoxy +B3Xs +a; +Y;

wherea; andy; correspond to dummy variables generated from columns 6 and 7
of X, respectivelyyx, corresponds to column 3 &f x, corresponds to column 4 of
X, andx; corresponds to column 5 &f

| NTEGER ICEN, IFIX, IFRQ INT, IPRINT, IRT, |ISTRAT, ITIE,
LDCASE, LDCOEF, LDCOV, LDX, MAXCL, MAXIT, NCLVAR,
NCOL, NEF, NOBS

REAL EPS, RATIO

PARAMETER ( EPS=0. 0001, |CEN=2, |FIX=0, |FRQ=0, |IN T=0,
| PRINT=2, | RT=1, |STRAT=0, |TIE=0, LDCOEF=7, LDX=40,
MAXCL=10, MAXI T=30, NCLVAR=2, NCOL=7, NEF=5,
RATI O=10000. 0, LDCASE=LDX, LDCOV=LDCCEF, NOBS=LDX)

R0 Ro

R0 Ro Ro

INTEGER | GRP(NOBS), | NDCL(NCLVAR), |NDEF(5), NCLVAL(NCLVAR),
& NCOEF, NRM SS, NVEF( NEF)

REAL ALGL, CASE(LDCASE,5), CLVAL(6), COEF(LDCCEF,4),

& COV( LDCOV, LDCOV), GR(LDCOV), X(LDX, NCOL), XMEAN( LDCOV)
EXTERNAL  PHGLM WRRRL

DATA X/ 411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287,
10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201,
44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231,
5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6,
3, 8 4, 6, 4 2, 5 5, 48, 7,6, 9, 5 7 2 8 6, 5 7,
4, 3, 3, 4, 6, 8 7, 3, 6, 8, 7, 64, 63, 65 69, 63, 48,
48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37,
54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68,
39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2,
25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13,
22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3,
5%4, T7*1, 4*2, 3*3, 5*4, 21*0, 19*1/

DATA NVEF/ 1, 1, 1, 1, 1/, INDEF/ 3, 4, 5, 6, 7/, INDCL/6, 7/

R0 Ro R0 R0 Ro R0 Ro Ro Ro Ro Ro

C
CALL WRRRL ('The First 10 Rows of the Input Data’, 10, NCOL,
& X, LDX, 0, '(17)’, 'Number’, '"Number’)
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CALL PHGLM (NOBS, NCOL, X, LDX, IRT, IFRQ IFIX |CEN
I NDCL, NEF, NVEF, | NDEF,
| PRI NT, MAXCL, NCLVAL, CLVAL, NCOCEF,
COEF, LDCCEF, ALGL, COvV, LDCOV, XMEAN, CASE, LDCASE,

& MAXI T, EPS, RATIO, NCLVAR
& INT, ITIE
&
& GR, | GRP, NRM SS)
C
END
Output
The First 10 Rows of the I nput
1 2 3 4
1 411 0 7 64
2 126 0 6 63
3 118 0 7 65
4 92 0 4 69
5 8 0 4 63
6 25 1 7 48
7 11 0 7 48
8 54 0 8 63
9 153 0 6 63
10 16 0 3 53
Initial Estinates
1 2 3 4 5
0. 0000 0.0000 0.0000 0.0000 0.0000

Met hod Iterati

ZZZ000
00 =Z22=2
GOaOPhWNEFO

Log-1i kel i hood

Coefficient
. 585
. 013
. 001
. 367
. 008
. 113
. 380

~NO O WNBE
1
el NeololoNoNe)

1
0. 1873E-01

GO WNBE

on Step size

Maxi mum scal ed
coef. update

1. 0000 0.5034
1. 0000 0.5782
1. 0000 0.1131
1. 0000 0. 6958E- 01
1. 0000 0. 8144E- 03
-87.88779
Coefficient Statistics
St andard Asynptotic
error z-statistic
0. 137 -4.272
0.021 -0.634
0.012 0. 064
0. 485 -0. 757
0. 507 -0.015
0. 633 1.758
0. 406 0. 936
Asynptotic Coefficient Cov
2 3
0. 2530E- 03 0. 3345E- 03
0.4235E-03  -0.4120E- 04
0. 1397E- 03

Dat a

NNNNRRRPRRRRREO®

5
5
9
11
10
58
9
11
4
14
4

6
0.0000 0.000

Log
|'i keli hood
-102. 4

-91. 04

- 88. 07
-87.92
-87.89
-87.89

Asynptotic

p- val ue
. 000
. 526
. 949
. 449
. 988
. 079
. 349

[ejeolololofoNe)

ari ance
4
0. 5745E-02
-0. 1663E-02
0.8111E-03
0. 2350

| STRAT,

[eleoloeolololoNoNoNoRN|

7
0

5
0. 9750E- 02
-0. 7954E- 03
-0.1831E-02
0. 9799E-01
0. 2568
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6 7
1 0. 4264E- 02 0. 2082E- 02
2 -0.3079E-02 -0.2898E-02
3 0. 5995E- 03 0. 1684E- 02
4 0.1184 0. 3735E-01
5 0. 1253 -0.1944E-01
6 0. 4008 0. 6289E- 01
7 0. 1647
Case Anal ysis
Survi val Currul ative Proportionality
Probability I nfluence Resi dual hazar d const ant
1 0. 00 0. 04 2.05 6. 10 0.3
2 0. 30 0.11 0.74 1.21 0.61
3 0. 34 0.12 0. 36 1.07 0. 33
4 0. 43 0. 16 1.53 0. 84 1.83
5 0. 96 0. 56 0. 09 0. 05 2.05
6 0.74 NaN 0.13 0.31 0.42
7 0.92 0. 37 0. 03 0. 08 0.42
8 0.59 0. 26 0. 14 0.53 0. 27
9 0. 26 0.12 1.20 1.36 0. 88
10 0. 85 0. 15 0. 97 0.17 5.76
11 0. 55 0.31 0.21 0. 60 0. 36
12 0.74 0.21 0. 96 0.31 3.12
13 0. 03 0. 06 3.02 3.53 0. 86
14 0.94 0. 09 0.17 0. 06 2.71
15 0. 96 0. 16 1.31 0. 05 28. 89
16 0. 89 0. 23 0.59 0.12 4.82
17 0.18 0. 09 2.62 1.71 1.54
18 0. 89 0.19 0. 33 0.12 2.68
19 0.14 0. 23 0.72 1.96 0. 37
20 0. 05 0. 09 1.66 2.95 0. 56
21 0. 39 0. 22 1.17 0.94 1.25
22 0. 00 0. 00 1.73 21.11 0. 08
23 0. 08 NaN 2.19 2.52 0. 87
24 0. 00 0. 00 2.46 8. 89 0. 28
25 0.99 0.31 0. 05 0.01 4.28
26 0.11 0.17 0. 34 2.23 0.15
27 0. 66 0. 25 0. 16 0.41 0. 38
28 0. 87 0. 22 0. 15 0.14 1.02
29 0. 39 NaN 0. 45 0.94 0.48
30 0.98 0.25 0. 06 0.02 2.53
31 0.77 0. 26 1.03 0.26 3.90
32 0.63 0.35 1.80 0.46 3.88
33 0.82 0.26 1.06 0.19 5. 47
34 0. 47 0. 26 1.65 0.75 2.21
35 0.51 0.32 0. 39 0. 67 0. 58
36 0.22 0.18 0.49 1.53 0. 32
37 0. 80 0. 26 1.08 0. 23 4. 77
38 0.70 0.16 0. 26 0. 36 0.73
39 0.01 0.23 0.87 4. 66 0.19
40 0.08 0. 20 0.81 2.52 0. 32

Last Coefficient Update
1 2 3 4 5 6
-1.016E- 07 1.918E-09 -1.305E-08 -7.190E-07 -2.854E-07 2.108E-08
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7
-6.947E- 08

Covari ate Means
1 2 3 4 5 6 7
5. 65 56. 58 15. 65 0.35 0.28 0.12 0.53

Di stinct Values For Each C ass Variable
Variable 1: 1.0 2.0 3.0 4.0
Variable 2: 0. 1.0

Stratum Nunmbers For Each Observation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
11111111111 111111111

Nunmber of M ssing Val ues 0

Example 2

This exampleillustrates the use of PHGLMwhen there are strata present in the
data. The observations from Example 1 are arbitrarily grouped into four strata
(the first ten observations form stratum 1, the next 10 for stratum 2, etc.).
Otherwise, the problem is unchanged. The resulting coefficients are very similar
to those obtained when there is no stratification variable. The model is the same
asin Example 1.

| NTEGER LDCASE, LDCCOEF, LDCOV, LDX, NMAXCL, NCLVAR, NCOL, NEF,

& NOBS
REAL RATI O
PARAMETER (LDCOEF=7, LDX=40, MAXCL=10, NCLVAR=2, NCOL=8, NEF=5,
& LDCASE=LDX, LDCOV=LDCOEF, NOBS=LDX, RATI 0=10000. 0)
C SPEC! FI CATI ONS FOR PARANMETERS
INTEGER  ICEN, IFRQ INT, IFIX, IPRNT, IRT, |STRAT, ITIE
& MAXI T
REAL EPS
PARAMETER ( EPS=0. 0001, |CEN=2, |FRQ=0, |N T=0, |FIX=0,
& I PRINT=2, |RT=1, |STRAT=8, |TIE=0, MAXI T=30)
C SPEC! FI CATI ONS FOR LOCAL VARI ABLES
INTEGER | GRP(NOBS), NCLVAL(NCLVAR), NCOEF, NRM SS
REAL ALGL, CASE(LDCASE,5), CLVAL(6), COEF(LDCCEF,4),
& COV( LDCOV, LDCOV), GR(LDCOV), XMEAN( LDCOV)
C SPEC! FI CATI ONS FOR SAVE VARI ABLES
INTEGER | NDCL(NCLVAR), | NDEF(NEF), NVEF(NEF)
REAL X( LDX, NOOL)
SAVE INDCL, | NDEF, NVEF, X
c SPEC! FI CATI ONS FOR SUBROUTI NES

EXTERNAL PHGLM

DATA X/ 411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287,
10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201,
44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231,
5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6,
3, 8 4, 6, 4 2, 5 5, 48, 7,6, 9, 5 7 2 8 6, 5 7,
4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65 69, 63, 48,

R0 Ro Ro Ro Ro
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& 48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37
& 54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68,
& 39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2,
& 25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13,
& 22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3,
& 5%4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1, 10*1, 10*2, 10*3, 10*4/
DATA NVEF/ 1, 1, 1, 1, 1/, INDEF/ 3, 4, 5, 6, 7/, INDCL/6, 7/
C
CALL PHGLM (NOBS, NCOL, X, LDX, IRT, IFRQ |FIX, |CEN, |STRAT,
& MAXI T, EPS, RATI O, NCLVAR, |NDCL, NEF, NVEF, | NDEF
& INIT, ITIE |PRINT, MAXCL, NCLVAL, CLVAL, NCCEF
& COEF, LDCOEF, ALG., COV, LDCOV, XMEAN, CASE, LDCASE,
& GR, | GRP, NRM SS)
C
END
Output
Initial Estimates
1 2 3 4 5 6 7
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Method Iteration Step size Maxi num scal ed Log
coef. update i kelihood
QN 0 -55.90
QN 1 1. 0000 0.6748 -45.79
QN 2 1. 0000 0. 7105 -42.85
N R 3 1. 0000 0. 2315 -42.59
N R 4 1. 0000 0.1674 -42.55
N R 5 1. 0000 0. 3372E- 02 -42.55
Log-1i kel i hood -42.54570

Coefficient Statistics
St andard Asynptotic Asynptotic

Coefficient error z-statistic p- val ue
1 -0.716 0.170 -4.222 0. 000
2 -0.033 0. 030 -1.122 0. 262
3 0. 001 0. 015 0. 048 0.961
4 -0. 100 0. 999 -0. 100 0.921
5 -0. 405 0.729 -0. 555 0.579
6 1.136 0. 769 1.478 0. 139
7 -0. 087 1. 454 -0. 060 0. 952

Asynptotic Coefficient Covariance
1 2 3 4 5

1 0.2877E-01 0. 8662E- 03 0. 3119E-03 0. 5057E- 02 0. 2480E- 01
2 0.8842E-03  -0.8137E-04 -0.7623E-02 -0. 6925E- 03
3 0.2158E-03  -0.2567E-02 -0. 3738E- 02
4 0. 9975 0.5109
5 0. 5319
6 7
1 -0. 7669E- 02 0. 6405E- 02
2 - 0. 8800E- 03 0. 4120E- 02
3 0. 1170E- 02 - 0. 3699E- 02
4 0. 1944 0. 8056
5 0.1802 0. 4905
6 0. 5909 0. 1858
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7 2.114
Case Anal ysis
Sur vi val
Probability I nfl uence Resi dua
1 0.00 0.00 2.01
2 0.09 0. 06 1.32
3 0. 20 0.04 0.40
4 0. 40 0.04 1.69
5 0.92 0. 47 0.21
6 0.73 NaN 0.14
7 0. 82 0.47 0.09
8 0.55 0. 67 0. 06
9 0.02 0. 07 1.59
10 0.73 0.10 1.50
11 0. 39 0. 68 0.17
12 0. 60 0.14 1.12
13 0. 00 0. 00 2.32
14 0. 90 0.16 0.15
15 0.98 0.04 0.75
16 0.75 0.21 1.12
17 0. 25 0. 07 1.55
18 0.75 0.21 0.63
19 0.10 0.18 0. 69
20 0.03 0.11 1.48
21 0.50 0.61 1.00
22 0. 00 0. 00 1.28
23 0.33 NaN 1.92
24 0. 05 0. 00 1.32
25 0.95 0.15 0.47
26 0.33 0.24 0.23
27 0.62 0. 40 0.22
28 0.76 0.13 0.71
29 0.50 NaN 0. 37
30 0. 87 0.23 0.49
31 0. 88 0. 35 0. 67
32 0.71 0.22 1.56
33 0.97 0.52 0. 20
34 0.44 0.03 2.64
35 0. 56 0. 20 0.29
36 0.11 0. 00 0.61
37 0.94 0.19 0. 82
38 0.79 0.43 0.24
39 0.00 0. 00 1.69
40 0.01 0. 00 1.28
Last Coefficient Update
1 2 3 4
-7.363E-07 8. 762E- 09 1.252E-08 -1.697E-06
7
-1.772E- 06
Covari ate Means
1 2 3 4 5 6
5.65 56.58 15. 65 0.35 0.28 0.12

Di stinct Values For Each C ass Variabl e

Vari able 1:

1.0 2.0 3.0

-1. 642E- 06

0

Cumul ati ve

hazard

53

[EnY

[EnY
PPOONOOOOOOOOORONEWOWNOROOO0P000WOOO000 NN
(o]
o

4.0

Proportionality
const ant

w

CORPNOOWNRA,AWONOOOORORPROONPWIIRPONOROOOONRPOOO
I
[y

[EnY

6
1. 075E- 06
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Variable 2: 0. 1.0

Stratum Nunmbers For Each Observation
2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
11111 1 1112 2 2 2 2 2 2 2 2 2
1 30 31 32 33 34 35 36 37 38 39 40
3 3 4 4 4 4 4 4 4 4 4 4
Nunmber of ssing Val ues 0

SVGLM/DSVGLM (Single/Double precision)

Analyze censored survival datausing a generalized linear model.

Usage

CALL SVGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, |IFRQ
IFIX, IT'CEN, INFIN, MAXIT, EPS, |INTCEP, NCLVAR,
I NDCL, NEF, NVEF, INDEF, INIT, |IPRINT, MAXCL,
NCLVAL, CLVAL, NCOEF, COEF, LDCOEF, ALG., COV,
LDCOV, XMEAN, CASE, LDCASE, GR, |ADD, NRM SS)

Arguments

NOBS — Number of observations. (Input)

NCOL — Number of columns iX. (Input)

X — NOBS by NCOL matrix containing the data. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

MODEL — Model option parameter. (Input)
MODEL specifies the distribution of the response variable and the relationship of
the linear model to a distribution parameter.

MODEL Distribution
Exponential
Linear hazard
Log-normal
Normal
Log-logistic
Logistic
Log least extreme value
Least extreme value
Log extreme value
Extreme value

0 Weibull

For further discussion of the models and parameterizations used, see the
Algorithm section.

POoOo~NOOOh~WNPEO
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ILT — For interval-censored and left-censored observations, the column number
in X that contains the upper endpoint of the failure interval. (Input)

See argumentCEN. If I LT = 0, left-censored and interval-censored observations
cannot be input.

IRT — For interval-censored and right-censored observations, the column
number inX that contains the lower endpoint of the failure interval. (Input)
For exact-failure observations(i, | RT) contains the exact-failure timeRT must
not be zero. See argumergeN.

IFRQ — Column number iX containing the frequency of response for each
observation. (Input)
If | FRQ= 0, a response frequency of 1 for each observation is assumed.

IFIX — Column number iX containing a constant to be added to the linear
response. (Input)
The estimated linear response is taken to be

Wi +Zif3

wherew; is the observation constaatjs the observation design vector,

A

B

is the vector of estimated parameters output in the first colur@@esf, andi
indexes the observations. The “fixed” constant allows one to test hypotheses
about parameters via the log-likelihoods. Fi X = 0, the fixed parameter is
assumed to be 0.

| CEN — Column number iX containing the censoring code for each
observation. (Input)
If | CEN = 0, a censoring code of 0 is assumed. Valid censoring codes are:

X(i, | CEN) Censoring

0 Exact failure ak(i, | RT).

1 Right censored. The response is greater Xfam RT).

2 Left censored. The response is less than or equdl,toLT).
3 Interval censored. The response is greater XjianRT), but

less than or equal (i, I LT).
INFIN — Method to be used for handling infinite estimates. (Input)

I NFIN Method

0 Remove a rightor left-censored observation from the loglikelihood
whenever the probability of the observation exceeds 0.995. At
convergence, use linear programming to check that all removed
observations actually have infinite linear response

A

z

968 « Chapter 13: Survival Analysis, Life Testing, and Reliability IMSL STAT/LIBRARY



Set | ADD(i) for observation i to 2 if the linear response isinfinite. If not
al removed observations have infinite linear response, recompute the
estimates based upon the observations with finite

zp
1 Iterate without checking for infinite estimates.

See the algorithm section for more discussion.

MAXIT — Maximum number of iterations. (Input)
MAXI T = 30 will usually be sufficient. UeAXI T = 0 to compute the Hessian and
score vector at the initial estimates.

EPS — Convergence criterion. (Input)

Convergence is assumed when the maximum relative change in any coefficient
estimate is less thaPs from one iteration to the next, or when the relative
change in the log-likelihoodLG., from one iteration to the next is less than
EPS/100. If EPS is negativeEPS = 0.001 is assumed.

INTCEP — Intercept option. (Input)

| NTCEP Action
0 No intercept is in the model (unless otherwise provided for by the user).
1 An intercept is automatically included in the model.

NCLVAR — Number of classification variables. (Input)
Dummy or indicator variables are generated for classification variables using the
| DUMWY = 2 option of routingsRGLM (page 210). See Comment 3.

INDCL — Index vector of lengthNiCLVAR containing the column numbers>of
that are classification variables. (InputN@LVAR is positive, not used
otherwise)

If NCLVAR s 0,1 NDCL is not referenced and can be dimensioned of length 1 in
the calling program.

NEF — Number of effects in the model. (Input)
In addition to effects involving classification variables, simple covariates and the
product of simple covariates are also considered effects.

NVEF — Vector of lengtiNEF containing the number of variables associated
with each effect in the model. (InputNEF is positive; not used otherwise)

If NEF is zero,NVEF is not used and can be dimensioned of length 1 in the calling
program.

INDEF — Index vector of lengtRVEF(1) + NVEF(2) + ... + NVEF(NEF)
containing the column numbersxrassociated with each effect. (Input\iEF is
positive; not used otherwise)

The firstNVEF(1) elements of NDEF give the column numbers ¥of the
variables in the first effect. The neEF(2) elements of NDEF give the column
numbers for the second effect, etoN#f is zero,l NDEF is not used and can be
dimensioned of length one in the calling program.

INIT — Initialization option. (Input)
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INIT Action

0 Unweighted linear regression is used to obtain initial estimates.
1 The NCCEF elementsin the first column of COEF contain initial estimates

of the parameters on input to SVG_M(requiring that the user know
NCCEF prior to calling SVGLM.

IPRINT — Printing option. (Input)

| PRI NT Action

0 No printing is performed.

1 Printing is performed, but observational statistics are not printed.
2 All output statistics are printed.

MAXCL — An upper bound on the sum of the number of distinct values taken by
the classification variables. (Input)

NCLVAL — Vector of lengtiNCLVAR containing the number of values taken by
each classification variable. (OutputNELVAR is positive; not used otherwise)
NCLVAL (i) is the number of distinct values for tith classification variable. If
NCLVAR is zero,NCLVAL is not used and can be dimensioned of length 1 in the
calling program.

CLVAL — Vector of lengtiNCLVAL (1) + NCLVAL(2) + ... + NCLVAL(NCLVAR)
containing the distinct values of the classification variables in ascending order.
(Output, ifNCLVAR is positive, not used otherwise)

The firstNCLVAL(1) elements contain the values for the first classification
variables, the nexXCLVAL(2) elements contain the values for the second
classification variable, etc. NCLVARIs zero, therCLVAL is not referenced and
can be dimensioned of length 1 in the calling program.

NCOEF — Number of estimated coefficients in the model. (Output, if
INIT=0;input, ift Nl T = 1)

COEF — NCCEF by 4 matrix containing parameter estimates and associated
statistics. (Output, ifNI T = 0; input/output, if NI T = 1; input, ifMAXI T = 0)

Col. Statistic

1 Coefficient estimate.

2 Estimated standard deviation of the estimated coefficient.

3 Asymptotic normal score for testing that the coefficient is zero.
4 p-value associated with the normal score in column 3.

WhenCCEF is input, only column 1 is referenced as input data, and columns 2 to
4 need not be set. When present in the model, the initial coefficieoEm

estimates a “nuisance” parameter, and the remaining coefficients estimate
parameters associated with the “linear” model, beginning with the intercept, if
present. Nuisance parameters are as follows:

Model Nuisance Parameter

1 Coefficient of the quadratic term in tirfle,
2-9 Scale parameteo,

10 Shape parametédr,
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LDCOEF — Leading dimension afOEF exactly as specified in the dimension
statement in the calling program. (Input)

ALGL — Maximized log-likelihood. (Output)

COV — NCOEF by NCCEF matrix containing the estimated asymptotic covariance
matrix of the coefficients. (Output)

COv is computed as the inverse of the matrix of second partial derivatives of
negative one times the log-likelihood. WheakI T = 0, COV is computed at the
initial estimates.

LDCOV — Leading dimension afov exactly as specified in the dimension
statement in the calling program. (Input)

XMEAN — Vector of lengttNCCEF containing the means of the design variables.
(Output)

CASE — NOBS by 5 vector containing the case analysis. (Output)

Col. Statistic

Estimated predicted value

Estimated influence or leverage

Residual estimate

Estimated cumulative hazard

For non-censored observations, the estimated density at the observation
failure time and covariate values. For censored observations, the
corresponding estimated probability.

G WDNPF

If MAXI T = 0, CASE is aNOBS by 1 vector containing the estimated probability
(for censored observations) or the estimated density (for non censored
observations).

LDCASE — Leading dimension afASE exactly as specified in the dimension
statement in the calling program. (Input)

GR — Vector of lengtiNCCEF containing the last parameter updates, excluding
step halvings. (Output)

GRis computed as the inverse of the matrix of second partial derivatives times the
vector of first partial derivatives of the log-likelihood. WheskiI T = 0O, the

derivatives are computed at the initial estimates.

IADD — Vector of lengtiNOBS indicating which observations have and have not
been included in the model. (OutputhviXi T > O; input/output, ifvaXl T = 0)

Value Statusof Observation

0 Observation has been included in the model.

1 Observation has not been included in the model due to missing values
in theX matrix.

2 Observation has not been included in the model because of infinite

estimates in extended maximum likelihood estimatiokidd T = 0,
then thel ADD array must be initialized prior to calliByG.M
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NRMISS — Number of rows of data ix that contain missing values in one or
more columng LT, | RT, | FRQ, | COEF, | CEN, | NDCL or | NDEF of X. (Output)

Comments
1. Automatic workspace usage is

SVGLM 6* NVAX + 5* NCOEF + 7* NOBS + NMAX * NCCEF + 8 units if
I NFI N=0 and 5 NCOEF + 7* NOBS + 8 units iff NFIN= 1,
or

DSVGLM 10* NMAX + 10* NCOEF + 9* NOBS + 2* NMAX * NCCEF + 10
units if I NFI N= 0 and 10+ NCOEF + 9* NOBS + 10 units if
I NFI N=1.NMAX is defined in the list below.

Workspace may be explicitly provided, if desired, by use of
S2GLMDS2GLM The reference is
CALL S2GLM (NOBS, NCOL, X, LDX, MODEL, ILT,
IRT, IFRQ IFIX [ICEN, INFIN, MAXIT,
EPS, | NTCEP, NCLVAR, | NDCL, NEF, NVEF,
I NDEF, | NI T, | PRI NT, MAXCL, NCLVAL, CLVAL,
NCOEF, CCEF, LDCOEF, ALG., COv, LDCOv,
XMEAN, CASE, LDCASE, GR, | ADD, NRM SS,
NVAX, OBS, ADD, XD, WK, KBASIS, RVK,
| VK)

The additional arguments are as follows:

NMAX — Maximum number of observations that can be handled in the
linear programming. (Input)

If workspace is not explicitly providedVAX is set to

NVAX = (n — 6)/(6 +NCCEF) in SVGLMandNMAX= (n — 6)/(10 + 2*

NCCEF) in DSVGLM wheren is the number of units of workspace
remaining after allocating workspace @BS, RVK, andl VK. If I NFI N

. EQ 1, then selmvAX to O.

OBS — Work array of length 2 NCCEF + 2.

ADD — Logical work array of lengthVAX. If ADD(1 ) =. TRUE. , thel -
th observation deleted from the model was returned to the nimiteils
not needed and can be a array of length 1 in the calling progiamxf
=0.

XD — Work array of lengtiNMAX * NCOEF. XD is not needed and can be
a array of length 1 in the calling program\ifax = 0.

WK — Work array of length 4 NMAX. VKK is not needed and can be a
array of length 1 in the calling progranNiyRAX = 0.

KBASIS— Work array of lengtiNvaX. KBASI S is not needed and can
be a array of length 1 in the calling prograrivgXx = 0.

RWK — Work array of length 2 NOBS + 3* NCOEF.
IWK — Work array of length 5 NOBS + 6.
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2.

Informational errors

Type
3

3

3

Code
1

2

4

10

11
12

13

There were too many iterations required. Convergence
is assumed.

There were too many step halvings. Convergenceis
assumed.

The censoring interval has alength of 0. The
censoring code for this observation is set to 0.
CCOEF(1, 1) > 1.0. The expected value for the log
logistic distribution, MODEL = 4, does not exist.
Predicted values are not calcul ated.

CCOEF(1, 1) > 1.0. The expected value for the log
extreme val ue distribution, MODEL = 8, does not exist.
Predicted values are not calcul ated.

The number of distinct values of the classification
variables exceeds MAXCL. MAXCL must be increased for
the computations to proceed.

The number of distinct values for each classification
variable must be greater than one.

I NI T =1 and the number of coefficientsinput in
NCOEF does not equal the number of coefficients
required by the specified model.

For the exponential model, NCOEF has been
determined to equal 0. With no coefficientsin the
model, processing cannot continue.

LDCOEF or LDCOV is less than NCCEF.

NOBS — NRM SS must be greater than or equal to 2 in
order to estimate the coefficients.

The number of observations to be deleted has
exceeded NVAX. Rerun with a different model or
increase the workspace.

Dummy variables are generated for the classification variables as
follows: An ascending list of all distinct values of each classification
variable is obtained and stored in CLVAL. Dummy variables are then
generated for each but the last of these distinct values. Each dummy
variable is zero unless the classification variable equal s the list value
corresponding to the dummy variable, in which case the dummy variable
isone. See Argument | DUMWY for | DUMMY = 2 in routine GRGLM(page

210).

The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy

variables associated with the classification variable.

The “product” of two classification variables yields dummy variables in

the usual manner. Each dummy variable associated with the first

classification variable multiplies each dummy variable associated with
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the second classification variable. The resulting dummy variables are
such that the index of the second classification variable varies fastest.

Algorithm

Routine SVGLMcomputes maximum likelihood estimates of parameters and associated
statistics in generalized linear models commonly found in survival (reliability) anaysis.
Although the terminology used will be from the survival area, the methods discussed
have application in many areas of data analysis, including reliability analysis and event
history analysis. Indeed, these methods may be used anywhere arandom variable from
one of the discussed distributions is parameterized via one of the models available in
SVGLM Thus, while it is not advisable to do so, standard multiple linear regression may
be performed by routine SVGLM Estimates for any of ten standard models can be
computed. Exact, leftcensored, right-censored, or interval-censored observations are
allowed. (Note that left censoring is the same as interval censoring with left endpoint
equal to the left endpoint of the support of the distribution.)

Letn= xTB be the linear parameterization, where x is a design vector obtained in SVG_Mvia
routine GRGLM(page 210) from arow of X, and 3 is avector of parameters associated with the
linear model. Let T denote the random response variable and S(t) denote the probability that T
>t. All models considered also alow afixed parameter w; for observation i (input in column

I FI X of X). Use of this parameter is discussed below. There may a so be nuisance parameters 0
>0, or 0 > 0to be estimated (along with 3) in the various models. Let @ denote the cumulative
normal distribution. The survival models available in SVGLMare;

Model Name S(t)
0 Exponential exp{— exp(wi + r])}
L Linearhazard exp{~(t + % )expl(w; + )]}
2 Log-normal 1- q)(ln(t)_r]_wi )
(6
3 Normal 1- q)(t—ﬂ-Wi )
o
4  Log-logistic {1+ exp(ln(t);r]_wi ) -1
5 Logistic {1+ exp(t_”c;wi ) -1

6  Logleast extreme value exp{—exp(ln(t)_n_wi )
o

7 Least extreme value exp{_exp(t—n—wi )}
o
8  Logextremevaue 1- exp{-exp[- In(t)-n-w; N
(0}
9 Extreme value 1- exp{—exp[-(t'”T_W‘)]}
10  Weibull

Xpl~{ e )
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Note that the log-least-extreme-value model is areparameterization of the
Weibull model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 requirethat T > 0, while
all of the remaining models allow any valuefor T,—co < T < co.

Each row in the data matrix can represent a single observation, or, through the use
of column | FRQ, it can represent several observations. Classification variables
and their products are easily incorporated into the models via the usual GLM type
specifications through the use of variables NCLVAR and | NDCL, and the model
variables NEF, NVEF, and | NDEF.

The constant parameter w; isinput in X and may be used for a number of
purposes. For example, if the parameter in an exponential model is known to
depend upon the size of the area tested, volume of aradioactive mass, or
population density, etc., then a multiplicative factor of the exponential parameter
A = exp(xB) may be known apriori. This factor can beinput in w; (w; isthe log of
the factor). An aternate use of w; is asfollows: It may be that

A =exp(X By + %B,), where 3, isknown. Letting w; = %,[3,, estimates for 3, can
be obtained via SVA_.Mwith the known fixed values for [3,. Standard methods can
then be used to test hypotheses about 3, via computed log-likelihoods.

Computational details
The computations proceed as follows:
1 Theinput arguments are checked for consistency and validity.

2. Estimates for the means of the explanatory variablesx (as generated
from the model specification via GRGLM page 210) are computed. Let f;
denote the frequency of the observation. Means are computed as

- fox
)—( - ZI 1M
> fi
3. If I NI T=0, initia estimates of the parameters for all but the exponential

models (MODEL =0, 1) are are obtained as follows:

A. Routine KAPMR (page 938) is used to compute a nonparametric
estimate of the survival probability at the upper limit of each
failure interval. (Because upper limits are used, intervaland | eft-
censored data are taken to be exact failures at the upper
endpoint of the failure interval.) The Kaplan-Meier estimate is
computed under the assumption that all failure distributions are
identical (i.e., al B's but the intercept, if present, are assumed
to be zero).

B. If | NTCEP = 0, a simple linear regression is performed
predicting

SHI) -w =a+qt"

IMSL STAT/LIBRARY Chapter 13: Survival Analysis, Life Testing, and Reliability + 975



wheret* iscomputed at the upper endpoint of each failure
interval, t* =tinmodels 3,5, 7, and 9, and t* = In(t) in models
2,4, 6,8, and 10, and w; is the fixed constant, if present. If

| NTCEP is zero, a isfixed at zero, and the model

~-1/& ! — T
SHEY) - -w; =xf
isfit instead of the model above. In this model, the coefficients

[3 are used in place of the location estimate o above. Here,

A

¢
is estimated from the simple linear regression witha = 0.

C. If the intercept isin the model, then in log-location-scale
models (models 1-8),

G=0

and the initial estimate of the intercept, if present, is taken to be

A

a
In the Weibull model,

6=1/¢

and the intercept, if present, is taken to be

A

a

Initial estimates of all parametgBsother than the intercept, are
taken to be zero.

If no intercept is in the model, the scale parameter is estimated
as above, and the estimates

A

B

from Step B are used as initial estimates forfXlse

For exponential model$/0DEL = 0, 1), the average total time on test
statistic is used to obtain an estimate for the intercept. Specifically, let
denote the total number of failures divided by the total time on test. The
initial estimate for the intercept is thenTy)( Initial estimates for the
remaining parametefsare taken as zero, andMEDEL = 1, the initial
estimate for the linear hazard paramétés taken to be a small positive
number. When the intercept is not in the model, the initial estimate for
the parameted is taken as a small positive number, and initial estimates
of the parameteif8 are computed via multiple linear regression as
above.
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A quasi-Newton algorithm isused in the initial iterations based upon a
Hessian estimate

HKJ'K| = ZE:UJE:CM
|

where
I
Elal

isthe partia derivative of the i-th term in the log-likelihood with respect
to the parameter a;, and a; denotes one of the parameters to be
estimated.

When the relative change in the log-likelihood from one iteration to the
next is 0.1 or less, exact second partia derivatives are used for the
Hessian so that Newton-Raphson iteration is used.

If theinitial step size resultsin anincreasein the log-likelihood, the full
step is used. If the log-likelihood decreases for the initial step size, the
step sizeis halved, and a check for an increase in the log-likelihood
performed. Step-halving is performed (as a simple line search) until an
increase in the log-likelihood is detected, or until the step sizeis less that
0.0001 (wheretheinitial step sizeisl).

Convergence is assumed when the maximum relative change in any
coefficient update from one iteration to the next is less than EPS, or
when the relative change in theloglikelihood from one iteration to the
next isless than EPS/100. Convergence is also assumed after MAXI T
iterations, or when step halving leads to a step size of less than .0001,
with no increase in the log-likelihood.

If requested (I NFI N = 0), then the methods of Clarkson and Jennrich
(1988) are used to check for the existence of infinite estimatesin
— T
ni =X B

As an example of asituation in which infinite estimates can occur,
suppose that observation j is right censored with t; > 15 in anormal
distribution model in which we fit the mean as

—vin—
Hj =XjB=n;
wherex; is the observation design vector. If design vector x; for

parameter 3,, is such that x;,, = 1 and X;,, = 0 for all i # j, then the
optimal estimate of 3,, occurs at

B =

leading to an infinite estimate of both 3,, and n;. In SVGLM such
estimates may be “computed.”
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In al modelsfit by SVGLM infinite estimates can only occur when the optimal
estimated probability associated with the leftor right-censored observation is 1. If

I NFI N =0, left-or right-censored observations that have estimated probability greater
than 0.995 at some point during the iterations are excluded from the log-likelihood,
and the iterations proceed with alog-likelihood based upon the remaining
observations. This allows convergence of the algorithm when the maximum relative
change in the estimated coefficientsis small and also allows for a more precise
determination of observationswith infinite

ol
ny =x B
At convergence, linear programming is used to ensure that the eliminated
observations have infiniten ;. If some (or al) of the removed observations should
not have been removed (because their estimated n ;'s must be finite), then the

iterations are restarted with a log-likelihood based upon the finitebservations.
See Clarkson and Jennrich (1988) for more details.

Whenl NFI N= 1, no observations are eliminated during the iterations.
In this case, when infinite estimates occur, some (or all) of the
coefficient estimates

A

B

will become large, and it is likely that the Hessian will become (numerically) singular
prior to convergence.

7. The case statistics are computed as follows:
Let
£ (6;)
denote the log-likelihood of thieth observation evaluated &t let
4
denote the vector of derivatives of
t;
with respect to all parameters,
14 'n’ i

denote the derivative of
7

with respect ta) = xTB, H denote the Hessian, akdlenote
expectation. Then, the columnsG#SE are:

A. Predicted values are computedEd$|x) according to standard
formulas. IfMODEL is 4 or 8, and it = 1, then the expected
values cannot be computed because they are infinite.
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| NTEGER
&
&
REAL
PARAMETER
&
&
&
| NTEGER
REAL

B. Following Cook and Weisherg (1982), we take the influence
(or leverage) of the i-th observation to be

(¢)TH

This quantity is a one-step approximation to the change in the
estimates when thei-th observation is deleted (ignoring the
nuisance parameters).

C. The “residual” is computed as
I
K ﬁ,l
D. The cumulative hazard is computed at the observation covariate

values and, for interval observations, the upper endpoint of the
failure interval. The cumulative hazard can also be used as a
“residual” estimate. If the model is correct, the cumulative
hazards should follow a standard exponential distribution. See
Cox and Oakes (1984).

E. The density (for exact failures) or the interval probability (for
censored observations) is computed for gixen

Programming Notes

Classification variables are specified by paramet€rs/AR andl NDCL. Indicator
variables are created for the classification variables using raeRBeM (page
210) withl DumMwy = 2,

Example 1

This example is from Lawless (1982, page 287) and involves the mortality of
patients suffering from lung cancer. (The first ten rows of the input data are
printed in the output.) An exponential distribution is fit for model

N=H+BiX +BXy + BiXs +0; +Yy

whereq; is associated with a classification variable with 4 levels yarsd

associated with a classification variable with 2 levels. Note that because the
computations are performed in single precision, there will be some small
variation in the estimated coefficients across different machine environments.

ICEN, IFIX, [ITFRQ ILT, INFIN, INT, INTCEP, |PAR,

I PRINT, | RT, LDCASE, LDCOEF, LDCOV, LDX, MAXCL,

MAXI T, MODEL, NCLVAR, NCOL, NEF, NOBS

EPS

(EPS=0. 001, ICEN=2, |FIX=0, |IFRQ0, ILT=0, INFIN=0,
INI T=0, INTCEP=1, |PAR=0, |PRINT=2, |RT=1, LDCASE=40,
LDCOEF=8, LDCOvV=8, LDX=40, MAXCL=6, MAXI T=15,
MODEL=0, NCLVAR=2, NCOL=7, NEF=5, NOBS=40)

| ADD( NOBS), | NDCL(NCLVAR), | NDEF(5), NCLVAL(NCLVAR),
NCOEF, NRM SS, NVEF( NEF)
ALGL, CASE(LDCASE,5), CLVAL(MAXCL), COEF(LDCOEF, 4),
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& COV(LDCOV, LDCOV), GR(LDCOV), X(LDX, NCOL), XMEAN( LDCOV)

EXTERNAL SVGLM WRRRL

C
DATA X/ 411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287,
& 10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201,
& 44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231,
& 5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6,
& 3, 8 4, 6, 4 2, 5,5 4, 8, 7, 6, 9, 5,7, 2, 8 6, 5, 7,
& 4, 3, 3, 4, 6, 8, 7, 3, 6, 8, 7, 64, 63, 65, 69, 63, 48,
& 48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37,
& 54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68,
& 39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2,
& 25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13,
& 22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3,
& 5%4, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1/
DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/
C
CALL WRRRL (’First 10 rows of the input data.’, 10, NCOL, X,
& LDX, 0, '(F5.1)", 'NUMBER’, 'NUMBER")
C
CALL SVGLM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ, IFIX,
& ICEN, INFIN, MAXIT, EPS, INTCEP, NCLVAR, INDCL, NEF,
& NVEF, INDEF, INIT, IPRINT, MAXCL, NCLVAL, CLVAL,
& NCOEF, COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE,
& LDCASE, GR, IADD, NRMISS)
C
END
Output
First 10 rows of the input data.
1 2 3 4 5 6 7
14110 00 70 640 50 1.0 0.0
2 126.0 0.0 6.0 63.0 9.0 1.0 0.0
31180 0.0 7.0 65.0 110 1.0 0.0
4 920 0.0 4.0 69.0 100 1.0 0.0
5 80 00 4.0 63.0 580 1.0 0.
6 250 1.0 7.0 480 9.0 1.0 0.
7 11.0 0.0 7.0 480 11.0 1.0 0.0
8 540 0.0 80 630 40 20 0.0
9 153.0 0.0 6.0 63.0 140 2.0 0.0
10 16.0 0.0 3.0 53.0 40 2.0 0.0

Initial Estimates
1 2 3 4 5 6 7 8
-5.054 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Method Iteration Step size Maximum scaled Log
coef. update likelihood

Q-N 0 -224.0

Q-N 1 1.0000 0.9839 -213.4
N-R 2 1.0000 3.603 -207.3
N-R 3 1.0000 10.12 -204.3
N-R 4 1.0000 0.1430 -204.1
N-R 5 1.0000 0.1174E-01 -204.1

Log-likelihood -204.1392
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Coefficient Statistics

St andard Asynptotic Asynptotic
Coefficient error z-statistic p- val ue
1 -1.103 1. 309 -0.842 0. 3998
2 -0.540 0.108 -4.995 0. 0000
3 -0. 009 0. 020 -0. 459 0. 6460
4 -0. 003 0.012 -0.291 0.7710
5 -0. 363 0. 445 -0.816 0. 4149
6 0.127 0. 486 0. 261 0. 7939
7 0. 869 0. 586 1.483 0. 1385
8 0. 270 0. 388 0. 695 0. 4873
Asynptotic Coefficient Covariance
1 2 3 4 5
1 1.714 -8.1873E-02 -1. 9753E- 02 -2.2481E- 03 -6.5707E- 02
2 1. 1690E- 02 6. 4506E- 05 2. 8955E- 04 - 3. 8734E- 04
3 3. 8676E- 04 - 3. 9067E- 05 -1. 2359E- 03
4 1. 3630E- 04 7. 5656E- 04
5 0.1976
6 7 8
1 -0. 1038 -0. 1554 -4.2370E- 05
2 8. 5772E- 03 1. 8120E- 02 6. 5272E- 03
3 - 3. 2789E- 04 -1. 6986E- 03 -2.7794E- 03
4 -1.6742E- 03 6. 2668E- 04 1. 5432E- 03
5 9. 0035E- 02 0.1122 4. 3157E- 02
6 0. 2365 0.1142 -1. 3527E- 02
7 0. 3436 5. 1948E- 02
8 0. 1507
Case Anal ysis
Cunul ative Density or
Predi ct ed I nfl uence Resi dual Hazar d Probability
1 262.7 0. 0450 -0. 565 1. 565 0. 0008
2 153.8 0. 0042 0.181 0. 819 0. 0029
3 270.5 0. 0482 0. 564 0. 436 0. 0024
4 55.3 0. 0844 -0.663 1. 663 0. 0034
5 61.7 0. 3765 0. 870 0.130 0. 0142
6 230.4 0. 0025 -0.108 0.108 0. 8972
7 232.0 0. 1960 0. 953 0. 047 0. 0041
8 272.8 0.1677 0. 802 0.198 0. 0030
9 95.9 0. 0505 -0.596 1.596 0. 0021
10 16.8 0. 0005 0. 045 0. 955 0. 0230
11 234.0 0. 1911 0.761 0. 239 0. 0034
12 29.1 0. 0156 0. 278 0.722 0. 0167
13 102. 2 0. 4609 -1. 807 2. 807 0. 0006
14 34.8 0. 0686 0.713 0. 287 0. 0216
15 5.3 0. 0838 -0.521 1.521 0. 0415
16 25.7 0.0711 0. 533 0. 467 0. 0244
17 65. 6 0. 4185 -1.698 2.698 0. 0010
18 38. 4 0. 0886 0. 688 0. 312 0. 0191
19 261.0 0. 0155 0.234 0. 766 0.0018
20 167.2 0. 0338 -0.495 1.495 0. 0013
21 85.8 0. 0082 -0. 166 1.166 0. 0036
22 947. 8 0. 0005 -0. 054 1.054 0. 0004
23 105.9 0. 6402 -2.181 2.181 0.1129
24 305. 2 0. 5757 -2.247 3. 247 0. 0001
25 24. 6 0. 3203 0. 959 0. 041 0. 0390
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26 572.8 0. 0762 0. 649 0.351 0. 0012
27 217.5 0.1246 0.798 0.202 0. 0038
28 96. 6 0. 1494 0. 845 0. 155 0. 0089
29 173. 4 0. 1096 -0.594 0.594 0. 5522
30 38.7 0.1928 0.948 0. 052 0. 0245
31 22.5 0. 0040 0.112 0. 888 0.0183
32 30.7 0.2270 -0. 661 1.661 0. 0062
33 20.8 0. 0058 0.134 0. 866 0. 0202
34 54.6 0. 1094 -0. 648 1.648 0. 0035
35 168. 6 0. 0923 0. 502 0.498 0. 0036
36 256.8 0. 0341 0. 361 0. 639 0. 0021
37 21.9 0. 0069 0.134 0. 866 0. 0192
38 124.3 0. 0680 0. 654 0. 346 0. 0057
39 417.9 0. 0087 0. 186 0. 814 0. 0011
40 257.1 0. 0025 0.101 0. 899 0. 0016

Last Coefficient Update
1 2 3 4 5 6
-1.031E-05 -1.437E-06  3.098E-07 4.722E-08 -1.844E-05 -1.671E-06

7 8
- 2. 520E- 06 8. 139E-06

Covari ate Means
1 2 3 4 5 6 7
5. 65 56. 58 15. 65 0. 35 0.28 0.12 0.53

Di stinct Values For Each C ass Variabl e
Vari able 1: 1.0 2.0 3.0 4.0
Vari able 2: 0. 1.0

Cbservati on Codes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0O 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Number of M ssing Val ues 0

Example 2

As asecond example, the MAXI T = 0 option is used for the model in Example 1
with the coefficients restricted such that g = -1.25, 3; = .6, and the remaining 6
coefficients are zero. A chi-squared statistic with 8 degrees of freedom for testing
that the coefficients are specified as above (versus the aternative that they are not
as specified) may be computed from the output as

x2=9'3>1g

where

A

2

isoutput in COV, and g isoutput in GR. The resulting test statistic (6.107), based
upon no iterations, is comparable to the likelihood ratio test statistic that may be
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computed from the log-likelihood output in Example 2 (—206.6835) and the log-
likelihood output in Example 1 (—204.1392).

X R = 2(206.6835 - 204.1392) = 50886

Neither test statistic is significant at thea = 0.05 level.

| NTEGER ICEN, IFIX, 1FRQ ILT, INFIN, INIT, INTCEP, |PAR,
& I PRI NT, |RT, LDCASE, LDCOEF, LDCOV, LDX, MAXCL,
& MAXI T, MODEL, NCLVAR, NCOL, NEF, NOBS
REAL EPS
PARAMETER (EPS=0.001, |CEN=2, |FIX=0, |FRQ@O0, |LT=0, | NFIN=0,
& I NI T=1, | NTCEP=1, |PAR=0, |IPRINT=2, |RT=1, LDCASE=40,
& LDCCEF=8, LDCOvV=8, LDX=40, MAXCL=6, MAXI T=0, MODEL=0,
& NCLVAR=2, NCOL=7, NEF=5, NOBS=40)
C
| NTEGER | ADD( NOBS), | NDCL(NCLVAR), | NDEF(5), | RANK,
& NCLVAL( NCLVAR), NCOEF, NRM SS, NVEF( NEF)
REAL ALG., CASE(LDCASE,5), CHI, CLVAL(MAXCL),
& COEF( LDCCEF, 4), COV(LDCOV, LDCOV), GR(LDCOV),
& GRD( LDCOV), SDOT, X(LDX, NCOL), XMEAN( LDCOV)
EXTERNAL CHFAC, G RTS, SDOT, SSET, SVGLM
C
DATA X/ 411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287,
& 10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201,
& 44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231,
& 5*0, 1, 16*0, 1, 5*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6,
& 3, 8 4, 6, 4, 2, 5, 5 4, 8, 7, 6, 9, 5, 7, 2, 8, 6, 5 7,
& 4, 3, 3, 4, 6, 8 7, 3, 6, 8 7, 64, 63, 65 69, 63, 48,
& 48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37,
& 54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68,
& 39, 49, 64, 67, 5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2,
& 25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13,
& 22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7*2, 2*3,
& 54, 7*1, 4*2, 3*3, 5*4, 21*0, 19*1/
DATA NVEF/1, 1, 1, 1, 1/, INDEF/ 3, 4, 5, 6, 7/, INDCL/6, 7/
C
NCOEF = 8
CALL SSET (NCOEF, 0.0, COEF(3,1), 1)
CALL SSET (NOBS, 0, |ADD, 1)
COEF(1,1) = -1.25
COEF(2,1) = -0.60
CALL SVGM (NOBS, NCOL, X, LDX, MODEL, ILT, IRT, IFRQ |IFIX,
& ICEN, INFIN, MAXIT, EPS, INTCEP, NCLVAR, |NDCL, NEF,
& NVEF, INDEF, INIT, |PRINT, MAXCL, NCLVAL, CLVAL,
& NCOEF, COEF, LDCOEF, ALG., COV, LDCOV, XMEAN, CASE,
& LDCASE, GR, | ADD, NRM SS)
C Conput e Chi -squar ed
CALL CHFAC (NCOEF, COvVv, LDCOV, EPS, |RANK, COvV, LDCOV)
CALL G RTS (NCCEF, COV, LDCOV, 1, GR NCOEF, 2, |RANK, GRD,
& NCOEF, COV, LDCOV)
C
CH = SDOT( NCOEF, GRD, 1, GRD, 1)
WRITE (6,99999) ' Chi-squared statistic with 8 degrees of '//
& 'freedom ’, CHI
C

99999 FORMAT (/, A, G12.4)

END
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Output

Log-1i kel i hood

Coef ficient

O~NOUTA WN
CooooooR
o
S

1. 897

GO WNE

6
. 1641
. 0372E-02
. 1246E- 04
. 0693E- 03
. 9640E- 02
. 2808

O~NOUITRWN B
SQONOI—O

Esti mat ed Probabi
1 2
0. 0007 0. 0029

9 10
0. 00240 . 0222

17 18
0. 0011 0. 0190

25 26
0.0792 0. 0015

33 34
0. 0163 0. 0039

1 2
0.171 0.062 -0

1 2
5. 65 56. 58 15

-206. 6835
Coefficient Statistics
St andard Asynptotic
error z-statistic
1.377 -0.908
0.112 -5.365
0.021 0. 000
0.011 0. 000
0. 429 0. 000
0.530 0. 000
0.775 0. 000
0. 405 0. 000
Hessi an
2 3
-8. 1835E-02 - 2. 3464E- 02
1. 2507E- 02 2. 0883E- 06
4.6174E-04
7 8
-0.1681 7. 7768E-02
1. 9269E- 02 5.9762E- 03
-1. 6419E- 03 -4. 0106E- 03
6. 9029E- 04 1. 7020E- 03
0.1191 3. 5786E-02
0. 1264 -2.2602E- 02
0. 6003 4. 6015E-02
0. 1641

ity (censored) or Estimated Density (non-censored)
3

4 5

Asynptotic

p- val ue
. 364
. 000
000
000
000
000
000
. 000

PRPPRPPRPROO

4

-1. 1634E- 03
3. 1320E- 04
-5.5344E- 05
1. 1797E-04

6

0. 0026 0. 0024 0.0211 0. 8982

11 12 13

14

0. 0021 0. 0151 0. 0008 0. 0200

19 20 21

22

0. 0015 0. 0015 0. 0036 0. 0004

27 28 29

30

0. 0055 0. 0115 0. 6424 0. 0247

35 36 37

38

0. 0019 0. 0021 0.0193 0. 0056

Newt on- Raphson St ep
3 4 5 6
011 -0.003 -0.336 0.133

Covari ate Means
3 4 5 6
65 0. 35 0.28 0.12

Di stinct Values For Each C ass Variabl e

1. 297

5

-9. 0646E- 02

-5.3147E-04

- 8. 1929E- 04

6. 0699E- 04
0. 1839

7 8
0. 0041 0. 0021
15 16
0. 0433 0. 0120
23 24
0.0371 0. 0001
31 32
0.0184 0. 0042
39 40
0. 0011 0. 0016
8
0. 298
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Variable 1: 1.0 2.0 3.0 4.0
Vari able 2: 0. 1.0

bservati on Codes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
o o0 o0o0 0 O O o o o o0 o0 o o0 o o o o o o

Nunmber of M ssing Val ues 0

Chi -squared statistic with 8 degrees of freedom 6. 335

STBLE/DSTBLE (Single/Double precision)

Estimate survival probabilities and hazard rates for various parametric models.

Usage

CALL STBLE (NOBS, NCOL, XPT, LDXPT, MODEL, TIME, NPT,
DELTA, 1FI X, INTCEP, NCLVAR, |NDCL, NCLVAL,
CLVAL, NEF, NVEF, |NDEF, NCOEF, CCEF, | PRI NT,
SPROB, LDSPRO, XBETA)

Arguments
NOBS — Number of observations. (Input)
NCOL — Number of columns iXPT. (Input)

XPT — NOBS by NCOL matrix, each row of which contains the covariates for a
group for which survival estimates are desired. (Input)

LDXPT — Leading dimension ofPT exactly as specified in the dimension
statement of the calling program. (Input)

MODEL — Model option parameter. (Input)
MODEL specifies the distribution of the response variable and the relationship of
the linear model to a distribution parameter.

MODEL Distribution
Exponential
Linear hazard
Log-normal
Normal
Log-logistic
Logistic
Log least extreme value
Least extreme value
Log extreme value
Extreme value

0 Weibull

POoOo~NOOO~WNPEO
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For further discussion of the models, see the Algorithm section.

TIME — Beginning of the time grid for which the survival estimates are desired.
(Input)

Survival probabilities and hazard rates are computed for each covariate vector
over the grid of time pointsl ME +i * DELTAfori =0, 1,..., NPT - 1.

NPT — Number of points on the time grid for which survival probabilities are
desired. (Input)

DELTA — Increment between time points on the time grid. (Input)

IFIX — Column number iXPT containing a constant to be added to the linear
response. (Input)

The estimated linear responsenvis- COEF(1) * z(1) + COEF(2) * z(2) +... +
CCOEF(NCOEF) * z(NCOEF), wherez is the design vector for theth observation
obtained from a row ofPT. w = XPT(I , | FI X) if | FI X is positive, anav = 0
otherwise.

INTCEP — Intercept option. (Input)

| NTCEP Action
0 No intercept is in the model (unless otherwise provided for by the user).
1 An intercept is automatically included in the model.

NCLVAR — Number of classification variables. (Input)
Dummy or indicator variables are generated for classification variables using the
| DUMWY = 2 option of routingsRGLM (page 210). See Comment 2.

INDCL — Index vector of lengthNCLVAR containing the column numbers>of
that are classification variables. (InputN@LVAR is positive, not used
otherwise)

If NCLVAR s 0,1 NDCL is not referenced and can be dimensioned of length 1 in
the calling program.

NCLVAL — Vector of lengtiNCLVAR containing the number of values taken on
by each classification variable. (InputNELVAR is positive, not referenced
otherwise)

NCLVAL(1 ) is the number of distinct values for theh classification variable.
NCLVAL is not referenced and can be dimensioned of length 1 in the calling
program ifNCLVAR is zero.

CLVAL — Vector of lengtiNCLVAL (1) + NCLVAL(2) + ... +NCLVAL(NCLVAR)
containing the distinct values of the classification variables. (InQCLW¥AR is
positive; not used otherwise)

The firstNCLVAL(1) elements contain the values for the first classification
variables, the nexXCLVAL(2) elements contain the values for the second
classification variable, etc. NCLVAR s zero, therCLVAL is not referenced and
can be dimensioned of length 1 in the calling program.
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NEF — Number of effects in the model. (Input)
In addition to effects involving classification variables, simple covariates and the
product of simple covariates are also considered effects.

NVEF — Vector of lengtiNVEF that contains the number of variables associated
with each effect. (Input, NEF is greater than 0; not referenced otherwise)

NVEF is not referenced and can be dimensioned of length 1 in the calling program
if NEF is zero.

INDEF — Vector of lengthNVEF(1) + ... + NVEF(NEF) that contains the column
numbers irX associated with each effect. (Input\#~ is greater than 0; not
used otherwise)

The firstNVEF(1) elements of NDEF contain the column numbersXRT for the
variables in the first effect. The neMWEF(2) elements im NDEF contain the
column numbers for the second effect, etaNAf VAR is zero,| NDEF is not
referenced and can be dimensioned of length 1 in the calling program.

NCOEF — Number of coefficients in the model. (Input)

COEF — Vector of lengtiNCOEF containing the model parameter estimates.
(Input)

Usually routineSVGLM(page 967) is first called to estima&ieEF as the first

column of matrixCCEF in SVGLM When present in the model, the initial
coefficient inCOEF is a “nuisance” parameter, and the remaining coefficients are
parameters associated with the “linear” model, beginning with the intercept, if
present. Nuisance parameters are as follows:

Model Nuisance Parameter

1 Coefficient of the quadratic term in tinte,
2-9 Scale parameteg,

10 Shape parameted,

There is no nuisance parameter for model 0.
IPRINT — Printing option. (Input)

| PRI NT Action
0 No printing is performed.
1 Printing is performed.

SPROB — NPT by 2* NOBS + 1 matrix. (Output)

SPROB(i, 2) contains the estimated survival probability at time

SPROB(i, 1) =TI ME + (i — 1) * DELTA for observations with covariates given in
row 1 of XPT. SPROB(i, 3) contains the estimate for the hazard rate at this time
point. Columns 4 and 5 contain the estimated survival probabilities and hazard
rates for observations with covariates given in the second r@Tiretc., up to
columns 2 NOBS and 2* NOBS + 1, which contain these statistics for
observations with covariates in the last rowxef.

LDSPRO — Leading dimension 8PROB exactly as specified in the dimension
statement in the calling program. (Input)
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XBETA — Vector of lengttNOBS containing the estimated linear respowse
COEF(1) * z(1) +... + COEF(NCCEF) * z(NCCEF ) for each row oKPT. (Output)

Comments
1. Automatic workspace usage is

STBLE NCOEF numeric units if PRI NT is zero, ONCOEF +
max(7,NCOL) numeric units NCOL * 10 character units if
I PRINT is 1, or

DSTBLE 2 * NCOEF numeric units if PRI NT is zero, or 2 NCOEF +
max(7,NCOL) numeric units NCOL * 10 character units if
| PRINT is 1.

Workspace may be explicitly provided, if desired, by use of

S2BLE/DS2BLE. The reference is

CALL S2BLE (NOBS, NCOL, XPT, LDXPT, MODEL, TI ME,
NPT, DELTA, |FI X, | NTCEP, NCLVAR, | NDCL,
NCLVAL, CLVAL, NEF, NVEF, | NDEF, NCOCEF,

COEF, | PRINT, SPROB, LDSPRO, XBETA,
CHWK, Z, RVK)

The additional arguments are as follows:
CHWK — CHARACTER * 10 work vector of lengthiCOL.
Z — Work vector of lengthNCOEF.

RWK — Work vector of lengthvax(7, NCQL) if | PRI NT = 1, or of
length 1 ifl PRI NT = 0.

2. Dummy variables are generated for the classification variables as
follows: The list of all distinct values of each classification variable is as
stored inCLVAL. Dummy variables are generated for each but the last of
these distinct values. Each dummy variable is zero unless the
classification variable equals the list value corresponding to the dummy
variable, in which case the dummy variable is one. See argument
| DUMWY for | DUMWY = 2 in routineGRGLM (page 210).

3. Informational errors
Type Code

3 1 Some survival probabilities are less than or equal to
zero. The corresponding hazard values cannot be
computed.

4 2 The specified number of coefficieMNSQEF, is
incorrect.

4 3 The model specified is not defined for negative time.
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Algorithm

Routine STBLE computes estimates of survival probabilities and hazard rates for the
parametric survival/reliability modelsfit by routine SVGLM(page 967) for one or more
vectors of covariate values. Because estimates for the parameters of the model must be
given, routine SVA_Mis usually invoked to obtain these estimates prior to invoking STBLE.

Letn= XTB be the linear parameterization, where x is a design vector obtained in STBLE
viaroutine GRGLM (page 210) from arow of XPT, and 3 is avector of parameters
associated with the linear model. Let T denote the random response variable and (t)
denote the probability that T > t. All models considered also allow afixed parameter w
(input in column | FI X of XPT). Use of this parameter is discussed in the document for
routine SVGLM. There may also be nuisance parameters 6 > 0, or ¢ > 0. Let ® denote the
cumulative normal distribution. The survival models available in STBLE are

Model  Name S(t)
0 Exponential exp{—texp(w + n)}
t inearherard exp{—(t + & )exp[(w + )]}
2 Log-normal 1- q)(In(t)—r]—w)
()
3 Normal 1- cD(t—rl—w)
o
4 Log-logistic {1+ eXp(ln(t)—n—w)} -1
o
5 LOg|St|C {1+ eXp(t_rc])._W)} -1

6 Log least extreme value exp{—exp(ln(t)_n_w)}
o

7 L east extreme value exp{—exp(t‘”'w)}
o
8 Log extreme value 1- exp{—exp[( In(t)—n—w)]}
(0}
9 Extreme value 1- exp{—exp[—(t_rc];w)]}
10  Welbull

¢ 0
exp{~{ i) J
Let A(t) denote the hazard rate at time t. Then A(t) and S(t) arerelated as

S(t) = exp{-[_A(9)ds

ModelsO, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case, we assume
A(s) =0 for s< 0), while the remaining models allow arbitrary valuesfor T,
—o0 < T < 00, The computations proceed in routine STBLE as follows:

1 Theinput arguments are checked for consistency and validity.
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2. For each row of XPT, the explanatory variables are generated from the
classification and variables and the covariates using routine GRG.Mwith
the | DUMWY = 2 option. (When | DUMVWY is two, GRGLMassigns an
indicator variable the value 1.0 when the observation is in the class,
assigns the value 0.0 otherwise, and omits the last indicator variable
from the design vector. See the manual documentation for GRGLM)

Given the explanatary variablesx, n iscomputedasn = XTB, where 3
ininput in COEF.

3. For each time point requested in the time grid, the survival probabilities
and hazard rates are computed.

Example

The example is a continuation of the first example given for routine SVGLM(page
967). Prior to calling STBLE, SVG.Misinvoked to compute the parameter
estimates. The exampleis taken from Lawless (1982, page 287) and involvesthe
mortality of patients suffering from lung cancer.

C
INTEGER  ICEN, IFIX, IFRQ ILT, INFIN, INIT, INTCEP, |PRINT,
& IRT, ITIE, LDCASE, LDCOEF, LDCOV, LDSPRO, LDX, LDXPT,
& MAXCL, MAXIT, MODEL, NCLVAR NCOL, NEF, NOBS, NPT,
& NOBS
REAL DELTA, EPS, TIME, XPWR
PARAMETER (DELTA=20.0, EPS=0.001, |CEN=2, |FIX=0, |FRQ=0,
& [LT=0, INFIN=O, INIT=0, |INTCEP=1, |PRINT=1, |RT=1,
& | TIE=0, LDCASE=40, LDCOEF=9, LDCOV=9, LDX=40,
& LDXPT=2, MAXCL=6, MAXI T=15, MODEL=0, NCLVAR=2,
& NCOL=7, NEF=5, NOBS=40, NPT=10, NOBS=2, TI ME=10.0,
& XPWR=0. 0, LDSPRO=NPT)

C
INTEGER | ADD(NOBS), | NDCL(NCLVAR), |NDEF(5), NCLVAL(NCLVAR),
& NCOEF, NRM SS, NVEF( NEF)
REAL ALGL, CASE(LDCASE,5), CLVAL(MAXCL), COEF(LDCOEF, 4),
& COV( LDCOV, LDCOV), GR(LDCOV), SPROB( LDSPRO, 2* NOBS+1)
& X(LDX, NOOL) , XBETA(NOBS), XMEAN( LDCOV),
& XPT( LDXPT, NCOL)
EXTERNAL  SCOPY, STBLE, SVGLM

C
DATA X/ 411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287,
& 10, 8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201,
& 44, 15, 103, 2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231,
& 50, 1, 16*0, 1, 5%*0, 1, 11*0, 7, 6, 7, 4, 4, 7, 7, 8, 6,
& 3, 8 4, 6,4, 2 5 5 4 8 7,6, 9, 5 7, 2 8 6, 5 7,
& 4, 3, 3, 4, 6, 8 7, 3, 6, 8 7, 64, 63, 65 69, 63, 48,
& 48, 63, 63, 53, 43, 55, 66, 67, 61, 63, 66, 68, 41, 53, 37,
& 54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 69, 50, 62, 68,
& 39, 49, 64, 67, 5 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2,
& 25, 23, 19, 4, 16, 12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13,
& 22, 36, 9, 87, 5, 22, 4, 15, 4, 11, 10, 18, 7*1, 7%2, 2*3,
& 5%4, 7%1, 4*2, 3*3, 5%4, 21*0, 19*1/
DATA NVEF/1, 1, 1, 1, 1/, INDEF/3, 4, 5, 6, 7/, INDCL/6, 7/

c

CALL SVGLM (NOBS, NCO., X, LDX, MODEL, ILT, IRT, IFRQ |FIX,
& I CEN, INFIN, MAXIT, EPS, |INTCEP, NCLVAR, |NDCL, NEF,
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& NVEF, INDEF, INIT, 0, MAXCL, NCLVAL, CLVAL, NCCEF,
& COEF, LDCOEF, ALGL, COV, LDCOV, XMEAN, CASE, LDCASE,
& GR | ADD, NRM SS)

C
CALL SCOPY (NCOL, X(1,1), LDX, XPT(1,1), LDXPT)
CALL SCOPY (NCOL, X(2,1), LDX, XPT(2,1), LDXPT)
C
CALL STBLE (NOBS, NCOL, XPT, LDXPT, MODEL, TIME, NPT, DELTA,
& I FI X, I NTCEP, NCLVAR, | NDCL, NCLVAL, CLVAL, NEF,
& NVEF, | NDEF, NCOEF, CCEF, | PRI NT, SPROB, LDSPRO
& XBETA)
C
END
Output
group 1
xpt
1 2 3 4 5 6
411 0 7 64 5 1
7
0
desi gn vector
1 2 3 4 5 6
1 7 64 5 1 0
7 8
0 1
xbeta = -5.57097
group 2
xpt
1 2 3 4 5 6
126 0 6 63 9 1
7
0
desi gn vector
1 2 3 4 5 6
1 6 63 9 1 0
7 8
0 1
xbeta = -5.03551
survival and hazard estinates
(sprob)
tinme sl hl s2 h2
10. 00 0. 9626 0. 003807 0. 9370 0. 006503
30. 00 0. 8921 0. 003807 0. 8228 0. 006503
50. 00 0. 8267 0. 003807 0.7224 0. 006503
70. 00 0.7661 0. 003807 0. 6343 0. 006503
90. 00 0. 7099 0. 003807 0. 5570 0. 006503
110. 00 0. 6579 0. 003807 0. 4890 0. 006503
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130. 00
150. 00
170. 00
190. 00

0. 6096 0. 003807 0. 4294 0. 006503
0. 5649 0. 003807 0.3770 0. 006503
0. 5235 0. 003807 0. 3310 0. 006503
0. 4852 0. 003807 0. 2907 0. 006503

Note that in simple exponential models the hazard rate is constant over time.

ACTBL/DACTBL (Single/Double precision)

Produce population and cohort life tables.

Usage

CALL ACTBL (I MIH, N, NPOP, AGE, A, |POP, |DTH, |PRINT,
TABLE, LDTABL)

Arguments

IMTH — Type of life table. (Input)
| MTH = 0 indicates a population (current) tabl&TH = 1 indicates a cohort table.

N — Number of age classes. (Input)

NPOP — Population size. (Input, ifMr'H = 0; not used otherwise)
ForI MTH = 0, the population size at the beginning of the first age interval. The
value is somewhat arbitramyPOP = 10000 is reasonable. Not used MrH = 1.

AGE — Vector of lengthN + 1 containing the lowest age in each age interval, and
in AGE(N + 1), the endpoint of the last age interval. (Input)

NegativeAGE(1) indicates that the age intervals are all of leng#([L)| and that

the initial age interval is from 0.0 tadg(1)|. In this case, all other elements of

AGE need not be specifiedGE(N + 1) need not be specified whenrH = 1.

A — Vector of lengthN containing the fraction of those dying within each
interval who die before the interval midpoint. (Input)

A common choice for al(l ) is 0.5. This choice may also be specified by setting
A(1) to any negative value. In this case, the remaining values@éd not be
specified.

|POP — Vector of lengthN containing the cohort sizes during each interval.
(Input)

If 1 MTH = 0, thenl POP(I ) contains the size of the population at the midpoint of
intervall . If | MTH = 1, then POP(l ) contains the size of the cohort at the
beginning of interval . Whenl MIH = 0, the population sizes irPOP may need

to be adjusted to correspond to the number of deathsTiH . See the algorithm
section of the document for more information.

IDTH — Vector of lengthN containing the number of deaths in each age interval.
(Input, if | MTH = 0; not used otherwise)
If | MTH= 1,1 DTHis not used and may be dimensioned of length 1.
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IPRINT — Printing option. (Input)
If I PRI NT = 1, the life table is printed. Otherwise, no printing is done.

TABLE — N by 12 matrix containing the life table. (Output)
The rows ofTABLE correspond to the age intervals.

Col. Description

1 Lowest age in the age interval.

2 Fraction of those dying within the interval who die before the interval
midpoint.

3 Number surviving to the beginning of the interval.

4 Number of deaths in the interval.

5 Death rate in the interval. IIMTH = 1, this column is set to NaN (not a

number).

6 Proportion dying in the interval.

7 Standard error of the proportion dying in the interval.

8 Proportion of survivors at the beginning of the interval.

9 Standard error of the proportion of survivors at the beginning of the
interval.

10 Expected lifetime at the beginning of the interval.

11 Standard error of the expected life at the beginning of the interval.

12 Total number of time units lived by all of the population in the interval.

LDTABL — Leading dimension ofABLE exactly as specified in the dimension
statement in the calling program. (Input)

Algorithm

RoutineACTBL computes population (current) or cohort life tables based upon the
observed population sizes at the middlemH = 0) or the beginning MTH = 1)

of some userspecified age intervals. The number of deaths in each of these
intervals must also be observed.

The probability of dying prior to the middle of the interval, given that death
occurs somewhere in the interval, may also be specified. Often, however, this
probability is taken to be 0.5. For a discussion of the probability models
underlying the life table here, see the references.

Lett;, fori =0, 1,..., t, denote the time grid defining tieage intervals, and note
that the length of the age intervals may vary. Following Gross and Clark (1975,
page 24), let; denote the number of individuals dying in age intervahere

age interval ends at timé,. If | MTH = 0, the death rate at the middle of the
interval is given by, = d/(M;h;), whereM; is the number of individuals alive at
the middle of the interval, arig =t; — t,;, t, = 0. The number of individuals alive
at the beginning of the interval may be estimate®,byM, + (1 - a;)d; wherea;

is the probability that an individual dying in the interval dies prior to the interval
midpoint. When MIH = 1, P; is input directly while the death rate in the interval,
r;, is not needed.
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The probability that an individua dies during the age interval fromt,, tot; is
given by g; = d;/P;. It isassumed that all individuals aive at the beginning of the
last interval die during the last interval. Thus, g,, = 1.0. The asymptotic variance
of g; can be estimated by

of =qi(1-q)/R

When | MTH = 0, the number of individuals alive in the middle of the timeinterval
(input in 1 POP(1 )) must be adjusted to correspond to the number of deaths
observed in the interval. Routine ACTBL assumes that the number of deaths
observed in interval h; occur over atime period equal to h;. If d; is measured over
aperiod u;, where u; # d;, then | POP(1 ) must be adjusted to correspond to d; by
multiplication by u/h;, i.e., the value M, input into ACTBL as | POP(1 ) is computed
as

M= My / h

Let S denote the number of survivors at timet; from a hypothetical (I MrH = 0) or
observed (I MTH = 1) population. Then, S, = NPOP when| MTH =0, and
S =1POP(1) forIMH=1,and S isgivenby S =S_, — 8,.; where §; = Sq; isthe
number of individuals who diein thei-th interval. The proportion of survivorsin
theinterval isgiven by V; = S/S, while the asymptotic variance of V, can be
estimated as follows.

2

(1_ J)

The expected lifetime at the beginning of theinterval is calculated as the total
lifetime remaining for al survivors aive at the beginning of the interval divided
by the number of survivors at the beginning of the interval. If e; denotes this
average expected lifetime, then the variance of e; can be estimated as (see Chiang
1968)

var(V;) = Vi2 Z

Y5 3 P2 ilej+1 thj(l-a )

2
|:>j

var(e ) =

wherevar(e,) = 0.0.

Finally, the total number of time unitslived by all survivorsin the timeinterval
can be estimated as:

Uy =h[§ -3 (1-a)]

Example

The following example is taken from Chiang (1968). The cohort life table has
thirteen equally spaced intervals, so AGE(1) is set to —5.0. Similarly, the
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probabilities of death prior to the middle of the interval are al taken to be 0.5, so
A(1) issetto —1.0. Since | PRI NT = 1, thelifetableis printed by ACTBL.

C Speci fications
| NTEGER I MTH, | PRI NT, LDTABL, N, NPCP
PARAMETER (I MTH=1, |PRINT=1, N=13, NPOP=10000, LDTABL=N)
C
| NTEGER I DTH(13), | POP(13)
REAL A(1), AGE(1), TABLE(13,12)
EXTERNAL  ACTBL
C
DATA AGE/-5.0/, A/-1.0/
DATA | POP/ 270, 268, 264, 261, 254, 251, 248, 232, 166, 130, 76,
& 34, 13/
C
CALL ACTBL (I MIH, N, NPOP, AGE, A, |POP, |DTH, |PRINT, TABLE,
& LDTABL)
C
END
Output
Life Table
Age d ass Age PDHALF Alive Deaths Death Rate
1 0 0.5 270 2 NaN
2 5 0.5 268 4 NaN
3 10 0.5 264 3 NaN
4 15 0.5 261 7 NaN
5 20 0.5 254 3 NaN
6 25 0.5 251 3 NaN
7 30 0.5 248 16 NaN
8 35 0.5 232 66 NaN
9 40 0.5 166 36 NaN
10 45 0.5 130 54 NaN
11 50 0.5 76 42 NaN
12 55 0.5 34 21 NaN
13 60 0.5 13 13 NaN
Age Cl ass P( D) Std(P(D)) P(S) Std(P(S)) Lifetine
1 0. 007 0. 00522 1. 000 0. 00000 43. 19
2 0. 015 0. 00741 0. 993 0. 00522 38. 49
3 0.011 0. 00652 0.978 0. 00897 34.03
4 0. 027 0. 01000 0. 967 0. 01092 29. 40
5 0.012 0. 00678 0.941 0. 01437 25.14
6 0.012 0. 00686 0. 930 0. 01557 20.41
7 0. 065 0. 01560 0.919 0. 01665 15. 62
8 0. 284 0. 02962 0. 859 0. 02116 11.53
9 0. 217 0. 03199 0. 615 0. 02962 10.12
10 0. 415 0. 04322 0. 481 0. 03041 7.23
11 0. 553 0. 05704 0.281 0. 02737 5.59
12 0.618 0. 08334 0.126 0. 02019 4.41
13 1. 000 0. 00000 0. 048 0. 01303 2.50
Age d ass Std(Life) Time Units
1 0. 6993 1345.0
2 0. 6707 1330.0
3 0. 6230 1312.5
4 0. 5940 1287.5
5 0. 5403 1262.5
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6 0. 5237 1247.5
7 0. 5149 1200.0
8 0. 4982 995.0
9 0. 4602 740.0
10 0. 4328 515.0
11 0. 4361 275.0
12 0. 4167 117.5
13 0. 0000 32.5
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Chapter 14: Multidimensional
Scaling

Routines

14.1. Multidimensional Scaling Routines
Individual differences model ............ccocveeiiiii MSIDV 1003

14.2.  Utility Routines
Compute distance matrices based upon a model............... MSDST 1017
Standardize the input data............cccccvvvvvminiiiniiiiiiii, MSSTN 1020
Double center a dissimilarity matrixX ..........ccccocvvveeiiiineennnnn MSDBL 1024
Compute initial eStimates.........cccceeveiaees MSINI 1028
Compute stress given disparities and distances................. MSTRS 1035

Usage Notes

The routines described in this chapter all involve multidimensional scaling.
Routine MSI DV (page 1003) performs computations for the individual differences
metric scaling models. The utility routines are useful for associated computations
aswell asfor programming other methods of multidimensional scaling.

Thefollowing isabrief introduction to multidimensional scaling meant to
acquaint the user with the purposes of the routines described in this chapter. Also
of interest isthe table at the end of this section giving the notation used. A more
compl ete description of proceduresin multidimensional scaling may be found in
the references, as well asin the algorithm sections for the routines.

Multidimensional Scaling Data Types

A “dissimilarity” is a subject’'s measure of the “distance” between two objects.
For example, a subject’s estimate of the distance between two cities is a
dissimilarity measure that may, or may not, be the actual distance between the
cities (depending upon the subjects familiarity with the two cities).
Dissimilarities usually have less relationship to distance. For example, the
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subject may estimate, on a given scale, the difference between two smells, two

tastes, two colors, two shapes, etc. As a concrete example, the subject is asked to

compare two wines and indicate whether they have very similar tastes (scale value

0), or very different tastes (scale value 10), or are somewhere in between. In this

case, no objective measure of “distance” is available, yet the dissimilarity may be
measured. In all cases, however, the larger the difference between the objects, the
larger the dissimilarity measure.

If instead the measure increases as the objects become more similar, then a
“similarity” measure rather than a “dissimilarity” measure is obtained. Most
routines in this chapter require dissimilarities as input so that similarities must be
converted to dissimilarities before most routines in this chapter can be used.
RoutineMsSTN (page 1020) provides two common methods for performing these
conversions.

In general, dissimilarities between all objects in a set are measured (yielding a
matrix of dissimilarities), and the multidimensional scaling problem is to locate

the objects in a Euclidean (or other) space of known dimension given the matrix
of dissimilarities. The estimates of object locations should yield predicted
distances between the objects that “closely approximate” the observed
dissimilarities. In many multidimensional scaling methods, “closely

approximates” means that a predefined measure of the discrepancy (the “stress”)
is minimized. The simplest stress measure is the sum of the squared differences
between the observed dissimilarities and the distances predicted by the estimated
object locations. This stress measure, as well as all other stress measures used in
this chapter, is discussed more fully in the manual document for rMsitRS

(page 1035).

Note that the predicted distances between objects may not be Euclidean distance.
Indeed, in one of the more popular multidimensional scaling models, the
individual differences model, weighted Euclidean distance is used,; Latd

M k=1,... ,d, be the location estimates of two objects (stimuli) th a

dimensional space. Then, the weighted Euclidean distance used in the individual
difference model is given by

d
812 = | > Wi =M 2)?
=i

Many other distance models are possible. The models used in this chapter are
discussed in the manual document for routiBEST (page 1017).

A dissimilarity is a subject’s estimate of the difference (“distance”) between two
objects. From the observed dissimilarities, a predicted distance between the
objects is obtained by estimating the location of the objects in a Euclidean space
of given dimension. In metric scaling, the dissimilarity may be a ratio measure (in
which case a dissimilarity of zero means that the objects are in the same location)
or an interval measure (in which case “distance” plus a constant is observed).
When an interval measure is observed, the interval constantist

also be estimated in order to relate the dissimilarity to the predicted distance.
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For ratio measures, ¢ is not required. A couple of methods for estimating c are
used by the routines in this chapter. These methods are explained in the routines
that use them.

In nonmetric scaling, the dissimilarity is an ordinal (rank) or categorical measure.
In this case, the stress function need only assure that the predicted distances
satisfy, as closely as possible, the ordinal or categorical relationships observed in
the data. Thus, the stress should be zero if the predicted distances maintain the
observed rankingsin the dissimilaritiesin ordinal data. The meaning of a stressin
categorical datais more obtuse and is discussed further below.

In ordinal data, the stress function is computed as follows: First, the

dissimilarities are transformed so that they correspond as closely as possible to

the predicted distances, but such that the observed ordinal relationships are

maintained. The transformed dissimilarities are called “disparities”, and the stress
function is computed from the disparities and the predicted distances. (In ratio
and interval data, disparities may be taken as the dissimilarities.) Thus, if the
predicted distances preserve the observed ordinal relationships, a stress of zero
will be computed. If the predicted distances do not preserve these relationships,
then new estimates for the distances based upon the disparities can be computed.
These can be followed by new estimates of the disparities. When the new
estimates do not lead to a lower stress, convergence of the algorithm is assumed.

In categorical data, all that is observed is a category for the “distance” between

the objects, and there are no known relationships between the categories. In
categorical data, the disparities are such that the categories are preserved. A score
minimizing the stress is found for each category. As with ordinal data, new
distances are computed from this score, followed by new scores for the

categories, etc., with convergence occurring when the stress cannot be lowered
further. In categorical data, a stress of zero should be relatively uncommon.

The individual differences model assumes that the squared distance between
stimulii andj for subject,

5{@

is given as
2 _ g 2
O = > Wik(hik = A )
=]

whered is the number of dimensions (always assumed to be knbwig the
location of the-th stimulus in thé&-th dimension, andy, is the weight given by
subjectl to thek-th dimension. Let

5%
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denote the average of the squared distancesin the i-th row of the dissimilarity
matrix for the |-th subject, let
8.2”
be similarly defined for the j-th column, and let
%,

denote the average of all squared distances for the I-th subject. Then, the product
moment (double centering) transformation is given by

Py = (85 -85 —8% +8%)/2.0

The advantage of the product-moment transformations is that the “product-
moment” (double centered) matrides= (p;;;) can be expressed as

P, = AldiagW)]A”

whereA = (\;) is the configuration matrix, and where diag(is a diagonal

matrix with the subject weights for subjéotvy,, along the diagonal. If one
assumes that the dissimilarities are measured without error, then the
dissimilarities can be used in place of the distances, and the above relationship
allows one to compute both di&gj andA directly from the product-moment
matrices so obtained. If error is present but small, then very good estimAtes of
and diag{V)) can still be obtained (see De Leeuw and Pruzansky 1978). Routine
MSDBL (page 1024) computes the product-moment matrices wslil (page
1028) computes the above estimates<and diag(V)).

Data Structures

The data input to a multidimensional scaling routine is, conceptually, one or more
dissimilarity (or similarity) matrices where a dissimilarity matrix contains the
dissimilarity measure between thh andj-th stimuli (objects) in position (j) of

the matrix. In multidimensional scaling, the dissimilarity matrix need not be
symmetric (asymmetric distances can also be modelled, see rgBlI®E, page

1017) but if it is, only elements above the diagonal need to be observed.
Moreover, in the multidimensional “unfolding” models, the distances between all
pairs of objects are not observed. Rather, all (or at least many) of the
dissimilarities between one set of objects and a second set are measured. When
these types of input are combined with the fact that missing values are also
allowed in many multidimensional scaling routines, it is easy to see that data
structures required in multidimensional scaling can be quite complicated. Three
types of structures are allowed for the routines described in this chapter. These
are discussed below.

Let X denote a matrix containing the input dissimilarities. The columKs of
correspond to the different subjects, and a subjects dissimilarity matrix is
contained within the column. Thusjs a matrix containing a set of
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dissimilarity matrices, one dissimilarity matrix within each column. For any one
problem, the form (structure) of al dissimilarity matrices input in X must be
consistent over all subjects. The form can vary from problem to problem,
however. In the following, X contains only one column and the index for subject
isignored to simplify the notation. The three storage forms used by the routines
described in this chapter are

1. Square symmetric: For thisform, each column of X contains the upper
triangular part of the dissimilarity matrix, excluding the diagonal
elements (which should be zero anyway). Specifically, X(1) contains the
(1, 2) element of the dissimilarity matrix, X(2) contains the (1, 3)
element, X(3) containsthe (2, 3) element, etc. Let q denote the number
of stimuli in the matrix. All g(q — 1)/2 off-diagonal elements are stored.

2. Square asymmetric: X contains all elements of each square matrix,
including the diagonal elements, which are not used. The dissimilarities
are stored in X asif X were dimensioned g x g. The diagonal elements
areignored.

3. Rectangular: This corresponds to the “unfolding models” in which not
all of the dissimilarities in each matrix are observed. In this storage
mode, the row stimuli do not correspond to the column stimuli. Because
of the form of the data, no diagonal elements are present, and the data
are stored iX as ifX were dimensionedx s wherer is the number of
row stimuli ands is the number of column stimuli.

Missing values are also allowed. They are indicatediimeither of two ways: 1)
The standard IMSL missing value indicator NaN (not a number) may be used to
indicate missing values, or 2) negative elemenisak taken to be missing
dissimilarities.

Table 14.1 gives some notation commonly used in this chapter. In general, an
element of a matrix is denoted by the lowercase matrix name with subscripts. The
notation is generally consistent, but there are some variations when variation
seems appropriate.
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Table 14.1: Commonly Used Notation

Symbol | Fortran | Meaning

6ij| DI ST Distance between objectsi and j for subject |.

ai?l DI SP Disparity for objectsi and j for subject I.

X X Theinput array of dissimilarities.

d NDI M The number of dimensionsin the solution.

W w The matrix of subject weights.

diag(W)) The diagonal matrix of subject weights for subject I.

T W8 The matrix of stimulus weights.

A CFL The configuration matrix.

ay, A The intercept for strata h.

B B The slope for strata h.

v, wWr The stratum weight for stratum h.

n, NCOM The number nonmissing dissimilaritiesin stratum h.

P, P The product-moment matrix for subject I.

) STRSS | The stress criterion (over al strata).

@ STRS The stress within stratum .

P POWNER | The power to usein the stress criterion.

q NSTIM | The total number of stimuli.

n NSUB The number of matrices input.

r Normalized eigenvectors.
I'lFORM | Option giving the form of the dissimilarity input.
I'ONVT | Option giving the method for converting to

dissimilarities.

MODEL | Vector giving the parameters in the distance model.
I'STRS | Option giving the stress formulato use.
I TRANS | Option giving the transformation to use.
I'DISP | The method to be used in estimating disparities.
EPS Convergence tolerance.
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MSIDV/DMSIDV (Single/Double precision)

Perform individual-differences multidimensional scaling for metric data using
aternating least squares.

Usage

CALL MsI DV (NSTIM NSUB, X, |CNVT, MODEL, | STRS, | TRANS,
NDIM | PRINT, D ST, CFL, LDCFL, W LDW A, B,
WI, STRS, STRSS, RESI D)

Arguments
NSTIM — Number of stimuli in each similarity/dissimilarity matrix. (Input)
NSUB — Number of matrices to be used in the analysis. (Input)

X — NSUB similarity or dissimilarity matrices in symmetric storage mode.

(Input)

Each matrix must occupy consecutive memory positions, and must be stored as a
column inX. X must be dimensioned as

DI MENSI ON X( NC2, NSUB)

whereNC2 = NSTI M* (NSTI M- 1)/2. Each matrix is stored without the diagonal
elements by column as upper triangular matrices. For example, a 3 by 3 matrix
would be stored with the (1, 2), (1, 3), (2, 3) elements as the first three elements
of the first column oK.

ICNVT — Option for converting from similarity to dissimilarity data. (Input)

If I CNVT = 0, the input data contains dissimilarities and no conversion is
performed. Ifi CNVT = 1, the data are converted from similarity to dissimilarity
data by subtracting each similarity from the largest similarity for the subject. If
I CNVT = 2, the data are converted to dissimilarities by reciprocating each
similarity.

MODEL — Model option parameter. (Input)
MODEL = 0 means the Euclidean model is used, otherwise, the individual
differences model is used.

| STRS — Option giving the stress formula to be used. (Input)
Stress formulas differ in the weighting given to each subject. The valid values of
| STRS are:

I STRS Weighting used

0 Inverse of within-subject variance of observed dissimilarities about the
predicted distances

1 Inverse of within-subject sum of squared dissimilarities

2 Inverse of within-subject variance of dissimilarities about the subject
mean

See the Algorithm section for further discussion of the stress formula weights.
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ITRANS — Option giving the transformation to be used on the observed and
predicted dissimilarities when computing the criterion function. (Input)

| TRANS Transformation

0 Squared distances
1 Distances (that is, no transformation is performed)
2 Log of the distances

See the Algorithm section for further discussion of stress formula transformations.
NDIM — Number of dimensions desired in the solution. (Input)
IPRINT — Printing option. (Input)

| PRI NT Action

0 No printing is performed.

1 Printing is performed, but the output is abbreviated.
2 All printing is performed.

DIST — Vector of lengtiNSUB * NC2, whereNC2 = NSTI M* (NSTI M- 1)/2,
containing the predicted distances. (Output)

DI ST contains the distances as predicted by the estimated parameters in the
model.Dl ST has the same storage mod&Xand may be treated as a series of
NSUB matrices in symmetric storage mode but without the diagonal elements.

CFL — Matrix of sizeNSTI Mby NDI Mcontaining the configuration of points
obtained from the multidimensional scaling. (Output)

LDCFL — Leading dimension dfFL exactly as specified in the dimension
statement in the calling program. (Input)

W — NSUB by NDI Mmatrix containing the subject weights. (Output wiieDEL
is not zero, not referenced otherwise)
Wis not used and may be dimensioned of lengthiMDDEL = 0.

LDW — Leading dimension allexactly as specified in the dimension statement
in the calling program. (Input)

A — Vector of lengtiNSUB containing the intercepts for each subject. (Output)
B — Vector of lengtiNSUB containing the slopes for each subject. (Output)

WT — Vector of lengtiNSUB containing the criterion function weights for each
subject. (Output)

STRS — Vector of lengtiNSUB containing the value of the weighted optimized
criterion within each subject. (Output)

STRSS — Value of the weighted optimized criterion function (summed over
subjects). (Output)

RESID — NSUB * NC2 vector containing the observation residuals. (Output)
Here,NC2 = NSTI M(NSTI M— 1)/2.
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Comments
1 Automatic workspace usage is

MBI DV max(NSUB, NDI M* NSTI M ND + 1) + NDI M* (NSTI M+ 4) +
NDI M* NDI M* (2 + max(NSUB, NSTI M)) + NDSS * (NDSS + 9)
+ NSUB * (NSUB + NC2 + 1) + 2 * NSTI M* NSTI M+ NC2 + 2 *
NDI M* NDI M* NSTI M* NSTI M+ 3 * NPAR+ 2

DVBI DV 2 * max(NSUB, NDI M* NSTI M ND+ 1) + 2 * NDI M* (NSTI M+
2* NDI M* NDI M* (2 + max (NSUB, NSTI M)) + NDSS * (2 *
NDS + 17) + 2* NSUB* (NSUB + NC2 + 1) + 4 * NSTI M*
NSTI M+ 2* NC2 +2* NDI M* NDI M* NSTI M* NSTI M+ 4 *
NPAR + 2

Workspace may be explicitly provided, if desired, by use of
M2l DV/DVRI DV. Thereferenceis

CALL M2IDV (NSTIM NSUB, X, |CNVT, MODEL, |STRS,
| TRANS, NDIM | PRI NT, DI ST, CFL, LDCFL,
W LDW A, B, W, STRS, STRSS, RESI D,
VK1, WK2, VK3, VK4, WK5, VK6, WK7, VK8,
VK10, WK11, WK12, VK13, |ID, WKDER,
DWKHES, DWKGRA, WKDDP, NCOM DI SP)

The additional arguments are as follows:

WK1 — Work vector of length equal to ma&gUB, NDI M* NSTI M
ND + 1)

WK2 — Work vector of length equal tDI M* NDI M
WK3 — Work vector of length equal t5TI M* NSTI M
WK4 — Work vector of length equal t5TI M* NSTI M
WKS5 — Work vector of length equal iDSS * NDSS
WK6 — Work vector of length equal to*3NDSS

WK7 — Work vector of length equal to*5NDSS

IWK8 — Integer work vector of length equalNDSS
WK10 — Work vector of length equal DI M* NDI M
WK11 — Work vector of length equal 6UB * NSUB

WK12 — Work vector of length equal DI M* NDI M* max{(NSUB,
NSTI M

WK13 — Work vector of length equal %STI M* NDI M
ID — Integer work vector of length equal t& ADI M+ 2
WKDER — Work vector of length equal tPAR

DWKHES — Double precision work vector of length equaN@ M*
NDI M* NSTI M* NSTI M
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DWKGRA — Double precision work vector of length equaNeAR
WKDDP — Work vector of length equal t4C2

NCOM — Work vector of length equal 5UB

DI SP — Work vector of length equal t8UB * NC2

whereND = NDI M* (NDI M+ 1)/2,NC2 = NSTI M* (NSTI M- 1)/2,
NDSS = max (Dl M NSTI M NSUB), and wher&PAR = NDI M* NSTI M+
2* NSUB whenMODEL = 0; otherwiseNPAR = NDI M* NSTI M+ (NDI M+

2) * NSUB.
2. Informational errors
Type Code

3 1 At some point during the iterations there were too
many step halvings. This is usually not serious.

4 1 The program cannot continue because a Hessian
matrix is ill defined. A different model may be
required. This error should only occur when there is
serious numerical imprecision.

4 2 A dissimilarity matrix has every element missing.

Algorithm

RoutineMs! DV performs multidimensional scaling analysis according to an
alternating optimization algorithm. Input @I DV consists of symmetric
dissimilarity matrices measuring distances between the row and column objects.
Optionally, similarities can be input, and these can be converted to dissimilarities
by use of the CNVT option. InMsI Dv, the row and column objects (stimuli) must
be identical. Dissimilarities in multidimensional scaling are used to position the
objects within a = NDI Mdimensional space, whedas specified by the user.
Optionally, in the individual differences scaling modédEL # 0), the weight
assigned to each dimension for each subject may be changed.

The Input Data

The data input iX must be in a special symmetric storage form. For this storage
mode, the input array contains only the upper triangular part of each
dissimilarity matrix and does not contain the diagonal elements (which should all
be zero anyway). Storage of symmetric dataimas followsX(1) corresponds

to the (1, 2) element in the first matrix (which is a measure of the distance
between objects 1 and X¥2) corresponds to the (1, 3) elemex(B)

corresponds to the (2, 3) element, etc., until alfy(q — 1)/2 off-diagonal

elements in the first matrix are stored, whggreNSTI M Thet + 1 element irX
contains the (1, 2) element in the second matrix, and so on.

Missing values are indicated in either of two ways: 1) The standard missing value
indicator NaN (not a number), specified via routh®CH(6) (Reference
Material) may be used to indicate missing values, or 2) Negative elements of
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may be used to indicate missing observations. In either case, missing values are
estimated as the mean dissimilarity for the subject and used as such when
computing initial estimates, and they are omitted from the criterion function when
optimal estimates are computed.

Routine MSI DV assumes a metric scaling model. When no transformation is

specified (I TRANS = 1), then each datum (after transforming to dissimilarities) is
ameasure of distance plus a constant, a,,. In this case, the constant (whichis

always called the “intercept”) is assumed to vary with subject and must first be
added to the observed dissimilarities in order to obtain a metric. When a
transformation is specified TRANS # 1), the meaning af,, changes (with

respect to metrics). Thus, whelRANS = 1, the data is assumed to be interval
(see the chapter introduction) while wHeFRANS # 1 ratio data is assumed. A
scaling factor, the “slope”, is also always estimated for each subject.

The Criterion Function

Whenl STRS = 1 or 2, the criterion function iMSI DV is given as

2
— 0
9= VY (f(3iim) = =B (Bijm))
m i]
whered;;,, denotes the predicted distance between objextd] on subjectn,
0
6ijm

denotes the corresponding dissimilarity (the observed distangces) the subject

weight,f is one of the transformatiofs) = X, f(x) = x, orf(x) = In(x) specified

by parameter TRANS, a,, is the intercept added to the transformed observation
within each subject, arfg}, is the slope for the subject. ROBTRS = 0, the
criterion function is given as

2

— O

0= Ny In S (f(8fjm) = A m = Brn  (8ijm))
m i

wheren,, is the number of nonmissing observations omtfk subject.

Assuming fixed weights, the first derivatives of the criterion fFRS = 0 are
identical to the first derivatives of the criterion WHeSTRS = 1 or 2, but with
weights

2
-1 _ O
Vi =) i,j(f(5ijm)‘0‘m ‘Bmf(5ijm)) I Ny
| STRS can, thus, be thought of as changing the weighting to be used in the

criterion function.

The transformatiorf(x) specified by paramet&MRANS is used to obtain
constant within-subject variance of the subject dissimilarities. If the variance of
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the log of the observed dissimilarities (about the predicted dissimilarities) is
constant within subject, then the log transformation should be used. In this case,
the variance of a dissimilarity should be proportional to its magnitude.
Alternatively, the within-subject variance may be constant when distances (or
squared distances) are used.

The Distance Models

The distance models for &, availablein MSI DV are given by:

1. The Euclidean model:
d 2
2 _
Oijm = Z()‘ik _)‘jk)
k=1
2. The individual-differences model:
d 2

8 = Zka()\ik ‘7\jk)
=]

where A denotes the configuration (CFL) so that A isthe location of the i-th

stimulus in the k-th dimension, whered is the number of dimensions, and where
w,,. isthe weight assigned by the m-th subject to the k-th dimension (W.

The Subject Weights

Weights that are inversely proportional to the estimated variance of the
dissimilarities (about their predicted values) within each subject may be preferred
because such weights lead to normal distribution theory maximum likelihood
estimates (when it is assumed that the dissimilarities are independently normally
distributed with constant residual variance). The estimated (conditional) variance
used asthe inverse of the weight v,,, for the m-th subject in MsI DV (when | STRS =
0) is computed as

vz % (f(3im) ‘“n;;ﬁmf(f’iim))

where the sum is over the observations for the subject, and wheren,, isthe

number of observed nonmissing dissimilarities for the subject. These weights are
used in the first derivatives of the criterion function.

When | STRS = 1, the within-subject average sum of squared dissimilarities are
used for the weights. They are computed as

-1 _ Z i f(éﬁm)z
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Finaly, when| STRS = 2, the within-subject variance of the dissimilaritiesis used
for the weights. These are computed as follows

St = 2 i (FBim) = F(85)°

m
nm

where

f (3ijk)

denotes the average of the transformed dissimilarities in the stratum.

The Optimization Procedure

Initial estimates of all parameters are obtained through methods discussed in
routine MSI NI (page 1028). After obtaining initial estimates, a modified Gauss-
Newton algorithm is used to obtain estimates for the parameters that optimize the
criterion function. The parameters are optimized sequentially as follows:

1 Optimize the configuration estimates, A = CFL.

2. If required, estimate the optimal subject weights, w,,,;, = Wm k), one
subject at atime.

3. Optimize the parameters a,, = A(m) and 3,, = B(m), one subject at atime.

4, If convergence has not been reached, continue at Step 1.

Aniteration is defined to be all of the Steps 1, 2, and 3. Convergence is assumed
when the maximum absol ute change in any parameter during an iteration is less

than 10~ or if thereisno change in the criterion function during an iteration.

The L, Gauss-Newton Algorithm

A modified Gauss-Newton algorithm is used in the estimation of all parameters.
This algorithm, which is discussed in detail by Merle and Spath (1974), uses
iteratively reweighted least squares on a Taylor series linearization of the
parametersin &;;,,. During each iteration, the subject weights, which may depend
upon the parameters in the model, are assumed to be fixed.

Standardization

All models available are overparameterized so the resulting parameter estimates

are not uniquely defined. For example, in the Euclidean model, the columns of X

can be translated or “rotated” (multiplied by an orthonormal matrix), and the
resulting stress will not be changed. To eliminate lack of uniqgueness due to
translation, model estimates for the configuration are centered in all models. No
attempt at eliminating the rotation problem is made, but note that rotation
invariance is not a problem in many of the models given. With more general
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models than the Euclidean model, other kinds of overparameterization occur.
Further restrictions on the parameters to eliminate this overparameterization are
given below by the model transformation type specified by | TRANS. In the
following, wy, 0 W, where Wis the matrix of subject weights. The restrictions to
be applied by model transformation type are

1. For all models:

(@ Y iy Xik =
where g = NSTI M i.e., center the columns of X.
(b) If Wisin the model, scale the columns of W so that

2 _
Y xik =1

2. For f(x) = x and f(x) = X

@ Set b, = 1if the data are matrix conditional and Wisin the
model or if the data are unconditional. (Matrix conditional with
one matrix is considered to be unconditional data.)

(b) If Wisnot inthe model, scale al elementsin X so that
2 _
ZH:]_ bh - n
wheren = NSUB is the number of matrices observed.
3. For f(X) = In(x), substitute a;, for b, (but set a;, to 0 instead of 1) in all

restrictionsin ltem 2.

Example 1

The following example concerns some intercity distance rankings. The data are
described by Y oung and Lewyckyj (1979, page 83). The driving mileages
between various cities in the United States are ranked, yielding a symmetric
ordinal dissimilarity matrix. These rankings are used as input to MSI DV. A
Euclidean model isfit. The resulting two-dimensional scaling yields results
closely resembling the locations of the major citesin the U.S. Note that MsI DV
assumes continuous, not ranked, data.

The original rankings are given as.
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| NTEGER
&

- 4 22 8 34 6 10 35 36 3
- 13 15 31 21 9 32 30 5
- 12 11 29 27 16 19 26
- 24 18 25 28 33 23
- 39 42 2 17 37

- 20 44 45 14

- 43 40 1
- 7 4

- 38

I CNVT, I PRINT, |ISTRS, |ITRANS, LDCFL, LDW LNX, MODEL,
NDIM NSTIM NSUB

PARAMETER (1 CNVT=0, |PRINT=2, |STRS=1, |TRANS=0, LDCFL=10,

& LDWeL, LNX=45, MODEL=0, NDI M=2, NSTI M=10, NSUB=1)
C
REAL A(1), B(1), CFL(LDCFL, NDIM, DI ST(45), RESID{LNX),
& STRS(1), STRSS, WLDW, WI(1), X(LNX
EXTERNAL VSl DV, PGOPT
C
DATA X/ 4, 22, 13, 8, 15, 12, 34, 31, 11, 24, 6, 21, 29, 18, 39,
& 10, 9, 27, 25, 42, 20, 35, 32, 16, 28, 2, 44, 43, 36, 30,
& 19, 33, 17, 45, 40, 7, 3, 5, 26, 23, 37, 14, 1, 41, 38/
C Call PGOPT to set page length for
C the plotting
CALL PGOPT (-2, 50)
C
CALL MBI DV (NSTIM NSUB, X, |CNVT, MODEL, |STRS, |TRANS, NDI M
& | PRINT, DI ST, CFL, LDCFL, W LDW A, B, W, STRS,
& STRSS, RESI D)
C
END
Output
Initial paraneter estinates.
CFL
1 2
1 -0.762 0.124
2 -0.451 -0.349
3 0.496 0.073
4 -0.151 0. 651
5 1.237 0.392
6 -1.114 0. 588
7 -1.077 -0.566
8 1.461 0. 034
9 1.321 -0.614
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10 -0.961 -0.333

Iteration history

Iter Sour ce Stress Stress change Maxi mum Change
1 INIT  STRSS 0. 3755E-02
1 CONFI G STRSS 0. 3399E- 02 0. 3559E- 03 0. 8062E- 03
1 LINES STRSS 0.3142E-02 0. 2564E- 03 0. 8062E- 03
2 CONFI G STRSS 0. 3068E- 02 0. 7382E- 04 0. 1022E- 04
2 LINES STRSS 0.3047E-02 0. 2156E- 04 0. 1022E- 04
Plot(s) of the configuration matrix (CFL)
N S D G I ST
. | .
0. 600 X | +
|
|
. | .
0.450 + | +
| X
|
. | .
0.300 + | +
|
|
D . | .
i 0. 150 + | +
m X |
e | X
n . | X .
S 0. 000 H- - mmmm e e i +
i |
o] |
n . | .
-0.150 + | +
2 |
|
. | .
-0.300 + | +
X X |
|
. | .
-0.450 + | +
|
|
. X | .
-0.600 + | +
I S R D
-0.80 0.00 0. 80 1.60

Di mension 1
Fi nal paraneter estimates.

NCOM
45

CFL
1 2
1 -0.738 0.095
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2 -0.447 -0.337
3 0. 497 0.077
4 -0.153 0. 661
5 1.237 0. 399
6 -1.132 0. 609
7 -1.074 -0.571
8 1. 445 0. 035
9 1.325 -0.624
10 -0.960 -0.343
A
-0. 04255
B
0. 4019
WI
0.01248
STRS
0. 003047
STRESS = 3. 04681E- 03
Resi dual s

Subj ect Row Sti mul us

PRRPRPRRPRRPRRPRRPRPRRPRPRRPRRPRPRRREPRPRRPREPRRREPRRRERRRER

COOWOWOWOOWOOWOOAONNNNNNOOOOODODOUIUIUIORABRMDWWN

Col um Stinmul us Resi dual

GOBRWNP~NOUORMRWNRPOUORARWNRPRPORMWNREPRAWONRFPWONENRPR

-0

0
-0
-0

0436
1230
1422
1318

-. 0697

.
coocoo

. 0581
. 0950
. 0631

0456
0639

. 0742

1268

. 0681
. 1212
. 0495
. 0376
. 0216
. 0736
. 0119
. 0464
. 0558
L1177
. 0169
. 0480
. 0173
. 0223
. 0178
. 0047
. 0185

0373

. 0872
. 0618
. 0335
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1 9 6 -0.0913
1 9 7 0. 0202
1 9 8 -0.0671
1 10 1 -0. 0415
1 10 2 -0. 0276
1 10 3 0. 0869
1 10 4 0.1342
1 10 5 -0. 1565
1 10 6 -0. 0522
1 10 7 0. 0179
1 10 8 0. 0701
1 10 9 -0.0191
Resi dual Pl ot
0.160 oo 4+
X
. X .
0.120 + X X +
X
. X X .
0.080 + +
X X
X X X
X
. X X .
0. 040 + X +
R X
e X
S X X X
i . .
d (00100 R e I +
u X X
a X X X
| X X
S . .
-0.040 +XX X +
X X
X X
X
. X X X .
-0.080 + +
X
-0.120 + X +
X .
X
-0.160 Al X i+
1 3 5 7

Predi cted Di stances
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Example 2

The second example involves three subjects’ assessment of the dissimilarity
between rectangles that vary in height and width. An analysis is perforied in
2 dimensions using the individual-differences scaling model. The estimated
subject weightsy,,,;, indicate how each subject weight the dimensions. The raw

data are given as follows:
- 100 141 224 200 224 141 100 100
- 100 200 224 283 224 200 141
- 100 141 224 200 224 100
- 100 200 224 283 141
- 100 141 224 100
- 100 200 141
- 100 100
- 141

- 150 168 212 150 212 168 150 O0.75
- 075 150 212 335 309 300 168

- 0.75 168 309 300 309 150

- 150 300 309 335 168

- 150 168 212 0.75

- 0.75 150 168

- 0.75 150

- 168
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- 050 206 403 400 4.03 206 050 200
- 200 4.00 403 412 224 100 206

- 200 206 224 100 224 0.50

- 050 100 224 412 206

- 050 206 4.03 200

- 200 400 206
- 2.00 0.50
- 206
| NTEGER I CNVT, I PRINT, |ISTRS, |TRANS, LDCFL, LDW LNX, MODEL,
& NDI M NSTIM NSUB
PARAMETER (I CNVT=0, |PRINT=1, |STRS=0, | TRANS=0, LDCFL=9,
& LDWE3, LNX=108, MODEL=1, NDI M=2, NSTI M=9, NSUB=3)
C
REAL A(NSUB), B(NSUB), CFL(LDCFL,NDIM, DI ST(LNX),
& RESI D( LNX), STRS(NSUB), STRSS, W LDWNDI M, W(NSUB),
& X( LNX)
EXTERNAL MBI DV
C
DATA X/ 1.00, 1.41, 1.00, 2.24, 2.00, 1.00, 2.00, 2.24, 1.41,
& 1.00, 2.24, 2.83, 2.24, 2.00, 1.00, 1.41, 2.24, 2.00, 2.24,
& 1.41, 1.00, 1.00, 2.00, 2.24, 2.83, 2.24, 2.00, 1.00, 1.00,
& 1.41, 1.00, 1.41, 1.00, 1.41, 1.00, 1.41, 1.50, 1.68, 0.75,
& 2.12, 1.50, 0.75, 1.50, 2.12, 1.68, 1.50, 2.12, 3.35, 3.09,
& 3.00, 1.50, 1.68, 3.09, 3.00, 3.09, 1.68, 0.75, 1.50, 3.00,
& 3.09, 3.35, 2.12, 1.50, 0.75, 0.75, 1.68, 1.50, 1.68, 0.75,
& 1.68, 1.50, 1.68, 0.50, 2.06, 2.00, 4.03, 4.00, 2.00, 4.00,
& 4.03, 2.06, 0.50, 4.03, 4.12, 2.24, 1.00, 0.50, 2.06, 2.24,
& 1.00, 2.24, 2.06, 2.00, 0.50, 1.00, 2.24, 4.12, 4.03, 4.00,
& 2.00, 2.00, 2.06, 0.50, 2.06, 2.00, 2.06, 0.50, 2.06/
C
CALL MSIDV (NSTIM NSUB, X, |ICNVT, MODEL, |ISTRS, |ITRANS, NDI M
& | PRINT, DI ST, CFL, LDCFL, W LDW A, B, W, STRS,
& STRSS, RESI D)
C
END
Output
Iteration history
Iter Sour ce Stress Stress change Maxi mum Change
1 INNT  STRSS -0. 3590E+03
1 CONFI G STRSS - 0. 3590E+03 0. 0000E+00 0. 5708E- 03
1 SUB WI' STRSS - 0. 3590E+03 0. 0000E+00 0. 1581E- 02
1 LINES STRSS -0. 3590E+03 0. 0000E+00 0. 2727E- 02
2 CONFI G STRSS - 0. 3590E+03 0. 0000E+00 0. 1442E- 06
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2 SUB WI' STRSS - 0. 3590E+03 0. 0000E+00 0. 7165E- 04
2 LINES STRSS -0. 3590E+03 0. 0000E+00 0. 7165E- 04
Fi nal paraneter estimates.
NCOM
1 2 3
36 36 36
CFL
1 2
1 1.225 0.000
2 1.225 -1.225
3 0.000 -1.225
4 -1.225 -1.225
5 -1.225 0. 000
6 -1.225 1.225
7 0. 000 1.225
8 1.225 1.225
9 0. 000 0. 000
W
1 2
1 1. 000 1. 000
2 0. 342 1.372
3 1.411 0. 089
A
1 2 3
-0.002773 0. 001941 0. 000055
B
1 2 3
0. 2229 0. 2587 0. 2963
WI
1 2 3
1000.0 1000. 0 1000.0
STRS
1 2 3
-119.7 -119.7 -119.7
STRESS = -359. 018
MSDST/DMSDST (Single/Double precision)

Compute distances in a multidimensional scaling model.

Usage

CALL MSDST (NSTIM NDIM CFL, LDCFL, NSUB, |MOD, |FORM
| TRANS, W LDW W5, LDWS, DI ST)

Arguments
NSTIM — Number of stimuli. (Input)
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NDIM — Number of dimensions in the model. (Input)
CFL — NSTI Mby NDI Mmatrix containing the stimulus configuration. (Input)

LDCFL — Leading dimension afFL exactly as specified in the dimension
statement in the calling program. (Input)

NSUB — Number of subjects. (Input)
IMOD — Vector of length 3 describing the weighting to be used. (Input)

| VEI GHT

1 Not used. Reserved for other scaling subroutines.
2 Subject weights (im).

3 Stimulus weights (ik8).

If 1 MOD(i) is zero, then thieth set of weights is not used. Otherwise, the weights
are used. For the Euclidean model,1949D(2) =1 MOD(3) = 0. For the individual
differences model,MOD(2) should not be zero. For the stimulus weighted
individual differences model, bottMOD(2) andl MOD(3) are not zero.

IFORM — Form option. (Input)

If | FORM= 0, the computed distances are stored as the upper triangle of square
matrices stored columnwise without the diagonal elements. Otherwise, the
distances are stored as square matrices and include the diagonal elements. See
argumendl ST.

I TRANS — Transformation option. (Input)
| TRANS determines the output returneddinST.

| TRANS Output in DI ST

0 Squared distances
1 Distances
2 Log of the distances

W — NSUB by NDI Mmatrix of individual weights. (Input)
If I MOD(2) is zero, thewis not referenced and can be an array of length 1.

LDW — Leading dimension oflexactly as specified in the dimension statement
in the calling program. (Input)

WS — NSTI Mby NDI Mmatrix of stimulus weights. (Input)
If 1 MOD(3) is zero, thenwis not referenced and can be an array of length 1.

LDWS — Leading dimension of& exactly as specified in the dimension
statement in the calling program. (Input)

DIST — Vector of lengtmv * NSUB, wherenv = NSTI M* (NSTI M- 1)/2 if

| FORM= 0, andnv = NSTI M* NSTI Motherwise. (Output)

DI ST may be treated a¢SUB distance matrices. StorageDnST is such that the
elements of each column of a subject’s distance matrix are adjacent. Each column
in the matrix is immediately followed by the elements in the next column. If

I FORM= 0, then only the elements in each column above the diagonal are stored.
Otherwise, all elements are stored.
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Algorithm

Routine MSDST computes squared distances, distances, or log distances for

various metrics in multidimensional scaling. The “distances” are computed and
stored as either square matrices or as upper triangular symmetric matrices stored
columnwise without the diagonal. In both cases, the distances are output in a
vector of the required length. The terminology and metrics used here are the same
as those used in th&.SCAL program of Takane, Young, De Leeuw (1977).

Suppose that there agestimuli, M subjects, and dimensions. Lek;, denote the
location of the-th stimulus in thé&-th dimension. Ifv;, denotes the weight of the
i-th subject on th&-th dimension (matrixy andpi;, denotes the weight for tle

th stimulus on th&-th dimension (matrix\6), then the distance models computed
are the same as the distance model&irbv. They are given by:

Euclidean Model

d 2
8im = (Aik=Aik)
k=1
Individual Differences Model
2 d ?
Ojjm = kZka()\ik ~Nik)
=1

Stimulus-Weighted Model
2

d
6ﬁm = znik()‘ik _)\jk)
k=1

Stimulus-Weighted Individual Differences Model
d 2
2 _
Oijm = ZT[ikak()\ik _)‘jk)
k=1

whered;;, is the distance between thth andj-th stimuli on themth subject.

Example

The following small example illustrates the distance computations in symmetric
matrices. The data are fictional.

INTEGER | FORM |TRANS, LDCFL, LDW LDWS, NDIM NSTIM NSUB
PARAMETER (| FORMEO, | TRANS=0, LDCFL=4, LDW:2, LDWS=4, NDI M2,
& NSTI M=4, NSUB=2)

C
INTEGER | MOD(3), NOUT
REAL CFL(NSTIM NDI M, DIST(12), WNSUB, NDI' M, WS(1)

IMSL STAT/LIBRARY Chapter 14: Multidimensional Scaling « 1019



EXTERNAL MSDST, UVACH
DATA I MOD/ O, 1, O/

DATA CFL/1.0, -1.0, 1.0, -1.0,
& 1.0, 1.0, -1.0, -1.0/
C
DATA W1.0, 2.0, 1.0, 2.0/
C
CALL MSDST (NSTIM NDIM CFL, LDCFL, NSUB, | MOD, |FORM | TRANS,
& W LDW WS, LDWS, Di ST)
C

CALL UMACH (2, NOUT)
WRI TE (NOUT, *) DI ST
END

Output

4.00000 4. 00000 8. 00000 8. 00000 4.00000 4.00000 8. 00000
8. 00000 16. 0000 16. 0000 8. 00000 8. 00000

MSSTN/DMSSTN (Single/Double precision)

Transform dissimilarity/similarity matricesand replace missing values by
estimates to obtain standardized dissimilarity matrices.

Usage

CALL MSSTN (NROW NCOL, NSUB, |FORM X, LDX, |CNVT, | STRAT,
| SCALE, NCOM XQUT)

Arguments
NROW — Number of row stimuli in each dissimilarity/similarity matrix. (Input)

NCOL — Number of column stimuli in each dissimilarity/similarity matrix.
(Input)

If | FORM= 0 or 1,NCOL must equalNROW and the stimuli in the rows and
columns must correspond to one another.

NSUB — Number of dissimilarity/similarity matrices. (Input)

IFORM — Storage option indicating the storage mode for the input data in each
column ofX. (Input)

Array X containadNSUB columns, and each columnXtontains a
dissimilarity/similarity matrix stored as specified by optiGtORM

| FORM Data Storage Mode

0 Symmetric storage mode without the diagonal elements. (Upper
triangular matrix stored columnwise.) In this storage mode, consecutive
elements of each column ¥fcontain the (1, 2), (1, 3), (2, 3), (1, 4),
(2, 4), (3, 4),..., (N\ROW- 1, NROW elements of the corresponding
dissimilarity/similarity matrix.
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1 Square matrix in full storage mode. Consecutive elements of each
column of X contain the (1, 1), (2, 1), (3, 1), ..., (NROW 1), (1, 2), (2, 2),
..., (NROW NROW elements of the corresponding dissimilarity/similarity
matrixX.

2 Rectangular matrix in full storage mode. In this storage mode, the row
and column stimuli input in X do not correspond to each other. Let
m = NROW Consecutive elements of each column of X contain the (1, m+
1), (2, m+1), .., (NROWmM+1), (1, m+2),.., (NRONmM+2), ...,
(NROW m + NCOL) elements of the corresponding dissimilarity/similarity
matrixX.

X — NSUB similarity or dissimilarity matrices in storage mode as determined by
| FORM (Input)
X must be dimensioned as:

DI MENSI ON' X( LDX, NSUB)

whereLDX = NROW* NCCL in full storage mode andbX = NROA* (NROW- 1)/2

in symmetric storage mode. See argumé&aRMfor the method of storage used
for each storage mode. Negative elementg of elements equal to NaN (“not a
number”) are presumed to be missing values and will be estimated as an
appropriate average MSSTN.

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

ICNVT — Option for converting from similarity to dissimilarity matrices.
(Input)
| CNVT  Conversion

0 No conversion performed.

1 Subtracting each similarity from the largest similarity in the strata (see
| STRAT).

2 Take the reciprocal of each similarity (elementX efjual to zero are

assumed to be missing).

| STRAT — Option giving the level of stratification to be used. (Input)

If I STRAT = 1, each dissimilarity/similarity matrix Kis considered to be in a
different stratum. The data are said to be matrix conditionaSTIRAT = 2, each
column of each dissimilarity matrix is considered to be in a different stratum.
(Thus, each column of arraycontainsNCOL strata.) Foi STRAT to be 2| FORM
must be 1 or 2. The data are said to be column conditiona@TRAT = 3, all of

the dissimilarity/similarity matrices i are considered to be in the same stratum.
The data are said to be unconditional.

| SCALE — Scaling option. (Input)

| SCALE Scaling
0 No scaling is performed.
1 The data in each stratum are scaled such that the sum of the squared

dissimilarities equals the number of elements in the stratum.
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NCOM — Vector containing the number of nonmissing observations in each
stratum. (Output)
The diagonal elements of each dissimilarity/similarity matrix are not counted.

| STRAT Length of NCOM

1 NSUB

2 NSUB * NSTI M whereNSTI M= NROWwhenl FORM= 0 or 1, andNSTI M
= NROW+ NCCOL when | FORM= 2

3 1

XOUT — Vector of lengthNv * NSUB containing the standardized dissimilarity
matrices wherdlV = NROA* (NROW- 1)/2 if | FORM= 0 and\V = NSTI M* NSTI M
otherwise. (Output)

The value oNSTI Mis as described in parameigOM XOUT contains the
standardized dissimilarity matrices in the same storage modié BBORM= 0 or

1 and stored as square matrices WwhetRM= 2. Missing values are replaced by

an appropriate average dissimilarity and changed in sign. Scaling is performed as
requested.

Comments

1. Automatic workspace usage is

MSSTN 2* NSTI M* NSTI Munits, or
DVBSTN 4 * NSTI M* NSTI Munits.

Workspace may be explicitly provided, if desired, by use of
M2STN/DMRSTN. The reference is

CALL M2STN (NROW NCOL, |IFORM NSUB, X, LDX, | CNVT,
| STRAT, | SCALE, NCOM XOQUT, NSTIM XX,
XM S)

The additional arguments are as follows:

NSTIM — Integer scalamSTI M= NRONwhenl FORM= 0 or 1, and
NSTI M= NROW+ NCOL whenl FORM= 2,

XX — Work vector of lengtiNSTI M* NSTI M
XMIS — Work vector of lengtiNSTI M* NSTI M

2. Informational errors
Type Code
3 1 At least one column in column conditional data has all
elements missing.
4 2 A dissimilarity matrix has every element missing.
Algorithm

RoutineMsSTN standardizes dissimilarity/similarity data to be usable by other
routines in the multidimensional scaling chapter. ROWB&TN converts
similarity to dissimilarity data, estimates missing values within specified strata
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&

&

&

| NTEGER
PARAMETER

| NTEGER
REAL
EXTERNAL

(“conditionality groups”), scales the data, computes the number of honmissing
data elements within each stratum, and stores the data in a standard form.

The computations proceed as follows:

1.

RoutineMSSTN begins by expanding rectangular or symmetric storage-
form data into square storage mode (the form wire@RM= 1).

Missing values are replaced by the average nonmissing value within the
stratum, or when there is only one stratum, the average within each
matrix is used. If all elements in a stratum are missing and the stratum is
a column of the dissimilarity/similarity matrix, then the average of the
nonmissing elements in the matrix is used as the missing value estimate.
(Missing values are estimated primarily for use in routines computing
estimates via “double-centering”, routingd NI , page 1028, and

MSDBL, page 1024.) Missing values are denoted in the output by
changing the signs of the estimated missing elements to be negative.

The data are converted to dissimilarity data from similarity data
according to the method specified by the paramet=vT.

The data are scaled according to the method specified bypta:E
parameter.

Example

The following example illustrates the usevBSTN on similarity data that are
converted to dissimilarity data with théNvT = 1 option. Standardization within
each matrix is used. The input data is suchith@RM= 0. Sincd CNvT = 1 and

all elements of the input data are nonnegative, no missing values are estimated.
The input data is given by the following two similarity matrices:

-4 0 3
- 11
0

1 -1 2
3 -1
2 —
4

1

R N W

0
3
4

I CNVT, | FORM | SCALE, |STRAT, LDX, NCOL, NROW NSUB
(1 CNVT=1, | FORM-0, | SCALE=1, |STRAT=1, LDX=10,
NCOL=5, NROW-5, NSUB=2)

I, J, K N, NCOV(NSUB), NOUT
X(LDX, NSUB), XOUT( NROW ( NROW 1))
MSSTN, UMACH, WRI RN

DATA X/ 4.0, 0.0, 1.0, 3.0, 1.0, 0.0, 1.0, 3.0, 2.0, 4.0, 1.0,

2.0,

1.0, 3.0, 2.0, 1.0, 1.0, 0.0, 3.0, 4.0/

CALL MSSTN (NROW NCOL, NSUB, |FORM X, LDX, |CNVT, | STRAT,

| SCALE, NCOM XQUT)
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CALL WRIRN (NCOM’, 1, NSUB, NCOM, 1, 0)
CALL UMACH (2, NOUT)

N=1
DO 20 I=1,2

WRITE (NOUT,99998) |

DO 10 J=1, 4
WRITE (NOUT,99999) (XOUT(K),K=N,N+J-1)

10 CONTINUE
20 CONTINUE

C

99998 FORMAT (//I’ Output matrix (in XOUT)’, 12)
99999 FORMAT (1X, 4F8.3)

C

END

NCOM

1 2

10 10

Output

Output matrix (in XOUT) 1

0.000
1.569
0.392
1.177

1.177 1.569
0.392 0.784 0.000

Output matrix (in XOUT) 2

1.205
0.803
0.402
1.205

0.803 1.205
1.606 0.402 0.000

MSDBL/DMSDBL (Single/Double precision)

Obtain normalized product-moment (double centered) matrices from dissimilarity
matrices.

Usage

CALL MSDBL (NSTIM, NSUB, IFORM, X, LDX, ISCALE, DISP,
LDDISP, P, LDP, DS, LDDS)

Arguments
NSTIM — Number of stimuli in each dissimilarity matrix. (Input)
NSUB — Number of dissimilarity matrices. (Input)

IFORM — Storage option for the data in each dissimilarity matrix. (Input) Each
column ofX contains one of theSUB dissimilarity matrices in the storage mode
specified by FORM
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| FORM Data Storage Mode

0 Symmetric storage mode without the diagonal elements. (Upper
triangular matrix stored columnwise.) In this storage mode, consecutive
elements of each column of X contain the (1, 2), (1, 3), (2, 3), (1, 4),
(2,4), (3,4), ..., (NSTI M— 1, NSTI M elements of the corresponding
dissimilarity matrix.

1 Square matrix in full storage mode. Consecutive elements of each
column of X containthe (1, 1), (2, 1), (3, 1), ..., (NROW 1), (1, 2), (2, 2),
..., (NSTI M NSTI M) elements of the corresponding dissimilarity matrix.

X — NV by NSUB matrix containing th&iSUB dissimilarity matrices, where

NV = NSTI M* (NSTI M- 1)/2 if | FORM= 0, and\V = NSTI M* NSTI Mif

I FORM=1. (Input)

Missing values (NaN, “not a number”) are not allowed,ibut the position of a
missing element may be indicated as a negative dissimilarity. gDBe uses
the absolute value of each elemenXin the estimation procedure, the signs of
elements iX have no effect. See Comments.

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

I SCALE — Scaling option. (Input)
| SCALE Type of Scaling

0 No scaling
1 Scaling within each matrix
2 Scaling over all matrices

Scaling is such that the Euclidean norm of the vector of scaled data is equal to the
number of elements in vector.

DI SP — NSTI Mby NSTI Mby NSUB array containing thBSUB dissimilarity
matrices in full storage mode. (Output)

In DI SP, missing value estimates are positive, and all elements represent the
square of distances.

LDDISP — Leading and second dimensiorDb&SP exactly as specified in the
dimension statement in the calling program. (Input)

P — NSTI Mby NSTI Mby NSUB array containing the standardized product-
moment matrices in full storage mode. (Output)

P containaNSUB matrices, each of si2STI Mby NSTI M If DI SP is not needed,
DI SP andP can occupy the same storage locations.

LDP — Leading and second dimensiorPoéxactly as specified in the dimension
statement in the calling program. (Input)

DS — NSTI Mby NSTI Marray containing the sum of tN8UB matrices irP.
(Output)

LDDS — Leading dimension dfS exactly as specified in the dimension
statement in the calling program. (Input)
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Comments

Routine MSSTN (page 1020) may be used to obtain the matrix X with missing
values estimated and changed in sign so that all estimates of missing values are
negative. Routine MSSTN will also convert similarities to dissimilarities. Unless a
ratio distance measure is observed, the user will usually call MSSTN prior to
calling MSDBL.

Algorithm

Routine MSDBL computes product-moment (double-centered) matrices from input
dissimilarity matrices. The product-moment matrices output from MSDBL may be
scaled either within each matrix, over all matricesinput, or not at all.

Theinterest in product-moment matrices can be explained as follows: Let A
denote a configuration of pointsin an d-dimensional Euclidean space with center
at the origin. When the data is measured without error, the matrix

P =AAT can also be written as the “double-centered” matrix (defined below)
obtained from the matrix of squares of distances between the rows of

/\(Bﬁ =Y k(i ‘)‘ik)z)

These distances are input, approximately, in the dissimilarities. Thus, an estimate
for A\ can be obtained, approximately, by computing the double-centered Ratrix
from the squared dissimilarities and then compufirigpm the scaled

eigenvectors oP (such thaP = /\/\T).
The computation ilvSDBL proceeds as follows:

1. Each input dissimilarity matrix is transformed into a square symmetric
matrix of distances. Asymmetric matrices are made symmetric by
averaging the matrix of dissimilarities with its transpose.

2. Estimates for the square of the distances,
?
are computed as the square of the estimated distances.
3. Let

02 e

denote the average squared distance in a nmatoixsquared distances,
let

52 mie

denote the average of théh row of estimated squared distances in
matrixm and let

62moj
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denote the average of the j-th column. The mth product-moment matrix
is computed from the m-th estimated squared distance matrix as

Prij = {82 ~8%me ~8%mj +8%m ) /2
The resulting matrix is said to be double-centered.

4, If the elements of P,, are to be scaled within matrix m, then the elements
of P, are divided by

\/Z ij pr?rij /g?

where g = NSTI Mso that q2 isthe total number of elementsin the matrix.
If the elements of P are to be scaled over all matrices, then the elements
of each matrix are divided by

\/Z mij pﬁﬁ /(qu)

where s = NSUB.

5. The matrix DS is computed as the sum over all subjects of the product-
moment matrices, P,,,.

Example

The following example illustrates the use of MSDBL in computing product-
moment matrices for two input dissimilarity matrices. The input matrices are

given as.
-4 1 31 -1 2 31
-1 1 3 -1 2 2
- 2 2 -1 3
- 4 - 4
| NTEGER | FORM | SCALE, LDDI SP, LDDS, LDP, LDX, NSTIM NSUB
PARAMETER (| FORMEO, | SCALE=1, LDDI SP=5, LDDS=5, LDP=5, LDX=10,
& NSTI M=5, NSUB=2)
C
REAL DI SP(LDDI SP, LDDI SP, NSUB), DS(LDDS, NSTI M,
& P(LDP, LDP, NSUB), X(LDX, NSUB)
EXTERNAL MSDBL, WRRRN
C
DATA X/ 4.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 3.0, 2.0, 4.0, 1.0,
& 2.0, 1.0, 3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 4.0/
C
CALL MSDBL (NSTIM NSUB, | FORM X, LDX, |SCALE, DI SP, LDD SP, P,
& LDP, DS, LDDS)
C

CALL WRRRN ('The first matrix in DISP’, NSTIM, NSTIM, DISP,
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& LDDI SP, 0)
CALL WRRRN ('The second matrix in DISP’, NSTIM, NSTIM,
& DISP(1,1,2), LDDISP, 0)
CALL WRRRN ("The first matrix in P’, NSTIM, NSTIM, P, LDP, 0)
CALL WRRRN ('The second matrix in P’, NSTIM, NSTIM, P(1,1,2),
& LDP, 0)
CALL WRRRN ('DS’, NSTIM, NSTIM, DS, LDDS, 0)

END

Output

The first matrix in DISP

1 2 3 4 5

0.00 16.00 1.00 9.00 1.00
16.00 0.00 1.00 1.00 9.00
1.00 1.00 0.00 4.00 4.00
9.00 1.00 4.00 0.00 16.00
1.00 9.00 4.00 16.00 0.00
The second matrix in DISP

1 2 3 4 5

0.00 1.00 4.00 9.00 1.00
1.00 0.00 1.00 4.00 4.00
400 1.00 0.00 1.00 9.00
9.00 4.00 1.00 0.00 16.00
1.00 4.00 9.00 16.00 0.00
The first matrix in P

1 2 3 4 5

1.110 -1.931 0.274 -0.487 1.034
-1.931 1.110 0.274 1.034 -0.487
0.274 0.274 -0.182 -0.182 -0.182
-0.487 1.034 -0.182 1.338 -1.703
1.034 -0.487 -0.182 -1.703 1.338
The second matrix in P

1 2 3 4 5

0.500 0.000 -0.500 -1.000 1.000
0.000 0.000 0.000 0.000 0.000
-0.500 0.000 0.500 1.000 -1.000
-1.000 0.000 1.000 2.000 -2.000
1.000 0.000 -1.000 -2.000 2.000

DS

1 2 3 4 5

0.805 -0.966 -0.113 -0.743 1.017
-0.966 0.555 0.137 0.517 -0.243
-0.113 0.137 0.159 0.409 -0.591
-0.743 0.517 0.409 1.669 -1.852
1.017 -0.243 -0.591 -1.852 1.669

GO WNBE GO WNBE GO WNPE GO WNPE

GORrWNBE

MSINI/DMSINI (Single/Double precision)

Computeinitial estimatesin multidimensional scaling models

Usage

CALL MSINI (NSTIM, NSUB, IFORM, X, LDX, IMOD, NDIM, CFL,
LDCFL, W, LDW, WS, LDWS, WMIN, WSMIN)
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Arguments
NSTIM — Number of stimuli in each dissimilarity matrix. (Input)
NSUB — Number of dissimilarity matrices to be used in the analysis. (Input)

IFORM — Storage option for the data in each dissimilarity matrix. (Input)
Each column oK contains one of theSUB dissimilarity matrices in the storage
mode specified by FORM

| FORM Data Storage Mode

0 Symmetric storage mode without the diagonal elements. (Upper
triangular matrix stored columnwise.) Consecutive elements of each
column ofX contain the (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4),
(NSTI M- 1,NSTI M elements of the dissimilarity matrix.

1 Square matrix in full storage mode. Consecutive elements of each
column ofX contain the (1, 1), (2, 1), (3, 1), (NSTI M 1), (1, 2),
(2, 2),..., (NSTI M NSTI M elements of the dissimilarity matrix.

X — NV by NSUB matrix containing th&lSUB dissimilarity matrices, where

NV = NSTI M* (NSTI M- 1)/2 if | FORM= 0, and\V = NSTI M* NSTI Mif | FORM=

1. (Input)

If | FORM= 0, then the input data is assumed to be symmetric, and the elements
below and on the diagonal are not input.FORM= 1, all elements of each

column ofX are input, and the data for the column need not form a symmetric
matrix. Missing values (NaN, “not a number”) are not allowex, inut the

position of a missing element may be indicated as a negative dissimilarity. Since
MBI NI uses the absolute value of each elemektda the dissimilarity to be used

in the estimation procedure, the sign of an elemextias no effect. See
Comment 3.

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IMOD — Vector of length 3 giving the model parameters to be estimated.

(Input)

I MOD also gives the method of initialization to be used for each set of parameters.
Each element afMOD corresponds to a different parameter matrix. The
correspondence is given as:

Element Parameter Matrix

1 CFL—The configuration
2 W-The subject weights
3 W5-The stimulus weights

The value used for each element bHD tells how the parameter matrix is to be

initialized.

Value Effect on Parameter Matrix

0 The parameter matrix is not used.

1 The parameter matrix is input and its values are fixed. The parameter
matrix may be standardized.
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2 Initial estimates are input, but they may be changed by MSI NI .
3 MSI NI calculatestheinitial estimates.

I MOD(1) must be nonzero. | FORMmust not be O if | MOD(3) is not zero. If | MOD(2)
or I MOD(3) is 1, | MOD(1) must be 1. If | MOD(3) is 1, | MOD(2) must not be 2 or 3.

NDIM — Number of dimensions in the solution. (Input)

CFL — NSTI Mby NDI Mmatrix containing the estimated stimulus coordinates.
(Input/Output, ifl MOD(1) = 1 or 2; output, otherwise)

LDCFL — Leading dimension dfFL exactly as specified in the dimension
statement in the calling program. (Input)

W — NSUB by NDI Mmatrix of subject weights. (Input/Output] i'0D(2) = 1 or
2, output, ifl MOD(2) = 3, not referenced ifMOD(2) = 0)
Wis not referenced and can be dimensioned as a 1 by 1 matviznf2) = 0.

LDW — Leading dimension oflexactly as specified in the dimension statement
in the calling program. (Input)

WS — NSTI Mby NDI Mmatrix of stimulus weights. (Input/Output, if
I MOD(3) = 1 or 2; output, if MOD(3) = 3, not referenced ifMOD(3) = 0)
W5 is not referenced and can be dimensioned as a 1 by 1 matvizn3) = 0.

LDWS — Leading dimension ofg exactly as specified in the dimension
statement in the calling program. (Input)

WMIN — Minimum weight inwprior to adjustment. (Output,liivoD(2) = 2 or

3; not referenced ifMOD(2) = 0 or 1)

If WM Nis negative, the weights Ware adjusted such that all weights are positive
by subtracting® N from each element iw

WSMIN — Minimum weight inA\& prior to adjustment. (Output, liiMoD(3) = 2
or 3; not referenced ifMOD(3) = 0 or 1)

If WBM N is negative, the weights 6 are adjusted such that all weights are
positive by subtractinggM N from each element ns.

Comments
1. Automatic workspace usage is

MSI NI max(\DI M+ 1,NSUB, NSTI M) + 2* NSTI M* NSTI M+ NSTI M
* NSTI M* NSUB + 4* NSTI M+ max(5* NSTI M 4* NSUB) +
NDI M* NDI M* NSUB units, or

DVBI NI 2*max(NDl M+ 1,NSUB, NSTI M + 4* NSTI M* NSTI M+ 2
*NSTI M* NSTI M NSUB + 7*NSTI M+ 2* max(5* NSTI M 4*
NSUB) + 2* NDI M* NDI M* NSUB units

Workspace may be explicitly provided, if desired, by usieofNI /DV2I NI . The
reference is
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CALL M2INI (NSTIM NSUB, |IFORM X, LDX, IMOD, NDIM CFL,
LDCFL, W LDW W5, LDW5, WM N, WSBM N, TR, XX,
DI SP, DS, EVWK1, EWK2, |EWK, O

The additiona arguments are as follows:

TR — Real work vector of length mad@ M+ 1, NSUB, NSTI M.

XX — Real work vector of lengtkSTI M* NSTI M

DI SP — Real work vector of lengthSTI M* NSTI M* NSUB.

DS — Real work vector of lengtkSTI M* NSTI M

EWK1 — Real work vector of length*3NSTI M

EWK2 — Real work vector of length max{5NSTI M 4 * NSUB).

|EWK — Integer work vector of lengthsSTl M

C — Real work vector of lengtkDl M* NDI M* NSUB.

2. Informational error
Type Code
4 1 The sum of the product moment matrices for the data

input inX has less thaNDI Mpositive eigenvalues.
Rerun withNDI M= number of positive eigenvalues or
less or provide initial estimates for the configuration
matrix CFL.

3. RoutineVSSTN (page 1020) may be used to obtain the matmith
missing values estimated and changed in sign so that all estimates of
missing values are negative. RoutBSTN will also convert similarities
to dissimilarities. Unless a ratio distance measure is observed, the user
will usually callMSSTN prior to callingvsl NI .

Algorithm

RoutineMsl NI computes initial estimates for the stimulus configuration

(A =CFL), subject weightsW = W, and stimulus weight$1(=W8) in

multidimensional scaling models. The number of dimensions in the solution must
also be input. RoutingSl NI requires complete (i.e., no missing values)
dissimilarity matrices as input. Consequently, missing data must be replaced by
an estimate (often an average of other dissimilarities). Because the absolute
values of dissimilarities are used, missing dissimilarities may be denoted by
changing their sign to be negative. Estimation of missing values, and further
standardization, can be performed through the use of raws®EN (page 1020).

In some case$Bl NI can use values input in parameter matri@ds W orWs in
order to compute initial estimates for other parameter matrices. For example,
values input in matri€FL may be used in the estimation of initial estimates\for
or Ws. Because of the method of estimation, values input for some parameter
matrices will not effect the estimate computed for other matrices. In particular,
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valuesinput in Wwill not effect the estimation of CFL, and valuesinput in W5 will
not effect the estimation of either CFL or W Note that some combinations of input
and estimated matrices are not even allowed (see the option parameter | MOD).
Also, note that when the configuration matrix CFL isinput and fixed (except for
standardization), computed estimates for all weights Wand W5 are arbitrarily taken

asl.
Let
<2
O; jl
denote the squared distance between stimulusi and stimulusj for matrix (subject)
I, let
X2
6i-I
denote the average of the squared distancesin the i-th row for the I-th subject, let
X2
6. j|
be similarly defined, and let
8.2"

denote the average of all squared distances for the I-th subject. If each
dissimilarity input in X is measured without error, then the dissimilarities and the
distances areidentical. In M8l NI, the errors observed in the dissimilarities,

<2
Siji
are assumed to be small so that good estimates for the squared distances may be

computed by squaring each dissimilarity (after first subtracting the constant
obtained in Step 1 below). The computations proceed as follows:

1. The sguared distance matrices are double-centered using the product
moment transformation

Biji :‘(giﬁ —SZM —82.“ +82..|)/2

The matrix formed by averaging the product moment matrices P, (over
subjects) is computed as P
2. If the configuration has been input and cannot be modified (i.e., if

I MOD(1) is 1), then all weights to be estimated are taken as 1, and the
computations continue in Step 8 below.

3. If the configuration matrix has not been input, then a preliminary
estimate is obtained by first computing the eigenvectors (I)

corresponding to the d-largest eigenval ues of P.
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The configuration is then estimated as F'A'”* where A is the square

matrix containing the eigenvalues along the diagonal and zeros off the
diagonal.

If the subject weights Ware to be estimated, or if they can be modified

(i.e., if 1 MOD(2) is 2 or greater), then a SUMSCALE procedure (De

Leeuw and Pruzansky, 1978) is used to estimate the weights (regardless

of the values input) and to “rotate” the configuration estimates. This is
done as follows:

A. The matrices
C =0 'ATRA®G™
are computed, wher® = A if A has been computed, and where

the diagonal elements df are the diagonal elements/f A
otherwise (the off-diagonal elementsddfire always zero).

B. An orthogonal matrix) is found such that the sum of the
squared off-diagonal elements(@fCIQ is minimized over all
matricesC. (See IMSL routin&PRI N, page 797.)

C. A new configuration estimate is obtained by “rotating” the
current estimate, i.efy, = A.

D. The subject weights for subjdctre taken as the diagonal
elements oQTC, Q.

If the subject weights have been computed and the minimum weight in
is negative, add its absolute value to all elemenigtinensure that all
estimated stimulus weights are nonnegative.

If the stimulus weights are to be estimated (i.el NOO(3) is 2 or 3),
then least-squares estimates are used. The least-squares model is
obtained by substituting predicted distance for actual distance in the
multidimensional scaling model specified IbyoD (see the chapter
introduction for a discussion of the models available). Least-squares
fitting is then performed over thdSUB subjects.

If the stimulus weights have been computed and the minimum weight in
W5 is negative, its absolute value is added to all elemems to ensure
that all estimated stimulus weights are nonnegative.

The estimates are standardized (even wivan(i) = 2) as follows:
A. If 1 MOD(2) is not zero, then let
h = )\-lr)\l

wherei-th is the ithcolumn of the configuration matrix. ket
denote the-th column of the subject weight matrix.

IMSL STAT/LIBRARY

Chapter 14: Multidimensional Scaling « 1033



Standardize A such that the diagonal elements of A A arel.
Multiply w; by r,.

B. If 1 MOD(2) = 0 but | MOD(3) is not zero, then compute r; and
standardize the configuration matrix as above. Multiply thei-th
column of Ws by r;.

C. If both | MOD(2) and | MOD(3) are honzero, then compute
— T
S =YW W,

and standardize Wsuch that W/ Wis an identity matrix. Multiply
thei-th column of W5 by c;.

Example

The following example illustrates the use of MSI NI to obtain initial estimates for
an individua differences model when symmetric dissimilarities matrices obtained
from two subjects are input. The input matrices are given as.

- 41 3 1y (-1 2 31
- 11 3 -1 2 2
- 2 2 -1 3

- 4 - 4

Estimates obtained from MsI NI are not optimal. Usually an optimizing
multidimensional scaling routine will be called with the initial estimates
computed in MSI NI .

INTEGER | FORM LDCFL, LDW LDWS, LDX, NDIM NSTIM NSUB
PARAMETER (| FORMEO, LDCFL=5, LDW:2, LDWB=5, LDX=10, NDI Me2,
& NSTI M5, NSUB=2)

C
INTEGER | MOD(3), NOUT
REAL CFL(LDCFL, NDIM, WLDWNDI M, WA N, WS(LDWS, NDI M,
& WSM N, X(LDX, 2)
EXTERNAL  MSI NI, UMACH, WRRRN

C
DATA X/ 4.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 3.0, 2.0, 4.0, 1.0,
& 2.0, 1.0, 3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 4.0/
DATA I MOD/ 3, 3, 0/

C
CALL UMACH (2, NOUT)

C
CALL MBINI (NSTIM NSUB, |FORM X, LDX, IMOD, NDIM CFL, LDCFL,
& W LDW WS, LDWS, W N, W8M N)

C

CALL WRRRN ('The Configuration’, NSTIM, NDIM, CFL, LDCFL, 0)
CALL WRRRN ('Subject weights’, NSUB, NDIM, W, LDW, 0)
WRITE (NOUT,99999) WMIN

1034 « Chapter 14: Multidimensional Scaling IMSL STAT/LIBRARY



Cc

99999 FORMAT (/,” WMIN =", F12.4)

C
END

The Configuration
1 2
1 0.2279 0.6854
2 -0.0808 -0.6584
3 -0.1728 -0.0090
4 -0.6621 -0.2287
5 0.6879 0.2107
Subject weights
1 2

1 7.078 8.533
2 9.615 0.000
WMIN = 0.0000

Output

MSTRS/DMSTRS (Single/Double precision)

Compute various stress criteriain multidimensional scaling.

Usage

CALL MSTRS (N, DIST, DISP, INTCEP, A, ISLOPE, B, POWER,
ISTRS, STRSS, WT)

Arguments
N — Number of distances and disparities. (Input)

DI ST — Vector of lengtiN containing the distances. (Input)
Missing values are not allowed Dh ST.

DI SP — Vector of lengtiN containing the disparities. (Input)

INTCEP — Intercept option parameter. (Input)
If | NTCEP = 0, the intercept is not used in the model NTCEP = 1, the intercept
is used in the model.

A — The intercept. (Input)
If I NTCEP = 0,A is not used.

| SLOPE — Slope option parameter. (Input)
If I SLOPE = 0, the slop@® is not used. If SLOPE = 1, the slope is used.

B — The slope. (Input)
If I SLOPE = 0, B is not used.

POWER — Power to use in the stress function. (Input)
POVER must be greater than or equal to 1.

| STRS — Stress option parameter. (Input)

IMSL STAT/LIBRARY

Chapter 14: Multidimensional Scaling « 1035



| STRS StressCriterion Used

0 Log stress

1 Stress weighted by the inverse of the sum of the squared disparities

2 Stress weighted by the inverse of the sum of the centered squared
disparities

STRSS — The computed stress criterion. (Output)

WT — The weight used in computing the stress. (Output)

If the weight is too large, a maximum weight is used. See the algorithm section of
the manual document.

Algorithm

RoutineMSTRS computes the value of stress criteria commonly used in
multidimensional scaling. RoutindSTRS allows transformed values of the
disparities and distances to be input and will compute the stress on the
transformed values. Additionally, the user can input a slope and/or an intercept to
be used in the stress computations, and the stress can be computed using an
arbitraryL,, norm as well as the squared error norm in wpieh2.

Let
57

denote a disparityy; denote the corresponding distanezelenote the intercept,
and letP denote the slope. IfNTCEP = 0, then sett = 0. IfI SLOPE = 0, then set
B=1.

Sete = 0.001, and let

n . D
1= 5 - o -Bg;|
=1

Whenl STRS = 0, the stress is computed as
@ = nin[max(ne, 1)]

wheren is the number of nonmissing disparities, parelPOVNER is the power to

be used. This stress formula, when optimized, can lead to to normal distribution
theory maximum likelihood estimation. It can not be used in nonmetric scaling.
The weight is computed agmax(e, T).

Whenl STRS is 1, the stress is computed as
0 = T
- n | x0
max(et, ' L1571P)

and the weight returned is given as
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5

1/ max(sr,zin:l p)

Takane, Young, and de Leeuw (1977) recommend using this formula when the
datais not column conditional (i.e., whenever the stressis computed over one or
more dissimilarity matrices rather than over one column in a single matrix). When
| STRS = 2, the stressis given by

T
max(er, > 187 -3.1°)

¢ =

where

3= Ldr
is the average of the nonmissing disparities. The weight is computed as
')
Takane, Young, and de Leeuw (1977) recommend this stress for column
conditional data.

1/ max(st, Zinzl‘éim -3

Missing values (NaN) are not allowed in DI ST while missing disparitiesin DI SP
are not used in the computations. If all disparities are missing, the stress criteriais
set to 0, and the weight (W) is set to missing (NaN).

In general, asingle call to MSTRS would be made for each strata (“conditionality
group”) in the data.
Example

The following example illustrates the computation of stress when the log of the
distances and disparities are input. For this exampiERS is 1 andPOVER is 2.

| NTEGER I NTCEP, |SLOPE, |ISTRS, N
REAL A, PONER
PARAMETER (A=0.0, |NTCEP=0, |SLOPE=1, |STRS=1, N=10, POWAER=2.0)
(o
| NTEGER I, NOUT
REAL ALOG B, DISP(N), DI ST(N), SDOT, STRSS, Wr
INTRINSIC ALGCG
EXTERNAL MSTRS, SDOT, UVACH
(o
DATA DI ST/ 4.0, 1.5, 1.25, 3.0, 1.75, 2.0, 1.0, 3.5, 2.5, 3.75/
DATA DISP/ 4.0, 1.0, 1.0, 3.0, 1.0, 2.0, 1.0, 3.0, 2.0, 4.0/
C Transformthe data
DO 10 1I=1, N
DI ST(1) = ALOZ DI ST(1))
DISP(1) = ALOG DI SP(1))
10 CONTI NUE
C Conpute a sl ope

B = SDOT(N, DI SP, 1, DI ST, 1)/ SDOT(N, DI ST, 1, DI ST, 1)
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C Conpute the stress
CALL MSTRS (N, DI ST, DISP, INTCEP, A, |1SLOPE, B, PONER, | STRS,
& STRSS, W)
C Print results
CALL UMACH (2, NOUT)
VRI TE ( NOUT, 99999) STRSS, W
C
99999 FORMAT (' STRSS =", F12.4," WT =",F12.4)
END

Output
STRSS = 0.0720 WT = 0.1385
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Chapter 15: Density and Hazard
Estimation

Routines

15.1. Estimates for a Density
Penalized likelihood estimates...........cceeeevvveieeiiie i, DESPL 1040
Kernel @StIMAateS ......oovveeeieiee e DESKN 1044
Gaussian kernel estimates via fast Fourier transform ......... DNFFT 1047
Point estimates ..........cccccoeeiiiiiiiiii e, DESPT 1052

15.2. Modified Likelihood Estimates for Hazards
Estimates of the smoothing parameters, general case....... HAZRD 1054
Estimates of the smoothing parameters,
€ASY-10-USE VEISION.....cci i i e i HAZEZ 1061
Estimation of the hazard function...........ccooovveeereiiieiiiiieeee, HAZST 1069

Usage Notes

The routines described in this chapter compute estimates for smoothing
parameters and estimates in models for estimating density and hazard functions.
For density estimation, the penalized likelihood method of Scott (1976) may be
used to obtain smooth estimates for arbitrary (smooth) densities. Alternatively,
the routines DESKN (page 1044) and DNFFT (page 1047) obtain density estimates
by the kernel method for a given window width and kernel function. Routine
DNFFT uses a Gaussian kernel, while for routine DESKN, the kernel is provided by
the user. Finally, routine DESPT (page 1052) finds linear or quasi-cubic
interpolated estimates of a density. Tapia and Thompson (1978) discuss all of
these methods.

For hazard estimation, the methods of Tanner and Wong (1984) are used to
obtain estimates of the smoothing parameters in amodified likelihood. These
methods are implemented in routines HAZRD (page 1054) and HAZEZ (page 1061),
the difference between the routinesiis in the ease of use and the options offered.
For given smoothing parameters, the routine HAZST (page 1069) may be used to
obtain estimates for the hazard function.
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DESPL/DDESPL (Single/Double precision)

Perform nonparametric probability density function estimation by the penalized
likelihood method.

Usage

CALL DESPL (NOBS, X, NODE, BNDS, INIT, ALPHA, MAXIT, EPS,
DENS, STAT, NM SS)

Arguments
NOBS — Number of observations. (Input)
X — Vector of lengtiNOBS containing the random sample of responses. (Input)

NODE — Number of mesh nodes for the discrete probability density estimate.

(Input)
NODE must be an odd integer greater than 4.

BNDS — Vector of length 2 containing the upper and lower endpoints for the
interval of support of the density. (Input)

The node values are takenEndS(1), BNDS(1) +h, ..., BNDS(2), where

h = (BNDS(2) — BNDS(1))/(NODE — 1). All observations in vectot should be in

the support interval.

INIT — Initialization option. (Input)

I NI T = 0 means that a bootstrap procedure is used to obtain initial estimates for
the density. Otherwise, user-supplied initial estimates are contaibenSron

entry intoDESPL.

ALPHA — Penalty-weighting factor that controls the smoothness of the estimate.
(Input)

For standard normal datal,.PHA = 10.0 works well. Other values that might be
tried are 1.0 and 100.8LPHA must be greater than 0.0.

MAXIT — Maximum number of iterations allowed in the iterative procedure.
(Input)

MAXI T = 30 is typical.

EPS — Convergence criterion. (Input)

When the Euclidean norm of the changeBERS is less thatEPS, convergence
is assumedzPS = 0.0001 is typical.

DENS — Vector of lengtiNODE containing the estimated values of the discrete
pdf at theNODE equally spaced mesh nodes. (Input/Output\ifT # 0; output,
otherwise)

If I NI T is not zero, theDENS(1) throughDENS(NCDE) contain the (positive)

initial estimates on input. The sum of these estimates times the windowhwidth
(seeBNDS) must equal 1.0, i.e., the integral of the density must be 1.
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STAT — Vector of length 4 containing output statistics. (Output)

STAT(1) andSTAT(2) contain the log-likelihood and the log-penalty terms,
respectivelySTAT(3) andSTAT(4) contain the estimated mean and variance for
the estimated density.

NMISS — Number of missing values ¥a (Output)

Comments
1. Automatic workspace usage is

DESPL NOBS + 6* NODE + 9* (NODE — 2) units, or
DDESPL 2* NOBS + 12* NODE + 17* (NODE — 2) units.

Workspace may be explicitly provided, if desired, by use of
D2SPL/DD2SPL. The reference is

CALL D2SPL (NOBS, X, NCDE, BNDS, INIT, ALPHA, MAXIT,
EPS, DENS, STAT, NM SS, HESS, LDHESS,
| LOHI, DENEST, B, |PVT, WK2, XVK)

The additional arguments are as follows.

HESS — Work vector of length 7 (NODE - 2).

LDHESS — Leading dimension HESS exactly as specified in the
dimension statement in the calling program. (Input)
The leading dimension must be set to 7.

ILOHI — Integer work vector of length*2NCDE.
DENEST — Work vector of length 3 NODE.

B — Work vector of lengthNCDE.

IPVT — Integer work vector of lengthODE - 2.
WK2 — Work vector of lengtiNCDE - 2.

XWK — Work vector of lengtiNOBS. If X is sorted with all missing
(NaN, not a number) values at the end, tkek is not needed. KX is
not neededX andXwK can share the same storage location.

2. Informational error
Type Code
3 1 The maximum number of iterations is exceeded.
3 RoutineDESPT (page 1052) may be used after the estinzENS have

been obtained in order to obtain an interpolated estimate of the density at
new points. US@NMESH = BNDS in calling DESPT.

Algorithm

RoutineDESPL computes piecewise linear estimates of a one-dimensional density
function for a given random sample of observations. These estimates are
discussed in detail in Scott et al. (1980), and in Tapia and Thompson (1978,
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Chapter 5). The estimator of the density function is piecewise linear over the
finite interval (BNDS(1) to BNDS(2)), is nonnegative, and integratesto one. A
penalty method is used to ensure “smooth” behavior of the estimator. The
criterion function to be maximized is a discrete approximation to

d2f(t)

2
12 dt

®= i|f|1f(xi Jexpl —a(]

wheren = NOBS andf(t) is a density function. Leth = NODE. The discrete
approximation is as follows: The denditig estimated at each of the equally
spaced grid points, forj =1, ..., m, with restrictionf(t,) = f(t,) = 0.0; the
density at each data poixtis then estimated using linear interpolation. The
integral of the second derivative of the squarkisfapproximated using the
piecewise linear function defined by the estimatesapthe grid points,.

Because Inp is actually maximized, the criterion can be separated into a
likelihood term (returned iSTAT(1)) and a penalty term (returnedImAT(2)).

The parameten (= ALPHA) determines the amount of “smoothness” in the

estimate. The larger the valuemfthe smoother the resulting estimatorffdn

practice, the user should piokas small as possible such that there is not

excessive bumpiness in the estimator. One way of doing this is to try several
values ofa that differ by factors of 10. The resulting estimators can then be
graphically displayed and examined for bumpinassould then be chosen from

the displayed density estimates. IMSL routines can be used to produce line printer
plots PLOTP, page 1096) of the estimated density. For a random sample from the
standard normal distribution, = 10.0 works well. Note that changes with

scale. Ifx is multiplied by a factop, a should be multiplied by a factﬁ?.

The second choice to be made in ufiBgPL is the mesh for the estimator. The
mesh intervalBNDS(1), BNDS(2)) should be picked as narrow as possible since a
narrow mesh will speed algorithm convergence. Note, however, that points
outside the intervaBNDS(1), BNDS(2)) are not included in the likelihood.
Because of this fachESPL actually estimates a density that is conditional on the
mesh intervalgNDS(1), BNDS(2)). The number of mesh nod®&&DE, should be

as small as possible, but large enough to exhibit the “fine” structure of the
density. One possible method for determir\@DE is to useNCDE = 21 initially.
With NODE = 21, find an acceptable value for When an acceptable value for

has been found, increase or decreN®®E as required.

STAT(3) andSTAT(4) contain “exact” estimates of the mean and variance when
the estimated piecewise linear density is used in the required integrals. Routine
DESPT (page 1052) may be used to find interpolated estimates for the density at
any pointx given theNCDE estimates of the density returnedENS.
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| NTEGER

REAL

PARAMETER
&

| NTEGER
REAL
EXTERNAL

Example

An estimate for a density function of unknown form using a random sample of
size 10 and 13 mesh pointswitha =10 is estimated as follows:

INIT, MAXIT, NOBS, NODE
ALPHA, EPS

(ALPHA=10. 0, EPS=0.0001, |NIT=0, MAXI T=25, NOBS=10,
NODE=13)

NM SS, NOUT
BNDS(2), DENS(NODE), STAT(4), X(NOBS)
DESPL, UVACH

DATA BNDS/ -3., 3./
DATA X/ -.9471, -.7065, -.2933, -.1169, .2217, .4425, .4919,
& .5752, 1.1439, 1.3589/

CALL DESPL (NOBS, X, NODE, BNDS, INIT, ALPHA, MAXIT, EPS, DENS,

&

STAT, NM SS)

CALL UMACH (2, NauT)
WRITE (NOUT,'(” DENS = ",9F7.4, /, 9X, 4F7.4)") DENS
WRITE (NOUT,’(” Log-likelihood term =, F7.3, /,
& ” Log-penalty term =", F7.3,/,

& ” Mean

=", F7.3,/,

& ” Variance =" F7.3)) STAT

END

Output

DENS = 0.0000 0.0014 0.0356 0.1111 0.2132 0.3040 0.3575 0.3565 0.2947
0.1986 0.0986 0.0288 0.0000

Log-likelihood term = -11.968

Log-penalty term = -1.303

Mean = 0.217

Variance = 1.042

The following figure shows the affect of various choices of a. For larger a, the
density estimate is smoother.
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Figure 15-1 Density Estimates Using a = 1, 10, 100

DESKN/DDESKN (Single/Double precision)

Perform nonparametric probability density function estimation by the kernel

method.

Usage

CALL DESKN ( XKER, NOBS, X, WNDOW XNMAX, NXPT, XPT, DENS,
NM SS)

Arguments

XKER — User-suppliedFUNCTI ON to compute the kernel at any point on the real
line. The form isXKER(Y), where

Y — Point at which the kernel is to be evaluated.

XKER — Value of the kernel at point

XKER — ust be declareBXTERNAL in the calling program.
NOBS — Number of observations. (Input)

X — Vector of lengtiNOBS containing the random sample of observations.
(Input)
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WINDOW — Window width for the kernel function. (Input)
Generally, several different valueswfNDOWshould be tried.

XMAX — Cutoff value such thatkER(Y) = 0.0 for all Y| greater thaXVAX.
(Input)

If XMAX exists, then the kernel function is 0.0 fornafireater in absolute value
thanXvaX, and the efficiency of the computations is enhanced. If noXéuek
exists or the user does not wish to make us@x, thenXMax should be
assigned any nonpositive value.

NXPT — Number of points at which a density estimate is desired. (Input)

XPT — Vector of lengtiNXPT containing the values at which a density estimate
is desired. (Input)
If XMAX is greater than zero, th&®T must be sorted from smallest to largest.

DENS — Vector of lengtiNXPT containing the density estimates at the points
specified inXPT. (Output)

NMISS — Number of missing (NaN, not a number) valuex.in(Output)

Comments
1. Informational error
Type Code
4 7 Negative kernel functions are not allowed.
2. RoutineDESPT (page 1052) may be used to obtain interpolated density

estimates from thEXPT density estimates returnedDBNS. Array
AMESH in DESPT corresponds to arra¥PT in DESKN.

Algorithm

RoutineDESKN computes kernel estimates of the density function for a random
sample of (scalar-valued) observations. The kernel estimate of the density at the
pointy is given by.

)= 3Ky =) /1

where

f(y)
is the estimated densitywtK is the kernel functiork; denotes théth

observationn is the number of observations, ani$ a fixed constant (called the
“window width”) supplied by the user.

One is usually interested in computing the density estimates using several values
of the window width. Tapia and Thompson (1978), Chapter 2, give some
considerations relevant to the choicenhoSome common kernel functions (see
Tapia and Thompson 1978, page 60) are given as follows.
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Name Function

5 f <1
Uniform K(y)Z{O5 orly

0 esewhere

1-|y forly|<1

Triangular K(y) = {O dsawhere

2
Bweight  K(y) =151~ Y*) /16 forli<1
0 elsewhere

Normal e_y2/2 —0<y<o

1
K(y) =——
(¥) o
The computation can be made much more efficient when the kernel is nonzero

over afinite range since observations outside this range can be ignored in the
computation of the density. In this case, the array XPT is assumed to be sorted.

Example

In this example, the standard normal density function is estimated at 13 points
using arandom sample of 10 points from a standard normal distribution. The
biweight kernel function is used. The actual density for the standard normal
density is also reported in the output for comparison. The random sampleis
generated using routines RNSET (page 1166) and RNNOR (page 1208).

| NTEGER NCBS, NXPT

REAL Cl, WNDOW XVMAX
PARAMETER (C1=0. 3989423, NOBS=10, NXPT=13, W NDOW-2.0, XMAX=1.0)

INTEGER |, NMSS, NOUT
REAL DENS(NXPT), EXP, X(NOBS), XKER, XPT(NXPT)
INTRINSIC EXP

EXTERNAL DESKN, RNNOR, RNSET, UMACH, XKER

DATA XPT/-3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5
& 2.0, 2.5, 3.0/

CALL RNSET (1234457)
CALL RNNCR (NOBS, X)

CALL DESKN (XKER, NOBS, X, WNDOW XMAX, NXPT, XPT, DENS, NM SS)
CALL UMACH (2, NOUT)

WRITE (NOUT, (" NMISS =", 11)) NMISS

WRITE (NOUT,'(” DENS Estimate = ", 10F6.4,/,8X,3F6.4)") DENS
WRITE (NOUT,' (" DENS Exact = ",10F6.4,/,8X,3F6.4)")

& (CI*EXP(-XPT(I)*XPT(1)/2.0),1=1,NXPT)
END
REAL FUNCTION XKER (Y)
REAL Y
C
REAL  ABS
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I NTRINSIC ABS

C
IF (ABS(Y) .LT. 1.0) THEN
XKER = 15.0%(1.0-Y*Y)*(1.0-Y*Y)/16.0
ELSE
XKER = 0.0
END | F
RETURN
END
Output
NMSS = 0

DENS Estimate = 0.00000.01180. 07900. 16980. 26780. 34670. 36870. 31840. 22340. 1391
0. 06120. 01350. 0005

DENS Exact = 0. 00440. 01750. 05400. 12950. 24200. 35210. 39890. 35210. 24200. 1295
0. 05400. 01750. 0044

0.4 - - -
i Density Estimate 724
i Standard Normal &Y

0.3 —

20.2 -

0.1

0.0 e
-3.0 —-2.0 -1.0 0.0 1.0 2.0 3.0

X

Figure 15-2 Density Estimate and Standard Normal Density

DNFFT/DDNFFT (Single/Double precision)

Compute Gaussian kernel estimates of a univariate density viathe fast Fourier
transform over afixed interval.

Usage

CALL DNFFT (NOBS, X, FREQ BNDS, WNDOW |FFT, NXPT, CCEF,
DENS, NRM SS)
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Arguments
NOBS — Number of observations. (Input)

X — Vector of lengthNOBS containing the data for which a univariate density
estimate is desired. (Input)

X is not referenced and may be dimensioned of length 1 in the calling program if
| FFT = 1.

FREQ — Vector of lengtitNOBS containing the frequency of the corresponding
element oiX. (Input)

If FREQ(1) is—1.0, then the vectd*REQis not used and all frequencies are taken
to be oneFREQis also not used IfFFT = 1. In either cas&sREQ may be
dimensioned of length 1 in the calling program.

BNDS — Vector of length 2 containing the minimum and maximum valugs of
at which the density is to be estimated. (Input)

Observations less th&NDS(1) or greater thaBNDS(2) are ignored. If either
range of the hypothesized density is infinite, a value equal to the smallest
observation minus 8 W NDOWis a good choice faBNDS(1), and a value equal to
the largest observation plus 3¥ NDOWis a good choice faBNDS(2). LetSTEP =
(BNDS(2) — BNDS(1))/(NXPT — 1), and note that the density is estimated at the
pointsBNDS(1) +i STEP wherei = 0, 1,..., NXPT — 1. The density is assumed
constant over the interval froBNDS(1) +i * STEP to BNDS(1) + (i + 1)* STEP.

WINDOW — Window width for the kernel function. (Input)
Generally, several different values frNDOWshould be tried. When several
different values are tried, use theFT option.

IFFT — Fourier transform option parameter. (Input)

If | FFT = 1, thenCOEF contains the Fourier coefficients on input, and the
coefficients are not computed. Otherwise, the coefficients are computed. This
option is used when several different valuesiaxDOware to be tried. On the
first call toDNFFT, | FFT = 0 and the coefficient8OEF are computed. On
subsequent calls, these coefficients do not need to be recomputed (but only if
NXPT also remains fixed).

NXPT — Number of equally-spaced points points at which the density is to be
estimated. (Input)

RoutineDNFFT is most efficient wheNXPT is a power of 2. Little efficiency is
lost if NXPT is a product of small primes. Because of the method of estimation,
NXPT should be large, say greater than 64.

COEF — Vector of lengtiNXPT containing the Fourier coefficients. (Input, if
| FFT= 1; output, otherwise)

DENS — Vector of lengtiNXPT containing the density estimates. (Output)
The density is estimated at the poiB#S(1) +i * STEP,i =0, 1,...,
NXPT — 1, whereSTEP = (BNDS (2) — BNDS(1))/(NXPT — 1).
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NRMISS — Number of rows of data that contain missing valuesanFREQ.
(Output)NRM SS is not referenced ifFFT = 1.

Comments

1. Automatic workspace usage is

DNFFT 2* NXPT + 15 units, or
DDNFFT 4 * NXPT + 30 units.

Workspace may be explicitly provided, if desired, by use of
D2FFT/DD2FFT. The reference is

CALL D2FFT (NOBS, X, BNDS, W NDOW | FFT, NXPT,
COEF, DENS, NRM SS, WFFTR)

The additional argument is
WFFTR - Work vector of length 2 * NXPT + 15. See Comment 3.

(Input)
2. Informational errors
Type Code
4 1 The sum of the frequencies must be positive.
4 2 Each frequency must be nonnegative.
4 3 There are no valid observations remaining after all
missing values are eliminated.
3. WFFTRis computed in DNFFT. If D2FFT isto be called, WFFTR must first

be computed via the following FORTRAN statement:
CALL FFTRI (NXPT, WFFTR)

If DD2FFT isused, call DFFTRI instead of FFTRI . WFFTR need not be
recomputed between successive callsto D2FFT if NXPT does not change.

Algorithm

Routine DNFFT computes Gaussian kernel estimates of the density function for a
random sample of (scalar-valued) observations using a Gaussian kernel (normal
density). The computations are comparatively fast because they are performed
through the use of the fast Fourier transform. Routine DESKN (page 1044) should
be used in place of DNFFT if akernel other than the Gaussian kernel isto be used,
if airregular grid isdesired, or if the approximationsin DNFFT are not acceptable.
Because of its speed, DNFFT will usually be preferred to DESKN.

A Gaussian kernel estimate of the density at the pointy is given by:

. 1n 1 1(y=-x)°
fly)=—=— 3y ———exp -= '
W) nhi=+/ 21T p|: 2( h ) }

where
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f(y)
isthe estimated density at y, x; denotes the i-th observation, n is the number of
observations, and h isafixed constant called the window width supplied by the
user. If density estimates for several different window sizes are to be computed,
then DNFFT performs afast Fourier transform on the data only during the first call

(when | FFT is zero). On subsequent calls (with | FFT set at 1), the Fourier
transform of the data need not be recomputed.

If the same value of NXPT isto be used with several different input vectors X, then
the computations can be made faster by the use of D2FFT. In D2FFT, it is assumed
that some constants required by the Fourier transform and its inverse have already
been computed viaroutine FFTRI (IMSL MATH/LIBRARY) in work array
WFFTR. If D2FFT is called repeatedly with the same value of NXPT, WFTTR need
only be computed once.

Routine DNFFT is an implementation of Applied Statistics algorithm AS 176
(Silverman 1982) using IMSL routines for the fast Fourier transforms,
Modification to algorithm AS 176, as discussed in Silverman (1986, pages 61—
66), gives the details of the computational method. The basic ideaisto partition
the support of the density into NXPT equally-sized nonoverlapping intervals. The
frequency of the observations within each interval isthen computed, and the
Fourier transform of the frequencies obtained. Since the kernel density estimateis
the convolution of the frequencies with the Gaussian kernel (for given window
size), the Fourier coefficients for the Gaussian kernel density estimates are
computed as the product of the coefficients obtained for the frequencies, times the
Fourier coefficients for the Gaussian kernel function. The discrete Fourier
coefficients for the Gaussian kernel may be estimated from the continuous
transform. The inverse transform is then used to to obtain the density estimates.

Because the fast Fourier transform is used in computing

f(y)
the computations are relatively fast (providing that NXPT is a product of small
primes). To maintain precision, alarge number of intervals, say 256, is usually
recommended. Tapia and Thompson (1978), Chapter 2, give some considerations
relevant to the choice of the window size parameter W NDOW Generally, several
different window sizes should betried in order to obtain the best value for this
parameter.

Example

In this example, the density function is estimated at 64 points using arandom sample
of 150 points from a standard normal distribution. The actual density for the standard
normal density is aso reported in the output for comparison. The random sampleis
generated using routines RNSET (page 1166) and RNNOR (page 1208).

| NTEGER I FFT, NOBS, NXPT
REAL CONS, W NDOW
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PARAMETER ( CONS=0. 39894228, |FFT=0, NOBS=150, NXPT=64,

& W NDOWEO. 25)
C
INTEGER |, NOUT, NRM SS
REAL BNDS(2), COEF(NXPT), DENS(NXPT), EXP, FREQ 1), STEP,
& X(NOBS), XX
INTRINSIC EXP
EXTERNAL  DNFFT, RNNOR, RNSET, UMACH
C
DATA BNDS/ - 4.0, 3.875/
C
CALL RNSET (123457)
CALL RNNOR (NOBS, X)
C
FREQ1) = -1.0
CALL DNFFT (NOBS, X, FREQ BNDS, WNDOW |FFT, NXPT, COEF,
& DENS, NRM SS)
C

CALL UMACH (2, NOUT)
WRI TE ( NOUT, 99998)
99998 FORMAT ( X DENSITY POPULATION’)
STEP = (BNDS(2)-BNDS(1))/(NXPT-1)
XX =BNDS(1)
DO 10 I=1, NXPT, 2
WRITE (NOUT,99999) XX, DENS(I), CONS*EXP(-XX*XX/2.0)
99999 FORMAT (F6.2, 2F8.4)
XX = XX + STEP*2.0
10 CONTINUE
C
END

Output

X DENSITY POPULATION
-4.00 0.0000 0.0001
-3.75 0.0000 0.0004
-3.50 0.0000 0.0009
-3.25 0.0000 0.0020
-3.00 0.0001 0.0044
-2.75 0.0011 0.0091
-2.50 0.0089 0.0175
-2.25 0.0345 0.0317
-2.00 0.0772 0.0540
-1.75 0.1204 0.0863
-1.50 0.1573 0.1295
-1.25 0.2076 0.1826
-1.00 0.2682 0.2420
-0.75 0.2987 0.3011
-0.50 0.2976 0.3521
-0.25 0.3072 0.3867
0.00 0.3336 0.3989
0.25 0.3458 0.3867
0.50 0.3169 0.3521
0.75 0.2834 0.3011
1.00 0.2683 0.2420
1.25 0.2242 0.1826
1.50 0.1557 0.1295
1.75 0.1182 0.0863
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2.00 0.0946 0.0540
2.25 0.0569 0.0317
2.50 0.0199 0.0175
2.75 0.0033 0.0091
3.00 0.0002 0.0044
3.25 0.0000 0.0020
3.50 0.0000 0.0009
3.75 0.0000 0.0004

DESPT/DDESPT (Single/Double precision)

Estimate a probability density function at specified points using linear or cubic
interpolation.

Usage
CALL DESPT (NODE, XPT, |OPT, NORD, AMESH, DENS, DENEST)

Arguments
NODE — Number of points at which the density is desired. (Input)

XPT — Vector of lengtiNODE containing the points at which an estimate of the
probability density is desired. (Input)

|OPT — Interpolation option parameter. (Input)
| OPT  Method of interpolation

1 Linear on equally spaced points
2 Linear with unequal spacing
3 Cubic on equally spaced points
4 Cubic with unequal spacing

NORD — Number of ordinates supplied. (Input)
NORD must be greater than one for linear interpolation, and greater than three for
cubic interpolation.

AMESH — Vector of lengtitNORD for | OPT = 2 or 4, and of length 2 feroPT =
1lor3. (Input)

If | OPT = 2 or 4,AMESH(I ) contains the abscissas corresponding to each density
estimate iIrDENS(I ). In this case, the abscissas must be specified in increasing
order. Ifl OPT = 1 or 3 (i.e., for an equally spaced mesh), then the lower and
upper ends of the mesh are specified\ilgSH(1) andAVESH(2), respectively,

with the increment between mesh points givenAMESH(2) —

AMESH(1))/(NORD — 1).

DENS — Vector of lengtitNORD containing the density function values
corresponding to each of th&RD abscissa values. (Input)

DENEST — Vector of lengtitNODE containing the density function estimates for
the points inXPT. (Output)
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Comments

1 Automatic workspace usage is
DESPT 6* NORDunitsif 1 OPT =3,5* NORD + 1 unitsif | OPT =4, and
1 unit otherwise, or
DDESPT 12 * NORD unitsif | OPT = 3, 10 * NORD + 2 unitsif | OPT = 4,
and 2 units otherwise.
Workspace may be explicitly provided, if desired, by use of
D2SPT/DD2SPT . The referenceis
CALL D2SPT (NODE, XPT, |OPT, NORD, AMESH, DENS,
DENEST, CF, X, BREAK)
The additional arguments are as follows:
CF — Work vector of length 4 NORD for | OPT = 3 or 4.CF is not used
for other values of OPT and may be dimensioned of length 1.
X — Work vector of lengtiNORD for | OPT = 3 or 4.X is not used for
other values of OPT and may be dimensioned of length 1.
BREAK — Work vector of lengtiNORD for | OPT = 3 or 4.BREAK is not
used for other values 6OPT and may be dimensioned of length 1.
2. Array AVESH is the same as arr&xDS in DESPL (page 1040) when
| OPT is 1 or 3, and the same as ark®y in DESKN (page 1044) when
| OPT is 2 or 4.
Algorithm

RoutineDESPT computes an estimate of a density function using either linear or

cubic spline interpolation on a se{(F,), fori = 1, ...,N}, whereF; = DENS(i),

N = NODE, and where the values of the the grid poXjtsan be obtained from the

vectorAVESH. The value of OPT indicates the type of interpolation (linear or
cubic) to be performed and whether the mesh values are equally spaced. When

| OPT is 1 or 3, then an equally spaced mesh is used with mesh values given by

ANMESH (1) +i * DELTA

fori=0,1,...,N-1, where

DELTA = (AVESH(2) — AVESH(1))/(NORD — 1)

| OPT = 2 or 4 yields an unequally spaced mesh with all mesh values contained in
the vectorAMESH.

The Akima cubic spline method of interpolation (Akima 1970) is used for the
cubic interpolation.
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Example

The standard normal density isto be estimated viaa grid of points over which the
density is provided. Grid points are given by (0.0, 0.5, 1.0, 1.5, 2.0) while the
density isto be estimated (vialinear interpolation) at the four points (0.25, 0.75,
1.25, 1.75). For comparison, both the exact and the estimated density values at
each of the four points are printed.

| NTECER I OPT, NODE, NORD
PARAMETER (1 OPT=1, NODE=4, NORD=5)
C
| NTECER I, NoUT
REAL AMESH(2), DENEST(NCDE), DENS(NORD), EXP, F, H X, Xo,
& XPT( NCDE)
INTRINSIC EXP
EXTERNAL DESPT, UMACH
C
DATA XPT/0.25, 0.75, 1.25, 1.75/
DATA AMESH 0, 2/
C
F(X) = 0.3989423* EXP(-X*X/ 2. 0)
C Get the grid val ues
H = (AMESH(2)-AMESH( 1))/ (NORD- 1)
X0 = AMESH(1)
DO 10 1=1, NORD
DENS(1) = F(XO0)
X0 = X0 + H
10 CONTI NUE
C Get the density estinmates
CALL DESPT (NODE, XPT, |OPT, NORD, AMESH, DENS, DENEST)
C Print the results
CALL UMACH (2, NauT)
WRITE (NOUT, (" X DENEST EXACT"))
DO 20 I=1, NODE
WRITE (NOUT,'(F5.2, 2F12.5)") XPT(l), DENEST(l), F(XPT(l))
20 CONTINUE
END
Output
X DENEST EXACT
0.25 0.37550 0.38667
0.75 0.29702 0.30114
1.25 0.18574 0.18265
1.75 0.09175 0.08628

HAZRD/DHAZRD (Single/Double precision)

Perform nonparametric hazard rate estimation using kernel functions and quasi-
likelihoods.

Usage

CALL HAZRD (NOBS, X, LDX, IRT, ICEN, IWTO, NGRID, BSTART,
GINC, KMIN, INK, NK, IPRINT, ISORT, ST, JCEN,
ALPHA, BETA, K, VML, H, NMISS)
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Arguments
NOBS — Number of observations. (Input)

X — NOBS by m matrix containing the raw data, whene= 1 if | CEN = 0, andm
= 2 otherwise. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IRT — Column number ix of the event times. (Input)

ICEN — Censoring option. (Input)

If | CEN = 0, then all of the data is treated as exact data with no censoring. For

I CEN > 0, column CEN of X contains the censoring codes. A censoring code of 0
means an exact event (failure). A censoring code of 1 means that the observation
was right censored at the event time.

IWTO — Weight option. (Input)
If 1 WrO= 1, then weight In(1 + IMOBS — i + 1)) is used for theth smallest
observation. Otherwise, weight I(BS — i + 1) is used.

NGRID — Grid option. (Input)

If NGRI D= 0, a default grid is used to locate an initial starting value for parameter
BETA. FOrNGRI D > 0, a user-defined grid is used. This grid is defineBSTaRT
+(—-1)* A NC, forj=1,..., NGRI D, whereBSTART, G NC, andNGRI D are

input.

BSTART — First value to be used in the user-defined grid. (Input)
Not used ifNGRI D= 0.

GINC — For a user-defined grid, the increment between successive grid values
of BETA. (Input)
Not used ifNGRI D= 0.

KMIN — Minimum number for parametkr (Input)
Parametek is the number of nearest neighbors to be used in computikghhe
nearest neighbor distance.

INK — Increment between successive values of paramet@nput)

NK — Number of values d{to be considered. (Input)
HAZRD finds the optimal value df over the grid given bykM N+ (j — 1) * | NK,
forj=1,...,NK

IPRINT — Printing option. (Input)
If 1 PRI NT = 1, the grid estimates and the optimized estimates are printed for each
value ofk. Otherwise, no printing is performed.

| SORT — Sorting option. (Input)

If | SORT = 1, then the event times are not automatically sortethiD.
Otherwise, sorting is performed with exact failure times following tied right-
censored times.
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ST — Vector of lengtiNOBS containing the times of occurrence of the events,
sorted from smallest to largest. (Output)

Vector ST is obtained from the matrix and should be used as input to routine
HAZST (page 1069).

JCEN — Vector of lengttNOBS containing the sorted censor codes. (Output)
Censor codes are sorted corresponding to the e8&(i)s with censored
observations preceding tied failures. VectGEN is obtained from the censor
codes inX, if present, and is used as input to routia&ST (page 1069).

ALPHA — Optimal estimate for the parameter (Output)
BETA — Optimal estimate for the paramefer (Output)

K — Optimal estimate for the parameker (Output)

VML — Optimum value of the criterion function. (Output)

H — Vector of lengtiNOBS * 5 containing constants needed to computé-ie
nearest failure distances, and the observation weights. (Output)
His used as input to routit®zST (page 1069).

NMISS — Number of missing (NaN, not a number) valuex.in(Output)

Comments
1. Informational Errors
Type Code
4 18 All observations are missing (NaN, not a number)
values.
2. In the optimization routines, the parameterization is chang@daoda

*, whereB” = -In(B) anda”™ = -In(a). The default grid usess, -4, -3, -
2.5,-2,-1.5,-1,-0.5, and 0.5 fof". This corresponds to a grid pof
2981, 54.6, 20.08, 12.18, 7.39, 4.48, 2.72, 1.64, and .61. Thé ¢iniait

maximizes the modified “likelihood” is used as the starting point for the
iterations.

3. If the initial estimate o8 as determined from the grid or as given by the

user is greater than 400 (actuaﬂy, then infinitef is assumed, and an
analytic estimate af based upon infinit@ is used. In the optimization,
if it is determined tha must be greater than 1000, then an infifite
assumed. Infinit@ corresponds to a “flat” hazard rate.

Algorithm

RoutineHAZRD is an implementation of the methods discussed by Tanner and
Wong (1984) for estimating the hazard rate in survival or reliability data with
right censoring. It uses the biweight kernel,
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15 (1 _ 212
K(x) = 2 (1-x%)° for|x <1
0 elsewhere

and amodified likelihood to obtain data-based estimates of the smoothing
parameters a, 3, and k needed in the estimation of the hazard rate. For kernel
K(x), define the “smoothed” kernkl(x - X;) as follows:

1 | X%
(dek ijk

whered;; is the distance to theth nearest failure from(j), andx(j) is thej-th

ordered observation (from smallest to largest). For givandp, the hazard at
pointx is then

Ks(x=xj)) =

h(x) = gl{ (3-8 Ks(x ~ Xy}

whereN = NOBS, 9, is thei-th observation’s censor code (1 = censored,
0 = failed), andw; is thei-th ordered observation’s weight, which may be chosen

as either I —i + 1), or In(1 + 1/ —i + 1)). After the smoothing parameters
have been obtained, the hazard may be estimatet\x&r (page 1069).

Let
H(x) =] oh(s)ds
The likelihood is given by

L =1 4{h(x) ") exp(=H(xg) )}

wherell denotes product. Since the likelihood leads to degenerate estimates,
Tanner and Wong (1984) suggest the use of a modified likelihood. The
modification consists of deleting observatigin the calculation ofi(x;) and

H(x;) when the likelihood term fog; is computed using the usual optimization
techniquesa and for givenk can then be estimated.

Estimates foo andf3 are computed as follows: for giv@na closed form

solution is available foo. The problem is thus reduced to the estimatiof. &

grid search fof is first performed. Experience indicates that if the initial
estimate of8 from this grid search is greater than, ﬁythen the modified
likelihood is degenerate because the hazard rate does not change with time. In
this situation3 should be taken to be infinite, and an estimate of

corresponding to infinit@ should be directly computed. When the estimafg of
from the grid search is less theln a secant algorithm is used to optimize the
modified likelihood. The secant algorithm iteration stops when the chafige in

from one iteration to the next is less thaﬁslmternatively, the iterations may
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cease when the value of B becomes greater than €”, at which point an infinite B
with a degenerate likelihood is assumed.

To find the optimum value of the likelihood with respect to k, a user-specified
grid of k-valuesis used. For each grid value, the modified likelihood is optimized
with respect to aand 3. That grid point, which leadsto the smallest likelihood, is
taken to be the optimal k.

Programming Notes

1 The routine HAZST (page 1069) may be used to estimate the hazard on a
grid of points once the optimal values for o, 3 and k have been found.
The user should also consider using the “easy-to-use” versiazab,
routineHAZEZ (page 1061).

2. If sorting of the data is performed B§ZRD, then the sorted array will
be such that all censored observations at a given time precede all failures
at that time. To specify an arbitrary pattern of censored/failed
observations at a given time point, tH&ORT = 1 option must be used.
In this case, it is assumed that the times have already been sorted from
smallest to largest.

3. The smallest value &fmust be greater than the largest number of tied
failures sinced;, must be positive for ajl (Censored observations are
not counted.) Similarly, the largest valuekafiust be less than the total
number of failures. If the grid specified foincludes values outside the
allowable range, then a warning error is issuedklisistill optimized
over the allowable grid values.

4. The secant algorithm iterates on the transformed parameter

B" = exp( B). This assures a positis and it also seems to lead to a
more desirable grid search. All results returned to the user are in the
original parameterization, however.

5. Since local minimums have been observed in the modified likelihood, it
is recommended that more than one grid of initial valuea fordp3 be
used.

Example

The following example is taken from Tanner and Wong (1984). The data are
from Stablein, Carter, and Novak (1981) and involve the survival times of
individuals with nonresectable gastric carcinoma. Individuals treated with
radiation and chemotherapy are used. For each vakifah 18 to 22 with
increment of 2, the default grid search ffos performed. Using the optimal value
of B in the grid, the optimal parameter estimatea ahd3 are computed for each
value ofk. The final solution is the parameter estimates for the vallkevbfch
optimizes the modified likelihood/§L). Because thePRI NT = 1 option is in
effect,HAZRD prints all of the results in the output.
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| NTEGER ICEN, INK, [IPRINT, IRT, ISORT, WO KMN, LDX,
& NGRI D, NK, NOBS

REAL BSTART, G NC

PARAMETER (BSTART=0.0, G NC=0.0, |CEN=2, |INK=2, |PRINT=1,

& |RT=1, |SORT=1, |WIO=0, KM N=18, LDX=45, NGRI D=0,
& NK=3, NOBS=45)

C
INTEGER  JCEN(NOBS), K, NM SS, NOUT
REAL ALPHA, BETA, H(5*NOBS), ST(NOBS), VM., X(NOBS,?2)
EXTERNAL  HAZRD, UMACH, WRI RN, VRRRN

C
DATA X/ 17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122, 144, 167,
& 170, 183, 185, 193, 195, 197, 208, 234, 235, 254, 307, 315,
& 401, 445, 464, 484, 528, 542, 567, 577, 580, 795, 855, 882,
& 892, 1031, 1033, 1306, 1335, 1366, 1452, 1472, 36*0, 9*1/

C
CALL HAZRD (NOBS, X, LDX, IRT, ICEN, |WO NGRI D, BSTART, G NC
& KM N, INK NK |PRINT, |SORT, ST, JCEN, ALPHA, BETA,
& K, VM., H, NM SS)

C

CALL UMACH (2, NOUT)
WRI TE (NOUT, 99999) NM SS
99999 FORMAT (/ NMISS =, i4/)
CALL WRRRN ('ST’, 1, NOBS, ST, 1, 0)
CALL WRIRN (JCEN’, 1, NOBS, JCEN, 1, 0)
CALL WRRRN (H’, NOBS, 5, H, NOBS, 0)

END
Output

*** GRID SEARCH FOR K= 18 ***
ALPHA BETA VML
4578322 2980.958008 -266.804504
4543117 54.598148 -266.619690
4.336464 20.085537 -265.541168
4.019334 12.182494 -264.001404
3.542742 7.389056 -262.540100
2.990577 4.481689 -262.511810
2.351537 2.718282 -262.633911
1.584173 1.648721 -262.158264
0.966332 1.000000 -262.868408

*»** OPTIMAL PARAMETER ESTIMATES ***
ALPHA BETA VML
1.695147 1.769263 -262.118530

*»** GRID SEARCH FOR K= 20 ***
ALPHA BETA VML
4.053934 2980.958008 -266.525970
4.032835 54.598148 -266.401428
3.905046 20.085537 -265.648315
3.687815 12.182494 -264.401672
3.304344 7.389056 -262.665924
2.822716 4.481689 -262.080078
2.252759 2.718282 -262.445251
1.555777 1.648721 -261.772278
0.955586 1.000000 -262.617645
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NM SS

1
17.0

9
103.0

17
193.0

25
315.0

33
577.0

41
1306. 0
1 2 3
0 0 0

21 22 23
0 0 0

41 42 43
1 1 1

1 217.0

*** OPTI MAL PARAMETER ESTI MATES ***

ALPHA BETA VML
1. 540533 1.631551 -261.771484
*** GRID SEARCH FOR K = 22 *xx
ALPHA BETA VML
3. 656405 2980. 958008 -267. 595337
3. 641593 54.598148 -267. 498596
3. 550560 20. 085537 -266. 90387
3.388752 12. 182494 - 265. 859131
3.071474 7. 389056 - 264. 066040
2. 645036 4.481689 -263. 038696
2.137399 2.718282 - 263. 334717
1.512606 1.648721 -262. 639740
0. 936368 1. 000000 -262. 682739
*** OPTI MAL PARAMETER ESTI MATES ***
ALPHA BETA VML
1.342176 1. 450016 -262.561188
*** THE FI NAL SOLUTI ON (K = 20) ***
ALPHA BETA VML
1. 540533 1. 631551 -261. 771484
0
ST
2 3 4 5 6 7
42.0 44. 0 48.0 60.0 72.0 74.0
10 11 12 13 14 15
108.0 122.0 144.0 167.0 170.0 183.0
18 19 20 21 22 23
195.0 197.0 208.0 234.0 235.0 254.0
26 27 28 29 30 31
401.0 445. 0 464.0 484. 0 528.0 542.0
34 35 36 37 38 39
580.0 795.0 855.0 882.0 892.0 1031.0
42 43 44 45
1335.0 1366. 0 1452.0 1472.0
JCEN
4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 0 0 0 0 0 0 0 0 0

24 25 26 27 28 29 30 31 32 33 34 35 36

0 0 0 0 0 0 0 0 0 0 0 0 0
44 45
1 1
H
2 3 4 5
218.0 1.0 21.0 1.0

0
8
95.0
16
185.0
24
307.0
32
567.0
40
1033.0
17 18
0 0

19 20

0

0

37 38 39 40

1 1

1
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2 192.

3 190.

4 186.

5 174.

6 162.

7 160.

8 139.

9 131.
10 126.
11 112.
12 102.
13 123.
14 126.
15 132.
16 130.
17 133.
18 135.
19 137.
20 148.
21 167.
22 166.
23 182.
24 204.
25 212.
26 231.
27 275.
28 294.
29 311.
30 343.
31 357.
32 382.
33 392.
34 395.
35 610.
36 670.
37 689.
38 699.
39 838.
40 840.
41 1113.
42 1142.
43 1173.
44 1259.
45 1279.

[ejeolojeojojolojojolololojolofolojojolojojololojolojolololololojloleololololololojoloNeNeNe]

193.
191.
187.
175.
163.
161.
140.
132.
127.
113.
110.
125.
128.
135.
137.
145.
147.
149.
160.
174.
175.
191.
212.
213.
234.
278.
297.
314.
345.
3509.
384.
394.
397.
612.
672.
697.
707.
846.
848.
1121.
1150.
1181.
1267.
1287.

[eleolololololololololololololololololololololololololololololololololololololololoNoNoNe]

OO UOWWNRERRRERRERERRERE

0000000000000 0000000000000000000000000000000
N

OO0 0O0000O0O00O0O000000000000000000000000O000O000O0O

COOOOOOO0OO0LO0O0O000O0000000000000000000000000

OCOO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0OOO0OO0OOOOOOORRRPRERPRERPRERPRERPRERPREPEPEPEPEPENNNLWO

HAZEZ/DHAZEZ (Single/Double precision)

Perform nonparametric hazard rate estimation using kernel functions. Easy-to-use
version of HAZRD.

Usage

CALL HAZEZ (NOBS, X, LDX, IRT, ICEN, |PRINT, ST, JCEN,

ALPHA, BETA, K, VM., H NM SS)
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Arguments
NOBS — Number of observations. (Input)

X — NOBS by m matrix containing the raw data, whene= 1 if | CEN = 0, andm
= 2 otherwise. (Input)

LDX — Leading dimension of exactly as specified in the dimension statement
in the calling program. (Input)

IRT — Column number ix containing the times of occurrence of the events.
(Input)

ICEN — Censoring option. (Input)

If | CEN = 0, then all of the data is treated as exact data with no censoring. For

I CEN > 0, column CEN of X contains the censoring codes. A censoring code of 0
means an exact event (failure). A censoring code of 1 means that the observation
was right censored at the event time.

IPRINT — Printing option. (Input)
If 1 PRI NT = 1, the grid estimates and the optimized estimates are printed for each
value ofk. Otherwise, no printing is performed.

ST — Vector of lengtiNOBS containing the times of occurrence of the events,
sorted from smallest to largest. (Output)

Vector ST is obtained from matriX and is used as input to routiHazST

(page 1069).

JCEN — Vector of lengtiNOBS containing the sorted censor codes. (Output)
Censor codes are sorted corresponding to the e8&(i)s with censored
observations preceding tied failures. VectGEN is obtained from the censor
codes inX and is used as input to routiA&zST (page 1069).

ALPHA — Optimal estimate for the parameter (Output)
BETA — Optimal estimate for the paramefer (Output)
K — Optimal estimate for the parameker (Output)

VML — Optimal value of the criterion function. (Output)
VML is the “modified likelihood”.

H — Vector of length 35 NOBS containing the constants needed to compute the
k-th nearest failure distance and the observation weights. (Output)
His used as input to routit®zST (page 1069).

NMISS — Number of missing (NaN, not a number) valuex.in(Output)

Comments
1. Informational errors
Type Code
4 6 All observations are missing (NaN, not a number)

values.

1062 » Chapter 15: Density and Hazard Estimation IMSL STAT/LIBRARY



4 7 There are not enough failing observationsin X to

continue.
2. The grid valuesin theinitial grid search are given asfollows: Let
B'=-8-4,-2,-1,-0505,1, and 2, and
_npO
B=e

For each value of 3, VML is computed at the optimizing (3. The
maximizing B is used to initiate the iterations.

3. If theinitial B* is determined from the grid search to be less than —6,
then it is presumed that (3 isinfinite, and an analytic estimate of o based
upon infinite 3 is used. Infinite 3 correspondsto aflat hazard rate.

Algorithm

Routine HAZEZ is an implementation of the methods discussed by Tanner and
Wong (1984) for estimating the hazard rate in survival or reliability data with
right censoring. It uses the biweight kernel,
151-x%)? forlx <1
K(X) - 16 ( ) | |
0 elsewhere

and amodified likelihood to obtain data-based estimates of the smoothing
parameters a, 3, and k needed in the estimation of the hazard rate. For kernel
K(x), define the “smoothed” kernkl(x — x(j)) as follows:

1 X~ X0
KS(X_X(J')): d K d
ad;y Bdj
whered;; is the distance to tHeth nearest failure from(j), andx(j)is thej-th

ordered observation (from smallest to largest). For givandp, the hazard at
pointx is given by:

h(x) = gl{ (-8 Ks(x ~ X))}

whereN = NGBS, 9, is the censor code (0 = failed, 1 = censored) foi-the
ordered observation, ang is the weight of théth ordered observation (given
by 1/(N—i + 1)). The hazard may be estimated via routingST (page 1069)
after the smoothing parameters have been obtained

Let
H(x) = [ gh(s)ds
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The likelihood is given by:

L =1 4{h(x)*) exp(=H(x; )}

where I denotes product. Since the likelihood, as specified, will lead to
degenerate estimates, Tanner and Wong (1984) suggest the use of a modified
likelihood. The modification consists of deleting the observation x; in the
calculation of h(x;) and H(x;) when the likelihood term for x; is computed. For a
givenk, a and 3 can then be estimated via the usual optimization techniques.

Estimates for a and 3 are computed as follows. For a given 3, aclosed form
solution isavailable for a. The problem is thus reduced to the estimation of 3. To
estimate o and 3, agrid search isfirst performed. Experience indicates that if the
initial estimate of 3 from this grid search is greater than exp(6), then the modified
likelihood is degenerate because the hazard rate does not change with time. In this
situation, 3 should be taken to be infinite, and an estimate of a corresponding to
infinite B is computed directly. When the estimate of 3 from the grid search isless
than exp(6) (approximately 400), a secant algorithm is used to optimize the
modified likelihood. The secant algorithm is said to have converged when the
change in 3 from one iteration to the next is less than 0.00001. Additionally,
convergence is assumed when the value of 3 becomes greater than exp(6). This
corresponds to an infinite 3 with a degenerate likelihood.

A grid of k-values is used to find the optimum value of the likelihood with respect
to k. The grid is determined by HAZEZ and consists of at most 10 points. The
starting value in the grid is the smallest possible value of k. Anincrement of 2is
then used to obtain the remaining grid points.

For each grid value, the modified likelihood is optimized with respect to a and
. That grid point, which leads to the smallest likelihood, is taken to be the
optimal k.

Programming Notes

1 Routine HAZST (page 1069) may be used to estimate the hazard on a grid
of points once the optimal values for a,  and k have been found. (The
user should also consider using routine HAZRD (page 1054), which
allows for more options than HAZEZ.)

2. Routine HAZEZ assumes that censored observations precede failed
observations at tied failure/censoring times.

3. The secant algorithm iterates on the transformed parameter

B" = exp(—P). This assures a positive B, and it also seemsto lead to a
more desirable grid search. All results returned to the user are in the
original parameterization.
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Example

The following example isillustrated in Tanner and Wong (1984), and the data are
taken from Stablein, Carter, and Novak (1981). It involves the survival times of
individuals with nonresectable gastric carcinoma. Only those individual s treated

with radiation and chemotherapy are used.

| NTEGER I CEN, IPRINT, IRT, LDX, NOBS
PARAMETER (I CEN=2, |PRINT=1, |IRT=1, LDX=45, NOBS=45)
C
| NTEGER JCEN(NOBS), K, NM SS, NOUT
REAL ALPHA, BETA, H(5*NOBS), ST(NOBS), VM., X(NOBS, 2)
EXTERNAL HAZEZ, UMACH, WRI RN, WRRRN
C
DATA X/ 17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122, 144, 167,
& 170, 183, 185, 193, 195, 197, 208, 234, 235, 254, 307, 315,
& 401, 445, 464, 484, 528, 542, 567, 577, 580, 795, 855, 882,
& 892, 1031, 1033, 1306, 1335, 1366, 1452, 1472, 36*0, 9*1/
C
CALL HAZEZ (NOBS, X, LDX, IRT, ICEN, IPRINT, ST, JCEN, ALPHA,
& BETA, K, VM., H, NM SS)
C
CALL UMACH (2, NOUT)
VWRI TE (NQUT, 99999) NM SS
99999 FORMAT (/' NMISS =", 14/)
CALL WRRRN ('ST’, 1, NOBS, ST, 1, 0)
CALL WRIRN ('JCEN’, 1, NOBS, JCEN, 1, 0)
CALL WRRRN ('H’, NOBS, 5, H, NOBS, 0)
END
Output
*** GRID SEARCH FOR K= 2 #***
ALPHA BETA VML
65.157967 2980.958008 -266.543945
32.434208 54.598148 -262.551147
17.100269 20.085537 -263.100769
11.402525 12.182494 -264.410187
7.263529 7.389056 -267.502014
4.452315 4.481689 -270.548523
2.689497 2.718282 -335.407288
1.633702 1.648721 -338.566162
0.995799 1.000000 -519.939514
*»** OPTIMAL PARAMETER ESTIMATES ***
ALPHA BETA VML
32.219337 53.968315 -262.550781
*»** GRID SEARCH FOR K= 4 ***
ALPHA BETA VML
25.596716 2980.958008 -266.471558
20.476425 54.598148 -262.893860
13.995192 20.085537 -262.792755
10.109113 12.182494 -262.573212
6.883837 7.389056 -263.030121
4.407142 4.481689 -265.238647
2.690131 2.718282 -265.606293
1.633339 1.648721 -266.822693
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0.993371 1. 000000
*** OPTI MAL PARAMETER ESTI MATES ***

ALPHA BETA
8.530729 9. 683726

*** GRID SEARCH FOR K = 6 *x*
ALPHA BETA
16. 828691 2980. 958008
14. 840095 54.598148
11. 215133 20. 085537
9. 013870 12. 182494
6. 557755 7. 389056
4.330785 4.481689
2.691744 2.718282
1. 633932 1.648721
0. 990891 1. 000000

*** OPTI MAL PARAMETER ESTI MATES ***
ALPHA BETA
12. 553377 28.178671

*** @RI D SEARCH FOR K = 8§ ***
ALPHA BETA
11. 377748 2980. 958008
10. 773529 54.598148
8. 766835 20. 085537
7.427887 12. 182494
5.916299 7. 389056
4.184323 4.481689
2.656351 2.718282
1. 623750 1.648721
0.989442 1. 000000

*** OPTI MAL PARAMETER ESTI MATES ***
ALPHA BETA
8.522110 18. 281288

*** GRI D SEARCH FOR K = 10 ***
ALPHA BETA
8.689023 2980. 958008
8.412854 54.598148
7.196551 20. 085537
6.207793 12. 182494
5. 143391 7.389056
3. 934601 4.481689
2.630993 2.718282
1.611710 1.648721
0. 984530 1. 000000

*** OPTI MAL PARAMETER ESTI MATES ***
ALPHA BETA
6. 483376 13. 956067

*** GRI D SEARCH FOR K = 12 ***
ALPHA BETA
6. 669007 2980. 958008
6. 551508 54.598148

-271. 831390

VML
-262. 545593

VML
- 266. 729248
-264. 019409
-262. 844360
-263. 663391
- 263. 283752
-263. 732697
-264.613800
- 265. 381866
- 266. 242767

VML
-262. 529877

VML
-266. 746185
- 265. 469299
-262. 476807
-263. 109009
-264. 492432
- 264. 289886
-264. 807617
-265. 270691
-264. 738403

VML
-262. 438568

VML
-267. 026093
-266. 250366
-263. 192688
-262. 648376
-264. 274384
-264.523193
-264. 877869
-264. 332581
-263. 920013

VML
-262. 589661

VML
-266. 778259
-266. 347595
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5. 933167 20. 085537 -264. 141174
5. 252526 12. 182494 -262.516205
4.471936 7. 389056 -262. 691589
3.598284 4.481689 -263. 914032
2.557817 2.718282 - 263. 390106
1. 588307 1.648721 -263. 879578
0.973723 1. 000000 -263. 361908
*** OPTI MAL PARAMETER ESTI MATES ***
ALPHA BETA VML
4.923379 9. 819798 -262. 336670
*** GRID SEARCH FOR K = 14 ***
ALPHA BETA VML
5. 668086 2980. 958008 - 266. 747559
5. 595870 54.598148 - 266. 436584
5. 195685 20. 085537 -264. 737946
4.685275 12. 182494 -262. 971497
4. 044650 7. 389056 -262. 288147
3. 335586 4.481689 -263. 126434
2.496436 2.718282 -262. 891663
1. 585763 1. 648721 -263. 418976
0. 969140 1. 000000 -263. 164032
*** OPTI MAL PARAMETER ESTI MATES ***
ALPHA BETA VML
4. 145060 7.966486 -262. 260559
*** GRI D SEARCH FOR K = 16 ***
ALPHA BETA VML
4.970138 2980. 958008 -266. 419281
4.924928 54.598148 - 266. 199646
4.663393 20. 085537 - 264. 938660
4.280633 12. 182494 - 263. 266602
3. 741570 7. 389056 -262. 020355
3. 132969 4.481689 -262.401733
2.421248 2.718282 -262. 555817
1. 586469 1. 648721 -262. 426025
0. 967658 1. 000000 -263. 135101
*** OPTI MAL PARAMETER ESTI MATES ***
ALPHA BETA VML
3. 639074 6. 767537 -261. 987305
*** GRI D SEARCH FOR K = 18 ***
ALPHA BETA VML
4.578322 2980. 958008 - 266. 804504
4.543117 54.598148 -266. 619690
4.336464 20. 085537 -265. 541168
4.019334 12. 182494 -264. 001404
3. 542742 7.389056 -262. 540100
2.990577 4.481689 -262.511810
2. 351537 2.718282 -262. 633911
1.584173 1.648721 -262. 158264
0. 966332 1. 000000 -262. 868408
*** OPTI MAL PARAMETER ESTI MATES ***
ALPHA BETA VML
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1.695147 1.769263
*** GRID SEARCH FOR K =
ALPHA BETA
4.053934 2980. 958008
4.032835 54.598148
3. 905046 20. 085537
3.687815 12. 182494
3.304344 7. 389056
2.822716 4.481689
2. 252759 2.718282
1. 555777 1.648721
0. 955586 1. 000000

20 * k k

*** OPTI MAL PARAMETER ESTI MATES ***

ALPHA BETA
1. 540533 1. 631551
*** THE FI NAL SOLUTI ON

ALPHA BETA

1. 540533 1. 631551
NMSS= 0
ST

1 2 3 4 5
17.0 42.0 44.0 48.0 60. 0
9 10 11 12 13
103.0  108.0  122.0  144.0  167.0
17 18 19 20 21
193.0  195.0  197.0  208.0  234.0
25 26 27 28 29
315.0  401.0  445.0  464.0  484.0
33 34 35 36 37
577.0  580.0 795.0 855.0  882.0
41 42 43 44 45
1306.0 1335.0 1366.0 1452.0 1472.0
JCEN
1 2 3 4 5 6 7 8 9 10 11
0o 0 0 0 0 0 O O O 0 O
21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 0 0 0
41 42 43 44 45
1 1 1 1 1
H
1 2 3 4
1 217.0 218.0 1.0 21.0
2 192.0 193.0 1.0 21.0
3 190.0 191.0 1.0 21.0

(K

= 20

6
72.0

14
170.0

22
235.0

30
528.0

38
892.0

12 13
0 0

*

14
0

-262. 118530

VML
- 266. 525970
-266. 401428
- 265. 648315
-264.401672
-262. 665924
-262. 080078
-262. 445251
-261.772278
-262. 617645
VML
-261. 771484
* %
VML
-261. 771484
7 8
74.0 95.0
15 16
183.0 185.0
23 24
254.0 307.0
31 32
542.0 567.0
39 40
1031.0 1033.0
15 16 17 18 19 2
0 0 0 0 0

0
0

32 33 34 35 36 37 38 39 40

0 0

cor
wuoul

0

0

0

1 1 1
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43  1173.0 1181.0  17.0 45.0 0.0
44  1259.0 1267.0 17.0 45. 0 0.0
45 1279.0 1287.0 17.0 45. 0 0.0

HAZST/DHAZST (Single/Double precision)

Perform hazard rate estimation over agrid of points using akernel function.

Usage

CALL HAZST (NOBS, ST, JCEN, IWO NGRID, GSTRT, G NC
ALPHA, BETA, K, |HCOW, H, HAZ)

Arguments

NOBS — Number of observations. (Input)

If HAZRD (page 1054) oHAZEZ (page 1061) is called prior to this routine and the
original data contained missing values, thEBS in HAZST must be adjusted for
the number of missing values from the value us@#\iRD or HAZEZ. That is,

NOBS in HAZST is NOBS minusNM SS from HAZRD or HAZEZ .

ST — Vector of lengtiNOBS containing the event times, sorted in ascending
order. (Input)
ST may not contain missing values.

JCEN — Vector of lengtiNOBS containing the censor codes. (Input)
JCEN(i) = 1 means that eventas (right) censored at ting7 (i), i = 1, ...,NOBS.
JCEN(i) = 0 means that eventwas a failure at timsT(i).

|WTO — Weighting option. (Input)
| WO = 1 means use weights In(1 +N@BS — i + 1)).| WO= 0 means use
weights 1/00BS —i + 1). Not used if HCOWP = 1.

NGRID — Number of grid points at which to compute the hazard. (Input)
GSTRT — First grid value. (Input)

GINC — Increment between grid values. (Input)

ALPHA — Value for parametex. (Input)

BETA — Value for parametgs. (Input)

K — Value for parametdt.  (Input)

IHCOMP — Option parameter. (Input)
If | HCOVP = 0,H is computed. If HCOWP = 1,H has already been computed
(generally byHAZRD or HAZEZ).

H — Vector of length 3 NOBS containing the constants used in computingkthe
th failure distance. (Input, ifHCOVP = 1; Output, otherwise)
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HAZ — Vector of lengtiNGRI D containing the estimated hazard rates. (Output)

Comments
1. Informational error
Type Code
4 13 At least one missing (NaN, not a number) value was
found inST. Missing values are not allowed in this
routine.
2. The user-defined grid is given BgTRT +j* G NC,j =0, ...,
NGRID- 1.
3. RoutineHAZST assumes that the grid points are new data points.
Algorithm

RoutineHAZST estimates the hazard function by use of the biweight kernel,
15
K(x) = (- x*)?
16

Because a “smoothed” estimate is computed, one generally would use either
routineHAZRD (page 1054) or routingAZEZ (page 1061) to obtain maximum
(modified) likelihood estimates of the smoothing parametefs andk.

Maximum (modified) likelihood estimates of these parameters are not required,
however. A user-specified grid of points is generated. For each point, the hazard
estimate is computed as

n
h(x) = 3 (1= 8; )w; Ks(X = X(;))
i=1
wheren = NOBS, §; is thei-th observation’s censoring code (0 = failed,
1 = censored)y; is thei-th observation’s weight (either b/ i + 1) or In(1 +
1/(n - i + 1)) depending uponwro), andK(x — X)), the “smoothed kernel”, is as
follows:

1 X_X(i)
Ko(X—=Xpiy) = K
s X0) adiy ( Bdik )

Here,d;; is the distance to tHeth nearest failure from thieth observation.
Because of thd;;,, HAZST requires the computation of matkik which contains
constants needed to quickly compdie Often,H will have been computed in

routineHAZRD or HAZEZ. In this case, the paramete4COVP should be set to
zero ancH should be input t6lAZST. If H must be computed YAZST, set
| HCOWP = 1.
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Example

The following example is a continuation of the example from HAZRD. The data
are from Stablein, Carter, and Novak (1981), and involve the survival times of
individuals with nonresectable gastric carcinoma. Only those individual s treated

with both radiation and chemotherapy are used.

INTEGER | HCOWP, |WIO, K, NGRID, NOBS
REAL ALPHA, BETA, G NC, GSTRT
PARAMVETER ( ALPHA=1. 540537, BETA=1.631553, G NC=10, GSTRT=0. 0,
& | HOOVP=0, |WI0=0, K=20, NGRI D=100, NOBS=45)

C
I NTEGER  JCEN(NOBS), NOUT
REAL H(5* NOBS), HAZ(NGRI D), ST(NOBS)
EXTERNAL  HAZST, WRRRN

C
DATA ST/ 17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122, 144, 167,
& 170, 183, 185, 193, 195, 197, 208, 234, 235, 254, 307, 315,
& 401, 445, 464, 484, 528, 542, 567, 577, 580, 795, 855, 882,
& 892, 1031, 1033, 1306, 1335, 1366, 1452, 1472/
DATA JCEN 36*0, 9*1/

C
CALL HAZST (NOBS, ST, JCEN, |WO, NGRID, GSTRT, G NC, ALPHA
& BETA, K, |HCOWP, H, HAZ)

C

CALL WRRRN ('Ten elements of HAZ’, 1, 10, HAZ, 1, 0)
CALL WRRRN ('The first 10 rows of H’, 10, 5, H, NOBS, 0)
END

Output

Ten elements of HAZ
1 2 3 4 5 6 7
0.000962 0.001111 0.001276 0.001451 0.001634 0.001819 0.002004

8 9 10
0.002185 0.002359 0.002523

The first 10 rows of H

1 2 3 4 5
1 2170 2180 1.0 210 1.0
2 1920 193.0 1.0 21. 0.5
3 190.0 1910 1.0 210 0.3
4 186.0 187.0 1.0 210 0.2
5 1740 1750 1.0 21.0 0.2
6 162.0 163.0 1.0 21.0 0.2
7 160.0 161.0 1.0 21.0 0.1
8 139.0 1400 1.0 210 O0z1
9 131.0 1320 1.0 21.0 0.1
10 126.0 127.0 10 210 0.1
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Chapter 16: Line Printer Graphics

Routines
16.1. Histograms
Vertical histogram plot ...........cooooiiiiiiieiiieee e VHSTP 1074
Vertical histogram plot with bars subdivided into two parts.. VHS2P 1076
Horizontal histogram plot ... HHSTP 1078
16.2. Scatter Plots
Scatter Plot......ccooe e, SCTP 1081
16.3. Exploratory Data Analysis
BOXPIOT ..t BOXP 1083
Stemand leaf plot............ceooi i, STMLP 1085
16.4. Empirical Probability Distribution
Cumulative distribution function (CDF) plot ............cccceeeennee. CDFP 1087
Plot of two sample CDFs on the same frame ..................... CDF2P 1090
Probability Plot...........coiiiiiiiiiiii e PROBP 1092
16.5. Other Graphics Routines
Plot up to 10 sets of POINES.......cvvviveeiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee PLOTP 1096
Binary tre@ Plot........eeiiiiiiiiii TREEP 1098

Usage Notes

The routine names in this chapter end with the I1&eéto indicate line printer
plotting and every routine starts printing at the beginning of a new page.

Depending on the nature of plots, some routines allow the user to change page
width and/or length. This capability is specified in each routine and, if allowed,
can be done by calling the routiRéOPT (page 1263) in advance. To change the
page width, the user should make the following @efGOPT:

CALL PGOPT(-1, | PAGEW

wherr | PAGEWIndicates the page width in columns. To change the page length,
the user should make the following calPGOPT:
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CALL PGOPT(-2, | PAGEL)

where | PAGEL indicates the page length in rows. See the PGOPT document for
more information.

VHSTP/DVHSTP (Single/Double precision)

Print avertical histogram.

Usage
CALL VHSTP (NBAR, FRQ ISP, TITLE)

Arguments

NBAR — Number of bars. (Input)
If NBAR exceeds 100/GP + 1), therNBAR = 100/ SP + 1) is usedNBAR must be
positive.

FRQ — Vector of lengttNBAR containing the frequencies or counts. (Input)
Elements oFRQ must be nonnegative.

| SP — Spacing between histogram bars. (Input)
I SP may be 0, 1, or 4.

TITLE — CHARACTER string containing main title. (Input)

Comments
1. Informational errors
Type Code
3 1 I SPis out of rangel. SP = 0 is used.
3 3 NBAR* (I SP + 1) is less than 1 or greater than 100.
The width of the histogram is set to 100, and 1CER(
+ 1) bars are printed. The number of class intervals
will be printed completely if SP # 0 and will always
be printed up to and including 1004P + 1) even
though the histogram body is only 100 spaces wide.
3 5 The maximum value in the vedi®Qis less than 1;
therefore, the body of the histogram is blank.
3 6 TI TLE is too long.TI TLE was truncated from the right
side.

Output is written to the unit specified by the routiMaCH (page 1334).

3. TI TLE is centered and placed at the top of the plot. The plot starts on a
new page.
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o000 O

99999 FORMAT (' Midpoints: ’, 10F6.2, /,’

C

Midpoints:

Algorithm

VHSTP prints avertical histogram on not more than one printer page using not
more than 50 vertical and 100 horizontal print positions. Spacing control is
allowed on the horizontal axis.

Given avector containing positive counts, VHSTP determines the maximum count
Toax- Vertica printing position depends on K defined by

K =1+ (T,.x — 1)/50: If afrequency is greater than K, then a character is printed
on the corresponding position of the first horizontal line from above. Henceforth,

K is reduced by K/50 for each horizontal line, and frequencies are compared to

the new K.

Example

Consider the data set in Example 1 of the routine ONFRQ (page 3). This data set
consists of the measurements (in inches) of precipitaion in Minneapolis/St. Paul
during the month of March for 30 consecutive years. We use the routine OAFRQto
create a one-way fregquency table. A vertical histogram is then generated using
VHSTP. A horizontal histogram for the same data set can be found in the
document example for the routine HHSTP (page 1078).

| NTECER NBAR, NOBS

PARAMETER (NBAR=10, NOBS=30)

| NTECER I BEG |10OPT, IREP, |SPACE, LENGTH, NOUT

REAL CLHW DI V(NBAR), TABLE(NBAR), X(NOBS), XH, XLO

EXTERNAL  VHSTP, OWFRQ UVACH

DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2. 05/

Get out put unit nunber
CALL UMACH (2, NauT)

Create a one-way frequency table from
a given data set using intervals of

equal
of XLO and XHI
IOPT =1
XLO = 0.5
XH = 4.
CALL ONFRQ (NOBS, X, NBAR, |OPT, XLO XH,

VWRI TE (NQUT, 99999) DIV, TABLE

Counts: ’, 10F6.0)
Create the horizontal histogram

ISP =4

CALL VHSTP (NBAR, TABLE, ISP, 'Plot of VHSTP’)

END

Output

0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
Counts: 2. 7. 6. 6. 4. 2. 2. 0. 0. 1

| engt h and user-supplied val ues

CLHW DIV, TABLE)
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Pl ot of VHSTP
FrequenCy----- - o m o m e e e e
*

PNWRAOOTON

VHS2P/DVHS2P (Single/Double precision)

Print avertical histogram with every bar subdivided into two parts.

Usage
CALL VHS2P (NBAR, FRQX, FRQY, ISP, TITLE)

Arguments

NBAR — Number of bars. (Input)
NBAR must be positive.

FRQX — Vector of lengtmMBAR. (Input)
FRQX contains the frequencies or counts, and the elemeR&Xfmust be
nonnegative.

FRQY — Vector of lengtMBAR. (Input)
FRQY contains the second frequencies or counts, and the elem&r@vahust
be nonnegative.

| SP —Spacing between histogram bars. (Input)
I SP=0, 1or4is allowed.

TITLE — CHARACTER string containing the title. (Input)

Comments
1. Automatic workspace usage is

VHS2P 2* NBAR units, or
DVHS2P 4 * NBAR units.

Workspace may be explicitly provided, if desired, by use of
V2S2P/DV2S2P. The reference is

CALL V2S2P (NBAR, FRQX, FRQY, ISP, TITLE, WK)
The additional argument is
WK — Work vector of length 2 NBAR.

2. Informational errors
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Type Code
3 2 NBAR* (I SP + 1) islessthan 1 or greater than 100.
The width of the histogram is set to 100 and 100/(1 SP
+ 1) bars are printed.

3 3 | SP as specified is not valid. The zero option is used.
3 4 TI TLE istoo long. TI TLE was truncated from the right
side.
3. If NBAR exceeds 100/(1 SP + 1), then only 100/(1 SP + 1) bars are
printed.
4, If the maximum frequency is greater than 9999, the frequency column

contains on some lines.
Output iswritten to the unit specified by the routine UVACH (page 1334).
6. TI TLE is automatically centered and plot starts on anew page.

Algorithm

The routine VHS2P prints a vertical histogram on one or more pages, using not
more than 50 vertical and 100 horizontal print positions. Spacing control is
alowed on the horizontal axis. Given two vectors containing positive counts,
VHS2P determines the maximum count of the combined vectorsT,,,,. Vertica
printing position depends on K defined by K =1 + (T,,,., — 1)/50. If afrequency
is greater than K, then a character is printed on thefirst line. Henceforth, K is
reduced by K/50 for each position, and frequencies are compared to the new K.

Example

Let X = FRQX contain 12 months of projected income figures and let Y = FRQY
contain the actual income figures for the same 12 months. VHS2P produces a
histogram that allows projected versus actual figures to be graphically compared.

INTEGER  NBAR
PARAVETER ( NBAR=12)

C
| NTECER I SP, NOUT
REAL FROX(NBAR) , FRQY( NBAR)
EXTERNAL  UVACH, VHS2P
C
DATA FRQX/ 11., 4., 4., 8., 4., 3., 10., 14., 4., 20., 4., 3./
DATA FRQY/ 10., 6., 4., 12., 3., 4., 8., 18., 6., 18., 3., 7./
C
ISP = 4
CALL VHS2P (NBAR, FRQX, FRQY, ISP, 'Plot of VHS2P’)
C Get output unit number

CALL UMACH (2, NOUT)
WRITE (NOUT,99999)
99999 FORMAT (/, 3X, 'Twelve months projected sales versus actual ’,
& 'sales, in thousands of dollars.’, /, 11X, 'A positive ’,
& 'sign (+) implies projected exceeded actual.’, /, 11X,
& 'A negative sign (-) implies actual exceeded projected.”)
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END

20 -

Twel ve mont hs proj ected sal es versus actual sales, in thousands of dollars.
A positive sign (+) inplies projected exceeded actual.
A negative sign (-) inplies actual exceeded projected.

HHSTP/DHHSTP (Single/Double precision)

Print a horizontal histogram.

Usage

CALL HHSTP (NBAR, FRQ |BEG, | SPACE, LENGTH, |REP, | OPT,
TI TLE)

Arguments

NBAR — Number of bars. (Input)
NBAR must be positive.

FRQ —Vector of lengtMBAR containing the frequencies or counts. (Input)
Elements oFRQnust be nonnegative.

IBEG — Indicates the beginning setting of the plot. (Input)
If | BEG = 0,HHSTP skips to a new page before printing the first line BEG# 0,
HHSTP skips two spaces and begins printing on the same page.
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| NTEGER

| SPACE — Indicates spaces between horizontal histogram lines. (Input)
| SPACE =0, 1, or 2 is allowed.

LENGTH — Indicates the upper limit of the number of lines to print within the
histogram per page. (Input)

After that number of lines is printed, the routine skips to a new page to continue
printing. If LENGTH = 0; then the maximum number of lines coincides with the
standard printer page, which is 60.

IREP — Determines the repeating appearance for the class line (top) and
frequency line (bottom) when multiple pages are required. (Input)

If | REP = 0, the class line and the frequency line are printed on the first and last
page of the histogram, respectivelyl HEP # 0, both class and frequency line are
printed on every page.

|OPT — Page width option. (Input)
I OPT = 0 will cause a full (horizontal) page histograr@PT = 1 will limit the
width to 80 columns.

TITLE — CHARACTER string containing the title of the histogram. (Input)

Comments
Informational errors
Type Code
3 3 | SPACE is not 0, 1, or 2. The zero option is usedIf6PACE.
3 6 | OPT is not O or 1. The zero option is used f@PT.
3 7 TI TLE is too long and is truncated from the right side.
Algorithm

The routineHHSTP prints a horizontal histogram on one or more pages. Given a
vector containing frequencies or coursSSTP determines the maximum count
Toax- HOrizontal printing position depends Brdefined by

K=1+ T,.x —1)/60 for 72 characters
K=1+ T,.x —1)/120 for 132 characters

If a frequency is greater th&j then a character is printed in the first position.
HenceforthK is increased bi/60 orK/120 for each position, and frequencies
are compared to the resultikg

Example

Consider the data set in Example 1 of the routineRQ (page 3). We use the
routineOAFRQto create a one-way frequency table. A horizontal histogram is
then generated usimgdSTP. The user may find a vertical histogram for the same
data set in the routingHSTP (page 1074). Note that classes are listed from left to
right in VHSTP.

NBAR, NOBS

IMSL STAT/LIBRARY

Chapter 16: Line Printer Graphics « 1079



PARAVETER (NBAR=10, NOBS=30)

C
| NTECER I BEG |10OPT, IREP, |SPACE, LENGTH, NOUT
REAL CLHW DI V(NBAR), TABLE(NBAR), X(NOBS), XHI, XLO
EXTERNAL HHSTP, OWRQ, UMACH
C
DATA X/0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
& 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
& 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
& 2. 05/
C Get out put unit nunber
CALL UMACH (2, NauT)
C Create a one-way frequency table from
C a given data set with intervals of
C equal |ength and user-supplied val ues
C of XLO and XHI
IOPT =1
XLO = 0.5
XH = 4.

CALL ONFRQ (NOBS, X, NBAR, |OPT, XLO XH, CLHW DIV, TABLE)
WRI TE (NOUT, 99999) DIV, TABLE
99999 FORMAT (* Midpoints: ’, 10F6.2,/,” Counts: ’, 10F6.0)

C Create the horizontal histogram
IBEG =1
ISPACE =1
LENGTH=0
IREP =0
IOPT =0
CALL HHSTP (NBAR, TABLE, IBEG, ISPACE, LENGTH, IREP, IOPT,
& "Histogram’)
END
Output

Midpoints: .25 .75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
Counts: 2. 7. 6. 6. 4. 2. 2. 0. 0. 1

Histogram
Class -----------
10 *I *
* *
9 * *
* *
8 * *
* *
7 *l *
* *
6 *l *
* *
5+ *
* *
4 * *
* *
3 < *
* *
2 *=*
* *
1 = *
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Frequency 5
One frequency unit is equal to 1 count unit(s).

SCTP/DSCTP (Single/Double precision)

Print a scatter plot of several groups of data.

Usage
CALL SCTP (NOBS, NVAR, A, LDA, 1CO., RANGE, SYMBQOL,

XTI TLE, YTITLE, TITLE)
Arguments
NOBS — Number of observations. (Input)
NVAR — Number of variables. (Input)
A —NGCBS by NVAR matrix containing the data. (Input)

LDA —Leading dimension o& exactly as specified in the dimension statement
of the calling program. (Input)

ICOL — Vector of lengtiNVAR representing the nature of each column of matrix
A. (Input)

Thel -th column ofA is the independent variable vector §OL(1 ) = 1. Thel -th
column ofAis a dependent variable vector €0L(1 ) = 2. Thel -th column ofA

is ignored otherwise.

RANGE — Vector of length four specifying minimuxnmaximunx, minimumy
and maximuny. (Input)

SCTP will calculate the range of the axis if the minimum of that range is greater
than or equal to the maximum of that range.

SYMBOL — CHARACTER string of lengtiNvAR.  (Input)
SYMBOL (I : 1) is the character used to plot the data set represented by dalumn
SYMBOL(l :1)isignored ifi COL(I1) # 2.

XTITLE — CHARACTER string containing thg-axis title. (Input)
YTITLE — CHARACTER string containing thg-axis title. (Input)
TITLE — CHARACTER string containing the plot title. (Input)

Comments
1. Informational errors
Type Code
3 10 XTI TLEIs too long to fit into the page width

determined by the routirf®SOPT. XTI TLE is truncated
from the right side.
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3 11 YTI TLE istoo long to fit into the page width
determined by the routine PGOPT. YTI TLE istruncated
from the right side.

3 12 TITLEistoo long to fit into the page width determined
by the routine PGOPT. Tl TLE is truncated from the
right side.

2. Integers 2, ..., 9 indicate two through nine points occupying the same

plot position, respectively, and the charactdrifdicates 10 or more
multiple points. Consequently, it is recommended not to use any one of
the above characters f8YMBOL.

One and only one column Afcan be the independent variable vector.

A point is ignored if either the independent or the dependent variable
contains NaN (not a number).

5. Output is written to the unit number specified by the routiviecH
(page 1334).
6. Default page width and length are 78 and 60; respectively. The user may

change them by calling the routiR€OPT (page 1263) in advance.

Algorithm

RoutineSCTP prints a scatter plot of one variable on k&xis against several
variables on thg-axis. For multiple points, 2, 3,., 9 are used to denote the
number of points at a location. The charactris used when the number of
points is greater than 9. Any entry of the matrizontaining NaN (not a number)
is ignored. SeaVACH in “Machine-Dependent Constants.”.

Example

This example prints a scatter plot of width against length for 150 iris petals. The
routineGDATA (page 1302) is used to retrieve the Fisher iris data.

| NTEGER I COL(5), | DATA, IPRINT, LDA, NDA, NOBS, NVAR
REAL A(150, 5), RANCE(4)

CHARACTER SYMBOL*5

EXTERNAL GDATA, PAGE, SCTP

DATA 1 COL/ 5*0/
DATA RANGE/ 4*0./
DATA SYMBOL/"  */

IDATA =3
IPRINT =0
LDA =150
NDA =5
C Get Fisher Iris Data
CALL GDATA (IDATA, IPRINT, NOBS, NVAR, A, LDA, NDA)
Plot petal width against
petal length

(eXe!

ICOL(4) = 1
ICOL(5) = 2
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C Set page width and |l ength
CALL PAGE (-1, 78)
CALL PAGE (-2, 40)
CALL SCTP (NOBS, NVAR, A, LDA, ICOL, RANGE, SYMBOL, 'Petal '//

& ‘length’, 'Petal width’, 'Fisher Iris Data’)
C
END
Output
Fisher Iris Data
: * k%
2.4 - * 2
. *kkk * k* % *
* % *
*kkk * *
*kkk * *
*2 * *
32 * 2* * % *
: * *
P 16- Kkokw
e . * 5** 2**
t * 2 *2* *
a
| *  3222%**
*k%k * * *
W * *%
i 2 2 * k%
d
t .
h 0.8-
*
*
* 3** *
D23 *
* 24875* *
x 22
0.0 -:

Petal length

BOXP/DBOXP (Single/Double precision)

Print boxplots for one or more samples.

Usage
CALL BOXP (NGROUP, NI, X, TITLE)
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Arguments
NGROUP — The total number of groups of samples. (Input)

NI — Vector of lengttNGROUP.  (Input)
NI (') is the number of observations in th¢h group.

X —Vector of lengthNl (1) + NI (2) + ... +NI (NGROUP). (Input)
The firstNI (1) positions contain the observations for the first group. The next
NI (2) positions contain the observations for the second group, and so on.

TITLE — CHARACTER string containing the title of the plot. (Input)

Comments
1. Automatic workspace usage is

BOXP NI (1) + ... +NI (NGROUP) units, or
DBOXP 2* (NI (1) + ... +NI (NGROUP)) units.

Workspace may be explicitly provided, if desired, by use of
B2XP/DB2XP. The reference is
CALL B2XP (NGROUP, NI, X, TITLE, VKSP)

The additional argument is

WKSP — Workspace of lengtNI (1) + ... +NI (NGROUP). (Input)
The firstNI (1) positions contain the sorted data from the firgtl)
positions ofX. The nexiNI (2) positions contain sorted data from the
nextNl (2) positions ofX, and so on.

2. Informational error
Type Code
3 5 TI TLE is too long to fit into the page width determined
by the routine?GOPT. TI TLE is truncated from the
right side.
3. TI TLE is centered and placed at the top of the plot. The plot starts on a

new page and the default page width is 78. The user may change the
width by calling the routineGOPT (page 1263) in advance.

Algorithm

BOXP printsNGROUP boxplots. The minimum and maximumyoére printed.

The median of each data group is marked*jyahd the upper and lower

hinges by I'". The “H-spread” is the distance between the upper and lower

hinges. The observation farthest from the median that still remains within one step
(1.5 H-spread) from each hinge also is marked by “+". The values in the second
step (between 1.5 and 3 H-spreads from the hinges) are marked by th&letter “
and the values beyond the second step are markext .t§ there are fewer than

five data points, each data point is plotted with & If multiple data points

occur at positions marke&™ or “0’, the number of multiple points
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is noted. More information on boxplots can be found in Chapter 2 of Chambers et
al. (1983).

Example

This example prints boxplots of three batches of data containing 5, 16 and 7
observations, respectively.

NGROUP
( NGROUP=3)

NI ( NGROUP)
X(28)
BOXP, PAGE

1=1,5)/7., 9., 3., 1., 1./
| =6,21)/25., 0., 1., 0., 5., 4., 3., 5., 5., 5., 5.,
., 25., 15., 9./
,1=22,28)/10., 15., 20., 25., 2., 9., 12./
Set page wi dth.

),1=1,3)/5, 16, 7/

(-1, 70)

CALL BOXP (NGROUP, NI, X, 'Plot of BOXP’)

| NTEGER
PARAMETER
C
| NTEGER
REAL
EXTERNAL
C
DATA (NI (I
DATA (X(1)
DATA (X(1)
& 5, 5
DATA (X(1)
C
CALL PAGE
C
END
Plot
X X X X
2
|-mmmmem [
EE—— [ F—
|-mmmem [
S — |
o
0.0

Output
of BOXP
(0] X
2

[-mmmemmmmmmeeeeee [

* [ — +
[-mmmemmmmmmeeeeee [

Forree s +

125 25.0

STMLP/DSTMLP (Single/Double precision)

Print a stem-and-leaf plot.

Usage
CALL STMLP (NOBS, X, UNIT, TITLE)

Arguments

NOBS — Number of observations. (Input)
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X —Array of lengthNOBS containing the data. (Input)

UNIT — Size of the increment on the stem. (Input)

If UNI T is set so small that the length of the stem is more than 603ids?

will use aUNI T such that the stem will be no longer than 60 lines. However, if
UNI T is a negative integesTM_P will use the absolute value ONI T, even if the
stem would become very long. A common valudJdrT is 10.

TITLE — CHARACTER string containing the plot title. (Input)

Comments
1. Automatic workspace usage is

STMLP  NOBS + MAXW D units, or
DSTMLP 2 * NOBS + MAXW D units.

Workspace may be explicitly provided, if desired, by use of
S2M_P/DS2MLP. The reference is

CALL S2MLP (NOBS, X, UNIT, TITLE, MAXWD, WK, WK)
The additional arguments are as follows:

MAXWID — Page width. (Input)
MAXW D = 78 wherSTMLP is called.

WK — Work vector of lengtivVAXw D.

WK — Vector of lengtiNOBS.  (Output)
VK contains the sorted data from

2. Informational error
Type Code
3 4 TI TLE is too long to fit into the page width determined
by the routine?GOPT. TI TLE is truncated from the
right side.
3. Default page width is 78. The user may change it by calling the routine

PGOPT (page 1263) in advance.

Algorithm

RoutineSTM_P prints a stem-and-leaf display. The user can specify that the plot
be longer than one page, but the default maximum is 60 lines. A plus sign (+) at
the end of a line indicates that there are too many data points to fit within the
width specifications. A scale marked in units of 10 is printed below the stemand-
leaf display.

Example

This example prints a stem-and-leaf plot consisting of 27 data points ranging
from -21.8 to 106.5.

| NTEGER NOBS
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( NOBS=27)

UNI T, X(NOBS)
STMLP

DATA X/ 6.0, 106.5, 34.0, 88.1, 89.0, 0.3, 0.7, 4.0, 4.0, 5.0,

62.8, 99.0, 4.0, 15.0, 76.0, 7.6, 101.5, 33.0, 91.0,
-6.3, -21.8, 0.0, 8.99, 5.5 6.9

CALL STMLP (NOBS, X, UNIT, 'Stem and leaf plot’)

PARAMETER
C
REAL
EXTERNAL
C
& 56. 0,
& 91.0,
C
UNIT = 10.
C

END

Output

Stem and leaf plot

Unit=1.000000

For example: 1 2 represents  12.00000

22
-1
-06

0 001444566789

15
334

8 89
9119
10 27

CDFP/DCDFP (Single/Double precision)

Print a sample cumulative distribution function (CDF), atheoretical CDF, and
confidence band information.

Usage
CALL CDFP (CDF, NOBS, X, N12, N95, IPRINT)

Arguments

CDF — User-suppliedrUNCTI ON to compute the cumulative distribution
function. The form i<DF(P), where
P — Sample point. (Input)
CDF — Theoretical probability at the poirtor integral of the
probability density function at the poiAt (Output)
CDF must be declareBXTERNAL in the calling program.

NOBS — Number of observations. (Input)
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X —Vector of lengtiNOBS containing the sample. (Input)

N12 —Confidence band option. (Input)

If N12 = 0, then no confidence bands are printediLlf = 1, then positive or
upper one-sided confidence band information is printedi2f= -1, then
negative or lower one-sided confidence band information is printsgi2 £ 2,
then two-sided confidence band information is printed.

N95 —Confidence band option. (Input)
If N95 = 95, the 95-percent band is desired. Otherwise, the 99-percent band is
desired.

IPRINT — Print option. (Input)

If 1 PRI NT = 1, thenCDFP prints the sample CDF, the theoretical CDF, and the
confidence band on the CDF.IIPRI NT = 0, then the above information will not
be printed.

Comments

1. Automatic workspace usage is

CDFP  5* NOBS units, or
DCDFP 10* NOBS units.

Workspace may be explicitly provided, if desired, by use of
C2FP/DC2FP. The reference is

CALL C2FP (CDF, NOBS, X, N12, N95, IPRINT, WKX, WK)
The additional arguments are as follows:

WKX — Vector of lengtiNOBS containing the sorted datan
ascending order. (Output)

WK — Vector of length 4 NOBS containing confidence band values.
(Output)

VK may be dimensioned*3NOBS instead of 4 NOBS for a lower or
upper confidence band.

Note that sampl€DFs are step functions.
Confidence bands are plotted around the sacipe

Output is written to the unit specified by the routiMaCH (page 1334).

o~ LD

Printing starts on a new page with default page width 78 columns and
default page length 60 rows. The user may change these values by
calling the routind®GOPT (page 1263) in advance.

Algorithm

Whenl PRI NT = 1, CDFP prints the sample cumulative distribution function
(CDF), the theoretical CDF, and confidence bands on the CDF. The theoretical
CDF will be plotted with or without the confidence band information. The
sample CDF is calculated. The theoretical CDF is calculated by calling the user
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supplied FUNCTI ON subprogram CDF. Asymptotic critical values are used (from
the Smirnov tables) for confidence interval calculations.

Example

This example prints and plots the sample CDF, the theoretical CDF, and the two-
sided 95 percent band information using 70 observations. Routines RNSET

(page 1166) and RNUN (page 1171) are called to generate these uniform (0, 1)
random numbers.

INTEGER | SEED, N12, N95, NOBS, |PRINT
PARAMETER  ( NOBS=70)
REAL CDF, X(NOBS)

EXTERNAL CDF, CDFP, PGOPT, RNSET, RNUN

| SEED = 123457

IPRINT = 0

Two- si ded confi dence band opti on.
N12 = 2

95- percent band opti on.
N95 = 95

Set page wi dth and | ength.
CALL PGOPT (-1, 78)
CALL PGOPT (-2, 40)
Initialize the seed.
CALL RNSET (| SEED)
Gener at e pseudo-random nunbers from
a uniform (0,1) distribution.
CALL RNUN (NOBS, X)
Pl ot
CALL CDFP (CDF, NOBS, X, N12, N95, |PRI NT)
END

REAL FUNCTI ON CDF (X)
REAL X

CDF = X
RETURN
END
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Output

Cunul ati ve Sanple and Theoretical CDFs
S S SR ORI v ¥ 2 S 1\V/ \V/
0.95 + 44 M+
44 MM
44 4 2ML .
44 4 22 1 33
0.80 + 44 2 11 33+
4 4 22 1 33 3.
4 22 1 11 33
P 44 211 3 .
r 0.65 + 4 4 2 1 33 +
0 4 22 11 3
b 4 22 11 33
a 44 4 2 11 33 .
b 0.50 + 4 4 22 11 33 +
i 4 4 221 1 33
| 4 4 11 33
i 444 2M 11 33 .
t 0.35 + 4 4 21 33 +
y 44 1 M 333
44 1 MM 33
. 4 112 33 .
0.20 + 4 122 33 +
4 M 2 33 3
11M 33
o1l we 33 .
0.05 + W 33 +
+MMB:3333: 3: ;s
0.0 0.3 0.6 0.9
Sanpl e Val ues
Sanple COF =1 Theoretical CDF = 2
Confi dence bands = 3 and 4

CDF2P/DCDF2P (Single/Double precision)

Print aplot of two sample cumulative distribution functions

Usage

CALL CDF2P (NOBS1, NOBS2, X)

Arguments
NOBS1 — Size of sample one. (Input)
NOBS2 — Size of sample two. (Input)

X — Vector of lengtiNOBS1 + NOBS2. (Input)
X contains sample one followed by sample two.
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10

| NTEGER
REAL
EXTERNAL

Comments
1 Automatic workspace usage is

CDF2P 4 * (NOBS1 + NOBS2) units, or
DCDF2P 7 * (NOBS1 + NOBS2) units.

Workspace may be explicitly provided, if desired, by use of
C2F2P/DC2F2P. Thereferenceis

CALL C2F2P (NOBS1, NOBS2, X, WK, |VK)
The additional arguments are as follows:

WK — Work vector of length 3 (NOBS1 + NOBS2).
IWK — Work vector of lengtiNOBS1 + NOBS2.

2. Printing starts on a new page with default page width 78 and default
page length 60. The user may change page width and length by calling
the routinePGOPT (page 1263) in advance.

Algorithm

RoutineCDF2P plots two sample cumulative probability distribution functions
(CDFs). Two samples are first merged and then sorted. The cumulative
distribution functions are then calculated. On the plots, the characters “1” and “2”
indicate the first and second samples, respectively, and the chardidteli¢ates
multiple points.

Example

The first sample consists of pseudo-random numbers from a uniform (0, 1)
distribution. Routine®NSET (page 1166) anaNUN (page 1171) are used to
generate this sample. The second sample consists of points of the standard normal
(Gaussian) distribution function generated by the roN@RDF (page 1122).

|

ANORDF, VAL, X(100)

ANORDF, CDF2P, PGOPT, RNSET, RNUN

Initialize the seed.

CALL RNSET (1234567)

Gener at e pseudo-random nunbers from
a uniform (0,1) distribution.

CALL RNUN (50, X)
Second sanpl e consists of 50 points of
the std normal distribution function.
VAL = 0.
DO 10 1=1, 50
VAL = VAL + .02
X(1+50) = ANORDF( VAL)
CONTI NUE
Set page wi dth and | ength.
CALL PGOPT (-1, 78)
CALL PGOPT (-2, 40)
CALL CDF2P (50, 50, X)
END
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Output
Cunul ative Sanple Distribution Functions

L lliiiiiiAliiiiiiiiiiiiiiAriiiiiiiiiii22:2422:M
.95 2 1+
22 11
211
. 2111 .
. 80 1 +
Y/
1ime
. 11 2
. 65 111 2 +
11111 22
1 11111 22
. 1 2
.50 1 2 +
11 22
11 2
. 1 22
.35 1 1 2 +
1 2
11 22
. 11 22
.20 1 2 +
1 2
1 2
o1 22 .
.05 +1 1 22 +
MR: 22::222: 2222 :+22:2222: . : 2. .+ oo iH
0.0 0.3 0.6 0.9

Sanpl e val ues
Sanple 1 =1 Sanple 2 = 2

PROBP/DPROBP (Single/Double precision)

Print a probability plot.

Usage
CALL PROBP (NOBS, N1, N2, X, |DIST)

Arguments
NOBS — Total number of observations in uncensored sample. (Input)

N1 — The rank number of the smallest observation in the saxnfleanked in

the complete sample. (Input)

In other words, the number of observations that have been censored from below is
N1 - 1.

N2 — The rank number of the largest observation in the saxpfileanked in
the complete sample. (Input)
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In other words, the number of observations that have been censored from aboveis
NOBS — N2.

X — {Vector of lengthN2 = N1 + 1. (Input)
X contains the data, possibly a censored data set from a complete sample of size
NOBS.

IDIST — Distribution option. (Input)

I DI ST = 1, normal distribution.

I DI ST = 2, lognormal distribution.

I DI ST = 3, half-normal distribution.

| DI ST = 4, exponential distribution.

I DI ST = 5, Weibull distribution.

| DI ST = 6, extreme value distribution.

Comments

1. Automatic workspace usage is

PROBP 2 * NOBS units, or
DPROBP 4 * NOBS units.

Workspace may be explicitly provided, if desired, by use of
P20BP/DP20BP. The reference is

CALL P20BP (NOBS, N1, N2, X, ID ST, M, M, W)

The additional arguments are as follows:

M1 — Rank of the smallest observation actually used. (Output)
M2 — Rank of the largest observation actually used. (output)
WK — Work space of length 2 NOBS.

2. Informational error
Type Code
3 7 It is necessary to delete some items from the plotting
because those items do not satisfy properties of the
distribution.
3. NOBS must be greater than or equaN®d- N1 + 1. If there is no

censoring, then1 = 1 and\2 = NOBS.
Output is written to the unit specified by the routiMaCH (page 1334).
Printing starts on a new page with default page width 78. The user may
change it by calling the routir®OPT (page 1263) in advance.

Algorithm

RoutinePROBP sorts a data set and plots the observed values along the vertical
axis and the ranks along the horizontal axis. In the case of the lognormal and
Weibull distributions, the vertical axis has a log scale. The horizontal axis has
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| NTEGER

PARAMETER

| NTEGER

REAL

EXTERNAL

IDIST = 1

1
250

the appropriate cumulative distribution function scale. Let M = NOBS denote the
total number of observationsin an uncensored sample. For normal and lognormal
distributions, the horizontal plotting distance for the observation with rank | (out
of M) is proportional to the inverse normal cumulative distribution function
evaluated at (3* | — 1)/(3* M + 1). For the half-normal plot, the corresponding
horizontal distance is proportional to the inverse normal cumulative distribution
function evaluated at (3* M +3* | —1)/(6 * M + 1). For other plots, the
horizontal distances are proportional to the respective inverse cumulative
distribution functions evaluated at (I — .5)/M.

Let N, =N1 and N, = N2. In PROBP it is assumed that the N, — 1 smallest
observations and the M — N, largest observations have been censored. If there has
been no censoring, N, should be set to 1 and N, set to M. The smallest
observation is plotted against the expected value (or the approximated expected
value) of the N, -th order statistic from a sample of size M; the next smallest
observation is plotted asif it were the (N, + 1)-th sample order statistic, and so
on.

PROBP does not do any shifting of location of the observation in the data set. If
any observations fall outside of the range of the distribution (that is, if any
observations are nonpositive when the distribution specified is lognormal or
Weibull), those observations are censored and N; or N, is modified to reflect the
number censored. In this case an error message of type 3 is generated. A plot
which isastraight line provides evidence that the sample is from the distribution
specified.

Example

In this example, a sample of size 250 (artificially generated from a normal
distribution by routines RNSET, page 1166 and RNNOR, page 1208) is plotted by
PROBP against anormal distribution function. The generaly straight line
produced is an indication that the sample is from a normal distribution.

NOBS
( NOBS=250)

IDIST, NI, N2
X( NOBS)
PROBP, RNNOR, RNSET

No censoring

Initialize the seed

RNSET (123457)
RNNOR (N2, X)

PROBP (NOBS, N1, N2, X, |DIST)
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Output
Probability plot for norma

2.0 +

* k%

*

-2.5 4:::+::::+::
.01 .05 .10 .25 .50

Cunul ative Probability

WSO TSDO0oTQO
*
*

L S

di stribution
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PLOTP/DPLOTP (Single/Double precision)

Print a plot of up to 10 sets of points.

Usage
CALL PLOTP (NDATA, NFUN, X, A, LDA, |INC, RANGE, SYMBQOL,

XTI TLE, YTITLE, TITLE)
Arguments
NDATA — Number of independent variable data points. (Input)

NFUN — Number of sets of points. (Input)
NFUN must be less than or equal to 10.

X — Vector of lengtiNDATA containing the values of the independent variable.
(Input)

A — Matrix of dimensiorNDATA by NFUN containing the\FUN sets of dependent
variable values. (Input)

LDA — Leading dimension of exactly as specified in the dimension statement
of the calling program. (Input)

INC — Increment between elements of the data to be used. (Input)
PLOTP plotsX(1 + (I —1)* INC) for1 =1, 2,..., NDATA.

RANGE — Vector of length four specifying minimury maximunx, minimumy
and maximuny. (Input)

PLOTP will calculate the range of the axis if the minimum and maximum of that
range are equal.

SYMBOL — CHARACTER string of lengttNFUN.  (Input)
SYMBOL (I : 1) is the symbol used to plot function

XTITLE — CHARACTER string used to label theaxis. (Input)
YTITLE — CHARACTER string used to label theaxis. (Input)
TITLE — CHARACTER string used to label the plot. (Input)

Comments
1. Informational errors
Type Code
3 7 NFUN is greater than 10. Only the first 10 functions are
plotted.
3 8 TI TLE is too long.TI TLE is truncated from the right
side.
3 9 YTI TLE is too long.YTI TLE is truncated from the
right side.
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3 10 XTI TLE istoo long. XTI TLE istruncated from the
right side. The maximum number of characters
alowed depends on the page width and the page
length. See Comment 5 below for more information.

YTI TLE and Tl TLE are automatically centered.

3. For multiple plots, the character Mis used if the same print position is
shared by two or more data sets.

4 Output is written to the unit specified by UVACH (page 1334).
Default page width is 78 and default page length is 60. They may be
changed by calling PGOPT (page 1263) in advance.

Algorithm

Routine PLOTP produces aline printer plot of up to ten sets of points
superimposed upon the same plot. A charadters‘printed to indicate multiple
points. The user may specify thandy-axis plot ranges and plotting symbols.
Plot width and length may be reset in advance by caBupT (page 1263).

Example

This example plots the sine and cosine functions fr@1b to + 3.5 and sets page
width and length to 78 and 40, respectively, by caliGgPT (page 1263) in

advance.
| NTEGER I, INC, LDA, NDATA, NFUN
REAL A(200,2), DELX, PI, RANGE(4), X(200)

CHARACTER SYMBOL* 2
INTRINSIC CGs, SIN
EXTERNAL CONST, PGOPT, PLOTP

DATA SYMBOL/'SC'/
DATA RANGE/-3.5, 3.5, -1.2, 1.2/

Pl =3.14159
NDATA =200
NFUN =2
LDA =200
INC =1
DELX = 2.*PI/199.
DO 10 I=1, 200
X(l) =-PI+ FLOAT(Il-1) * DELX
A(1,1) = SIN(X(1))
A(1,2) = COS(X(I)
10 CONTINUE
C Set page width and length
CALL PGOPT (-1, 78)
CALL PGOPT (-2, 40)
CALL PLOTP (NDATA, NFUN, X, A, LDA, INC, RANGE, SYMBOL,
& X AXIS', 'Y AXIS’,” C = COS, S =SIN)
C
END
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Output

. cC I CcC Sss SS .
0.8 + C I C ss SS +
C I M5 SS
C I SSC SS
CcC I SS CC SS
. cC I S CC S
0.4 + C I S C S +
C I SS C SS
Y cC IS CcC S
C IS C S
A C SS C SS
X 0.0 +--S---------- CC--mmmmmnm- O R CC-mmmmmmm-- S--+
| SS CcC SS cC
S S C S| C
S cC S| CcC
. SS C SS | C .
-0.4 + S C S | C +
S CC S | cC
SS CC SS | cC
SSC SS I C
. %) SS I C
-0.8 + C SS SS I C +
CcC SS SS I cC
ccce SSSSSSSS I ccce
C I C
I
-1.2 e T
-3 -1 1 3
X AXI'S

TREEP/DTREEP (Single/Double precision)

Print abinary tree.

Usage

CALL TREEP (NODE, |CLSON, |CRSON, | METH, CLEVEL, | ROOT,
NSCALE, NFILL, SCALE, NODENM

Arguments

NODE — Initial number of observations or nodes. (Input)
NODE must be greater than 2.

| CLSON — Vector of lengthNODE - 1 containing the left son nodes. (Input)
Node numbeNCODE + K has left son given byCLSON(K) fork =1, ...,
NODE - 1.
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| CRSON — Vector of lengthNCDE — 1 containing the right son nodes. (Input)
Node numbeNODE + K has right son given HyCRSON(K) forK =1, ...,
NODE — 1.

IMETH — Method to be used for printing the binary tree. (Input)

| METH Method

1 Horizontal tree
2 Horizontall-tree
3 Vertical tree

CLEVEL — Vector of lengthNODE - 1 containing the level used in merging or
splitting the son nodes. (Input)

CLEVEL(K) specifies the scale to be used on the vertidadE{H= 1 or 2) or
horizontal ( METH = 3) axis for nod&ODE + K, forK =1, 2,..., NODE — 1.

IROOT — Subtree specification. (Input)

I ROCT specifies the root node of the subtree to be printed. If

| ROOT = 2* NODE — 1 (or zero for the default), the entire tree is printéRDOT
must be in the rangdODE + 1 to 2* NODE - 1.

NSCALE — Number of horizontal slices of tree. (Input)
NSCALE must be positive.

NFILL — The number of filler lines printed between horizontal or vertical node
lines. (Input)
NFI LL = 1 is usually sufficient\FI LL must be nonnegative.

SCALE — Vector of length two giving the interval on tBeEVEL axis which

should be used to plot the tree. (Input)

SCALE(1) is the location for printing the terminal nodes. The root node is printed
atSCALE(2).

NODENM — CHARACTER* (*) vector of lengtitNODE containing the terminal
node labels. (Input)

If terminal node labels are to be 1, 2, 3, thenNODENM1) should be
“DEFAULT” and the remaining elementsN@DENMare not used. The length of
each label i34 whereMis determined by the user.

Comments
1. Automatic workspace usage is

TREEP 5* | ROOT + 2 units, or
DTREEP 6 * | ROOT + 3 units.

Workspace may be explicitly provided, if desired, by use of
T2EEP/DT2EEP. The reference is
CALL T2EEP (NODE, |CLSON, |CRSON, | METH, CLEVEL,

| ROOT, NSCALE, NFILL, SCALE, NODENM
| DTREE, | STREE, | OTREE, | NTREE, TLTREE)

The additional arguments are as follows:
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IDTREE — Work vector of length ROOT. | DTREE is used to store the
distance of each node from the vertical axis in vertical tree.

| STREE — Work vector of length ROOT used to store all the nodes.
| ROCT is the first element of the array.

|OTREE — Work vector of length ROOT + 1 used to store the index of
each node asLTREE is sorted.

INTREE — Work vector of length ROOT.

TLTREE — Work vector of length ROOT + 1 used to store the level of
each node in descending order in a vertical tree. It is used to store the
distance of each node from the top of the horizontal line in ascending
order in a horizontal tree.

2. Printing starts on a new page with default page width 78. The user may
change it by calling the routir®OPT (page 1263) in advance.

Algorithm

RoutineTREEP prints a binary tree which may represent results of hierarchical
clustering algorithm such as the rout@ie NK.

Let M = NODE indicate the number of nodes. A binary tree is compositl of
terminal nodes anlll — 1 nonterminal nodes uniquely numbered MtandM +
1toM + (M - 1), respectively. Each nonterminal node joins together two son
nodes which may or may not be terminal. Nonterminal nbtde« are printed
on the vertical scale intervag[, S)] at the level given i, forK =1, 2,..., M -
1, whereS = SCALE(1), S, = SCALE(2), andCy = CLEVEL(K).

Example

INTEGER  NCDE
PARAVETER  ( NODE=5)

c
I NTEGER | CLSON( NODE- 1), | CRSON(NODE-1), |METH, | ROOT, NFILL,
& NOUT, NSCALE
REAL CLEVEL( NODE- 1), SCALE(?2)
CHARACTER  NODENM NODE) * 7
EXTERNAL ~ PGOPT, TREEP, UMACH
C

DATA | CLSON 5, 6, 4, 7/
DATA ICRSOV 3, 1, 2, 8/
DATA NODENM/DEFAULT, ", ", ", '/
DATA CLEVEL/1,, 2., 3., 4./
DATA SCALE/0., 5./

C Set page width
CALL PGOPT (-1, 70)
IROOT =0
NSCALE=1
NFILL =1

C Horizontal tree
IMETH =1

CALL TREEP (NODE, ICLSON, ICRSON, IMETH, CLEVEL, IROOT, NSCALE,
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& NFI LL, SCALE, NODENM)
CALL UMACH (2, NOUT)
VRl TE ( NOUT, 99999)

99999 FORMAT (1X, ////11)

C Hori zontal |-tree
| METH = 2
CALL TREEP (NODE, |CLSON, |CRSON, | METH, CLEVEL, |ROOT, NSCALE,
& NFI LL, SCALE, NODENM
C
END
Output

Simlarity range from O. to 5. 000000

o L o O e
5*************

*
6*************
* *
3************* *
*
7**************************
* *
1************************** *
*
9**************
*
4*************************************** *
* *
8*************
*

2***************************************

o

Simlarity range from O. to 5. 000000

o
5************6************7*************************9**************

* * *
3************* *

*

*

1**************************

*

*

4**************************************8*************
*

2***************************************

L O o
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Chapter 17: Probability Distribution
Functions and Inverses

Routines

17.1. Discrete Random Variables: Distribution Functions and Probability
Functions
Binomial distribution function ............ccoeeeiiiiiiiiie e, BINDF 1108
Binomial probability ... BINPR 1110
Hypergeometric distribution function...........ccccceeeeiiiiiiiiennnnn. HYPDF 1111
Hypergeometric probability ..........cccccoiiiiiiiiiiiiii e HYPPR 1113
Poisson distribution fuNCtion ...........coceeeiiiiiiiiiie e, POIDF 1114
Poisson probability ..o POIPR 1115

17.2. Continuous Random Variables: Distribution Functions and Their
Inverses
Kolmogorov-Smirnov one-sided
statistic distribution funCtion ...........cccoooviiiiiiiiiieeee, AKS1DF 1117
Kolmogorov-Smirnov two-sided
statistic distribution funCtion ...........coooeviiiiiiiiiii e, AKS2DF 1120
Normal (Gaussian) distribution function...............ccccceeee. ANORDF 1122
Inverse of the normal distribution function .............c.ccouue.... ANORIN 1124
Beta distribution fUNCLiON.........ooevveiiiieeee e, BETDF 1125
Inverse of the beta distribution function .............ccceevvvvvenneee. BETIN 1127
Bivariate normal distribution function...........cccoevvvveveeeennnnn. BNRDF 1128
Chi-squared distribution function .............ccccccceeiiiiiiiieneeenn. CHIDF 1129
Inverse of the chi-squared distribution function .................... CHIIN 1132
Noncentral chi-squared distribution function....................... CSNDF 1133
Inverse of the noncentral chi-squared
distribution fUNCHON .....ccovviiiiee e CSNIN 1136
F distribution fUNCHON .......ccvveiiieee e FDF 1137
Inverse of the F distribution function ............coveeviiiiiieiiiieeeeeennn. FIN 1139
Gamma distribution fuNCHioN ...........coeveiviiiiiiee e GAMDF 1140
Inverse of the gamma distribution function ...............ccccceee.. GAMIN 1142
Student’s tdistribution fUNCHON ......cooeiiiiiiiiiee e TDF 1143
Inverse of the Student’s t distribution function ..............cccceceoee. TIN 1145
Noncentral Student’s t distribution function..................eee. TNDF 1146
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Inverse of the noncentral Student’s t distribution function....... TNIN 1149

17.3. General Continuous Random Variables

Distribution function given ordinates of density ..................... GCDF 1150
Inverse of distribution function given ordinates of density...... GCIN 1152
Inverse of distribution function given subprogram................ GFNIN 1155

Usage Notes

Comments

Definitions and discussions of the terms basic to this chapter can be found in
Johnson and Kotz (1969, 1970a, 1970b). These are also good references for the
specific distributions.

In order to keep the calling sequences simple, whenever possible, the

subprograms described in this chapter are written for standard forms of statistical
distributions. Hence, the number of parameters for any given distribution may be

fewer than the number often associated with the distribution. For example, while
agammadistribution is often characterized by two parameters (or even athird,
“location”), there is only one parameter that is necessary, the “shape”. The
“scale” parameter can be used to scale the variable to the standard gamma
distribution. Also, the functions relating to the normal distribytkNORDF (page

1122) ard ANORI N (page 1124), are for a normal distribution with mean equal to
zero and variance equal to one. For other means and variances, it is very easy for
the user to standardize the variables by subtracting the mean and dividing by the
square root of the variance.

The distribution function for the (real, single-valued) random vargKlis the
function F defined for all relbx by

F(X) = ProfX < x)

where Profi) denotes the probability of an event. The distribution function is
often called theumulative distribution function (CDF).

For distributions with finite ranges, such as the beta distribution, the CDF is O for
values less than the left endpoint and 1 for values greater than the right endpoint.
The subprograms described in this chapter return the correct values for the
distribution functions when values outside of the range of the random variable are
input, but warning error conditions are set in these cases.

Discrete Random Variables

For discrete distributions, the function giving the probability that the random
variable takes on specific values is calleglgiobability function, defined by

p(x) = ProldX = x)

The “PR’” routines described in this chapter evaluate probability functions.
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The CDF for a discrete random variableis

H@=%NH

where A isthe set such that k < x. The ‘DF” routines in this chapter evaluate
cumulative distribution functions. Since the distribution function is a step
function, its inverse does not exist uniquely.

1.00 — —

0.75 7

N DF
0.50

Probability

PR

0.25

0.00 ! | |

Figure 17-1 Discrete Random Variable

In the plot above, a routine lik& NPR (page 1110) in this chapter evaluates the
individual probability, giverx. A routine likeBl NDF (page 1108) would evaluate
the sum of the probabilities up to and including the probabilix at

Continuous Distributions

For continuous distributions, a probability function, as defined above, would not
be useful because the probability of any given point is 0. For such distributions,
the useful analog is theobability density function (PDF). The integral of the

PDF is the probability over the interval, if the continuous random varkabbes
PDFf, then

Prob(a< X < b) = | 2 f(x)dx

The relationship between the CDF and the PDF is
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F(x) =] %, f(t)dt
as shown in Figure 17-2.

0.5 —

02+  fo

—~
=
N

Density

0.1 4

Probability

0.0 -

Figure 17-2 Probability Density Function

The “DF” routines described in this chapter evaluate cumulative distribution
functions.

For (absolutely) continuous distributions, the valu&@j uniquely determines
within the support of the distribution. TheN’ routines described in this chapter
compute the inverses of the distribution functions, that is, dgigen(called ‘P”

for “probability”), a routine such aBETI N (page 1127) computes The inverses
are defined only over the open interval (0,1).
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Figure 17-3 Cumulative Probability Distribution Function

There are three routines described in this chapter that deal with general
continuous distribution functions. The routine GCDF (page 1150) computes a
distribution function using values of the density function, and the routine GCI N
(page 1152) computes the inverse. These two routines may be useful when the
user has an estimate of a probability density, as perhaps computed by the routine
DESPL (page 1040) or DESKN (page 1044), or computed from a frequency
polygon. The routine GFNI N (page 1155) computes the inverse of adistribution
function that is specified asa FORTRAN function.

Additional Comments

Whenever a probability close to 1.0 results from a call to a distribution function
or isto beinput to an inverse function, it is often impossible to achieve good
accuracy because of the nature of the representation of numeric values. In this
case, it may be better to work with the complementary distribution function (one
minus the distribution function). If the distribution is symmetric about some point
(asthe normal distribution, for example) or is reflective about some point (as the
beta distribution, for example), the complementary distribution function has a
simple relationship with the distribution function. For example, to evaluate the
standard normal distribution at 4.0, using ANORI N (page 1124) directly, the result
to six placesis 0.999968. Only two of those digits are really useful, however. A
more useful result may be 1.000000 minus this value, which can be
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obtained to six significant figures as 3.16713E-05 by evaluating ANORI N at

-4.0. For the normal distribution, the two values are related by

d(x) = 1 — P(—x), where ®(0lis the normal distribution function. Another
example is the beta distribution with parameters 2 and 10. This distribution is
skewed to the right, so evaluating BETDF (page 1125) at 0.7, we obtain 0.999953.
A more precise result is obtained by evaluating BETDF with parameters 10 and 2
at 0.3. Thisyields 4.72392E-5. (In both of these examples, it iswise not to trust
thelast digit.)

Many of the algorithms used by routines in this chapter are discussed by
Abramowitz and Stegun (1964). The a gorithms make use of various expansions
and recursive relationships and often use different methods in different regions.

Cumulative distribution functions are defined for all real arguments, however, if

the input to one of the distribution functionsin this chapter is outside the range of

the random variable, an error of Type 1 isissued, and the output is set to zero or

one, as appropriate. A Type 1 error is of lowest severity, a “note”, and, by
default, no printing or stopping of the program occurs. The other common errors
that occur in the routines of this chapter are Type 2, “alert”, for a function value
being set to zero due to underflow, Type 3, “warning”, for considerable loss of
accuracy in the result returned, and Type 5, “terminal”, for incorrect and/or
inconsistent input, complete loss of accuracy in the result returned, or inability to
represent the result (because of overflow). When a Type 5 error occurs, the result
is set to NaN (not a number, also used as a missing value code, obtained by
routineAMACH(6), page 1334). (See the section “User Errors” in the Reference
Material.)

BINDF/DBINDF (Single/Double precision)

Evaluate the binomial distribution function.

Usage
BINDF(K, N, P)

Arguments

K — Argument for which the binomial distribution function is to be evaluated.
(Input)

N — Number of Bernoulli trials. (Input)

P — Probability of success on each trial. (Input)

BINDF — Function value, the probability that a binomial random variable takes
a value less than or equalko (Output)

Bl NDF is the probability thai or fewer successes occumMiindependent

Bernoulli trials, each of which hasPgrobability of success.
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Comments

Informational errors

Type Code
1 3 Theinput argument, K, isless than zero.
1 4 The input argument, K, is greater than the number of Bernoulli
trials, N.
Algorithm

Function BI NDF evaluates the distribution function of abinomia random variable
with parameters n and p. It does this by summing probabilities of the random
variable taking on the specific values in its range. These probabilities are
computed by the recursive relationship

n+1-j .
=P p = -y

jd-p)

To avoid the possibility of underflow, the probabilities are computed forward
from O, if kis not greater than n times p, and are computed backward from n,
otherwise. The smallest positive machine number, €, is used as the starting value

Pr(X=]

for summing the probabilities, which are rescaled by (1 — p) "¢ if forward

computation is performed and by p"¢ if backward computation is done. For the
special caseof p=0, BI NDFissetto 1; and for the case p = 1, BI NDF isset to 1 if
k =n and to O otherwise.

Example

Suppose X isabinomial random variable withn =5 and p = 0.95. In this
example, we find the probability that X isless than or equal to 3.
| NTEGER K, N, NOUT

REAL Bl NDF, P, PR
EXTERNAL Bl NDF, UVACH

C
CALL UMACH (2, NOUT)
K =3
N =5
P =0.95
PR = BI NDF(K, N, P)

VWRI TE ( NOUT, 99999) PR
99999 FORMAT (' The probability that X is less than or equal to 3 is”’
& ,F6.4)
END

Output
The probability that X is less than or equal to 3 is 0.0226
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BINPR/DBINPR (Single/Double precision)

Evaluate the binomial probability function.

Usage
BINPR(K, N, P)

Arguments

K — Argument for which the binomial probability function is to be evaluated.
(Input)

N — Number of Bernoulli trials. (Input)

P — Probability of success on each trial. (Input)

BINPR Function value, the probability that a binomial random variable takes a
value equal t&. (Output)

Comments
Informational errors
Type Code
1 3 The input argumeny, is less than zero.
1 4 The input argumerx, is greater than the number of Bernoulli
trials, N.
Algorithm

The functionBl NPR evaluates the probability that a binomial random variable
with parameters andp takes on the value It does this by computing
probabilities of the random variable taking on the values in its range less than (or
the values greater thak) These probabilities are computed by the recursive
relationship
=0 DP < g

ja-p
To avoid the possibility of underflow, the probabilities are computed forward
from O, ifk is not greater than timesp, and are computed backward from
otherwise. The smallest positive machine nundyes, used as the starting value

Pr(X =)

for computing the probabilities, which are rescaled by )¢ if forward
computation is performed and pye if backward computation is done.

For the special case pf= 0,BI NPRis set to 0 ik is greater than 0 and to 1
otherwise; and for the cape= 1,BI NPRis set to 0 ik is less tham and to 1
otherwise.
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Figure 17-4 Binomial Probability Function

Example

Suppose X isabinomial random variable withn =5 and p = 0.95. In this
example, we find the probability that X is equal to 3.
| NTEGER K, N, NOUT

REAL BI NPR, P, PR
EXTERNAL Bl NPR, UVACH

C
CALL UMACH (2, NOUT)
K =3
N =5
P =0.95
PR = BI NPR(K, N, P)

VWRI TE (NOUT, 99999) PR
99999 FORMAT (' The probability that X is equal to 3 is ', F6.4)
END

Output
The probability that X is equal to 3 is 0.0214

HYPDF/DHYPDF (Single/Double precision)

Evaluate the hypergeometric distribution function.
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Usage
HYPDF(K, N, M L)

Arguments

K — Argument for which the hypergeometric distribution function is to be
evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or equal to

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equaNlandm

HYPDF — Function value, the probability that a hypergeometric random
variable takes a value less than or equ#l to(Output)

HYPDF is the probability thak or fewer defectives occur in a sample of $ize
drawn from a lot of size that contains/defectives.

Comments
Informational errors
Type Code
1 5 The input argumeny, is less than zero.
1 6 The input argumenx, is greater than the sample size.
Algorithm

The functionHYPDF evaluates the distribution function of a hypergeometric
random variable with parameterd, andm. The hypergeometric random
variableX can be thought of as the number of items of a given type in a random
sample of siza that is drawn without replacement from a population oflsize
containingm items of this type. The probability function is

(F)(=7)
(n)

wherei = max(0,n—1 + m).

Pr(X=j)= for j =i,i+1i+2,...min(n,m)

If kis greater than or equal it@nd less than or equal to min(), HYPDF sums

the terms in this expression fogoing fromi up tok. Otherwise HYPDF returns O
or 1, as appropriate. So, as to avoid rounding in the accumuletiBDE

performs the summation differently depending on whether drisajreater than
the mode of the distribution, which is the greatest integer less than or equal to
(m+ 1+ 1)1 +2).
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| NTEGER
REAL
EXTERNAL

Example

Suppose X is a hypergeometric random variable with n = 100, | = 1000, and
m = 70. In this example, we evaluate the distribution function at 7.

K, L, M N NOUT

DF, HYPDF

HYPDF, UVACH

CALL UMACH (2, NOUT)

7
100
1000
70

ggl—zx

HYPDF(K, N, M L)

VWRI TE ( NOUT, 99999) DF
99999 FORMAT (' The probability that X is less than or equal to 7 is”’

& F6.4)
END

Output

The probability that X is less than or equal to 7 is 0.5995

HYPPR/DHYPPR (Single/Double precision)

Evaluate the hypergeometric probability function.

Usage
HYPPR(K, N, M, L)

Arguments

K — Argument for which the hypergeometric probability function is to be
evaluated. (Input)

N — Sample size. (Input)
N must be greater than zero and greater than or equal to

M — Number of defectives in the lot. (Input)

L — Lot size. (Input)
L must be greater than or equaNlandm

HYPPR — Function value, the probability that a hypergeometric random variable
takes a value equal 0 (Output)

HYPPR is the probability that exactly defectives occur in a sample of sike

drawn from a lot of size that contains/defectives.

Comments
Informational errors
Type Code
1 5 The input argumeny, is less than zero.
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1 6 The input argument, K, is greater than the sample size.

Algorithm

The function HYPPR eval uates the probability function of a hypergeometric
random variable with parametersn, |, and m. The hypergeometric random
variable X can be thought of as the number of items of agiven type in arandom
sample of size n that is drawn without replacement from a population of sizel
containing mitems of this type. The probability functionis

()(%)
()

wherei = max(0, n — | + m). HYPPR evaluates the expression using log gamma
functions.

Pr(X=k) = for k=1i,i+1i+2,...min(n,m)

Example

Suppose X is a hypergeometric random variable with n = 100, | = 1000, and
m = 70. In this example, we evaluate the probability function at 7.
| NTEGER K, L, M N NOUT

REAL HYPPR, PR
EXTERNAL HYPPR, UVACH

C
CALL UMACH (2, NOUT)
K =7
N = 100
L = 1000
M =70
PR = HYPPR(K, N, M L)

VWRI TE (NQUT, 99999) PR
99999 FORMAT (' The probability that X is equal to 7 is ’, F6.4)
END

Output
The probability that X is equal to 7 is 0.1628

POIDF/DPOIDF (Single/Double precision)

Evaluate the Poisson distribution function.

Usage
POIDF(K, THETA)
Arguments

K — Argument for which the Poisson distribution function is to be evaluated.
(Input)
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THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

POIDF — Function value, the probability that a Poisson random variable takes a
value less than or equalko (Output)

Comments
Informational error
Type Code
1 1 The input argumen, is less than zero.
Algorithm

The functionPO DF evaluates the distribution function of a Poisson random
variable with parametdHETA. THETA, which is the mean of the Poisson random
variable, must be positive. The probability function (viith THETA) is

f)=e’ 0%, forx=0,1,2,.

The individual terms are calculated from the tails of the distribution to the mode
of the distribution and summe®d DF uses the recursive relationship

f(x+ 1) =f(x)6/(x + 1), forx=0,1,2,...k-1,
with f(0) = e,

Example

SupposeX is a Poisson random variable wikr 10. In this example, we evaluate
the distribution function at 7.
| NTEGER K, NOUT

REAL DF, PO DF, THETA
EXTERNAL PO DF, UVACH

CALL UMACH (2, NOUT)
K 7

THETA = 10.0
DF PO DF( K, THETA)
WRI TE (NOUT, 99999) DF

99999 FORMAT (' The probability that X is less than or equal to ’,

'7is’, F6.4)

END

Output

The probability that X is less than or equal to 7 is 0.2202

POIPR/DPOIPR (Single/Double precision)

Evaluate the Poisson probability function.
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Usage
PO PR(K, THETA)

Arguments
K — Argument for which the Poisson distribution function is to be evaluated.
(Input)

THETA — Mean of the Poisson distribution. (Input)
THETA must be positive.

POIPR — Function value, the probability that a Poisson random variable takes a
value equal tek. (Output)

Comments
Informational error
Type Code
1 1 The input argumen, is less than zero.
Algorithm

The functionPO PR evaluates the probability function of a Poisson random
variable with parametdHETA. THETA, which is the mean of the Poisson random
variable, must be positive. The probability function (viith THETA) is

f(x) =e’ 0%k, fork=0,1,2,.

PQ PR evaluates this function directly, taking logarithms and using the log
gamma function.
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Figure 17-5 Poisson Probability Function
Example

Suppose X is a Poisson random variable with 8 = 10. In this example, we evaluate
the probability function at 7.
| NTEGER K, NOUT

REAL PO PR, PR, THETA
EXTERNAL PO PR, UVACH

C
CALL UMACH (2, NOUT)
K =7
THETA = 10.0
PR = PO PR(K, THETA)

VWRI TE (NOUT, 99999) PR
99999 FORMAT (' The probability that X is equal to 7 is ’, F6.4)
END

Output
The probability that X is equal to 7 is 0.0901

AKS1DF/DKS1DF (Single/Double precision)

Evaluate the distribution function of the one-sided Kolmogorov-Smirnov
goodness of fit D™ or D™ test statistic based on continuous data for one sample.
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Usage
AKS1DF( NOBS, D)

Arguments

NOBS — The total number of observations in the sample. (Input)

D — TheD" or D " test statistic. (Input)

Dis the maximum positive difference of the empirical cumulative distribution
function (CDF) minus the hypothetical CDF or the maximum positive difference
of the hypothetical CDF minus the empirical CDF.

AKSI1DF — The probability of a smalléd. (Output)

Comments
1. Automatic workspace usage is

AKS1DF 3* (NOBS + 1) units, or
DKS1DF 6 * (NOBS + 1) units.

Workspace may be explicitly provided, if desired, by use of
AK21DF/DK21DF. The reference is

AK2DF(NOBS, D, VK)
The additional argument is

WK — Work vector of length 3 NOBS + 3 if NOBS < 80. VK is not used
if NOBS is greater than 80.

2. Informational errors
Type Code
1 2 Since thB test statistic is less than zero, the
distribution function is zero .
1 3 Since thB test statistic is greater than one, the

distribution function is one @t

3. If NOBS < 80, then exact one-sided probabilities are computed. In this

case, on the order 6fBS’ operations are required. FeOBS > 80,
approximate one-sided probabilities are computed. These approximate
probabilities require very few computations.

4, An approximate two-sided probability for thes max D", D) statistic
can be computed as twice #hi€S1DF probability forD(minus one, if the
probability fromAKS1DF is greater than 0.5).

Algorithm

RoutineAKS1DF computes the cumulative distribution function (CDF) for the

one-sided Kolmogorov-Smirnov one-sampleor D™ statistic when the
theoretical CDF is strictly continuous. Letx) denote the theoretical
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distribution function, and let S,(x) denote the empirical distribution function
obtained from a sample of size NOBS. Then, the D” statistic is computed as

D* =SUp[F(x) - $,(x)]
while the one-sided D™ statistic is computed as

D™ = SUp[S,(x) ~ F(x)]

Exact probabilities are computed according to a method given by Conover (1980,
page 350) for sample sizes of 80 or less. For sample sizes greater than 80,
Smirnov’s asymptotic result is used, that is, the value of the CDF is taken as
1- exp(—2nd2), whered isD" or D™ (Kendall and Stuart, 1979, page 482). This
asymptotic expression is conservative (the value return@d$nDF is smaller
than the exact value, when the sample size exceeds 80).

Programming Notes

RoutineAKS1DF requires on the order oBS operations to compute the exact
probabilities, where an operation consists of taking ten or so logarithms. Because
S0 much computation is occurring within each “operati@dS1DF is much

slower than its two-sample counterpart, functB82DF (page 1120).

Example

In this example, the exact one-sided probabilities for the tabled valEsoof

D, given, for example, in Conover (1980, page 462), are computed. Tabled
values at the 10% level of significance are used as ing&IoDF for sample

sizes of 5 to 50 in increments of 5 (the last two tabled values are obtained using
the asymptotic critical values of

107/+/NOBS

The resulting probabilities should all be close to 0.90.

INTEGER |, NOBS, NOUT
REAL AKS1DF, DX(10)
EXTERNAL  AKSIDF, UMACH
C
DATA D/ 0. 447, 0.323, 0.266, 0.232, 0.208, 0.190, 0.177, 0. 165,
& 0.160, 0.151/
C
CALL UMACH (2, NOUT)
C
DO 10 =1, 10
NOBS = 5*|
C
WRI TE (NOUT, 99999) D(1), NOBS, AKSIDF(NOBS, D(1))
C

99999 FORMAT (’ One-sided Probability for D =’, F8.3, * with NOBS’
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& ,'=",12,"is’, F8.4)
10 CONTINUE
END

Output

One-sided Probability for D = 0.447 with NOBS = 5is 0.9000
One-sided Probability for D = 0.323 with NOBS = 10is 0.9006
One-sided Probability for D = 0.266 with NOBS = 15is 0.9002
One-sided Probability for D = 0.232 with NOBS =20 is 0.9009
One-sided Probability for D = 0.208 with NOBS = 25is 0.9002
One-sided Probability for D = 0.190 with NOBS =30is 0.8992
One-sided Probability for D= 0.177 with NOBS =35is 0.9011
One-sided Probability for D = 0.165 with NOBS =40 is 0.8987
One-sided Probability for D = 0.160 with NOBS =45 is 0.9105
One-sided Probability for D = 0.151 with NOBS =50is 0.9077

AKS2DF/DKS2DF (Single/Double precision)

Evaluate the distribution function of the Kolmogorov-Smirnov goodness of fit D
test statistic based on continuous data for two samples.

Usage
AKS2DF(NOBSX, NOBSY, D)

Arguments
NOBSX — The total number of observations in the first sample. (Input)
NOBSY — The total number of observations in the second sample. (Input)

D — TheDtest statistic. (Input)
Dis the maximum absolute difference between empirical cumulative distribution
functions (CDFs) of the two samples.

AKS2DF — The probability of a smalléd. (Output)

Comments
1. Automatic workspace usage is

AKS2DF max(NOBSX , NOBSY) + 1 units, or
DKS2DF 2 * maxfNOBSX , NOBSY) + 1 units.

Workspace may be explicitly provided, if desired, by use of
AK22DF/DK22DF. The reference is

AK22DF( NOBSX, NOBSY, D, WK)
The additional argument is
WK — Work vector of length maxOBSX, NOBSY) + 1.

2. Informational errors
Type Code
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1 2 Since the D test statistic is less than zero, then the
distribution functioniszero at D.

1 3 Since the D test statistic is greater than one, then the
distribution function isone at D.

Algorithm

Function AKS2DF computes the cumulative distribution function (CDF) for the
two-sided Kolmogorov-Smirnov two-sampleD statistic when the theoretical CDF
isstrictly continuous. Exact probabilities are computed according to a method
given by Kim and Jennrich (1973). Approximate asymptotic probabilities are
computed according to methods also given in this reference.

Let F,(X) and G,,,(X) denote the empirical distribution functions for the two
samples, based on n = NOBSX and m = NOBSY observations. Then, the D statistic
is computed as

D= S‘;I(p|Fn(X) - Gm(x)|

Programming Notes

Function AKS2DF requires on the order of NOBSX * NOBSY operations to compute
the exact probabilities, where an operation consists of an addition and a
multiplication. For NOBSX * NOBSY less than 10000, the exact probability is
computed. If thisis not the case, then the Smirnov approximation discussed by
Kim and Jennrich (1973) isused if the minimum of NOBSX and NOBSY is greater
than ten percent of the maximum of NOBSX and NOBSY, or if the minimum is
greater than 80. Otherwise, the Kolmogorov approximation discussed by Kim and
Jennrich (1973) is used.

Example

Function AKS2DF is used to compute the probability of asmaller D statistic for a
variety of sample sizes using values close to the 0.95 probability value.

INTEGER |, NOBSX(10), NOBSY(10), NOUT
REAL AKS2DF, DY 10)
EXTERNAL  AKS2DF, UMACH
c
DATA NOBSX/ 5, 20, 40, 70, 110, 200, 200, 200, 100, 100/
DATA NOBSY/ 10, 10, 10, 10, 10, 20, 40, 60, 80, 100/
DATA D/ 0.7, 0.55, 0.475, 0.4429, 0.4029, 0.2861, 0.2113, 0.1796,
& 0.18, 0.18/
c
CALL UMACH (2, NOUT)
DO 10 1=1, 10
WRI TE (NOUT, 99999) D(1), NOBSX(I), NOBSY(I),
& AKS2DF( NOBSX( 1), NOBSY(1), D(1))
c

99999 FORMAT (' Probability for D =", F5.3, " with NOBSX =", 13,
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& "and NOBSY =", 13, ’is’, F9.6, ")

10 CONTINUE
END

Output

Probability for D = 0.700 with NOBSX = 5 and NOBSY = 10is 0.980686.

Probability for D = 0.550 with NOBSX = 20 and NOBSY = 10is 0.987553.
Probability for D = 0.475 with NOBSX = 40 and NOBSY = 10is 0.972423.
Probability for D = 0.443 with NOBSX = 70 and NOBSY = 10is 0.961646.
Probability for D = 0.403 with NOBSX = 110 and NOBSY = 10is 0.928667.
Probability for D = 0.286 with NOBSX = 200 and NOBSY = 20 is 0.921126.
Probability for D = 0.211 with NOBSX = 200 and NOBSY = 40is 0.917110.
Probability for D = 0.180 with NOBSX = 200 and NOBSY = 60 is 0.914520.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 80 is 0.908185.
Probability for D = 0.180 with NOBSX = 100 and NOBSY = 100 is 0.946098.

ANORDF/DNORDF (Single/Double precision)

Evaluate the standard normal (Gaussian) distribution function.

Usage
ANORDF(X)

Arguments

X — Argument for which the normal distribution function is to be evaluated.
(Input)

ANORDF — Function value, the probability that a normal random variable takes
a value less than or equalXo (Output)

Algorithm

FunctionANORDF evaluates the distribution functio®, of a standard normal
(Gaussian) random variable, that is,

D(X) = x a2y

The value of the distribution function at the poins the probability that the
random variable takes a value less than or equal to

The standard normal distribution (for whiaNORDF is the distribution function)

has mean of 0 and variance of 1. The probability that a normal random variable
with mean and variane® is less thaly is given byANORDF evaluated aty(— p)/

o.

®(x) is evaluated by use of the complementary error function, erfc E(be
IMSL MATH/LIBRARY Special Functions). The relationship is:

D(X) = erfc(-x/ 2.0)/ 2
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Figure 17-6 Standard Normal Distribution Function

Example

Suppose X isanormal random variable with mean 100 and variance 225. In this
example, we find the probability that X isless than 90, and the probability that X

is between 105 and 110.
| NTEGER NOUT
REAL ANORDF, P, X1, X2

EXTERNAL  ANORDF, UMACH

CALL UMACH (2, NauT)
X1 = (90.0-100.0)/15.0
P = ANORDF( X1)
VRI TE (NOUT, 99998) P
99998 FORMAT (' The probability that X is less than 90 is ', F6.4)
X1 = (105.0-100.0)/15.0
X2 =(110.0-100.0)/15.0
P = ANORDF(X2) - ANORDF(X1)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that X is between 105 and 110 is’,
& F6.4)
END

Output

The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169
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ANORIN/DNORIN (Single/Double precision)

| NTEGER
REAL

EXTERNAL

Evaluate the inverse of the standard normal (Gaussian) distribution function.

Usage
ANORI N( P)

Arguments

P — Probability for which the inverse of the normal distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

ANORIN — Function value. (Output)
The probability that a standard normal random variable takes a value less than or
equal toANORI N is P.

Algorithm

FunctionANORI N evaluates the inverse of the distribution functibnof a
standard normal (Gaussian) random variable, thaN@Rl N(P) = o (p), where

®(x) = 2

1
e
\2TT
The value of the distribution function at the poins the probability that the
random variable takes a value less than or equalTthe standard normal

distribution has a mean of 0 and a variance of 1.

Example

In this example, we compute the point such that the probability is 0.9 that a
standard normal random variable is less than or equal to this point.

NOUT

ANORIN, P, X

ANORI N, UMACH

CALL UMACH (2, NOUT)

P=0.9

X = ANCRI N(P)
VRI TE (NOUT, 99999) X
99999 FORMAT (' The 90th percentile of a standard normal is ’, F6.4)

END

Output

The 90th percentile of a standard normal is 1.2816
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BETDF/DBETDF (Single/Double precision)

Evaluate the beta probability distribution function.

Usage
BETDF(X, PIN, QN

Arguments

X — Argument for which the beta distribution function is to be evaluated.
(Input)

PIN — First beta distribution parameter. (Input)

PI N must be positive.

QIN — Second beta distribution parameter. (Input)
Q Nmust be positive.

BETDF — Probability that a random variable from a beta distribution having
parameter®l NandQ Nwill be less than or equal # (Output)

Comments
Informational errors
Type Code
1 1 Since the input argumedis less than or equal to zero, the
distribution function is equal to zeroat
1 2 Since the input argumeqis greater than or equal to one, the
distribution function is equal to oneat
Algorithm

FunctionBETDF evaluates the distribution function of a beta random variable with
parameter®l NandQ N. This function is sometimes called fimeomplete beta
ratio and, withp = PI Nandg =Q N, is denoted by, (p, g). It is given by

r(p)r(a) -1 =)
L(pa) = — 2] 5tP(L-1) % dt
r(p+0a)
wherel (}is the gamma function. The value of the distribution fundtim q) is
the probability that the random variable takes a value less than or egual to

The integral in the expression above is calledthemplete beta function and is
denoted by, (p, ). The constant in the expression is the reciprocal dbéte
function (the incomplete function evaluated at one) and is denoted by

B(p, ).
FunctionBETDF uses the method of Bosten and Battiste (1974).
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Example

Suppose X is a beta random variable with parameters 12 and 12. (X hasa
symmetric distribution.) In this example, we find the probability that X isless than
0.6 and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta
random variable, the probability that it islessthan 0.5is0.5.)

| NTEGER NOUT

REAL BETDF, P, PIN, QN, X
EXTERNAL BETDF, UVACH

c
CALL UMACH (2, NOUT)
PIN = 12.0
QN =12.0
X =0.6
P = BETDF(X, PIN, QN

VRI TE ( NOUT, 99998) P

99998 FORMAT (' The probability that X is less than 0.6 is ’, F6.4)
X=05
P = P - BETDF(X,PIN,QIN)
WRITE (NOUT,99999) P

99999 FORMAT (' The probability that X is between 0.5 and 0.6 is ’,
& F6.4)
END

Output

The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364
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BETIN/DBETIN (Single/Double precision)

Evaluate the inverse of the beta distribution function.

Usage
BETIN(P, PIN, QN

Arguments

P — Probability for which the inverse of the beta distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

PIN — First beta distribution parameter. (Input)
PI N must be positive.

QIN — Second beta distribution parameter. (Input)
Q N must be positive.

BETIN — Function value. (Output)
The probability that a beta random variable takes a value less than or equal to

BETI Nis P.
Comments
Informational error
Type Code
3 1 The value for the inverse Beta distribution could not be found
in 100 iterations. The best approximation is used.
Algorithm

The functionBETI N evaluates the inverse distribution function of a beta random
variable with paramete® NandQ N, that is, withP =P, p=PI N, andg =Q N,
it determines< (equal toBETI N(P, PI N, Q N)), such that

P= r(p)r(q)'l' étp—l(l_t)q—ldt
F(p+q)

wherel ([lis the gamma function. The probability that the random variable takes
a value less than or equalxds P .

Example

SupposeX is a beta random variable with parameters 12 andXl2ag a
symmetric distribution.) In this example, we find the vadusuch that the
probability thatX < x, is 0.9.

| NTEGER NOUT
REAL BETIN, P, PIN, QN, X
EXTERNAL BETI N, UVACH
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CALL UMACH (2, NOUT)

PIN = 12.0
QN=12.0
P =0.9
X = BETIN(P, PIN, Q N)
VRl TE ( NOUT, 99999) X

99999 FORMAT (' X is less than ', F6.4, ’ with probability 0.9.")
END

Output
X is less than 0.6299 with probability 0.9.

BNRDF/DBNRDF (Single/Double precision)

Evaluate the bivariate normal distribution function.

Usage
BNRDF(X, Y, RHO)

Arguments

X — One argument for which the bivariate normal distribution function is to be
evaluated. (Input)

Y — The other argument for which the bivariate normal distribution function is to
be evaluated. (Input)

RHO — Correlation coefficient. (Input)

BNRDF — Function value, the probability that a bivariate normal random
variable with correlatioRHO takes a value less than or equaktand less than or
equal toy. (Output)

Algorithm

FunctionBNRDF evaluates the distribution functiénof a bivariate normal
distribution with means of zero, variances of one, and correlatiBA®@fthat is,
with p = RHO, and p| < 1,

1 u? - 2puv+v2

Fxy)=——] %[ Yo xp| -
0ey) ZHNJ f Xp( 2(1- p?)

To determine the probability thek< u, andV < v,, where U, V)T is a bivariate

)du dv

normal random variable with megare (., uV)T and variance-covariance matrix
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| NTEGER
REAL
EXTERNAL

2
_{9u Ouv
2= 2
Ouv Ov
transform (U, V) T to avector with zero means and unit variances. The input to
BNRDF would be X = (uy — U)oy, Y = (v — Up)loy, and p = oyl (00p).

Function BNRDF uses the method of Owen (1962, 1965). For |p| = 1, the
distribution function is computed based on the univariate statistic, Z = min(x, y),
and on the normal distribution function ANORDF (page 1122).

Example
Suppose (X, Y) isabivariate norma random variable with mean (0, 0) and

variance-covariance matrix
10 09
09 10

In this example, we find the probability that X islessthan —2.0 and Y is less than
0.0.

NOUT

BNRDF, P, RHO X, Y

BNRDF, UMACH

CALL UMACH (2, NOUT)

X
Y
RHO
P

0.0
0.9

-2.0

BNRDF( X, Y, RHO)

VRI TE ( NOUT, 99999) P
99999 FORMAT (' The probability that X is less than -2.0 and Y ’,
& 'islessthan 0.0 is ', F6.4)

END

Output

The probability that X is less than -2.0and Y is less than 0.0 is 0.0228

CHIDF/DCHIDF (Single/Double precision)

Evaluate the chi-squared distribution function.

Usage
CHIDF(CHSQ, DF)

Arguments

CHSQ — Argument for which the chi-squared distribution function is to be
evaluated. (Input)
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DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

CHIDF — Function value, the probability that a chi-squared random variable
takes a value less than or equaC#sQ (Output)

Comments

Informational errors
Type Code
1 1 Since the input argumedtSQ, is less than zero, the
distribution function is zero &HSQ.
2 3 The normal distribution is used for large degrees of freedom.
However, it has produced underflow. Therefore, the
probability, CHI DF, is set to zero.

Algorithm

FunctionCHI DF evaluates the distribution functidn, of a chi-squared random
variable withDF degrees of freedom, that is, witks DF, andx = CHSQ,

1 X —t/2,vi2-1
X)=——— [ Xe V2Vi2dgt
9 2V2r(v/2)’"°

wherel ([lis the gamma function. The value of the distribution function at the
pointx is the probability that the random variable takes a value less than or equal
to x.

Forv > 65,CHI DF uses the Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.17) to the normal distribution, and roANTRDF
(page 1122) is used to evaluate the normal distribution function.

Forv < 65, CHI DF uses series expansions to evaluate the distribution function. If
X < max /2, 26),CH DF uses the series 6.5.29 in Abramowitz and Stegun
(1964), otherwise, it uses the asymptotic expansion 6.5.32 in Abramowitz and
Stegun.
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| NTEGER
REAL
EXTERNAL
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Figure 17-8 Chi-Squared Distribution Function
Example

Suppose X is a chi-squared random variable with 2 degrees of freedom. In this

example, we find the probability that X isless than 0.15 and the probability that X

isgreater than 3.0.

NOUT

CH DF, CHSQ DF, P
CHI DF, UMACH

CALL UMACH (2, Naum)
DF =20
CHSQ = 0. 15
P = CHI DF( CHSQ DF)
VRI TE ( NOUT, 99998) P
99998 FORMAT (' The probability that chi-squared with 2 df is less ’,
& 'than0.15is’, F6.4)
CHSQ =3.0
P =1.0-CHIDF(CHSQ,DF)
WRITE (NOUT,99999) P
99999 FORMAT (' The probability that chi-squared with 2 df is greater’
& ,'than 3.0is’, F6.4)
END

Output

The probability that chi-squared with 2 df is less than 0.15 is 0.0723
The probability that chi-squared with 2 df is greater than 3.0 is 0.2231
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CHIIN/DCHIIN (Single/Double precision)

Evaluate the inverse of the chi-squared distribution function.

Usage
CHI IN(P, DF)
Arguments

P — Probability for which the inverse of the chi-squared distribution function is
to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the chi-squared distribution. (Input)
DF must be greater than or equal to 0.5.

CHIIN — Function value. (Output)
The probability that a chi-squared random variable takes a value less than or
equal toCHI I NisP.

Comments
Informational errors
Type Code
4 1 Over 100 iterations have occurred without convergence.

Convergence is assumed.

Algorithm

FunctionCHI | N evaluates the inverse distribution function of a chi-squared
random variable witlbF degrees of freedom, that is, wiRh= P andv = DF, it
determinex (equal toCHI | N(P, DF)), such that

p= 1 X o-t/2vI2-1 g
2V2r(vr2)’°

wherel ([lis the gamma function. The probability that the random variable takes
a value less than or equalxds P.

Forv < 40,CHI | Nuses bisection (f < 2 orP > 0.98) or regula falsi to find the
point at which the chi-squared distribution function is equ&l tbhe distribution
function is evaluated using routigel DF (page 1129).

For 40< v < 100, a modified Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, equation 26.4.18) to the normal distribution is used, and routine
ANCRI N (page 1124) is used to evaluate the inverse of the normal distribution
function. Forv = 100, the ordinary Wilson-Hilferty approximation (Abramowitz
and Stegun 1964, equation 26.4.17) is used.
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Example

In this example, we find the 99-th percentage points of a chi-squared random
variable with 2 degrees of freedom and of one with 64 degrees of freedom.

| NTEGER NOUT
REAL CHIN DF, P, X
EXTERNAL CH I'N, UVACH

DF = 2.0
X = CH I N(P, DF)
VWRI TE (NOUT, 99998) X
99998 FORMAT (' The 99-th percentage point of chi-squared with 2 df’
& ,is’, F7.3)
DF = 64.0
X = CHIIN(P,DF)
WRITE (NOUT,99999) X
99999 FORMAT (’ The 99-th percentage point of chi-squared with 64 df ’
& ,is’, F7.3)
END

Output
The 99-th percentage point of chi-squared with 2 df is 9.210
The 99-th percentage point of chi-squared with 64 df is 93.217

CSNDF/DCSNDF (Single/Double precision)

Evaluate the noncentral chi-squared distribution function.

Usage
CSNDF(CHSQ, DF, ALAM)

Arguments

CHSQ — Argument for which the noncentral chi-squared distribution function is
to be evaluated. (Input)

DF —Number of degrees of freedom of the noncentral chi-squared distribution.

(Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter. (Input)
ALAMMust be nonnegative, aAdAM+ DF must be less than or equal to 200,000.

CSNDF — Function value, the probability that a noncentral chi-squared random
variable takes a value less than or equaH®Q (Output)
Comments

1. Informational errors
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Type Code

1 1 Since the input argument, CHSQ isless than or equal
to zero, the digtribution function is zero at CHSQ.
3 2 Convergence was not obtained. The best

approximation to the probability is returned.

2. This subroutine sums terms of an infinite series of central chi-squared
distribution functions weighted by Poisson terms. Summing terminates
when either the current term islessthan 10 * AMACH(4) times the
current sum or when 1000 terms have been accumulated. In the latter
case, awarning error isissued.

Algorithm

Function CSNDF eval uates the distribution function of a noncentral chi-sguared
random variable with DF degrees of freedom and noncentrality parameter ALAM
that is, withv=DF, | = ALAM and X = CHSQ,

¥ /2 i (v+2i)2-1_-1/2
_o e (I 12) xt e
CS'\'DF(X) - a i' o 2(V+2i )/ZG(‘H'ZZi)
i=0 :

where G(% isthe gamma function. Thisisa series of central chi-sguared
distribution functions with Poisson weights. The value of the distribution
function at the point x is the probability that the random variable takes a value
less than or equal to x.

The noncentral chi-squared random variable can be defined by the distribution
function above, or alternatively and equivalently, as the sum of squares of
independent normal random variables. If Y; have independent normal

distributions with means n} and variances equal to one and
X=&ly?

then X has a noncentral chi-sguared distribution with n degrees of freedom and
noncentrality parameter equal to

CH
With a noncentrality parameter of zero, the noncentral chi-squared distribution
isthe same as the chi-squared distribution.

Function CSNDF determines the point at which the Poisson weight is greatest,
and then sums forward and backward from that point, terminating when the
additional terms are sufficiently small or when a maximum of 1000 terms have
been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun
(1964) is used to speed the evaluation of the central chi-squared distribution
functions.
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Figure 17-9 Noncentral Chi-squared Distribution Function

Example

In this example, CSNDF is used to compute the probability that a random variable
that follows the noncentral chi-squared distribution with noncentrality parameter
of 1 and with 2 degrees of freedom is less than or equal to 8.642.

| NTEGER NOUT

REAL ALAM CHSQ CSNDF, DF, P
EXTERNAL CSNDF, UMACH

C
CALL UMACH (2, NOUT)
DF =20
ALAM = 1.0
CHSQ = 8. 642
P = CSNDF(CHSQ DF, ALAM

VRI TE (NOUT, 99999) P
99999 FORMAT (' The probability that a noncentral chi-squared randon?’,
& 1, variable with 2 df and noncentrality 1.0 is less’,
& /,than 8.642 is’, F5.3)
END

Output

The probability that a noncentral chi-squared random
variable with 2 df and noncentrality 1.0 is less
than 8.642 is 0.950
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CSNIN/DCSNIN (Single/Double precision)

Evaluate the inverse of the noncentral chi-sgquared function.

Usage
CSNI N(P, DF, ALAM

Arguments

P — Probability for which the inverse of the noncentral chi-squared distribution
function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Number of degrees of freedom of the noncentral chi-squared distribution.

(Input)
DF must be greater than or equal to 0.5 and less than or equal to 200,000.

ALAM — The noncentrality parameter. (Input)
ALAMmust be nonnegative, aAdAM+ DF must be less than or equal to 200,000.

CSNIN — Function value. (Output)
The probability that a noncentral chi-squared random variable takes a value less
than or equal t@SNI Nis P.

Comments
Informational error
Type Code
4 1 Over 100 iterations have occurred without convergence.

Convergence is assumed.

Algorithm

FunctionCSNI N evaluates the inverse distribution function of a noncentral chi-
squared random variable witliF degrees of freedom and noncentrality parameter
ALAM that is, withP =P, v = DF, and =A = ALAM it determines;, (= CSNI N( P,

DF, ALAM ), such that

e—)\/Z()\/2)I % X(V+2i)/2-1e—X/2

P= S - - —dx
igo il 0 2(v+2|)/2 I‘(%Z')

wherel ([lis the gamma function. The probability that the random variable takes
a value less than or equalgpis P .

FunctionCSNI N uses bisection and modified regula falsi to invert the distribution
function, which is evaluated using routi@®&\DF (page 1133). Se&SNDF for an
alternative definition of the noncentral chi-squared random variable in terms of
normal random variables.
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Example

In this example, we find the 95-th percentage point for a noncentral chi-squared
random variable with 2 degrees of freedom and noncentrality parameter 1.

| NTEGER NOUT

REAL ALAM CHSQ CSNIN, DF, P

EXTERNAL CSNI N, UMACH

C
CALL UMACH (2, NauT)
DF =20
ALAM = 1.0
P = 0.95
CHSQ = CSNI N( P, DF, ALAM
VRI TE ( NOUT, 99999) CHSQ
C
99999 FORMAT (' The 0.05 noncentral chi-squared critical value is ’,
& F6.3,".)
C

END

Output
The 0.05 noncentral chi-squared critical value is 8.642.

FDF/DFDF (Single/Double precision)

Evaluate the F distribution function.

Usage
FDF(F, DFN, DFD)

Arguments
F — Argument for which th€& distribution function is to be evaluated. (Input)

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FDF — Function value, the probability that Brrandom variable takes a value
less than or equal to the indut (Output)

Comments
Informational error
Type Code
1 3 Since the input arguménis not positive, the distribution

function is zero ak.
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Algorithm

Function FDF evaluates the distribution function of a Snededérandom
variable withDFN numerator degrees of freedom @wi denominator degrees of

freedom. The function is evaluated by making a transformation to a beta random

variable and then using the routiBETDF (page 1125). IK is anF variate with
v; andv, degrees of freedom antk= v; X/(v, + v, X), thenY is a beta variate with
parameterp =v,/2 andqg = v,/2. The functiorFDF also uses a relationship
betweerF random variables that can be expressed as follows.

FDF(X, DFN, DFD) = 1.0 - FDF(1.0/ X, DFD, DFN)

1.0 = =

| - I vl v2
1 — 5 2
] _— — 510
: g -~ 10 5
0.8 / / — 520
Voo |
50.4 /,’
o A
0.2/
0.0“\\\\\\\\\\\ L
0.0 5.0 10.0 15.0 20.0
X
Figure 17-10 F Distribution Function
Example

In this example, we find the probability thatfmandom variable with one
numerator and one denominator degree of freedom is greater than 648.

| NTEGER NOUT
REAL DFD, DFN, F, FDF, P
EXTERNAL FDF, UVACH

c
CALL UMACH (2, NOUT)
F = 648.0
DFN = 1.0
DFD = 1.0
P = 1.0 - FDF(F, DFN, DFD)
VRl TE (NOUT, 99999) P
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99999 FORMAT (' The probability that an F(1,1) variate is greater ’,
& ‘than 648 is’, F6.4)

END

Output

The probability that an F(1, 1) variate is greater than 648 is 0.0250

FIN/DFIN (Single/Double precision)

Evaluate the inverse of the F distribution function.

Usage
FIN(P, DFN, DFD)

Arguments

P — Probability for which the inverse of tliedistribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DFN — Numerator degrees of freedom. (Input)
DFN must be positive.

DFD — Denominator degrees of freedom. (Input)
DFD must be positive.

FIN — Function value. (Output)
The probability that aff random variable takes a value less than or equRliNo
iSP.

Comments

Informational error
Type Code
4 4 FI Nis set to machine infinity since overflow would occur upon
modifying the inverse value for tliredistribution with the
result obtained from the inverse beta distribution.

Algorithm

FunctionFI N evaluates the inverse distribution function of a Snede€or’s
random variable witlbDFN numerator degrees of freedom @b denominator
degrees of freedom. The function is evaluated by making a transformation to a
beta random variable and then using the rouE®e N (page 1127). IK is anF
variate withv; andv, degrees of freedom antk= v, X/(v, +v; X), thenY is a beta
variate with parametes=v;/2 andq = v,/2. If P < 0.5,FI N uses this

relationship directly, otherwise, it also uses a relationship betweandom
variables that can be expressed as follows, using raeminépage 1137), which

is theF cumulative distribution function:
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FDF(F, DFN, DFD) = 1.0 - FDF(1.0/F, DFD, DFN).

Example
In this example, we find the 99-th percentage point for an F random variable with
1 and 7 degrees of freedom.

| NTEGER NOUT
REAL DFD, DFN, F, FIN, P
EXTERNAL FI'N, UVACH

CALL UMACH (2, NOUT)

'I'Ig%'U

oz
o
~T~NrO
ZzZoo0w©
©

( P, DFN, DFD)
VWRI TE (NQUT, 99999) F
99999 FORMAT (’ The F(1,7) 0.01 critical value is’, F6.3)
END

Output
The F(1, 7) 0.01 critical value is 12.246

GAMDF/DGAMDEF (Single/Double precision)

Evaluate the gamma distribution function.

Usage
GAMDF(X, A)

Arguments

X — Argument for which the gamma distribution function is to be evaluated.
(Input)

A — The shape parameter of the gamma distribution. (Input)

This parameter must be positive.

GAMDF — Function value, the probability that a gamma random variable takes a
value less than or equalxo (Output)

Comments
Informational error
Type Code
1 2 Since the input argumexiis less than zero, the distribution

function is set to zero.

Algorithm

FunctionGAMDF evaluates the distribution functidn, of a gamma random
variable with shape parameterthat is,
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F(x) = ——Xe 't* tdt

TR
where I (Jis the gamma function. (The gamma function is the integral from O to
oo of the same integrand as above). The value of the distribution function at the
point x is the probability that the random variable takes a value less than or equal

to x.

The gamma distribution is often defined as a two-parameter distribution with a
scale parameter b (which must be positive), or even as a three-parameter
distribution in which the third parameter c is alocation parameter. In the most
genera case, the probability density function over (c, ) is

1 —(t- -
f(t): - e (t c)/b(X_C)al
bl (a)
If T issuch arandom variable with parametersa, b, and c, the probability that
T < t, can be obtained from GAMDF by setting X = (t, — ¢)/b.

If Xislessthan aor if Xislessthan or equal to 1.0, GAMDF uses a series
expansion. Otherwise, a continued fraction expansion is used. (See Abramowitz
and Stegun, 1964.)

1.0 ——— —— —
B s P P a
1/ s L — 05
1/ ; Y, — 1.0
08 | 2 / o0
1/ / / — 10.0
- /
5 0.6 | '
G /
= - ,
2 Bl /
= |
T0.4 /
] /
02{‘ / /
1 /
— /// %
0.0 T T T T T T T T
0.0 5.0 10.0 15.0 20.0
X

Figure 17-11 Gamma Distribution Function
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Example

Suppose X is agamma random variable with a shape parameter of 4. (In this case,
it has an Erlang distribution since the shape parameter is an integer.) In this
example, we find the probability that X is less than 0.5 and the probability that X
is between 0.5 and 1.0.

| NTEGER NOUT

REAL A, GAMDF, P, X
EXTERNAL GAMDF, UMACH

C
CALL UMACH (2, NOUT)
A=4.0
X =0.5

P = GAMDF( X, A)
VWRI TE (NOUT, 99998) P
99998 FORMAT (' The probability that X is less than 0.5 is ’, F6.4)
X=1.0
P = GAMDF(X,A) - P
WRITE (NOUT,99999) P
99999 FORMAT (’ The probability that X is between 0.5 and 1.0 is ',
& F6.4)
END

Output

The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

GAMIN/DGAMIN (Single/Double precision)

Evaluate the inverse of the gamma distribution function.

Usage
GAMIN(P, A)

Arguments

P — Probability for which the inverse of the gamma distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

A — The shape parameter of the gamma distribution. (Input)
This parameter must be positive.

GAMIN — Function value. (Output)
The probability that a gamma random variable takes a value less than or equal to
GAM NisP.

Comments

Informational error
Type Code
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C

4 1 Over 100 iterations have occurred without convergence.
Convergence is assumed.

Algorithm

Function GAM N evaluates the inverse distribution function of a gamma random
variable with shape parameter a, that is, it determines x (= GAM N( P, A) ), such
that

1
P=—0
r(a)
where I' ([)lis the gamma function. The probability that the random variable takes

avalue less than or equal to x is P. See the documentation for routine GANDF
(page 1140) for further discussion of the gamma distribution.

X —tya-1
o€ t7dt

Function GAM N uses bisection and modified regulafalsi to invert the distribution
function, which is evaluated using routine GANDF.

Example

In this example, we find the 95-th percentage point for agamma random variable
with shape parameter of 4.

| NTEGER NOUT
REAL A GAMN P, X
EXTERNAL GAM N, UMACH

CALL UMACH (2, NOUT)

A=40
P=0.95
X = GAM N(P, A)

WRI TE (NOUT, 99999) X

99999 FORMAT (' The 0.05 gamma(4) critical value is ’, F6.3,

C

)

END

Output

The 0.05 gamma(4) critical value is 7.754.

TDF/DTDF (Single/Double precision)

Evaluate the Studenttdistribution function.

Usage
TDF(T, DF)
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Arguments

T — Argument for which the Studentslistribution function is to be evaluated.
(Input)

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

TDF — Function value, the probability that a Studehtandom variable takes a
value less than or equal to the input (Output)

Algorithm

FunctionTDF evaluates the distribution function of a Studehtandom variable

with DF degrees of freedom. If the squarera$ greater than or equal bF, the
relationship of @ to anF random variable (and subsequently, to a beta random
variable) is exploited, and routiB&ETDF (page 1125) is used. Otherwise, the

method described by Hill (1970) is usedD¥ is not an integer, bF is greater

than 19, or ifDF is greater than 200, a Cornish-Fisher expansion is used to
evaluate the distribution function.DF is less than 20 an&BS(T) is less than 2.0,

a trigonometric series (see Abramowitz and Stegun 1964, equations 26.7.3 and
26.7.4, with some rearrangement) is used. For the remaining cases, a series given
by Hill (1970) that converges well for large valuesa$ used.

1.0 S

TDF(z,v)

Figure 17-12 Student’s t Distribution Function
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Example

In this example, we find the probability that at random variable with 6 degrees of
freedom is greater in absolute value than 2.447. We use thefact that tis
symmetric about 0.

| NTEGER NOUT

REAL DF, P, T, TDF
EXTERNAL TDF, UMACH

C
CALL UMACH (2, NOUT)
T = 2.447
DF = 6.0
P = 2.0*TDF(-T, DF)

VRI TE (NOUT, 99999) P
99999 FORMAT (’ The probability that a t(6) variate is greater ’,
& ‘than 2.447 in’, /, " absolute value is ’, F6.4)

END
Output
The probability that a t(6) variate is greater than 2.447 in absolute value
is 0.0500

TIN/DTIN (Single/Double precision)

Evaluate the inverse of the Studentfistribution function.

Usage
TIN(P, DF)

Arguments

P — Probability for which the inverse of the Studentstribution function is to
be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

DF — Degrees of freedom. (Input)
DF must be greater than or equal to 1.0.

TIN — Function value. (Output)
The probability that a Studentsandom variable takes a value less than or equal
to TI NisP.

Comments

Informational error
Type Code
4 3 TI Nis set to machine infinity since overflow would occur upon
modifying the inverse value for tikedistribution with the
result obtained from the invergalistribution.
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Algorithm

Function TI N evaluates the inverse distribution function of a Studéméadom
variable withDF degrees of freedom. Let=DF. If v equals 1 or 2, the inverse
can be obtained in closed formyifs between 1 and 2, the relationship otaa
beta random variable is exploited and rous&g! N (page 1127) is used to
evaluate the inverse; otherwise the algorithm of Hill (1970) is used. For small
values ofv greater than 2, Hill's algorithm inverts an integrated expansion in

1/(1 +£/V) of thet density. For larger values, an asymptotic inverse Cornish-
Fisher type expansion about normal deviates is used.

Example

In this example, we find the 0.05 critical value for a two-sidedt with 6
degrees of freedom.

| NTEGER NOUT
REAL DF, P, T, TIN
EXTERNAL TI'N, UVACH

CALL UMACH (2, NauT)
P = 0.975
DF = 6.0
T = TINCP, DF)
VWRI TE (NQUT, 99999) T
99999 FORMAT (' The two-sided t(6) 0.05 critical value is ’, F6.3)
END

Output
The two-sided t(6) 0.05 critical value is 2.447

TNDF/DTNDF (Single/Double precision)

Evaluate the noncentral Studerttiistribution function.

Usage
TNDF(T, |DF, DELTA)

Arguments

T — Argument for which the noncentral Studentistribution function is to be
evaluated. (Input)

IDF — Number of degrees of freedom of the noncentral Studeditsribution.

(Input)
| DF must be positive.

DELTA — The noncentrality parameter. (Input)

TNDF — Function value, the probability that a noncentral Studénéisdom
variable takes a value less than or equal to(Output)
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Algorithm

Function TNDF evaluates the distribution function F of a noncentral t random
variable with | DF degrees of freedom and noncentrality parameter DELTA,; that is,
withv=1DF, d=DELTA,and t, =T,
. Y2 e—62/2 . S o if2
F(ty) =2 F((v+i+1)/2)(E) ()" dx
( 0) J.—oo \/ﬁr(v/2)(v+x2)("+1)’2i§o (( ) )('!)(v+x2)

where I' ([lis the gamma function. The value of the distribution function at the
point t, is the probability that the random variable takes a value less than or equal

tot,.

The noncentral t random variable can be defined by the distribution function
above, or aternatively and equivalently, astheratio of anormal random variable
and an independent chi-squared random variable. If w has anormal distribution
with mean 6 and variance equal to one, u has an independent chi-squared
distribution with v degrees of freedom, and

Xx=w/ulv

then x has a noncentral t distribution with degrees of freedom and noncentrality
parameter o.

The distribution function of the noncentral t can also be expressed as a double
integral involving a normal density function (see, for example, Owen 1962, page
108). The function TNDF uses the method of Owen (1962, 1965), which uses
repeated integration by parts on that alternate expression for the distribution
function.
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Figure 17-13 Noncentral Student’s t Distribution Function

Example

Suppose T is anoncentral t random variable with 6 degrees of freedom and
noncentrality parameter 6. In this example, we find the probability that T isless
than 12.0. (This can be checked using the table on page 111 of Owen 1962, with
n =0.866, whichyieldsA = 1.664.)

| NTEGER | DF, NOUT
REAL DELTA, P, T, TNDF
EXTERNAL TNDF, UMACH

CALL UMACH (2, NOUT)
| DF 6

DELTA
T 12.0
P TNDF( T, | DF, DELTA)
VRI TE ( NOUT, 99999) P
99999 FORMAT (' The probability that T is less than 12.0 is ', F6.4)
END

6.0

Output
The probability that T is less than 12.0 is 0.9501
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TNIN/DTNIN (Single/Double precision)

Evaluate the inverse of the noncentral Studdrtdistribution function.

Usage
TNIN(P, | DF, DELTA)

Arguments

P — Probability for which the inverse of the noncentral Studemtistribution
function is to be evaluated. (Input)
P must be in the open interval (0.0, 1.0).

IDF — Number of degrees of freedom of the noncentral Studeditsribution.
(Input) I DF must be positive.

DELTA — The noncentrality parameter. (Input)

TNIN — Function value. (Output)
The probability that a noncentral Studentrandom variable takes a value less
than or equal tdNI Nis P.

Comments
Informational error
Type Code
4 1 Over 100 iterations have occurred without convergence.

Convergence is assumed.

Algorithm

FunctionTNI N evaluates the inverse distribution function of a noncentral
random variable with DF degrees of freedom and noncentrality parameter
DELTA,; that is, withP = P, v =1 DF, andd = DELTA, it determines, (= TNI N( P,
| DF, DELTA)), such that
vI2,-8%/2
\ e ® . { 2 i/2
P=l ST ((v+i+1)/ 2)(3)(25) " dx
© JTT(v/ 2)(v+ x2)VI2 15, P vax

wherel (Jis the gamma function. The probability that the random variable takes
a value less than or equaltjas P. SeeTNDF (page 1146) for an alternative
definition in terms of normal and chi-squared random variables. The function
TNI N uses bisection and modified regula falsi to invert the distribution function,
which is evaluated using routiféiDF.

Example

In this example, we find the 95-th percentage point for a noncénaradiom
variable with 6 degrees of freedom and noncentrality parameter 6.
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| NTEGER | DF, NOUT
REAL DELTA, P, T, TNIN
EXTERNAL TNI'N, UMACH

C
CALL UMACH (2, NaouT)
| DF =6
DELTA = 6.0
P = 0.95
T = TNI N(P, | DF, DELTA)
VWRI TE (NOUT, 99999) T
C
99999 FORMAT (’ The 0.05 noncentral t critical value is ’, F6.3,
& )
C
END

Output
The 0.05 noncentral t critical value is 11.995.

GCDF/DGCDF (Single/Double precision)

Evaluate ageneral continuous cumulative distribution function given ordinates of
the density.

Usage

GCDF(X0, IOPT, M, X, F)

Arguments

X0 —Point at which the distribution function is to be evaluated. (Input)
|OPT — Indicator of the method of interpolation. (Input)

| OPT  Interpolation Method

1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M —Number of ordinates of the density supplied. (Input)
Mmust be greater than 1 for linear interpolatio@RT = 1 or 2) and greater than
3 if a curve is fitted through the ordinate©®T = 3 or 4).

X — Array containing the abscissas or the endpoints. (Input)

If | OPT =1 or 3,Xis of length 2. Ifi OPT = 2 or 4,X is of lengthM Forl OPT = 1
or 3,X(1) contains the lower endpoint of the support of the distributiorxézjd
is the upper endpoint. FOIOPT = 2 or 4,X contains, in strictly increasing order,
the abscissas such th{t ) corresponds t&(1 ).

F — Vector of lengttMcontaining the probability density ordinates
corresponding to increasing abscissas. (Input)
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IfltoPT=1or3,forl =1,2,...,MF(I') correspondsto X(1) + (I —1)*
(X(2) = X(2))/(M-1); otherwise, F and X correspond one for one.

GCDF — Function value, the probability that a random variable whose density is
given inF takes a value less than or equak@o (Output)

Comments

If 1| OPT = 3, automatic workspace usage is
GCDF 6* Munits, or
DGCDF 11* Munits.

If | OPT = 4, automatic workspace usage is
GCDF 5* Munits, or
DGCDF 9* Munits.

Workspace may be explicitly provided, if desired, by the usetbF/D&DF. The
reference is

GADF(P, IOPT, M X, F, WK |1WK)
The arguments in addition to thoseGaDF are
WK — Work vector of length 5 Mif | OPT = 3, and of length 4 Mif | OPT = 4.
WK — Work vector of lengtim

Algorithm

FunctionGCDF evaluates a continuous distribution function, given ordinates of the
probability density function. It requires that the range of the distribution be
specified inX. For distributions with infinite ranges, endpoints must be chosen so
that most of the probability content is included. The funcHODF first fits a

curve to the points given andF with either a piecewise linear interpolant or a

c' cubic spline interpolant based on a method by Akima (1970). Fur@zim
then determines the ard@g,under the curve. (If the distribution were of finite
range and if the fit were exact, this area would be 1.0.) Using the same fitted
curve,GCDF next determines the area up to the prj@t X0). The value returned
is the area up tr, divided byA. Because of the scaling By it is not assumed
that the integral of the density definedXvgndF is 1.0. For most distributions, it
is likely that better approximations to the distribution function are obtained when
| OPT equals 3 or 4, that is, when a cubic spline is used to approximate the
function. It is also likely that better approximations can be obtained when the
abscissas are chosen more densely over regions where the density and its
derivatives (when they exist) are varying greatly.

Example

In this example, we evaluate the beta distribution function at the point 0.6. The
probability density function of a beta random variable with paramei@nslq is
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00

10

fx) =~ PrD \ o191 for 0 x<1
F(p)I (a)

where I'(Qis the gamma function. The density is equal to 0 outside the interval

[0, 1]. We compute a constant multiple (we can ignore the constant gamma
functions) of the density at 300 equally spaced points and input thisinformation
in X and F. Knowing that the probability density of this distribution is very
peaked in the vicinity of 0.5, we could perhaps get a better fit by using unequally
spaced abscissas, but we will keep it smple. Note that this is the same example as
one used in the description of routine BETDF (page 1125). The result from BETDF
would be expected to be more accurate than that from GCDF since BETDF is
designed specifically for this distribution.

INTEGER M
PARAVETER  ( M=300)

| NTEGER I, 10PT, NOUT
REAL F(M, GCDF, H, P, PINI, Q NI, X(2), X0, X
EXTERNAL  GCDF, UMACH

CALL UMACH (2, NOUT)

X0 = 0.6
IOPT = 3
Initializations for a beta(12,12)
di stribution.
PINL = 11.0
QNL = 11.0
X = 0.0
H = 1.0/ (M1.0)
X(1) = X
F(1) = 0.0
X =X + H
Conput e ordi nates of the probability
density function.
DO 10 1=2, M- 1
F(1) = XI**PINL*(1.0-X)**Q N1
X =X + H
CONTI NUE
X(2) = 1.0
F(M =0.0

P GCDF( X0, | OPT, M X, F)
WRI TE (NOUT, 99999) P

99999 FORMAT (' The probability that X is less than 0.6 is ’, F6.4)

END

Output

The probability that X is less than 0.6 is 0.8364

GCIN/DGCIN (Single/Double precision)

Evaluate the inverse of ageneral continuous cumulative distribution function
given ordinates of the density.
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Usage
GCIN(P, IOPT, M X, F)

Arguments

P —Probability for which the inverse of the distribution function is to be
evaluated. (Input)
P must be in the open interval (0.0, 1.0).

|OPT — Indicator of the method of interpolation. (Input)
| OPT Interpolation Method

1 Linear interpolation with equally spaced abscissas.
2 Linear interpolation with possibly unequally spaced abscissas.
3 A cubic spline is fitted to equally spaced abscissas.
4 A cubic spline is fitted to possibly unequally spaced abscissas.

M —Number of ordinates of the density supplied. (Input)
Mmust be greater than 1 for linear interpolatio®RT = 1 or 2) and greater than
3 if a curve is fitted through the ordinate¢©®T = 3 or 4).

X —Array containing the abscissas or the endpoints. (Input)

If 1 OPT =1 or 3,Xis of length 2. Ifi OPT = 2 or 4,X is of lengthm Forl OPT = 1
or 3,X(1) contains the lower endpoint of the support of the distributiorxézjd
is the upper endpoint. FOOPT = 2 or 4,X contains, in strictly increasing order,
the abscissas such thdt ) corresponds t&(l ).

F —Vector of lengthvicontaining the probability density ordinates corresponding
to increasing abscissas. (Input)

If1oPT=1or3, for =1, 2,...,MF(I) corresponds t&(1) + ( —1)*

(X(2) = X(1))/(M— 1); otherwiseF andX correspond one for one.

GCIN — Function value. (Output)

The probability that a random variable whose density is givertakes a value
less than or equal ®©Cl NisP.

Comments

If | OPT = 3, automatic workspace usage is
GCIN  6* Munits, or
DGCIN 11* Munits.

If | OPT = 4, automatic workspace usage is
GCIN  5* Munits, or
DGCI N 9* Munits.

Workspace may be explicitly provided, if desired, by the ussSbR/DG3I N. The
reference is

&@BINP, IOPT, M X, F, W |IW)

The arguments in addition to thoseGal N are
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WK — Work vector of length 5 Mif | OPT = 3, and of length & mif | OPT = 4.
IWK — Work vector of lengtiv

Algorithm

FunctionGCl N evaluates the inverse of a continuous distribution function, given
ordinates of the probability density function. The range of the distribution must
be specified irX. For distributions with infinite ranges, endpoints must be chosen
so that most of the probability content is included.

The functionGCl Nfirst fits a curve to the points givenXxnandF with either a

piecewise linear interpolant orG' cubic spline interpolant based on a method
by Akima (1970). FunctiogCl N then determines the areég,under the curve. (If
the distribution were of finite range and if the fit were exact, this area would be
1.0.) It next finds the maximum abscissa up to which the area is le SR izenul

the minimum abscissa up to which the area is greateAfhai he routine then
interpolates for the point correspondingAe. Because of the scaling By it is

not assumed that the integral of the density defineddndF is 1.0.

For most distributions, it is likely that better approximations to the distribution
function are obtained wherOPT equals 3 or 4, that is, when a cubic spline is

used to approximate the function. It is also likely that better approximations can
be obtained when the abscissas are chosen more densely over regions where the
density and its derivatives (when they exist) are varying greatly.

Example

In this example, we find the 90-th percentage point for a beta random variable
with parameters 12 and 12. The probability density function of a beta random
variable with parametegsandq is

fx) =~ PrD \ o191 for o< x<1
F(p)I (a)

wherel (Jis the gamma function. The density is equal to 0 outside the interval

[0, 1]. With p = q, this is a symmetric distribution. Knowing that the probability
density of this distribution is very peaked in the vicinity of 0.5, we could perhaps
get a better fit by using unequally spaced abscissas, but we will keep it simple and
use 300 equally spaced points. Note that this is the same example that is used in
the description of routinBETI N (page 1127). The result froBETI N would be
expected to be more accurate than that f@arN sinceBETI N is designed

specifically for this distribution.

INTEGER M
PARAMETER  ( M=300)

c
INTEGER |, 1OPT, NOUT
REAL BETA, C, F(M, GOIN, H P, PIN, PINL, QN, Q NI,
& X(2), X0, X

EXTERNAL BETA, GCIN, UMACH
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CALL UMACH (2, NOUT)
9

P = 0.

IOPT = 3
C Initializations for a beta(12,12)
C di stribution.

PIN = 12.0

QN =12.0

PINL = PIN- 1.0

QNL =QN- 1.0

C = 1.0/ BETA(PIN, Q N)

X = 0.0

H = 1.0/ (M1.0)

X(1) = X

F(1) = 0.0

X =X + H
C Conput e ordi nates of the probability
C density function.

DO 10 1=2, M- 1

F(1) = C-XI**PINL*(1.0-X)**Q N1
X =X + H
10 CONTI NUE

X(2) = 1.0

F(M =0.0

X0 = GNP, ICOPT,MX F)

VRI TE ( NOUT, 99999) X0
99999 FORMAT (' X is less than ’, F6.4, ' with probability 0.9.")
END

Output
X is less than 0.6304 with probability 0.9.

GFNIN/DGFNIN (Single/Double precision)

Evaluate the inverse of ageneral continuous cumulative distribution function
given in a subprogram.

Usage
GFNIN(F, P, EPS, GUESS)

Arguments

F — User-suppliedrUNCTI ON to be invertedF must be continuous and strictly
monotone. The form iB(X), where

X — The argument to the function. (Input)

F — The value of the function &t (Output)

F must be declareBXTERNAL in the calling program.

P — The point at which the inverse Bis desired. (Input)

EPS — Convergence criterion. (Input)
When the relative change @ NI N from one iteration to the next is less than
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EPS, convergence is assumed. A common value for EPS is 0.0001. Another
common vaue is 100 times the machine epsilon.

GUESS — An initial estimate of the inverse BfatP. (Input)

GFNIN — The inverse of the functiaghat the poinP. (Output)
F(GFNI N) is “close” toP.

Comments
1. Informational errors
Type Code
4 1 After 100 attempts, a bound for the inverse cannot be
determined. Try again with a different initial estimate.
4 2 NoO unigue inverse exists.
4 3 Over 100 iterations have occurred without
convergence. Convergence is assumed.
2. The function to be inverted need not be a distribution function, it can be

any continuous, monotonic function.

Algorithm

FunctionGFNI N evaluates the inverse of a continuous, strictly monotone function.
Its most obvious use is in evaluating inverses of continuous distribution functions
that can be defined by a FORTRAN function. If the distribution function cannot

be specified in a FORTRAN function, but the density function can be evaluated at
a number of points, then routi@el N (page 1152) can be used.

FunctionGFNI N uses regula falsi and/or bisection, possibly with the Illinois
modification (see Dahlquist and Bjorck 1974). A maximum of 100 iterations are
performed.

Example

In this example, we find the 99—th percentage point fdf eandom variable with

1 and 7 degrees of freedom. (This problem could be solved easily using routine
FI N (page 1139). Compare the exampleMoK). The function to be inverted is
theF distribution function, for which we use routifBrF (page 1137). SinceDF
requires the degrees of freedom in addition to the point at which the function is
evaluated, we write another functibrihat receives the degrees of freedom via a
common block and then cal®F. The starting point (initial guess) is taken as

two standard deviations above the mean (since this would be a good guess for a
normal distribution). It is not necessary to supply such a good guess. In this
particular case, an initial estimate of 1.0, for example, yields the same answer in
essentially the same number of iterations. (In fact, since thitribution is

skewed, the initial guess, 7.0, is really not that close to the final answer.)
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INTEGER  NOUT

REAL DFD, DFN, EPS, F, FO, GFNIN, GUESS, P, SQRT
COMVON / FCOM DFN, DFD

I NTRINSI C  SQRT

EXTERNAL F, GFNIN, UMACH

C
CALL UMACH (2, NauT)
P = 0.99
DFN = 1.0
DFD = 7.0
C Conpute GUESS as two standard
C devi ati ons above the nean.
GUESS = DFD/ (DFD-2.0) + 2.0*SQRT(2. 0* DFD* DFD* ( DFN+DFD- 2. 0) / ( DFN*
& (DFD-2.0) **2*(DFD-4.0)))
EPS = 0. 00001
FO = GFNI N(F, P, EPS, GUESS)

VRI TE ( NOUT, 99999) FO
99999 FORMAT (’ The F(1,7) 0.01 critical value is’, F6.3)
END
C
REAL FUNCTION F (X)
REAL X
C
REAL DFD, DFN, FDF
COMMON /FCOM/ DFN, DFD
EXTERNAL FDF

F = FDF(X,DFN,DFD)
RETURN
END

Output
The F(1,7) 0.01 critical value is 12.246
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Chapter 18: Random Number
Generation

Routines

18.1.

18.2.

18.3.

18.4.

Utility Routines for Random Number Generators

Select the uniform (0,1) geNerator ..........ccccccvvveeiiivieeeniinn. RNOPT
Retrieve the indicator of the generator currently used........ RNOPG
Initialize the seed used in the generators............cccccveveennen. RNSET
Retrieve the current value of the seed..........ccccoooiiiiiinnenen. RNGET
Initialize the table used in the shuffled generators............... RNSES
Retrieve the current table used in the shuffled generators . RNGES
Initialize the table used in the GFSR generator ................... RNSEF
Retrieve the current table used in the GFSR generator...... RNGEF
Get a seed for a separate substream of numbers ................ RNISD
Basic Uniform Distribution

(8o T10] 1 ¢ T (O 150 TP RNUN
Uniform (0,1), function form .......ccccooeeiiiieeeiiiieee e RNUNF
Univariate Discrete Distributions

BINOMIA ....eeiiiii e RNBIN
General discrete distribution, using alias method................ RNGDA
General discrete distribution, set up table....................o..... RNGDS
General discrete distribution, using table lookup................. RNGDT
LCT=T0]0 1] (o TP UT T RNGEO
HYPEIrgEOMELIIC. ... eviiieiiiiee et RNHYP
LOQAartNMIC ...oooiiiieee e RNLGR
Negative bBINOMIal..........ccooiiiiiiiiiee e RNNBN
POISSON . RNPOI
Discrete UNifOrmM ........ooieeiieiieie e RNUND
Univariate Continuous Distributions

BLA. . et RNBET
CRi=SQUAIEd.....ccviiiii it RNCHI
CAUCNY e RNCHY
EXPONENIAL ...ttt RNEXP
Mixture of two exXponentialS..........ccceovveiieiiieie e RNEXT

1165
1166
1167
1167
1167
1167
1167
1167
1168

1171
1172

1173
1174
1177
1181
1183
1185
1186
1188
1189
1190

1191
1193
1194
1196
1197
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(7= 1 110 0 1= PSP RNGAM 1198

General continuous distribution, set up table ..................... RNGCS 1200
General continuous distribution, using table lookup........... RNGCT 1202
LOGNOIMAL.....iiiiiiiie i RNLNL 1204
Normal, using acceptance/rejection ............ccccvevvvevvvvvnvnnnnns RNNOA 1205
Normal, function form of RNNOR ..........cccociviiiiiiiiiieeee, RNNOF 1207
Normal, using inverse CDF ..........ccccoiiiiii RNNOR 1208
StADIE. i RNSTA 1209
STUAENT'S Lo RNSTT 1210
THANQUIAT . RNTRI 1212
VON MISES ..o RNVMS 1213
WEIDUI ... RNWIB 1214
18.5. Multivariate Distributions
Orthogonal matrices and correlation matrices.................... RNCOR 1215
Data-based multivariate.............ccceeeeeriiiiiiiieeieeeeen RNDAT 1218
Multinomial ... RNMTN 1222
Multivariate NOrmal ............cooiiiiiiiiiiie e RNMVN 1223
Points on a unit circle or sphere .........cccoooveiiiiii, RNSPH 1225
Two-way tables............cco oo, RNTAB 1227
18.6. Order Statistics
Order statistics from a normal distribution.......................... RNNOS 1229
Order statistics from a uniform distribution........................ RNUNO 1231
18.7. Stochastic Processes
ARMA PrOCESS... oo RNARM 1232
Nonhomogeneous POiSSON PrOCESS............cevvvvvvevevrrnininnnnns RNNPP 1236
18.8. Samples and Permutations
Random permutation ...........ccooecvveereeeesiiiiiieie e e sieeee e e RNPER 1240
Random sample of indices............cccco RNSRI 1241
RanNdom Sample ... RNSRS 1242

Usage Notes

In the following discussions, the phrases “random numbers,” “random deviates,”
“deviates,” and “variates” are used interchangeably. The phrase “pseudorandom”
is sometimes used to emphasize that the numbers generated are not really
“random” since they result from a deterministic process. The usefulness of
pseudorandom numbers derives from the similarity, in a statistical sense, of
samples of the pseudorandom numbers to samples of observations from the
specified distributions. In short, while the pseudorandom numbers are completely
deterministic and repeatable, treyulate the realizations of independent and
identically distributed random variables.
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The Basic Uniform Generators

The random number generatorsin this chapter use either a multiplicative
congruential method or a generalized feedback shift register (GFSR) method. The
selection of the type of generator is made by calling the routine RNOPT (page
1165). If no selection is made explicitly, a multiplicative generator (with
multiplier 16807) is used. Whatever distribution is being simulated, uniform

(0, 1) numbers are first generated and then transformed if necessary. The
generation of the uniform (0, 1) numbers is done by the routine RNUN (page
1171), or by itsfunction analog RNUNF. These routines are portable in the sense
that, given the same seed and for a given type of generator, they produce the same
sequencein al computer/compiler environments. There are many other issues
that must be considered in devel oping programs for the methods described below
(see Gentle 1981 and 1990).

The Multiplicative Congruential Generators

The form of the multiplicative congruential generatorsis
X; = Xy mod(2%" - 1)

Each x; is then scaled into the unit interval (O, 1). If the multiplier, c, isa
primitive root modulo 2' -1 (which isaprime), then the generator will have

maximal period of 2*' — 2. There are several other considerations, however. The
lattice structure induced by congruential generators (see Marsaglia 1968) can be
assessed by the lattice test of Marsaglia (1972) or the spectral test of Coveyou
and MacPherson (1967) (see also Knuth 1981, pages 89-113). Also, empirical
studies, such as by Fishman and Moore (1982 and 1986), indicate that different
values of multipliers, all of which perform well under the lattice test and the
spectral test, may yield quite different performances where the criterion is
similarity of samples generated to samples from atrue uniform distribution.

There are three possible choices for cin the IMSL generators: 16807 (whichis
7°), 397204094 (which is 2 [7* [#053103), and 950706376 (which is

2 [1118838297). The selection is made by the routine RNOPT (page 1165). The

choice of 16807 will result in the fastest execution time (see Gentle 1981), but
Fishman and Moore’s studies would seem to indicate that the performance of
950706376 is best among these three choices. If no selection is made explicitly,
the routines use the multiplier 16807, which has been in use for some time
(Lewis, Goodman, and Miller 1969). It is the “minimal standard generator”
discussed by Park and Miller (1988).

The user can also select a shuffled version of the multiplicative congruential
generators usingNOPT (page 1165). The shuffled generators use a scheme due
to Learmonth and Lewis (1973a). In this scheme, a table is filled with the first
128 uniform (0, 1) numbers resulting from the simple multiplicative
congruential generator. Then, for eaglfrom the simple generator, the low-
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order bits of x; are used to select arandom integer, j, from 1 to 128. The j-th entry
in the tableis then delivered as the random number; and x;, after being scaled into
the unit interval, isinserted into the j-th position in the table.

The Generalized Feedback Shift Register Generator

The GFSR generator uses the recursion X, = X,15¢3 O X,.96. This generator,
which is different from earlier GFSR generators, was proposed by Fushimi
(1990), who discusses the theory behind the generator and reports on several
empirical tests of it. Background discussions on this type of generator can be
found in Kennedy and Gentle (1980), pages 150-162.

Setting the Seed

The seed of the generator can be set in RNSET (page 1167) and can be retrieved
by RNGET (page 1167). Prior to invoking any generator in this chapter , the user
can call RNSET to initialize the seed, which is an integer variable taking avalue
between 1 and 2147483646. If it isnot initialized by RNSET, arandom seed is
obtained from the system clock. Once it isinitialized, the seed need not be set
again. The seed is updated and passed from one routine to another by means of a
named COVMVON block, R2NCOM

If the user wishes to restart a simulation, RNGET can be used to obtain the final
seed value of one run to be used as the starting value in a subsequent run. Also, if
two random number streams are desired in one run, RNSET and RNGET can be
used before and after the invocations of the generatorsin each stream. If a
shuffled generator or the GFSR generator is used, in addition to resetting the
seed, the user must also reset some valuesin atable. For the shuffled generators,
thisis done using the routines RNGES (page 1167) and RNSES (page 1167); and
for the GFSR generator, the table is retrieved and set by the routines RNGEF
(page 1167) and RNSEF (page 1167). The tables for the shuffled generators are
separate for single and double precision; so, if precisions are mixed in a program,
it is necessary to manage each precision separately for the shuffled generators.

Timing Considerations

The generation of the uniform (0,1) numbers is done by the routine RNUN

(page 1171) or by its function analog RNUNF (page 1172). The particular
generator selected in RNOPT (page 1165), that is, the value of the multiplier and
whether shuffling is done or whether the GFSR generator is used, affects the
speed of RNUN and RNUNF. The smaller multiplier (16807, selected by | OPT = 1)
isfaster than the other multipliers. The multiplicative congruential generators
that do not shuffle are faster than the ones that do. The GFSR generator is
roughly asfast as the fastest multiplicative congruential generator, but the
initialization for it (required only on the first invocation) takes longer than the
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generation of thousands of uniform random numbers. Precise statements of
relative speeds depend on the computing system.

Whether RNUN or RNUNF is used also has an effect on the speed due to the

overhead in invoking an external routine, or due to the program’s inability to
optimize computations by holding some operands in registers. This effect, of
course, may be different in different environments. On an array processor or other
computers with pipelined instructior@\UN is likely to be considerably faster
thanRNUNF when several random numbers are to be generated at one time. In the
case of array processors, the multiplicative congruential generatishrare

coded to generate subsequences in larger blocks (see Gentle 1990).

Use of Customized Uniform Generators

The basic uniform (0, 1) generatd€UN or RNUNF are used by all other routines
in this chapter. If, for some reason, the user would prefer a different basic uniform
generator, routines namedNUN" and “RNUNF” can be written so that they
include the name@OWWON, through which the seed is passed, and that calls the
user’s custom generator. The nan@@yMON is

COWMON / R2RNCOM D2P31A, DSEED, D2P31R, DWK, DI NTTB, | NDCTR,

& INTTB, WK, | CEED, |IDSTFS, |INTFS, |SRCFS, S2P31R, |WS

DOUBLE PRECI SI ON D2P31A, D2P31R, DSEED, DWK(128)

REAL S2P31R, WK(128)

| NTEGER | CEED, |DSTFS, | NDCTR, | SRCFS, |W-S(1563)

LOG CAL DI NTTB, |INTTB, I NTFS

SAVE / R2NCOV

The user’'s RNUN' and “RNUNF” can pass the seed through any of the variables,
but the routine®NSET (page 1167) anBNGET (page 1167) expect the seed to be
in | CEED. (The user should not expect to use any utility routines other than
RNSET andRNGET if customized versions &iNUN or RNUNF are used.) The

double precision versions of the nonuniform generators, SUDRNBET (page

1191) andORNGAM (page 1198), use the double precision versions of the uniform
generatorspRNUN (page 1171) anbRNUNF (page 1172), so to use the double
precision nonuniform generators with customized uniform generators, the user
would supply routines to repla@RNUN and DRNUNF.

Distributions Other than the Uniform

The nonuniform generators use a variety of transformation procedures. All of the
transformations used are exact (mathematically). The most straightforward
transformation is thenverse CDF technique, but it is often less efficient than

others involvingacceptance/rgjection andmixtures. See Kennedy and Gentle

(1980) for discussion of these and other techniques.

Many of the nonuniform generators in this chapter use different algorithms
depending on the values of the parameters of the distributions. This is particularly
true of the generators for discrete distributions. Schmeiser (1983) gives an
overview of techniques for generating deviates from discrete distributions.
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Although, as noted above, the uniform generators yield the same sequences on
different computers, because of rounding, the nonuniform generators that use
acceptance/rejection may occasionally produce different sequences on different
computer/compiler environments.

Although the generators for nonuniform distributions use fast algorithms, if avery
large number of deviates from afixed distribution are to be generated, it might be
worthwhile to consider a table sampling method, as implemented in the routines
RNGDA (page 1174), RNGDS (page 1177), RNGDT (page 1181), RNGCS

(page 1200), and RNGCT (page 1202). After an initialization stage, which may
take some time, the actual generation may proceed very fast.

Order Statistics and Antithetic Variates

For those generators, such as RNCHY (page 1194) and RNNCR (page 1208), that

use the inverse CDF technique, it is possible to generate any set of order statistics
directly by use of a customized uniform generator, as discussed above, by
generating order statistics in a custdRUN’ or “RNUNF". In some routines that
employ an inverse CDF technique, suclR&EXP (page 1196) anBNW B (page
1214), instead of directly using the uniform (0, 1) deviafi®m RNUN

(page 1171), the uniform (0, 1) deviate 0 is used. In such routines théh
order, statistic from the uniform will yield the £ 1 —i)-th order statistic from
the nonuniform distribution.

A similar technique can be used to get antithetic variates. For each uniform
deviateu, a second deviate-1u could be produced by a custoRNUN’ or
“RNUNF". As with order statistics, this technique would only be reasonable for
routines that use the inverse CDF technique.

Tests

Extensive empirical tests of some of the uniform random number generators
available inRNUN (page 1171) anBNUNF (page 1172) are reported by Fishman
and Moore (1982 and 1986). Results of tests on the generator using the
multiplier 16807 with and without shuffling are reported by Learmonth and Lewis
(1973Db). If the user wishes to perform additional tests, the routines in Chapter 7,
“Tests of Goodness of Fit and Randomness,” may be of use. The user may also
wish to compute some basic statistics or to make some plots of the output of the
random number generator being used. The routines in Chapter 1, “Basic
Statistics,” and Chapter 16, “Line Printer Graphics,” may be used for this
purpose. Often in Monte Carlo applications, it is appropriate to construct an ad
hoc test that is sensitive to departures that are important in the given
application. For example, in using Monte Carlo methods to evaluate a one-
dimensional integral, autocorrelations of order one may not be harmful, but they
may be disastrous in evaluating a two-dimensional integral. Although generally
the routines in this chapter for generating random deviates from nonuniform
distributions use exact methods, and, hence, their quality depends almost solely
on the quality of the underlying uniform generator, it is often advisable to
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employ an ad hoc test of goodness of fit for the transformations that are to be
applied to the deviates from the nonuniform generator.

Other Notes on Usage

The generators for continuous distributions are available in both single and

double precision versions. Thisis merely for the convenience of the user; the
double precision versions should not be considered more “accurate,” except
possibly for the multivariate distributions.

The names of all of the routines for random number generation beginRnith “

for single precision anddRN’ for double precision. In most routines, the first
argumentNR, is the number of variates to generate; and the last variable,Rither
or | R, is the vector of random variates.

Error handling and workspace allocation in the routines for random number
generation are done somewhat differently than in most other IMSL routines. In
general, there is less error checking than in other routines since there is more
emphasis on speed in the random number generation routines. Simple checks for
gross errors are made in all routines; and the routines for setup do complete
checking since it is assumed that they would not be called frequently. Some
routines, such as those that construct tables or interpolate from tables, require that
the user explicitly provide some work arrays.

Random Number Generation Utility Routines

All of the random number generators in this chapter depend on the generation of
uniform (0, 1) numbers, which is done by the rouRNEN (page 1171), or by its
function analodRNUNF (page 1172). These basic generators use either a
multiplicative congruential method or a generalized feedback shift register
(GFSR) method to yield a subsequence of a fixed cyclic sequence. The beginning
of the subsequence is determined by the seed.

The utility routines for the random number generators allow the user to select the
type of the generator (or to determine the type of the generator being used) and to
set or retrieve the seed.

Selection of the Type of the Generator

For generating uniform (0, 1) random numbers either a multiplicative
congruential or a GFSR method is used. In the multiplicative congruential method
one of three different multipliers, with or without shuffling, can be chosen. The
selection of the type of generator is made by calling the roRNGET, choosing

one of seven different options. The usage is

CALL RNOPT (I OPT)
The argument is

IOPT — The indicator of the generator. (Input)
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OPT  Generator
Congruential, with multiplier 16807 is used.
Congruential, with multiplier 16807 is used with shuffling.
Congruential, with multiplier 397204094 is used.
Congruential, with multiplier 397204094 is used with shuffling.
Congruential, with multiplier 950706376 is used.
Congruential, with multiplier 950706376 is used with shuffling.
7 GFSR, with therecursion X, = X, 563 O X0 iS Used.

O WNPE T

If no selection is made explicitly, amultiplicative generator (with multiplier
16807) is used (equivalent to | OPT = 1).

The type of generator being used can be determined by calling the routine RNOPG.
Theusageis
CALL RNOPG (| OPT)

| OPT isan output variable in RNOPG,

Setting the Seed

Before using any of the random number generators, the generator must be
initialized by selecting a seed, or starting value. The user does not have to do this,
but it can done by calling the routine RNSET. If the user does not select a seed,
oneis generated using the system clock. A seed needsto be selected only oncein
aprogram unless there is some desire to maintain two separate streams of random
numbers. The usageis

CALL RNSET (| SEED)
The argument is
| SEED — The seed of the random number generator. (Input)

| SEED must be in the range (0, 2147483646).3EED is zero (or ifRNSET is not
called before the generation of random numbers begins), a value is computed
using the system clock; and, hence, the results of programs using the IMSL
random number generators will be different at different times.

Stopping and Restarting Simulations and Controlling
More Than One Stream of Random Numbers

For most purposes, even if several simulations are being run in the same program
or if the simulation is being conducted in blocks, it is best to use the sequence of
uniform random deviates just as producedriYN (page 1171) oRNUNF (page

1172) without concern for from where in the underlying cyclic sequence the
numbers are coming.

If, however, the simulations are being conducted incrementally or if simulations
are being run in parallel, it may be necessary to exercise more control over the
sequence. The routines that are used in stopping and restarting simulations
come in pairs, one to get the current value and one to set the value. The
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argument for each pair is the same within the pair; it is output in one case and
input in the other. (RNSET is an exception since it is often used at the beginning of
asimulation before any seed is ever set.) If a nonshuffled form of the
multiplicative congruential generatorsis used (that is1 OPT in RNOPT, page 1165,
is1, 3, or 5), the only thing that must be controlled is the seed, so in this case the
only routines needed are

RNGET — Retrieve the current value of the seed
RNSET — Initialize the seed used in the generators

The usages are

CALL RNGET (I SEED) (I SEED is output.)
CALL RNSET (I SEED) (I SEED is input.)

| SEEDis an integer in the range 1 to 2147483646 (except, as noted above, it can
be input toRNSET as 0 to indicate that the system clock is to be used to generate a
seed).

If a shuffled generator or the GFSR generator is used, in addition to controlling
the seed as described above, another array must be maintained if the user wishes
to stop and restart the simulation. It is a floating-point array for the shuffled
generators and an integer array for the GFSR generator. The routines are

RNGES — Retrieve the current table used in the shuffled generators
RNSES — Initialize the table used in the shuffled generators
RNGEF — Retrieve the current table used in the GFSR generator
RNSEF — Initialize the table used in the GFSR generator

There are different tables used in the single and double precision versions of the
shuffled generators, NGES andRNSES have double precision counterparts,
DRNGES andDRNSES, respectively.

The usages are

CALL RNGES (TABLE) (TABLE is output.)
CALL RNSES (TABLE) (TABLE is input.)
CALL RNGEF (1 ARRAY) (| ARRAY is output.)
CALL RNSEF (I ARRAY) (I ARRAY is input.)

The arguments are

TABLE — Array of length 128 used in the shuffled generators.
IARRAY — Array of length 1565 used in the GFSR generators.

The values in botMABLE andl ARRAY are initialized by the IMSL random

number generators. The values are all positive in both arrays except if the user
wishes to reinitialize the array, in which case the first element of the array is
input as a nonpositive value. (Usually, one should avoid reinitializing these
arrays, but it might be necessary sometimes in restarting a simulation.) If the
first element offABLE or | ARRAY is set to a nonpositive value on the call to
RNSES or RNSEF, on the next invocation of a routine to generate random
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numbers using shuffling (if RNSES) or a GFSR method (if RNSEF), the
appropriate array will be reinitialized.

In addition to controlling separate streams of random numbers, sometimesit is
desirable to insure from the beginning that two streams do not overlap. This can
be done with the congruential generators that do not do shuffling by using RNI SD
to get a seed that will generate random numbers beginning 100,000 numbers
farther along.

Theusageis
CALL RNI SD (| SEED1, | SEED2)

The arguments are

ISEED1 — The seed that yields the first stream. (Input)
ISEED2 — The seed that yields a stream beginning 100,000 numbers beyond the
stream that begins witt6EED1. (Output)

Given a seed,SEEDL1, RNI SD determines another see&EED2, such that if one

of the IMSL multiplicative congruential generators, using no shuffling, went
through 100,000 generations starting WiSEED1, the next number in that
sequence would be the first number in the sequence that begins with the seed
| SEED2. This can be described more simply by stating fhatandRN2 in the
following sequence of FORTRAN are assigned the same values.

CALL RNI SD(| SEED1, | SEED?)
CALL RNSET( | SEED1)

DO 10 | = 1, 100000
RNL = RNUNF()
10 CONTI NUE

RNLI = RNUNF()
CALL RNSET( | SEED2)
RN2 = RNUNF()

To obtain seeds that generate sequences with beginning values separated by
200,000 numbers, caliNl SD twice:

CALL RNI SD(| SEED1, | SEED?)
CALL RNI SD(| SEED?2, | SEED?)

Note thatRNI SD works only when a multiplicative congruential generator without
shuffling is used. This means that either the rolRM@T (page 1165) has not
been called at all or that it has been last called M@BT taking a value of 1, 3,

or5.

For many of the IMSL generators for nonuniform distributions that do not use the
inverse CDF method, the distance between the sequences generated starting with
| SEED1 and starting with SEED2 may be less than 100,000. This is because the
nonuniform generators that use other techniques may require more than one
uniform deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known
distance apart is for blocking Monte Carlo experiments or for running parallel
streams.
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Example 1

Selecting the Type of Generator and Stopping and Restarting the
Simulations

In this example, three separate simulation streams are used, each with a different
form of the generator. Each stream is stopped and restarted. (Although this
exampleis obvioudly an artificial one, there may be reasons for maintaining
separate streams and stopping and restarting them because of the nature of the
usage of the random numbers coming from the separate streams.)

| NTECER I, | ARRAY(1565), |SEED1, |SEED2, |SEED7, NOUT, NR
REAL R(5), TABLE(128)
EXTERNAL  RNGEF, RNGES, RNGET, RNOPT, RNSEF, RNSES, RNSET,
& RNUN, UMACH
C
CALL UMACH (2, NauT)
NR =5
| SEED1 = 123457
| SEED2 = 123457
| SEED7 = 123457
C Begin first stream I10OPT = 1 (by
C defaul t)

CALL RNSET (| SEED1)
CALL RNUN (NR, R
CALL RNGET (| SEED1)
VWRI TE (NOUT, 99997) (R(1),1=1, NR), | SEED1
C Begi n second stream |OPT = 2
CALL RNOPT (2)
CALL RNSET (| SEED2)
CALL RNUN (NR, R
CALL RNGET (| SEED2)
CALL RNGES (TABLE)
VWRI TE (NOUT, 99998) (R(I1),1=1, NR), | SEED2
C Begin third stream [0OPT =7
CALL RNOPT (7)
CALL RNSET (| SEED7)
CALL RNUN (NR, R
CALL RNGET (| SEED7)
CALL RNGEF (| ARRAY)
WRI TE (NOUT, 99999) (R(I1),1=1, NR), | SEED7

C Reinitialize seed
C Resune first stream
CALL RNOPT (1)
CALL RNSET (| SEED1)
CALL RNUN (NR, R
CALL RNGET (| SEED1)
WRI TE (NOUT, 99997) (R(1),1=1, NR), | SEED1
C Reinitialize seed and table for
C shuf fling
C Resune second stream

CALL RNOPT (2)

CALL RNSET (I SEED2)

CALL RNSES ( TABLE)

CALL RNUN (NR, R

CALL RNGET (I SEED2)

WRI TE (NOUT, 99998) (R(1),1=1, NR), | SEED2
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C Reinitialize seed and table for GFSR
C Resune third stream

CALL RNOPT (7)

CALL RNSET (| SEED7)

CALL RNSEF (| ARRAY)

CALL RNUN (NR R

CALL RNGET (I SEED7)

VR TE (NOUT, 99999) (R(1),1=1, NR), | SEED7

C

99997 FORMAT (/,’ First stream ', 5F8.4, /," Output seed =",
& 111)

99998 FORMAT (/,’ Second stream ’, 5F8.4, /,’ Output seed =",
& 111)

99999 FORMAT (/,” Third stream ’, 5F8.4,/," Output seed =",
& 111)

C

END

Output

First stream 0.9662 0.2607 0.7663 0.5693 0.8448
Output seed = 123457

Second stream 0.7095 0.1861 0.4794 0.6038 0.3790
Output seed = 1435003364

Third stream 0.7095 0.1861 0.4794 0.6038 0.3790
Output seed = 123457

First stream 0.9662 0.2607 0.7663 0.5693 0.8448
Output seed = 123457

Second stream 0.8662 0.4786 0.2062 0.2092 0.9154
Output seed = 1435003364

Third stream 0.8662 0.4786 0.2062 0.2092 0.9154
Output seed = 123457

Example 2

Determining Seeds for Separate Streams

In this example, RNISD (page 1168) is used to determine seeds for 4 separate
streams, each 200,000 numbers apart, for a multiplicative congruential generator
without shuffling. (SinceRNOPTis not invoked to select a generator, the
multiplier is 16807.) To get each seed requires two invocations of RNISD. All of
the streams are non-overlapping, since the period of the underlying generator is
2,147,483,646.

INTEGER ISEED1, ISEED2, ISEED3, ISEED4, NOUT
EXTERNAL RNISD, UMACH

CALL UMACH (2, NOUT)

ISEED1 = 123457

CALL RNISD (ISEED1, ISEED2)

CALL RNISD (ISEED2, ISEED2)

CALL RNISD (ISEED2, ISEED3)

CALL RNISD (ISEED3, ISEED3)

CALL RNISD (ISEED3, ISEED4)

CALL RNISD (ISEED4, ISEEDA)

WRITE (NOUT,99999) ISEED1, ISEED2, ISEED3, ISEED4
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99999 FORMAT (' Seeds for four separate streams: ’, /," ', 4111)

C
END

Output

Seeds for four separate streams:
123457 2016130173 85016329 979156171

RNUN/DRNUN (Single/Double precision)

Generate pseudorandom numbers from a uniform (0, 1) distribution.

Usage
CALL RNUN (NR, R)

Arguments
NR — Number of random numbers to generate. (Input)

R — Vector of lengtMR containing the random uniform (0, 1) deviates.
(Output)

Comments

The routineRNSET (page 1167) can be used to initialize the seed of the random
number generator. The routiRBOPT (page 1165) can be used to select the form
of the generator.

Algorithm

RoutineRNUN generates pseudorandom numbers from a uniform (0, 1)
distribution using one of the algorithms described in the introduction to the
chapter on random number generation. The algorithm used is determined by
RNOPT (page 1165). The values returnedriby RNUN are positive and less than
1.0. Values irR may be smaller than the smallest relative spacing, however.
Hence, it may be the case that some vR({i)ds such that 1.6 R(i) = 1.0.

Deviates from the distribution with uniform density over the intervas) can be
obtained by scaling the output fra®NUN. The following statements (in single
precision) would yield random deviates from a unifoAyB) distribution:

CALL RNUN (NR, R)

CALL SSCAL (NR, B-A, R 1)

CALL SADD (NR, A, R 1)

Example

In this exampleRNUN is used to generate five pseudorandom uniform numbers.
SiNncCeRNCPT (page 1165) is not called, the generator used is a simple
multiplicative congruential one with a multiplier of 16807.
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INTEGER | SEED, NOUT, NR
REAL R(5)
EXTERNAL  RNSET, RNUN, UVACH

CALL UMACH (2, NauT)
NR =5
| SEED = 123457
CALL RNSET (| SEED)
CALL RNUN (NR, R)
VWRI TE (NOUT, 99999) R
99999 FORMAT ("  Uniform random deviates: ’, 5F8.4)
END

Output
Uniform random deviates: .9662 .2607 .7663 .5693 .8448

RNUNF/DRNUNF (Single/Double precision)

Generate a pseudorandom number from a uniform (0, 1) distribution.

Usage
RNUNF()

Argument

RNUNF — Function value, a random uniform (0, 1) deviate. (Output)

Comments

1. RoutineRNSET (page 1167) can be used to initialize the seed of the
random number generator. The routiNoPT (page 1165) can be used
to select the form of the generator.

2. This function has a side effect: it changes the value of the seed, which is
passed through a common block.

Algorithm

RoutineRNUNF is the function form oRNUN (page 1171). The routirRNUNF
generates pseudorandom numbers from a uniform (0, 1) distribution . The
algorithm used is determined BNOPT (page 1165). The values returned by
RNUNF are positive and less than 1.0.

If several uniform deviates are needed, it may be more efficient to obtain them all
at once by a call tBNUN rather than by several reference &tiNF.
Example

In this exampleRNUNF is used to generate five pseudorandom uniform numbers.
SinceRNCPT (page 1165) is not called, the generator used is a simple
multiplicative congruential one with a multiplier of 16807.
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| NTEGER
REAL
EXTERNAL

I, | SEED, NOUT
R(5), RNUNF
RNSET, RNUNF, UMACH

CALL UMACH (2, NOUT)
| SEED = 123457

CALL RNSET (| SEED)
DO10 =1, 5

R(1) =
10 CONTI NUE

RNUNF( )

VWRI TE (NOUT, 99999) R

99999 FORMAT (’
END

Uniform random deviates: ’, 5F8.4)

Output

Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448

RNBIN

Generate pseudorandom numbers from a binomial distribution.

Usage
CALL RNBIN (NR, N, P, IR)

Arguments
NR — Number of random numbers to generate. (Input)
N — Number of Bernoulli trials. (Input)

P — Probability of success on each trial. (Input)
P must be greater than 0.0 and less than 1.0.

IR — Vector of lengtiR containing the random binomial deviates. (Output)

Comments

The IMSL routineRNSET (page 1167) can be used to initialize the seed of the
random number generator. The routRNOPT (page 1165) can be used to select
the form of the generator.

Algorithm

RoutineRNBI N generates pseudorandom numbers from a binomial distribution
with parametersi andP. N andP must be positive, anelmust be less than 1. The
probability function (withhn =Nandp =P) is

0 =(%)p*a-p"™

forx=0,1,2,...,n.
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The algorithm used depends on the valuesof nand p. If np< 10 or if pisless
than a machine epsilon (AMACH(4) (Reference Material)), the inverse CDF
technique is used; otherwise, the BTPE algorithm of Kachitvichyanukul and
Schmeiser (see Kachitvichyanukul 1982) is used. Thisis an acceptance/rejection
method using a composition of four regions. (TPE = Triangle, Parallelogram,
Exponential, left and right.)

Example
In this example, RNBI N is used to generate five pseudorandom binomial variates
with parameters 20 and 0.5.
| NTEGER NR
PARAMETER  ( NR=5)
C
| NTEGER IR(NR), |SEED, N, NOUT
REAL P
EXTERNAL RNBI N, RNSET, UMACH
C
CALL UMACH (2, NOUT)
N = 20
P = 0.5
| SEED = 123457

CALL RNSET (| SEED)
CALL RNBIN (NR, N, P, IR
WRI TE (NQUT, 99999) IR
99999 FORMAT (’ Binomial (20, 0.5) random deviates: ’, 514)
END

Output
Binomial (20, 0.5) random deviates: 14 9 12 10 12

RNGDA/DRNGDA (Single/Double precision)

Generate pseudorandom numbers from a general discrete distribution using an
alias method.

Usage

CALL RNGDA (NR, IOPT, IMIN, NMASS, PROBS, IWK, WK, IR)
Arguments

NR — Number of random numbers to generate. (Input)

|OPT — Indicator of whether the alias vectors are to be initialized. (Input)

| OPT  Action

0 The alias vectors are to be initialized using the probabilitieRiBS.
| OPT is set to 0 on the first call ®RNGDA.

1 The alias vectorsWK andVK are used buPROBS is not used.
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IMIN — Smallest value the random deviate can assume. (Input)
This is the value corresponding to the probabilitPROBS(1).

NMASS — Number of mass points in the discrete distribution. (Input)

PROBS — Vector of lengtiNMASS containing probabilities associated with the
individual mass points. (Input)
The elements dPROBS must be nonnegative and must sum to 1.0.

IWK — Index vector of lengthVASS.  (Input, ifl OPT = 1; output, ifit OPT = 0)
I VK is a work vector.

WK — Index vector of lengthMASS.  (Input, ifl OPT = 1; output, ifi OPT = 0)
VK is a work vector.

IR — Vector of lengtiR containing the random discrete deviates. (Output)

Comments

1. In the interest of efficiency, this routine does only limited error checking
when! OPT = 1.

2. The routineRNSET (page 1167) can be used to initialize the seed of the

random number generator. The routRNOPT (page 1165) can be used
to select the form of the generator.

Algorithm

RoutineRNGDA generates pseudorandom numbers from a discrete distribution
with probability function given in the vectBROBS; that is

PriX=i) =p;
fori =inin, imin + 1, ..., imin + Ny = L Wherg =i =iy, + 1, P = PROBS(j),
imin = M N, andn,, = NMASS.
The algorithm is thalias method, due to Walker (1974), with modifications
suggested by Kronmal and Peterson (1979). The method involves a setup phase,

in which the vectors WK andVK are filled. After the vectors are filled, the
generation phase is very fast.

Example 1

In this exampleRNGDA is used to generate five pseudorandom variates from the
discrete distribution:

PrX=1) = .05
PrX=2) = .45
Prx=3) = .31
Pr(X = 4) = .04
Prx=5) = .15
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When RNGDA is called the first time, | OPT isinput as 0. This causes the work
arraysto beinitialized. Inthe next cal, | OPT is 1, so the setup phase is bypassed.

| NTEGER NMASS, NR
PARAMETER ( NVASS=5, NR=5)

Cc
| NTEGER IMN, IOPT, IR(NR), |SEED, |WK(NVASS), NOUT
REAL PROBS( NMASS), WAK( NVASS)
EXTERNAL RNGDA, RNSET, UMACH
Cc
CALL UMACH (2, NaUT)
IMN =1
PROBS(1) = 0.05
PROBS(2) = 0.45
PROBS(3) = 0.31
PROBS(4) = 0.04
PROBS(5) = 0.15
| OPT =0
| SEED = 123457
CALL RNSET (| SEED)
CALL RNGDA (NR, I OPT, IMN, NMASS, PROBS, |IWK, W, IR
VRI TE (NOUT, 99998) IR
99998 FORMAT (' Random deviates: ', 514)

IOPT =1
CALL RNGDA (NR, IOPT, IMIN, NMASS, PROBS, IWK, WK, IR)
WRITE (NOUT,99999) IR

99999 FORMAT (’ ', 514)
END
Output
Random deviates: 3 2 2 3 5
13 453
Example 2

In this example, RNGDAs used to generate five pseudorandom binomial variates
with parameters 20 and 0.5.

INTEGER NMASS, NR
PARAMETER (NMASS=21, NR=5)

INTEGER IMIN, IOPT, IR(NR), ISEED, IWK(NMASS), K, N, NOUT
REAL  BINPR, P, PROBS(NMASS), WK(NMASS)
EXTERNAL BINPR, RNGDA, RNSET, UMACH

CALL UMACH (2, NOUT)

N =20

P =05

IMIN=0

DO 10 K=1, NMASS

PROBS(K) = BINPR(K-1,N,P)

10 CONTINUE

IOPT =0

ISEED = 123457

CALL RNSET (ISEED)

CALL RNGDA (NR, IOPT, IMIN, NMASS, PROBS, IWK, WK, IR)
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VRI TE (NOUT, 99999) IR
99999 FORMAT (" Binomial (20, .5) deviates: ’, 514)

END

Output

Binomial (20, .5) deviates: 12 10 16 12 11

RNGDS/DRNGDS (Single/Double precision)

Set up table to generate pseudorandom numbers from a general discrete
distribution.

Usage

CALL RNGDS (PRF, IOPT, DEL, NNDX, IMIN, NMASS, CUMPR,
LCUMPR)

Arguments

PRF — User-suppliedFUNCTI ON to compute the probability associated with
each mass point of the distribution. The forrRR&(I X), where
I X — Point at which the probability function is to be evaluated. (Input)
I X can range frommM N to the value at which the cumulative probability
is greater than or equal to 1-MEL.
PRF — Value of the probability function aX. (Output)
PRF must be declareBXTERNAL in the calling program.

IOPT — Indicator of the extent to whictUMPR is initialized prior to calling
RNGDS. (Input)

| OPT  Action
0 RNGDS fills all of CUMPR, usingPRF.
1 RNGDS fills only the index portion oBUMPR, using the values in the first

NMASS positions PRF is not used and may be a dummy function; also,
I M N andDEL are not used.

DEL — Maximum absolute error allowed in computing the cumulative
probability. (Input)

Probabilities smaller thabEL are ignored; henc®EL should be a small positive
number. IfDEL is too small, howeveGUVPR(NMASS) must be exactly 1.0 since
that value is compared to 1-(DEL.

NNDX — The number of elements OMPR available to be used as indexes.
(Input)

NNDX must be greater than or equal to 1. In general, the |BN®¢is, to within
sixty or seventy percent 8iVASS, the more efficient the generation of random
numbers usin@NGDS will be.

IMIN — Smallest value the random deviate can assume. (Input/Output)
I M Nis not used if OPT = 1. If| OPT = 0, PRF is evaluated atM N. If this
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valueislessthan DEL, | M Nisincremented by 1 and again PRF is evaluated at
I M N. This processis continued until PRF(I M N) = DEL. | M Nisoutput asthis
value and CUVPR(1) is output as PRF(I M N).

NMASS — The number of mass points in the distribution. (INputoHT = 1;
output, ifl OPT = 0)

If | OPT = 0,NVASS is the smallest integer such tR&F(I M N + NVASS - 1) >
1.0- DEL. NMASS does include the pointsv N(in) + j for whichPRF(I M N(in) +

j) <DEL, forj =0, 1,..., 1 M N(out) — I M N(in), wherel M N(in) denotes the input
value ofl M Nandl M N(out) denotes its output value.

CUMPR — Vector of lengtiNMASS + NNDX containing in the firskVASS

positions, the cumulative probabilities and in some of the remaining positions,
indexes to speed access to the probabilities. (OutpudPif = 0; input/output,
otherwise)

CUMPR(NVASS + 1) + 1 is the actual number of index positions used.

LCUMPR — Dimension ofCUMPR exactly as specified in the dimension
statement in the calling program. (Input)

Since the logical length @fUVPR is determined iRNGDS, LCUMPR is used for
error checking.

Comments
1. Informational error
Type Code
3 1 For somée, CUMPR(I ) is computed to be less than 1.0
- DEL, and yetCUMPR(I + 1)- 1.0 is greater than 1.0
— CUMPR(l + 1). In this case, the maximum value that
the random variable is allowed to take oh;ishat is,
CUMPR(l ) is set to 1.0.
2. The routineRNGDT (page 1181) uses the table set uRKGDS to
generate random numbers from the distribution @i¥h represented in
CUMPR.
Algorithm

RoutineRNGDS sets up a table that routiRBIGDT (page 1181) uses to generate
pseudorandom