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Plan of the Two-Volume Edition

Fortran, long the epitome of stability, isonceagain alanguagein flux. Fortran90
is not just the long-awaited updating of traditional Fortran 77 to modern computing
practices, but also demonstrates Fortran’s decisive bid to be the language of choice
for paralel programming on multiprocessor computers.

At the same time, Fortran 90 is completely backwards-compatible with all
Fortran 77 code. So, users with legacy code, or who choose to use only older
language constructs, will still get the benefit of updated and actively maintained
compilers.

As we, the authors of Numerical Recipes, watched the gestation and birth of
Fortran 90 by its governing standards committee (an interesting process described
by aleading Committee member, Michagl Metcalf, in the Foreword to our Volume
2), it became clear to usthat the right moment for moving Numerical Recipes from
Fortran 77 to Fortran 90 was sooner, rather than later.

On the other hand, it was equally clear that Fortran-77-style programming —
no matter whether with Fortran 77 or Fortran 90 compilers — is, and will continue
for along time to be, the “mother tongue” of alarge population of active scientists,
engineers, and other users of numerical computation. This is not a user base that
we would willingly or knowingly abandon.

The solution was immediately clear: a two-volume edition of the Fortran
Numerical Recipes consisting of Volume 1 (this one, a corrected reprinting of the
previous one-volume edition), now retitled Numerical Recipesin Fortran 77, and
a completely new Volume 2, titled Numerical Recipes in Fortran 90: The Art of
Pardld Scientific Computing. Volume 2 begins with three chapters (21, 22, and
23) that extend the narrative of the first volume to the new subjects of Fortran 90
language features, parale programming methodology, and the implementation of
certain useful utility functions in Fortran 90. Then, in exact correspondence with
Volume 1's Chapters 1-20, are new chapters B1-B20, devoted principaly to the
listing and explanation of new Fortran 90 routines. With a few exceptions, each
Fortran 77 routine in Volume 1 has a corresponding new Fortran 90 version in
Volume 2. (The exceptions are a few new capabilities, notably in random number
generation and in multigrid PDE solvers, that are unique to Volume 2's Fortran 90.)
Otherwise, there is no duplication between the volumes. The detailed explanation
of the agorithms in this Volume 1 is intended to apply to, and be essential for,
both volumes.

In other words. You can usethisVolume 1 without having Volume2, but you
can’t use Volume 2 without Volume 1. We think that there is much to be gained by
having and using both volumes. Fortran 90's parallel language constructionsare not
only useful for present and future multiprocessor machines; they also allow for the
elegant and concise formulation of many algorithms on ordinary single-processor
computers. We think that essentialy all Fortran programmers will want gradually
to migrate into Fortran 90 and into a mode of “thinking parallel.” We have written
Volume 2 specifically to help with this important transition.

Volume 2's discussion of paralel programming is focused on those issues of
direct relevance to the Fortran 90 programmer. Some more general aspects of parallel
programming, such as communication costs, synchronization of multipleprocessers,

Xiii
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Xiv Plan of the Two-Volume Edition

etc., are touched on only briefly. We provide references to the extensive literature
on these more specialized topics.

A specia note to C programmers. Right now, there is no effort at producing
a parald version of C that is comparable to Fortran 90 in maturity, acceptance,
and stability. We think, therefore, that C programmers will be well served by
using Volume 2, either in conjuction with thisVolume 1 or el se in conjunction with
the sister volume Numerical Recipes in C: The Art of Scientific Computing, for an
educational excursion into Fortran 90, its parallel programming constructions, and
the numerica agorithms that capitalize on them. C and C++ programming have
not been far from our minds as we have written this two-volume version. We
think you will find that time spent in absorbing the principal lessons of Volume
2's Chapters 21-23 will be amply repaid in the future, as C and C++ eventualy
develop standard paralel extensions.
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Preface to the Second Edition

Our am in writing the original edition of Numerical Recipes was to provide a
book that combined general discussion, analytica mathematics, algorithmics, and
actua working programs. The success of the first edition puts us now in a difficult,
though hardly unenviable, position. We wanted, then and now, to write a book
that is informal, fearlessly editorial, unesoteric, and above all useful. There isa
danger that, if we are not careful, we might produce a second edition that isweighty,
balanced, scholarly, and boring.
Itisamixed blessing that we know more now than we did six years ago. Then,
we were making educated guesses, based on existing literature and our own research,
about which numerical techniqueswerethemost important and robust. Now, wehave
the benefit of direct feedback from alarge reader community. Lettersto our alter-ego
enterprise, Numerical Recipes Software, are in the thousands per year. (Please, don't
telephone us.) Our post office box has become a magnet for letters pointing out
that we have omitted some particular technique, well known to be important in a
particular field of science or engineering. We value such letters, and digest them
carefully, especialy when they point us to specific references in the literature.
The inevitable result of this input is that this Second Edition of Numerical
Recipes is substantially larger than its predecessor, in fact about 50% larger bothin
words and number of included programs (the latter now numbering well over 300).
“Don't let the book grow in size,” is the advice that we received from several wise
colleagues. We have tried to follow the intended spirit of that advice, even as we
violate the letter of it. We have not lengthened, or increased in difficulty, the book’s
principal discussions of mainstream topics. Many new topics are presented at this
same accessible level. Some topics, both from the earlier edition and new to this
one, are now set in smaller type that labels them as being “advanced.” The reader
who ignores such advanced sections completely will not, we think, find any lack of
continuity in the shorter volume that results.
Here are some highlights of the new materia in this Second Edition:
e anew chapter on integral equations and inverse methods
e a detailed treatment of multigrid methods for solving elliptic partial
differential equations
routines for band diagond linear systems
improved routines for linear algebra on sparse matrices
Cholesky and QR decomposition
orthogona polynomias and Gaussian quadratures for arbitrary weight
functions
methods for calculating numerical derivatives
e Padé approximants, and rational Chebyshev approximation
e Bessdl functions, and modified Bessel functions, of fractiona order; and
severa other new specia functions

e improved random number routines

e (uasi-random sequences

e routines for adaptive and recursive Monte Carlo integration in high-
dimensiona spaces

e globally convergent methods for sets of nonlinear equations

XV
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XVi Preface to the Second Edition

simulated annealing minimization for continuous control spaces

fast Fourier transform (FFT) for real datain two and three dimensions
fast Fourier transform (FFT) using externa storage

improved fast cosine transform routines

wavelet transforms

Fourier integrals with upper and lower limits

spectral analysis on unevenly sampled data

Savitzky-Golay smoothing filters

fitting straight line data with errors in both coordinates

a two-dimensiona Kolmogorov-Smirnoff test

the statistical bootstrap method

embedded Runge-K utta-Fehlberg methods for differential equations
high-order methods for tiff differential equations

a new chapter on “less-numerical” agorithms, including Huffman and
arithmetic coding, arbitrary precision arithmetic, and severa other topics.
Consult the Preface to the First Edition, following, or the Table of Contents, for a
list of the more “basic” subjects treated.
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Preface to the First Edition

We call thisbook Numerical Recipesfor several reasons. 1n one sense, thisbook
isindeed a“cookbook” on numerical computation. However there is an important
distinction between a cookbook and a restaurant menu. The latter presents choices
among complete dishes in each of which the individual flavors are blended and
disguised. The former — and this book — reveals the individua ingredients and
explains how they are prepared and combined.

Another purpose of the titleis to connote an eclectic mixture of presentational
techniques. This book is unique, we think, in offering, for each topic considered,
a certain amount of general discussion, a certain amount of anaytical mathematics,
a certain amount of discussion of agorithmics, and (most important) actual imple-
mentations of these ideas in the form of working computer routines. Our task has
been to find the right balance among these ingredients for each topic. You will
find that for some topics we have tilted quite far to the analytic side; this where we
have felt there to be gaps in the “standard” mathematical training. For other topics,
where the mathematical prerequisites are universaly held, we have tilted towards
more in-depth discussion of the nature of the computationa algorithms, or towards
practica questions of implementation.

We admit, therefore, to some unevennessinthe“level” of thisbook. About half
of it issuitable for an advanced undergraduate course on numerical computation for
science or engineering majors. The other haf ranges from the level of a graduate
course to that of a professional reference. Most cookbooks have, after al, recipes at
varying levels of complexity. An attractive feature of thisapproach, wethink, is that
thereader can usethebook at increasing level s of sophisticationas his/her experience
grows. Even inexperienced readers should be ableto use our most advanced routines
as black boxes. Having done so, we hope that these readers will subsequently go
back and learn what secrets are inside.

If there is a single dominant theme in this book, it is that practica methods
of numerical computation can be simultaneoudly efficient, clever, and — important
— clear. The dternative viewpoint, that efficient computational methods must
necessarily be so arcane and complex as to be useful only in “black box” form,
we firmly reject.

Our purpose in this book is thus to open up a large number of computationa
black boxes to your scrutiny. We want to teach you to take apart these black boxes
and to put them back together again, modifying them to suit your specific needs.
We assume that you are mathematicaly literate, i.e., that you have the normal
mathematical preparation associated with an undergraduate degree in a physica
science, or engineering, or economics, or a quantitative social science. We assume
that you know how to program a computer. We do not assume that you have any
prior formal knowledge of numerical analysis or numerical methods.

The scope of Numerical Recipes is supposed to be “everything up to, but
not including, partial differential equations.” We honor thisin the breach: First,
we do have one introductory chapter on methods for partia differentia equations
(Chapter 19). Second, weobvioudy cannot include everything ese. All theso-called
“standard” topics of a numerical analysis course have been included in this book:

Xviii
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Preface to the First Edition Xix

linear equations (Chapter 2), interpolation and extrapolation (Chaper 3), integration
(Chaper 4), nonlinear root-finding (Chapter 9), eigensystems (Chapter 11), and
ordinary differential equations (Chapter 16). Most of these topics have been taken
beyond their standard treatments into some advanced material which we have felt
to be particularly important or useful.

Some other subjectsthat we cover in detail are not usually found in the standard
numerical analysistexts. These includethe evaluation of functionsand of particul ar
special functions of higher mathematics (Chapters 5 and 6); random numbers and
Monte Carlo methods (Chapter 7); sorting (Chapter 8); optimization, including
multidimensional methods (Chapter 10); Fourier transform methods, including FFT
methods and other spectra methods (Chapters 12 and 13); two chapters on the
statistical description and modeling of data (Chapters 14 and 15); and two-point
boundary value problems, both shooting and relaxation methods (Chapter 17).

Theprogramsinthisbook areincludedin ANSI-standard FORTRAN-77. Versions
of the book in C, Pascal, and BASIC are available separately. We have more to
say about the FORTRAN language, and the computational environment assumed by
our routines, in §1.1 (Introduction).
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License Information

Read this section if you want to use the programs in this book on a computer.
You'’ll need to read the following Disclaimer of Warranty, get the programs onto your
computer, and acquire a Numerical Recipes software license. (Without thislicense,
which can be the free “immediate license” under terms described bel ow, the book is
intended as a text and reference book, for reading purposes only.)

Disclaimer of Warranty

We make no warranties, express or implied, that the programs contained
in thisvolume are free of error, or are consistent with any particular standard
of merchantability, or that they will meet your requirements for any particular
application. They should not berelied on for solving a problem whoseincorrect
solution could result in injury to a person or loss of property. If you do usethe
programsin such a manner, it isat your own risk. The authors and publisher
disclaim all liability for direct or consequential damages resulting from your
use of the programs.

How to Get the Code onto Your Computer

Pick one of the following methods:

e You can type the programs from this book directly into your computer. In
this case, the only kind of license available to you is the free “immediate
license” (see below). You are not authorized to transfer or distribute a
machine-readabl e copy to any other person, nor to have any other person
type the programs into a computer on your behalf. We do not want to hear
bug reports from you if you choose this option, because experience has
shown that virtually all reported bugsin such cases are typing efrors!

e You can download the Numerical Recipes programs e ectronically from
the Numerical Recipes On-Line Software Store, located at our Web site
(http://wuw.nr.com). They are packaged as a password-protected
file, and you'll need to purchase a license to unpack them. You can
get a single-screen license and password immediately, on-line, from the
On-Line Store, with fees ranging from $50 (PC, Macintosh, educationa
institutions' UNIX) to $140 (general UNIX). Downloading the packaged
software from the On-Line Store is aso the way to start if you want to
acquire amore genera (multiscreen, site, or corporate) license.

XX
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License Information XXi

e You can purchase media containing the programs from Cambridge Uni-
versity Press. Diskette versions are available in IBM-compatible format
for machines running Windows 3.1, 95, or NT. CDROM versionsin | SO-
9660 format for PC, Macintosh, and UNIX systems are aso available;
these include both Fortran and C versions (as well as versions in Pascal
and BASIC from the first edition) on a single CDROM. Diskettes pur-
chased from Cambridge University Press include a single-screen license
for PC or Macintosh only. The CDROM is available with a single-
screen license for PC or Macintosh (order ISBN 0 521 576083), or (at a
slightly higher price) with a single-screen license for UNIX workstations
(order ISBN 0 521 576075). Orders for media from Cambridge Univer-
sity Press can be placed at 800 872-7423 (North America only) or by
email to orders@cup.org (North America) or trade@cup.cam.ac.uk (rest
of world). Or, visitthe Web siteshttp: //www. cup . org (North America)
or http://www.cup.cam.ac.uk (rest of world).

Types of License Offered

Here are the types of licenses that we offer. Note that some types are
automatically acquired with the purchase of media from Cambridge University
Press, or of an unlocking password from the Numerical Recipes On-Line Software
Store, while other types of licenses reguire that you communicate specifically with
Numerical Recipes Software (email: orders@nr.com or fax: 781 863-1739). Our
Web site http://www.nr.com has additiona information.

e [“Immediate License’] If you are the individua owner of a copy of this
book and you type one or more of its routines into your computer, we
authorize you to use them on that computer for your own persona and
noncommercia purposes. You are not authorized to transfer or distribute
machine-readable copies to any other person, or to use the routines on
more than one machine, or to distribute executable programs containing
our routines. This is the only free license.

e [“Single-Screen License”] This is the most common type of low-cost
license, with terms governed by our Single Screen (Shrinkwrap) License
document (compl ete terms available through our Web site). Basically, this
license lets you use Numerical Recipes routines on any one screen (PC,
workstation, X-terminal, etc.). You may aso, under thislicense, transfer
pre-compiled, executable programs incorporating our routines to other,
unlicensed, screens or computers, providing that (i) your application is
noncommercial (i.e., does not involve the selling of your program for a
fee), (ii) the programs were first developed, compiled, and successfully
runon alicensed screen, and (iii) our routines are bound into the programs
in such a manner that they cannot be accessed as individua routines and
cannot practicably be unbound and used in other programs. That is, under
this license, your program user must not be able to use our programs as
part of a program library or “mix-and-match” workbench. Conditionsfor
other types of commercia or noncommercia distribution may be found
on our Web site (bttp://www.nr.com).
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XXii License Information

e [“Multi-Screen, Server, Site, and Corporate Licenses’] The terms of
the Single Screen License can be extended to designated groups of
machines, defined by number of screens, number of machines, locations,
or ownership. Significant discounts from the corresponding single-screen
prices are available when the estimated number of screens exceeds 40.
Contact Numerical Recipes Software (email: orders@nr.com or fax: 781
863-1739) for details.

e [“Course Right-to-Copy License’] Instructors at accredited educational
institutions who have adopted this book for a course, and who have
already purchased a Single Screen License (either acquired with the
purchase of media or from the Numerical Recipes On-Line Software
Store), may license the programs for use in that course as follows: Mail
your name, title, and address; the course name, number, dates, and
estimated enrollment; and advance payment of $5 per (estimated) student
to Numerical Recipes Software, at thisaddress: PO. Box 243, Cambridge,
MA 02238 (USA). You will receive by return mail a license authorizing
you to make copies of the programs for use by your students, and/or to
transfer the programs to a machine accessible to your students (but only
for the duration of the course).

About Copyrights on Computer Programs

Like artistic or literary compositions, computer programs are protected by
copyright. Generdly it is an infringement for you to copy into your computer a
program from a copyrighted source. (It is aso not a friendly thing to do, since it
deprives the program’s author of compensation for hisor her creative effort.) Under
copyright law, al “derivativeworks’ (modified versions, or trand ationsinto another
computer language) also come under the same copyright as the original work.

Copyright does not protect ideas, but only the expression of those ideas in
a particular form. In the case of a computer program, the ideas consist of the
program’s methodology and algorithm, including the necessary sequence of steps
adopted by the programmer. The expression of those ideas is the program source
code (particularly any arbitrary or stylistic choices embodied init), its derived object
code, and any other derivative works.

If you analyze the ideas contained in a program, and then express those
ideas in your own completdy different implementation, then that new program
implementation belongs to you. That is what we have done for those programs in
this book that are not entirely of our own devising. When programsin thisbook are
said to be “based” on programs published in copyright sources, we mean that the
ideas are the same. The expression of these ideas as source code is our own. We
believe that no material in this book infringes on an existing copyright.

Trademarks

Several registered trademarks appear within the text of this book: Sun is a
trademark of Sun Microsystems, Inc. SPARC and SPARCstation are trademarks of
SPARC International, Inc. Microsoft, Windows 95, Windows NT, PowerStation,
and MS are trademarks of Microsoft Corporation. DEC, VMS, Alpha AXP, and
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License Information XXiil

ULTRIX are trademarks of Digital Equipment Corporation. IBM is a trademark of
International Business Machines Corporation. Apple and Macintosh are trademarks
of Apple Computer, Inc. UNIX isatrademark licensed exclusively through X/Open
Co. Ltd. IMSL isatrademark of Visua Numerics, Inc. NAG refers to proprietary
computer software of Numerical Algorithms Group (USA) Inc. PostScript and
Adobelllustrator are trademarks of Adobe Systems Incorporated. Last, and no doubt
least, Numerical Recipes (when identifying products) is a trademark of Numerical
Recipes Software.

Attributions

The fact that ideas are legally “free as air” in no way supersedes the ethical
requirement that ideas be credited to their known originators. When programs in
thisbook are based on known sources, whether copyrighted or in the public domain,
published or “handed-down,” we have attempted to give proper attribution. Unfor-
tunately, the lineage of many programs in common circulation is often unclear. We
would be grateful to readers for new or corrected information regarding attributions,
which we will attempt to incorporate in subsequent printings.
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1.0
11
11
11

21

2.3
2.3
24
24
24
24
25
26
26
26
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
2.7
28
28
29
29
2.10
2.10
2.10
2.10
2.10

31
3.2
3.3
3.3
3.4

Computer Programs

by Chapter and Section

flmoon
julday
badluk
caldat

gauss]j

ludcmp
lubksb
tridag
banmul
bandec
banbks
mprove
svbksb
svdcmp
pythag
cyclic
sprsin
sprsax
sprstx
sprstp
sprspm
sprstm
linbcg
snrm
atimes
asolve
vander
toeplz
choldc
cholsl
grdcmp
grsolv
rsolv
qrupdt
rotate

polint
ratint
spline
splint
locate

calculate phases of the moon by date
Julian Day number from calendar date
Friday the 13th when the moon is full
calendar date from Julian day number

Gauss-Jordan matrix inversion and linear equation
solution

linear equation solution, LU decomposition
linear equation solution, backsubstitution
solution of tridiagonal systems

multiply vector by band diagonal matrix
band diagona systems, decomposition

band diagona systems, backsubstitution
linear equation solution, iterative improvement
singular value backsubstitution

singular value decomposition of a matrix
calculate (a? + b?)'/? without overflow
solution of cyclic tridiagona systems
convert matrix to sparse format

product of sparse matrix and vector

product of transpose sparse matrix and vector
transpose of sparse matrix

pattern multiply two sparse matrices
threshold multiply two sparse matrices
biconjugate gradient solution of sparse systems
used by linbcg for vector norm

used by 1inbcg for sparse multiplication
used by linbcg for preconditioner

solve Vandermonde systems

solve Toeplitz systems

Cholesky decomposition

Cholesky backsubstitution

QR decomposition

QR backsubstitution

right triangular backsubstitution

update a QR decomposition

Jacobi rotation used by qrupdt

polynomial interpolation

rational function interpolation
construct a cubic spline

cubic spline interpolation

search an ordered table by bisection

XXiV
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Computer Programs by Chapter and Section

XXV

34
35
35
3.6
3.6
3.6
3.6
36

4.2
4.2
4.2
4.3
44
44
4.4
4.4
44
44
45
45
45
45
45
45
45
4.6

51
53
53
53
5.7
58
58
59
59
5.10
5.10
511
512
513

6.1
6.1
6.1
6.1

hunt

polcoe
polcof
polin2
bcucof
bcuint
splie2
splin2

trapzd
qtrap

gsimp

qromb

midpnt
gromo

midinf
midsql
midsqu
midexp
ggaus

gauleg
gaulag
gauher
gaujac
gaucof
orthog
quad3d

eulsum
ddpoly
poldiv
ratval
dfridr
chebft
chebev
chder
chint
chebpc
pcshft
pccheb
pade
ratlsq

gammln
factrl
bico

factln

search a table when calls are correlated
polynomial coefficients from table of values
polynomial coefficients from table of values
two-dimensional polynomia interpolation
construct two-dimensional bicubic
two-dimensional bicubic interpolation
construct two-dimensional spline
two-dimensional spline interpolation

trapezoidal rule

integrate using trapezoidal rule

integrate using Simpson’'s rule

integrate using Romberg adaptive method

extended midpoint rule

integrate using open Romberg adaptive method
integrate a function on a semi-infinite interval
integrate a function with lower square-root singularity
integrate a function with upper square-root singularity
integrate a function that decreases exponentialy
integrate a function by Gaussian quadratures
Gauss-Legendre weights and abscissas
Gauss-Laguerre weights and abscissas
Gauss-Hermite weights and abscissas

Gauss-Jacobi weights and abscissas

quadrature weights from orthogonal polynomials
construct nonclassical orthogonal polynomials
integrate a function over athree-dimensiona space

sum a series by Euler—van Wijngaarden algorithm
evaluate a polynomia and its derivatives

divide one polynomia by another

evaluate a rationa function

numerical derivative by Ridders method

fit a Chebyshev polynomial to afunction
Chebyshev polynomia evaluation

derivative of a function aready Chebyshev fitted
integrate a function already Chebyshev fitted
polynomial coefficients from a Chebyshev fit
polynomial coefficients of a shifted polynomial
inverse of chebpc; use to economize power series
Padé approximant from power series coefficients
rationa fit by least-squares method

logarithm of gamma function

factorial function

binomial coefficients function
logarithm of factorial function
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XXVi Computer Programs by Chapter and Section
6.1 beta beta function
6.2 gammp incomplete gamma function
6.2 gammq complement of incomplete gamma function
6.2 gser series used by gammp and gammg
6.2 gef continued fraction used by gammp and gammq
6.2 erf error function
6.2 erfc complementary error function
6.2 erfcc complementary error function, concise routine
6.3 expint exponential integral E,
6.3 ei exponential integral Ei
6.4 betai incomplete beta function
6.4 betacf continued fraction used by betai
6.5 bessjo Bessdl function Jy
6.5 bessy0 Bessdl function Yy
6.5 bessj1 Bessdl function J;
6.5 bessyl Bessdl function Y;
6.5 bessy Bessel function Y of genera integer order
6.5 bessj Bessel function J of general integer order
6.6 bessil modified Bessdl function I
6.6 besskO0 modified Bessdl function K
6.6 bessil modified Bessal function I;
6.6 besskl modified Bessal function K;
6.6 bessk modified Bessel function K of integer order
6.6 bessi modified Bessel function I of integer order
6.7 bessjy Bessel functions of fractional order
6.7 beschb Chebyshev expansion used by bessjy
6.7 bessik modified Bessal functions of fractional order
6.7 airy Airy functions
6.7 sphbes spherical Bessdl functions j,, and y,
6.8 plgndr Legendre polynomial's, associated (spherical harmonics)
6.9 frenel Fresnel integrals S(x) and C(x)
6.9 cisi cosine and sine integrals Ci and Si
6.10 dawson Dawson’s integral
6.11 rf Carlson's dlipticintegral of the first kind
6.11 rd Carlson’s dlipticintegral of the second kind
6.11 rj Carlson’s dlipticintegral of the third kind
6.11 rc Carlson’s degenerate eliptic integra
6.11 ellf Legendre dliptic integral of the first kind
6.11 elle Legendre éliptic integra of the second kind
6.11 ellpi Legendre dliptic integral of the third kind
6.11 sncndn Jacobian dliptic functions
6.12 hypgeo complex hypergeometric function
6.12 hypser complex hypergeometric function, series evaluation
6.12 hypdrv complex hypergeometric function, derivative of
7.1 ran0 random deviate by Park and Miller minimal standard
7.1 ranl random deviate, minimal standard plus shuffle
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Computer Programs by Chapter and Section XXVii

7.1
7.1
7.2
7.2
7.3
7.3
7.3
74
74
7.5
7.5
7.7
7.8
7.8
7.8
7.8

8.1
8.1
8.1
8.2
8.2
8.3
8.4
8.4
8.4
8.5
8.5
8.5
8.6
8.6

9.0
9.1
9.1
9.1
9.2
9.2
9.2
9.3
9.4
9.4
9.5
9.5

95
9.5

ran2
ran3
expdev
gasdev
gamdev
poidev
bnldev
irbitl
irbit2
psdes
ran4
sobseq
vegas
rebin
miser
ranpt

piksrt
piksr2
shell
sort
sort2
hpsort
indexx
sort3
rank
select
selip
hpsel
eclass
eclazz

scrsho
zbrac
zbrak
rtbis
rtflsp
rtsec
zriddr
zbrent
rtnewt
rtsafe
laguer
zroots

zrhqr
qroot

random deviate by L' Ecuyer long period plus shuffle
random deviate by Knuth subtractive method
exponential random deviates

normally distributed random deviates

gammea-law distribution random deviates

Poisson distributed random deviates

binomial distributed random deviates

random bit sequence

random bit sequence

“pseudo-DES’ hashing of 64 bits

random deviates from DES-like hashing

Sobol’s quasi-random sequence

adaptive multidimensional Monte Carlo integration
sample rebinning used by vegas

recursive multidimensiona Monte Carlo integration
get random point, used by miser

sort an array by straight insertion

sort two arrays by straight insertion

sort an array by Shell’s method

sort an array by quicksort method

sort two arrays by quicksort method

sort an array by heapsort method

construct an index for an array

sort, use an index to sort 3 or more arrays
construct a rank table for an array

find the Nth largest in an array

find the Nth largest, without atering an array
find M largest values, without altering an array
determine equivalence classes from list
determine equiva ence classes from procedure

graph a function to search for roots

outward search for brackets on roots

inward search for brackets on roots

find root of a function by bisection

find root of a function by false-position

find root of a function by secant method

find root of a function by Ridders method

find root of a function by Brent's method

find root of afunction by Newton-Raphson

find root of afunction by Newton-Raphson and bisection
find aroot of a polynomial by Laguerre’'s method
roots of a polynomial by Laguerre's method with
deflation

roots of a polynomial by eigenvalue methods
complex or double root of apolynomial, Bairstow
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XXViii Computer Programs by Chapter and Section
9.6 mnewt Newton’s method for systems of equations
9.7 lnsrch search aong a line, used by newt
9.7 newt globally convergent multi-dimensional Newton's method
9.7 fdjac finite-difference Jacobian, used by newt
9.7 fmin norm of avector function, used by newt
9.7 broydn secant method for systems of equations
101 mnbrak bracket the minimum of a function
10.1 golden find minimum of afunction by golden section search
10.2 brent find minimum of a function by Brent’s method
10.3 dbrent find minimum of afunction using derivative information
104 amoeba minimizein N-dimensions by downhill simplex method
104 amotry evaluate atrial point, used by amoeba
105 powell minimize in N-dimensions by Powell’s method
105 linmin minimum of afunction along aray in N-dimensions
105 fidim function used by 1inmin
10.6 frprmn minimize in N-dimensions by conjugate gradient
10.6 dfi1dim aternative function used by 1inmin
10.7 dfpmin minimize in N-dimensions by variable metric method
10.8 simplx linear programming maximization of alinear function
10.8 simpl linear programming, used by simplx
10.8 simp2 linear programming, used by simplx
10.8 simp3 linear programming, used by simplx
109 anneal traveling salesman problem by simulated annealing
10.9 revcst cost of areversal, used by anneal
10.9 revers do areversal, used by anneal
10.9 trncst cost of a transposition, used by anneal
109 trnspt do a transgposition, used by anneal
109 metrop Metropolis agorithm, used by anneal
10.9 amebsa simulated annealing in continuous spaces
10.9 amotsa evaluate a tria point, used by amebsa
111 jacobi eigenvalues and eigenvectors of a symmetric matrix
111 eigsrt eigenvectors, sortsinto order by eigenvalue
11.2 tred2 Householder reduction of areal, symmetric matrix
11.3 tqli eigensolution of a symmetric tridiagonal matrix
115 balanc balance a nonsymmetric matrix
115 elmhes reduce a general matrix to Hessenberg form
11.6 hqr eigenvalues of a Hessenberg matrix
12.2 fourl fast Fourier transform (FFT) in one dimension
12.3 twofft fast Fourier transform of two red functions
12.3 realft fast Fourier transform of asinglerea function
12.3 sinft fast sine transform
12.3 cosftl fast cosine transform with endpoints
12.3 cosft2 “staggered” fast cosine transform
124 fourn fast Fourier transform in multidimensions
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Computer Programs by Chapter and Section

XXiX

125
12.6
12.6

131
132
134
136
136
136
13.7
138
138
138
139
139
13.10
13.10
13.10
13.10
13.10

141
14.2
14.2
14.2
14.2
14.2
14.3
14.3
14.3
14.3
14.3
144
144
145
14.6
14.6
14.6
146
14.7
14.7
14.7
14.7
14.8

152

rlft3
fourfs
fourew

convlv
correl
spctrm
memcof
fixrts
predic
evlimem
period
fasper
spread
dftcor
dftint
wtl
daub4
pwtset
pwt
wtn

moment
ttest

avevar
tutest
tptest
ftest

chsone
chstwo
ksone

kstwo

probks
cntabl
cntab2
pearsn
spear

crank

kendl1
kendl2
ks2dils
quadct
quadvl
ks2d2s
savgol

fit

FFT of real datain two or three dimensions
FFT for huge data sets on external media
rewind and permute files, used by fourfs

convolution or deconvolution of datausing FFT
correlation or autocorrelation of data using FFT
power spectrum estimation using FFT

evaluate maximum entropy (MEM) coefficients
reflect roots of a polynomial into unit circle

linear prediction using MEM coefficients

power spectral estimation from MEM coefficients
power spectrum of unevenly sampled data

power spectrum of unevenly sampled larger data sets
extirpolate value into array, used by fasper
compute endpoint corrections for Fourier integrals
high-accuracy Fourier integrals

one-dimensional discrete wavelet transform
Daubechies 4-coefficient wavelet filter

initialize coefficients for pwt

partial wavelet transform

multidimensional discrete wavelet transform

calculate moments of a data set

Student’s ¢-test for difference of means

calculate mean and variance of a data set
Student’s t-test for means, case of unequal variances
Student’s t-test for means, case of paired data
F-test for difference of variances

chi-sguare test for difference between data and model
chi-sguare test for difference between two data sets
Kolmogorov-Smirnov test of data against model
Kolmogorov-Smirnov test between two data sets
Kolmogorov-Smirnov probability function
contingency table analysis using chi-square
contingency table analysis using entropy measure
Pearson’s correlation between two data sets
Spearman’s rank correlation between two data sets
replaces array elements by their rank

correlation between two data sets, Kendall’s tau
contingency table analysis using Kendall’s tau

K-S test in two dimensions, data vs. model

count points by quadrants, used by ks2d1s
quadrant probabilities, used by ks2d1s

K-S test in two dimensions, data vs. data
Savitzky-Golay smoothing coefficients

least-squares fit data to a straight line
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XXX Computer Programs by Chapter and Section

153 fitexy fit datato a straight line, errorsin both = and y

153 chixy used by fitexy to calculate a x?

154 1fit genera linear least-squares fit by normal eguations
154 covsrt rearrange covariance matrix, used by 1fit

154 svdfit linear |east-squares fit by singular value decomposition
154 svdvar variances from singular value decomposition

154 fpoly fit a polynomial using 1fit or svdfit

154 fleg fit aLegendre polynomial using 1fit or svdfit
155 mrqmin nonlinear |east-squares fit, Marquardt’s method

155 mrqcof used by mrqmin to evaluate coefficients

155 fgauss fit a sum of Gaussians using mrgmin

15.7 medfit fit datato a straight line robustly, least absolute deviation
15.7 rofunc fit data robustly, used by medfit

16.1 rk4d integrate one step of ODEs, fourth-order Runge-K utta
16.1 rkdumb integrate ODESs by fourth-order Runge-Kutta

16.2 rkqgs integrate one step of ODES with accuracy monitoring
16.2 rkck Cash-Karp-Runge-K utta step used by rkgs

16.2 odeint integrate ODESs with accuracy monitoring

16.3 mmid integrate ODES by modified midpoint method

164 bsstep integrate ODES, Bulirsch-Stoer step

16.4 pzextr polynomial extrapolation, used by bsstep

164 rzextr rational function extrapolation, used by bsstep

16.5 stoerm integrate conservative second-order ODES

16.6 stiff integrate stiff ODEs by fourth-order Rosenbrock
16.6 jacobn sample Jacobian routine for stiff

16.6 derivs sample derivatives routine for stiff

16.6 simpr integrate stiff ODEs by semi-implicit midpoint rule
16.6 stifbs integrate stiff ODES, Bulirsch-Stoer step

171 shoot solve two point boundary value problem by shooting
17.2 shootf ditto, by shooting to a fitting point

17.3 solvde two point boundary value problem, solve by relaxation
17.3 bksub backsubstitution, used by solvde

17.3 pinvs diagonalize a sub-block, used by solvde

17.3 red reduce columns of a matrix, used by solvde

174 sfroid spheroidal functions by method of solvde

174 difeq spheroidal matrix coefficients, used by sfroid

174 sphoot spheroidal functions by method of shoot

174 sphfpt spheroidal functions by method of shootf

18.1 fred2 solve linear Fredholm equations of the second kind
18.1 fredin interpolate solutions obtained with fred2

18.2 voltra linear Volterra equations of the second kind

18.3 wwghts quadrature weights for an arbitrarily singular kernel
18.3 kermom sampl e routine for moments of a singular kernel

18.3 quadmx sample routine for a quadrature matrix
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Computer Programs by Chapter and Section XXXi

18.3

195
19.6
19.6
19.6
19.6
196
196
196
196
196
196
196
196
196
196
196
196
196

201
20.2
20.3
20.3
20.3
204
204
204
204
205
205
205
20.6
20.6
20.6
20.6
20.6
20.6
20.6

fredex

sor
mglin
rstrct
interp
addint
slvsml
relax
resid
copy
£ill0
maloc
mgfas
relax?2
slvsm2
lop
matadd
matsub
anorm?2

machar
igray
icrcl
icrc
decchk
hufmak
hufapp
hufenc
hufdec
arcmak
arcode
arcsum
mpops
mpmul
mpinv
mpdiv
mpsqrt
mp2dfr
mppi

example of solving a singular Fredholm equation

elliptic PDE solved by successive overrel axation method
linear eliptic PDE solved by multigrid method
half-weighting restriction, used by mglin, mgfas
bilinear prolongation, used by mglin, mgfas
interpolate and add, used by mglin

solve on coarsest grid, used by mglin
Gauss-Seidel relaxation, used by mglin

calculate residual, used by mglin

utility used by mglin, mgfas

utility used by mglin

memory alocation utility used by mglin, mgfas
nonlinear eliptic PDE solved by multigrid method
Gauss-Seidd relaxation, used by mgfas

solve on coarsest grid, used by mgfas

applies nonlinear operator, used by mgfas

utility used by mgfas

utility used by mgfas

utility used by mgfas

diagnose computer’s floating arithmetic

Gray code and its inverse

cyclic redundancy checksum, used by icrc

cyclic redundancy checksum

decimal check digit calculation or verification
construct a Huffman code

append bits to a Huffman code, used by hufmak

use Huffman code to encode and compress a character
use Huffman code to decode and decompress a character
construct an arithmetic code

encode or decode a character using arithmetic coding
add integer to byte string, used by arcode

multiple precision arithmetic, simpler operations
multiple precision multiply, using FFT methods
multiple precision reciprocal

multiple precision divide and remainder

multiple precision square root

multiple precision conversion to decimal base
multiple precision example, compute many digitsof =
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Chapter 1.  Preliminaries

1.0 Introduction

This book, like its predecessor edition, is supposed to teach you methods of
numerical computing that are practical, efficient, and (insofar as possible) elegant.
We presume throughout this book that you, the reader, have particul ar tasks that you
want to get done. We view our job as educating you on how to proceed. Occasionally
we may try to reroute you briefly onto a particularly beautiful side road; but by and
large, we will guide you along main highways that lead to practical destinations.

Throughout this book, you will find us fearlessy editoridizing, telling you
what you should and shouldn’t do. This prescriptive tone results from a conscious
decision on our part, and we hope that you will not find it irritating. We do not
claim that our advice is infalible! Rather, we are reacting against a tendency, in
the textbook literature of computation, to discuss every possible method that has
ever been invented, without ever offering apractical judgment on relative merit. We
do, therefore, offer you our practica judgments whenever we can. As you gain
experience, you will form your own opinion of how reliable our adviceis.

We presume that you are able to read computer programs in FORTRAN, that
being the language of this version of Numerical Recipes (Second Edition). The
book Numerical Recipesin C (Second Edition) is separately available, if you prefer
to program in that language. Earlier editions of Numerical Recipes in Pascal and
Numerical Recipes Routines and Examples in BASC are also available; while not
containing the additional material of the Second Edition versionsin C and FORTRAN,
these versions are perfectly serviceable if Pascal or BASIC is your language of
choice.

When we include programs in the text, they look like this:

SUBROUTINE flmoon(n,nph,jd,frac)

INTEGER jd,n,nph

REAL frac,RAD

PARAMETER (RAD=3.14159265/180.)
Our programs begin with an introductory comment summarizing their purpose and explain-
ing their calling sequence. This routine calculates the phases of the moon. Given an integer
n and a code nph for the phase desired (nph = 0 for new moon, 1 for first quarter, 2 for
full, 3 for last quarter), the routine returns the Julian Day Number jd, and the fractional
part of a day frac to be added to it, of the nth such phase since January, 1900. Greenwich
Mean Time is assumed.

INTEGER i

REAL am,as,c,t,t2,xtra

c=n+nph/4. This is how we comment an individual line.

t=c/1236.85

t2=t**2
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2 Chapter 1.  Preliminaries

as=359.2242+29.105356%c You aren’t really intended to understand this al-
am=306.0253+385.816918%c+0.010730*t2 gorithm, but it does work
jd=2415020+28%n+7*nph
xtra=0.75933+1.53058868*c+(1.178e-4-1.55e-7*t) *t2
if (nph.eq.0.or.nph.eq.2)then
xtra=xtra+(0.1734-3.93e-4*t)*sin (RAD*as)-0.4068*sin (RAD*am)
else if(nph.eq.1l.or.nph.eq.3)then
xtra=xtra+(0.1721-4.e-4*t)*sin(RAD*as)-0.6280*sin (RAD*am)
else
pause ’nph is unknown in flmoon’ This is how we will indicate error conditions.
endif
if (xtra.ge.0.)then
i=int(xtra)
else
i=int(xtra-1.)
endif
jd=jd+i
frac=xtra-i
return
END

A few remarks about our typographical conventions and programming style

are in order at this point:

e It isgood programming practice to declare all variables and identifiersin
explicit “type’ statements (REAL, INTEGER, etc.), even though theimplicit
declaration rules of FORTRAN do not require this. We will aways do
s0. (As an aside to non-FORTRAN programmers, the implicit declaration
rules are that variables which begin with the letters i, j,k,1,m,n are
implicitly declared to be type INTEGER, while all other variables are
implicitly declared to be type REAL. Explicit declarations override these
conventions.)

e In sympathy with modular and object-oriented programming practice,
we separate, typographically, a routine's “public’ or “interface” section
from its “private” or “implementation” section. We do this even though
FORTRAN is by no means a modular or object-oriented language: the
separation makes sense simply as good programming style.

e The public section contains the calling interface and declarations of its
variables. We find it useful to consider PARAMETER statements, and their
associated declarations, as also being in the public section, since a user
may want to modify parameter valuesto suit a particular purpose. COMMON
blocks are likewise usualy part of the public section, since they involve
communication between routines.

e Asthe last entry in the public section, we will, where applicable, put a
standardized comment linewith theword USES (not aFORTRAN keyword),
followed by alist of al external subroutines and functionsthat the routine
references, excluding built-in FORTRAN functions. (For examples, see the
routines in §6.1.)

e Anintroductory comment, set in type as an indented paragraph, separates
the public section from the private or implementation section.

o Withintheintroductory comments, aswell asinthetext, wewill frequently
use the notation a(1:m) to mean “the array elements a(1), a(2), ...,
a(m).” Likewise, notations like b(2:7) or c¢(1:m,1:n) are to be
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1.0 Introduction 3

interpreted as ranges of array indices. (This use of colon to denote ranges
comes from FORTRAN-77's syntax for array declarators and character
substrings.)

e The implementation section contai ns the declarations of variablesthat are
used only internally intheroutine, any necessary SAVE statementsfor static
variables (variables that must be preserved between calls to the routine),
and of course the routine's actual executable code.

e Caseisnot significantin FORTRAN, so it can be used to promote readability.
Our convention is to use upper case for two different, nonconflicting,
purposes. First, nonexecutable compiler keywords are in upper case (e.g.,
SUBROUTINE, REAL, COMMON); second, parameter identifiers are in upper
case. The reason for capitalizing parameters is that, because their values
are liable to be modified, the user often needs to scan the implementation
section of code to see exactly how the parameters are used.

e For simplicity, we adopt the convention of handling all errors and excep-
tional cases by the pause statement. In general, we do not intend that you
continue program execution after a pause occurs, but FORTRAN allowsyou
to do so — if you want to see what kind of wrong answer or catastrophic
error results. In many applications, you will want to modify our programs
to do more sophisticated error handling, for example to return with an
error flag set, or call an error-handling routine.

e In the printed form of this book, we take some special typographical
liberties regarding statement labels, and do ... continue constructions.
These are described in §1.1. Note that no such liberties are taken in the
machine-readable Numerical Recipes diskettes, where all routines are in
standard ANS| FORTRAN-77.

Computational Environment and Program Validation

Our goal is that the programs in this book be as portable as possible, across
different platforms (models of computer), across different operating systems, and
across different FORTRAN compilers. As surrogates for the large number of possible
combinations, we have tested all the programs in this book on the combinations
of machines, operating systems, and compilers shown on the accompanying table.
More generally, the programs should run without modification on any compiler that
implements the ANSI FORTRAN-77 standard. At the time of writing, there are not
enough installed implementations of the successor FORTRAN-90 standard to justify
our using any of its more advanced festures. Since FORTRAN-90 is backwards-
compatible with FORTRAN-77, there should be no difficulty in using the programsin
this book on FORTRAN-90 compilers, as they become available.

In validating the programs, we have taken the program source code directly
from the machine-readable form of the book’s manuscript, to decrease the chance
of propagating typographica errors. “Driver” or demonstration programs that we
used as part of our validations are available separately as the Numerical Recipes
Example Book (FORTRAN), as well as in machine-readable form. If you plan to
use more than a few of the programs in this book, or if you plan to use programs
in this book on more than one different computer, then you may find it useful to
obtain a copy of these demonstration programs.
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4 Chapter 1.  Preliminaries

Tested Machinesand Compilers

Hardware O/S Version Compiler Version

IBM PC compatible486/33 MS-DOS5.0 Microsoft Fortran 5.1

IBM RS6000 AIX 3.0 IBM AIX XL FORTRAN Compiler/6000
IBM PC-RT BSD UNIX 4.3 “UNIX Fortran 77"

DEC VAX 4000 VMS54 VAX Fortran 5.4

DEC VAXstation 2000 BSD UNIX 4.3 Berkeley f77 2.0 (4.3 bsd, SCCS lev. 6)
DECstation 5000/200 ULTRIX 4.2 DEC Fortran for ULTRIX RISC 3.1
DECsystem 5400 ULTRIX 4.1 MIPS {77 2.10

Sun SPARCstation 2 Sun0OS 4.1 Sun Fortran 1.4 (SC 1.0)

Apple Macintosh System 6.0.7/ MPW 3.2 Absoft Fortran 77 Compiler 3.1.2

Of course we would be foolish to claim that there are no bugsin our programs,
and we do not make such a claim. We have been very careful, and have benefitted
from the experience of the many readers who have written to us. If you find a new
bug, please document it and tell us!

Compatibility with the First Edition

If you are accustomed to the Numerical Recipesroutinesof theFirst Edition, rest
assured: amost all of them are still here, with the same names and functionalities,
often with major improvements in the code itself. In addition, we hope that you
will soon become equally familiar with the added capabilities of the more than 100
routines that are new to this edition.

We have retired a small number of First Edition routines, those that we believe
to be clearly dominated by better methods implemented in this edition. A table,
following, lists the retired routines and suggests replacements.

First Edition users should also be aware that some routines common to
both editions have dterations in their caling interfaces, so are not directly “plug
compatible” A fairly completelistis: chsone, chstwo, covsrt, dfpmin, laguer,
1fit, memcof, mrqcof, mrgmin, pzextr, ran4, realft, rzextr, shoot, shootf.
There may be others (depending in part on which printing of the First Editionistaken
for the comparison). If you have written software of any appreciable complexity
that is dependent on First Edition routines, we do not recommend blindly replacing
them by the corresponding routines in this book. We do recommend that any new
programming efforts use the new routines.

About References

You will find references, and suggestions for further reading, listed at the
end of most sections of this book. References are cited in the text by bracketed
numbers like this[1].

Because computer algorithms often circulate informally for quite some time
before appearing in a published form, the task of uncovering “primary literature”
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1.1 Program Organization and Control Structures 5

Previous Routines Omitted from This Edition

Name(s) Replacement(s) Comment
ADI mglin Or mgfas better method
COSFT cosftlor cosft2 choice of boundary conditions
CEL, EL2 rf,rd, rj, rc better algorithms
DES, DESKS ran4 NOW useSpsdes  wastoo slow
MDIAN1,MDIAN2 select, selip more general
QCKSRT sort name change (SORT iSnow hpsort)
RKQC rkqgs better method
SMOOFT use convlv with coefficients from savgol
SPARSE linbcg more general

is sometimes quite difficult. We have not attempted this, and we do not pretend
to any degree of bibliographical completeness in this book. For topics where a
substantial secondary literature exists (discussion in textbooks, reviews, etc.) we
have conscioudly limited our references to a few of the more useful secondary
sources, especially those with good references to the primary literature. Where the
existing secondary literature is insufficient, we give references to a few primary
sources that are intended to serve as starting points for further reading, not as
complete bibliographies for the field.

Theorder inwhichreferencesarelisted isnot necessarily significant. It reflectsa
compromise between listing cited referencesin theorder cited, and listing suggestions
for further reading in aroughly prioritized order, with the most useful onesfirst.

The remaining two sections of this chapter review some basic concepts of
programming (control structures, etc.) and of numerica anaysis (roundoff error,
etc.). Thereafter, we plunge into the substantive material of the book.

CITED REFERENCES AND FURTHER READING:

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [1]

1.1 Program Organization and Control
Structures

We sometimes liketo point out the close anal ogi es between computer programs,
on the one hand, and written poetry or written musical scores, on the other. All
three present themselves as visua media, symbols on a two-dimensiona page or
computer screen. Yet, in all three cases, the visual, two-dimensional, frozen-in-time
representation communicates (or is supposed to communicate) something rather
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6 Chapter 1. Preliminaries

different, namely a process that unfoldsin time. A poem is meant to be read; music,
played; a program, executed as a sequential series of computer instructions.

Inal three cases, thetarget of the communication, initsvisua form, isahuman
being. The goa is to transfer to him/her, as efficiently as can be accomplished,
the greatest degree of understanding, in advance, of how the process will unfoldin
time. In poetry, this human target is the reader. In music, it is the performer. In
programming, it is the program user.

Now, you may object that the target of communication of a program is not
a human but a computer, that the program user is only an irrelevant intermediary,
a lackey who feeds the machine. This is perhaps the case in the situation where
the business executive pops a diskette into a desktop computer and feeds that
computer a black-box program in binary executable form. The computer, in this
case, doesn’t much care whether that program was written with “good programming
practice” or not.

We envision, however, that you, the readers of thisbook, are in quite a different
Situation. You need, or want, to know not just what a program does, but also how
it doesit, so that you can tinker with it and modify it to your particular application.
You need others to be able to see what you have done, so that they can criticize or
admire. In such cases, where the desired goal is maintainable or reusable code, the
targets of a program’s communication are surely human, not machine.

One key to achieving good programming practice is to recognize that pro-
gramming, music, and poetry — al three being symbolic constructs of the human
brain — are naturally structured into hierarchies that have many different nested
levels. Sounds (phonemes) form small meaningful units (morphemes) whichin turn
form words; words group into phrases, which group into sentences; sentences make
paragraphs, and these are organized into higher levels of meaning. Notes form
musical phrases, which form themes, counterpoints, harmonies, etc.; which form
movements, which form concertos, symphonies, and so on.

The structure in programs is equaly hierarchical. Appropriately, good pro-
gramming practice brings different techniques to bear on the different levels[1-3].
At alow leve is the ascii character set. Then, constants, identifiers, operands,
operators. Then program statements, like a(j+1)=b+c/3.0. Here, the best pro-
gramming advice is simply be clear, or (correspondingly) don't be too tricky. You
might momentarily be proud of yourself at writing the single line

k=(2-j)*(1+3%j) /2

if you want to permute cyclicaly one of the values j = (0, 1, 2) into respectively
k = (1,2,0). You will regret it later, however, when you try to understand that
line. Better, and likely also faster, is

k=j+1
if (k.eq.3) k=0

Many programming stylists would even argue for the ploddingly literal

if (j.eq.0) then
k=1

else if (j.eq.1) then
k=2
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1.1 Program Organization and Control Structures 7

else if (j.eq.2) then

k=0
else

pause ’never get here’
endif

on thegroundsthat it isboth clear and additionally safeguarded from wrong assump-
tions about the possible values of j. Our preference among the implementations
is for the middle one.

In this simple example, we have in fact traversed several levels of hierarchy:
Statements frequently come in “groups’ or “blocks’ which make sense only taken
as awhole. The middle fragment above is one example. Another is

swap=a(j)
a(j)=b(j)
b(j)=swap

which makes immediate sense to any programmer as the exchange of two variables,
while

sum=0.0
ans=0.0
n=1

isvery likely to be an initialization of variables prior to some iterative process. This
level of hierarchy in aprogramisusually evident to theeye. It isgood programming
practice to put in comments at thislevel, e.g., “initialize” or “exchange variables.”

The next level is that of control structures. These are things like the
if.. .then...else clauses in the example above, do loops, and so on. This
level is sufficiently important, and relevant to the hierarchical level of the routines
in this book, that we will come back to it just below.

At gtill higher levels in the hierarchy, we have (in FORTRAN) subroutines,
functions, and the whole “global” organization of the computational task to be
done. Inthe musical analogy, we are now at the level of movements and complete
works. At these levels, modularization and encapsulation become important
programming concepts, the general idea being that program units should interact
with oneanother only through clearly defined and narrowly circumscribed interfaces.
Good modularization practice is an essential prerequisite to the success of large,
complicated software projects, especially those employing the efforts of more than
one programmey. It isalso good practice (if not quite as essential) inthe lessmassive
programming tasks that an individual scientist, or reader of this book, encounters.

Some computer languages, such as Modula-2 and C++, promote good modular-
ization with higher-level language constructs, absent in FORTRAN-77. In Modula2,
for example, subroutines, type definitions, and data structures can be encapsulated
into “modules’ that communicate through declared public interfaces and whose
internal workings are hidden from the rest of the program[4]. In the C++ language,
the key concept is“class,” a user-definable generalization of data type that provides
for data hiding, automatic initidization of data, memory management, dynamic
typing, and operator overloading (i.e., the user-definable extension of operators like
+ and * so0 as to be appropriate to operands in any particular class) [S5]. Properly
used in defining the data structures that are passed between program units, classes
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8 Chapter 1.  Preliminaries

can clarify and circumscribe these units' public interfaces, reducing the chances of
programming error and also allowing a considerable degree of compile-time and
run-time error checking.

Beyond modularization, though depending on it, lie the concepts of object-
oriented programming. Here a programming language, such as C++ or Turbo Pascal
5.516], allows amodul€'s public interface to accept redefinitions of types or actions,
and these redefinitions become shared al the way down through the module's
hierarchy (so-called polymorphism). For example, a routine written to invert a
matrix of real numbers could — dynamically, at run time — be made able to handle
complex numbers by overloading complex data types and corresponding definitions
of the arithmetic operations. Additional concepts of inheritance (the ability to define
adatatypethat “inherits’ al the structure of another type, plus additional structure
of its own), and object extensibility (the ability to add functionality to a module
without access to its source code, e.g., a run time), also come into play.

We have not attempted to modularize, or make objects out of, the routinesin
this book, for at least two reasons. First, the chosen language, FORTRAN-77, does
not really make this possible. Second, we envision that you, the reader, might want
to incorporate the algorithms in this book, a few at a time, into modules or objects
with a structure of your own choosing. There doesnot exist, at present, a standard or
accepted set of “classes’ for scientific object-oriented computing. While we might
have tried to invent such a set, doing so would have inevitably tied the algorithmic
content of the book (which isitsraison d’étre) to some rather specific, and perhaps
haphazard, set of choices regarding class definitions.

On the other hand, we are not unfriendly to the goals of modular and object-
oriented programming. Within the limits of FORTRAN, we have therefore tried to
structure our programsto be “ object friendly,” principally viathe clear delineation of
interface vs. implementation (§1.0) and the explicit declaration of variables. Within
our implementation sections, we have paid particular attention to the practices of
structured programming, as we now discuss.

Control Structures

An executing program unfolds in time, but not strictly in the linear order in
which the statements are written. Program statements that affect the order in which
statements are executed, or that affect whether statements are executed, are called
control statements. Control statements never make useful sense by themselves. They
make sense only in the context of the groups or blocks of statementsthat they in turn
control. If you think of those blocks as paragraphs containing sentences, then the
control statements are perhaps best thought of as the indentation of the paragraph
and the punctuation between the sentences, not the words within the sentences.

We can now say what the goa of structured programming is. It is to make
program control manifestly apparent in the visual presentation of the program. You
see that this goa has nothing at all to do with how the computer sees the program.
Asalready remarked, computersdon’t care whether you use structured programming
or not. Human readers, however, do care. You yourself will also care, once you
discover how much easier it isto perfect and debug a well-structured program than
one whose control structure is obscure.
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1.1 Program Organization and Control Structures 9

You accomplish the goals of structured programming in two complementary
ways. First, you acquaint yourself with the small number of essentia control
structures that occur over and over again in programming, and that are therefore
given convenient representationsin most programming languages. You should learn
to think about your programming tasks, insofar as possible, exclusively in terms of
these standard control structures. In writing programs, you should get into the habit
of representing these standard control structuresin consistent, conventional ways.

“Doesn’t this inhibit creativity?” our students sometimes ask. Yes, just
as Mozart's crestivity was inhibited by the sonata form, or Shakespeare's by the
metrical requirements of the sonnet. The point is that creativity, when it is meant to
communicate, doeswell under the inhibitionsof appropriate restrictions on format.

Second, you avoid, insofar as possible, control statements whose controlled
blocks or objects are difficult to discern at a glance. This means, in practice, that
you must try to avoid statement labels and goto’s. It is not the goto’s that are
dangerous (although they do interrupt on€'s reading of a program); the statement
labels are the hazard. |In fact, whenever you encounter a statement label while
reading a program, you will soon become conditioned to get a sinking feeling in
the pit of your stomach. Why? Because the following questions will, by habit,
immediately spring to mind: Where did control come fromin a branch to thislabel?
It could be anywhere in the routine! What circumstances resulted in a branch to
thislabel? They could be anything! Certainty becomes uncertainty, understanding
dissolves into a morass of possibilities.

Some older languages, notably 1966 FORTRAN and to alesser extent FORTRAN-
77, require statement labelsin the construction of certain standard control structures.
We will see thisin more detail below. This is a demerit for these languages. In
such cases, you must use labels as required. But you should never branch to them
independently of the standard control structure. If you must branch, let it be to an
additional label, one that is not masguerading as part of astandard control structure.

We call labels that are part of a standard construction and never otherwise
branched to tame labels. They do not interfere with structured programming in any
way, except possibly typographically as distractions to the eye.

Some examples are now in order to make these considerations more concrete
(see Figure 1.1.1).

Catalog of Standard Structures

Iteration.  In FORTRAN, simple iteration is performed with a do loop, for
example

do 10 j=2,1000
b(j)=a(j-1)
a(j-1)=j
10 continue

Notice how we aways indent the block of code that is acted upon by the control
structure, leaving the structure itself unindented. The statement label 10 in this
example is atame label. The majority of modern implementations of FORTRAN-77
provide a nonstandard |anguage extension that obviates the tame label. Originaly
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12 Chapter 1. Preliminaries

introduced in Digital Equipment Corporations's VAX-11 FORTRAN, the “enddo”
statement is used as

do j=2,1000
b(j)=a(j-1)
a(j-1)=j
enddo

Infact, it was aterrible mistakethat the American National Standard for FORTRAN-77
(ANSI X3.9-1978) failed to provide an enddo or equivalent construction. This
mistake by the people who write standards, whoever they are, presents us now,
more than 15 years later, with a painful quandary: Do we stick to the standard, and
clutter our programs with tame labels? Or do we adopt a nonstandard (albeit widely
implemented) FORTRAN construction like enddo?

We have adopted a compromise position. Standards, even imperfect standards,
areterribly important and highly necessary in atime of rapid evolutionin computers
and their applications. Therefore, all machine-readable forms of our programs (e.g.,
the diskettes that you can order from the publisher — see back of this book) are
strictly FORTRAN-77 compliant. (Well, almost strictly: there is a minor anomaly
regarding bit manipulation functions, see below.) In particular, do blocks always
end with labeled continue statements, as in the first example above.

In the printed version of this book, however, we make use of typography to
mitigatethe standard’ sdeficiencies. The statement label that followsthedo isprinted
in small type — as asignal that it is atame label that you can safely ignore. And,
theword “continue” is printed as “enddo”, which you may regard as avery peculiar
change of font! The example above, in our adopted typographical format, is

do1o j=2,1000
b(j)=a(j-1)
a(j-1)=j
enddo 10

(Notice that we a so take the typographical liberty of writing the tame label after the
“continue” statement, rather than before.)
A nested do loop looks like this:

do1 j=1,20
s(j)=0.
do 11 k=5,10
s(J=s(ji+a(j,k)
enddo 1
enddo 12

Generaly, the numerica values of the tame labels are chosen to put the enddo’s
(labeled continue’s on the diskette) into ascending numerical order, hence thedo »
before the don in the above example.

IF structure.  In this structure the FORTRAN-77 standard is exemplary. Here
is aworking program that consists dominantly of if control statements:
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1.1 Program Organization and Control Structures 13

FUNCTION julday(mm,id,iyyy)

INTEGER julday,id,iyyy,mm, IGREG

PARAMETER (IGREG=15+31%(10+12%1582)) Gregorian Calendar adopted Oct. 15, 1582
In this routine julday returns the Julian Day Number that begins at noon of the calendar
date specified by month mm, day id, and year iyyy, all integer variables. Positive year
signifies A.D.; negative, B.C. Remember that the year after 1 B.C. was 1 A.D.

INTEGER ja,jm,jy

Jy=iyyy

if (jy.eq.0) pause ’julday: there is no year zero’

if (jy.1t.0) jy=jy+1i

if (mm.gt.2) then Here is an example of a block IF-structure.
jm=mm+1

else
Jy=jy-1
jm=mm+13

endif

julday=int (365.25%jy)+int (30.6001%jm) +id+1720995

if (id+31*(mm+12*iyyy) .ge.IGREG) then Test whether to change to Gregorian Calen-
ja=int (0.01%jy) dar.
julday=julday+2-ja+int (0.25%ja)

endif

return

END

(Astronomers number each 24-hour period, starting and ending a noon, with
a unique integer, the Julian Day Number [7]. Julian Day Zero was a very long
time ago; a convenient reference point is that Julian Day 2440000 began at noon
of May 23, 1968. If you know the Julian Day Number that begins at noon of a
given caendar date, then the day of the week of that date is obtained by adding
1 and taking the result modulo base 7; a zero answer corresponds to Sunday, 1 to
Monday, ..., 6 to Saturday.)

Do-Whileiteration.  Most good languages, except FORTRAN, provide for
structures like the following C example:

while (n<1000) {
n=2%n;
j++; In C this has the meaning j=j+1.

In fact, many FORTRAN implementations have the nonstandard extension

do while (n.1t.1000)
n=2%n
j=j+1

enddo

Withinthe FORTRAN-77 standard, however, the structurerequires atame label:

17if (n.1t.1000) then
n=2%n
j=j+1
goto 17
endif
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14 Chapter 1. Preliminaries

There are other ways of constructing a Do-Whilein FORTRAN, but wetry to use
the above format consistently. You will quickly get used to a statement like »if as
signaling this structure. Notice that the two final statements are not indented, since
they are part of the control structure, not of the inside block.

Do-Until iteration.  InPascal, for example, thisis rendered as

REPEAT
n:=n DIV 2; Pascal’s integer divide is DIV.
k:=k+1;

UNTIL (n=1);

In FORTRAN we write

19 continue
n=n/2
k=k+1

if (n.ne.1) goto

Break. Inthiscase, you have aloop that is repeated indefinitely until some
condition tested somewhere in the middle of the loop (and possibly tested in more
than one place) becomes true. At that point you wish to exit the loop and proceed
with what comes after it. Standard FORTRAN does not make this structure accessible
without labels. We will try to avoid using the structure when we can. Sometimes,
however, it is plainly necessary. We do not have the patience to argue with the
designers of computer languages over this point. In FORTRAN we write

13 continue
[statements before the test]
if (---) gotous
[statements after the test]
goto 13
14 continue

Here isa program that uses several different iteration structures. One of uswas
once asked, for a scavenger hunt, to find the date of a Friday the 13th on which the
moon was full. Thisis a program which accomplishes that task, giving incidentally
all other Fridays the 13th as a by-product.

PROGRAM badluk
INTEGER ic,icon,idwk,ifrac,im,iybeg,iyend,iyyy,jd, jday,n,
julday
REAL TIMZON,frac
PARAMETER (TIMZON=-5./24.) Time zone —5 is Eastern Standard Time.
DATA iybeg,iyend /1900,2000/ The range of dates to be searched.
USES f I noon, j ul day
write (*,’(1x,a,ib,a,i5)’) ’Full moons on Friday the 13th from’,
iybeg,’ to’,iyend

do 12 iyyy=iybeg,iyend Loop over each year,
don im=1,12 and each month.
jday=julday(im,13,iyyy) Is the 13th a Friday?

idwk=mod (jday+1,7)
if (idwk.eq.5) then
n=12.37* (iyyy-1900+(im-0.5)/12.)
This value n is a first approximation to how many full moons have occurred
since 1900. We will feed it into the phase routine and adjust it up or down until
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1.1 Program Organization and Control Structures 15

we determine that our desired 13th was or was not a full moon. The variable
icon signals the direction of adjustment.
icon=0
call flmoon(n,2,jd,frac) Get date of full moon n.
ifrac=nint (24.*(frac+TIMZON)) Convert to hours in correct time zone.
if (ifrac.1t.0)then Convert from Julian Days beginning at noon
jd=jd-1 to civil days beginning at midnight.
ifrac=ifrac+24
endif
if (ifrac.gt.12)then
jd=jd+1
ifrac=ifrac-12
else
ifrac=ifrac+12
endif
if (jd.eq. jday)then Did we hit our target day?
write (*,’(/1x,i2,a,i2,a,i4)’) im,’/’,13,’/’,iyyy
write (*,’(1x,a,i2,a)’) ’Full moon ’,ifrac,
> hrs after midnight (EST).’
Don't worry if you are unfamiliar with FORTRAN's esoteric input/output
statements; very few programs in this book do any input/output.
goto 2 Part of the break-structure, case of a match.
else Didn't hit it.
ic=isign(1,jday-jd)
if(ic.eq.-icon) goto 2 Another break, case of no match.
icon=ic
n=n+ic
endif
goto 1
continue
endif
enddo 11
enddo 12
END

If you are merely curious, there were (or will be) occurrences of a full moon
on Friday the 13th (time zone GMT—5) on: 3/13/1903, 10/13/1905, 6/13/1919,
1/13/1922, 11/13/1970, 2/13/1987, 10/13/2000, 9/13/2019, and 8/13/2049.

Other “standard” structures. Our advice is to avoid them. Every
programming language has some number of “goodies’ that the designer just couldn’t
resist throwing in. They seemed like a good idea at the time. Unfortunately they
don't stand the test of time! Your program becomes difficult to trandate into other
languages, and difficult to read (because rarely used structures are unfamiliar to the
reader). You can amost aways accomplish the supposed conveniences of these
structures in other ways. Try to do so with the above standard structures, which
redly are standard. If you can’t, then use straightforward, unstructured, tests and
goto’s. Thiswill introduce real (not tame) statement |abels, whose very existence
will warn the reader to give special thought to the program’s control flow.

In FORTRAN we consider the ill-advised control structures to be

e assigned goto and assign statements

e computed goto Statement

e arithmetic if statement
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16 Chapter 1. Preliminaries

About “Advanced Topics”

Material set in smaller type, like this, signals an “advancedtopic,” either one outside of
the main argument of the chapter, or else one requiring of you more than the usual assumed
mathematical background, or else (in afew cases) adiscussion that is more speculative or an
algorithm that is less well-tested. Nothing important will be lost if you skip the advanced
topics on a first reading of the book.

You may havenoticed that, by itslooping over themonthsandyears, the programbadluk
avoids using any algorithm for converting a Julian Day Number back into a calendar date. A
routine for doing just this is not very interesting structurally, but it is occasionally useful:

SUBROUTINE caldat(julian,mm,id,iyyy)

INTEGER id,iyyy,julian,mm,IGREG

PARAMETER (IGREG=2299161)
Inverse of the function julday given above. Here julianis input as a Julian Day Number,
and the routine outputsmm,id, and iyyy as the month, day, and year on which the specified
Julian Day started at noon.

INTEGER ja,jalpha,jb,jc,jd,je

if (julian.ge.IGREG)then Cross-over to Gregorian Calendar produces
jalpha=int (((julian-1867216)-0.25)/36524.25) this correction.
ja=julian+i+jalpha-int (0.25%jalpha)

else if (julian.1lt.O)then Make day number positive by adding in-
ja=julian+36525%(1-julian/36525) teger number of Julian centuries, then

else subtract them off at the end.
ja=julian

endif

jb=ja+1524

jc=int (6680.+((jb-2439870)-122.1)/365.25)

jd=365*jc+int (0.25%jc)

je=int ((jb-jd)/30.6001)

id=jb-jd-int (30.6001%*je)

mm=je-1

if (mm.gt.12) mm=mm-12

iyyy=jc-4715

if (mm.gt.2)iyyy=iyyy-1

if (iyyy.le.0)iyyy=iyyy-1

if (julian.lt.0)iyyy=iyyy-100*(1-julian/36525)

return

END

(For additional calendrical algorithms, applicableto varioushistorical calendars, see[8].)
Some Habits and Assumed ANSI Extensions

Mentioning a few of our programming habits here will make it easier for you

to read the programs in this book.

e \We habitually use m and n to refer to the logical dimensions of a matrix,
mp and np to refer to the physical dimensions. (These important concepts
are detailed in §2.0 and Figure 2.0.1.)

o Often, when a subroutine or procedure is to be passed some integer n, it
needs an internally preset value for the largest possible value that will be
passed. We habitually call thisNMAX, and set it in aPARAMETER statement.
When we say inacomment, “largest value of n,” we do not mean toimply
that the program will fail algorithmically for larger values, but only that
NMAX must be altered.

e A number represented by TINY, usualy a parameter, is supposed to be
much smaller than any number of interest to you, but not so small that it
underflows. Its use is usually prosaic, to prevent divide checks in some
circumstances.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes



1.1 Program Organization and Control Structures 17

Asamatter of typography, the printed FORTRAN programs in this book, if typed
into a computer exactly as written, would violate the FORTRAN-77 standard in afew
trivial ways. The anomalies, which are not present in the machine-readabl e program
distributions, are as follows:

e As dready discussed, we use enddo followed by the statement |abel

instead of continue preceded by the labdl.

e Standard FORTRAN reads no more than 72 characters on alineand ignores
input from column 73 onward. Longer statements are broken up onto
“continuation lines.” In the printed programs in this book, some lines
contain more than 72 characters. When the break to a continuation line
is not shown explicitly, it should be inserted when you type the program
into a computer.

e Instandard FORTRAN, columns 1 through 6 on each line are used variously
for (i) statement labels, (ii) signaling a comment line, and (iii) signaling
a continuation line. We simplify the format dightly: To the left of the
“program left margin,” an integer is a statement label (not a “tame label”
as described above), an asterisk (*) indicates acontinuationline, and a“C”
indicates a comment line. Comment lines shown in thisway are generally
either USES statements (see §1.0), or el se “ commented-out program lines’
that are separately explained in each instance.

A small number of routines in this book require the use of functions that act
bitwise on integers, eg., bitwise “and” or “exclusive or”. Unfortunately, although
these functions are availablein virtually all modern FORTRAN implementations, they
are not a part of the FORTRAN-77 standard. Even more unfortunate is the fact that
there are two different naming conventions in widespread use. We use the names
iand(i,j), ior(i,j), not(i), ieor(i,j), and ishft(i,j), for and, or, not,
exclusive-or, and left-shift, respectively, as well as the subroutines ibset (i, j),
ibclr(i, j), andthelogica functionbtest (i, j) for bit-set, bit-clear, and bit-test.
Some (mainly UNIX) FORTRAN compilers use a different set of names, with the
following correspondences:

Us... Them. ..

iand(i,j) = and(i,j)

ior(i,j) = or(i,j)

not (i) = not(i)

ieor(i,j) = xor(i,j)

ishft(i,j) = 1shft(i,j)

ibset (i, ]) = bis(j,1) Note reversed arguments!
ibclr (i, j) = bic(j,1) Ditto!

btest (i, j) = bit(j,1) Ditto!

If you are one of “Them,” you can either modify the small number of programs
affected (e.g., by inserting FORTRAN statement function definitions at the beginning
of the routines), or else link to an object file into which you have compiled the
trivia functions that define “our” names in terms of “yours,” as in the above table.
Standards redlly are important!

Hexadecimal constants, for which there is no standard notation in FORTRAN
compilers, occur at three places in Chapter 7: aprogram fragment at theend of §7.1,
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18 Chapter 1. Preliminaries

and routines psdes and ran4 in §7.5. We use a notation like Z’> 3F800000, which
is consistent with the new FORTRAN-90 standard, but you may need to change this
to, e.g., x>3£800000°, >3F800000° X, or even 16#3F800000. In extremis, you can
convert the hex valuesto decimal integers; but note that most compilerswill require
anegative decimal integer as the value of a hex constant with its high-order bit set.

Asalready mentionedin §1.0, thenotationa (1 :m), in program commentsandin
thetext, denotesthearray element rangea (1), a(2), ..., a(m). Likewise, notations
likeb(2:7) orc(1:m,1:n) areto beinterpreted as denoting ranges of array indices.

CITED REFERENCES AND FURTHER READING:

Kernighan, B.W. 1978, The Elements of Programming Style (New York: McGraw-Hill). [1]

Yourdon, E. 1975, Techniques of Program Structure and Design (Englewood Cliffs, NJ: Prentice-
Hall). [2]

Meissner, L.P. and Organick, E.I. 1980, Fortran 77 Featuring Structured Programming (Reading,
MA: Addison-Wesley). [3]

Hoare, C.A.R. 1981, Communications of the ACM, vol. 24, pp. 75-83.

Wirth, N. 1983, Programming in Modula-2, 3rd ed. (New York: Springer-Verlag). [4]

Stroustrup, B. 1986, The C++ Programming Language (Reading, MA: Addison-Wesley). [5]

Borland International, Inc. 1989, Turbo Pascal 5.5 Object-Oriented Programming Guide (Scotts
Valley, CA: Borland International). [6]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [7]

Hatcher, D.A. 1984, Quarterly Journal of the Royal Astronomical Society, vol. 25, pp. 53-55; see
also op. cit. 1985, vol. 26, pp. 151-155, and 1986, vol. 27, pp. 506-507. [8]

1.2 Error, Accuracy, and Stability

Althoughwe assume no prior training of thereader informal numerical analysis,
we will need to presume a common understanding of a few key concepts. We will
define these briefly in this section.

Computers store numbers not with infinite precision but rather in some ap-
proximation that can be packed into a fixed number of bits (binary digits) or bytes
(groups of 8 hits). Almost al computers allow the programmer a choice among
severa different such representations or data types. Data types can differ in the
number of bits utilized (the wordlength), but aso in the more fundamental respect
of whether the stored number is represented in fixed-point (also caled integer) or
floating-point (also called real) format.

A number in integer representation is exact. Arithmetic between numbers in
integer representationisal so exact, with the provisosthat (i) the answer isnot outside
the range of (usually, signed) integersthat can be represented, and (ii) that division
isinterpreted as producing an integer result, throwing away any integer remainder.
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1.2 Error, Accuracy, and Stability 19

QO
3 N
& & S .&\g?’
X Y 9‘0\ ‘Qfé\ @é\
(\0 3 s O Qj < ‘0{\'
S P S 3

Y2=0 10000000 10000000000000000000000 (a)
0 10000010 11000000000000000000000 (b)
Y4=0 01111111 10000000000000000000000 (o)

1007=0 01101001 w_1_0110101111111001010 (d)
= 10000010 00000000000000000000000! (e
3+107"=0 10000010 11000000000000000000000 (f)

Figure 1.2.1. Floating point representations of numbersin a typical 32-bit (4-byte) format. (a) The
number 1/2 (note the bias in the exponent); (b) the number 3; (c) the number 1/4; (d) the number
10~7, represented to machine accuracy; (€) the same number 10~7, but shifted so asto have the same
exponent as the number 3; with this shifting, all significanceis lost and 10~7 becomes zero; shifting to
a common exponent must occur before two numbers can be added; (f) sum of the numbers3 + 107,
which equals 3 to machine accuracy. Even though 10~7 can be represented accurately by itself, it cannot
accurately be added to a much larger number.

In floating-point representation, a number is represented internally by a sign bit
s (interpreted as plus or minus), an exact integer exponent e, and an exact positive
integer mantissa M. Taken together these represent the number

sx M x B°F (1.2.1)

where B is the base of the representation (usually B = 2, but sometimes B = 16),
and E isthe bias of the exponent, a fixed integer constant for any given machine
and representation. An example is shown in Figure 1.2.1.

Several floating-point bit patterns can represent the same number. If B = 2,
for example, a mantissa with leading (high-order) zero bits can be Ieft-shifted, i.e.,
multiplied by a power of 2, if the exponent is decreased by a compensating amount.
Bit patterns that are “as left-shifted as they can be” are termed normalized. Most
computers always produce normalized results, since these don’'t waste any bits of
the mantissa and thus alow a greater accuracy of the representation. Since the
high-order bit of a properly normalized mantissa (when B = 2) is always one, some
computers don't store this bit at al, giving one extra bit of significance.

Arithmetic among numbers in floating-point representation is not exact, even if
the operands happen to be exactly represented (i.e., have exact valuesin the form of
equation 1.2.1). For example, two floating numbers are added by first right-shifting
(dividing by two) the mantissa of the smaller (in magnitude) one, simultaneously
increasing its exponent, until the two operands have the same exponent. Low-order
(least significant) bits of the smaller operand are lost by this shifting. If the two
operands differ too greatly in magnitude, then the smaller operand is effectively
replaced by zero, since it is right-shifted to oblivion.

The smallest (in magnitude) floating-point number which, when added to the
floating-point number 1.0, produces a floating-point result different from 1.0 is
termed the machine accuracy €,,. A typica computer with B = 2 and a 32-hit
wordlength has ¢, around 3 x 1078. (A more detailed discussion of machine
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20 Chapter 1. Preliminaries

characteristics, and a program to determine them, is given in §20.1.) Roughly
speaking, the machine accuracy e,, isthefractional accuracy to which floating-point
numbers are represented, corresponding to a change of one in the least significant
bit of the mantissa. Pretty much any arithmetic operation among floating numbers
should be thought of as introducing an additional fractiona error of at least ¢,,,. This
type of error is called roundoff error.

It isimportant to understand that e, is not the smallest floating-point number
that can be represented on a machine. That number depends on how many bitsthere
are in the exponent, whilee,,, depends on how many bits there are in the mantissa.

Roundoff errors accumulate with increasing amounts of caculation. If, in the
course of obtaining a calculated value, you perform N such arithmetic operations,
you might be so lucky as to have a total roundoff error on the order of v/Ne,y,, if
the roundoff errors come in randomly up or down. (The square root comes from a
random-walk.) However, thisestimate can bevery badly off themark for two reasons:

(i) 1t very frequently happens that the regularities of your calculation, or the
peculiarities of your computer, cause the roundoff errorsto accumul ate preferentially
in one direction. In this case the total will be of order Ne¢,,.

(if) Some especially unfavorable occurrences can vastly increase the roundoff
error of single operations. Generally these can be traced to the subtraction of two
very nearly equal numbers, giving a result whose only significant bits are those
(few) low-order ones in which the operands differed. You might think that such a
“coincidental” subtraction is unlikely to occur. Not always so. Some mathematical
expressions magnify its probability of occurrence tremendously. For example, inthe
familiar formula for the solution of a quadratic equation,

b VBT
T = w (1.2.2)
a

the addition becomes delicate and roundoff-prone whenever ac < b2. (In §5.6 we
will learn how to avoid the problem in this particular case.)

Roundoff error is a characteristic of computer hardware. There is another,
different, kind of error that is a characteristic of the program or agorithm used,
independent of the hardware on which the program is executed. Many numerical
algorithms compute “discrete” approximationsto some desired “continuous’ quan-
tity. For example, an integral is evaluated numerically by computing a function
at a discrete set of points, rather than at “every” point. Or, a function may be
evaluated by summing a finite number of leading terms in its infinite series, rather
than al infinity terms. In cases like this, there is an adjustable parameter, eg., the
number of points or of terms, such that the “true” answer is obtained only when
that parameter goes to infinity. Any practical calculation is done with a finite, but
sufficiently large, choice of that parameter.

The discrepancy between the true answer and the answer obtained in a practical
calculation is called the truncation error. Truncation error would persist even on a
hypothetical, “ perfect” computer that had an infinitely accurate representation and no
roundoff error. Asagenera rulethere isnot much that a programmer can do about
roundoff error, other than to choose algorithmsthat do not magnify it unnecessarily
(see discussion of “stability” below). Truncation error, on the other hand, isentirely
under the programmer’s control. In fact, it is only a dight exaggeration to say
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1.2 Error, Accuracy, and Stability 21

that clever minimization of truncation error is practicaly the entire content of the
field of numerical anaysis!

Most of the time, truncation error and roundoff error do not strongly interact
with one another. A calculation can beimagined as having, first, the truncation error
that it would have if run on an infinite-precision computer, “plus’ the roundoff error
associated with the number of operations performed.

Sometimes, however, an otherwise attractive method can be unstable. This
means that any roundoff error that becomes “mixed into” the calculation at an early
stageis successively magnified until it comes to swamp thetrueanswer. Anunstable
method would be useful on a hypothetical, perfect computer; but in this imperfect
world it is necessary for us to require that algorithms be stable — or if unstable
that we use them with great caution.

Here is a simple, if somewhat artificial, example of an unstable agorithm:
Suppose that it is desired to calculate al integer powers of the so-caled “ Golden
Mean,” the number given by

V5 —1
2

o= ~ 0.61803398 (1.2.3)
It turns out (you can easily verify) that the powers ¢™ satisfy a simple recursion
relation,

(bn—l—l _ (bn—l _ (bn (124)

Thus, knowing the first two values ¢° = 1 and ¢' = 0.61803398, we can
successively apply (1.2.4) performing only a single subtraction, rather than a slower
multiplication by ¢, a each stage.

Unfortunately, therecurrence (1.2.4) a so hasanother solution, namely thevalue
—%(\/5 + 1). Since the recurrence is linear, and since this undesired solution has
magnitude greater than unity, any small admixture of it introduced by roundoff errors
will grow exponentially. On atypical machine with 32-bit wordlength, (1.2.4) starts
to givecompletely wrong answers by aboutn = 16, at which point ¢™ isdownto only
10~*. The recurrence (1.2.4) is unstable, and cannot be used for the purpose stated.

We will encounter the question of stability in many more sophisticated guises,
later in this book.

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 1.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood ClIiffs,
NJ: Prentice Hall), Chapter 2.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §1.3.

Wilkinson, J.H. 1964, Rounding Errors in Algebraic Processes (Englewood Cliffs, NJ: Prentice-
Hall).
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Chapter 2. Solution of Linear
Algebraic Equations

2.0 Introduction

A set of linear algebraic equations looks like this:

a1121 + 1222 + a13T3 + - - +aiNTy = by
a21%1 + A22%2 + a23T3 + - - - + aaNTN = b2

as171 + azaT2 + azgzrs + - - +agnTy = by (2.0.1)

ayi11 + apa®e + apmsxrs + -+ apuNTN = by

Here the V unknowns z;, j = 1,2,..., N ae related by M equations. The
coefficients a;; withi = 1,2,...,M and j = 1,2,..., N are known numbers, as
are the right-hand side quantities b;, i = 1,2,..., M.

Nonsingular versus Singular Sets of Equations

If N = M then there are as many equations as unknowns, and there is a good
chance of solving for a unique solution set of x;'s. Analyticaly, there can fail to
be a unique solution if one or more of the M equations is a linear combination of
the others, a condition called row degeneracy, or if al equations contain certain
variables only in exactly the same linear combination, called column degeneracy.
(For square matrices, a row degeneracy implies a column degeneracy, and vice
versa) A set of equations that is degenerate is called singular. We will consider
singular matrices in some detail in §2.6.

Numerically, at least two additiona things can go wrong:

e While not exact linear combinations of each other, some of the equations
may be so close to linearly dependent that roundoff errors in the machine
render them linearly dependent at some stage in the solution process. In
this case your numerical procedure will fail, and it can tell you that it
has failed.

22
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2.0 Introduction 23

e Accumulated roundoff errors in the solution process can swamp the true
solution. This problem particularly emerges if N is too large. The
numerical procedure does not fail algorithmically. However, it returns a
set of z’sthat are wrong, as can be discovered by direct substitution back
intotheoriginal equations. Thecloser aset of equationsisto being singular,
the more likely this is to happen, since increasingly close cancellations
will occur during the solution. In fact, the preceding item can be viewed
as the special case where the loss of significance is unfortunately total.

Much of the sophistication of complicated “linear equation-solving packages’
is devoted to the detection and/or correction of these two pathologies. As you
work with large linear sets of equations, you will develop a feeling for when such
sophistication is needed. It is difficult to give any firm guidelines, since there isno
such thing as a “typical” linear problem. But hereisarough idea: Linear sets with
N as large as 20 or 50 can be routinely solved in single precision (32 bit floating
representations) without resorting to sophisticated methods, if the equations are not
close to singular. With double precision (60 or 64 hits), this number can readily
be extended to N as large as several hundred, after which point the limiting factor
is generally machine time, not accuracy.

Even larger linear sets, NV in the thousands or greater, can be solved when the
coefficients are sparse (that is, mostly zero), by methods that take advantage of the
sparseness.  We discuss this further in §2.7.

At the other end of the spectrum, one seems just as often to encounter linear
problems which, by their underlying nature, are close to singular. In this case, you
might need to resort to sophisticated methods even for the case of N = 10 (though
rarely for N = 5). Singular value decomposition (§2.6) is a technique that can
sometimes turn singular problems into nonsingular ones, in which case additional
sophistication becomes unnecessary.

Matrices
Equation (2.0.1) can be written in matrix form as
A-x=Db (2.0.2)

Here theraised dot denotes matrix multiplication, A isthe matrix of coefficients, and
b is the right-hand side written as a column vector,

a1 a2 e a1 N b1
a1 a9 e ag N b2

A= b= (2.0.3)
apri apnro ... QMN bM

By convention, the first index on an element a;; denotes its row, the second
index its column. A computer will store the matrix A as a two-dimensional array.
However, computer memory is numbered sequentially by its address, and so is
intrinsically one-dimensional. Therefore the two-dimensional array A will, at the
hardware level, either be stored by columns in the order

ai1,a21,-..,aM1, 12,022, ...,A\N2, ..., AIN, 2N, ... AMN

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes



24 Chapter 2. Solution of Linear Algebraic Equations

. . ‘
() 7 5 1 X X X X X
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Figure 2.0.1. A matrix of logical dimensionm by n is stored in an array of physical dimension mp
by np. Locations marked by “x” contain extraneous information which may be left over from some
previous use of the physical array. Circled numbers show the actual ordering of the array in computer
memory, not usually relevant to the programmer. Note, however, that the logical array does not occupy
consecutive memory locations. To locate an (i, j) element correctly, a subroutine must be told mp
and np, not just i and j.

or else stored by rows in the order

a11,0a12,...,A1N, @21,0A22,...,A2N, .., AM1,AM2,---AMN

FORTRAN aways stores by columns, and user programs are generaly allowed
to exploit this fact to their advantage. By contrast, C, Pascal, and other languages
generally store by rows. Note one confusing point in the terminology, that a matrix
which is stored by columns (as in FORTRAN) has its row (i.e., first) index changing
most rapidly as one goes linearly through memory, the opposite of a car’s odometer!

For most purposes you don’t need to know what the order of storageis, since
you reference an element by its two-dimensional address. ass = a(3,4). It s,
however, essential that you understand the difference between an array’s physical
dimensions and its logical dimensions. When you pass an array to a subroutine,
you must, in general, tell the subroutine both of these dimensions. The distinction
between them isthis: It may happen that you have a4 x 4 matrix stored in an array
dimensioned as 10 x 10. This occurs most frequently in practice when you have
dimensioned to the largest expected value of N, but are at the moment considering
avalue of N smaller than that largest possible one. In the example posed, the 16
elements of the matrix do not occupy 16 consecutive memory locations. Rather they
are spread out among the 100 dimensioned locations of the array as if the whole
10 x 10 matrix were filled. Figure 2.0.1 shows an additional example.

If you have asubroutineto invert amatrix, itscall might typically look likethis:
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2.0 Introduction 25

call matinv(a,ai,n,np)

Here the subroutine has to be told both the logical size of the matrix that
you want to invert (here n = 4), and the physical size of the array in which it is
stored (here np = 10).

Thisseemslikeatrivial point, and we are sorry to belabor it. But it turnsout that
most reported failures of standard linear equation and matrix manipulation packages
are due to user errorsin passing inappropriate logical or physical dimensions!

Tasks of Computational Linear Algebra

We will consider the following tasks as falling in the general purview of this
chapter:

e Solutionof thematrix equation A -x = b for an unknownvector x, where A
isasquare matrix of coefficients, raised dot denotes matrix multiplication,
and b is a known right-hand side vector (§2.1-52.10).

o Solution of more than one matrix equation A - x; = b, for aset of vectors
X;,j =1,2,..., each corresponding to adifferent, known right-hand side
vector b;. In thistask the key simplification is thet the matrix A is held
constant, while the right-hand sides, the b’s, are changed (§2.1-§2.10).

e Calculation of the matrix A~ which is the matrix inverse of a square
matrix A, i.e, A-A~! = A71 . A = 1, where 1 is the identity matrix
(al zeros except for ones on the diagona). This task is equivalent,
for an N x N matrix A, to the previous task with N different b;’s
(7 =1,2,...,N), namely the unit vectors (b; = all zero elements except
for 1 in the jth component). The corresponding x's are then the columns
of the matrix inverse of A (§2.1 and §2.3).

e Calculation of the determinant of a square matrix A (§2.3).

If M < N, or if M = N but the equations are degenerate, then there are
effectively fewer eguations than unknowns. In this case there can be either no
solution, or else more than one solution vector x. In the latter event, the solution
space consists of a particular solution x,, added to any linear combination of
(typicaly) N — M vectors (which are said to be in the nullspace of the matrix A).
The task of finding the solution space of A involves

e Singular value decomposition of a matrix A.

This subject is treated in §2.6.

In the opposite case there are more equations than unknowns, M > N. When
this occurs there is, in general, no solution vector x to equation (2.0.1), and the
set of equationsis said to be overdetermined. It happens frequently, however, that
the best “compromise” solution is sought, the one that comes closest to satisfying
all equations simultaneoudly. If closeness is defined in the least-squares senseg, i.e,
that the sum of the squares of the differences between the left- and right-hand sides
of equation (2.0.1) beminimized, then theoverdetermined linear problem reducesto a
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26 Chapter 2. Solution of Linear Algebraic Equations

(usually) solvable linear problem, called the
e Linear lesast-squares problem.
Thereduced set of equationsto be solved can bewrittenasthe N x N set of equations

(AT .A) . x= (AT .b) (2.0.4)

where AT denotes the transpose of the matrix A. Equations (2.0.4) are called the
normal equations of the linear least-squares problem. There is a close connection
between singular value decomposition and the linear |east-squares problem, and the
latter is also discussed in §2.6. You should be warned that direct solution of the
normal equations (2.0.4) isnot generally the best way to find |east-squares solutions.

Some other topics in this chapter include

o lIterative improvement of a solution (§2.5)

e Various special forms. symmetric positive-definite (§2.9), tridiagonal
(82.4), band diagonal (§2.4), Toeplitz (§2.8), Vandermonde (§2.8), sparse
(§2.7)

e Strassen’s “fast matrix inversion” (§2.11).

Standard Subroutine Packages

We cannot hope, in this chapter or in this book, to tell you everything thereis
to know about the tasks that have been defined above. In many cases you will have
no aternative but to use sophisticated black-box program packages. Severa good
onesare available. LINPACK was developed at Argonne National Laboratories and
deserves particular mention because it is published, documented, and available for
freeuse. A successor to LINPACK, LAPACK, isnow becoming available. Packages
available commercialy include those in the IMSL and NAG libraries.

You should keep in mind that the sophi sticated packages are designed with very
large linear systemsin mind. They therefore go to great effort to minimize not only
the number of operations, but also the required storage. Routines for the various
tasks are usually provided in severa versions, corresponding to several possible
simplifications in the form of the input coefficient matrix: symmetric, triangular,
banded, positive definite, etc. If you have a large matrix in one of these forms,
you should certainly take advantage of the increased efficiency provided by these
different routines, and not just use the form provided for general matrices.

There is also a great watershed dividing routines that are direct (i.e., execute
in a predictable number of operations) from routines that are iterative (i.e., attempt
to converge to the desired answer in however many steps are necessary). lterative
methods become preferable when the battle against loss of significance isin danger
of being lost, either dueto large N or because the problem is close to singular. We
will treat iterative methods only incompletely in this book, in §2.7 and in Chapters
18 and 19. These methods are important, but mostly beyond our scope. We will,
however, discuss in detail a technique which is on the borderline between direct
and iterative methods, namely the iterative improvement of a solution that has been
obtained by direct methods (§2.5).
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2.1 Gauss-Jordan Elimination

For inverting a matrix, Gauss-Jordan eimination is about as efficient as any
other method. For solving sets of linear eguations, Gauss-Jordan elimination
produces both the solution of the equations for one or more right-hand side vectors
b, and also the matrix inverse A~'. However, its principal weaknesses are (i) that
it requires al the right-hand sides to be stored and manipulated at the same time,
and (ii) that when the inverse matrix is not desired, Gauss-Jordan is three times
dower than the best dternative techniquefor solving a single linear set (5§2.3). The
method’s principal strength isthat it is as stable as any other direct method, perhaps
even a bit more stable when full pivoting is used (see below).

If you come along later with an additiona right-hand side vector, you can
multiply it by theinverse matrix, of course. Thisdoes give an answer, but onethat is
quite susceptible to roundoff error, not nearly as good as if the new vector had been
included with the set of right-hand side vectors in the first instance.

For these reasons, Gauss-Jordan elimination should usually not be your method
of first choice, either for solving linear equations or for matrix inversion. The
decomposition methodsin §2.3 are better. Why do we give you Gauss-Jordan at all?
Because it is straightforward, understandable, solid as arock, and an exceptionally
good “psychological” backup for those times that something is going wrong and you
think it might be your linear-equation solver.

Some people believe that the backup is more than psychological, that Gauss-
Jordan dimination is an “independent” numerical method. This turns out to be
mostly myth. Except for the relatively minor differences in pivoting, described
below, the actua sequence of operations performed in Gauss-Jordan elimination is
very closdly related to that performed by the routinesin the next two sections.
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28 Chapter 2. Solution of Linear Algebraic Equations

For clarity, and to avoid writingendless ellipses(- - -) wewill writeout equations
only for the case of four equationsand four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the eguations to the case of N x N matrices, with M sets of right-hand
side vectors, in completely analogous fashion. The routine implemented below
is, of course, general.

Elimination on Column-Augmented Matrices

Consider the linear matrix equation

ail a2 a1z aiq x11 x12 x13 Y11 Y12 Y13 Yi4
az1 a2z a3 az4 | | 21 L 22 L x23 L Y21 Y22 Y23 Y24
a3zl asz2 a3z asq 31 x32 x33 Y31 Y32 Y33 Y34
a41 Q42 Q43 Q44 T41 T42 x43 Y41 Y42 Y43 Y44
b11 bi2 bis 1 0 00
_ ba1 bao ba3 0100
B b31 U b32 = bss Hlo o1 0 (2.11)
by1 bao bys 00 01

Here the raised dot () signifies matrix multiplication, while the operator LI just
signifies column augmentation, that is, removing the abutting parentheses and
making a wider matrix out of the operands of the LI operator.

It should not take you long to write out equation (2.1.1) and to see that it smply
states that «;; isthe ith component (i = 1, 2, 3, 4) of the vector solution of the jth
right-hand side (j = 1, 2, 3), the one whose coefficients are b;;,7 = 1, 2, 3,4; and
that the matrix of unknown coefficients y;; is the inverse matrix of a;;. In other
words, the matrix solution of

[A] . [Xl L Xo LI X3 L Y] = [bl L b2 L b3 L 1] (212)
where A and Y are square matrices, the b;’s and x;’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A'X1:b1 A'X2:b2 A'ngbg (213)
and

A-Y=1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):

e Interchanging any two rows of A and the corresponding rows of the b’s
and of 1, does not change (or scramble in any way) the solution x’'s and
Y. Rather, it just corresponds to writing the same set of linear equations
in a different order.

o Likewise, the solution set is unchanged and in no way scrambled if we
replace any row in A by alinear combination of itself and any other row,
as long as we do the same linear combination of the rows of theb’sand 1
(which then is no longer the identity matrix, of course).
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2.1 Gauss-Jordan Elimination 29

e Interchanging any two columns of A gives the same solution set only
if we simultaneously interchange corresponding rows of the x’s and of
Y. In other words, this interchange scrambles the order of the rows in
the solution. If we do this, we will need to unscramble the solution by
restoring the rows to their original order.
Gauss-Jordan imination uses one or more of the above operations to reduce
the matrix A to the identity matrix. When thisis accomplished, the right-hand side
becomes the solution set, as one sees instantly from (2.1.2).

Pivoting

In “Gauss-Jordan elimination with no pivoting,” only the second operation in
the above list is used. The first row is divided by the element a,; (this being a
trivia linear combination of the first row with any other row — zero coefficient for
the other row). Then the right amount of thefirst row is subtracted from each other
row to make all the remaining a;;’s zero. The first column of A now agrees with
the identity matrix. We move to the second column and divide the second row by
as2, then subtract the right amount of the second row fromrows 1, 3, and 4, so asto
make their entries in the second column zero. The second column is now reduced
to the identity form. And so on for the third and fourth columns. As we do these
operationsto A, we of course aso do the corresponding operationsto theb’s and to
1 (which by now no longer resembles the identity matrix in any way!).

Obviousdly we will run into trouble if we ever encounter a zero element on the
(then current) diagonal when we are going to divide by the diagonal element. (The
element that we divide by, incidentally, is called the pivot element or pivot.) Not so
obvious, but true, isthefact that Gauss-Jordan eliminationwith no pivoting (no use of
thefirst or third proceduresin the above list) is numerically unstable in the presence
of any roundoff error, even when azero pivot isnot encountered. You must never do
Gauss-Jordan elimination (or Gaussian elimination, see bel ow) without pivoting!

So what isthismagic pivoting? Nothing more than interchanging rows (partial
pivoting) or rows and columns (full pivoting), so as to put a particularly desirable
element in the diagona position from which the pivot is about to be selected. Since
we don’t want to mess up the part of theidentity matrix that we have already built up,
we can choose among elements that are both (i) on rows below (or on) the one that
is about to be normalized, and also (ii) on columns to the right (or on) the column
we are about to diminate. Partial pivoting is easier than full pivoting, because we
don’t have to keep track of the permutation of the solution vector. Partial pivoting
makes available as pivots only the elements aready in the correct column. It turns
out that partial pivoting is “amost” as good as full pivoting, in a sense that can be
made mathematically precise, but which need not concern us here (for discussion
and references, see[1]). To show you both variants, wedo full pivotingin theroutine
in this section, partia pivoting in §2.3.

We have to state how to recognize a particularly desirable pivot when we see
one. The answer to thisis not completely known theoretically. It is known, both
theoretically and in practice, that simply picking thelargest (in magnitude) available
element asthe pivotisavery good choice. A curiosity of thisprocedure, however, is
that the choi ce of pivot will depend onthe original scaling of theequations. If wetake
thethird linear equation in our original set and multiply it by afactor of amillion, it
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30 Chapter 2. Solution of Linear Algebraic Equations

isamost guaranteed that it will contributethefirst pivot; yet the underlying solution
of the equationsis not changed by this multiplication! One therefore sometimes sees
routines which choose as pivot that element which would have been largest if the
origina equations had all been scaled to have their largest coefficient normalized to
unity. Thisiscalled implicit pivoting. Thereis some extrabookkeeping to keep track
of the scale factors by which the rows would have been multiplied. (The routinesin
§2.3 include implicit pivoting, but the routine in this section does not.)

Finaly, let us consider the storage requirements of the method. With alittle
reflection you will see that at every stage of the algorithm, either an element of A is
predictably aoneor zero (if itisalready in apart of the matrix that has been reduced
to identity form) or elsethe exactly corresponding e ement of the matrix that started
as lispredictably aoneor zero (if itsmate in A has not been reduced to the identity
form). Therefore the matrix 1 does not have to exist as separate storage: The matrix
inverse of A is gradualy built up in A as the original A is destroyed. Likewise,
the solution vectors x can gradually replace the right-hand side vectors b and share
the same storage, since after each column in A is reduced, the corresponding row
entry in the b’s is never again used.

Here isthe routine for Gauss-Jordan eimination with full pivoting:

SUBROUTINE gaussj(a,n,np,b,m,mp)
INTEGER m,mp,n,np,NMAX
REAL a(np,np),b(np,mp)
PARAMETER (NMAX=50)
Linear equation solution by Gauss-Jordan elimination, equation (2.1.1) above. a(1:n,1:n)
is an input matrix stored in an array of physical dimensionsnp by np. b(1:n,1:m) is an in-
put matrix containing the m right-hand side vectors, stored in an array of physical dimensions
np by mp. On output, a(1l:n,1:n) is replaced by its matrix inverse, and b(1:n,1:m) is
replaced by the corresponding set of solution vectors.
Parameter: NMAX is the largest anticipated value of n.
INTEGER i,icol,irow,j,k,1,11,indxc(NMAX) ,indxr (NMAX),
ipiv(NMAX) The integer arrays ipiv, indxr, and indxc are used
REAL big,dum,pivinv for bookkeeping on the pivoting.
dou j=1,n
ipiv(j)=0
enddo 11
do2 i=1,n This is the main loop over the columns to be re-
big=0. duced.
do13 j=1,n This is the outer loop of the search for a pivot ele-
if (ipiv(j) .ne.1)then ment.
do 12 k=1,n
if (ipiv(k).eq.0) then
if (abs(a(j,k)).ge.big)then
big=abs(a(j,k))
irow=j
icol=k
endif
else if (ipiv(k).gt.1) then
pause ’singular matrix in gaussj’
endif
enddo 12
endif
enddo 13
ipiv(icol)=ipiv(icol)+1
We now have the pivot element, so we interchange rows, if needed, to put the pivot
element on the diagonal. The columns are not physically interchanged, only relabeled:
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2.1 Gauss-Jordan Elimination 31

indxc (i), the column of the ith pivot element, is the ith column that is reduced, while
indxr (i) is the row in which that pivot element was originally located. If indxr (i) #
indxc (i) there is an implied column interchange. With this form of bookkeeping, the
solution b’s will end up in the correct order, and the inverse matrix will be scrambled
by columns.
if (irow.ne.icol) then
dos 1=1,n
dum=a(irow,1)
a(irow,1)=a(icol,1)
a(icol,1l)=dum
enddo 14
doi1s 1=1,m
dum=b(irow,1)
b(irow,1)=b(icol,l)
b(icol,1l)=dum

enddo 15
endif
indxr(i)=irow We are now ready to divide the pivot row by the pivot
indxc(i)=icol element, located at irow and icol.

if (a(icol,icol).eq.0.) pause ’singular matrix in gaussj’
pivinv=1./a(icol,icol)
a(icol,icol)=1.

do16 1=1,n
a(icol,l)=a(icol,l)*pivinv

enddo 16

do17 1=1,m
b(icol,1)=b(icol,l)*pivinv

enddo 17

doz 11=1,n Next, we reduce the rows...
if(11.ne.icol)then ...except for the pivot one, of course.

dum=a(11,icol)
a(ll,icol)=0.

do1s 1=1,n
a(11,1)=a(11,1)-a(icol,1) *dum
enddo 18
do1o 1=1,m
b(11,1)=b(11,1)-b(icol,1) *dum
enddo 19
endif
enddo 21
enddo 2 This is the end of the main loop over columns of the reduction.
do2 1=n,1,-1 It only remains to unscramble the solution in view
if (indxr(1l).ne.indxc(1l))then of the column interchanges. We do this by in-
do2 k=1,n terchanging pairs of columns in the reverse order
dum=a (k, indxr (1)) that the permutation was built up.
a(k,indxr(1))=a(k,indxc (1))
a(k,indxc(1))=dum
enddo 23
endif
enddo 24
return And we are done.
END

Row versus Column Elimination Strategies

The above discussion can be amplified by a modest amount of formalism. Row
operations on a matrix A correspond to pre- (that is, left-) multiplication by some simple
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32 Chapter 2. Solution of Linear Algebraic Equations

matrix R. For example, the matrix R with components

1 ifi=jandi#£2,4
)1 ifi=2,j=4
R = 1 ifi=4j=2 (2.15)
0 otherwise

effects the interchange of rows 2 and 4. Gauss-Jordan elimination by row operations alone
(including the possibility of partial pivoting) consists of a series of such left-multiplications,
yielding successively

A-x=b
((“Rg-Ra-R;-A)-x=---R3-Ry-R; - b
(2.1.6)
(1) x=---R3-Ra-Ry -b
X=---R3-Ry-Ry-b

The key point is that since the R’s build from right to left, the right-hand side is simply
transformed at each stage from one vector to another.

Column operations, on the other hand, correspond to post-, or right-, multiplications
by simple matrices, call them C. The matrix in equation (2.1.5), if right-multiplied onto a
matrix A, will interchange A’s second and fourth columns. Elimination by column operations
involves (conceptually) inserting a column operator, and also its inver se, between the matrix
A and the unknown vector Xx:

A-x=b
A-Ci-Cit-x=b

A-Ci-Cy-Cy -Cilx=b (2.1.7)
(A~C1-C2-C3~-~)~~~C§1~C2_1~C1_1-x:b
(1)---C3*-Cy'-Cit-x=b

which (peeling of the C™"'s one at a time) implies a solution
Xx=C1:-C2-Cs---b (2.1.8)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C’'s must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press). [1]

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Example 5.2, p. 282.

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Program B-2, p. 298.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3-1.
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2.2 Gaussian Elimination with Backsubstitution 33

2.2 Gaussian Elimination with Backsubstitution

The usefulness of Gaussian eimination with backsubstitution is primarily
pedagogical. It stands between full elimination schemes such as Gauss-Jordan, and
triangular decomposition schemes such as will be discussed in the next section.
Gaussian elimination reduces a matrix not al the way to the identity matrix, but
only halfway, to amatrix whose components on the diagonal and above (say) remain
nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When aqo
isthe pivot element, for example, we divide the second row by its value (as before),
but now use the pivot row to zero only ase and a4z, NOt a12 (See equation 2.1.1).
Suppose, aso, that we do only partia pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.

Then, when we have done thisfor all the pivots, we will be left with areduced
equation that looks like this (in the case of a single right-hand side vector):

/ / / / /
A1 G Gy3 Gy 1 by
/ / / /
0 a3 a3 agy A by (2.2.1)
0 0 4 4 xs | | b o
a3z a3y 3 3
0 0 0 ajy Ty b

Here the primes signify that the a’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

Backsubstitution

But how do we solve for the 2’s? The last x (x4 in this example) is aready
isolated, namely

xy = by /aly, (22.2)
With the last = known we can move to the penultimate x,

1
T3 = T[bé — I46Lé4] (223)

ass

and then proceed with the = before that one. The typical step is

1 N
T == b~ > ala; (2.2.4)
u“ j=it+1
The procedure defined by equation (2.2.4) is called backsubstitution. The com-
bination of Gaussian elimination and backsubstitution yields a solution to the set
of equations.
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34 Chapter 2. Solution of Linear Algebraic Equations

The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The
innermost loops of Gauss-Jordan elimination, each containing one subtraction and
one multiplication, are executed N3 and N2M times (where there are N equations
and M unknowns). The corresponding loops in Gaussian elimination are executed
only %N?’ times (only half the matrix is reduced, and the increasing numbers of
predictable zeros reduce the count to one-third), and %N 2 M times, respectively.
Each backsubstitution of aright-hand sideis %N 2 executions of asimilar loop (one
multiplication plus one subtraction). For M < N (only a few right-hand sides)
Gaussian elimination thus has about a factor three advantage over Gauss-Jordan.
(We could reduce this advantage to afactor 1.5 by not computing the inverse matrix
as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view asthecase of M = N
right-hand sides, namely the N unit vectors which are the columns of the identity
matrix), Gaussian elimination and backsubstitution at first glancerequi re% N3 (matrix
reduction) +1 N (right-hand side manipulations) +5N?3 (N backsubstitutions)
= %N 3 loop executions, which is more than the V2 for Gauss-Jordan. However, the
unit vectors are quite special in containing all zeros except for one element. If this
is taken into account, the right-side manipul ations can be reduced to only %N 3 loop
executions, and, for matrix inversion, the two methods have identical efficiencies.

Both Gaussian €limination and Gauss-Jordan €limination share the disadvantage
that all right-hand sides must be known in advance. The LU decomposition method
in the next section does not share that deficiency, and aso has an equally small
operations count, both for solution with any number of right-hand sides, and for
meatrix inversion. For this reason we will not implement the method of Gaussian
elimination as a routine.

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.3-1.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §2.1.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.2.1.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,
L-U=A (23.1)

where L is lower triangular (has e ements only on the diagonal and below) and U
is upper triangular (has elements only on the diagona and above). For the case of
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2.3 LU Decomposition and Its Applications 35

a4 x 4 matrix A, for example, equation (2.3.1) would look like this:

air 0 0 0 B11 Bz Bz Bia ajl aiz @13 a4

ag1 a0 0 | [ O Bo2 Pag Boa| _ | @21 a2 a23 azy

asz1 azz azz 0 0 0 B33 B34 a3zl as2 asz as4

Q41 Q42 43 Qg 0 0 0 B a41 Q42 Q43 Q44
(2.3.2)

We can use a decomposition such as (2.3.1) to solve the linear set
A-x=(L-U).x=L-(U-x)=b (2.3.3)
by first solving for the vector y such that

L-.y=b (2.3.4)
and then solving
U-x=y (2.35)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of atriangular set of equationsis quitetrivial, as
we have aready seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

b1
Yy = —

a1

. i1 (2.3.6)
;= — | b — i =2,3,...,N

while (2.3.5) can then be solved by backsubstitution exactly asin equations (2.2.2)—
(2.2.4),

iy = N
BN
) N (2.3.7)
xlzﬂ— yi—ZBijxj iZN—l,N—2,...,1

j=i+1

Equations (2.3.6) and (2.3.7) total (for each right-hand side b) N? executions
of an inner loop containing one multiply and one add. If we have N right-hand
sides which are the unit column vectors (which is the case when we are inverting a
meatrix), then taking into account the leading zeros reduces the total execution count
of (2.3.6) from $ N3 to £ N3, while (2.3.7) is unchanged at V3.

Notice that, once we have the LU decomposition of A, we can solve with as
many right-hand sides as we then care to, one a atime. Thisisadistinct advantage
over the methods of §2.1 and §2.2.
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36 Chapter 2. Solution of Linear Algebraic Equations

Performing the LU Decomposition

How then can we solve for L and U, given A? First, we write out the
1, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with
Py + = aij
The number of terms in the sum depends, however, on whether ¢ or j isthe smaller
number. We have, in fact, the three cases,

1< ailﬁlj + ai252j + -+ a“ﬂij = a;j (2.3.8)
=7 a1 B + pafey + -+ By = aigj (2.3.9)
P> a1 B + apafey + -+ @y B = aij (2.3.10)

Equations (2.3.8)<(2.3.10) total N2 equationsfor the N2 + N unknown o’ sand
('s (the diagonal being represented twice). Since the number of unknownsis greater
than the number of equations, weareinvited to specify NV of theunknownsarbitrarily
andthentry to solvefor theothers. Infact, asweshall see, itisalwayspossibletotake

A surprising procedure, now, is Crout’s algorithm, which quite trivialy solves
theset of N2 + N equations(2.3.8)—(2.3.11) for al thea’sand 3’sby just arranging
the equations in a certain order! That order is as follows:

e Setay; =1,i=1,...,N (equation 2.3.11).

e For each j = 1,2,3,..., N do these two procedures. First, for i =

1,2,...,7,use(2.3.8), (2.3.9), and (2.3.11) to solvefor 3;;, namely
1—1
Bij = aij — Y ikbhj. (23.12)
k=1
(Wheni = 11in2.3.12 the summation term istaken to mean zero.) Second,
fori=j+1,j+2,..., N use(23.10) to solve for «;;, namely

1 i
Qij = 5 <az‘j - Z Otz‘kﬁkj) . (2.3.13)
Bii k=1
Be sure to do both procedures before going on to the next ;.

If you work through a few iterations of the above procedure, you will see that
the o’s and 's that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also seethat every a;;
is used only once and never again. This means that the corresponding «;; or 3;; can
be stored in the location that the a used to occupy: the decompositionis“in place.”
[The diagond unity elements «;; (equation 2.3.11) are not stored at al.] In brief,
Crout’s method fills in the combined matrix of o’s and s,

Bu1 P2 Bz Pua
a1 faz P23 o
2314
az1 asz P33 O ( )
Q41 Q42 uz Paa
by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).
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Figure 2.3.1. Crout's algorithm for LU decomposition of a matrix. Elements of the original matrix are
modified in the order indicated by lower case letters: a, b, c, etc. Shaded boxes show the previously
modified elements that are used in modifying two typical elements, each indicated by an “x”.

What about pivoting? Pivoting (i.e., selection of a salubrious pivot element
for the division in equation 2.3.13) is absolutely essential for the stability of Crout’'s
method. Only partia pivoting (interchange of rows) can be implemented efficiently.
However this is enough to make the method stable. This means, incidentally, that
we don't actually decompose the matrix A into LU form, but rather we decompose
a rowwise permutation of A. (If we keep track of what that permutation is, this
decomposition is just as useful as the origina one would have been.)

Pivoting is dightly subtlein Crout’s algorithm. The key point to noticeis that
equation (2.3.12) in the case of i = j (itsfina application) is exactly the same as
equation (2.3.13) except for the division in the latter equation; in both cases the
upper limit of thesumisk = j — 1 (= ¢ — 1). This means that we don’t have to
commit ourselves as to whether the diagonal element 3;; is the one that happens
to fall on the diagonal in the first instance, or whether one of the (undivided) a;;’s
belowitinthecolumn,i = j+1,..., N,istobe"promoted” to become thediagonal
(. This can be decided after all the candidates in the column are in hand. As you
should be able to guess by now, we will choose the largest one as the diagona 3
(pivot element), then do al the divisions by that element en masse. Thisis Crout’s
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38 Chapter 2. Solution of Linear Algebraic Equations

method with partial pivoting. Our implementation has one additiona wrinkle: It
initialy finds the largest element in each row, and subsequently (when it is looking
for themaximal pivot element) scalesthe comparisonasif we had initially scaled all
the equations to make their maximum coefficient equal to unity; thisisthe implicit
pivoting mentioned in §2.1.

SUBROUTINE ludcmp(a,n,np,indx,d)

INTEGER n,np,indx(n) ,NMAX

REAL d,a(np,np),TINY

PARAMETER (NMAX=500,TINY=1.0e-20) Largest expected n, and a small number.
Given a matrix a(1:n,1:n), with physical dimension np by np, this routine replaces it by
the LU decomposition of a rowwise permutation of itself. a and n are input. a is output,
arranged as in equation (2.3.14) above; indx(1:n) is an output vector that records the
row permutation effected by the partial pivoting; d is output as =1 depending on whether
the number of row interchanges was even or odd, respectively. This routine is used in
combination with 1ubksb to solve linear equations or invert a matrix.

INTEGER 1i,imax,j,k

REAL aamax,dum,sum,vv(NMAX) vv stores the implicit scaling of each row.

d=1. No row interchanges yet.

do12 i=1,n Loop over rows to get the implicit scaling informa-
aamax=0. tion.
dou j=1,n

if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j))

enddo 11
if (aamax.eq.0.) pause ’singular matrix in ludcmp’ No nonzero largest element.
vv(i)=1./aamax Save the scaling.

enddo 12

do1 j=1,n This is the loop over columns of Crout’s method.
do 14 i=1,j-1 This is equation (2.3.12) except for ¢ = j.

sum=a(i,j)
do13 k=1,i-1
sum=sum-a(i,k)*a(k,j)
enddo 13
a(i,j)=sum
enddo 14
aamax=0. Initialize for the search for largest pivot element.
do 1 i=j,n This is ¢ = j of equation (2.3.12)and ¢ = j+1... N
sum=a(i,j) of equation (2.3.13).
dois k=1,j-1
sum=sum-a(i,k)*a(k,j)
enddo 15
a(i,j)=sum

dum=vv (i) *abs(sum) Figure of merit for the pivot.

if (dum.ge.aamax) then Is it better than the best so far?
imax=i
aamax=dum
endif
enddo 16
if (j.ne.imax)then Do we need to interchange rows?

do17 k=1,n Yes, do so...
dum=a (imax,k)
a(imax,k)=a(j,k)

a(j,k)=dum
enddo 17
d=-d ...and change the parity of d.
vv (imax)=vv(j) Also interchange the scale factor.

endif

indx (j)=imax

if(a(j,j).eq.0.)a(j,j)=TINY
If the pivot element is zero the matrix is singular (at least to the precision of the al-
gorithm). For some applications on singular matrices, it is desirable to substitute TINY
for zero.
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2.3 LU Decomposition and Its Applications 39

if (j.ne.n)then Now, finally, divide by the pivot element.
dum=1./a(j,j)
doi1s i=j+1,n
a(i,j)=a(i,j)*dum
enddo 18
endif
enddo 19 Go back for the next column in the reduction.
return
END

Hereisthe routinefor forward substitution and backsubstitution, implementing
equations (2.3.6) and (2.3.7).

SUBROUTINE lubksb(a,n,np,indx,b)

INTEGER n,np,indx(n)

REAL a(np,np),b(n)
Solves the set of n linear equations A - X = B. Here a is input, not as the matrix A but
rather as its LU decomposition, determined by the routine ludcmp. indx is input as the
permutation vector returned by ludcmp. b(1:n) is input as the right-hand side vector B,
and returns with the solution vector X. a, n, np, and indx are not modified by this routine
and can be left in place for successive calls with different right-hand sides b. This routine
takes into account the possibility that b will begin with many zero elements, so it is efficient
for use in matrix inversion.

INTEGER i,ii,j,11

REAL sum

ii=0 When ii is set to a positive value, it will become the in-

do12 i=1,n dex of the first nonvanishing element of b. We now do
1l=indx (i) the forward substitution, equation (2.3.6). The only new
sum=b(11) wrinkle is to unscramble the permutation as we go.
b(11)=b(i)

if (ii.ne.O)then
don j=ii,i-1
sum=sum-a (i, j)*b(j)

enddo 11
else if (sum.ne.0.) then
ii=i A nonzero element was encountered, so from now on we will
endif have to do the sums in the loop above.
b(i)=sum
enddo 12
do 14 i=n,1,-1 Now we do the backsubstitution, equation (2.3.7).
sum=b (i)

do13 j=i+l,n
sum=sum-a (i, j)*b(j)

enddo 13

b(i)=sum/a(i,i) Store a component of the solution vector X.
enddo 14
return All done!

END

The LU decomposition in ludcmp requires about %N 3 executions of the inner
loops (each with one multiply and one add). This is thus the operation count
for solving one (or a few) right-hand sides, and is a factor of 3 better than the
Gauss-Jordan routine gaussj which was given in §2.1, and a factor of 1.5 better
than a Gauss-Jordan routine (not given) that does not compute the inverse matrix.
For inverting a matrix, the total count (including the forward and backsubstitution
as discussed following equation 2.3.7 above) is (1 + 2 + 2)N? = N3, the same
as gaussj.
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40 Chapter 2. Solution of Linear Algebraic Equations

To summarize, this is the preferred way to solve the linear set of equations
A-x =bh

call ludcmp(a,n,np,indx,d)
call lubksb(a,n,np,indx,b)

The answer x will be returned in b. Your original matrix A will have been
destroyed.

If you subsequently want to solve a set of equations with the same A but a
different right-hand side b, you repeat only

call lubksb(a,n,np,indx,b)

not, of course, with the origina matrix A, but with a and indx as were aready
returned from ludcmp.

Inverse of a Matrix

Using the above LU decomposition and backsubstitution routines, it is com-
pletely straightforward to find the inverse of a matrix column by column.

INTEGER np, indx(np)
REAL a(anp,np),y(np,np)

do 12 i=1,n Set up identity matrix.
dou j=1,n
y(i,j)=0.
enddo 11
y(i,i)=1.
enddo 12
call ludcmp(a,n,np,indx,d) Decompose the matrix just once.

do13 j=1,n Find inverse by columns.
call lubksb(a,n,np,indx,y(1,j))
Note that FORTRAN stores two-dimensional matrices by column, so y(1,j) is the
address of the jth column of y.
enddo 13

The matrix y will now contain the inverse of the original matrix a, which will have
been destroyed. Alternatively, there is nothing wrong with using a Gauss-Jordan
routine like gaussj (§2.1) to invert amatrix in place, again destroying the original.
Both methods have practically the same operations count.

Incidentaly, if you ever have the need to compute A~! - B from matrices A
and B, you should LU decompose A and then backsubstitute with the columns of
B instead of with the unit vectors that would give A’sinverse. This saves a whole
meatrix multiplication, and is also more accurate.
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Determinant of a Matrix

The determinant of an LU decomposed matrix is just the product of the
diagonal el ements,

N
det = [ 8 (2.3.15)
j=1

We don't, recall, compute the decomposition of the original matrix, but rather a
decomposition of a rowwise permutation of it. Luckily, we have kept track of
whether the number of row interchanges was even or odd, so we just preface the
product by the corresponding sign. (You now finally know the purpose of returning
d in the routine ludcmp.)

Calculation of a determinant thus requires one call to ludcmp, with no subse-
guent backsubstitutions by lubksb.

INTEGER np, indx(np)
REAL a(np,np)

call ludcmp(a,n,np,indx,d) This returns d as +1.

dou j=1,n
d=d*a(j,j)
enddo 11

The variable d now contains the determinant of the original matrix a, which will
have been destroyed.

For a matrix of any substantial size, it is quite likely that the determinant will
overflow or underflow your computer’s floating-point dynamic range. In this case
you can modify the loop of the above fragment and (e.g.) divide by powers of ten,
to keep track of the scale separately, or (e.g.) accumulate the sum of logarithms of
the absolute values of the factors and the sign separately.

Complex Systems of Equations

If your matrix A is real, but the right-hand side vector is complex, say b + id, then (i)
LU decompose A in the usual way, (ii) backsubstitute b to get the real part of the solution
vector, and (iii) backsubstituted to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

(A +iC) - (x + iy) = (b + id) (2.3.16)

then there are two possible ways to proceed. The best way is to rewrite ludcmp and 1ubksb
as complex routines. Complex modulus substitutes for absolute value in the construction of
the scaling vector vv and in the search for the largest pivot elements. Everything else goes
through in the obvious way, with complex arithmetic used as needed.
A quick-and-dirty way to solve complex systems is to take the real and imaginary
parts of (2.3.16), giving
A-x—C-y=b
(2.3.17)
C-x+A-y=d

which can be written as a 2N x 2N set of real equations,

ERB-C)

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes



42 Chapter 2. Solution of Linear Algebraic Equations

and then solved with 1udcmp and 1ubksb in their present forms. This schemeis a factor of
2 inefficient in storage, since A and C are stored twice. It is also a factor of 2 inefficient in
time, since the complex multiplies in a complexified version of the routines would each use
4 real multiplies, while the solution of a2N x 2N problem involves 8 times the work of
an N x N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.
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Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 4.
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Computations (Englewood Cliffs, NJ: Prentice-Hall), §3.3, and p. 50.
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wood Cliffs, NJ: Prentice-Hall), Chapters 9, 16, and 18.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
84.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.
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2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that istridiagonal, that is, has
nonzero el ements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systemsthat are band diagonal, with nonzero elements
only along a few diagond lines adjacent to the main diagonal (above and bel ow).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take only O (V') operations, and the whole sol ution can be encoded
very concisaly. Theresultingroutinetridagisonethat wewill usein later chapters.

Naturally, one does not reserve storage for the full N x N matrix, but only for
the nonzero components, stored as three vectors. The set of equationsto be solvedis

bl C1 0 cee ul T1
ay by ca - U2 T2
= e (24.1)
an—1 bv-1 cn—1 UN_1 TN-1
0 anN by UN TN

Noticethat a; and ¢y are undefined and are not referenced by theroutinethat follows.
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2.4 Tridiagonal and Band Diagonal Systems of Equations 43

SUBROUTINE tridag(a,b,c,r,u,n)
INTEGER n,NMAX
REAL a(n),b(n),c(n),r(n),uln)
PARAMETER (NMAX=500)
Solves for a vector u(1:n) of length n the tridiagonal linear set given by equation (2.4.1).
a(1:n), b(1:n), c(1:n), and r(1:n) are input vectors and are not modified.
Parameter: NMAX is the maximum expected value of n.
INTEGER j
REAL bet,gam(NMAX) One vector of workspace, gam is needed.
if(b(1).eq.0.)pause ’tridag: rewrite equations’
If this happens then you should rewrite your equations as a set of order N — 1, with uy
trivially eliminated.
bet=b(1)
u(1)=r(1) /bet
dou j=2,n Decomposition and forward substitution.
gam(j)=c(j-1) /bet
bet=b(j)-a(j)*gam(j)

if (bet.eq.0.)pause ’tridag failed’ Algorithm fails; see below.
u(j)=(r(j)-a(j)*u(j-1))/bet

enddo 11

do12 j=n-1,1,-1 Backsubstitution.
u(j)=u(j)-gam(j+1)*u(j+1)

enddo 12

return

END

There is no pivoting in tridag. It is for this reason that tridag can fail
(pause) even when the underlying matrix is nonsingular: A zero pivot can be
encountered even for anonsingular matrix. In practice, thisis not something to lose
dleep about. The kinds of problems that lead to tridiagonal linear sets usually have
additional properties which guarantee that the algorithm in tridag will succeed.
For example, if

b;| > laj| +le;|  j=1,...,N (2.4.2)

(called diagonal dominance) then it can be shown that the a gorithm cannot encounter
a zero pivot.

It is possible to construct special examples in which the lack of pivoting in the
algorithm causesnumerical instability. |n practice, however, suchinstability isalmost
never encountered — unlike the general matrix problem where pivotingis essential.

The tridiagonal agorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for which tridag fails, you can instead use the more general method for
band diagonal systems, now described (routinesbandec and banbks).

Some other matrix forms consisting of tridiagonal with a small number of
additiona elements (e.g., upper right and lower left corners) aso alow rapid
solution; see §2.7.

Band Diagonal Systems

Where tridiagonal systems have nonzero elements only on the diagonal plus or minus
one, band diagonal systemsare slightly more general and have (say) m: > 0 nonzero elements
immediately to the left of (below) the diagonal and m2 > 0 nonzero elementsimmediately to
itsright (aboveit). Of course, thisisonly auseful classificationif m, and m. areboth < N.
In that case, the solution of the linear system by LU decomposition can be accomplished
much faster, and in much less storage, than for the general N x N case.
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44 Chapter 2. Solution of Linear Algebraic Equations

The precise definition of a band diagonal matrix with elements a;; is that
ai; =0 when j>i4+mo or i>j+m (24.3)

Band diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45° clockwise, so that its nonzero elements lie in a long, narrow
matrix with m1 + 1 + mo columns and N rows. This is best illustrated by an example:
The band diagonal matrix

3100000
4 15 0 0 00
9 2 6 5 0 0 0
035 8 9 00 (24.4)
0079 3 20
000 3 8 4 6
0000 2 4 4
whichhas N =7, m; = 2, and ms = 1, is stored compactly asthe 7 x 4 matrix,
(24.5)

NWIWoR &
=00 O UTN R
> W oo — W
8 N © Ut Ot

Here = denotes elements that are wasted space in the compact format; these will not be
referenced by any manipulations and can have arbitrary values. Notice that the diagonal
of the original matrix appears in column m; + 1, with subdiagonal elements to its left,
superdiagonal elements to its right.

The simplest manipulation of a band diagonal matrix, stored compactly, is to multiply
it by a vector to its right. Although this is algorithmically trivial, you might want to study
the following routine carefully, as an example of how to pull nonzero elementsa;; out of the
compact storage format in an orderly fashion. Notice that, as always, the logical and physical
dimensions of a two-dimensional array can be different. Our convention is to pass N, m1,
ma, and the physical dimensionsnp> N and mp > m1 + 1 + meo.

SUBROUTINE banmul(a,n,ml,m2,np,mp,x,b)

INTEGER ml1,m2,mp,n,np

REAL a(np,mp),b(n),x(n)
Matrix multiply b = A - X, where A is band diagonal with m1 rows below the diagonal
and m2 rows above. The input vector X and output vector b are stored as x(1:n) and
b(1:n), respectively. The array a(1:n,1:m1+m2+1) stores A as follows: The diagonal
elements are in a(1:n,m1+1). Subdiagonal elements are in a(j:n,1:m1) (with j > 1
appropriate to the number of elements on each subdiagonal). Superdiagonal elements are
in a(1:5,m1+2:m1+m2+1) with j < n appropriate to the number of elements on each
superdiagonal.

INTEGER 1,7,k

do 12 i=1,n
b(i)=0.
k=i-mi1-1
do 11 j=max(1,1-k),min(mi+m2+1,n-k)

b(i)=b(i)+a(i,j)*x(j+k)

enddo 11

enddo 12

return

END
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2.4 Tridiagonal and Band Diagonal Systems of Equations 45

It is not possible to store the LU decomposition of a band diagonal matrix A quite
as compactly as the compact form of A itself. The decomposition (essentially by Crout’'s
method, see §2.3) producesadditional nonzero “fill-ins.” One straightforward storage scheme
is to return the upper triangular factor (U) in the same spacethat A previously occupied, and
to return the lower triangular factor (L) in a separate compact matrix of size N x my. The
diagonal elements of U (whose product, times d = +1, gives the determinant) are returned
in the first column of A’s storage space.

The following routine, bandec, is the band-diagonal analog of 1udcmp in §2.3:

SUBROUTINE bandec(a,n,ml,m2,np,mp,al,mpl,indx,d)
INTEGER ml1,m2,mp,mpl,n,np,indx(n)
REAL d,a(np,mp),al(np,mpl),TINY
PARAMETER (TINY=1.e-20)
Given an n X n band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal
rows, compactly stored in the array a(1:n,1:m1+m2+1) as described in the comment for
routine banmul, this routine constructs an LU decomposition of a rowwise permutation
of A. The upper triangular matrix replaces a, while the lower triangular matrix is returned
in al(1:n,1:m1). indx(1:n) is an output vector which records the row permutation
effected by the partial pivoting; d is output as £1 depending on whether the number of
row interchanges was even or odd, respectively. This routine is used in combination with
banbks to solve band-diagonal sets of equations.
INTEGER i,j,k,1,mm
REAL dum
mm=ml+m2+1
if (mm.gt.mp.or.ml.gt.mpl.or.n.gt.np) pause ’bad args in bandec’
1=m1
do 13 i=1,ml Rearrange the storage a bit.
dou j=m1+2-i,mm
a(i,j-1)=a(i,j)
enddo 11
1=1-1
do 12 j=mm-1,mm
a(i,j)=0.
enddo 12
enddo 13
d=1.
1=m1
do1s k=1,n For each row...
dum=a(k,1)
i=k
if(1.1t.n)1=1+1
do 14 j=k+1,1 Find the pivot element.
if (abs(a(j,1)) .gt.abs(dum))then
dum=a(j,1)
i=]
endif
enddo 14
indx(k)=1
if (dum.eq.0.) a(k,1)=TINY
Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in some
applications).
if (i.ne.k)then Interchange rows.
d=-d
dois j=1,mm
dum=a(k, j)
a(k,j)=a(i,])
a(i,j)=dum
enddo 15
endif
do 17 i=k+1,1 Do the elimination.
dum=a(i,1)/ak,1)
al(k,i-k)=dum
doi16 j=2,mm
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a(i,j-1)=a(i,j)-dum*a(k, j)
enddo 16
a(i,mm)=0.
enddo 17
enddo 18
return
END

Some pivoting is possible within the storage limitations of bandec, and the above
routine does take advantage of the opportunity. In general, when TINY is returned as a
diagonal element of U, then the original matrix (perhaps as modified by roundoff error)
is in fact singular. In this regard, bandec is somewhat more robust than tridag above,
which canfail algorithmically even for nonsingular matrices; bandec is thusalso useful (with
m1 = mg = 1) for some ill-behaved tridiagonal systems.

Oncethematrix A hasbeen decomposed, any number of right-hand sidescanbesolvedin
turn by repeated callsto banbks, the backsubstitution routine whoseanalogin §2.3 is Lubksb.

SUBROUTINE banbks(a,n,ml,m2,np,mp,al,mpl,indx,b)
INTEGER ml1,m2,mp,mpl,n,np,indx(n)
REAL a(np,mp),al(np,mpl),b(n)
Given the arrays a, al, and indx as returned from bandec, and given a right-hand side
vector b(1:n), solves the band diagonal linear equations A - X = b. The solution vector X
overwrites b(1:n). The other input arrays are not modified, and can be left in place for
successive calls with different right-hand sides.
INTEGER i,k,1l,mm
REAL dum
mm=m1+m2+1
if (mm.gt.mp.or.ml.gt.mpl.or.n.gt.np) pause ’bad args in banbks’
1=m1
do12 k=1,n Forward substitution, unscrambling the permuted rows as we
i=indx (k) go.
if (i.ne.k)then
dum=b (k)
b(k)=b(i)
b(i)=dum
endif
if(1.1t.n)1=1+1
do 11 i=k+1,1
b(i)=b(i)-al(k,i-k)x*b(k)
enddo 11
enddo 12
1=1
dou i=n,1,-1 Backsubstitution.
dum=b (i)
do 13 k=2,1
dum=dum-a(i,k)*b(k+i-1)
enddo 13
b(i)=dum/a(i,1)
if(1.1t.mm) 1=1+1
enddo 14
return
END

The routines bandec and banbks are based on the Handbook routines bandetl and
bansol1 in [1].

CITED REFERENCES AND FURTHER READING:

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell), p. 74
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Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Example 5.4.3, p. 166.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.11.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. || of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter 1/6. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.3.

2.5 Iterative Improvement of a Solution to
Linear Equations

Obvioudly it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If thishappensto you, thereis a neat trick to restore the full machine precision,
caled iterative improvement of the solution. The theory isvery straightforward (see
Figure 2.5.1): Suppose that a vector x isthe exact solution of the linear set

A-x=b (25.1)

You don’t, however, know x. You only know some dightly wrong solution x + 6Xx,
where 6x istheunknown error. When multiplied by thematrix A, your slightly wrong
solutiongivesaproduct dightly discrepant fromthedesired right-handsideb, namely

A-(x+6x)=b+ b (25.2)
Subtracting (2.5.1) from (2.5.2) gives
A-6x=46b (25.3)
But (2.5.2) can also be solved, trividly, for 6b. Substituting thisinto (2.5.3) gives
A-dx=A-(x+6x)—b (25.4)

In this equation, the whole right-hand side is known, since x + éx is the wrong
solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtraction of b.
Then, we need only solve (2.5.4) for the error 6x, then subtract thisfrom the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the origina solution by LU
decomposition. In thiscase we already havethe LU decomposed form of A, and &l
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do al thisis concise and straightforward:
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Figure 2.5.1. Iterativeimprovement of the solutionto A - x = b. Thefirst guessx + éx is multiplied by
A to produceb + éb. The known vector b is subtracted, giving 6b. The linear set with this right-hand
sideisinverted, giving 6x. Thisis subtracted from the first guess giving an improved solution x.

SUBROUTINE mprove(a,alud,n,np,indx,b,x)
INTEGER n,np,indx(n) ,NMAX
REAL a(np,np),alud(np,np),b(n),x(n)
PARAMETER (NMAX=500)
USES | ubksb
Improves a solution vector x(1:n) of the linear set of equations A - X = B. The matrix
a(l:n,1:n), and the vectors b(1:n) and x(1:n) are input, as is the dimension n. Also
input is alud, the LU decomposition of a as returned by ludcmp, and the vector indx also
returned by that routine. On output, only x(1:1n) is modified, to an improved set of values.
INTEGER i, j
REAL r (NMAX)
DOUBLE PRECISION sdp
do12 i=1,n Calculate the right-hand side, accumulating the resid-
sdp=-b(i) ual in double precision.
dou j=1,n
sdp=sdp+dble(a(i,j))*dble(x(j))
enddo 11
r(i)=sdp
enddo 12
call lubksb(alud,n,np,indx,r) Solve for the error term,
do13 i=1,n and subtract it from the old solution.
x(1)=x(i)-r (i)
enddo 13
return
END

Maximum anticipated value of n.

You should note that the routine Ludcmp in §2.3 destroys the input matrix as it
LU decomposes it. Since iterative improvement requires both the original matrix
and its LU decomposition, you will need to copy A beforecalling ludcmp. Likewise
lubksb destroys b in obtaining x, so make a copy of b aso. If you don’t mind
this extra storage, iterative improvement is highly recommended: It is a process
of order only N2 operations (multiply vector by matrix, and backsubstitute — see
discussion following equation 2.3.7); it never hurts; and it can really give you your
money’s worth if it saves an otherwise ruined solution on which you have aready
spent of order N3 operations.
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2.5 lterative Improvement of a Solution to Linear Equations 49

You can call mprove severa timesin succession if you want. Unless you are
starting quite far from the true solution, one cal is generally enough; but a second
cal to verify convergence can be reassuring.

More on lIterative Improvement

It is illuminating (and will be useful later in the book) to give a somewhat more solid
analytical foundation for equation (2.5.4), and also to give some additional results. Implicit in
the previous discussion was the notion that the solution vector x + §x has an error term; but
we neglected the fact that the LU decomposition of A is itself not exact.

A different analytical approach starts with some matrix B that is assumed to be an
approximate inverse of the matrix A, so that By - A is approximately the identity matrix 1.
Define the residual matrix R of Bgy as

R=1-By-A (25.5)
which is supposed to be “small” (we will be more precise below). Note that therefore
Bo-A=1-R (2.5.6)

Next consider the following formal manipulation:

A=A By -Bo)=(A""-By")-Bo=(Bo-A)"" - By
B . B » s (25.7)
=(1-R)”" -Bp=(14+R+R°"+R>+---)-Bog

We can define the nth partial sum of the last expression by
B.=(1+R+---+R")-Bg (25.8)

so that Boo — A1, if the limit exists.
It now is straightforward to verify that equation (2.5.8) satisfies some interesting
recurrence relations. Asregards solving A - x = b, where x and b are vectors, define

Xn =B, -b (25.9)
Then it is easy to show that
Xnt1 =Xn +Bo- (b —A - Xp) (2.5.10)

This is immediately recognizable as equation (2.5.4), with —6X = X,,+1 — X», and with By
taking the role of A~1. We see, therefore, that equation (2.5.4) does not require that the LU
decompositon of A be exact, but only that the implied residual R be small. In rough terms, if
the residual is smaller than the square root of your computer’s roundoff error, then after one
application of equation (2.5.10) (that is, going fromxo = By - b to X1 ) thefirst neglected term,
of order R?, will be smaller than the roundoff error. Equation (2.5.10), like equation (2.5.4),
moreover, can be applied more than once, since it uses only By, and not any of the higher B’s.

A much more surprising recurrence which follows from equation (2.5.8) is one that
more than doubles the order n at each stage:

Bani1 = 2B, —Bn-A-B, n=0,1,37,... (2.5.11)

Repeated application of equation (2.5.11), from a suitable starting matrix By, converges
quadratically to the unknown inverse matrix A~* (see §9.4 for the definition of “quadrati-
cally”). Equation (2.5.11) goesby various names, including Schultzs Method and Hotelling's
Method; see Pan and Reif [1] for references. In fact, equation (2.5.11) is simply the iterative
Newton-Raphson method of root-finding (§9.4) applied to matrix inversion.

Before you get too excited about equation (2.5.11), however, you should notice that it
involvestwo full matrix multiplications at each iteration. Each matrix multiplication involves
N? adds and multiplies. But we already saw in §§2.1-2.3 that direct inversion of A requires
only N* adds and N® multiplies in toto. Equation (2.5.11) is therefore practical only when
special circumstancesallow it to be evaluated much more rapidly than is the case for general
matrices. We will meet such circumstances later, in §13.10.
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50 Chapter 2. Solution of Linear Algebraic Equations

In the spirit of delayed gratification, let us nevertheless pursue the two related issues:
When does the series in equation (2.5.7) converge; and what is a suitable initial guess By (if,
for example, an initial LU decomposition is not feasible)?

We can define the norm of a matrix as the largest amplification of length that it is
able to induce on a vector,

IR|| = max RV

V£0 |V

(25.12)

If welet equation (2.5.7) act on some arbitrary right-hand sideb, as onewantsamatrix inverse
to do, it is obvious that a sufficient condition for convergence is

IR|| <1 (25.13)

Pan and Reif [1] point out that a suitableinitial guessfor By is any sufficiently small constant
€ times the matrix transpose of A, that is,

Bo=eA” o R=1-¢AT.A (2.5.14)

To see Wt}y this is so involves concepts from Chapter 11; we give here only the briefest
sketch: A® - A is a symmetric, positive definite matrix, so it has real, positive eigenvalues.
In its diagonal representation, R takes the form

R=diag(l— eA1,1 — €A, ..., 1 — eln) (2.5.15)

where all the \;’s are positive. Evidently any e satisfying 0 < e < 2/(max; ;) will give
IR| < 1. Itis not difficult to show that the optimal choice for €, giving the most rapid
convergence for equation (2.5.11), is

€ =2/(max \; + min \;) (2.5.16)

Rarely does one know the eigenvalues of AT - A in equation (2.5.16). Pan and Reif
derive several interesting bounds, which are computable directly from A. The following
choices guarantee the convergence of B,, asn — oo,

€< 1/ E ak or e < 1/(max E la;j| X max E |ai]’|> (2.5.17)
i J
J.k J i

The latter expression is truly a remarkable formula, which Pan and Reif derive by noting that
the vector norm in equation (2.5.12) need not be the usual L, norm, but can instead be either
the Lo, (max) norm, or the L, (absolute value) norm. See their work for details.

Another approach, with which we have had some success, is to estimate the largest
eigenvaluestatistically, by calculating s; = |A - v;|? for several unit vector v;’swith randomly
chosendirectionsin N-space. Thelargest eigenvalue A can then be bounded by the maximum
of 2maxs; and 2N Var(s;)/u(s:), where Var and . denote the sample variance and mean,
respectively.

CITED REFERENCES AND FURTHER READING:

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §2.3.4, p. 55.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), p. 74.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
85.5.6, p. 183.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapter 13.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §9.5, p. 437.

Pan, V., and Reif, J. 1985, in Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing (New York: Association for Computing Machinery). [1]
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2.6 Singular Value Decomposition 51

2.6 Singular Value Decomposition

There existsavery powerful set of techniquesfor dealing with sets of equations
or matricesthat are either singular or else numerically very closeto singular. In many
cases where Gaussian elimination and LU decomposition fail to give satisfactory
results, this set of techniques, known as singular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “the’ answer
that you thought you should get.

SVD isalsothemethod of choicefor solving most linear | east-squaresproblems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data

SV D methods are based on thefollowingtheorem of linear al gebra, whose proof
isbeyond our scope: Any M x N matrix A whose number of rows M isgreater than
or equa to its number of columns N, can be written as the product of an M x N
column-orthogonal matrix U, an N x N diagona matrix W with positive or zero
elements (the singular values), and thetranspose of an N x N orthogonal matrix V.
The various shapes of these matrices will be made clearer by the following tableau:

(2.6.1)

The matrices U and V are each orthogona in the sense that their columns are
orthonormal,

M
1<k<N
UirUin = kn -7 = 26.2
; i i 1<n<N (262)
N
k<N
> VikVin = bkn N (2.6.3)

j=1
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52 Chapter 2. Solution of Linear Algebraic Equations

or as a tableau,

u? : U = vt : v

(2.6.4)

SinceV is square, it is aso row-orthonormal, V - VT = 1.

The SVD decomposition can aso be carried out when M < N. In this case
the singular values w; for j = M +1,..., N are @l zero, and the corresponding
columns of U are also zero. Equation (2.6.2) then holdsonly for &, n < M.

The decomposition (2.6.1) can always be done, no matter how singular the
matrix is, and it is “almost” unique. That isto say, it is unique up to (i) making
the same permutation of the columns of U, elements of W, and columns of V (or
rows of VT), or (ii) forming linear combinations of any columns of U and V whose
corresponding elements of W happen to be exactly equal. Animportant consequence
of the permutation freedom is that for the case M < N, anumerical algorithm for
the decomposition need not return zero w;'sfor j = M +1,...,N; the N — M
zero singular values can be scattered among al positionsj = 1,2,..., N.

At the end of this section, we give aroutine, svdcmp, that performs SVD on an
arbitrary matrix A, replacing it by U (they are the same shape) and returning W and
V separately. Theroutine svdcmp is based on aroutine by Forsythe et al. [1], which
isin turn based on the origina routine of Golub and Reinsch, found, in various
forms, in[2-4] and elsawhere. These references include extensive discussion of the
algorithmused. Asmuch aswe dislikethe use of black-box routines, we are going to
ask you to accept thisone, sinceit would take ustoo far afield to cover its necessary
background material here. Suffice it to say that the algorithm is very stable, and
that it is very unusua for it ever to misbehave. Most of the concepts that enter
the algorithm (Householder reduction to bidiagonal form, diagonaization by QR
procedure with shifts) will be discussed further in Chapter 11.

If you are as suspiciousof black boxesasweare, you will want to verify yourself
that svdcmp doeswhat we say it does. That isvery easy to do: Generate an arbitrary
matrix A, call the routine, and then verify by matrix multiplication that (2.6.1) and
(2.6.4) are setisfied. Since these two equations are the only defining requirements
for SVD, thisprocedure is (for the chosen A) a complete end-to-end check.

Now let us find out what SVD is good for.
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SVD of a Square Matrix

If thematrix A issguare, N x N say, thenU, V, and W are all square matrices
of thesame size. Their inversesare also trivial to compute: U and V are orthogona,
so their inverses are equd to their transposes;, W is diagonal, so itsinverse is the
diagonal matrix whose elements are the reciprocals of the elementsw;. From (2.6.1)
it now follows immediately that the inverse of A is

A=t =V . [diag (1/w;)] - UT (2.6.5)

The only thing that can go wrong with this construction is for one of the w;’s
to be zero, or (numericaly) for it to be so small that its value is dominated by
roundoff error and therefore unknowable. If more than one of the w;’s have this
problem, then the matrix is even more singular. So, first of al, SVD gives you a
clear diagnosis of the situation.

Formally, the condition number of a matrix is defined as theratio of the largest
(in magnitude) of the w;’s to the smallest of the w;'s. A matrix is singuler if its
condition number is infinite, and it is ill-conditioned if its condition number is too
large, that is, if its reciprocal approaches the machine's floating-point precision (for
example, less than 10~ for single precision or 10~*2 for double).

For singular matrices, the concepts of nullspace and range are important.
Consider the familiar set of simultaneous equations

A-x=b (2.6.6)

where A is a square matrix, b and x are vectors. Equation (2.6.6) defines A as a
linear mapping from the vector space x to the vector space b. If A issingular, then
there is some subspace of x, called the nullspace, that is mapped to zero, A - x = 0.
The dimension of the nullspace (the number of linearly independent vectors x that
can be found in it) is caled the nullity of A.

Now, there is aso some subspace of b that can be “reached” by A, in the sense
that there exists some x which ismapped there. This subspace of b iscalled the range
of A. Thedimension of therangeiscalled therank of A. If A isnonsingular, thenits
range will beall of thevector space b, soitsrank is V. If A issingular, then the rank
will belessthan N. Infact, the relevant theorem is“rank plus nullity equals N.”

What has this to do with SYD? SVD explicitly constructs orthonormal bases
for the nullspace and range of a matrix. Specifically, the columns of U whose
same-numbered elements w; are nonzero are an orthonormal set of basis vectors that
span the range; the columns of V whose same-numbered elements w; are zero are
an orthonormal basis for the nullspace.

Now let’s have another ook at solving the set of simultaneouslinear equations
(2.6.6) in the case that A issingular. First, the set of homogeneous equations, where
b =0, is solved immediately by SVD: Any column of V whose corresponding w
is zero yields a solution.

When the vector b on the right-hand side is not zero, the important question is
whether it liesin the range of A or not. If it does, then the singular set of equations
does have a solution x; in fact it has more than one solution, since any vector in
the nullspace (any column of V with a corresponding zero w;) can be added to x
in any linear combination.
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54 Chapter 2. Solution of Linear Algebraic Equations

If we want to single out one particular member of thissolution-set of vectors as
arepresentative, we might want to pick the onewith the smallest length |x|2. Hereis
how to find that vector using SVD: Simply replace 1/w; by zero if w; = 0. (Itisnot
very often that one getsto set oo = 0 !) Then compute (working from right to left)

x =V -[diag (1/w;)] - (UT - b) (26.7)

This will be the solution vector of smallest length; the columns of V that are in the
nullspace complete the specification of the solution set.

Proof: Consider |x + x’|, where x’ liesin the nullspace. Then, if W' denotes
the modified inverse of W with some elements zeroed,

x+X|=|V-w™.U" - b+x|
=|V- (W UT b+ VT .x)| (2.6.8)
=|w U b+ V" x|

Here thefirst equality follows from (2.6.7), the second and third from the orthonor-
mality of V. If you now examine the two terms that make up the sum on the
right-hand side, you will see that thefirst one has nonzero 5 components only where
w; # 0, whilethe second one, sincex’ isin the nullspace, has nonzero j components
only where w; = 0. Therefore the minimum length obtainsfor x’ = 0, g.e.d.

If b isnot in the range of the singular matrix A, then the set of equations (2.6.6)
has no solution. But here is some good news. If b is not in the range of A, then
equation (2.6.7) can still be used to construct a “solution” vector x. This vector X
will not exactly solve A - x = b. But, among al possible vectors x, it will do the
closest possiblejob in the least squares sense. In other words (2.6.7) finds

x whichminimizes r =|A-x—b| (2.6.9)

The number r is called the residual of the solution.

The proof issimilar to (2.6.8): Suppose we modify x by adding some arbitrary
x'. Then A - x — b is modified by adding some b’ = A - x’. Obvioudy b’ isin
the range of A. We then have

A x—b+b|=]U-W-V') - (V.-W.U"-b)—b+b|

=|(U-Ww-W - U"—1)-b+b|

= ]U~ [(w Wl 1)U b4 UT. b’]| (2.6.10)

=|WwW-w-1).UT b+ U b

Now, (W - W~ — 1) isadiagona matrix which has nonzero j components only for
wj = 0, while UT'b’ has nonzero j components only for wj # 0, sinceb’ liesinthe
range of A. Therefore the minimum obtains for b’ = 0, g.ed.

Figure 2.6.1 summarizes our discussion of SVD thus far.
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AP

@
null
space
of A .
solutions of
solutions of Alk=c¢
Alk=d
SVvD “solution”
of Alk=c c
range of A
- - = \
\
d ‘.C
SVD solution of
Alk=d
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Figure 2.6.1. (a) A nonsingular matrix A maps a vector space into one of the same dimension. The
vector X is mapped into b, so that x satisfies the equation A - x = b. (b) A singular matrix A maps a
vector space into one of lower dimensionality, here a plane into a line, called the “range” of A. The
“nullspace” of A ismapped to zero. The solutionsof A - x = d consist of any one particular solution plus
any vector in the nullspace, here forming aline parallel to the nullspace. Singular value decompostion
(SVD) selects the particular solution closest to zero, as shown. The point c lies outside of the range
of A, so A -x = c has no solution. SVD finds the least-squares best compromise solution, namely a
solution of A - x = ¢/, as shown.

In the discussion since equation (2.6.6), we have been pretending that a matrix
either is singular or else isn't. That is of course true anayticaly. Numericaly,
however, the far more common situation is that some of the w;'s are very small
but nonzero, so that the matrix is ill-conditioned. In that case, the direct solution
methods of LU decomposition or Gaussian elimination may actually give a formal
solution to the set of equations (that is, a zero pivot may not be encountered); but
the solution vector may have wildly large components whose algebraic cancellation,
when multiplying by the matrix A, may give a very poor approximation to the
right-hand vector b. In such cases, the solution vector x obtained by zeroing the
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56 Chapter 2. Solution of Linear Algebraic Equations

small w;’s and then using equation (2.6.7) is very often better (in the sense of the
residua |A - x — b| being smaller) than both the direct-method solution and the SVD
solution where the small w;’s are |left nonzero.

It may seem paradoxical that this can be so, since zeroing a singular value
corresponds to throwing away one linear combination of the set of equations that
we are trying to solve. The resolution of the paradox is that we are throwing away
precisely a combination of equationsthat is so corrupted by roundoff error asto be at
best useless; usualy it isworse than useless since it “pulls’ the solution vector way
off towardsinfinity along some direction that is amost a nullspace vector. In doing
this, it compounds the roundoff problem and makes theresidud |A - x — b| larger.

SVD cannot be applied blindly, then. You have to exercise some discretion in
deciding at what threshold to zero the small w;’s, and/or you have to have some idea
what size of computed residua |A - x — b| is acceptable.

As an example, here is a “backsubstitution” routine svbksb for evaluating
equation (2.6.7) and obtaining a solution vector x from a right-hand side b, given
that the SVD of a matrix A has already been calculated by a call to svdcmp. Note
that this routine presumes that you have aready zeroed the small w;’s. It does not
do this for you. If you haven't zeroed the small w;’s, then this routine is just as
ill-conditioned as any direct method, and you are misusing SVD.

SUBROUTINE svbksb(u,w,v,m,n,mp,np,b,x)
INTEGER m,mp,n,np,NMAX
REAL b(mp) ,u(mp,np),v(np,np) ,w(np) ,x(np)
PARAMETER (NMAX=500) Maximum anticipated value of n.
Solves A - X = B for a vector X, where A is specified by the arrays u, w, v as returned by
svdcmp. m and n are the logical dimensions of a, and will be equal for square matrices. mp
and np are the physical dimensions of a. b(1:m) is the input right-hand side. x(1:n) is
the output solution vector. No input quantities are destroyed, so the routine may be called
sequentially with different b’s.
INTEGER i,3,3j
REAL s, tmp(NMAX)
do12 j=1,n Calculate UTB.
s=0.
if (w(j).ne.0.)then Nonzero result only if w; is nonzero.
don i=1,m
s=s+u(i, j)*b(i)
enddo 11
s=s/w(j) This is the divide by w;.
endif
tmp (j)=s
enddo 12
dou j=1,n Matrix multiply by V' to get answer.
s=0.
do13 jj=1,n
s=s+v(j,j3)*tmp(jj)
enddo 13
x(j)=s
enddo 14
return
END

Note that a typica use of svdcmp and svbksb superficially resembles the
typical use of ludcmp and lubksb: In both cases, you decompose the left-hand
matrix A just once, and then can use the decomposition either once or many times
with different right-hand sides. The crucia differenceisthe“editing” of the singular
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vaues before svbksb is called:

REAL a(np,np) ,u(np,np),w(np),v(np,np),b(np),x(np)

do12 i=1,n Copy a into u if you don't want it to be destroyed.
dou j=1,n
u(i,j)=a(i,j)
enddo 11
enddo 12
call svdcmp(u,n,n,np,np,w,v) SVD the square matrix a.
wmax=0. Will be the maximum singular value obtained.
do13 j=1,n
if (w(j) .gt.wmax)wmax=w(j)
enddo 13
wmin=wmax*1.0e-6 This is where we set the threshold for singular values
dos j=1,n allowed to be nonzero. The constant is typical,

if (w(j).lt.wmin)w(j)=0. but not universal. You have to experiment with
enddo 1 your own application.
call svbksb(u,w,v,n,n,np,np,b,x) Now we can backsubstitute.

SVD for Fewer Equations than Unknowns

If you have fewer linear equations M than unknowns N, then you are not
expecting a unique solution. Usually there will bean N — M dimensiona family
of solutions. If you want to find this whole solution space, then SVD can readily
do the job.

The SVD decomposition will yield N — M zero or negligible w;’s, since
M < N. There may be additiona zero w;'s from any degeneracies in your M
equations. Be sure that you find this many small w;’s, and zero them before calling
svbksb, which will giveyou the particul ar solution vector X. Asbefore, the columns
of V corresponding to zeroed w;'s are the basis vectors whose linear combinations,
added to the particular solution, span the solution space.

SVD for More Equations than Unknowns

This situation will occur in Chapter 15, when we wish to find the least-squares
solution to an overdetermined set of linear equations. In tableau, the equations
to be solved are

A Axl=10b (2.6.11)

The proofs that we gave above for the square case apply without modification
to the case of more equationsthan unknowns. The |east-squares solution vector X is
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58 Chapter 2. Solution of Linear Algebraic Equations

given by (2.6.7), which, with nonsquare matrices, looks like this,

x| = V - | diag(1/w;y) | - u”t “|b

(2.6.12)

In general, the matrix W will not be singular, and no w;’'s will need to be
set to zero. Occasionaly, however, there might be column degeneracies in A. In
this case you will need to zero some small w; values after all. The corresponding
column inV givesthe linear combination of x’'sthat isthen ill-determined even by
the supposedly overdetermined set.

Sometimes, athough you do not need to zero any w;'s for computational
reasons, you may nevertheless want to take note of any that are unusualy small:
Their corresponding columnsin V arelinear combinationsof X' swhich areinsensitive
to your data. Infact, you may then wish to zero these w;’s, to reduce the number of
free parameters in the fit. These matters are discussed more fully in Chapter 15.

Constructing an Orthonormal Basis

Suppose that you have N vectors in an M-dimensional vector space, with
N < M. Then the N vectors span some subspace of the full vector space.
Often you want to construct an orthonormal set of NV vectors that span the same
subspace. The textbook way to do this is by Gram-Schmidt orthogonalization,
starting with one vector and then expanding the subspace one dimension at a
time. Numerically, however, because of the build-up of roundoff errors, naive
Gram-Schmidt orthogonalization is terrible.

The right way to construct an orthonormal basis for a subspace is by SVD:
Form an M x N matrix A whose N columns are your vectors. Run the matrix
through svdcmp. The columns of the matrix U (which in fact replaces A on output
from svdcmp) are your desired orthonormal basis vectors.

You might also want to check the output w;’s for zero values. If any occur,
then the spanned subspace was not, in fact, N dimensional; the columns of U
corresponding to zero w;’s should be discarded from the orthonormal basis set.

(QR factorization, discussed in §2.10, aso constructs an orthonormal basis,
see(5].)

Approximation of Matrices

Note that equation (2.6.1) can be rewritten to express any matrix A;; as asum
of outer products of columns of U and rows of V7, with the “weighting factors’
being the singular values wy,

N
Aij = Z wi Ui Vi (2.6.13)
k=1
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2.6 Singular Value Decomposition 59

If you ever encounter a situation where most of the singular values w; of a
matrix A are very small, then A will be well-approximated by only afew termsinthe
sum (2.6.13). This means that you have to store only afew columns of U and V (the
same k ones) and you will be able to recover, with good accuracy, the whole matrix.

Note also that it is very efficient to multiply such an approximated matrix by a
vector X: You just dot x with each of the stored columns of V, multiply the resulting
scalar by the corresponding wy, and accumulate that multiple of the corresponding
column of U. If your matrix is approximated by a smal number K of singular
values, then this computation of A - x takes only about K (M + N) multiplications,
instead of M N for the full matrix.

SVD Algorithm

Here isthe algorithm for constructing the singular value decomposition of any
matrix. See §11.2-§11.3, and also[4-5], for discussion relating to the underlying
method.

SUBROUTINE svdcmp(a,m,n,mp,np,w,v)
INTEGER m,mp,n,np,NMAX
REAL a(mp,np),v(np,np),w(np)
PARAMETER (NMAX=500)
USES pyt hag
Given a matrix a(1:m,1:n), with physical dimensions mp by np, this routine computes its
singular value decomposition, A = U - W - VL. The matrix U replaces a on output. The
diagonal matrix of singular values W is output as a vector w(1:n). The matrix V (not the
transpose V1) is output as v(1:n,1:n).
INTEGER i,its,j,jj,k,1,mm
REAL anorm,c,f,g,h,s,scale,x,y,z,rvi(NMAX) ,pythag
g=0.0 Householder reduction to bidiagonal form.
scale=0.0
anorm=0.0
do2 i=1,n
1=i+1
rvi(i)=scalex*g
g=0.0
s=0.0
scale=0.0
if(i.le.m)then
dou k=i,m
scale=scale+abs(a(k,i))
enddo 11
if (scale.ne.0.0)then
do 12 k=i,m
a(k,i)=a(k,i)/scale
s=s+a(k,i)*a(k,i)
enddo 12
f=a(i,i)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,i)=f-g
do1s j=1,n
s=0.0
do1s k=i,m
s=s+a(k,i)*a(k,j)
enddo 13
f=s/h
dow k=i,m
a(k,j)=a(k,j)+f*a(k,i)
enddo 14

Maximum anticipated value of n.
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60 Chapter 2. Solution of Linear Algebraic Equations

enddo 15
do 16 k=i,m
a(k,i)=scale*a(k,i)

enddo 16
endif
endif
w(i)=scale *g
g=0.0
s=0.0
scale=0.0
if((i.le.m).and. (i.ne.n))then
do17 k=1,n
scale=scale+abs(a(i,k))
enddo 17
if(scale.ne.0.0)then
do s k=1,n
a(i,k)=a(i,k)/scale
s=s+a(i,k)*a(i,k)
enddo 18
f=a(i,1)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,l)=f-g
do19 k=1,n
rvi(k)=a(i,k)/h
enddo 19
dos j=1,m
s=0.0
do21 k=1,n
s=s+a(j,k)*a(i,k)
enddo 21
do2 k=1,n
a(j,k)=a(j,k)+s*xrvi(k)
enddo 22
enddo 23
do24 k=1,n
a(i,k)=scale*xa(i,k)
enddo 24
endif
endif
anorm=max (anorm, (abs(w(i))+abs(rv1(i))))
enddo 25
do3 i=n,1,-1 Accumulation of right-hand transformations.

if(i.1t.n)then
if(g.ne.0.0)then
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do2 j=1,n Double division to avoid possible underflow.
v(j,i)=(a(i,j)/ali,1))/g
enddo 26
do2 j=1l,n
s=0.0
do27 k=1,n
s=s+a(i,k)*v(k,j)
enddo 27
do2s k=1,n
v(k,j)=v(k,j)+s*v(k,1i)
enddo 28
enddo 29
endif
doa j=1l,n
v(i,j)=0.0
v(j,1)=0.0
enddo a1
endif
v(i,i)=1.0
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2.6 Singular Value Decomposition

g=rv1(i)
1=3i
enddo 22
do 3 i=min(m,n),1,-1 Accumulation of left-hand transformations.
1=i+1
g=w(i)
dosx j=1l,n
a(i,j)=0.0
enddo 3
if(g.ne.0.0)then
g=1.0/g
dos j=l,n
s=0.0
dox k=1,m
s=s+a(k,i)*a(k,j)
enddo 34
f=(s/a(i,i))*g
do 3 k=i,m
a(k,j)=a(k,j)+f*a(k,i)
enddo 35
enddo 36
dos7 j=i,m
a(j,i)=a(j,i)*g
enddo 37
else
doss j= i,m
a(j,i)=0.0
enddo 38
endif
a(i,i)=a(i,i)+1.0
enddo 39

do 49 k=n,1,-1 Diagonalization of the bidiagonal form: Loop over
do 4 its=1,30 singular values, and over allowed iterations.

doa 1=k,1,-1 Test for splitting.
nm=1-1 Note that rv1(1) is always zero.
if ((abs(rvi(l))+anorm).eq.anorm) goto 2
if ((abs(w(nm))+anorm) .eq.anorm) goto 1
enddo 4
c=0.0 Cancellation of rv1(1), if 1 > 1.
s=1.0
dos i=1,k
f=s*rv1(i)
rvi(i)=c*rvil(i)
if ((abs(f)+anorm).eq.anorm) goto 2
g=w(i)
h=pythag(f,g)
w(i)=h
h=1.0/h
c= (g*h)
s=-(f*h)
do4 j=1,m
y=a(j,nm)
z=a(j,1)
a(j,nm)=(y*c)+(z*s)
a(j,i)=-(y*s)+(z*c)
enddo #
enddo 43
z=w (k)
if(1.eq.k)then Convergence.
if(z.1t.0.0)then Singular value is made nonnegative.
w(k)=-z
dou j=1,n
v(j,k)=-v(j,k)
enddo 4
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62 Chapter 2. Solution of Linear Algebraic Equations

endif
goto 3
endif
if(its.eq.30) pause ’no convergence in svdcmp’
x=w(1) Shift from bottom 2-by-2 minor.
nm=k-1
y=w(nm)
g=rvi(nm)
h=rvi(k)
f=((y-z)*(y+z)+(g-h) *(g+h) ) / (2. 0*h*y)
g=pythag(f,1.0)
£=((x-2z)* (x+z) +h* ((y/(f+sign(g,£)))-h)) /x
c=1.0 Next QR transformation:
s=1.0
do47 j=1,nm
i=j+1
g=rv1(i)
y=w(i)
h=s*g
g=c*g
z=pythag(f,h)
rvi(j)=z
c=f/z
s=h/z
f= (x*xc)+(g*s)
g=-(x*s)+(g*c)
h=y*s
y=y*c
doss jj=1,n
x=v(jj,J)
z=v(jj,1i)
v(jj,j)= (x*xc)+(z*s)
v(jj,i)=-(x*s)+(z*c)
enddo 45
z=pythag(f,h)
w(j)=z Rotation can be arbitrary if z = 0.
if(z.ne.0.0)then
z=1.0/z
c=f*z
s=h*z
endif
f= (c*g)+(s*xy)
x=-(s*g)+(c*y)
doss jj=1,m
y=a(3j,3)
z=a(jj,i)
a(jj,j)= (y*xc)+(z*s)
a(jj,i)=-(y*s)+(z*c)
enddo 46
enddo 47
rv1(1)=0.0
rvi(k)=£f
w(k)=x
enddo 48
continue
enddo 49
return
END

FUNCTION pythag(a,b)
REAL a,b,pythag
Computes (a2 + b2)1/2 without destructive underflow or overflow.
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2.7 Sparse Linear Systems 63

REAL absa,absb
absa=abs(a)
absb=abs (b)
if (absa.gt.absb)then
pythag=absa*sqrt (1.+(absb/absa)**2)
else
if (absb.eq.0.)then
pythag=0.
else
pythag=absb*sqrt (1.+(absa/absb) **2)
endif
endif
return
END

(Double precision versions of svdcmp, svbksb, and pythag, named dsvdcmp,
dsvbksb, and dpythag, are used by the routine ratlsq in §5.13. You can easily
make the conversions, or €l se get the converted routinesfrom the Numerical Recipes
diskette.)

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §8.3 and Chapter 12.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall), Chapter 18.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9. [1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. || of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter 1.10 by G.H. Golub and C. Reinsch. [2]

Dongarra, J.J., et al. 1979, LINPACK User’s Guide (Philadelphia: S.I.A.M.), Chapter 11. [3]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer-Verlag).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§6.7. [4]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §5.2.6. [5]

2.7 Sparse Linear Systems

A system of linear equationsis called sparse if only arelatively small number
of its matrix elements a;; are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of the O(N?3) arithmetic operations
devoted to solving the set of equationsor inverting the matrix invol ve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not dways compatible) goals for any sparse
matrix method: saving time and/or saving space.

We have aready considered one archetypa sparse form in §2.4, the band
diagonal matrix. In the tridiagona case, eg., we saw that it was possible to save
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64 Chapter 2. Solution of Linear Algebraic Equations

both time (order N instead of N?3) and space (order N instead of N2). The
method of solution was not different in principle from the general method of LU
decomposition; it wasjust applied cleverly, and with due attentionto the bookkeeping
of zero elements. Many practical schemes for dealing with sparse problemshavethis
same character. They are fundamentally decomposition schemes, or el se elimination
schemes akin to Gauss-Jordan, but carefully optimized so as to minimize the number
of so-called fill-ins, initially zero elements which must become nonzero during the
solution process, and for which storage must be reserved.

Direct methods for solving sparse equations, then, depend crucidly on the
precise pattern of sparsity of the matrix. Patterns that occur frequently, or that are
useful as way-stations in the reduction of more general forms, aready have special
names and special methods of solution. We do not have space here for any detailed
review of these. References listed at the end of this section will furnish you with an
“in” to the speciaized literature, and the following list of buzz words (and Figure
2.7.1) will at least let you hold your own at cocktail parties:

o tridiagonal
band diagonal (or banded) with bandwidth A/
band triangular
block diagonal
block tridiagonal
block triangular
cyclic banded
singly (or doubly) bordered block diagonal
singly (or doubly) bordered block triangular
singly (or doubly) bordered band diagonal
singly (or doubly) bordered band triangular

e other (1)

You should also be aware of some of the special sparse forms that occur in the
solution of partial differential equationsin two or more dimensions. See Chapter 19.

If your particular pattern of sparsity isnot a simple one, then you may wish to
try an analyze/factorize/operate package, which automates the procedure of figuring
out how fill-insare to be minimized. The analyze stage is done once only for each
pattern of sparsity. The factorize stage is done once for each particular matrix that
fits the pattern. The operate stage is performed once for each right-hand side to
be used with the particular matrix. Consult[2,3] for references on this. The NAG
library [4] has an analyzeffactorize/operate capability. A substantia collection of
routines for sparse matrix calculation is also available from IMSL [5] as the Yale
Soarse Matrix Package [6].

You should be aware that the specia order of interchanges and eiminations,
prescribed by a sparse matrix method so as to minimize fill-ins and arithmetic
operations, generally acts to decrease the method’s numerical stability as compared
to, e.g., regular LU decomposition with pivoting. Scaling your problem so as to
make its nonzero matrix elements have comparable magnitudes (if you can do it)
will sometimes ameliorate this problem.

In the remainder of this section, we present some conceptswhich are applicable
to some genera classes of sparse matrices, and which do not necessarily depend on
details of the pattern of sparsity.
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Figure2.7.1. Some standard formsfor sparsematrices. (a) Band diagonal; (b) block triangular; (c) block
tridiagonal; (d) singly bordered block diagonal; (€) doubly bordered block diagonal; (f) singly bordered
block triangular; (g) bordered band-triangular; (h) and (i) singly and doubly bordered band diagonal; (j)
and (k) other! (after Tewarson) [1].

Sherman-Morrison Formula

Suppose that you have aready obtained, by herculean effort, the inverse matrix
A~! of asquare matrix A. Now you want to make a “small” change in A, for
example change one element a;;, or a few elements, or one row, or one column.
Is there any way of calculating the corresponding change in A~! without repesting
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66 Chapter 2. Solution of Linear Algebraic Equations

your difficult labors? Yes, if your change is of the form
A —- (A+uev) (2.7.2)

for some vectorsu and v. If u isaunit vector g;, then (2.7.1) adds the components
of vtotheithrow. (Recal that u ® v isamatrix whose, jth element isthe product
of the sth component of u and the jth component of v.) If v isa unit vector e;, then
(2.7.1) adds the components of u to the jth column. If both u and v are proportional
to unit vectors e; and e; respectively, then aterm is added only to the element a;;.

The Sherman-Morrisonformulagivestheinverse (A +u®v)~!, and isderived
briefly as follows:

A+uev)'=1+A"1 uev) AT
=1-Atuev+A Tt uev- ATl uev—..)-A"!
=A7' A uev- AT AN L)

At u)®(v-ATh
1+ A

=A"t—
(2.7.2)
where

A=v-A~ oy (2.7.3)

The second line of (2.7.2) isaformal power series expansion. In the third line, the
associativity of outer and inner productsis used to factor out the scalars .

The use of (2.7.2) isthis. Given A~! and the vectors u and v, we need only
perform two matrix multiplications and a vector dot product,

z=A"1u w=AYHT.v A=v.z (2.7.4)
to get the desired change in the inverse

ZRW

A—l A—l _
- 1+

(2.7.5)

The whole procedure requires only 3N? multiplies and a like number of adds (an
even smaller number if u or v is a unit vector).

The Sherman-Morrison formula can be directly applied to a class of sparse
problems. If you aready have a fast way of calculating the inverse of A (eg., a
tridiagonal matrix, or some other standard sparse form), then (2.7.4)—«2.7.5) alow
you to build up to your related but more complicated form, adding for example a
row or column at atime. Notice that you can apply the Sherman-Morrison formula
more than once successively, using a each stage the most recent update of A~!
(equation 2.7.5). Of course, if you have to modify every row, then you are back to
an N3 method. The constant in front of the N3 is only afew times worse than the
better direct methods, but you have deprived yourself of the stabilizing advantages
of pivoting — so be careful.

For some other sparse problems, the Sherman-Morrison formula cannot be
directly applied for the simple reason that storage of the whole inverse matrix A~!
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2.7 Sparse Linear Systems 67

is not feasible. If you want to add only a single correction of the form u ® v,
and solve the linear system

(A+u®v)-x=>b (2.7.6)

then you proceed as follows. Using the fast method that is presumed available for
the matrix A, solve the two auxiliary problems

A-y=Db A-z=u (2.7.7)

for the vectors y and z. In terms of these,

X=y-— [%] z (2.7.8)

as we see by multiplying (2.7.2) on the right by b.
Cyclic Tridiagonal Systems

So-called cyclic tridiagonal systems occur quite frequently, and are a good
example of how to use the Sherman-Morrison formulain the manner just described.
The equations have the form

by e 0O .- B T 1
az by cog - To o
—| . (79
an—1 bn-1 cN—1 TN-1 TN-1
« tee 0 anN bN TN TN

Thisisatridiagona system, except for the matrix elements o and 3 in the corners.
Forms like this are typically generated by finite-differencing differential equations
with periodic boundary conditions (§19.4).

We use the Sherman-Morrison formula, treating the system as tridiagonal plus
acorrection. In the notation of equation (2.7.6), define vectorsu and v to be

v 1
0 0
u=|: v=| (2.7.10)
0 0
! B/

Here v is arbitrary for the moment. Then the matrix A isthe tridiagonal part of the
matrix in (2.7.9), with two terms modified:

by =bi —, N =bn —af/y (2.7.11)

We now solve equations (2.7.7) with the standard tridiagonal algorithm, and then
get the solution from equation (2.7.8).

The routine cyclic below implements thisagorithm. We choose the arbitrary
parameter v = —b; to avoid loss of precision by subtraction in thefirst of equations
(2.7.12). In the unlikely event that this causes loss of precision in the second of
these equations, you can make a different choice.
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SUBROUTINE cyclic(a,b,c,alpha,beta,r,x,n)

INTEGER n,NMAX

REAL alpha,beta,a(n),b(n),c(n),r(n),x(n)

PARAMETER (NMAX=500)

USES tridag
Solves for a vector x(1:n) the “cyclic” set of linear equations given by equation (2.7.9).
a, b, ¢, and r are input vectors, while alpha and beta are the corner entries in the matrix.
The input is not modified.

INTEGER i

REAL fact,gamma,bb(NMAX),u(NMAX) ,z(NMAX)

if(n.le.2)pause ’n too small in cyclic’

if (n.gt.NMAX)pause ’NMAX too small in cyclic’

gamma=-b (1) Avoid subtraction error in forming bb(1).

bb(1)=b(1)-gamma Set up the diagonal of the modified tridiagonal system.

bb(n)=b(n)-alpha*beta/gamma

don i=2,n-1

bb(i)=b(i)
enddo 11
call tridag(a,bb,c,r,x,n) Solve A - X =r.
u(1)=gamma Set up the vector u.
u(n)=alpha
do 12 i=2,n-1
u(i)=0.
enddo 12
call tridag(a,bb,c,u,z,n) Solve A -z = u.
fact=(x(1)+beta*x(n) /gamma)/(1.+z(1)+beta*z(n) /gamma) Form v-x/(1+4v-z).
do13 i=1,n Now get the solution vector X.
x(i)=x(i)-fact*z(i)
enddo 13
return

END

Woodbury Formula

If you want to add more than a single correction term, then you cannot use (2.7.8)
repeatedly, since without storing a new A~ you will not be able to solve the auxiliary
problems (2.7.7) efficiently after the first step. Instead, you need the Woodbury formula,
which is the block-matrix version of the Sherman-Morrison formula,

(A+U-vhH)™!
o . R (2.7.12)
—A' - [A U 1+VT AT UV LA

Here A is, asusual, an N x N matrix, while U and V are N x P matriceswith P < N
and usually P < N. The inner piece of the correction term may become clearer if written
as the tableau,

U S1+vToaTtoul - VT (2.7.13)

where you can see that the matrix whoseinverseis neededisonly P x P rather than N x N.
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Therelation between the Woodbury formulaand successiveapplications of the Sherman-
Morrison formulaisnow clarified by noting that, if U isthe matrix formed by columnsout of the
Pvectorsuy, . .., up, andV isthe matrix formed by columnsout of the P vectorsvi, ..., vp,

U= |Ui|--- |UpP V=|Vi| - |VP (2.7.14)

then two ways of expressing the same correction to A are

<A+2P:uk ®vk> =(A+U-Vh (2.7.15)

k=1

(Note that the subscripts on u and v do not denote components, but rather distinguish the
different column vectors.)

Equation (2.7.15) revealsthat, if you have A~ in storage, then you can either make the
P corrections in one fell swoop by using (2.7.12), inverting a P x P matrix, or else make
them by applying (2.7.5) P successive times.

If you don’'t have storage for A=, then you must use (2.7.12) in the following way:
To solve the linear equation

<A+2P:uk®vk> -x=b (2.7.16)

k=1

first solve the P auxiliary problems

A-z1=U;
A -7y = Uy
(2.7.17)
A-zp =Up
and construct the matrix Z by columns from the z's obtained,
Z= |z zZp (2.7.18)
Next, do the P x P matrix inversion
H=@1+Vv".-2)7! (2.7.19)
Finally, solve the one further auxiliary problem
A-y=b (2.7.20)

In terms of these quantities, the solution is given by

X=y_Z- [H v y)] (2.7.22)
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Inversion by Partitioning

Once in a while, you will encounter a matrix (not even necessarily sparse)
that can be inverted efficiently by partitioning. Suppose that the N x N matrix
A is partitioned into

A= [E 2] (2.7.22)

where P and S are square matrices of sizep x p and s x s respectively (p + s = N).
The matrices Q and R are not necessarily square, and have sizesp x s and s x p,

respectively.
If the inverse of A is partitioned in the same manner,
5 5
Al=|_ 9 (2.7.23)
R S

then P, (5 R, S, which have the same sizes as P, Q, R, S, respectively, can be
found by either the formulas

P=(P-Q-S!.R)™
Q=-(P-Q-S'-R'-(Q-s

~ (2.7.24)
R=—(S'R)-P-Q-S'.R)™!
S=S!'4(S''R)-(P-Q-S' R (Q-5H
or else by the equivalent formulas
P=P'+(P ' Q (S-R-P Q7" (RP
Q=-P Q- (S-R-P Q"
(2.7.25)

R=—(S-R-P'.Q ' (R-P
S=(S-R-P1.Q!

The parentheses in equations (2.7.24) and (2.7.25) highlight repeated factors that
you may wish to compute only once. (Of course, by associativity, you can instead
do the matrix multiplications in any order you like.) The choice between using
equation (2.7.24) and (2.7.25) depends on whether you want P or S to have the
simpler formula; or on whether the repeated expression (S—R-P~* - Q) ! iseasier
to calculate than the expression (P — Q - S™' - R)™}; or on the relative sizes of P
and S; or on whether P~! or S~! is dready known.

Another sometimes useful formula is for the determinant of the partitioned
meatrix,

det A = detPdet(S—R-P™'.Q)=detSdet(P—Q-S'-R) (2.7.26)
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Indexed Storage of Sparse Matrices

We havealready seen (§2.4) that tri- or band-diagonal matrices can be stored in acompact
format that all ocates storage only to elementswhich can be nonzero, plus perhapsafew wasted
locations to make the bookkeeping easier. What about more general sparse matrices? When a
sparsematrix of logical size N x N containsonly afew times N nonzero elements (a typical
case), it is surely inefficient — and often physically impossible — to allocate storage for all
N? elements. Even if one did alocate such storage, it would be inefficient or prohibitive in
machine time to loop over all of it in search of nonzero elements.

Obviously somekind of indexed storage schemeis required, onethat storesonly nonzero
matrix elements, along with sufficient auxiliary information to determine where an element
logically belongs and how the various elements can be looped over in common matrix
operations. Unfortunately, thereis no one standard schemein general use. Knuth [7] describes
one method. The Yale Sparse Matrix Package[6] and ITPACK [8] describe several other
methods. For most applications, we favor the storage scheme used by PCGPACK [9], which
isamost the same asthat described by Bentley [10], and also similar to one of the Yale Sparse
Matrix Package methods. The advantage of this scheme, which can be called row-indexed
sparsestorage mode, isthat it requires storage of only about two times the number of nonzero
matrix elements. (Other methods can require as much as three or five times.) For simplicity,
we will treat only the case of square matrices, which occurs most frequently in practice.

To represent a matrix A of logical size N x N, the row-indexed scheme sets up two
one-dimensional arrays, call them sa and i ja. Thefirst of these stores matrix element values
insingle or double precision as desired; the second stores integer values. Thestoragerulesare:

e Thefirst NV locations of sa store A’sdiagonal matrix elements, in order. (Note that
diagonal elements are stored even if they are zero; this is at most a slight storage
inefficiency, since diagonal elements are nonzero in most realistic applications.)

e Each of thefirst N locations of i ja stores the index of the array sa that contains
thefirst off-diagonal element of the corresponding row of the matrix. (If there are
no off-diagonal elements for that row, it is one greater than the index in sa of the
most recently stored element of a previous row.)

e Location1 of ijaisawaysequal to N + 2. (It can beread to determine N.)

e Location N + 1 of ija is onegreater than the index in sa of the last off-diagonal
element of the last row. (It can be read to determine the number of nonzero
elements in the matrix, or the logical length of the arrays sa and ija.) Location
N + 1 of sais not used and can be set arbitrarily.

e Entriesin sa at locations > N + 2 contain A’s off-diagonal values, ordered by
rows and, within each row, ordered by columns.

e Entriesinijaatlocations> N +2 containthe column number of the corresponding
element in sa.

While these rules seem arbitrary at first sight, they result in a rather elegant storage

scheme. As an example, consider the matrix

3.0 1. 0. 0.
[0. 4. 0. 0. ol
0. 7. 5. 9. 0. (2.7.27)
{0. 0. 0. 0. Q.J
0. 0. 0. 6. 5.

In row-indexed compact storage, matrix (2.7.27) is represented by the two arrays of length
11, as follows

index k 1 2 3 4 5 6 7 8 9 | 10 | 11

ija(k) 7 8 8§ [ 10 | 11 | 12 3 2 4 5 4

sa (k) 3. | 4. |5 0. 5. z |1 | 7. ]9 2. 6.

(2.7.28)

Here x is an arbitrary value. Notice that, according to the storage rules, the value of N
(namely 5) is ija(1)-2, and the length of each array is ija(ija(1)-1)-1, namely 11.
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The diagonal element in row i is sa(i), and the off-diagonal elements in that row are in
sa(k) where k loops from ija(i) to ija(i+1)-1, if the upper limit is greater or equal to
the lower one (as in FORTRAN do loops).

Hereisaroutine, sprsin, that convertsamatrix from full storage modeinto row-indexed
sparse storage mode, throwing away any elements that are less than a specified threshold.
Of course, the principal use of sparse storage mode is for matrices whose full storage mode
won't fit into your machine at al; then you have to generate them directly into sparse format.
Nevertheless sprsin is useful as a precise algorithmic definition of the storage scheme, for
subscaletesting of large problems, and for the case where execution time, rather than storage,
furnishes the impetus to sparse storage.

SUBROUTINE sprsin(a,n,np,thresh,nmax,sa,ija)

INTEGER n,nmax,np,ija(nmax)

REAL thresh,a(np,np) ,sa(nmax)
Converts a square matrix a(1:n,1:n) with physical dimension np into row-indexed sparse
storage mode. Only elements of a with magnitude >thresh are retained. Output is in
two linear arrays with physical dimension nmax (an input parameter): sa(1:) contains
array values, indexed by ija(1:). The logical sizes of sa and ija on output are both
ija(ija(1)-1)-1 (see text).

INTEGER 1i,j,k

dou j=1,n Store diagonal elements.

sa(j)=a(j,j)
enddo 11
ija(1)=n+2 Index to 1st row off-diagonal element, if any.
k=n+1
do13 i=1,n Loop over rows.

do j=1,n Loop over columns.

if (abs(a(i,j)) .ge.thresh)then
if (i.ne.j)then Store off-diagonal elements and their columns.
k=k+1

if (k.gt.nmax)pause ’nmax too small in sprsin’
sa(k)=a(i,j)
ija(k)=j
endif
endif
enddo 12
ija(i+1)=k+1 As each row is completed, store index to next.
enddo 13
return
END

The single most important use of a matrix in row-indexed sparse storage mode is to
multiply a vector to its right. In fact, the storage mode is optimized for just this purpose.
The following routine is thus very simple.

SUBROUTINE sprsax(sa,ija,x,b,n)

INTEGER n,ija(*)

REAL b(n),sa(*),x(n)
Multiply a matrix in row-index sparse storage arrays sa and ija by a vector x(1:n), giving
a vector b(1:n).

INTEGER i,k

if (ija(1l) .ne.n+2) pause ’mismatched vector and matrix in sprsax’

do12 i=1,n
b(i)=sa(i)*x(i)
don k=ija(i),ija(i+1)-1

b(i)=b(i)+sa(k)*x(ija(k))

enddo 11

enddo 12

return

END

Start with diagonal term.
Loop over off-diagonal terms.
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It isalso simpleto multiply thetransposeof amatrix by avector toitsright. (We will use
this operation later in this section.) Note that the transpose matrix is not actually constructed.

SUBROUTINE sprstx(sa,ija,x,b,n)
INTEGER n,ija(*)
REAL b(n),sa(*),x(n)
Multiply the transpose of a matrix in row-index sparse storage arrays sa and ija by a
vector x(1:n), giving a vector b(1:n).
INTEGER i,j,k
if (ija(1l) .ne.n+2) pause ’mismatched vector and matrix in sprstx’
don i=1,n Start with diagonal terms.
b(i)=sa(i)*x(i)
enddo 11
do13 i=1,n Loop over off-diagonal terms.
do 1z k=ija(i),ija(i+1)-1
j=ija(k)
b(j)=b(j)+sa(k)*x(i)
enddo 12
enddo 13
return
END

(Double precision versions of sprsax and sprstx, named dsprsax and dsprstx, are used
by the routine atimes later in this section. You can easily make the conversion, or else get
the converted routines from the Numerical Recipes diskettes.)

In fact, because the choice of row-indexed storage treats rows and columns quite
differently, it is quite an involved operation to construct the transpose of a matrix, given the
matrix itself in row-indexed sparse storage mode. When the operation cannot be avoided,
it is done as follows: An index of all off-diagonal elements by their columns is constructed
(see §8.4). The elements are then written to the output array in column order. As each
element is written, its row is determined and stored. Finally, the elements in each column
are sorted by row.

SUBROUTINE sprstp(sa,ija,sb,ijb)

INTEGER ija(*),ijb(x)

REAL sa(*),sb(*)

USES i i ndexx Version of indexx with all REAL variables changed to INTEGER.
Construct the transpose of a sparse square matrix, from row-index sparse storage arrays sa
and ija into arrays sb and ijb.

INTEGER j,jl,jm,jp,ju,k,m,n2,noff,inc,iv

REAL v

n2=ija(1) Linear size of matrix plus 2.

dou j=1,n2-2 Diagonal elements.
sb(j)=sa(j)

enddo 11

call iindexx(ija(n2-1)-ija(1),ija(n2),ijb(n2))
Index all off-diagonal elements by their columns.

jp=0
do 13 k=ija(1),ija(n2-1)-1 Loop over output off-diagonal elements.
m=ijb(k)+n2-1 Use index table to store by (former) columns.
sb(k)=sa(m)
do 12 j=jp+1,ija(m) Fill in the index to any omitted rows.
ijb(j)=k
enddo 12
jp=ija(m) Use bisection to find which row element m is in and put that
jl=1 into ijb(k).
ju=n2-1

if (ju-jl.gt.1) then
jm=(ju+jl)/2
if(ija(jm).gt.m)then
ju=jm
else
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jl=jm
endif
goto 5
endif
1jb(k)=j1
enddo 13
do1s j=jp+1,n2-1
ijb(j)=ija(n2-1)
enddo 1 Make a final pass to sort each row by Shell sort algorithm.
dos j=1,n2-2
j1=ijb(F+1)-ijb(j)
noff=ijb(j)-1
inc=1
inc=3*inc+1
if (inc.le.jl)goto 1
continue
inc=inc/3
do1s k=noff+inc+1,noff+jl
iv=ijb(k)
v=sb (k)
m=k
if (ijb(m-inc) .gt.iv)then
ijb(m)=ijb(m-inc)
sb(m)=sb(m-inc)

m=m-inc
if (m-noff.le.inc)goto 4
goto 3
endif
ijb(m)=iv
sb(m)=v
enddo 15
if (inc.gt.1)goto 2
enddo 16
return
END

The above routine embedsinternally a sorting algorithm from §8.1, but calls the external
routine iindexx to construct the initial column index. Thisroutine isidentical to indexx, as
listed in §8.4, except that the latter’s two REAL declarations should be changed to integer.
(The Numerical Recipes diskettes include both indexx and iindexx.) In fact, you can
often use indexx without making these changes, since many computers have the property
that numerical values will sort correctly independently of whether they are interpreted as
floating or integer values.

As final examples of the manipulation of sparse matrices, we give two routines for the
multiplication of two sparse matrices. Theseareuseful for techniquesto bedescribedin§13.10.

In general, the product of two sparse matrices is not itself sparse. One therefore wants
to limit the size of the product matrix in one of two ways: either compute only those elements
of the product that are specified in advance by aknown pattern of sparsity, or else computeall
nonzero elements, but store only those whose magnitude exceeds some threshold value. The
former technique, when it can be used, is quite efficient. The pattern of sparsity is specified
by furnishing an index array in row-index sparse storage format (e.g., ija). The program
then constructs a corresponding value array (e.g., sa). The latter technique runs the danger of
excessive compute times and unknown output sizes, so it must be used cautiously.

With row-index storage, it is much more natural to multiply a matrix (on the left) by
the transpose of a matrix (on the right), so that one is crunching rows on rows, rather than
rows on columns. Our routines therefore calculate A - B, rather than A - B. This means
that you have to run your right-hand matrix through the transpose routine sprstp before
sending it to the matrix multiply routine.

Thetwo implementing routines, sprspmfor “ pattern multiply” and sprstmfor “threshold
multiply” are quite similar in structure. Both are complicated by the logic of the various
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combinationsof diagonal or off-diagonal elementsfor thetwo input streamsand output stream.

SUBROUTINE sprspm(sa,ija,sb,ijb,sc,ijc)

INTEGER ija(*),ijb(*),ijc(*)

REAL sa(*),sb(*),sc(*)
Matrix multiply A - BT where A and B are two sparse matrices in row-index storage mode,
and BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the
matrix B. This routine computes only those components of the matrix product that are pre-
specified by the input index array ijc, which is not modified. On output, the arrays sc and
ijc give the product matrix in row-index storage mode. For sparse matrix multiplication,
this routine will often be preceded by a call to sprstp, so as to construct the transpose
of a known matrix into sb, ijb.

INTEGER i,ijma,ijmb,j,m,ma,mb,mbb,mn

REAL sum

if (ija(1l).ne.ijb(1).or.ija(l).ne.ijc(1))

pause ’sprspm sizes do not match’

do13 i=1,ijc(1)-2 Loop over rows.
j=i Set up so that first pass through loop does the diag-
m=i onal component.

mn=ijc(i)
sum=sa (i) *sb(i)

continue Main loop over each component to be output.
mb=1ijb(j)
dou ma=ija(i),ija(i+1)-1 Loop through elementsin A’s row. Convoluted logic,
ijma=ija(ma) following, accounts for the various combinations
if(ijma.eq.j)then of diagonal and off-diagonal elements.
sum=sum+sa (ma) *sb (j)
else

if (mb.1t.ijb(j+1))then
ijmb=1jb(mb)
if (ijmb.eq.i)then
sum=sum+sa (i) *sb (mb)
mb=mb+1
goto 2
else if(ijmb.lt.ijma)then
mb=mb+1
goto 2
else if(ijmb.eq.ijma)then
sum=sum+sa (ma) *sb (mb)
mb=mb+1
goto 2
endif
endif
endif
enddo 11
do 12 mbb=mb,ijb(j+1)-1 Exhaust the remainder of B’s row.
if (ijb(mbb) .eq.i)then
sum=sum+sa (i) *sb (mbb)
endif
enddo 12
sc(m)=sum
sum=0.e0 Reset indices for next pass through loop.
if (mn.ge.ijc(i+1))goto 3
m=mn
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mn=mn+1
j=ijc(m)
goto 1
continue
enddo 13
return
END
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SUBROUTINE sprstm(sa,ija,sb,ijb,thresh,nmax,sc,ijc)

INTEGER nmax,ija(*),ijb(*),ijc(nmax)

REAL thresh,sa(*),sb(*),sc(nmax)
Matrix multiply A - BT where A and B are two sparse matrices in row-index storage mode,
and BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the
matrix B. This routine computes all components of the matrix product (which may be non-
sparse!), but stores only those whose magnitude exceeds thresh. On output, the arrays
sc and ijc (whose maximum size is input as nmax) give the product matrix in row-index
storage mode. For sparse matrix multiplication, this routine will often be preceded by a call
to sprstp, so as to construct the transpose of a known matrix into sb, ijb.

INTEGER i,ijma,ijmb,j,k,ma,mb,mbb

REAL sum

if (ija(1l).ne.ijb(1)) pause ’sprstm sizes do not match’

k=ija(1)

ije(1)=k

dos i=1,ija(1)-2 Loop over rows of A,
do13 j=1,ijb(1)-2 and rows of B.

if(i.eq.j)then
sum=sa (i) *sb(j)

else
sum=0.e0
endif
mb=ijb(j)
dou ma=ija(i),ija(i+1)-1 Loop through elementsin A’s row. Convoluted logic,
ijma=ija(ma) following, accounts for the various combinations
if (ijma.eq.j)then of diagonal and off-diagonal elements.
sum=sum+sa (ma) *sb (j)
else
if (mb.1t.ijb(j+1))then
ijmb=1jb(mb)
if (ijmb.eq.i)then
sum=sum+sa (i) *sb (mb)
mb=mb+1
goto 2
else if(ijmb.lt.ijma)then
mb=mb+1
goto 2
else if(ijmb.eq.ijma)then
sum=sum+sa (ma) *sb (mb)
mb=mb+1
goto 2
endif
endif
endif
enddo 11
do 12 mbb=mb,ijb(j+1)-1 Exhaust the remainder of B’s row.

if (ijb(mbb) .eq.1i)then
sum=sum+sa (i) *sb (mbb)
endif
enddo 12
if(i.eq.j)then Where to put the answer...
sc(i)=sum
else if (abs(sum).gt.thresh)then
if (k.gt.nmax)pause ’sprstm: nmax to small’

sc(k)=sum
ije(k)=j
k=k+1
endif
enddo 13
ije(i+1)=k
enddo 14
return

END
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Conjugate Gradient Method for a Sparse System

So-called conjugate gradient methods provide a quite general means for solving the
N x N linear system

A-x=b (2.7.29)

The attractiveness of these methods for large sparse systems is that they reference A only
through its multiplication of a vector, or the multiplication of its transpose and a vector. As
we have seen, these operations can be very efficient for a properly stored sparse matrix. You,
the “owner” of the matrix A, can be asked to provide subroutines that perform these sparse
matrix multiplications as efficiently as possible. We, the “ grand strategists” supply the general
routine, 1inbcg below, that solvesthe set of linear equations, (2.7.29), using your subroutines.

Thesimplest, “ordinary” conjugate gradient algorithm [11-13] solves (2.7.29) only in the
casethat A issymmetric and positive definite. It isbased on theideaof minimizing thefunction

f(x):%x-A~x—b~x (2.7.30)
This function is minimized when its gradient
Vf=A-x—b (2.7.32)

is zero, which is equivalent to (2.7.29). The minimization is carried out by generating a
succession of search directions p,, and improved minimizers Xx. At each stage a quantity o
is found that minimizes f (X, + axp,), and Xx+1 is set equal to the new point Xi + axp,.
The p, and X, are built up in such away that X1 is also the minimizer of f over the whole
vector space of directions already taken, {p,,p,,--.,P.}. After N iterations you arrive at
the minimizer over the entire vector space, i.e., the solution to (2.7.29).

Later, in §10.6, we will generalize this “ordinary” conjugate gradient algorithm to the
minimization of arbitrary nonlinear functions. Here, where our interest is in solving linear,
but not necessarily positive definite or symmetric, equations, a different generalization is
important, the biconjugate gradient method. This method does not, in general, have asimple
connection with function minimization. It constructs four sequences of vectors, rx, Tx, Py,
Pr. k=1,2,.... You supply theinitial vectorsr; andry, andsetp, =ri, p; =T71. Then
you carry out the following recurrence:

o Tgerg
Pr APy
rk+1:rk—akA~pk

Qg

— — T
MNe+1 =" — ozkA . pk

_ (2.7.32)
Sy
Pri1 = Met1 + BiPy
Pri1 = Tr+1 + BkPy,
This sequence of vectors satisfies the biorthogonality condition
Fiorj=r-F,=0, j<i (27.33)
and the biconjugacy condition
p,-A-p,=p,-AT-p; =0, j<i (2.7.34)
There is also a mutual orthogonality,
T,op, =P, =0, j<i (2.7.35)

The proof of these properties proceeds by straightforward induction [14]. As long as the
recurrence does not break down earlier because one of the denominators is zero, it must
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78 Chapter 2. Solution of Linear Algebraic Equations

terminate after m < N stepswith r,,+1 = T,41 = 0. Thisisbasically because after at most
N stepsyou run out of new orthogonal directions to the vectors you've already constructed.

To use the algorithm to solve the system (2.7.29), make an initial guess x; for the
solution. Choose r; to be the residual

rn=b-A-xi (2.7.36)
and chooseT; = ri. Then form the sequence of improved estimates
Xk+1 = Xk + kP, (2737)

while carrying out the recurrence (2.7.32). Equation (2.7.37) guarantees that r ;41 from the
recurrence is in fact the residual b — A - X1 corresponding to Xx+1. Sincer,,+1 = 0,
Xm+1 IS the solution to equation (2.7.29).

While there is no guarantee that this whole procedure will not break down or become
unstable for general A, in practice thisis rare. More importantly, the exact termination in at
most N iterations occurs only with exact arithmetic. Roundoff error means that you should
regard the process as a genuinely iterative procedure, to be halted when some appropriate
error criterion is met.

The ordinary conjugate gradient algorithm is the special case of the biconjugate gradient
algorithm when A is symmetric, and we chooser; = r;. ThenT, = ry andp, = p, for all
k; you can omit computing them and halve the work of the algorithm. This conjugate gradient
version has the interpretation of minimizing equation (2.7.30). If A is positive definite as
well as symmetric, the algorithm cannot break down (in theory!). Theroutine 1inbcg below
indeed reduces to the ordinary conjugate gradient method if you input a symmetric A, but
it does all the redundant computations.

Another variant of the general algorithm corresponds to a symmetric but non-positive
definite A, with the choicer; = A -ry instead of T1 = r1. Inthiscaser, = A - ry and
P, = A - p, for al k. This algorithm is thus equivalent to the ordinary conjugate gradient
algorithm, but with all dot productsa- b replaced by a- A - b. It is called the minimumresidual
algorithm, because it corresponds to successive minimizations of the function

cI>(x):%r.r:%|A.x—b|2 (2.7.38)
wherethe successiveiteratesx, minimize & over the sameset of searchdirectionsp,, generated
in the conjugate gradient method. This algorithm has been generalized in various ways for
unsymmetric matrices. The generalized minimum residual method (GMRES; see[9,15]) is
probably the most robust of these methods.

Note that eguation (2.7.38) gives

Vo(x) =A" - (A-x—b) (2.7.39)

For any nonsingular matrix A, AT - A is symmetric and positive definite. You might therefore
be tempted to solve equation (2.7.29) by applying the ordinary conjugate gradient algorithm
to the problem

(AT .A)-x=AT.b (2.7.40)

Don't! The condition number of the matrix AT - A is the square of the condition number of
A (see §2.6 for definition of condition number). A large condition number both increasesthe
number of iterations required, and limits the accuracy to which a solution can be obtained. It
is almost always better to apply the biconjugate gradient method to the original matrix A.

So far we have said nothing about the rate of convergence of these methods. The
ordinary conjugate gradient method works well for matrices that are well-conditioned, i.e.,
“close” to the identity matrix. This suggests applying these methods to the preconditioned
form of equation (2.7.29),

A'.A).x=A".b (2.7.41)

Theideaisthat you might already be ableto solve your linear system easily for someA close
to A, in which case A™" - A ~ 1, allowing the algorithm to converge in fewer steps. The
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2.7 Sparse Linear Systems 79

matrix A is called a preconditioner [11], and the overall scheme given here is known as the
preconditioned biconjugate gradient method or PBCG.

For efficient implementation, the PBCG algorithm introduces an additional set of vectors
7, and Z;, defined by

;5\ 2 =TIk and ;&T cZr =Tk (2742)
and modifies the definitions of ax, Bk, p,., and p,, in equation (2.7.32):
o Tk - Zk
k=
P APy
B = Tht1 - Zet1
k Tr - Zk (2.7.43)

pk+1 =Zk+1 + kak
Pri1 = Zet+1 + BiDy,

For 1inbcg, below, we will ask you to supply routines that solve the auxiliary linear systems

(2.7.42). If you have no ideawhat to use for the preconditioner A, then use the diagonal part
of A, or even the identity matrix, in which case the burden of convergence will be entirely
on the biconjugate gradient method itself.

Theroutinelinbcg, below,isbased onaprogram originally written by Anne Greenbaum.
(See[13] for a different, less sophisticated, implementation.) There are a few wrinkles you
should know about.

What constitutes “good” convergence is rather application dependent. The routine
linbcg therefore provides for four possibilities, selected by setting the flag itol on input.
If itol=1, iteration stops when the quantity |A - x — b|/|b| is less than the input quantity
tol. If itol=2, the required criterion is

A™' . (A-x—D)|/]A"" -b| < tol (2.7.44)

If itol1=3, the routine uses its own estimate of the error in X, and requires its magnitude,
divided by the magnitude of x, to belessthan tol. Thesetting itol=4isthe sameasitol=3,
except that the largest (in absolute value) component of the error and largest component of x
are used instead of the vector magnitude (that is, the L, norm instead of the L, norm). You
may need to experiment to find which of these convergence criteriais best for your problem.

On output, err is the tolerance actually achieved. If the returned count iter does
not indicate that the maximum number of allowed iterations itmax was exceeded, then err
should be less than tol. If you want to do further iterations, leave all returned quantities as
they are and call the routine again. The routine loses its memory of the spanned conjugate
gradient subspace between calls, however, so you should not force it to return more often
than about every N iterations.

Finally, note that 1inbcg is furnished in double precision, since it will be usually be
used when N is quite large.

SUBROUTINE linbcg(n,b,x,itol,tol,itmax,iter,err)

INTEGER iter,itmax,itol,n,NMAX

DOUBLE PRECISION err,tol,b(*),x(*),EPS Double precision is a good idea in this rou-
PARAMETER (NMAX=1024,EPS=1.d-14) tine.

C USES atines, asol ve, snrm

Solves A - x = b for x(1:n), given b(1:n), by the iterative biconjugate gradient method.
On input x(1:n) should be set to an initial guess of the solution (or all zeros); itol is
1,2,3, or 4, specifying which convergence test is applied (see text); itmax is the maximum
number of allowed iterations; and tol is the desired convergence tolerance. On output,
x(1:n) is reset to the improved solution, iter is the number of iterations actually taken,
and err is the estimated error. The matrix A is referenced only through the user-supplied
routines atimes, which computes the product of either A or its transpose on a vector; and

~ ~T ~
asolve, which solves A -x = b or A~ - x = b for some preconditioner matrix A (possibly
the trivial diagonal part of A).

INTEGER j
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DOUBLE PRECISION ak,akden,bk,bkden,bknum,bnrm,dxnrm,
xnrm,zminrm,znrm,p (NMAX) ,pp (NMAX) ,r (NMAX) ,rr (NMAX),

z (NMAX) ,zz(NMAX) , snrm
iter=0
call atimes(n,x,r,0)
dou j=1,n
r(j)=b(j)-r(j)
rr(j)=r(j)
enddo 11
call atimes(n,r,rr,0)
if(itol.eq.1) then
bnrm=snrm(n,b,itol)
call asolve(n,r,z,0)
else if (itol.eq.2) then
call asolve(n,b,z,0)
bnrm=snrm(n,z,itol)
call asolve(n,r,z,0)
else if (itol.eq.3.or.itol.eq.4) then
call asolve(n,b,z,0)
bnrm=snrm(n,z,itol)
call asolve(n,r,z,0)
znrm=snrm(n,z,itol)
else
pause ’illegal itol in limnbcg’
endif

100 if (iter.le.itmax) then

iter=iter+1
call asolve(n,rr,zz,1)
bknum=0.d0
do1 j=1,n
bknum=bknum+z(j) *rr (j)
enddo 12
if(iter.eq.1) then
do3 j=1,n
p(3)=2(3)
pp(j)=2z(j)
enddo 13
else
bk=bknum/bkden
dou j=1,n
p(§)=bk*p(j)+z(j)
pp (j)=bk*pp(j)+zz(j)
enddo 14
endif
bkden=bknum
call atimes(n,p,z,0)
akden=0.d0
dois j=1,n
akden=akden+z(j)*pp (j)
enddo 15
ak=bknum/akden
call atimes(n,pp,zz,1)
dois j=1,n
x(j)=x(j)+ak*p(j)
r(j)=r(j)-ak*z(j)
rr (j)=rr(j)-ak*zz(j)
enddo 16
call asolve(n,r,z,0)
if(itol.eq.1)then
err=snrm(n,r,itol)/bnrm
else if(itol.eq.2)then
err=snrm(n,z,itol)/bnrm

else if(itol.eq.3.0or.itol.eq.4)then

zmlnrm=znrm

Calculate initial residual.

Input to atimes is x(1:n), output is r(1:n);
the final 0 indicates that the matrix (not
its transpose) is to be used.

Uncomment this line to get the "minimum
residual” variant of the algorithm.
Input to asolveis r(1:n), output is z(1:n);

the final O indicates that the matrix A
(not its transpose) is to be used.

Main loop.
. . . xT
Final 1 indicates use of transpose matrix A~ .

Calculate coefficient bk and direction vectors
p and pp.

Calculate coefficient ak, new iterate x, and
new residuals r and rr.

Solve A-z = r and check stopping criterion.
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2.7 Sparse Linear Systems 8l

znrm=snrm(n,z,itol)

if (abs(zmlnrm-znrm) . gt .EPS*znrm) then
dxnrm=abs (ak) *snrm(n,p,itol)
err=znrm/abs (zminrm-znrm)*dxnrm

else
err=znrm/bnrm Error may not be accurate, so loop again.
goto 100

endif

xnrm=snrm(n,x,itol)
if (err.le.0.5d0*xnrm) then
err=err/xnrm

else
err=znrm/bnrm Error may not be accurate, so loop again.
goto 100
endif
endif

write (*,%) ’ iter=’,iter,’ err=’,err
if (err.gt.tol) goto 100
endif
return
END

The routine 1inbcg uses this short utility for computing vector norms:

FUNCTION snrm(n,sx,itol)
INTEGER n,itol,i,isamax
DOUBLE PRECISION sx(n),snrm
Compute one of two norms for a vector sx(1:n), as signaled by itol. Used by linbcg.
if (itol.le.3)then
snrm=0.
don i=1,n Vector magnitude norm.
snrm=snrm+sx (i) **2
enddo 11
snrm=sqrt (snrm)
else
isamax=1
do12 i=1,n Largest component norm.
if (abs(sx(i)).gt.abs(sx(isamax))) isamax=i
enddo 12
snrm=abs (sx(isamax))
endif
return
END

So that the specifications for the routines atimes and asolve are clear, we list here
simple versions that assume a matrix A stored somewhere in row-index sparse format.

SUBROUTINE atimes(n,x,r,itrnsp)
INTEGER n,itrnsp,ija,NMAX
DOUBLE PRECISION x(n),r(n),sa
PARAMETER (NMAX=1000)
COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.
USES dsprsax, dsprstx DOUBLE PRECISION versions of sprsax and sprstx.
if (itrnsp.eq.0) then
call dsprsax(sa,ija,x,r,n)
else
call dsprstx(sa,ija,x,r,n)
endif
return
END
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82 Chapter 2. Solution of Linear Algebraic Equations

SUBROUTINE asolve(n,b,x,itrnsp)

INTEGER n,itrnsp,ija,NMAX,i

DOUBLE PRECISION x(n),b(n),sa

PARAMETER (NMAX=1000)

COMMON /mat/ sa(NMAX),ija(NMAX) The matrix is stored somewhere.
dou i=1,n

x(i)=b(i)/sa(i) The matrix A is the diagonal part of A, stored in
enddo 11 the first n elements of sa. Since the transpose
return matrix has the same diagonal, the flag itrnsp is
END not used.
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2.8 Vandermonde Matrices and Toeplitz
Matrices

In §2.4 the case of a tridiagonal matrix was treated specialy, because that
particular type of linear system admits a solution in only of order N operations,
rather than of order V3 for the general linear problem. When such particular types
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2.8 Vandermonde Matrices and Toeplitz Matrices 83

exigt, it isimportant to know about them. Your computational savings, should you
ever happen to be working on a problem that involves the right kind of particular
type, can be enormous.

This section treats two specia types of matrices that can be solved in of order
N? operations, not as good as tridiagonal, but a lot better than the general case.
(Other than the operations count, these two types having nothing in common.)
Matrices of the first type, termed Vandermonde matrices, occur in some problems
having to do with thefitting of polynomials, the reconstruction of distributionsfrom
their moments, and also other contexts. In thisbook, for example, a Vandermonde
problem crops up in §3.5. Matrices of the second type, termed Toeplitz matrices,
tend to occur in problems involving deconvolution and signa processing. In this
book, a Toeplitz problem is encountered in §13.7.

These are not the only special types of matrices worth knowing about. The
Hilbert matrices, whose components are of the form a;; = 1/(i+j — 1), 4,5 =
1,..., N can be inverted by an exact integer agorithm, and are very difficult to
invert in any other way, sincethey are notoriously ill-conditioned (see [1] for details).
The Sherman-Morrison and Woodbury formulas, discussed in §2.7, can sometimes
be used to convert new specia forms into old ones. Reference [2] gives some other
special forms. We have not found these additional forms to arise as frequently as
the two that we now discuss.

Vandermonde Matrices

A Vandermonde matrix of size N x N is completely determined by N arbitrary
numbers 1, x2, ..., xx, in terms of which its N? components are the integer powers
mg—l, i,7 =1,..., N. Evidently there are two possible such forms, depending on whether
we view the i's as rows, j's as columns, or vice versa. In the former case, we get a linear
system of equations that looks like this,

2 N—-1
1 1 1 - x3 c1 U
2 N—-1
1 z2 a3 Ty C2 | _ | Y2 (281)
N 2 N-1 :
1 TN TN IN CN YN

Performing the matrix multiplication, you will see that this equation solves for the unknown
coefficients ¢; which fit a polynomial to the NV pairs of abscissas and ordinates (z;, y;).
Precisely this problem will arise in §3.5, and the routine given there will solve (2.8.1) by the
method that we are about to describe.

The alternative identification of rows and columns leads to the set of equations

1 1 e 1 w1 q1
$% I% Ié\r w2 qz2
) 5 - TN ws | = | g3 (28.2)
N-—-1 N—-1 N-—-1
Ty Ty TN WN qN

Write this out and you will see that it relates to the problem of moments: Given the values
of N points z;, find the unknown weights w;, assigned so as to match the given values
g; of the first N moments. (For more on this problem, consult [3].) The routine given in
this section solves (2.8.2).
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84 Chapter 2. Solution of Linear Algebraic Equations

The method of solution of both (2.8.1) and (2.8.2) is closely related to Lagrange's
polynomial interpolation formula, which we will not formally meet until §3.1 below. Notwith-
standing, the following derivation should be comprehensible:

Let P;(x) be the polynomial of degree N — 1 defined by

N N
T — Tn —
Pi(x)= ] P > At (283)
n=1 k=1
(n#3)

Here the meaning of the last equality is to define the components of the matrix A;; as the
coefficients that arise when the product is multiplied out and like terms collected.

The polynomial P;(z) is a function of x generally. But you will notice that it is
specifically designed so that it takes on a value of zero at all x; with ¢ # j, and has a value
of unity at « = x;. In other words,

N
Pj(wi) = b5 =y Ay ! (2.8.4)
k=1

But (2.8.4) saysthat A, isexactly theinverse of the matrix of componentsz*~—*, which
appears in (2.8.2), with the subscript as the column index. Therefore the solution of (2.8.2)
is just that matrix inverse times the right-hand side,

N
wi = A (2.8.5)
k=1

Asfor thetranspose problem (2.8.1), we can use the fact that the inverse of the transpose
is the transpose of the inverse, so

N
;=3 Anyyn (2.8.6)
k=1

The routine in §3.5 implements this.

It remains to find a good way of multiplying out the monomial termsin (2.8.3), in order
to get the componentsof A;. Thisis essentially abookkeeping problem, and we will let you
read the routine itself to see how it can be solved. Onetrick is to define amaster P(x) by

N

P(x) =[] (@ —=n) (2.8.7)

n=1

work out its coefficients, and then obtain the numerators and denominators of the specific
Pj’s via synthetic division by the one supernumerary term. (See §5.3 for more on synthetic
division.) Since each such division is only a process of order N, the total procedure is
of order N2.

You should be warned that Vandermonde systems are notoriously ill-conditioned, by
their very nature. (As an aside anticipating §5.8, the reason is the same as that which makes
Chebyshev fitting so impressively accurate: there exist high-order polynomials that are very
good uniform fits to zero. Hence roundoff error can introduce rather substantial coefficients
of the leading terms of these polynomials.) It is agood idea alwaysto compute Vandermonde
problems in double precision.

The routine for (2.8.2) which follows is due to G.B. Rybicki.

SUBROUTINE vander(x,w,q,n)

INTEGER n,NMAX

DOUBLE PRECISION q(n),w(n),x(n)

PARAMETER (NMAX=100)
Solves the Vandermonde linear system Zfil m?_lwi =gqx (k=1,...,N). Input consists
of the vectors x(1:n) and q(1:n); the vector w(1:n) is output.
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2.8 Vandermonde Matrices and Toeplitz Matrices 85

Parameters: NMAX is the maximum expected value of n.
INTEGER i,j,k
DOUBLE PRECISION b,s,t,xx,c(NMAX)
if(n.eq.1)then

w(1)=q(1)
else
don i=1,n Initialize array.
c(i)=0.d0
enddo 11
c(n)=-x(1) Coefficients of the master polynomial are found by recur-
do13 i=2,n sion.
xx=-x(1)

do12 j=n+1-i,n-1
c(§)=c(G)+xx*kc(j+1)

enddo 12
c(n)=c(n)+xx
enddo 13
do1s i=1,n Each subfactor in turn
xx=x (1)
t=1.d0
b=1.d0
s=q(n)
do 14 k=n,2,-1 is synthetically divided,
b=c (k) +xx*b
s=s+q(k-1)*b matrix-multiplied by the right-hand side,
t=xx*t+b
enddo 14
w(i)=s/t and supplied with a denominator.
enddo 15
endif
return
END

Toeplitz Matrices

An N x N Toeplitz matrix is specified by giving 2N — 1 numbers R, k = —N +

1,...,—-1,0,1,..., N — 1. Those numbers are then emplaced as matrix elements constant
along the (upper-left to lower-right) diagonals of the matrix:
Ro R, R -+ R_n—2 R_(n-—1)
Ry Ro R -+ R_(n—3 R_(n—9
R R Ro -+ R_(n-9y R_(n-3 (2.88)
Ry-2 Ry-3 Ry-4 --- Ro R_1
Rny-1 Rn-2 Rn-3 --- Ry Ry
The linear Toeplitz problem can thus be written as
N
> Rijzj=yi  (i=1,...,N) (2.8.9)
j=1
where the z;'s, j = 1,..., N, are the unknowns to be solved for.

The Toeplitz matrix is symmetric if R, = R_j, for al k. Levinson [4] developed an
algorithm for fast solution of the symmetric Toeplitz problem, by abordering method, that is,
arecursive procedure that solves the M -dimensional Toeplitz problem

M
SR =y (i=1,...,M) (2.8.10)

j=1
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86 Chapter 2. Solution of Linear Algebraic Equations

inturnfor M = 1,2,... until M = N, the desired result, isfinally reached. Thevector xg.M)

is the result at the Mth stage, and becomes the desired answer only when N is reached.
Levinson’s method is well documented in standard texts (e.g., [5]). The useful fact that
the method generalizes to the nonsymmetric case seemsto be less well known. At some risk
of excessive detail, we therefore give a derivation here, due to G.B. Rybicki.
In following arecursion from step M to step M + 1 wefind that our developing solution
z™) changes in this way:

M
SRia™M=y  i=1,...,M (2.8.11)
j=1
becomes
M
S Ri@M 4 Rl =y =1 M1 (2812)
j=1
By eliminating y; we find
M m(-M) _ (M)
ZRi_]’ (%) :Ri—(AI+1) = 1,...,M (2813)
j=1 M+1
orbyletting: - M +1—diandj — M +1—j,
M
SR G =R (2.8.14)
j=1
where
() I(]M) —I(]M+1)
M) _ tM41—5 M+1—j
G, = 7T (2.8.15)
M+41
To put this another way,
M+41 M M+41 M .
et =0~V =1, M (2.8.16)

Thus, if we can use recursion to find the order M/ quantities (™ and G*) and the single

order M + 1 quantity =", then all of the other /""" will follow. Fortunately, the
quantity z{}";" follows from equation (2.8.12) with i = M + 1,

M
> Rari—jaf™™ 4 Roaly Y = yua (28.17)
j=1

(M+1)

For the unknown order M + 1 quantities x;

quantities in G since

we can substitute the previous order

(M) _ (M+1)

(M) _% J
Ghrrfi—j = RETESY (2.8.18)
M+1

The result of this operation is

M (M)
41y | et Buia—@ =y

M+1
PP Ry Gy — Ro
The only remaining problem is to develop a recursion relation for G. Before we do

that, however, we should point out that there are actually two distinct sets of solutions to the
original linear problem for a nonsymmetric matrix, namely right-hand solutions (which we

(2.8.19)
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2.8 Vandermonde Matrices and Toeplitz Matrices 87

have been discussing) and left-hand solutions z;. The formalism for the left-hand solutions
differs only in that we deal with the equations

M
SRz =y i=1,...,M (2.8.20)

Jj=1

Then, the same sequence of operations on this set leads to

M
SR HM =Ry (2.8.21)
j=1
where
Z(M) B Z(M+1)
M M+1—j3 M+1—j3
HM = S (28.22)
EM+1

(compare with 2.8.14 — 2.8.15). The reason for mentioning the left-hand solutions now is
that, by equation (2.8.21), the H; satisfy exactly the same equation as the x; except for
the substitution y; — R; on the right-hand side. Therefore we can quickly deduce from
equation (2.8.19) that

M M
MY _ 2 RM“—J'Hy(' '~ Run
M+l 7 M M
Zj:l RM+1—J'GSM421—]' —Ro

By the sametoken, G satisfies the same equation as z, except for the substitution y; — R_;.
This gives

(2.8.23)

(M41) Zﬁl Rj—M—1G§-M) — R_p—1
Gryr = =1 0 (2.8.24)
Zj:l Rj_lw_lH]M+1—j - Ro

Thesame* morphism” also turns equation (2.8.16), andits partner for z, into thefinal equations

(M+1) _ ~(M) (M41) 77(M)
Gj - Gj - GM+1 HM+1—j

(2.8.25)
M+1 M M+1 M
H](' ) = H](' ) H1(u+1 )vaugl—j
Now, starting with the initial values
eV =y /R0 GYW=R_,/Ry H™Y =Ri/Ro (2.8.26)

we can recurse away. At each stage M we use equations (2.8.23) and (2.8.24) to find

H D G Y and then equation (2.8.25) tofind theother components of H M+, G+,

From there the vectors z(** 1 andfor 2™+ are easily calculated.
The program below doesthis. It incorporates the second equationin (2.8.25) in the form

M+1 M M+1) ~(M
H1(M+1—)j = HJ(M+)1—j - H1(u+1 )G§- ) (2-8-27)

so that the computation can be done “in place.”

Notice that the above algorithm fails if Ry = 0. In fact, because the bordering method
does not alow pivoting, the algorithm will fail if any of the diagonal principal minors of the
original Toeplitz matrix vanish. (Compare with discussion of the tridiagonal agorithm in
§2.4.) If the algorithm fails, your matrix is not necessarily singular — you might just have
to solve your problem by a slower and more general algorithm such as LU decomposition
with pivoting.

The routine that implements equations (2.8.23)—(2.8.27) is also due to Rybicki. Note
that the routine’s r (n+3) is equal to R; above, so that subscripts on the r array vary from
1to 2N — 1.
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SUBROUTINE toeplz(r,x,y,n)
INTEGER n,NMAX

REAL r(2+#n-1) ,x(n),y@)
PARAMETER (NMAX=100)

Solves the Toeplitz system Z;V:1 R(nti—jyzj = yi (i = 1,...,N). The Toeplitz matrix
need not be symmetric. y and r are input arrays of length n and 2*n-1, respectively. x

is the output array, of length n.

Parameter: NMAX is the maximum anticipated value of n.
INTEGER j,k,m,m1,m2
REAL pp,ptl,pt2,q9q,qtl,qt2,sd,sgd,sgn,shn,sxn,

g (NMAX) ,h (NMAX)
if(r(n).eq.0.) goto 99
x(1)=y(1)/r(n)
if(n.eq.1)return
g(1)=r(n-1)/r(n)
h(1)=r(n+1)/r(n)

Initialize for the recursion.

do 15 m=1,n Main loop over the recursion.
mi=m+1
sxn=-y(m1) Compute numerator and denominator for z,
sd=-r(n)
dou j=1,m

sxn=sxn+r (n+ml1-j) *x (j)
sd=sd+r (n+ml1-j)*g(m-j+1)
enddo 11
if(sd.eq.0.)goto 99
x(ml1)=sxn/sd whence z.
do1 j=1,m
x(j)=x(j)-x(m1)*g(m-j+1)
enddo 12
if(ml.eq.n)return
sgn=-r(n-m1)
shn=-r (n+m1)
sgd=-r(n)
do13 j=1,m
sgn=sgn+r (n+j-m1) *g (j)
shn=shn+r (n+m1-j) *h (j)
sgd=sgd+r (n+j-m1)*h (m-j+1)
enddo 13
if(sd.eq.0..or.sgd.eq.0.)goto 99
g(m1)=sgn/sgd whence G and H.
h(m1)=shn/sd
k=m
m2=(m+1) /2
pp=g(m1)
qq=h(m1)
dois j=1,m2
pti=g(j)
pt2=g(k)
qt1=h(j)
qt2=h (k)
g(j)=ptl-pp*qt2
g(k)=pt2-pp*qt1
h(j)=qt1-qq*pt2
h(k)=qt2-qg*ptl
k=k-1
enddo 14
enddo 15 Back for another recurrence.
pause ’never get here in toeplz’
pause ’singular principal minor in toeplz’
END

If you arein the businessof solving verylarge Toeplitz systems, you shouldfind out about
so-called “new, fast” algorithms, which require only on the order of N (log N)? operations,

Compute numerator and denominator for G and H,
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2.9 Cholesky Decomposition 89

compared to N2 for Levinson’s method. These methods are too complicated to include here.
Papers by Bunch [6] and de Hoog [7] will give entry to the literature.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 5 [also treats some other special forms].

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), §19. [1]

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley). [2]

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), pp. 394ff. [3]

Levinson, N., Appendix B of N. Wiener, 1949, Extrapolation, Interpolation and Smoothing of
Stationary Time Series (New York: Wiley). [4]

Robinson, E.A., and Treitel, S. 1980, Geophysical Signal Analysis (Englewood Cliffs, NJ: Prentice-
Hall), pp. 163ff. [5]

Bunch, J.R. 1985, SIAM Journal on Scientific and Statistical Computing, vol. 6, pp. 349-364. [6]
de Hoog, F. 1987, Linear Algebra and Its Applications, vol. 88/89, pp. 123-138. [7]

2.9 Cholesky Decomposition

If a sguare matrix A happens to be symmetric and positive definite, then it has a
special, more efficient, triangular decomposition. Symmetric means that a;; = a;; for
i,7 = 1,..., N, while positive definite means that

v-A-v>0 forall vectorsv (29.1)

(In Chapter 11 we will seethat positive definite has the equivalent interpretation that A has
all positive eigenvalues.) While symmetric, positive definite matrices are rather special, they
occur quite frequently in some applications, so their special factorization, called Cholesky
decomposition, isgood to know about. When you can useit, Cholesky decompositionis about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factors L and U, Cholesky
decomposition constructs alower triangular matrix L whosetranspose LT can itself serve as
the upper triangular part. In other words we replace equation (2.3.1) by

L-LT=A (29.2)

This factorization is sometimes referred to as “taking the square root” of the matrix A. The
components of LT are of course related to those of L by

LL =Ly (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12)2.3.13),

i—1 1/2
Ly = (aii - Z L?k) (29.4)
k=1

and
i—1

Lj; = Llﬂ <aij—ZLiijk> j=i+1,i4+2,...,N (2.9.5)
7 k 1
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90 Chapter 2. Solution of Linear Algebraic Equations

If you apply equations (2.9.4) and (2.9.5) in the order ¢ = 1,2,..., N, you will see
that the L’s that occur on the right-hand side are already determined by the time they are
needed. Also, only components a;; with j > ¢ are referenced. (Since A is symmetric,
these have complete information.) It is convenient, then, to have the factor L overwrite the
subdiagonal (lower triangular but not including the diagonal) part of A, preserving the input
upper triangular valuesof A. Only one extravector of length N is needed to store the diagonal
part of L. The operations count is N*/6 executions of the inner loop (consisting of one
multiply and one subtract), with also N square roots. As already mentioned, this is about a
factor 2 better than LU decomposition of A (where its symmetry would be ignored).

A straightforward implementation is

SUBROUTINE choldc(a,n,np,p)
INTEGER n,np
REAL a(np,np),p(n)
Given a positive-definite symmetric matrix a(1:n,1:n), with physical dimension np, this
routine constructs its Cholesky decomposition, A = L-L”. On input, only the upper triangle
of a need be given; it is not modified. The Cholesky factor L is returned in the lower triangle
of a, except for its diagonal elements which are returned in p(1:n).
INTEGER i,j,k
REAL sum
do 13 i=1,n
do12 j=i,n
sum=a(i,j)
don k=i-1,1,-1
sum=sum-a(i,k)*a(j,k)
enddo 11
if(i.eq.j)then
if (sum.le.0.)pause ’choldc failed’ a, with rounding errors, is not
p(i)=sqrt (sum) positive definite.
else
a(j,i)=sum/p(i)
endif
enddo 12
enddo 13
return
END

You might at this point wonder about pivoting. The pleasant answer is that Cholesky
decomposition is extremely stable numerically, without any pivoting at all. Failure of choldc
simply indicates that the matrix A (or, with roundoff error, another very nearby matrix) is
not positive definite. In fact, choldc is an efficient way to test whether a symmetric matrix
is positive definite. (In this application, you will want to replace the pause with some less
drastic signaling method.)

Once your matrix is decomposed, the triangular factor can be used to solve a linear
equation by backsubstitution. The straightforward implementation of this is

SUBROUTINE cholsl(a,n,np,p,b,x)

INTEGER n,np

REAL a(np,np),b(n),p(n),x(n)
Solves the set of n linear equations A - X = b, where a is a positive-definite symmetric
matrix with physical dimension np. a and p are input as the output of the routine choldc.
Only the lower triangle of a is accessed. b(1:n) is input as the right-hand side vector. The
solution vector is returned in x(1:n). a, n, np, and p are not modified and can be left
in place for successive calls with different right-hand sides b. b is not modified unless you
identify b and x in the calling sequence, which is allowed.

INTEGER i,k

REAL sum

do 12 i=1,n Solve L -y = b, storing y in X.
sum=b (i)
do 11 k=i-1,1,-1

sum=sum-a(i,k)*x (k)
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enddo 1
x(1)=sum/p(i)

enddo 12

dois i=n,1,-1 Solve LT . x =y.
sum=x (i)
do 13 k=i+1,n

sum=sum-a (k, i) *x (k)

enddo 13
x(1)=sum/p(i)

enddo 14

return

END

A typical useof choldc and cholslisintheinversion of covariancematrices describing
thefit of datato amodel; see, e.g., §15.6. In this, and many other applications, one often needs
L~ . The lower triangle of this matrix can be efficiently found from the output of choldc:

do 13 i=1,n
a(i,i)=1./p(i)
do1z j=i+l,n
sum=0.
dou k=i, j-1
sum=sum-a(j,k)*a(k,i)
enddo 11
a(j,i)=sum/p(j)
enddo 12
enddo 13

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. || of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter I/1.

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), §4.9.2.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§5.3.5.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.2.

2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-called QR
decomposition,

A=Q-R (2.10.2)
Here R is upper triangular, while Q is orthogonal, that is,
Q- 0=1 (2.10.2)

where Q7 is the transpose matrix of Q. Although the decomposition exists for a general
rectangular matrix, we shall restrict our treatment to the case when all the matrices are square,
with dimensions N x N.
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92 Chapter 2. Solution of Linear Algebraic Equations

Like the other matrix factorizations we have met (LU, SVD, Cholesky), Q R decompo-
sition can be used to solve systems of linear equations. To solve

A-x=b (2.10.3)
first form QT - b and then solve
R-x=Q" b (2.10.4)

by backsubstitution. Since QR decomposition involves about twice as many operations as
LU decomposition, it is not used for typical systems of linear equations. However, we will
meet special cases where QR is the method of choice.

The standard algorithm for the QR decomposition involves successive Householder
transformations (to be discussed later in §11.2). We write a Householder matrix in the form
1-u®u/cwherec = %u - u. An appropriate Householder matrix applied to a given matrix
can zero all elementsin a column of the matrix situated below a chosen element. Thus we
arrange for the first Householder matrix Q, to zero all elements in the first column of A
below the first element. Similarly Q. zeroes all elements in the second column below the
second element, and so on up to Q,,_,. Thus

R=Q,_;--Q; A (2.10.5)
Since the Householder matrices are orthogonal,
Q=(Q, Q) "'=Q-Q,, (2.10.6)

In most applications we don’'t need to form Q explicitly; we instead store it in the factored
form (2.10.6). Pivoting is not usually necessary unless the matrix A is very close to singular.
A general Q R algorithm for rectangular matricesincluding pivotingisgivenin[1]. For square
matrices, an implementation is the following:

SUBROUTINE grdcmp(a,n,np,c,d,sing)

INTEGER n,np

REAL a(np,np),c(n),d(n)

LOGICAL sing
Constructs the QR decomposition of a(1:n,1:n), with physical dimension np. The upper
triangular matrix R is returned in the upper triangle of a, except for the diagonal elements
of R which are returned in d(1:n). The orthogonal matrix Q is represented as a product of
n — 1 Householder matrices Q; ...Q,,_1, where Q; = 1 —u; ® U;/c;. The ith component
of uj is zero for i = 1,..., j — 1 while the nonzero components are returned in a(i, j) for
i = j,...,n. sing returns as true if singularity is encountered during the decomposition,
but the decomposition is still completed in this case.

INTEGER i,j,k

REAL scale,sigma,sum,tau

sing=.false.

do 17 k=1,n-1
scale=0.
dou i=k,n

scale=max(scale,abs(a(i,k)))

enddo 11

if (scale.eq.0.)then Singular case.
sing=.true.
c(k)=0.
d(k)=0.

else Form Q, and Q; - A.

dow i=k,n
a(i,k)=a(i,k)/scale
enddo 12
sum=0.
do s i=k,n
sum=sum+a (i,k)**2
enddo 13
sigma=sign(sqrt(sum),a(k,k))
a(k,k)=a(k,k)+sigma
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c(k)=sigmax*a(k,k)
d(k)=-scalex*sigma
do1s j=k+1,n
sum=0.
do 1 i=k,n
sum=sum+a(i,k)*a(i,j)
enddo 14
tau=sum/c (k)
do s i=k,n
a(i,j)=a(i,j)-tau*a(i,k)
enddo 15
enddo 16
endif
enddo 17
d(n)=a(n,n)
if(d(n).eq.0.)sing=.true.
return
END

The next routine, grsolv, isusedto solvelinear systems. In many applicationsonly the
part (2.10.4) of the algorithm is needed, so we separateit off into its own routine rsolv.

SUBROUTINE grsolv(a,n,np,c,d,b)
INTEGER n,np
REAL a(np,np),b(n),c(n),d(n)
USES rsol v
Solves the set of n linear equations A-X = b, where a is a matrix with physical dimension np.
a, ¢, and d are input as the output of the routine grdcmp and are not modified. b(1l:n)
is input as the right-hand side vector, and is overwritten with the solution vector on output.
INTEGER i, j
REAL sum,tau
do1 j=1,n-1 Form QT - b.
sum=0.
don i=j,n
sum=sum+a (i, j)*b(i)
enddo 11
tau=sum/c(j)
do12 i=j,n
b(i)=b(i)-tau*a(i,j)
enddo 12
enddo 13
call rsolv(a,n,np,d,b) Solve R-x = QT - b.
return
END

SUBROUTINE rsolv(a,n,np,d,b)
INTEGER n,np
REAL a(np,np),b(n),d(n)
Solves the set of n linear equations R - X = b, where R is an upper triangular matrix stored
in a and d. a and d are input as the output of the routine grdcmp and are not modified.
b(1:n) is input as the right-hand side vector, and is overwritten with the solution vector
on output.
INTEGER i, j
REAL sum
b(n)=b(n)/d(n)
do12 i=n-1,1,-1
sum=0.
dou j=i+l,n
sum=sum+a (i, j)*b(j)
enddo 11
b(i)=(b(i)-sum)/d(i)
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94 Chapter 2. Solution of Linear Algebraic Equations

enddo 12
return
END

See[2] for details on how to use @ R decomposition for constructing orthogonal bases,
and for solving least-squares problems. (We prefer to use SVD, §2.6, for these purposes,
because of its greater diagnostic capability in pathological cases.)

Updating a QR decomposition

Some numerical algorithms involve solving a successionof linear systemseach of which
differs only slightly from its predecessor. Instead of doing O(NN?®) operations each time
to solve the equations from scratch, one can often update a matrix factorization in O(N?)
operations and use the new factorization to solve the next set of linear equations. The LU
decomposition is complicated to update because of pivoting. However, QR turns out to be
quite simple for a very common kind of update,

A—-A+st (2.10.7)
(compare equation 2.7.1). In practiceit is more convenient to work with the equivalent form
A=Q-R —- A'=Q  R=Q-(R+u®v) (2.10.8)

One can go back and forth between equations (2.10.7) and (2.10.8) using the fact that Q
is orthogonal, giving

t=v andeither s=Q-u or u=Q" s (2.10.9)

The algorithm [2] hastwo phases. In the first we apply N — 1 Jacobi rotations (§11.1) to
reduce R + u ® Vv to upper Hessenberg form. Another N — 1 Jacobi rotations transform this
upper Hessenberg matrix to the new upper triangular matrix R’. The matrix Q" is simply the
product of Q with the 2(IV — 1) Jacobi rotations. In applications we usually want Q”', and
the algorithm can easily be rearranged to work with this matrix instead of with Q.

SUBROUTINE qrupdt(r,qt,n,np,u,v)

INTEGER n,np

REAL r(np,np),qt(np,np),ulnp),v(np)

USES rotate
Given the QR decomposition of some n X n matrix, calculates the QR decomposition of
the matrix Q - (R4 u® V). The matrices r and gt have physical dimension np. Note that
QT is input and returned in gt.

INTEGER 1i,j,k

dou k=n,1,-1 Find largest k such that u(k) # 0.
if (u(k) .ne.0.)goto 1

enddo 11

k=1

do 12 i=k-1,1,-1 Transform R + U ® Vv to upper Hes-
call rotate(r,qt,n,np,i,u(i),-u(i+1)) senberg.

if(u(i).eq.0.)then
u(i)=abs(u(i+1))
else if(abs(u(i)).gt.abs(u(i+1)))then
u(i)=abs(u(i))*sqrt(1.+(u(i+1)/u(i))**2)
else
u(i)=abs(u(i+1))*sqrt(1.+(u(i) /u(i+1))**2)
endif
enddo 12
do13 j=1,n
r(1,j)=r(1,j)+u(1)*v(j)
enddo 13
do w1 i=1,k-1 Transform upper Hessenberg matrix
call rotate(r,qt,n,np,i,r(i,i),-r(i+1,1i)) to upper triangular.
enddo 14
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2.11 Is Matrix Inversion an N3 Process? 95

return
END

SUBROUTINE rotate(r,qt,n,np,i,a,b)
INTEGER n,np,i
REAL a,b,r(np,np),qt(np,np)
Given nxn matrices r and qt of physical dimension np, carry out a Jacobi rotation on rows i
and i+ 1 of each matrix. a and b are the parameters of the rotation: cosf = a/\/a2 + b2,
sinf = b/va2 + b2.
INTEGER j
REAL c,fact,s,w,y
if(a.eq.0.)then Avoid unnecessary overflow or underflow.
c=0.
s=sign(1.,b)
else if(abs(a).gt.abs(b))then
fact=b/a
c=sign(1l./sqrt(1.+fact**2),a)
s=fact*c
else
fact=a/b
s=sign(1l./sqrt(1.+fact**2),b)
c=fact*s
endif
don j=i,n Premultiply r by Jacobi rotation.
y=r(i,j)
w=r(i+1,j)
r(i,j)=cxy-s*u
r(i+1,j)=s*xy+c*u
enddo 11
do12 j=1,n Premultiply qt by Jacobi rotation.
y=qt(i,j)
w=qt (i+1,j)
qt (i, j)=c*y-s*w
qt (i+1, j)=s*y+c*xw
enddo 12
return
END

We will make use of QR decomposition, and its updating, in §9.7.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. || of Handbook for Automatic Com-
putation (New York: Springer-Verlag), Chapter 1/8. [1]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §85.2, 5.3, 12.6. [2]

2.11 Is Matrix Inversion an N3 Process?

We close this chapter with a little entertainment, a bit of algorithmic prestidig-
itation which probes more deeply into the subject of matrix inversion. We start
with a seemingly simple question:
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96 Chapter 2. Solution of Linear Algebraic Equations

How many individua multiplications does it take to perform the matrix
multiplication of two 2 x 2 matrices,

air a1z \ | bir b1z _ [ 611 €12 (2.11.1)
a1 Aa22 ba1  ba2 C21  C22 -

Eight, right? Here they are written explicitly:

c11 = a11 X b1 + a1z X bay
c12 = a11 X bia + a1z X baa

(211.2)
C21 = 21 X b1y + age X bay

Co2 = Q21 X b12 + a2z X ba2

Do you think that one can write formulas for the ¢'s that involve only seven
multiplications? (Try it yourself, before reading on.)
Such aset of formulaswas, in fact, discovered by Strassen[1]. Theformulasare:

in terms of which

Q1
Q2
Qs

4

QO

Qs
Qs
Q7

(@11 + a22) x (bi1 + b22)

(@21 + ag2) X bi1

=a11 X (512 - 522)

aga X (—b11 + ba1) (2.11.3)

a1 + a12) X bao

(
(—a11 + a21) % (b11 + bi2)
(

a1z — ag2) X (ba1 + b22)

cin =01+ Qs— Qs+ Q7
C21 = Q2+ Q4
ci2 =Q3+ Qs
Co2 =Q1+ Q3 — Q2+ Qs

(2.11.4)

What's the use of this? There is one fewer multiplication than in equation
(2.11.2), but many more additions and subtractions. It is not clear that anything
has been gained. But notice that in (2.11.3) the a’s and b's are never commuted.
Therefore (2.11.3) and (2.11.4) are valid when the a’s and b's are themselves
meatrices. The problem of multiplying two very large matrices (of order N = 2™ for
some integer m) can now be broken down recursively by partitioning the matrices
into quarters, sixteenths, etc. And notethe key point: The savingsisnot just afactor
“7/8"; it isthat factor at each hierarchical level of therecursion. In total it reduces
the process of matrix multiplication to order N'°827 instead of N3.
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2.11 Is Matrix Inversion an N® Process? 97

What about all the extra additionsin (2.11.3)—«2.11.4)? Don't they outweigh
the advantage of the fewer multiplications? For large N, it turns out that there are
six times as many additions as multiplicationsimplied by (2.11.3)—(2.11.4). But,
if N isvery large, this constant factor is no match for the change in the exponent
from N3 to N'°8:7,

With this“fast” matrix multiplication, Strassen a so obtained a surprising result
for matrix inversion[1]. Suppose that the matrices

(a“ al?) and (C“ C”) (2.11.5)
as1 Qo2 C21  C22

areinversesof each other. Then the ¢’scan be obtained from the o’ sby thefollowing
operations (compare equations 2.7.22 and 2.7.25):

R; = Inverse(ais)
Ry =a21 x Ry
Rg = Rl X a12

R4 = ag1 X Rg

Rs = Ry — a2
Rs = Inverse(R5) (2.11.6)
c12 = R3 X Rg
c21 = R X Ry

R7 = R3 X co1
ci1 = — Ry

c22 = —Rg

In (2.11.6) the“inverse” operator occursjust twice. Itisto beinterpreted asthe
reciprocal if thea’sand ¢'s are scalars, but as matrix inversion if thea’sand c’s are
themselves submatrices. I magine doing theinversion of avery large matrix, of order
N = 2™, recursively by partitionsin half. At each step, halving the order doubles
the number of inverse operations. But this means that there are only NV divisionsin
al! Sodivisonsdon't dominate in the recursive use of (2.11.6). Equation (2.11.6)
is dominated, in fact, by its 6 multiplications. Since these can be done by an N'°&2 7
algorithm, so can the matrix inversion!

Thisisfun, but let’slook at practicalities: If you estimate how large IV hasto be
before the difference between exponent 3 and exponent log, 7 = 2.807 is substantial
enough to outweigh the bookkeeping overhead, arising from the complicated nature
of the recursive Strassen agorithm, you will find that LU decomposition isin no
immediate danger of becoming obsolete.

If, on the other hand, you like this kind of fun, then try these: (1) Can you
multiply thecomplex numbers (a +ib) and (c¢+1id) inonly threereal multiplications?
[Answer: see §5.4] (2) Can you evaluate a general fourth-degree polynomia in
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98 Chapter 2. Solution of Linear Algebraic Equations

x for many different values of x with only three multiplications per evaluation?
[Answer: see §5.3]

CITED REFERENCES AND FURTHER READING:

Strassen, V. 1969, Numerische Mathematik, vol. 13, pp. 354-356. [1]

Kronsjo, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley).

Winograd, S. 1971, Linear Algebra and Its Applications, vol. 4, pp. 381-388.

Pan, V. Ya. 1980, SIAM Journal on Computing, vol. 9, pp. 321-342.

Pan, V. 1984, How to Multiply Matrices Faster, Lecture Notes in Computer Science, vol. 179
(New York: Springer-Verlag)

Pan, V. 1984, SIAM Review, vol. 26, pp. 393-415. [More recent results that show that an
exponent of 2.496 can be achieved — theoretically!]
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Chapter 3. Interpolation and
Extrapolation

3.0 Introduction

Wesometimesknow thevaueof afunction f(x) at aset of pointsx1, zo, ..., N
(say, withzy < ... < zy), butwedon'thavean analyticexpressionfor f(x) that lets
uscalculateitsvalueat an arbitrary point. For example, the f(x;)’smight result from
some physical measurement or from long numerical calculation that cannot be cast
into asimple functiona form. Often the x;’s are equally spaced, but not necessarily.

The task now is to estimate f(x) for arbitrary « by, in some sense, drawing a
smooth curve through (and perhaps beyond) the z;. If thedesired = isin between the
largest and smallest of the x;’s, the problem is called interpolation; if x is outside
that range, it is called extrapolation, which is considerably more hazardous (as many
former stock-market analysts can attest).

Interpolation and extrapolation schemes must model the function, between or
beyond the known points, by some plausible functional form. The form should
be sufficiently general so as to be able to approximate large classes of functions
which might arise in practice. By far most common among the functional forms
used are polynomials (§3.1). Rationa functions (quotientsof polynomials) also turn
out to be extremely useful (§3.2). Trigonometric functions, sines and cosines, give
rise to trigonometric interpolation and related Fourier methods, which we defer to
Chapters 12 and 13.

There is an extensive mathematical literature devoted to theorems about what
sort of functions can be well approximated by which interpolating functions. These
theorems are, aas, amost completely useless in day-to-day work: If we know
enough about our function to apply a theorem of any power, we are usually not in
the pitiful state of having to interpolate on atable of its values!

Interpolationis related to, but distinct from, function approximation. That task
consists of finding an approximate (but easily computable) function to use in place
of amore complicated one. Inthe case of interpolation, you are given the function f
at points not of your own choosing. For the case of function approximation, you are
allowed to computethefunction f at any desired pointsfor the purpose of devel oping
your approximation. We deal with function approximation in Chapter 5.

One can easily find pathological functionsthat make a mockery of any interpo-
lation scheme. Consider, for example, the function

f(z) =32 + % In[(m—2)%] +1 (3.0.1)

99
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100 Chapter 3. Interpolation and Extrapolation

which is well-behaved everywhere except at x = 7, very mildly singular a = = 7,
and otherwise takes on all positive and negative values. Any interpolation based
onthevauesz = 3.13, 3.14, 3.15, 3.16, will assuredly get avery wrong answer for
the value z = 3.1416, even though a graph plotting those five points looks really
quite smooth! (Try it on your calculator.)

Because pathologies can lurk anywhere, it is highly desirable that an interpo-
lation and extrapolation routine should return an estimate of its own error. Such an
error estimate can never be foolproof, of course. We could have a function that,
for reasons known only to its maker, takes off wildly and unexpectedly between
two tabulated points. Interpolation always presumes some degree of smoothness
for the function interpolated, but within this framework of presumption, deviations
from smoothness can be detected.

Conceptually, the interpolation process has two stages: (1) Fit an interpolating
function to the data points provided. (2) Evauate that interpolating function at
the target point .

However, this two-stage method is generally not the best way to proceed in
practice. Typically it is computationaly less efficient, and more susceptible to
roundoff error, than methods which construct a functional estimate f(x) directly
from the IV tabulated values every time oneis desired. Most practical schemes start
at a nearby point f(x;), then add a sequence of (hopefully) decreasing corrections,
as information from other f(x;)’s is incorporated. The procedure typically takes
O(N?) operations. |If everything is well behaved, the last correction will be the
smallest, and it can be used as an informal (though not rigorous) bound on the error.

In the case of polynomial interpolation, it sometimes does happen that the
coefficients of the interpolating polynomia are of interest, even though their use
in evaluating the interpolating function should be frowned on. We dea with this
eventuality in §3.5.

Loca interpolation, using a finite number of “nearest-neighbor” points, gives
interpolated values f(z) that do not, in general, have continuous first or higher
derivatives. That happens because, as = crosses the tabulated values z;, the
interpolation scheme switches which tabulated points are the “local” ones. (If such
aswitch is allowed to occur anywhere el se, then there will be a discontinuity in the
interpolated function itself at that point. Bad idea!)

In situations where continuity of derivatives is a concern, one must use
the “stiffer” interpolation provided by a so-called spline function. A spline is
a polynomia between each pair of table points, but one whose coefficients are
determined “dlightly” nonlocally. The nonlocality is designed to guarantee global
smoothnessin theinterpolated function up to some order of derivative. Cubic splines
(§3.3) arethemost popular. They produce an interpol ated function that is continuous
through the second derivative. Splinestend to be stabler than polynomials, with less
possibility of wild oscillation between the tabulated points.

The number of points (minus one) used in an interpolation scheme is called
the order of the interpolation. Increasing the order does not necessarily increase
the accuracy, especialy in polynomial interpolation. If the added points are distant
fromthe point of interest -, the resulting higher-order polynomial, with its additional
constrained points, tends to oscillate wildly between the tabulated values. This
oscillation may have no relation at all to the behavior of the “true” function (see
Figure 3.0.1). Of course, adding points close to the desired point usualy does help,
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3.0 Introduction 101

Figure 3.0.1. (@ A smooth function (solid line) is more accurately interpolated by a high-order
polynomial (shown schematically as dotted line) than by a low-order polynomial (shown as a piecewise
linear dashed line). (b) A function with sharp corners or rapidly changing higher derivatives is less
accurately approximated by a high-order polynomial (dotted line), whichistoo “stiff,” than by alow-order
polynomial (dashed lines). Even some smooth functions, such as exponentials or rational functions, can
be badly approximated by high-order polynomials.

but a finer mesh implies a larger table of values, not dways available.

Unlessthereis solid evidence that the interpolating function is close in form to
the true function f, it is a good idea to be cautious about high-order interpolation.
We enthusiastically endorse interpolationswith 3 or 4 points, we are perhapstol erant
of 5 or 6; but we rarely go higher than that unless there is quite rigorous monitoring
of estimated errors.

When your table of values contains many more points than the desirable order
of interpolation, you must begin each interpol ation with a search for theright “local”
place in thetable. While not strictly apart of the subject of interpolation, thistask is
important enough (and often enough botched) that we devote §3.4 to its discussion.

The routines given for interpolation are also routines for extrapolation. An
important application, in Chapter 16, is their use in the integration of ordinary
differential equations. There, considerable care is taken with the monitoring of
errors. Otherwise, the dangers of extrapolation cannot be overemphasized: An
interpolating function, which is perforce an extrapolating function, will typicaly go
berserk when the argument x is outside the range of tabulated values by more than
the typical spacing of tabulated points.

Interpolation can be done in more than one dimension, e.g., for a function
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102 Chapter 3. Interpolation and Extrapolation

f(z,y, z). Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations. We discuss thisin §3.6.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 2.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 3.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood ClIiffs,
NJ: Prentice Hall), Chapter 4.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 5.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 3.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 6.

3.1 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points, a
unique quadratic. Et cetera. The interpolating polynomial of degree N — 1 through
the N points y; = f(z1),y2 = f(z2),...,yn = f(zn) is given explicitly by
Lagrange's classical formula,

(r —2z2)(x — x3)...(x — TN) (x —21)(z — x3)...(x — xN)
(21 — 22) (21 — 23)... (1 — 2n) " (22 — 21) (22 — 23)...(T2 — TN )
(x —x1)(z — x2)...(x — xN_-1)
(xny —x1)(xNy — z2)...(xN — TN—1)

P(x) = Yo

(3.1.1)
There are N terms, each a polynomial of degree N — 1 and each constructed to be
zero a al of the z; except one, at which it is constructed to be y;.

It is not terribly wrong to implement the Lagrange formula straightforwardly,
butitis not terribly right either. The resulting algorithm gives no error estimate, and
it isaso somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomidl) is Neville's algorithm, closely related to
and sometimes confused with Aitken’s algorithm, the latter now considered obsol ete.

Let P, be the value at = of the unique polynomia of degree zero (i.e,
a constant) passing through the point (x1,y1); S0 P1 = y1. Likewise define
Py, Ps, ..., Py. Now let Pj5 be the value at = of the unique polynomia of
degree one passing through both (z1,y1) and (z2,y2). Likewise Pa3, Pay,. ..,
P(n_1)n. Similarly, for higher-order polynomials, upto P23, n, Whichisthevalue
of the unique interpolating polynomial through al N points, i.e., the desired answer.
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3.1 Polynomial Interpolation and Extrapolation 103

The various P’s form a “tableau” with “ancestors’ on the left leading to a single
“descendant” at the extreme right. For example, with N = 4,

Z1: n="nr
P
T2 Y2 = P P1a3
Ps3 Pio3y (312)
z3: y3 = P3 Ps34
Psy
T4t Yys = Py

Neville's agorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationship between a
“daughter” P and its two “parents,”

(= Titm) Pigi1)...(i4m—1) T (@i — 2) P11y (i42)...i4m)

Piiy1)...G4m) = Ti — Titm

(3.1.3)

This recurrence works because the two parents already agree at points ;41 . ..
Litm—1-

An improvement on the recurrence (3.1.3) is to keep track of the small
differences between parents and daughters, namely to define (for m = 1,2,.. .,
N - 1),

Cmi = Pi..,(i+m) - Pi...(i+m—1)
(3.1.4)
D = B (i1m) — Plat1)...(i4m) -

Then one can easily derive from (3.1.3) the relations

(Titmt+1 — 2)(Crmit1 — D)
Ti — Ti4+m+1
3.15
(i —2)(Cmiv1 — D) ( :
Ti — Ti+m+1

D1, =

Cm+1,i -

At each level m, the C’sand D’s are the corrections that make the interpol ation one
order higher. The final answer P; _  isequal to the sum of any y; plusaset of C's
and/or D’s that form a path through the family tree to the rightmost daughter.

Here is a routine for polynomial interpolation or extrapol ation:

SUBROUTINE polint(xa,ya,n,x,y,dy)

INTEGER n,NMAX

REAL dy,x,y,xa(n),ya(n)

PARAMETER (NMAX=10) Largest anticipated value of n.
Given arrays xa and ya, each of length n, and given a value x, this routine returns a
value y, and an error estimate dy. If P(z) is the polynomial of degree N — 1 such that
P(xa;) = ya;,« = 1,...,n, then the returned value y = P(x).

INTEGER i,m,ns

REAL den,dif,dift,ho,hp,w,c(NMAX) ,d(NMAX)

ns=1

dif=abs(x-xa(1))
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104 Chapter 3. Interpolation and Extrapolation

don i=1,n Here we find the index ns of the closest table entry,
dift=abs(x-xa(i))
if (dift.1lt.dif) then

ns=i
dif=dift
endif
c(i)=ya(i) and initialize the tableau of ¢’s and d’s.
d(i)=ya(i)
enddo 11
y=ya(ns) This is the initial approximation to y.
ns=ns-1
do 13 m=1,n-1 For each column of the tableau,
do12 i=1,n-m we loop over the current c¢’s and d's and update them.

ho=xa(i)-x
hp=xa(i+m)-x
w=c(i+1)-d(i)
den=ho-hp
if(den.eq.0.)pause ’failure in polint’
This error can occur only if two input xa's are (to within roundoff) identical.
den=w/den

d(i)=hp*den Here the c's and d’s are updated.
c(i)=ho*den
enddo 12
if (2*ns.lt.n-m)then After each column in the tableau is completed, we decide
dy=c(ns+1) which correction, ¢ or d, we want to add to our accu-
else mulating value of y, i.e., which path to take through
dy=d(ns) the tableau—forking up or down. We do this in such a
ns=ns-1 way as to take the most “straight line” route through the
endif tableau to its apex, updating ns accordingly to keep track
y=y+dy of where we are. This route keeps the partial approxima-
enddo 13 tions centered (insofar as possible) on the target x. The
return last dy added is thus the error indication.

END

Quite often you will want to cal polint with the dummy arguments xa
and ya replaced by actua arrays with offsets. For example, the construction
call polint(xx(15),yy(15),4,x,y,dy) performs 4-point interpolation on the
tabulated values xx (15:18), yy (15:18). For more on this, see theend of §3.4.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.

3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, but are well
approximated by rational functions, that is quotients of polynomials. We de-
note by Rj(it1)...(i+m) @ rationa function passing through the m + 1 points
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3.2 Rational Function Interpolation and Extrapolation 105

(i, ¥i) - - - (Titm, Yirm). More explicitly, suppose

Du(x) _potpia+---+pua”
Qu()  q+qar+- -+ gav

Sincethereare n + v + 1 unknown p’s and ¢'s (qo being arbitrary), we must have

RiGit1)...(i0m) = (3.2.1)

m+l=ptv+1 (32.2)

In specifying a rationa function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability to model functionswith poles, that is, zeros of the denominator
of eguation (3.2.1). These poles might occur for real values of z, if the function
to be interpolated itself has poles. More often, the function f(x) is finite for dl
finite real z, but has an analytic continuation with poles in the complex z-plane.
Such poles can themselves ruin a polynomia approximation, even one restricted to
real values of z, just as they can ruin the convergence of an infinite power series
in z. If you draw a circle in the complex plane around your m tabulated points,
then you should not expect polynomial interpolation to be good unless the nearest
poleis rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powers of x in its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should aso
mention in passing that rational function approximations can be used in anaytic
work. One sometimes constructs a rational function approximation by the criterion
that the rational function of equation (3.2.1) itself have a power series expansion
that agrees with the first m + 1 terms of the power series expansion of the desired
function f(x). Thisiscaled Padé approximation, and is discussed in §5.12.

Bulirsch and Stoer found an agorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of eguation
(3.1.2) is constructed column by column, leading to a result and an error estimate.
The Bulirsch-Stoer algorithm produces the so-called diagonal rational function, with
the degrees of numerator and denominator equal (if m is even) or with the degree
of the denominator larger by one (if m is odd, cf. equation 3.2.2 above). For the
derivation of thea gorithm, refer to [1]. The algorithmissummarized by arecurrence
relation exactly analogous to equation (3.1.3) for polynomial approximation:

Ri(iv1)...i4m) = Bit1)...(i+m)
Reiy1)...(i4m) — Ri. (i4m—1)

( z—x; )(1 _ _Ragy.Gtm) —Ril i4m—1 )_1
T—Titm Riig1y.. . (itm)—Rit1)...(i4m—1)

(32.3)

_|_

This recurrence generates the rational functions through m + 1 points from the
ones through m and (the term R(; 1), (i+m—1) iN €quation 3.2.3) m — 1 points.
It is started with
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106 Chapter 3. Interpolation and Extrapolation

and with

Now, exactly as in equations (3.1.4) and (3.1.5) above, we can convert the
recurrence (3.2.3) to one involving only the small differences

Cmni = Ri...(i+m) - Ri...(i+m—1)

(3.2.6)
Dii = Ry (i+m) — Bi+1)...(i4m)
Note that these satisfy the relation
Cm+1,i = Dmy1,i = Omjivr — Dii (3.2.7)
which is useful in proving the recurrences
Diypy1i = Cr’_zl(c S i)
(m) Dy — Crigr
(3.2.8)

(L) D i(Cnjit1r — D i)

T—Titm+1

Cm+1,i -
T—X;
(7) Dyyi — Ciga

LT—Titm+1

Thisrecurrence isimplemented in the foll owing subroutine, whose use is analogous
in every way to polint in §3.1.

SUBROUTINE ratint(xa,ya,n,x,y,dy)
INTEGER n,NMAX
REAL dy,x,y,xa(n),ya(n),TINY
PARAMETER (NMAX=10,TINY=1.e-25) Largest expected value of n, and a small number.
Given arrays xa and ya, each of length n, and given a value of x, this routine returns a
value of y and an accuracy estimate dy. The value returned is that of the diagonal rational
function, evaluated at x, which passes through the n points (Xai,yai), i=1..n.
INTEGER i,m,ns
REAL dd,h,hh,t,w,c(NMAX) ,d(NMAX)
ns=1
hh=abs (x-xa (1))
dou i=1,n
h=abs (x-xa(i))
if (h.eq.0.)then
y=ya(i)
dy=0.0
return
else if (h.1lt.hh) then
ns=i
hh=h
endif
c(i)=ya(i)
d(i)=ya(i)+TINY The TINY part is needed to prevent a rare zero-over-
enddo 11 zero condition.
y=ya(ns)
ns=ns-1
do 13 m=1,n-1
do 12 i=1,n-m
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3.3 Cubic Spline Interpolation 107

w=c(i+1)-d(1i)

h=xa(i+m)-x h will never be zero, since this was tested in the ini-
t=(xa(i)-x)*d(i)/h tializing loop.
dd=t-c(i+1)

if(dd.eq.0.)pause ’failure in ratint’
This error condition indicates that the interpolating function has a pole at the re-
quested value of x.
dd=w/dd
d(i)=c(i+1)*dd
c(i)=t=*dd
enddo 12
if (2#ns.lt.n-m)then
dy=c(ns+1)
else
dy=d(ns)
ns=ns-1
endif
y=y+dy
enddo 13
return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. 1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated function y; = y(z;), ¢« = 1...N, focus attention on one
particular interval, between «; and x ;1. Linear interpolation in that interval gives
the interpolation formula

y = Ay; + Byjn (331)
where
s i S - S R R (332)
$j+1 —xj $j+1—$j

Equations (3.3.1) and (3.3.2) are aspecia case of the genera Lagrange interpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and an undefined, or infinite, second derivative at the
abscissas ;. Thegoal of cubic splineinterpolationisto get an interpolationformula
that is smooth in the first derivative, and continuousin the second derivative, both
within an interva and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of y;, we
aso have tabulated values for the function’s second derivatives, y”, that is, a set
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108 Chapter 3. Interpolation and Extrapolation

of numbers y/’. Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomia whose second derivative varies linearly from a
valuey ontheleftto avaluey, ; ontheright. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomia to have
zero values at x; and x4, then adding it in will not spoil the agreement with the
tabulated functional values y; and y;4 a the endpointsz; and x;41.

A little side calculation shows that there is only one way to arrange this
construction, namely replacing (3.3.1) by

y = Ay; + Byj41 + Cyj + Dy, (3.3.3)
where A and B are defined in (3.3.2) and
1 1
= (A = Ay — 1) = (B = B)(zj —x;)  (334)

Notice that the dependence on the independent variable = in equations (3.3.3) and
(3.3.4) isentirely through the linear x-dependence of A and B, and (through A and
B) the cubic z-dependence of C' and D.

We can readily check that 3 is in fact the second derivative of the new
interpolating polynomial. We take derivatives of equation (3.3.3) with respect
to x, using the definitions of A, B, C, D to compute dA/dx,dB/dxz,dC/dz, and
dD/dxz. The result is

dy  yj1—vy; 3A%2—-1 3B? -1
Ir = x:l — xjj e R i)y + — (@ - z;)yjy1 (3.35)
for the first derivative, and

dzy " "

ek Ay + Byj, (3.3.6)
for the second derivative. Since A =1 at z;, A = 0 at x4, while B isjust the
other way around, (3.3.6) shows that "’ isjust the tabulated second derivative, and
also that the second derivativewill be continuousacross (e.g.) the boundary between
the two intervals (z;_1, ;) and (z;, z;11).

The only problemnow isthat we supposed the "’ sto be known, when, actualy,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuousacross the boundary between twointervals. The
key idea of acubic spline isto require this continuity and to use it to get equations
for the second derivatives y/'.

The required equations are obtained by setting equation (3.3.5) evaluated for
x = x; intheinterval (z;_1, ;) equal to the same equation evaluated for x = x; but
intheinterval (x;, z;41). With somerearrangement, thisgives(forj =2, ..., N—1)

LTj—Tj—1 p

Tit] —Ti_
j+1 Jj=1_n
6 Yj—1+ j

+ Ti+1 —Tj Y+l —Yi  Yj—Yi—1
3 Yj 6 Yj+1= .
Ti+1 — T  Tj— Tj—1

(33.7)

These are N — 2 linear equationsin the N unknownsy/’,i = 1,..., N. Therefore
there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
asboundary conditionsat x; and z . Themost common ways of doingthisareeither
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3.3 Cubic Spline Interpolation 109

e set one or both of y{ and y%, equal to zero, giving the so-called natural
cubic spline, which has zero second derivative on one or both of its
boundaries, or

o set ether of y{ and y%; to values calculated from equation (3.3.5) so as
to make the first derivative of the interpolating function have a specified
value on either or both boundaries.

One reason that cubic splines are especially practical isthat the set of equations
(3.3.7), along with the two additional boundary conditions, are not only linear, but
asotridiagonal. Eachy’ iscoupled only toitsnearest neighborsat j 4- 1. Therefore,
the equations can be solved in O (V) operations by thetridiagonal algorithm (§2.4).
That algorithm is concise enough to build right into the spline calculationa routine.
This makes the routine not completely transparent as an implementation of (3.3.7),
S0 wWe encourage you to study it carefully, comparing with tridag (§2.4).

SUBROUTINE spline(x,y,n,ypl,ypn,y2)

INTEGER n,NMAX

REAL ypl,ypn,x(n),y(@),y2(n)

PARAMETER (NMAX=500)
Given arrays x(1:n) and y(1:n) containing a tabulated function, i.e., y, = f(x;), with
X1 < X2 < ... < Xp, and given values ypl and ypn for the first derivative of the inter-
polating function at points 1 and n, respectively, this routine returns an array y2(1:n) of
length n which contains the second derivatives of the interpolating function at the tabulated
points x;. If ypl and/or ypn are equal to 1 x 1030 or larger, the routine is signaled to set
the corresponding boundary condition for a natural spline, with zero second derivative on
that boundary.
Parameter: NMAX is the largest anticipated value of n.

INTEGER i,k

REAL p,qn,sig,un,u(NMAX)

if (ypl.gt..99e30) then The lower boundary condition is set either to be

y2(1)=0. “natural”
u(1)=0.

else or else to have a specified first derivative.
y2(1)=-0.5
u(1)=(3./x(2)-x (1N *((y(2)-y (1)) / (x(2)-x (1)) -yp1)

endif

do1n i=2,n-1 This is the decomposition loop of the tridiagonal
sig=(x(1)-x(i-1))/(x(i+1)-x(i-1)) algorithm. y2 and u are used for temporary
p=sig*xy2(i-1)+2. storage of the decomposed factors.

y2(i)=(sig-1.)/p
u(i)=(6.*((y(i+1)-y(1))/ x(i+1)-x(i))-(y (1) -y(i-1))
/(x(1)-x(i-1)))/ (x(i+1)-x(i-1))-sig*u(i-1))/p

enddo 11

if (ypn.gt..99e30) then The upper boundary condition is set either to be
qn=0. “natural”
un=0.

else or else to have a specified first derivative.
qn=0.5
un=(3./(x(n)-x(n-1)))*(ypn- (y (n) -y (n-1))/ (x(n) -x(n-1)))

endif

y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.)

do 12 k=n-1,1,-1 This is the backsubstitution loop of the tridiago-
y2(k)=y2(k)*y2(k+1)+u(k) nal algorithm.

enddo 12

return

END

It is important to understand that the program spline is caled only once to
process an entire tabulated function in arrays x; and y,;. Once this has been done,
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110 Chapter 3. Interpolation and Extrapolation

values of the interpolated function for any value of z are obtained by calls (as many
as desired) to a separate routine splint (for “spline interpolation”):

SUBROUTINE splint(xa,ya,y2a,n,x,y)

INTEGER n

REAL x,y,xa(n),y2a(n),ya(n)
Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (with the
xa;’s in order), and given the array y2a(1:n), which is the output from spline above,
and given a value of x, this routine returns a cubic-spline interpolated value y.

INTEGER k,khi,klo

REAL a,b,h
klo=1 We will find the right place in the table by means of bisection.
khi=n This is optimal if sequential calls to this routine are at random
if (khi-klo.gt.1) then values of x. If sequential calls are in order, and closely
k=(khi+klo)/2 spaced, one would do better to store previous values of
if (xa(k).gt.x)then klo and khi and test if they remain appropriate on the
khi=k next call.
else
klo=k
endif
goto 1
endif klo and khi now bracket the input value of x.

h=xa(khi)-xa(klo)
if (h.eq.0.) pause ’bad xa input in splint’ The xa's must be distinct.
a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
y=a*ya(klo)+bxya(khi)+
((a*x*3-a) *y2a(klo)+(b**3-b) *y2a(khi) ) * (h*x*2) /6.
return
END

CITED REFERENCES AND FURTHER READING:
De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §§4.4-4.5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomial interpolation, to compute a function f(z) from a
set of tabulated x;’s and f;'s. Then you will need a fast way of finding your place
in the table of x;’s, given some particular value = at which the function evaluation
isdesired. This problemis not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, theproblemisthis: Given an array of abscissasxx (j), j=1,2,... n,
with the elements either monotonically increasing or monotonically decreasing, and
given a number x, find an integer j such that x lies between xx (j) and xx(j+1).
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3.4 How to Search an Ordered Table 111

For this task, let us define fictitious array elements xx(0) and xx(n+1) equal to
plus or minusinfinity (in whichever order is consistent with the monotonicity of the
table). Then j will aways be between 0 and n, inclusive; a returned value of O
indicates “off-scale” at one end of thetable, n indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do better than bisection,
which will find the right place in the table in about log,n tries. We aready did use
bisection in the spline evaluation routine splint of the preceding section, so you
might glance back at that. Standing by itself, a bisection routinelookslike this:

SUBROUTINE locate(xx,n,x,j)

INTEGER j,n

REAL x,xx(n)
Given an array xx(1:n), and given a value X, returns a value j such that x is between
xx(j) and xx(j+1). xx(1:n) must be monotonic, either increasing or decreasing. j=0
or j=n is returned to indicate that x is out of range.

INTEGER j1,jm,ju

j1=0 Initialize lower
ju=n+1 and upper limits.
if (ju-jl.gt.1)then If we are not yet done,
jm=(ju+jl)/2 compute a midpoint,
if ((xx(n) .ge.xx(1)) .eqv. (x.ge.xx(jm)))then
jl=jm and replace either the lower limit
else
ju=jm or the upper limit, as appropriate.
endif
goto 10 Repeat until
endif the test condition 10 is satisfied.
if(x.eq.xx(1))then Then set the output
j=1
else if(x.eq.xx(n))then
j=n-1
else
j=i1
endif
return and return.

END

Note the use of the logical equality relation .eqv., which is true when its
two logical operands are either both true or both false. This relation alows the
routine to work for both monotonically increasing and monotonically decreasing
orders of xx(1:n).

Search with Correlated Values

Sometimes you will be in the situation of searching a large table many times,
and with nearly identical abscissas on consecutive searches. For example, you
may be generating a function that is used on the right-hand side of a differentia
equation: Most differential-equation integrators, as we shall see in Chapter 16, call
for right-hand side evauations at points that hop back and forth a bit, but whose
trend moves slowly in the direction of the integration.

In such cases it is wasteful to do a full bisection, ab initio, on each call. The
following routineinstead starts with a guessed position in thetable. It first “hunts,”
either up or down, in increments of 1, then 2, then 4, etc., until the desired value is
bracketed. Second, it then bisectsin the bracketed interval. At wordt, thisroutineis
about afactor of 2 slower than 1locate above (if the hunt phase expands to include
thewholetable). Atbest, it can beafactor of log,n faster thanlocate, if thedesired
pointisusually quitecloseto theinput guess. Figure 3.4.1 comparesthetwo routines.
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$
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8
! hunt phase

mm/\/_m\
1 7 10 14 22 /38

(b) bisection phase

Figure 3.4.1. (a) The routine 1locate finds a table entry by bisection. Shown here is the sequence
of steps that converge to element 51 in a table of length 64. (b) The routine hunt searches from a
previous known position in the table by increasing steps, then converges by bisection. Shown hereisa
particularly unfavorable example, converging to element 32 from element 7. A favorable example would
be convergenceto an element near 7, such as 9, which would require just three “hops.”

SUBROUTINE hunt (xx,n,x,jlo)

INTEGER jlo,n

REAL x,xx(n)
Given an array xx(1:n), and given a value X, returns a value jlo such that x is between
xx(jlo) and xx(jlo+1). xx(1:n) must be monotonic, either increasing or decreasing.
jlo=0 or jlo=n is returned to indicate that x is out of range. jlo on input is taken as
the initial guess for jlo on output.

INTEGER inc,jhi,jm

LOGICAL ascnd

ascnd=xx(n) .ge.xx (1) True if ascending order of table, false otherwise.

if(jlo.le.0.or.jlo.gt.n)then Input guess not useful. Go immediately to bisection.
jlo=0
jhi=n+1
goto 3

endif

inc=1 Set the hunting increment.

if (x.ge.xx(jlo) .eqv.ascnd)then Hunt up

jhi=jlo+inc

if (jhi.gt.n)then Done hunting, since off end of table.

jhi=n+1
else if(x.ge.xx(jhi).eqv.ascnd)then Not done hunting,
jlo=jhi
inc=inc+inc so double the increment
goto 1 and try again.
endif Done hunting, value bracketed.
else Hunt down:
jhi=jlo
jlo=jhi-inc
if(jlo.1t.1)then Done hunting, since off end of table.
jlo=0
else if(x.1t.xx(jlo).eqv.ascnd)then Not done hunting,
jhi=jlo
inc=inc+inc so double the increment
goto 2 and try again.
endif Done hunting, value bracketed.
endif Hunt is done, so begin the final bisection phase:

if(jhi-jlo.eq.1)then
if(x.eq.xx(n))jlo=n-1
if(x.eq.xx(1))jlo=1
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3.5 Coefficients of the Interpolating Polynomial 113

return

endif

jm=(jhi+jlo)/2

if (x.ge.xx(jm) .eqv.ascnd) then
jlo=jm

else
jhi=jm

endif

goto 3

END

After the Hunt

The problem: Routines locate and hunt return an index j such that your
desired value lies between table entries xx (j) and xx (j+1), where xx(1:n) isthe
full length of the table. But, to obtain an m-point interpolated value using a routine
like polint (§3.1) or ratint (§3.2), you need to supply much shorter xx and yy
arrays, of lengthm. How do you make the connection?

The solution: Calculate

k =min(max(j-(m-1)/2,1) ,n+1-m)

This expression produces the index of the leftmost member of an m-point set of
points centered (insofar as possible) between j and j+1, but bounded by 1 at the
left and n at the right. FORTRAN then lets you call the interpolation routine with
array addresses offset by k, eg.,

call polint(xx(k),yy(k),m,...)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §6.2.1.

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not theval ue of theinterpolating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneousinterpol ated values of thefunction and of several of itsderivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e, its convolution with powers of x)
are known anaytically.

However, please be certain that the coefficients arewhat you need. Generally the
coefficients of the interpolating polynomial can be determined much less accurately
than itsvalue a a desired abscissa. Therefore it is not a good idea to determine the
coefficients only for use in calculating interpolating values. Values thus calculated
will not pass exactly through the tabulated points, for example, while values
computed by the routinesin §3.1-§3.3 will pass exactly through such points.
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114 Chapter 3. Interpolation and Extrapolation

Also, you should not mistake the interpolating polynomial (and its coefficients)
for its cousin, the best fit polynomial through a data set. Fitting is a smoothing
process, since the number of fitted coefficients is typically much less than the
number of data points. Therefore, fitted coefficients can be accurately and stably
determined even in the presence of statistical errors in the tabulated values. (See
§14.8.) Interpolation, where the number of coefficients and number of tabulated
pointsare equal, takesthetabul ated valuesas perfect. If they infact contain statistical
errors, these can be magnified into oscillations of the interpolating polynomial in
between the tabulated points.

As before, we take the tabulated pointsto be y; = y(z;). If the interpolating
polynomial is written as

y=ci+cor+ega® oty ! (35.1)

then the ¢;’s are required to satisfy the linear equation

2 N-1

1z oz - 2 c1 Y1
2 N—1

1 x2 x2 T x2 . €2 = y2 (352)
2 N—1

1 oy 23 - 2y CN Yn

This is a Vandermonde matrix, as described in §2.8. One could in principle solve
equation (3.5.2) by standard techniquesfor linear equationsgeneraly (§2.3); however
the specia method that was derived in §2.8 is more efficient by a large factor, of
order N, s0 it is much better.

Remember that Vandermonde systems can be quite ill-conditioned. In such a
case, no numerical method is going to give a very accurate answer. Such cases do
not, please note, imply any difficulty in finding interpolated values by the methods
of §3.1, but only difficulty in finding coefficients.

Like the routinein §2.8, the following is due to G.B. Rybicki.

SUBROUTINE polcoe(x,y,n,cof)
INTEGER n,NMAX
REAL cof (n),x(n),y(n)
PARAMETER (NMAX=15) Largest anticipated value of n.
Given arrays x(1:n) and y(1:n) containing a tabulated function y, = f(x;), this routine

returns an array of coefficients cof (1:n), such that y, = 3, cofxi ™t
INTEGER 1i,j,k
REAL b,ff,phi,s(NMAX)
don i=1,n
s(i)=0.
cof (i)=0.
enddo 11
s(n)=-x(1)
do1s i=2,n Coefficients s; of the master polynomial P(z) are found
do 12 j=n+1-i,n-1 by recurrence.
s(§)=s(§)-x()*s(j+1)
enddo 12
s(n)=s(n)-x(i)
enddo 13
dos j=1,n
phi=n
do 14 k=n-1,1,-1 The quantity phi = J[,_; (z; — ) is found as a deriva-
tive of P(x;).
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3.5 Coefficients of the Interpolating Polynomial 115

phi=k*s (k+1)+x(j)*phi

enddo 14

ff=y(j)/phi

b=1. Coefficients of polynomials in each term of the Lagrange
do1s k=n,1,-1 formula are found by synthetic division of P(z) by

cof (k) =cof (k)+bxff
b=s(k)+x(j)*Db
enddo 15
enddo 16
return
END

(z — ;). The solution cj, is accumulated.

Another Method

Another technique is to make use of the function value interpolation routine
already given (polint §3.1). If we interpolate (or extrapolate) to find the value of
the interpolating polynomial a = = 0, then this value will evidently bec;. Now
we can subtract ¢; from the y;’s and divide each by its corresponding x;. Throwing
out one point (the one with smallest x; is a good candidate), we can repeat the
procedure to find co, and so on.

It is not instantly obvious that this procedure is stable, but we have generally
found it to be somewhat more stable than the routine immediately preceding. This
method is of order N3, while the preceding one was of order N2. You will
find, however, that neither works very well for large IV, because of the intrinsic
ill-condition of the Vandermonde problem. In single precision, N upto 8 or 10 is
satisfactory; about double this in double precision.

SUBROUTINE polcof (xa,ya,n,cof)

INTEGER n,NMAX

REAL cof (n) ,xa(n),ya(n)

PARAMETER (NMAX=15)

USES pol i nt
Given arrays xa(1:n) and ya(1l:n) of length n containing a tabulated function ya, =
f(xa;), this routine returns an array of coefficients cof (1:n), also of length n, such that
ya, = >, cof;xal !

INTEGER 1,3,k

REAL dy,xmin,x(NMAX) ,y (NMAX)

Largest anticipated value of n.

dou j=1,n
x(j)=xa(j)
y(G)=ya(j)
enddo 11
dos j=1,n
call polint(x,y,n+1-j,0.,cof(j),dy) This is the polynomial interpolation rou-
xmin=1.e38 tine of §3.1. We extrapolate to x =
k=0 0.
do 12 i=1,n+1-j Find the remaining x; of smallest abso-
if (abs(x(i)).lt.xmin)then lute value,
xmin=abs (x(i))
k=i
endif
if (x(i) .ne.0.)y(i)=(y(i)-cof (j))/x(i) (meanwhile reducing all the terms)
enddo 12
do 13 i=k+1,n+1-j and eliminate it.
y(i-1)=y(i)
x(i-1)=x(1)
enddo 13
enddo 14
return

END
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116 Chapter 3. Interpolation and Extrapolation

If thepoint x = 0 isnot in (or at least close to) the range of the tabulated z;’s,
then the coefficients of theinterpol ating polynomial will in general becomevery large.
However, the real “information content” of the coefficients is in small differences
from the “trandation-induced” large values. This is one cause of ill-conditioning,
resulting in loss of significance and poorly determined coefficients. You should
consider redefining the origin of the problem, to put z = 0 in asensible place.

Another pathology isthat, if too high a degree of interpolationis attempted on
a smooth function, the interpolating polynomial will attempt to use its high-degree
coefficients, in combinationswithlarge and a most preci sely canceling combinations,
to match the tabulated values down to the last possible epsilon of accuracy. This
effect isthe same as the intrinsic tendency of the interpolating polynomial valuesto
oscillate (wildly) between its constrained points, and would be present even if the
machine's floating precision were infinitely good. The above routines polcoe and
polcof have dightly different sensitivities to the pathol ogies that can occur.

Areyou dtill quite certain that using the coefficients is a good idea?

CITED REFERENCES AND FURTHER READING:
Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §5.2.

3.6 Interpolation in Two or More Dimensions

In multidimensiond interpolation, we seek an estimate of y(x1,za,...,zy)
from an n-dimensiona grid of tabulated values y and n one-dimensional vec-
tors giving the tabulated values of each of the independent variables x1, xo, . . .,
. We will not here consider the problem of interpolating on a mesh that is not
Cartesian, i.e., has tabulated function values at “random” points in n-dimensiona
space rather than at the vertices of arectangular array. For clarity, we will consider
explicitly only the case of two dimensions, the cases of three or more dimensions
being analogous in every way.

In two dimensions, we imagine that we are given amatrix of functiona values
ya(j,k), where j variesfrom 1 to m, and k varies from 1 to n. We are aso given
an array x1a of length m, and an array x2a of length n. The relation of these input
quantities to an underlying function y(z1, x2) is

ya(j,k) = y(x1a(j),x2a(k)) (36.1)

We want to estimate, by interpolation, the function y a some untabulated point
(xl, xz).

An important concept is that of the grid sguare in which the point (z1, z2)
fals, that is, the four tabulated points that surround the desired interior point. For
convenience, we will number these points from 1 to 4, counterclockwise starting
from the lower left (see Figure 3.6.1). More precisdly, if

xla(j) <z; <xla(j+1)

(3.6.2)
x2a(k) <z < x2a(k+1)
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3.6 Interpolation in Two or More Dimensions 117

pt. number
/pt. @ / pt. @ @ @ @ @
desired pt. X = X2u y
D/ (x1,%2) R
42 aylox, &QQ@O@

aylox, ‘)ézg\g?

/pt. @) /pt. ®

02y/ 9x,0%;

Xo = X2I

x1l

dl

=}
—
x
1]
<
x

X1

@ (b)

Figure 3.6.1. (@) Labeling of points used in the two-dimensional interpolation routines bcuint and
beucof. (b) For each of the four pointsin (&), the user supplies one function value, two first derivatives,
and one cross-derivative, a total of 16 numbers.

defines j and k, then

y1 =ya(j,k)

yo = ya(j+1,k)
3.6.3
ys = ya(j+1,k+1) ( )

ys = ya(j,k+1)

The simplest interpolation in two dimensions is bilinear interpolation on the
grid square. Its formulas are:

t = (x1 —x1a(j))/(x1a(j+1) — x1a(j))

u = (zg — x2a(k))/(x2a(k+1) — x2a(k)) (3.6.4)

(so that ¢ and v each lie between O and 1), and
y(xr,x2) = (1 —t)(1 —w)yr + t(1 — w)yz + tuys + (1 — t)uys (3.6.5)

Bilinear interpolation is frequently “close enough for government work.” As
the interpolating point wanders from grid square to grid square, the interpolated
function value changes continuously. However, the gradient of the interpolated
function changes discontinuously at the boundaries of each grid square.

There are two distinctly different directions that one can take in going beyond
bilinear interpolation to higher-order methods: One can use higher order to obtain
increased accuracy for the interpolated function (for sufficiently smooth functions!),
without necessarily trying to fix up the continuity of the gradient and higher
derivatives. Or, one can make use of higher order to enforce smoothness of some of
these derivatives as the interpol ating point crosses grid-square boundaries. We will
now consider each of these two directions in turn.
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118 Chapter 3. Interpolation and Extrapolation

Higher Order for Accuracy

The basic ideaisto break up the problem into a succession of one-dimensional
interpolations. If we want to dom-1 order interpolationin the x; direction, and n-1
order inthe x direction, wefirst locate anm x n sub-block of the tabulated function
matrix that contains our desired point (z1,z2). We then do m one-dimensiona
interpolationsin the x5 direction, i.e., on the rows of the sub-block, to get function
values at the points (x1a(j), z2), j = 1,...,m. Finaly, we do alast interpolation
inthe z; directionto get the answer. If we use the polynomial interpolation routine
polint of §3.1, and asub-block which is presumed to be aready located (and copied
into an m by n array ya), the procedure looks like this:

SUBROUTINE polin2(xla,x2a,ya,m,n,x1,x2,y,dy)

INTEGER m,n,NMAX,MMAX

REAL dy,x1,x2,y,xla(m),x2a(n),ya(m,n)

PARAMETER (NMAX=20,MMAX=20)

USES pol i nt
Given arrays x1a(1:m) and x2a(1:n) of independent variables, and an m by n array of
function values ya(1:m,1:n), tabulated at the grid points defined by x1a and x2a; and
given values x1 and x2 of the independent variables; this routine returns an interpolated
function value y, and an accuracy indication dy (based only on the interpolation in the x1
direction, however).

Maximum expected values of n and m.

INTEGER j,k
REAL ymtmp (MMAX) , yntmp (NMAX)
do 2 j=1,m Loop over rows.
don k=1,n Copy the row into temporary storage.
yntmp (k) =ya(j,k)
enddo 11
call polint(x2a,yntmp,n,x2,ymtmp(j),dy) Interpolate answer into temporary stor-
enddo 12 age.
call polint(xla,ymtmp,m,x1,y,dy) Do the final interpolation.
return
END

Higher Order for Smoothness: Bicubic Interpolation

We will give two methods that are in common use, and which are themselves
not unrelated. The first is usually caled bicubic interpolation.

Bicubic interpolation requires the user to specify at each grid point not just
the function y(x1, x2), but also the gradients dy/0x1 = y 1, Oy/dr2 = y 2 and
the cross derivative 02y/dz10z2 = y12. Then an interpolating function that is
cubic in the scaled coordinates ¢ and u (equation 3.6.4) can be found, with the
following properties: (i) The values of the function and the specified derivatives
are reproduced exactly on the grid points, and (ii) the values of the function and
the specified derivatives change continuously as the interpol ating point crosses from
one grid square to another.

Itisimportant to understand that nothing inthe equationsof bicubicinterpolation
requiresyouto specify the extraderivativescorrectly! The smoothness propertiesare
tautologically “forced,” and have nothing to do with the “accuracy” of the specified
derivatives. It is a separate problem for you to decide how to obtain the values that
are specified. The better you do, the more accurate the interpolation will be. But
it will be smooth no matter what you do.
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3.6 Interpolation in Two or More Dimensions 119

Best of dl isto know the derivatives analyticaly, or to be able to compute them
accurately by numerical means, at the grid points. Next best isto determinethem by
numerical differencing from the functional values aready tabulated on the grid. The
relevant code would be something like this (using centered differencing):

yla(j,k)=(ya(j+1,k)-ya(j-1,k))/(x1a(j+1)-x1a(j-1))

y2a(j,k)=(ya(j,k+1)-ya(j,k-1))/(x2a(k+1)-x2a(k-1))

y12a(j,k)=(ya(j+1,k+1)-ya(j+1,k-1)-ya(j-1,k+1)+ya(j-1,k-1))
/((x1a(j+1)-x1a(j-1))*(x2a(k+1)-x2a(k-1)))

To do a bicubic interpolation within a grid square, given the function y and the
derivativesy1, y2, y12 at each of the four corners of the square, there are two steps:
First obtain the sixteen quantities ¢;;, i, = 1,...,4 using the routine bcucof
below. (The formulas that obtain the ¢’s from the function and derivative values
are just a complicated linear transformation, with coefficients which, having been
determined once in the mists of numerical history, can be tabulated and forgotten.)
Next, substitute the ¢’sinto any or al of the following bicubic formulas for function
and derivatives, as desired:

E : E : i—
561,132 C’th

1_13 1
y1(x1, 2) Z Z D)egt" 2w/~ (dt/dxy)

s (36.6)
y,2(71, T2) ZZ D)t '/ =2 (du/dxs)

1_13 1

yaz2(z1, z2) ZZ (1 —1)(F — L)e it ' 2uj_2(dt/dx1)(du/dx2)

1=15=1
where t and u are again given by equation (3.6.4).

SUBROUTINE bcucof (y,y1,y2,y12,d1,d2,c)
REAL d1,d2,c(4,4),y(4),y1(4),y12(4),y2(4)
Given arrays y,y1,y2, and y12, each of length 4, containing the function, gradients, and
cross derivative at the four grid points of a rectangular grid cell (numbered counterclockwise
from the lower left), and given d1 and d2, the length of the grid cell in the 1- and 2-
directions, this routine returns the table c(1:4,1:4) that is used by routine bcuint for
bicubic interpolation.
INTEGER i,j,k,1
REAL d1d2,xx,c1(16),wt(16,16),x(16)
SAVE wt
DATA wt/1,0,-3,2,4%0,-3,0,9,-6,2,0,-6,4,8%0,3,0,-9,6,-2,0,6,-4
,10%0,9,-6,2%x0,-6,4,2%x0,3,-2,6%0,-9,6,2%0,6,-4
,4%0,1,0,-3,2,-2,0,6,-4,1,0,-3,2,8%0,-1,0,3,-2,1,0,-3,2
,10%0,-3,2,2%0,3,-2,6%0,3,-2,2%0,-6,4,2%0,3,-2
,0,1,-2,1,5%0,-3,6,-3,0,2,-4,2,9%0,3,-6,3,0,-2,4,-2
,10%0,-3,3,2%0,2,-2,2%x0,-1,1,6%0,3,-3,2%0,-2,2
,5%0,1,-2,1,0,-2,4,-2,0,1,-2,1,9%0,-1,2,-1,0,1,-2,1
,10%0,1,-1,2%0,-1,1,6%0,-1,1,2%0,2,-2,2%0,-1,1/
d1d2=d1*d2
don i=1,4 Pack a temporary vector x.

x(1)=y (1)
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x(i+4)=y1(i)*d1
x(i+8)=y2(i)*d2
x(i+12)=y12(i)*d1d2
enddo 11
do 13 i=1,16 Matrix multiply by the stored table.
xx=0.
do 12 k=1,16
xx=xx+wt (i,k)*x(k)
enddo 12
cl(i)=xx
enddo 13
1=0
do1s i=1,4 Unpack the result into the output table.
dos j=1,4
1=1+1
c(i,j)=cl(1)
enddo 14
enddo 15
return
END

Theimplementation of equation (3.6.6), which performs abicubicinterpolation,
returns the interpolated function value and the two gradient values, and uses the
above routine becucof, is simply:

SUBROUTINE bcuint(y,yl,y2,y12,x11,x1u,x21,x2u,x1,x2,ansy,
ansyl,ansy2)
REAL ansy,ansyl,ansy2,x1,x11,x1u,x2,x21,x2u,y(4),y1(4),
y12(4),y2(4)

USES bcucof
Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described
in bcucof); x11 and x1u, the lower and upper coordinates of the grid square in the 1-
direction; x21 and x2u likewise for the 2-direction; and x1,x2, the coordinates of the
desired point for the interpolation. The interpolated function value is returned as ansy,
and the interpolated gradient values as ansyl and ansy2. This routine calls bcucof.

INTEGER i

REAL t,u,c(4,4)

call bcucof(y,yl,y2,y12,x1lu-x11,x2u-x21,c) Get the ¢'s.

if(xlu.eq.x1l.0r.x2u.eq.x21)pause ’bad input in bcuint’

t=(x1-x11)/(x1lu-x11) Equation (3.6.4).

u=(x2-x21)/ (x2u-x21)

ansy=0.

ansy2=0.

ansy1=0.

dou i=4,1,-1 Equation (3.6.6).
ansy=t*ansy+((c(i,4)*u+c(i,3))*u+c(i,2))*utc(i,1)
ansy2=t*ansy2+(3.*c(i,4)*u+2.*c(i,3))*utc(i,2)
ansyl=uxansyl+(3.*c(4,1i)*t+2.%c(3,1i))*t+c(2,1)

enddo 11

ansyl=ansyl/(x1lu-x11)

ansy2=ansy2/(x2u-x21)

return

END

Higher Order for Smoothness: Bicubic Spline

The other common technique for obtaining smoothness in two-dimensional
interpolation is the bicubic spline. Actualy, this is equivalent to a specia case
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3.6 Interpolation in Two or More Dimensions 121

of bicubic interpolation: The interpolating function is of the same functional
form as equation (3.6.6); the vaues of the derivatives a the grid points are,
however, determined “globally” by one-dimensional splines. However, bicubic
splines are usualy implemented in a form that looks rather different from the
above bicubic interpolation routines, instead looking much closer in form to the
routine polin2 above: To interpolate one functional value, one performs m one-
dimensiona splines across the rows of the table, followed by one additional
one-dimensiona spline down the newly created column. It is a matter of taste
(and trade-off between time and memory) as to how much of this process one
wants to precompute and store. Instead of precomputing and storing al the
derivative information (as in bicubic interpolation), spline users typically precom-
pute and store only one auxiliary table, of second derivatives in one direction
only. Then one need only do spline evaluations (not constructions) for the m
row splines;, one must till do a construction and an evaluation for the final col-
umn spline. (Recall that a spline construction is a process of order N, while a
spline evaluation is only of order log N — and that is just to find the place in
the table!)
Here is aroutine to precompute the auxiliary second-derivative table:

SUBROUTINE splie2(xla,x2a,ya,m,n,y2a)
INTEGER m,n,NN
REAL xla(m),x2a(n),y2a(m,n),ya(m,n)
PARAMETER (NN=100)
USES spl i ne
Given an m by n tabulated function ya(1:m,1:n), and tabulated independent variables
x2a(1:n), this routine constructs one-dimensional natural cubic splines of the rows of ya
and returns the second-derivatives in the array y2a(1:m,1:n). (The array x1a is included
in the argument list merely for consistency with routine splin2.)
INTEGER j,k
REAL y2tmp (NN) , ytmp (NN)
do13 j=1,m
do1u k=1,n
ytmp (k) =ya(j,k)
enddo 11
call spline(x2a,ytmp,n,1.e30,1.e30,y2tmp) Values 1x1030 signal a natural spline.
do 12 k=1,n
y2a(j,k)=y2tmp (k)
enddo 12
enddo 13
return
END

Maximum expected value of n and m.

After the above routine has been executed once, any number of bicubic spline
interpolations can be performed by successive calls of the following routine:

SUBROUTINE splin2(xla,x2a,ya,y2a,m,n,x1,x2,y)

INTEGER m,n,NN

REAL x1,x2,y,xla(m),x2a(n),y2a(m,n),ya(m,n)

PARAMETER (NN=100) Maximum expected value of n and m.

USES spline, splint
Given x1a, x2a, ya, m, n as described in splie2 and y2a as produced by that routine;
and given a desired interpolating point x1,x2; this routine returns an interpolated function
value y by bicubic spline interpolation.

INTEGER j,k

REAL y2tmp (NN) ,ytmp(NN) ,yytmp (NN)
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122 Chapter 3. Interpolation and Extrapolation

do 2 j=1,m Perform m evaluations of the row splines
doun k=1,n constructed by splie2, using the one-
ytmp (k)=ya(j,k) dimensional spline evaluator splint.
y2tmp (k) =y2a(j,k)
enddo 11
call splint(x2a,ytmp,y2tmp,n,x2,yytmp(j))
enddo 12
call spline(xla,yytmp,m,1.e30,1.e30,y2tmp) Construct the one-dimensional column spline
call splint(xla,yytmp,y2tmp,m,x1,y) and evaluate it.
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Kinahan, B.F., and Harm, R. 1975, Astrophysical Journal, vol. 200, pp. 330-335.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §5.2.7.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
87.7.
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Chapter 4. Integration of Functions

4.0 Introduction

Numerical integration, which isalso called quadrature, has ahistory extending
back to the invention of calculus and before. The fact that integrals of e ementary
functions could not, in general, be computed analytically, while derivatives could
be, served to give thefield a certain panache, and to set it a cut above the arithmetic
drudgery of numerical analysis during the whole of the 18th and 19th centuries.

With theinvention of automatic computing, quadrature became just one numer-
ical task among many, and not avery interesting one at that. Automatic computing,
even themost primitivesort involvingdesk cal culatorsand roomsfull of “computers”
(that were, until the 1950s, people rather than machines), opened to feasibility the
much richer field of numerical integration of differential equations. Quadrature is
merely the simplest special case: The evaluation of the integral

b
I= / f(z)dx (4.0.2)

is precisely equivalent to solving for thevaue I = y(b) the differentia equation

d

d—y = f(z) (4.0.2)

X
with the boundary condition

y(a) =0 (4.0.3)

Chapter 16 of this book deals with the numerical integration of differential
equations. In that chapter, much emphasis is given to the concept of “variable’ or
“adaptive’ choices of stepsize. We will not, therefore, develop that materia here.
If the function that you propose to integrate is sharply concentrated in one or more
peaks, or if its shape is not readily characterized by a single length-scale, then it
is likely that you should cast the problem in the form of (4.0.2)—«4.0.3) and use
the methods of Chapter 16.

The quadrature methodsin this chapter are based, in one way or another, on the
obvious device of adding up the value of the integrand at a sequence of abscissas
within the range of integration. The game is to obtain the integral as accurately
as possible with the smallest number of function evaluations of the integrand. Just
as in the case of interpolation (Chapter 3), one has the freedom to choose methods

123
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124 Chapter 4.  Integration of Functions

of various orders, with higher order sometimes, but not always, giving higher
accuracy. “Romberg integration,” which isdiscussed in §4.3, isa genera formalism
for making use of integration methods of a variety of different orders, and we
recommend it highly.

Apart from the methods of this chapter and of Chapter 16, there are yet
other methods for obtaining integrals. One important class is based on function
approximation. We discuss explicitly the integration of functions by Chebyshev
approximation (“Clenshaw-Curtis’ quadrature) in §5.9. Although not explicitly
discussed here, you ought to be able to figure out how to do cubic spline quadrature
using the output of the routine spline in §3.3. (Hint: Integrate equation 3.3.3
over x andyticaly. See[ll.)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) agorithm. Thisis discussed in §13.9.

Multidimensional integrals are another whole multidimensional bag of worms.
Section 4.6 is an introductory discussion in this chapter; the important technique of
Monte-Carlo integration is treated in Chapter 7.

CITED REFERENCES AND FURTHER READING:

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Chapter 2.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 7.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 3.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood ClIiffs,
NJ: Prentice Hall), Chapter 5.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.2, p. 89. [1]

Davis, P., and Rabinowitz, P. 1984, Methods of Numerical Integration, 2nd ed. (Orlando, FL:
Academic Press).

4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule’? The classical formulas for integrating a function whose value is known at
equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as the time
of Newton, if not farther. Alas, times do change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended
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4.1 Classical Formulas for Equally Spaced Abscissas 125

—~

open formulas use these points

closed formulas use these points

Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
between z¢ and xy41. Closed formulas evaluate the function on the boundary points, while open
formulasrefrain from doing so (useful if the evaluation algorithm breaks down on the boundary points).

midpoint rule,” equation 4.1.19, see §4.2), the classical formulas are amost entirely
useless. They are museum pieces, but beautiful ones.

Some notation: We have a sequence of abscissas, denoted xg, z1, ..., xnN,
xn+1 Which are spaced apart by a constant step h,

A function f(x) has known values at the x;’s,

We want to integrate the function f () between alower limit ¢ and an upper limit
b, where a and b are each equa to one or the other of the z;'s. An integration
formula that uses the value of the function at the endpoints, f(a) or f(b), iscaled
aclosed formula. Occasiondly, we want to integrate a function whose value a one
or both endpointsis difficult to compute (e.g., the computation of f goesto alimit
of zero over zero there, or worse yet has an integrable singularity there). In this
case we want an open formula, which estimates the integral using only z;’s strictly
between o and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not aways imply higher accuracy in real cases.) A sequence of
such closed formulas is now given.

Closed Newton-Cotes Formulas

Trapezoidal rule
/ - f(z)dz = h[%fl + %fz] + O f") (4.1.3)

Here the error term O( ) signifies that the true answer differs from the estimate by
an amount that isthe product of some numerical coefficient times h2 timesthe value
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126 Chapter 4.  Integration of Functions

of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O( ), instead of the coefficient.
Equation (4.1.3) isatwo-point formula (z;, and z2). It isexact for polynomials
up to and including degree 1, i.e, f(x) = xz. One anticipates that there is a
three-point formulaexact up to polynomialsof degree 2. Thisistrue; moreover, by a
cancellation of coefficients dueto left-right symmetry of the formula, the three-point
formulais exact for polynomias up to and including degree 3, i.e., f(z) = x3:

Smpson’s rule:
o 1, 4, 1 5
/ f(x)dz = h|:§f1 +3h+3fs| + O(h® ™) (4.1.4)

Here f*) means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval
of size 2h, s0 the coefficients add up to 2.

There is no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

y 3 .
Smpson’s ¢ rule:

o 3 9 9 3
/ f(z)dz = h|:§f1 +oftgfst §f4] + O’ fW) (4.1.5)
The five-point formula again benefits from a cancellation:

Bode's rule:

" ayde = n| My 8 My 84, 1 7 0)
/Il f(x)dx—h[45f1+45f2+45f3+45f4+45f5] +O(hf©)) (4.1.6)

This is exact for polynomias up to and including degree 5.
At this point the formulas stop being named after famous personages, so we
will not go any further. Consult[1] for additional formulasin the sequence.
Extrapolative Formulas for a Single Interval
We are going to depart from historical practice for a moment. Many texts

would give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.”
Here is an example:

" nlPop B D 0D 5 p(4)
[ s =n[he grs e ] 0uer)

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



4.1 Classical Formulas for Equally Spaced Abscissas 127

Notice that the integral from a = ¢ to b = x5 isestimated, using only the interior
points x1, x2, 3, z4. N our opinion, formulas of this type are not useful for the
reasons that (i) they cannot usefully be strung together to get “extended” rules, aswe
are about to do with the closed formulas, and (ii) for all other possible uses they are
dominated by the Gaussian integration formulas which we will introducein §4.5.

Instead of the Newton-Cotes open formulas, let us set out the formulas for
estimating the integral in the single interval from xo to x;, using values of the
function f a x1,xs,.... These will be useful building blocks for the “extended”
open formulas.

/rl f(x)dz =h[fi]  +OM®*f) (4.1.7)
o -3 1 3 g/

f@)dw =h|Zfi - §f2] + O3 f") (4.1.8)

: f(x)dz =h _%fl - %fz + f—zfg] +O(n* ) (4.1.9)

ml f(z)dz =h _%fl - %fz + %fg - 29—4f4] +O(h° f)(4.1.10)

Perhaps a word here would be in order about how formulas like the above can
be derived. There are elegant ways, but themost straightforwardisto writedown the
basic form of the formula, replacing the numerical coefficients with unknowns, say
p, q, 7, s. Without loss of generdlity takexg = 0 andx; = 1, S0 h = 1. Subgtitutein
turnfor f(x) (and for f1, fa, f3, f1) thefunctions f(x) = 1, f(z) = z, f(z) = 22,
and f(z) = x3. Doing the integra in each case reduces the left-hand side to a
number, and the right-hand side to a linear equation for the unknowns p, ¢, r, s.
Solving the four equations produced in this way gives the coefficients.

Extended Formulas (Closed)

If we use equation (4.1.3) N — 1 times, to do the integration in the intervals
(z1,22), (x2,23), ..., (xN_1,2nN), and then add theresults, we obtain an “ extended”
or “composite” formula for the integral from z; to z .

Extended trapezoidal rule:

[ rwyde =3+ 5t
= (4.1.11)

_ \3 N
"'+fN—1+%fN:| +O(%)

Here we have written the error estimate in terms of theinterval b — a and the number
of points N instead of in terms of h. Thisis clearer, since one is usualy holding
a and b fixed and wanting to know (e.g.) how much the error will be decreased
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128 Chapter 4.  Integration of Functions

by taking twice as many steps (in this case, it is by a factor of 4). In subsequent
equations we will show only the scaling of the error term with the number of steps.
For reasons that will not become clear until §4.2, equation (4.1.11) is in fact
the most important equation in this section, the basis for most practical quadrature
schemes.
The extended formula of order 1/N3 is.

[t = n| b+ s i i
(4.1.12)

4 2+ EfN—l + EfN] +0 (]¢3>

(We will see in a moment where this comes from.)
If we apply equation (4.1.4) to successive, nonoverlapping pairs of intervals,
we get the extended Smpson’s rule:

/IN F@)da = h[lfl A
; g/t T3z gty
1 (4.1.13)

2 4 1 1
S+ ng—z—F ng—1 + ng] +0 (N4>

Notice that the 2/3, 4/3 dternation continues throughout the interior of the evalu-
ation. Many people believe that the wobbling alternation somehow contains deep
information about the integral of their function that is not apparent to morta eyes.
In fact, the aternation is an artifact of using the building block (4.1.4). Another
extended formula with the same order as Simpson’srule is

[ rwre=n[35 4 Sk St fat it

23 7 3
ot fnoa+ fnos+ ﬂf}\/—z + EfN—l + ng (4.1.14)

~0(5)

This equation is constructed by fitting cubic polynomialsthrough successive groups
of four points; we defer details to §18.3, where a similar technique is used in the
solution of integral equations. We can, however, tell you where equation (4.1.12)
came from. It is Simpson’s extended rule, averaged with a modified version of
itself in which thefirst and last step are done with the trapezoida rule (4.1.3). The
trapezoidal step is two orders lower than Simpson’s rule; however, its contribution
to the integral goes down as an additional power of N (sinceit is used only twice,
not N times). Thismakes the resulting formulaof degree one less than Simpson.
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4.1 Classical Formulas for Equally Spaced Abscissas 129

Extended Formulas (Open and Semi-open)

We can construct open and semi-open extended formulas by adding the closed
formulas (4.1.11)—(4.1.14), evauated for the second and subsequent steps, to the
extrapolative open formulas for the first step, (4.1.7)«4.1.10). As discussed
immediately above, it is consistent to use an end step that is of one order lower
than the (repeated) interior step. The resulting formulas for an interval open at

both ends are as follows:
Equations (4.1.7) and (4.1.11) give

/mN f(z)dz = h[gf2+f3+f4—|—. et o+ ng—l] +0 (NL> (4.1.15)

Equations (4.1.8) and (4.1.12) give
N 23 7
/Il f(@)de = h[ﬁfﬂ— Sl fat fot
7 23
ot st g2t EfN—l] (4.1.16)
1
+0(NQ
Equations (4.1.9) and (4.1.13) give
N 27 13 4
/Il f(2)dz :h[ﬁfﬂ—(ﬂ— Sl Sl
4 13 27
cee ng—4 + EfN—B +0+ EfN—l (4.1.17)

~0(5)

The interior points aternate 4/3 and 2/3. If we want to avoid this alternation,
we can combine equations (4.1.9) and (4.1.14), giving

N 95 1 11
[ faas=n| - ot g St Sk fr
11 1 95
ot s st v - e g
1
+0(m)

We should mention in passing another extended open formula, for use where
thelimitsof integration are located halfway between tabulated abscissas. Thisoneis
known as the extended midpoint rule, and is accurate to the same order as (4.1.15):

(4.1.18)

/ i f(x)dx = h|fs/2 + f5)2 + fr/2+

X (4.1.19)

ot fnozpet fno1e] +O (W)
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130 Chapter 4.  Integration of Functions

(total after N=4)

Figure4.2.1. Sequential callsto theroutine trapzd incorporate the information from previous calls and
evaluate the integrand only at those new points necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routine gsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

There are also formulas of higher order for this situation, but we will refrain from
giving them.

The semi-open formulasarejust the obvious combinations of equations(4.1.11)—
(4.1.14) with (4.1.15)—(4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end use the weights from
the latter equations. One example should give the idea, the formulawith error term
decreasing as 1/NN? which is closed on the right and open on the | ft:

/IN F@)da = h[%fz n %fg ¥t fot
o (4.1.20)

13 5 1
ot fyat Tt EfN] ‘o (W)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.4. [1]

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), §7.1.

4.2 Elementary Algorithms

Our gtarting point is equation (4.1.11), the extended trapezoidal rule. There are
two facts about the trapezoidal rule which make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

The obviousfact isthat, for afixed function f(x) to be integrated between fixed
limits a and b, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of
the trapezoidal rule is to average the function at its endpoints a and b. The first
stage of refinement isto add to this average the value of the function at the halfway
point. The second stage of refinement isto add the values at the 1/4 and 3/4 points.
And so on (see Figure 4.2.1).

Without further ado we can write aroutine with thiskind of logic to it:
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4.2 Elementary Algorithms 131

SUBROUTINE trapzd(func,a,b,s,n)

INTEGER n

REAL a,b,s,func

EXTERNAL func
This routine computes the nth stage of refinement of an extended trapezoidal rule. func is
input as the name of the function to be integrated between limits a and b, also input. When

called with n=1, the routine returns as s the crudest estimate of ff f(z)dz. Subsequent
calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding on-2
additional interior points. s should not be modified between sequential calls.
INTEGER it,j
REAL del,sum,tnm,x
if (n.eq.1) then
s=0.5%(b-a)* (func(a)+func(b))
else
it=2%*(n-2)
tnm=it
del=(b-a)/tnm This is the spacing of the points to be added.
x=a+0.5*del
sum=0.
dou j=1,it
sum=sum+func (x)
x=x+del
enddo 11
s=0.5%(s+(b-a)*sum/tnm) This replaces s by its refined value.
endif
return
END

The above routine (trapzd) is a workhorse that can be harnessed in severa
ways. The simplest and crudest isto integrate afunction by the extended trapezoidal
rule where you know in advance (we can't imagine how!) the number of steps you
want. If you want 2™ + 1, you can accomplish this by the fragment

dou j=1,m+1
call trapzd(func,a,b,s,j)
enddo 11

with the answer returned as s.
Much better, of course, is to refine the trapezoidal rule until some specified
degree of accuracy has been achieved:

SUBROUTINE qtrap(func,a,b,s)

INTEGER JMAX

REAL a,b,func,s,EPS

EXTERNAL func

PARAMETER (EPS=1.e-6, JMAX=20)

USES trapzd
Returns as s the integral of the function func from a to b. The parameters EPS can be set
to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by the trapezoidal rule.

INTEGER j
REAL olds
olds=-1.e30 Any number that is unlikely to be the average of the function
do 11 j=1,JMAX at its endpoints will do here.
call trapzd(func,a,b,s,j)
if (j.gt.5) then Avoid spurious early convergence.

if (abs(s-olds).lt.EPS*abs(olds).or.
(s.eq.0..and.olds.eq.0.)) return
endif
olds=s
enddo 11
pause ’too many steps in qtrap’
END
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132 Chapter 4.  Integration of Functions

Unsophisticated as it is, routine gtrap is in fact a fairly robust way of doing
integrals of functionsthat are not very smooth. Increased sophistication will usually
trandate into a higher-order method whose efficiency will be greater only for
sufficiently smooth integrands. qtrap isthe method of choice, eg., for an integrand
which isafunction of avariablethat is linearly interpol ated between measured data
points. Be surethat you do not requiretoo stringent an EPS, however: If gtrap takes
too many steps in trying to achieve your required accuracy, accumulated roundoff
errors may start increasing, and the routine may never converge. A value 10~°
isjust on the edge of trouble for most 32-bit machines; it is achievable when the
convergence is moderately rapid, but not otherwise.

We come now to the “deep” fact about the extended trapezoidal rule, equation
(4.1.12). It isthis: The error of the approximation, which begins with a term of
order 1/N2, isin fact entirely even when expressed in powers of 1/N. Thisfollows
directly from the Euler-Maclaurin Summation Formula,

/INf(x)dZC:h[%f1+f2+f3+-~~+f1v—1+%fN

(4.2.1)
Byh? / Borh®® | ak—1)  (2k—1)
= S U = ) == S U = )
Here By, is aBernoulli number, defined by the generating function
t SN
= ZO By — (4.2.2)
with thefirst few even values (odd vaues vanish except for B; = —1/2)
B 1 B 1 B L B 1
0 = 2 = = 4= T an 6 — 7o
42
) 0 5 30 691 (4.2.3)
Bs=—-—— Bijg=— Big=-———
*T 30 Y66 T 2130

Equation (4.2.1) is not a convergent expansion, but rather only an asymptotic
expansion whose error when truncated at any point is always less than twice the
magnitude of the first neglected term. The reason that it is not convergent is that
the Bernoulli numbers become very large, eg.,

495057205241079648212477525

B =
50 66

The key point isthat only even powers of h occur in the error series of (4.2.1).
This fact is not, in general, shared by the higher-order quadrature rules in §4.1.
For example, equation (4.1.12) has an error series beginning with O(1/N?3), but
continuing with all subsequent powers of N: 1/N*, 1/N°, etc.

Suppose we evauate (4.1.11) with N steps, getting aresult Sy, and then again
with 2N steps, getting aresult Son. (Thisis done by any two consecutive calls of
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4.2 Elementary Algorithms 133

trapzd.) Theleading error term in the second evaluation will be 1/4 the size of the
error in the first evaluation. Therefore the combination

4 1
= - — = 4.2.4
S 3 Son 3 Sn ( )

will cancel out the leading order error term. But there is no error term of order
1/N?3, by (4.2.1). The surviving error is of order 1/N*, the same as Simpson’srule.
In fact, it should not take long for you to see that (4.2.4) is exactly Simpson’s rule
(4.1.13), dternating 2/3's, 4/3's, and dl. Thisisthe preferred method for evaluating
that rule, and we can write it as a routine exactly analogousto qtrap above;

SUBROUTINE gsimp(func,a,b,s)
INTEGER JMAX
REAL a,b,func,s,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAX=20)
USES trapzd
Returns as s the integral of the function func from a to b. The parameters EPS can be set
to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by Simpson's rule.
INTEGER j
REAL os,ost,st
ost=-1.e30
os= -1.e30
dou j=1,JMAX
call trapzd(func,a,b,st,j)
s=(4.*st-ost)/3. Compare equation (4.2.4), above.
if (j.gt.5) then Avoid spurious early convergence.
if (abs(s-os).1lt.EPS*abs(os).or.
(s.eq.0..and.os.eq.0.)) return
endif
os=s
ost=st
enddo 11
pause ’too many steps in gsimp’
END

The routine gsimp will in genera be more efficient than qtrap (i.e., require
fewer function evaluations) when the function to be integrated has a finite 4th
derivative (i.e., a continuous 3rd derivative). The combination of gsimp and its
necessary workhorse trapzd is a good one for light-duty work.

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
83.3.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§67.4.1-7.4.2.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.3.
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134 Chapter 4.  Integration of Functions

4.3 Romberg Integration

We can view Romberg's method as the natural generaization of the routine
gsimp in the last section to integration schemes that are of higher order than
Simpson’srule. The basic idea is to use the results from & successive refinements
of the extended trapezoida rule (implemented in trapzd) to remove al termsin
the error series up to but not including O(1/N?*). The routine gsimp is the case
of k = 2. This is one example of a very genera idea that goes by the name of
Richardson’s deferred approach to the limit: Perform some numerical agorithm for
various values of a parameter h, and then extrapolate the result to the continuum
limit A = 0.

Equation (4.2.4), which subtracts off the leading error term, is aspecia case of
polynomial extrapolation. In the more general Romberg case, we can use Neville's
algorithm (see §3.1) to extrapolate the successive refinements to zero stepsize.
Neville sagorithm can infact be coded very concisely withina Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation
by subroutine call to polint, aready given in §3.1.

SUBROUTINE gqromb(func,a,b,ss)

INTEGER JMAX,JMAXP,K,KM

REAL a,b,func,ss,EPS

EXTERNAL func

PARAMETER (EPS=1.e-6, JMAX=20, JMAXP=JMAX+1, K=5, KM=K-1)

USES polint, trapzd
Returns as ss the integral of the function func from a to b. Integration is performed by
Romberg’'s method of order 2K, where, e.g., K=2 is Simpson'’s rule.
Parameters: EPS is the fractional accuracy desired, as determined by the extrapolation
error estimate; JMAX limits the total number of steps; K is the number of points used in
the extrapolation.

INTEGER j
REAL dss,h(JMAXP),s(JMAXP) These store the successive trapezoidal approximations
h(1)=1. and their relative stepsizes.

dou j=1,JMAX
call trapzd(func,a,b,s(j),j)
if (j.ge.K) then
call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
if (abs(dss).le.EPS*abs(ss)) return

endif

s(j+1)=s(j)

h(j+1)=0.25%h(j) This is a key step: The factor is 0.25 even though
enddo 11 the stepsize is decreased by only 0.5. This makes
pause ’too many steps in qromb’ the extrapolation a polynomial in h? as allowed
END by equation (4.2.1), not just a polynomial in h.

The routine qromb, aong with its required trapzd and polint, iS quite
powerful for sufficiently smooth (e.g., analytic) integrands, integrated over intervals
which contain no singularities, and where the endpointsare al so nonsingular. gromb,
in such circumstances, takes many, many fewer function evaluations than either of
the routines in §4.2. For example, the integral

2
/ ztlog(z + /22 + 1)dx
0
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4.4 Improper Integrals 135

converges (with parameters as shown above) on the very first extrapolation, after
just 5 callsto trapzd, while gsimp requires 8 calls (8 times as many eva uations of
the integrand) and qtrap requires 13 calls (making 256 times as many evauations
of the integrand).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§63.4-3.5.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§67.4.1-7.4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §4.10-2.

4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

e itsintegrand goesto afinitelimiting value at finite upper and lower limits,

but cannot be evaluated right on one of thoselimits(e.g., sinz/z ax = 0)

e itsupper limitis oo , or its lower limit is —oco

e it has an integrable singularity at either limit (e.g., z~ /% a = = 0)

e it has an integrable singularity at a known place between its upper and

lower limits

e it has an integrable singularity at an unknown place between its upper

and lower limits

If an integrd isinfinite (e.q., floo x~1dx), or does not exist in a limiting sense
(eq., ffooo cos zdx), wedo not call it improper; wecall it impossible. No amount of
clever agorithmicswill return a meaningful answer to an ill-posed problem.

In this section we will generalize the techniques of the preceding two sections
to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 18, notably §18.3. The
fifth problem, singularity a unknown location, can redly only be handled by the
use of avariable stepsize differential equation integration routine, as will be given
in Chapter 16.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
onewhichisan open formulain the sense of §4.1, i.e., does not require theintegrand
to be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is
the best choice. The reason isthat (4.1.19) shares with (4.1.11) the “deep” property
of having an error series that is entirely even in h. Indeed thereis aformula, not as
well known asit ought to be, called the Second Euler-Maclaurin summation formula,

/ ’ f(x)dx = h[fs/o+ fs)2 + fr2 + -+ fn—3/2 + fn—1/2]

2
%(ﬂv St (4.4.1)

B2kh2k
(2k)!

_|_

(=2 - )
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136 Chapter 4.  Integration of Functions

This equation can be derived by writing out (4.2.1) with stepsize h, then writing it
out again with stepsize h /2, then subtracting the first from twice the second.

It is not possible to double the number of steps in the extended midpoint rule
and still have the benefit of previous function evaluations (try it!). However, it is
possible to triple the number of steps and do so. Shall we do this, or double and
accept the loss? On the average, tripling does a factor /3 of unnecessary work,
since the “right” number of steps for a desired accuracy criterion may in fact fall
anywhere in the logarithmic interval implied by tripling. For doubling, the factor
isonly /2, but we lose an extra factor of 2 in being unable to use all the previous
evaluations. Since 1.732 < 2 x 1.414, it is better to triple.

Here is the resulting routine, which is directly comparable to trapzd.

SUBROUTINE midpnt (func,a,b,s,n)

INTEGER n

REAL a,b,s,func

EXTERNAL func
This routine computes the nth stage of refinement of an extended midpoint rule. func is
input as the name of the function to be integrated between limits a and b, also input. When
called with n=1, the routine returns as s the crudest estimate of ff f(z)dz. Subsequent
calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding

(2/3) x 30~1 additional interior points. s should not be modified between sequential calls.
INTEGER it,j
REAL ddel,del,sum,tnm,x
if (n.eq.1) then
s=(b-a)*func (0.5*(a+b))
else
it=3%*(n-2)
tnm=it
del=(b-a)/(3.*tnm)
ddel=del+del The added points alternate in spacing between del and ddel.
x=a+0.5*del
sum=0.
dou j=1,it
sum=sum+func (x)
x=x+ddel
sum=sum+func (x)
x=x+del
enddo 11
s=(s+(b-a)*sum/tnm) /3. The new sum is combined with the old integral to give a
endif refined integral.
return
END

The routinemidpnt can exactly replace trapzd in adriver routine like qtrap
(84.2); one simply changes call trapzd t0 call midpnt, and perhaps aso
decresses the parameter JMAX since 3JMAX-1 (from step tripling) is a much larger
number than 29MAX=1 (step doubling).

The open formulaimplementation anal ogous to Simpson’srule (gsimp in §4.2)
substitutesmidpnt for trapzd and decreases JMAX as above, but now aso changes
the extrapolation step to be

s=(9.*st-ost)/8.
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since, when the number of stepsistripled, the error decreases to 1/9th its size, not
1/4th as with step doubling.

Either the modified qtrap or the modified qsimp will fix the first problem
on the list a the beginning of this section. Yet more sophisticated is to generalize
Romberg integration in like manner:

SUBROUTINE gromo (func,a,b,ss,choose)

INTEGER JMAX,JMAXP,K,KM

REAL a,b,func,ss,EPS

EXTERNAL func,choose

PARAMETER (EPS=1.e-6, JMAX=14, JMAXP=JMAX+1, K=5, KM=K-1)

USES pol i nt
Romberg integration on an open interval. Returns as ss the integral of the function func
from a to b, using any specified integrating subroutine choose and Romberg’s method.
Normally choose will be an open formula, not evaluating the function at the endpoints. It
is assumed that choose triples the number of steps on each call, and that its error series
contains only even powers of the number of steps. The routines midpnt, midinf, midsql,
midsqu, are possible choices for choose. The parameters have the same meaning as in
qromb.

INTEGER j

REAL dss,h(JMAXP),s(JMAXP)

h(1)=1.

dou j=1,JMAX
call choose(func,a,b,s(j),j)
if (j.ge.K) then

call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
if (abs(dss).le.EPS*abs(ss)) return

endif

s(j+1)=s(j)

h(j+1)=h(j)/9. This is where the assumption of step tripling and an even
enddo 11 error series is used.
pause ’too many steps in qromo’
END

The differences between qromo and qromb (§4.3) are so dight that it is perhaps
gratuitousto list gromo infull. It, however, isan excellent driver routinefor solving
all the other problems of improper integralsin our first list (except the intractable
fifth), as we shall now see.

The basic trick for improper integrals is to make a change of variables to
eliminate the singularity, or to map an infinite range of integration to a finite one.
For example, the identity

b 1/a 1 1
/a f(x)dz :/1/b t—zf(¥> At ab>0 (4.4.2)

can be used with either b — oo and a positive, or witha — —oo and b negative, and
works for any function which decreases towards infinity faster than 1/22.

You can make the change of variable implied by (4.4.2) either analytically and
then use (e9.) gqromo and midpnt to do the numerical evaluation, or you can let
the numerical algorithm make the change of variable for you. We prefer the latter
method as being more transparent to the user. To implement equation (4.4.2) we
simply write a modified version of midpnt, called midinf, which alows b to be
infinite (or, more precisely, a very large number on your particular machine, such
as 1 x 10%%), or a to be negative and infinite.
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SUBROUTINE midinf (funk,aa,bb,s,n)

INTEGER n

REAL aa,bb,s,funk

EXTERNAL funk
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that the function is evaluated at evenly spaced
points in 1/x rather than in z. This allows the upper limit bb to be as large and positive
as the computer allows, or the lower limit aa to be as large and negative, but not both.
aa and bb must have the same sign.

INTEGER it,j

REAL a,b,ddel,del,sum,tnm,func,x

func(x)=funk(1l./x) /x**2 This statement function effects the change of variable.
b=1./aa These two statements change the limits of integration ac-
a=1./bb cordingly.
if (n.eq.1) then From this point on, the routine is exactly identical tomidpnt.
s=(b-a)*func (0.5%(a+b))
else
it=3%*(n-2)
tnm=it

del=(b-a)/(3.*tnm)
ddel=del+del
x=a+0.5%*del
sum=0.
dou j=1,it
sum=sum+func (x)
x=x+ddel
sum=sum+func (x)
x=x+del
enddo 11
s=(s+(b-a)*sum/tnm) /3.
endif
return
END

If you need to integrate from a negative lower limit to positive infinity, you do
this by breaking the integral into two pieces at some podtive value, for example,

call gromo(funk,-5.,2.,s1,midpnt)
call gromo(funk,2.,1.e30,s2,midinf)
answer=s1+s2

Where should you choose the breakpoint? At a sufficiently large positive value so
that the function funk is at least beginning to approach its asymptotic decrease to
zero value at infinity. The polynomial extrapolation implicit in the second cal to
gromo deals with a polynomia in 1/x, not in x.

To deal with an integrd that has an integrable power-law singularity at itslower
limit, one also makes a change of variable. If the integrand diverges as (x — a)”,
0 <~ <1, near x = a, use the identity

1 e 1 .

/ flx =1{— 1T f(tT7 +a)dt (b>a) (4.4.3)
- 0

If the singularity is at the upper limit, use the identity

1 (b a) ol 1
/ f@ TR — ™A (b>a)  (444)
1—7 0
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4.4 Improper Integrals 139

If there is a singularity a both limits, divide the integral at an interior breakpoint
as in the example above.

Equations (4.4.3) and (4.4.4) are particularly simple in the case of inverse
square-root singularities, a case that occurs frequently in practice:

b Vb—a
/ F@)da = / Stf(a+ )t (b>a) (4.45)
a 0

for a singularity at a, and

b Vb—a
/ f(z)dx = / 2tf(b—t3Hdt (b > a) (4.4.6)
a 0

for a singularity at b. Once again, we can implement these changes of variable
transparently to the user by defining substitute routines for midpnt which make the
change of variable automatically:

SUBROUTINE midsql(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk
This routine is an exact replacement for midpnt, except that it allows for an inverse square-
root singularity in the integrand at the lower limit aa.
INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=2.*x*funk (aa+x**2)
b=sqrt (bb-aa)
a=0.
if (n.eq.1) then
The rest of the routine is exactly like midpnt and is omitted.

Similarly,

SUBROUTINE midsqu(funk,aa,bb,s,n)
INTEGER n
REAL aa,bb,s,funk
EXTERNAL funk
This routine is an exact replacement for midpnt, except that it allows for an inverse square-
root singularity in the integrand at the upper limit bb.
INTEGER it,j
REAL ddel,del,sum,tnm,x,func,a,b
func(x)=2.*x*funk (bb-x**2)
b=sqrt (bb-aa)
a=0.
if (n.eq.1) then
The rest of the routine is exactly like midpnt and is omitted.

One last example should suffice to show how these formulas are derived in
genera. Suppose the upper limit of integration isinfinite, and the integrand falls off
exponentialy. Then we want a change of variablethat maps e~ *dx into (£)dt (with
the sign chosen to keep the upper limit of the new variable larger than the lower
l[imit). Doing the integration gives by inspection

t=e" or x = —logt (4.4.7)
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s0 that

—a

/ o f(z)dx = /t B f(—logt)ﬁ (4.4.8)

=a -0 t
The user-transparent implementation would be

SUBROUTINE midexp(funk,aa,bb,s,n)

INTEGER n

REAL aa,bb,s,funk

EXTERNAL funk
This routine is an exact replacement for midpnt, except that bb is assumed to be infinite
(value passed not actually used). It is assumed that the function funk decreases exponen-
tially rapidly at infinity.

INTEGER it,j

REAL ddel,del,sum,tnm,x,func,a,b

func(x)=funk(-log(x))/x

b=exp(-aa)

a=0.

if (n.eq.1) then
The rest of the routine is exactly like midpnt and is omitted.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.3, p. 294.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
83.7, p. 152.

4.5 Gaussian Quadratures and Orthogonal
Polynomials

In theformulas of §4.1, the integral of afunctionwas approximated by the sum
of its functional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we alowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea of Gaussian quadraturesisto give ourselves the freedom to
choose not only the weighting coefficients, but aso the location of the abscissas at
which the function isto be evaluated: They will no longer be equally spaced. Thus,
we will have twice the number of degrees of freedom at our disposal; it will turn out
that we can achieve Gaussian quadrature formulas whose order is, essentidly, twice
that of the Newton-Cotes formulawith the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a
familiar one, which cannot be overemphasized: High order is not the same as high
accuracy. High order trandates to high accuracy only when the integrand is very
smooth, in the sense of being “well-approximated by a polynomial.”
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There is, however, one additional feature of Gaussian quadrature formulas that
addsto their usefulness: We can arrange the choice of weightsand abscissas to make
theintegral exact for a class of integrands“ polynomial s times some known function
W (x)" rather than for the usual class of integrands “polynomials.” The function
W (x) can then be chosen to removeintegrablesingularitiesfrom thedesired integral.
Given W (x), in other words, and given an integer N, we can find a set of weights
w; and abscissas x; such that the approximation

b N
/ W(z)f(z)dz ~ Z w; f(x) (45.1)

isexact if f(x) isapolynomia. For example, to do the integra

b exp(— cos? x)

—1 \/1—I2

(not avery natural lookingintegral, it must be admitted), we might well be interested
in a Gaussian quadrature formula based on the choice

da (45.2)

W) = ﬁ (453)

intheinterval (—1, 1). (Thisparticular choiceiscalled Gauss-Chebyshevintegration,
for reasons that will become clear shortly.)

Notice that the integration formula (4.5.1) can also be written with the weight
function T (z) not overtly visible: Define g(z) = W (z) f(z) and v; = w; /W (x;).
Then (4.5.1) becomes

b N
/ g(x)dx =~ Z vig(z;) (45.4)

Where did the function W (x) go? It is lurking there, ready to give high-order
accuracy tointegrands of the form polynomiastimes W (), and ready to deny high-
order accuracy to integrands that are otherwise perfectly smooth and well-behaved.
When you find tabulations of the weights and abscissas for a given W (x), you have
to determine carefully whether they are to be used with a formula in the form of
(45.1), or like (4.5.4).

Here isan example of a quadrature routinethat contains the tabul ated abscissas
and weights for the case W (z) = 1 and N = 10. Since the weights and abscissas
are, in this case, symmetric around the midpoint of the range of integration, there
are actualy only five distinct values of each:

SUBROUTINE qgaus(func,a,b,ss)

REAL a,b,ss,func

EXTERNAL func
Returns as ss the integral of the function func between a and b, by ten-point Gauss-
Legendre integration: the function is evaluated exactly ten times at interior points in the
range of integration.

INTEGER j
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142 Chapter 4.  Integration of Functions

REAL dx,xm,xr,w(5),x(5) The abscissas and weights.

SAVE w,x

DATA w/.2955242247,.2692667193, .2190863625, .1494513491, .0666713443/

DATA x/.1488743389, .4333953941, .6794095682, .8650633666, . 9739065285/

xm=0.5% (b+a)

xr=0.5%(b-a)

ss=0 Will be twice the average value of the function, since the ten

dou j=1,5 weights (five numbers above each used twice) sum to 2.
dx=xr*x(j)
ss=ss+w (j)*(func (xm+dx)+func(xm-dx))

enddo 11

SS=XT*sSs Scale the answer to the range of integration.

return

END

The above routine illustrates that one can use Gaussian quadratures without
necessarily understanding the theory behind them: Onejust locates tabulated weights
and abscissas in a book (e.g., [1] or [2]). However, the theory is very pretty, and it
will come in handy if you ever need to construct your own tabulation of weights and
abscissas for an unusual choice of W (). Wewill therefore give, without any proofs,
some useful resultsthat will enable you to do this. Severa of the results assume that
W (z) does not change sign inside (a, b), which is usually the case in practice.

The theory behind Gaussian quadratures goes back to Gauss in 1814, who
used continued fractions to develop the subject. In 1826 Jacobi rederived Gauss's
results by means of orthogonal polynomials. The systematic treatment of arbitrary
weight functions W () using orthogonal polynomialsislargely dueto Christoffel in
1877. To introduce these orthogonal polynomids, let us fix the interval of interest
to be (a,b). We can define the “scalar product of two functions f and g over a
weight function W as

b
(flg) = / W () f(2)g(x)da (455)

The scalar product is a number, not a function of x. Two functions are said to be
orthogonal if their scalar product is zero. A function is said to be normalized if its
scalar product with itself isunity. A set of functionsthat are all mutually orthogonal
and aso al individually normalized is called an orthonormal set.

We can find a set of polynomials (i) that includes exactly one polynomial of
order j, caled p;(z), for each j = 0,1,2,..., and (ii) al of which are mutualy
orthogonal over the specified weight function W (). A constructive procedure for
finding such a set is the recurrence relation

p_1(z) =0
po(z) =1 (4.5.6)
pj+1(2) = (& — a;)pj(x) —bjpj—1(z)  j=0,1,2,...

where
ajzw i=0,1,...
(pilp;) (45.7)

<pj—1|pj—1>
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4.5 Gaussian Quadratures and Orthogonal Polynomials 143

The coefficient by is arbitrary; we can take it to be zero.

The polynomias defined by (4.5.6) are monic, i.e, the coefficient of their
leading term [27 for p;(z)] is unity. If we divide each p;(x) by the constant
[(p|p;)]*/? we can render the set of polynomials orthonormal. One al'so encounters
orthogona polynomials with various other normalizations. You can convert from
a given normalization to monic polynomials if you know that the coefficient of
z7 in p; is \;, say; then the monic polynomials are obtained by dividing each p;
by A;. Note that the coefficients in the recurrence relation (4.5.6) depend on the
adopted normalization.

The polynomial p;(z) can be shown to have exactly j distinct roots in the
interval (a,b). Moreover, it can be shown that the roots of p;(z) “interleave’ the
j —lrootsof p;_i(z), i.e, thereis exactly oneroot of the former in between each
two adjacent roots of the latter. Thisfact comesin handy if you need to find al the
roots: You can start with the one root of p; () and then, in turn, bracket the roots
of each higher j, pinning them down at each stage more precisely by Newton’srule
or some other root-finding scheme (see Chapter 9).

Why would you ever want to find al the roots of an orthogonal polynomial
p;(x)? Because the abscissas of the N-point Gaussian quadrature formulas (4.5.1)
and (4.5.4) withweighting function W (z) intheinterval (a, b) are precisely theroots
of the orthogonal polynomial py (x) for the same interval and weighting function.
This is the fundamental theorem of Gaussian quadratures, and lets you find the
abscissas for any particular case.

Once you know the abscissas 1, ...,z n, you need to find the weights w;;,
j=1,...,N. Oneway to do this (not the most efficient) is to solve the set of
linear equations

po(z1) ... polen) w1 f: W (z)po(z)dz
pl(.xl) e p1(£.CN) ufz _ O (458)
pN_i(xl) pN_l.(xN) wWN O

Equation (4.5.8) simply solves for those weights such that the quadrature (4.5.1)
givesthe correct answer for theintegral of thefirst N orthogonal polynomials. Note
that the zeros on the right-hand side of (4.5.8) appear because p1 (z),...,pn—1(x)
are dl orthogonal to po(z), which is a constant. It can be shown that, with those
weights, the integral of the next N — 1 polynomials is aso exact, so that the
quadrature is exact for all polynomials of degree 2N — 1 or less. Another way to
eval uate the weights (though one whose proof isbeyond our scope) isby theformula

o (pn-1lpn-1)
Y ()P () (459)

where p'y (x;) is the derivative of the orthogonal polynomial at its zero x;.

The computation of Gaussian quadrature rulesthusinvolvestwo distinct phases:
(i) the generation of the orthogonal polynomiaspy, . . ., pn, i.€., the computation of
the coefficients a;, b; in (4.5.6); (ii) the determination of the zeros of py (), and
the computation of the associated weights. For the case of the“classical” orthogonal
polynomials, the coefficients a; and b; are explicitly known (equations 4.5.10 —
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144 Chapter 4.  Integration of Functions

4.5.14 below) and phase (i) can be omitted. However, if you are confronted with a
“nonclassical” weight function 17 (z), and you don’'t know the coefficients a; and
b;, the construction of the associated set of orthogona polynomiéls is not trivial.
We discuss it at the end of this section.

Computation of the Abscissas and Weights

Thistask can range from easy to difficult, depending on how much you already
know about your weight function and its associated polynomials. In the case of
classical, well-studied, orthogonal polynomials, practically everything is known,
including good approximationsfor their zeros. These can be used as starting guesses,
enabling Newton’s method (to be discussed in §9.4) to converge very rapidly.
Newton’s method requires the derivative p/y (z), which is evaluated by standard
relationsin terms of px and py_1. The weights are then conveniently evaluated by
equation (4.5.9). For the following named cases, this direct root-finding is faster,
by a factor of 3 to 5, than any other method.

Here are the weight functions, intervals, and recurrence relations that generate
the most commonly used orthogonal polynomialsand their corresponding Gaussian
quadrature formulas.

Gauss-Legendre:
W(z) =1 -l<z<l1
G+ 1)Pjy1= (2 +1)zP; — jPj_1 (4.5.10)
Gauss-Chebyshev:
Wi(z) = (1—ax?)"1/?2 —-l<z<1
Ty =22T; —Tj_1 (45.11)
Gauss-Laguerre:
W(z) =x%" 0<z<oo
(G+DLY = (- +2j+a+1)LF - (j+a)L§ (4.5.12)
Gauss-Hermite:
W(?:)—e_gc2 —o <z <oo
Hjyi =2xH; —2jH; (45.13)
Gauss-Jacobi:
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4.5 Gaussian Quadratures and Orthogonal Polynomials 145

e P = (d; + e0) P — [P (4514)
where the coefficients ¢;, d;, e;, and f; are given by
¢ =2+ +a+B8+1)(2i+a+0)
dj = (2j + a+ B +1)(a” - §°)
ej=02i+a+p8)2j+a+B+1)2i+a+5+2)
fi=20+a)(+82i+a+5+2)

(4.5.15)

We now give individual routines that calculate the abscissas and weights for
these cases. First comes the most common set of abscissas and weights, those of
Gauss-Legendre. The routine, due to G.B. Rybicki, uses equation (4.5.9) in the
special form for the Gauss-Legendre case,

2
(1 = 23)[Py(;)]?

(4.5.16)

w; =

Theroutineal so scalestherange of integrationfrom (z1, z2) to (—1, 1), and provides
abscissas x; and weights w; for the Gaussian formula

o N
/ f(x)dx = ijf(xj) (45.17)

SUBROUTINE gauleg(x1l,x2,x,w,n)

INTEGER n

REAL x1,x2,x(n),w(n)

DOUBLE PRECISION EPS

PARAMETER (EPS=3.d-14) EPS is the relative precision.
Given the lower and upper limits of integration x1 and x2, and given n, this routine returns
arrays x(1:n) and w(1:n) of length n, containing the abscissas and weights of the Gauss-
Legendre n-point quadrature formula.

INTEGER i,j,m

DOUBLE PRECISION p1,p2,p3,pp,xl,xm,z,zl
High precision is a good idea for this routine.

m=(n+1)/2 The roots are symmetric in the interval, so we
xm=0.5d0* (x2+x1) only have to find half of them.

x1=0.5d0* (x2-x1)

do1 i=1,m Loop over the desired roots.

z=cos(3.141592654d0*(i-.25d0)/ (n+.5d0))
Starting with the above approximation to the ith root, we enter the main loop of re-
finement by Newton's method.
continue
pl=1.d0
p2=0.d0
dou j=1,n Loop up the recurrence relation to get the Leg-
p3=p2 endre polynomial evaluated at z.
p2=pl
p1=((2.d0%j-1.d0) *z*+p2- (j—1.d0)*p3) /j
enddo 11
plis now the desired Legendre polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.
pp=n*(z*p1l-p2) /(z*z-1.4d0)
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zl=z
z=z1-pl/pp Newton’s method.
if (abs(z-z1) .gt.EPS)goto 1
x(i)=xm-x1*z Scale the root to the desired interval,

x(n+1-i)=xm+x1*z and put in its symmetric counterpart.
w(i)=2.d0*x1/ ((1.d0-z*z) *pp*pp) Compute the weight
w(n+1-i)=w(i) and its symmetric counterpart.
enddo 12
return
END

Next we give three routines that use initial approximations for the roots given
by Stroud and Secrest [2]. The first is for Gauss-Laguerre abscissas and weights, to
be used with the integration formula

o N
/0 e f(x)dx = ijf(xj) (45.18)

SUBROUTINE gaulag(x,w,n,alf)
INTEGER n,MAXIT
REAL alf,w(n),x(n)
DOUBLE PRECISION EPS
PARAMETER (EPS=3.D-14,MAXIT=10) Increase EPS if you don't have this precision.
USES ganmi n
Given alf, the parameter a of the Laguerre polynomials, this routine returns arrays x(1:n)
and w(1:n) containing the abscissas and weights of the n-point Gauss-Laguerre quadrature
formula. The smallest abscissa is returned in x(1), the largest in x(n).
INTEGER 1i,its,]j
REAL ai,gammln
DOUBLE PRECISION pi1,p2,p3,pp,z,zl
High precision is a good idea for this routine.
do13 i=1,n Loop over the desired roots.
if(i.eq.1)then Initial guess for the smallest root.
z=(1.+alf)*(3.+.92*%alf)/(1.+2.4*n+1.8%alf)
else if(i.eq.2)then Initial guess for the second root.
z=z+(15.+6.25%alf)/(1.+.9*%alf+2.5%n)
else Initial guess for the other roots.
ai=i-2
z=z+((1.+2.56%ai)/(1.9%ai)+1.26%aixalf/
(1.+3.5%ai))*(z-x(i-2))/(1.+.3*alf)

endif
do 12 its=1,MAXIT Refinement by Newton’'s method.
pl=1.d0
p2=0.d0
dou j=1,n Loop up the recurrence relation to get the Laguerre
p3=p2 polynomial evaluated at z.
p2=pl
pl=((2*j-1+alf-z)*p2-(j-1+alf)*p3)/j
enddo 11

pl is now the desired Laguerre polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.
pp=(n*pl-(n+alf)*p2)/z
zl=z
z=z1-pl/pp Newton’s formula.
if (abs(z-z1) .1le.EPS)goto 1
enddo 12
pause ’too many iterations in gaulag’
x(1)=z Store the root and the weight.
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w(i)=-exp(gammln(alf+n)-gammln(float (n)))/(pp*n*p2)
enddo 13
return
END

Next is a routine for Gauss-Hermite abscissas and weights. If we use the
“standard” normalization of these functions, as given in equation (4.5.13), we find
that the computations overflow for large IV because of various factorias that occur.
We can avoid this by using instead the orthonormal set of polynomials H;. They
are generated by the recurrence

~ ~ 1 ~ 9 - | =~
H—l = O, HO = m, Hj+1 =X ]—|——1HJ — mHj_l (4519)

The formula for the weights becomes

2
wj = — (4.5.20)
(Hj)?
while the formula for the derivative with this normalization is
H} = \/2jH;_ (45.21)

The abscissas and weightsreturned by gauher are used with the integration formula

— 00

0o N
/ e_r2f(x)d:c = Z w; f(z5) (4.5.22)

SUBROUTINE gauher (x,w,n)
INTEGER n,MAXIT
REAL w(n),x(n)
DOUBLE PRECISION EPS,PIM4
PARAMETER (EPS=3.D-14,PIM4=.7511255444649425D0,MAXIT=10)
Given n, this routine returns arrays x(1:n) and w(1l:n) containing the abscissas and
weights of the n-point Gauss-Hermite quadrature formula. The largest abscissa is returned
in x(1), the most negative in x(n).
Parameters: EPS is the relative precision, PIM4 = 1/7r1/4, MAXIT = maximum iterations.
INTEGER i,its,j,m
DOUBLE PRECISION p1,p2,p3,pp,z,zl
High precision is a good idea for this routine.

m=(n+1)/2
The roots are symmetric about the origin, so we have to find only half of them.
do13 i=1,m Loop over the desired roots.
if(i.eq.1)then Initial guess for the largest root.

z=sqrt (float (2*n+1))-1.85575*(2*n+1) **(-.16667)
else if(i.eq.2)then Initial guess for the second largest root.
z=z-1.14*n**.426/z

else if (i.eq.3)then Initial guess for the third largest root.
z=1.86%z-.86*x(1)

else if (i.eq.4)then Initial guess for the fourth largest root.
z=1.91%z-.91*x(2)

else Initial guess for the other roots.

z=2.%z-x(i-2)
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endif
do 12 its=1,MAXIT Refinement by Newton’s method.
p1=PIM4
p2=0.d0
dou j=1,n Loop up the recurrence relation to get the Hermite poly-
p3=p2 nomial evaluated at z.
p2=pl
pl=z*sqrt(2.d0/j)*p2-sqrt(dble(j-1)/dble(j))*p3
enddo 11

pl is now the desired Hermite polynomial. We next compute pp, its derivative, by
the relation (4.5.21) using p2, the polynomial of one lower order.
pp=sqrt (2.d0*n) *p2

zl=z
z=z1-pl/pp Newton’s formula.
if (abs(z-z1) .1le.EPS)goto 1
enddo 12
pause ’too many iterations in gauher’
x(1)=z Store the root
x(n+1-i)=-z and its symmetric counterpart.
w(i)=2.d0/ (pp*pp) Compute the weight
w(n+1-i)=w(i) and its symmetric counterpart.
enddo 13
return
END

Finally, here is a routine for Gauss-Jacobi abscissas and weights, which
implement the integration formula

-1

1 N
/ (1= )"+ 2 fa)de = 3wy () (45.23)

SUBROUTINE gaujac(x,w,n,alf,bet)
INTEGER n,MAXIT
REAL alf,bet,w(n),x(n)
DOUBLE PRECISION EPS
PARAMETER (EPS=3.D-14,MAXIT=10) Increase EPS if you don't have this precision.
USES ganmi n
Given alf and bet, the parameters a and 3 of the Jacobi polynomials, this routine returns
arrays x(1:n) and w(1:n) containing the abscissas and weights of the n-point Gauss-Jacobi
quadrature formula. The largest abscissa is returned in x(1), the smallest in x(n).
INTEGER 1i,its,]j
REAL alfbet,an,bn,rl,r2,r3,gammln
DOUBLE PRECISION a,b,c,pl,p2,p3,pp,temp,z,z1
High precision is a good idea for this routine.

do13 i=1,n Loop over the desired roots.
if(i.eq.1)then Initial guess for the largest root.
an=alf/n
bn=bet/n

ri=(1.+alf)*(2.78/(4.+n*n)+.768*an/n)
r2=1.+1.48%an+.96%bn+.452*an*an+.83%an*bn
z=1.-r1/r2

else if(i.eq.2)then Initial guess for the second largest root.
ri=(4.1+alf)/((1.+alf)*(1.+.156%*alf))
r2=1.+.06%(n-8.)*(1.+.12*alf)/n
r3=1.+.012*bet*(1.+.25%abs(alf))/n
z=z-(1.-z)*ri*r2*r3

else if(i.eq.3)then Initial guess for the third largest root.
ri1=(1.67+.28%alf)/(1.+.37*alf)
r2=1.+.22*x(n-8.)/n
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r3=1.+8.%bet/((6.28+bet)*n*n)
z=z-(x(1)-z) *ri*r2*r3

else if(i.eq.n-1)then Initial guess for the second smallest root.
ri=(1.+.235%bet)/(.766+.119%bet)
r2=1./(1.+.639*%(n-4.)/(1.+.71x(n-4.)))
r3=1./(1.+20.*alf/((7.5+alf)*n*n))
z=z+(z-x(n-3) ) *ri*r2xr3

else if(i.eq.n)then Initial guess for the smallest root.
ri=(1.+.37*bet)/(1.67+.28*bet)
r2=1./(1.+.22*x(n-8.) /n)
r3=1./(1.+8.*alf/((6.28+alf)*n*n))
z=z+(z-x(n-2) ) *ri*r2xr3

else Initial guess for the other roots.
z=3.%x(1-1)-3.*x(1-2)+x(i-3)
endif
alfbet=alf+bet
do 12 its=1,MAXIT Refinement by Newton’s method.
temp=2.d0+alfbet Start the recurrence with Py and P; to avoid a divi-
pl=(alf-bet+temp*z)/2.40 sion by zero when oo + 3 =0 or —1.
p2=1.d0
dou j=2,n Loop up the recurrence relation to get the Jacobi
p3=p2 polynomial evaluated at z.
p2=pl

temp=2*j+alfbet
a=2*xj*(j+alfbet)*(temp-2.d0)
b=(temp-1.d0)*(alf*alf-bet*bet+temp*
(temp-2.4d0)*z)
c=2.d0*(j-1+alf)*(j-1+bet) *temp
pl=(b*p2-c*p3)/a
enddo 11
pp=(n* (alf-bet-temp*z) *p1+2.d0* (n+alf)*
(n+bet)*p2) / (temp*(1.d0-z*z))
pl is now the desired Jacobi polynomial. We next compute pp, its derivative, by a
standard relation involving also p2, the polynomial of one lower order.

zl=z
z=z1-pl/pp Newton’s formula.
if (abs(z-z1) .1le.EPS)goto 1
enddo 12
pause ’too many iterations in gaujac’
x(1)=z Store the root and the weight.

w(i)=exp(gammln(alf+n)+gammln (bet+n)-gammln(n+1.)-
gammln(n+alfbet+1.))*temp*2.**alfbet/(pp*p2)
enddo 13
return
END

Legendre polynomiasare special cases of Jacobi polynomialswitha = 3 = 0,
but it isworth having the separate routinefor them, gauleg, given above. Chebyshev
polynomialscorrespond to o« = 5 = —1/2 (see §5.8). They have analytic abscissas
and weights:

e (W(]T_%)) (45.24)
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Case of Known Recurrences

Turn now to the case where you do not know good initial guessesfor the zeros of your
orthogonal polynomials, but you do have available the coefficients a; and b; that generate
them. As we have seen, the zeros of pn () are the abscissas for the N-point Gaussian
quadrature formula. The most useful computational formula for the weights is equation
(4.5.9) above, sincethe derivative p’y can be efficiently computed by the derivative of (4.5.6)
in the general case, or by special relations for the classical polynomials. Note that (4.5.9) is
valid as written only for monic polynomials; for other normalizations, there is an extra factor
of An/An—1, where Ay is the coefficient of 2N inpn.

Except in those special casesalready discussed, the best way to find the abscissasis not
to use a root-finding method like Newton’s method on pn (z). Rather, it is generally faster
to use the Golub-Welsch [3] algorithm, which is based on aresult of Wilf [4]. This algorithm
notes that if you bring the term xp; to the left-hand side of (4.5.6) and the term p;1 to the
right-hand side, the recurrence relation can be written in matrix form as

Do ap 1 Do 0

p1 by a1 1 p1 0

T : = s . : + |

DPN—2 bn-2 an-2 1 DN—2 0

PN-1 bv-1 an-1 PN-1 PN

or

zp=T-p+p~ven_1 (4.5.25)
Here T is atridiagonal matrix, p is acolumn vector of po, p1,...,pN—1, and eny—_1 IS aunit

vector with a1 in the (IV — 1)st (last) position and zeros elsewhere. The matrix T can be
symmetrized by a diagonal similarity transformation D to give

a0 Vb1
Vb ax Vb2
J=DTD ' = : : (4.5.26)

bn—2 an-—2 by_1
bnv—1  an-—1

The matrix J is called the Jacobi matrix (hot to be confused with other matrices named
after Jacobi that arise in completely different problems!). Now we see from (4.5.25) that
pn(z;) = 0 isequivalent to x; being an eigenvalue of T. Since eigenvalues are preserved
by a similarity transformation, x; is an eigenvalue of the symmetric tridiagonal matrix J.
Moreover, Wilf [4] shows that if v; is the eigenvector corresponding to the eigenvalue x ;,
normalized so that v-v = 1, then

wj = pov; 4 (45.27)

where
b
o = / W (z) do (45.28)

and where v; ; is the first component of v. As we shall see in Chapter 11, finding all
eigenvalues and eigenvectors of a symmetric tridiagonal matrix is a relatively efficient and
well-conditioned procedure. We accordingly give aroutine, gaucof, for finding the abscissas
and weights, given the coefficients a; and b;. Remember that if you know the recurrence
relation for orthogonal polynomials that are not normalized to be monic, you can easily
convert it to monic form by means of the quantities );.
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SUBROUTINE gaucof (n,a,b,amu0,x,w)
INTEGER n,NMAX
REAL amuO,a(n),b(n),w(n),x()
PARAMETER (NMAX=64)
USES eigsrt, tqli
Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi
matrix. On input, a(1:n) and b(1:n) are the coefficients of the recurrence relation for
the set of monic orthogonal polynomials. The quantity o = ff W (z)dx is input as amu0.
The abscissas x(1:n) are returned in descending order, with the corresponding weights
in w(1:n). The arrays a and b are modified. Execution can be speeded up by modifying
tqli and eigsrt to compute only the first component of each eigenvector.
INTEGER i, j
REAL z(NMAX,NMAX)
do12 i=1,n
if(i.ne.1)b(i)=sqrt(b(i)) Set up superdiagonal of Jacobi matrix.
don j=1,n Set up identity matrix for tqli to compute eigenvectors.
if(i.eq.j)then
z(i,j)=1.
else
z(i,j)=0.
endif
enddo 11
enddo 12
call tqli(a,b,n,NMAX,z)
call eigsrt(a,z,n,NMAX)
do 13 i=1,n
x(i)=a(i)
w(i)=amuO*z(1,1)**2 Equation (4.5.12).
enddo 13
return
END

Sort eigenvalues into descending order.

Orthogonal Polynomials with Nonclassical Weights

This somewhat specialized subsection will tell you what to do if your weight function
is not one of the classical ones dealt with above and you do not know the a;’s and b;’s
of the recurrence relation (4.5.6) to use in gaucof. Then, a method of finding the a;’s
and b;'s is needed.

The procedure of Stieltjes is to compute ao from (4.5.7), then p:(z) from (4.5.6).
Knowing po and p;, we can compute a; and b; from (4.5.7), and so on. But how are we
to compute the inner products in (4.5.7)?

The textbook approach is to represent each p;(x) explicitly as a polynomial in = and
to compute the inner products by multiplying out term by term. This will be feasible if we
know the first 2N moments of the weight function,

b
m:/ ?W(x)dr  j=0,1,...,2N -1 (4.5.29)

However, the solution of the resulting set of algebraic equationsfor the coefficientsa; and b;
in terms of the moments y.; isin general extremely ill-conditioned. Even in double precision,
it is not unusual to lose all accuracy by the time N = 12. We thus reject any procedure
based on the moments (4.5.29).

Sack and Donovan [5] discovered that the numerical stability is greatly improved if,
instead of using powers of = as a set of basis functions to represent the p;’s, one uses some
other known set of orthogonal polynomials 7;(z), say. Roughly speaking, the improved
stability occurs because the polynomial basis “samples” the interval (a, b) better than the
power basis when the inner product integrals are evaluated, especially if its weight function
resembles W (x).
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So assume that we know the modified moments
b
v = / i (x)W (x)dx j=0,1,...,2N -1 (4.5.30)

where the 7;'s satisfy a recurrence relation analogous to (4.5.6),

mo(z) =1 (4.5.31)
mi1(z) = (z — aj)m(2) — Bimj—1(z)  j=0,1,2,...
and the coefficients «j, 3; are known explicitly. Then Wheeler [6] has given an efficient

O(N?) dgorithm equivalent to that of Sack and Donovan for finding a; and b; via a set
of intermediate quantities

ok, = (Pr|m) k,l>-1 (45.32)
Initialize
o-11=0 I=1,2,...,2N —2
g0l =1 l=0,1,...,2N -1
1 (4.5.33)

1%
ap = o + —
20
bo =0
Then, for £k = 1,2,..., N — 1, compute

Ok = Ok—1,141 — (Ak—1 — 1)Ok—1,0 — be—10k—2,1 + Bi0k—1,1-1

l=kk+1,....2N—k—1

Ok—1,k + Ok, k+1

ar = ap —

Ok—1,k—1 Ok,k
by = Ok,k
Ok—1,k—1
(4.5.34)
Note that the normalization factors can also easily be computed if needed:
(polpo) = o
(4.5.35)

(pilps) = bj (pj—1lpj—1) j=12,...

You can find a derivation of the above algorithm in Ref. [7].

Wheeler’salgorithm requiresthat the modified moments (4.5.30) be accurately computed.
In practical casesthere is often a closed form, or else recurrence relations can be used. The
algorithm isextremely successful for finiteintervals (a, b). For infiniteintervals, the algorithm
does not completely remove the ill-conditioning. In this case, Gautschi [8,9] recommends
reducing the interval to a finite interval by a change of variable, and then using a suitable
discretization procedure to compute the inner products. You will have to consult the
references for details.

We give the routine orthog for generating the coefficients a; and b; by Wheeler's
algorithm, given the coefficients «; and (3;, and the modified moments v;. To conform
to the usual FORTRAN convention for dimensioning subscripts, the indices of the o matrix
are increased by 2, i.e, sig(k,1) = or—2,—2, While the indices of the vectors a, 3, a
and b are increased by 1.
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4.5 Gaussian Quadratures and Orthogonal Polynomials 153

SUBROUTINE orthog(n,anu,alpha,beta,a,b)

INTEGER n,NMAX

REAL a(n),alpha(2#n-1),anu(2*n),b(n) ,beta(2*n-1)

PARAMETER (NMAX=64)
Computes the coefficients a; and b;, j = 0,...N — 1, of the recurrence relation for
monic orthogonal polynomials with weight function W (z) by Wheeler's algorithm. On input,
alpha(1:2%n-1) and beta(1:2%n-1) are the coefficients ; and 8, j =0,...2N —2,
of the recurrence relation for the chosen basis of orthogonal polynomials. The modified
moments v; are input in anu(1:2#*n). The first n coefficients are returned in a(1:n) and
b(1:n).

INTEGER k,1

REAL sig(2*NMAX+1,2+NMAX+1)

dou 1=3,2*n Initialization, Equation (4.5.33).
sig(1,1)=0.

enddo 11

do 12 1=2,2*n+1
sig(2,1)=anu(l-1)

enddo 12

a(1)=alpha(1)+anu(2)/anu(l)

b(1)=0.

do 14 k=3,n+1 Equation (4.5.34).
do 13 1=k,2*n-k+3

sig(k,1)=sig(k-1,1+1)+(alpha(l-1)-a(k-2))*sig(k-1,1)-
b(k-2)*sig(k-2,1)+beta(l-1)*sig(k-1,1-1)

enddo 13
a(k-1)=alpha(k-1)+sig(k,k+1)/sig(k,k)-sig(k-1,k)/sig(k-1,k-1)
b(k-1)=sig(k,k)/sig(k-1,k-1)

enddo 14

return

END

As an example of the use of orthog, consider the problem [7] of generating orthogonal
polynomials with the weight function W (z) = —log = on theinterval (0,1). A suitable set
of 7;’s is the shifted Legendre polynomials

= U0 b p 1) (45.36)

The factor in front of P; makes the polynomials monic. The coefficients in the recurrence
relation (4.5.31) are

aj = : j=0,1,
2
1 (4.5.37)
= i=1,2,...
B] 4(4 _ j_2) .7 Pt ]
while the modified moments are
1 ' ji=0
v =< (=1°(YH° (4.5.38)

iG+ne

A call to orthog with this input allows one to generate the required polynomials to machine
accuracy for very large NV, and hencedo Gaussian quadraturewith thisweight function. Before
Sack and Donovan’s observation, this seemingly simple problem was essentially intractable.

Extensions of Gaussian Quadrature
There are many different ways in which the ideas of Gaussian quadrature have

been extended. One important extension is the case of preassigned nodes: Some
pointsare required to beincluded in the set of abscissas, and the problemisto choose
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154 Chapter 4.  Integration of Functions

the weights and the remaining abscissas to maximize the degree of exactness of the
the quadrature rule. The most common cases are Gauss-Radau quadrature, where
one of the nodes is an endpoint of the interval, either a or b, and Gauss-Lobatto
quadrature, where both « and b are nodes. Golub [10] has given an algorithm similar
to gaucof for these cases.

The second important extension is the Gauss-Kronrod formulas. For ordinary
Gaussian quadrature formulas, as IV increases the sets of abscissas have no points
in common. This means that if you compare results with increasing N as away of
estimating the quadrature error, you cannot reuse the previous function eva uations.
Kronrod [11] posed the problem of searching for optimal sequences of rules, each
of which reuses all abscissas of its predecessor. If one starts with N = m, say,
and then adds n new points, one has 2n + m free parameters. the n new abscissas
and weights, and m new weights for the fixed previous abscissas. The maximum
degree of exactness one would expect to achieve would therefore be 2n + m — 1.
The question is whether this maximum degree of exactness can actually be achieved
in practice, when the abscissas are required to al lieinside (a, b). The answer to
this question is not known in general.

Kronrod showed that if you choose n = m + 1, an optimal extension can
be found for Gauss-Legendre quadrature. Patterson[12] showed how to compute
continued extensions of this kind. Sequences such as N = 10,21,43,87,... are
popular in automatic quadrature routines[13] that attempt to integrate afunction until
some specified accuracy has been achieved.
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Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
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4.6 Multidimensional Integrals

Integrals of functions of several variables, over regionswith dimension greater
than one, are not easy. There are two reasons for this. First, the number of function
evaluations needed to sample an N-dimensional space increases as the Nth power
of the number needed to do a one-dimensiond integral. If you need 30 function
evaluations to do a one-dimensional integral crudely, then you will likely need on
the order of 30000 eval uationsto reach the same crude level for athree-dimensional
integral. Second, the region of integration in N-dimensiona space is defined by
an N — 1 dimensional boundary which can itself be terribly complicated: It need
not be convex or simply connected, for example. By contrast, the boundary of a
one-dimensional integral consists of two numbers, its upper and lower limits.

The first question to be asked, when faced with a multidimensional integral,
is, “can it be reduced anayticaly to a lower dimensiondity?” For example,
so-called iterated integrals of a function of one variable f(¢) can be reduced to
one-dimensional integrals by the formula

/: dtn/otn dby_1 - /Ota dtz/otz F(t)dt
- ﬁ/or(x—t)"‘lf(t)dt

Alternatively, the function may have some special symmetry in the way it depends
on its independent variables. If the boundary aso has this symmetry, then the
dimension can be reduced. In three dimensions, for example, the integration of a
spherically symmetric function over a spherical region reduces, in polar coordinates,
to a one-dimensional integral.

The next questions to be asked will guide your choice between two entirely
different approaches to doing the problem. The questions are: |Is the shape of the
boundary of the region of integration simple or complicated? Inside the region, is
the integrand smooth and simple, or complicated, or locally strongly pesked? Does
the problem require high accuracy, or does it require an answer accurate only to
a percent, or a few percent?

If your answers are that the boundary is complicated, the integrand is not
strongly peaked in very small regions, and relatively low accuracy istolerable, then
your problem is a good candidate for Monte Carlo integration. This method is very
straightforward to program, in its cruder forms. One needs only to know a region
with simple boundaries that includes the complicated region of integration, plus a
method of determining whether a random point is inside or outside the region of
integration. Monte Carlo integration evaluates the function a a random sample of

(4.6.1)
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156 Chapter 4.  Integration of Functions

points, and estimates its integral based on that random sample. We will discussitin
more detail, and with more sophistication, in Chapter 7.

If the boundary is simple, and the function is very smooth, then the remaining
approaches, breaking up the problem into repeated one-dimensional integrals, or
multidimensional Gaussian quadratures, will be effective and relatively fast [1]. If
you require high accuracy, these approaches are in any case the only ones available
to you, since Monte Carlo methods are by nature asymptotically slow to converge.

For low accuracy, userepeated one-dimensional integration or multidimensional
Gaussian quadratureswhen the integrand is slowly varying and smooth in theregion
of integration, Monte Carlo when the integrand is oscillatory or discontinuous, but
not strongly pesked in small regions.

If theintegrand is strongly pesked in small regions, and you know where those
regionsare, break theintegral up into several regions so that the integrand is smooth
in each, and do each separately. If you don’t know where the strongly peaked regions
are, you might as well (at thelevel of sophistication of thisbook) quit: Itis hopeless
to expect an integration routineto search out unknown pockets of large contribution
in a huge N-dimensional space. (But see §7.8.)

If, on the basis of the above guidelines, you decide to pursue the repeated one-
dimensiona integration approach, here is how it works. For definiteness, we will
consider the case of a three-dimensional integral in z, y, z-space. Two dimensions,
or more than three dimensions, are entirely anaogous.

The first step is to specify the region of integration by (i) its lower and upper
limitsin x, which we will denote x, and z-; (ii) itslower and upper limitsin y at a
specified value of z, denoted y; (z) and y»(x); and (iii) its lower and upper limits
in z a specified « and y, denoted z; (x, y) and z3(z,y). In other words, find the
numbers z; and x2, and the functionsy, (z), y2(x), z1(z, y), and z2(x, y) such that

IE///d:cdydzf(:c,y,z)
T2 y2(z) z2(w,y)

z/ dx/ dy/ dz f(x,y, z)
T y1(z) z1(w,y)

For example, a two-dimensional integral over a circle of radius one centered on

the origin becomes
Vi—zZ
/ dx/ dy f(x,y) (4.6.3)
Vi—z?

Now we can define a function G(z, y) that does the innermost integral,

(4.6.2)

z2(z,y)
G(z,y) = / flz,y, z)dz (4.6.4)

1(z,y)
and a function H(z) that does the integral of G(z,y),

y2(z)

H(I)E/ » G(z,y)dy (4.6.5)
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Figure 4.6.1.  Function evaluations for a two-dimensional integral over an irregular region, shown
schematically. The outer integration routine, in y, requests values of the inner, z, integral at locations
aong the y axis of its own choosing. The inner integration routine then evaluates the function at
z locations suitable to it. This is more accurate in general than, e.g., evaluating the function on a
Cartesian mesh of points.

and finally our answer as an integra over H(x)

I= / b H(z)dz (4.6.6)

To implement equations (4.6.4)—(4.6.6) in a program, one needs three separate
copies of abasic one-dimensional integration routine (and of any subroutines called
by it), one each for the z, y, and z integrations. If you try to make do with only
one copy, then it will call itself recursively, since (e.g.) the function evaluations
of H for the = integration will themselves call the integration routine to do the y
integration (see Figure 4.6.1). In our example, let us suppose that we plan to use the
one-dimensional integrator qgaus of §4.5. Then we make threeidentical copiesand
call them qgausx, qgausy, and qgausz. The basic program for three-dimensional
integration then is as follows:

SUBROUTINE quad3d(x1,x2,ss)

REAL ss,x1,x2,h

EXTERNAL h

USES h, ggausx
Returns as ss the integral of a user-supplied function func over a three-dimensional region
specified by the limits x1, x2, and by the user-supplied functions y1, y2, z1, and z2, as
defined in (4.6.2).

call qgausx(h,x1,x2,ss)

return

END

FUNCTION f(zz)
REAL f,zz,func,x,y,z
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COMMON /xyz/ x,y,z

USES func
Called by qgausz. Calls func.
Z=ZZ
f=func(x,y,z)
return
END

FUNCTION g(yy)
REAL g,yy,f,z1,z2,x,y,2z
EXTERNAL f
COMMON /xyz/ x,y,z
USES f, qgausz, z1, z2
Called by ggausy. Calls qgausz.
REAL ss
y=yy
call qgausz(f,z1(x,y),z2(x,y),ss)
g=ss
return
END

FUNCTION h(xx)
REAL h,xx,g,y1,y2,x,y,2
EXTERNAL g
COMMON /xyz/ x,y,z
USES g, qgausy, y1,y2
Called by ggausx. Calls qgausy.
REAL ss
X=XX
call ggausy(g,yl(x),y2(x),ss)
h=ss
return
END

The necessary user-supplied functions have the following calling sequences:

FUNCTION func(x,y,z) The 3-dimensional function to be integrated
FUNCTION y1(x)

FUNCTION y2(x)

FUNCTION z1(x,y)

FUNCTION z2(x,y)

CITED REFERENCES AND FURTHER READING:

Stroud, A.H. 1971, Approximate Calculation of Multiple Integrals (Englewood Cliffs, NJ: Prentice-
Hall). [1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.7, p. 318.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §6.2.5, p. 307.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), equations 25.4.58ff.
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Chapter 5. Evaluation of Functions

5.0 Introduction

The purpose of this chapter isto acquaint you with a selection of the techniques
that are frequently used in evaluating functions. In Chapter 6, we will apply and
illustrate these techniques by giving routines for a variety of specific functions.
The purposes of this chapter and the next are thus mostly in harmony, but there
is nevertheless some tension between them: Routines that are clearest and most
illustrative of the general techniques of this chapter are not always the methods of
choice for a particular specia function. By comparing this chapter to the next one,
you should get some idea of the balance between “general” and “special” methods
that occurs in practice.

Insofar as that balance favors general methods, this chapter should give you
ideas about how to write your own routine for the evaluation of a function which,
while “special” to you, is not so specia as to be included in Chapter 6 or the
standard program libraries.

CITED REFERENCES AND FURTHER READING:

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall).

Lanczos, C. 1956, Applied Analysis; reprinted 1988 (New York: Dover), Chapter 7.

5.1 Series and Their Convergence

Everybody knowsthat an analytic function can be expanded in the neighborhood
of a point xy in a power series,

fla) =" ar(w — wo)* (5.1.1)
k=0

Such series are straightforward to evaluate. You don't, of course, evauate the kth
power of = — x( abinitiofor each term; rather you keep the k — 1st power and update
it with amultiply. Similarly, the form of the coefficients a is often such as to make
use of previouswork: Termslike k! or (2k)! can be updated in amultiply or two.

159
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160 Chapter 5.  Evaluation of Functions

How do you know when you have summed enough terms? In practice, the
terms had better be getting small fast, otherwise the series is not a good technique
to use in the first place. While not mathematically rigorousin al cases, standard
practice is to quit when the term you have just added is smaller in magnitude than
some small e times the magnitude of the sum thusfar accumulated. (But watch out
if isolated instances of ax = 0 are possible!).

A weakness of a power series representation is that it is guaranteed not to
converge farther than that distance from z at which a singularity is encountered
in the complex plane. This catastrophe is not usually unexpected: When you find
a power series in a book (or when you work one out yourself), you will generally
also know the radius of convergence. An insidious problem occurs with series that
converge everywhere (in the mathematical sense), but almost nowhere fast enough
to be useful in a numerica method. Two familiar examples are the sine function
and the Bessel function of the first kind,

e (DR
sy = Z mx (512)
® (_1p

T ( ) Z = k4 (5.1.3)

Both of these series converge for al x. But both don’t even start to converge
until k& > |z|; before this, their terms are increasing. This makes these series
useless for large .

Accelerating the Convergence of Series

There are several tricks for accelerating the rate of convergence of a series (or,
equivalently, of a sequence of partial sums). These tricks will not generaly help in
cases like (5.1.2) or (5.1.3) while the size of the terms is still increasing. For series
with terms of decreasing magnitude, however, some accelerating methods can be
startlingly good. Aitken’s §2-processis simply aformulafor extrapolating the partial
sums of a series whose convergence is approximately geometric. If S,,_1,.S,, Sn+1
are three successive partial sums, then an improved estimate is

(Sn+1 - Sn)2
Sn+1 - 2Sn + Sn—l

S = Spi1 — (5.1.4)

You can aso use (5.1.4) withn + 1 and n — 1 replaced by n +p and n — p
respectively, for any integer p. If you form the sequence of S!'s, you can apply
(5.1.4) a second time to that sequence, and so on. (In practice, this iteration will
only rarely do much for you &fter the first stage.) Note that equation (5.1.4) should
be computed as written; there exist algebraically equivalent forms that are much
more susceptible to roundoff error.

For alternating series (where the terms in the sum alternate in sign), Euler’s
transformation can be a powerful tool. Generaly it is advisable to do a small
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5.1 Series and Their Convergence 161

number n — 1 of terms directly, then apply the transformation to the rest of the series
beginning with the nth term. The formula (for n even) is

o0 ) o0 _1 s )
S (1 us=up—urtuz. .. —un1+ Y (25+)1 [Au,,] (5.1.5)
s=0 s=0

Here A is the forward difference operator, i.e,

AUy = Upp1 — Up
Azun = Up+2 — 2un+1 + un, (516)

AUy = Upg3 — BUnpo + SUni1 — Un etc.

Of course you don't actually do the infinite sum on the right-hand side of (5.1.5),
but only the first, say, p terms, thus requiring the first p differences (5.1.6) obtained
from the terms starting at u,,.

Euler’s transformation can be applied not only to convergent series. In some
cases it will produce accurate answers from thefirst terms of a series that isformally
divergent. It is widely used in the summation of asymptotic series. In this case
it is generaly wise not to sum farther than where the terms start increasing in
magnitude; and you should devise some independent numerical check that theresults
are meaningful.

There is an elegant and subtle implementation of Euler’s transformation due
to van Wijngaarden [1]: It incorporates the terms of the original alternating series
one a atime, in order. For each incorporation it either increases p by 1, equivalent
to computing one further difference (5.1.6), or else retroactively increases n by 1,
without having to redo all the difference calculations based on the old » value! The
decision as to which to increase, n or p, is taken in such a way as to make the
convergence most rapid. Van Wijngaarden's technique requires only one vector of
saved partial differences. Here is the agorithm:

SUBROUTINE eulsum(sum,term,jterm,wksp)

INTEGER jterm

REAL sum,term,wksp(jterm) Workspace, provided by the calling program.
Incorporates into sum the jterm'th term, with value term, of an alternating series. sum
is input as the previous partial sum, and is output as the new partial sum. The first call
to this routine, with the first term in the series, should be with jterm=1. On the second
call, term should be set to the second term of the series, with sign opposite to that of the
first call, and jterm should be 2. And so on.

INTEGER j,nterm

REAL dum,tmp

SAVE nterm

if (jterm.eq.1)then Initialize:
nterm=1 Number of saved differences in wksp.
wksp(1l)=term
sum=0.5*term Return first estimate.

else

tmp=wksp (1)

wksp(1)=term

doun j=1,nterm-1 Update saved quantities by van Wijngaarden’s algo-
dum=wksp (j+1) rithm.
wksp(j+1)=0.5% (wksp(j)+tmp)
tmp=dum
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162 Chapter 5.  Evaluation of Functions

enddo 11
wksp(nterm+1)=0.5* (wksp(nterm) +tmp)
if (abs (wksp(nterm+1)) .1le.abs(wksp(nterm)))then Favorable to increase p,
sum=sum+0.5*wksp (nterm+1)
nterm=nterm+1 and the table becomes longer.
else Favorable to increase n,
sum=sum+wksp (nterm+1) the table doesn’'t become longer.
endif
endif
return

END

The powerful Euler technique is not directly applicable to a series of positive
terms. Occasionally itisuseful to convert aseriesof positivetermsinto an alternating
series, just so that the Euler transformation can be used! Van Wijngaarden has given
a transformation for accomplishing this[1]:

> =Y (1) w, (5.1.7)
r=1 r=1
where
Wy = Uy + 202, + dvyg + Svgr + - - - (5.1.8)

Equations (5.1.7) and (5.1.8) replace a simple sum by atwo-dimensiona sum, each
term in (5.1.7) being itself an infinite sum (5.1.8). This may seem a strange way to
save on work! Since, however, the indicesin (5.1.8) increase tremendoudly rapidly,
as powersof 2, it often requires only afew termsto converge (5.1.8) to extraordinary
accuracy. You do, however, need to be able to compute the v,.’'s efficiently for
“random” values r. The standard “updating” tricks for sequential r’s, mentioned
above following equation (5.1.1), can’t be used.

Actually, Euler’stransformationis a specia case of amore general transforma-
tion of power series. Suppose that some known function g(z) has the series

g(z) = bpz" (5.1.9)
n=0
and that you want to sum the new, unknown, series
F(2) = cabn2" (5.1.10)
n=0

Then it isnot hard to show (see[2]) that equation (5.1.10) can be written as

flz)=>[A col "2 (5.1.11)
n=0

which often converges much more rapidly. Here A(™)¢ isthe nth finite-difference
operator (equation 5.1.6), with A(© ¢y = ¢, and g™ isthe nth derivative of g(z).
The usua Euler transformation (equation 5.1.5 with n = 0) can be obtained, for
example, by substituting

1

g(z):1+Z:1—z+z2—z3—|—~~~ (5.1.12)
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5.2 Evaluation of Continued Fractions 163

into equation (5.1.11), and then setting z = 1.

Sometimes you will want to compute a function from a series representation
even when the computationisnot efficient. For example, you may be usingthevalues
obtai ned to fit the function to an approximating form that you will use subsequently
(cf. §5.8). If you are summing very large numbers of slowly convergent terms, pay
attention to roundoff errors! In floating-point representation it is more accurate to
sum alist of numbersin the order starting with the smallest one, rather than starting
with the largest one. It iseven better to group terms pairwise, then in pairs of pairs,
etc., so that all additions involve operands of comparable magnitude.

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), Chapter 13 [van Wijngaarden’s transformations]. [1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 3.

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §3.6.

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), §2.3. [2]

5.2 Evaluation of Continued Fractions

Continued fractions are often powerful ways of evaluating functionsthat occur
in scientific applications. A continued fraction looks like this:

ai

flz) =bo+ - (5.2.1)
b1 + %
ba+ Sa
b3+ 4a
b4+b5T5___
Printers prefer to write this as
fla) =bo+ —— 22 B 9 B (5.2.2)

bi+ by+ bs+ bi+ bs+

In either (5.2.1) or (5.2.2), the a’s and b’s can themselves be functions of x, usually
linear or quadratic monomials at worst (i.e., constants times x or times x2). For
example, the continued fraction representation of the tangent function is

xr I2 I2 I2

Continued fractions frequently converge much more rapidly than power series
expansions, and in a much larger domain in the complex plane (not necessarily
including the domain of convergence of the series, however). Sometimes the
continued fraction converges best where the series does worst, athough this is not
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164 Chapter 5.  Evaluation of Functions

ageneral rule. Blanch[1] gives a good review of the most useful convergence tests
for continued fractions.

There are standard techniques, including the important quotient-difference algo-
rithm, for going back and forth between continued fraction approximations, power
series approximations, and rationa function approximations. Consult Acton [2] for
an introductionto this subject, and Fike[3] for further details and references.

How do you tell how far to go when evaluating a continued fraction? Unlike
a series, you can't just evaluate equation (5.2.1) from left to right, stopping when
the change is small. Written in the form of (5.2.1), the only way to evaluate the
continued fraction is from right to left, first (blindly!) guessing how far out to
start. This is not the right way.

The right way is to use a result that relates continued fractions to rational
approximations, and that gives a means of evaluating (5.2.1) or (5.2.2) from left
to right. Let f,, denote the result of evaluating (5.2.2) with coefficients through
a, and b,. Then

An

In= B, (5.2.4)

where A,, and B,, are given by the following recurrence:
A1 =1 B_1=0
Ag = b By=1
Aj=0bjA4;_1+a;Aj_o Bj =b;Bj_1+a;Bj_» i=12...,n
(5.2.5)

Thismethod wasinvented by J. Wallisin 1655 (), and isdiscussed in his Arithmetica
Infinitorum[4]. You can easily prove it by induction.

In practice, thisalgorithm has some unattractivefeatures: Therecurrence (5.2.5)
frequently generates very large or very small values for the partial numerators and
denominators A; and B;. There is thus the danger of overflow or underflow of the
floating-point representation. However, therecurrence (5.2.5) islinear inthe A’sand
B’s. At any point you can rescale the currently saved two levels of the recurrence,
eg., divide A;, B;, A;_;, and B;_ al by B;. Thisincidentally makes A; = f;
and is convenient for testing whether you have gone far enough: Seeif f; and f;_1
from the last iteration are as close as you would like them to be. (If B; happensto
be zero, which can happen, just skip the renormalization for this cycle. A fancier
level of optimization is to renormalize only when an overflow isimminent, saving
the unnecessary divides. All this complicates the program logic.)

Two newer algorithms have been proposed for evaluating continued fractions.
Steed’s method does not use A; and B; explicitly, but only theratio D; = B;_/B;.
One calculates D; and Af; = f; — fj—1 recursively using

Dj = 1/(()] + CLij_l) (526)
Afj=(bjDj —1)Afj (5.2.7)

Steed’'s method (see, e.g., [5]) avoids the need for rescaling of intermediate results.
However, for certain continued fractions you can occasionaly run into a situation
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5.2 Evaluation of Continued Fractions 165

where the denominator in (5.2.6) approaches zero, so that D; and Af; are very
large. The next Af;1 will typically cancel this large change, but with loss of
accuracy in the numerical running sum of the f;’s. It isawkward to program around
this, so Steed’s method can be recommended only for cases where you know in
advance that no denominator can vanish. We will use it for a specia purpose in
the routine bessik (§6.7).

The best genera method for evaluating continued fractions seems to be the
modified Lentz's method [6]. The need for rescaling intermediate results is avoided
by using both the ratios

Cj=A4;/Aj-1,  Dj=B;_1/B; (528)
and calculating f; by

fi = 1i-1C;D; (529)
From equation (5.2.5), one easily showsthat theratios satisfy the recurrence relations
Dj = 1/(()] + CLij_l), Cj e bj + CLj/Cj_l (5210)

In this agorithm there is the danger that the denominator in the expression for D,
or the quantity C; itself, might approach zero. Either of these conditionsinvalidates
(5.2.10). However, Thompson and Barnett [5] show how to modify Lentz'salgorithm
to fix this: Just shift the offending term by a small amount, e.g., 1073°. If you
work through a cycle of the agorithm with this prescription, you will see that f;:
is accurately calculated.

In detail, the modified Lentz's agorithm is this:

.Sdfozbo; |fb0:OSHf0:t’LTLy

e Set Cy = fo.
L SﬂDQ = 0.
e For j =1,2,...

Set Dj = bj + CLij_l.
Set Cj = bj + CLj/Cj_l.

Set D; = 1/D;.
Set fj = fi-14;.

If |A; — 1] < eps then exit.
Here eps is your floating-point precision, say 107 or 10~'°. The parameter tiny
should be less than typical values of eps|b;|, say 10730,

The above agorithm assumes that you can terminate the evaluation of the
continued fraction when | f; — f;_1]| is sufficiently small. Thisis usually the case,
but by no means guaranteed. Jones[7] gives alist of theorems that can be used to
justify this termination criterion for various kinds of continued fractions.

Thereisat present no rigorousanalysisof error propagationin Lentz'salgorithm.
However, empirical tests suggest that it is at least as good as other methods.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



166 Chapter 5.  Evaluation of Functions

Manipulating Continued Fractions

Several important properties of continued fractions can be used to rewrite them
in formsthat can speed up numerical computation. An equivalence transformation

Ay — Ay, by — Abp,  Qpi1 — Aapta (5.2.11)

leaves the value of a continued fraction unchanged. By a suitable choice of the scale
factor A you can often simplify the form of the o’s and the b's. Of course, you
can carry out successive equivalence transformations, possibly with different \'s, on
successive terms of the continued fraction.

The even and odd parts of a continued fraction are continued fractions whose
successive convergents are fa,, and fa,,y1, respectively. Their main useis that they
converge twice as fast asthe original continued fraction, and so if their terms are not
much more complicated than the terms in the original there can be abig savingsin
computation. The formula for the even part of (5.2.2) is

C1 C2

even — d + 5.2.12
f; 0 di+ do+ ( )
where in terms of intermediate variables
ai
a1 = b_
' (5.2.13)
n= — >2
“ bnbn—l "=
we have
do="by, c1=01, di=1+0
(5.2.14)
Cn = —Qap—102n—2, dn =14 aap_1 + q2p, n>2

You can find the similar formulafor the odd part in the review by Blanch [1]. Often
a combination of the transformations (5.2.14) and (5.2.11) is used to get the best
form for numerical work.

We will make frequent use of continued fractions in the next chapter.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §3.10.

Blanch, G. 1964, SIAM Review, vol. 6, pp. 383—-421. [1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 11. [2]

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 1.

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), §88.2, 10.4, and 10.5. [3]

Wallis, J. 1695, in Opera Mathematica, vol. 1, p. 355, Oxoniae e Theatro Shedoniano. Reprinted
by Georg Olms Verlag, Hildeshein, New York (1972). [4]
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Thompson, 1.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490-509.
(5]
Lentz, W.J. 1976, Applied Optics, vol. 15, pp. 668-671. [6]

Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
don: Academic Press), p. 125. [7]

5.3 Polynomials and Rational Functions

A polynomia of degree N — 1 is represented numerically as a stored array
of coefficients, c(j) with j= 1,...,N. We will aways take c(1) to be the
constant term in the polynomial, c (V) the coefficient of 2V —1; but of course other
conventions are possible. There are two kinds of manipulations that you can do
with a polynomial: numerical manipulations (such as evaluation), where you are
given the numerical value of its argument, or algebraic manipulations, where you
want to transform the coefficient array in some way without choosing any particular
argument. Let’s start with the numerical.

We assume that you know enough never to evaluate a polynomial thisway:

p=c (1) +c(2) *x+c (3) ¥x*k*2+c (4) *x*k*3+c (5) *x**4

Come the (computer) revolution, all persons found guilty of such criminal
behavior will be summarily executed, and their programs won't be! It is a matter
of taste, however, whether to write

p=c(1)+x*(c(2)+x*(c(3)+x*(c(4)+x*c(5))))

or
p=(((c(8)*x+c(4)) *x+c(3))*x+c(2)) *xx+c(1)

If the number of coefficients is alarge number n, one writes

p=c(n)

dou j=n-1,1,-1
p=p*x+c(j)

enddo 11

Another useful trick is for evauating a polynomial P(z) and its derivative
dP(x)/dz simultaneously:

p=c(n)

dp=0.

dou j=n-1,1,-1
dp=dp*x+p
p=p*x+c(j)

enddo 11

which returns the polynomial as p and its derivative as dp.
The above trick, which is basicaly synthetic division[1,2], generalizes to the
evaluation of the polynomial and nd-1 of its derivatives simultaneously:
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SUBROUTINE ddpoly(c,nc,x,pd,nd)
INTEGER nc,nd
REAL x,c(nc),pd(nd)
Given the coefficients of a polynomial of degree nc-1 as an array c (1:nc) with ¢ (1) being
the constant term, and given a value x, and given a value nd>1, this routine returns the
polynomial evaluated at x as pd(1) and nd-1 derivatives as pd(2:nd).
INTEGER 1i,j,nnd
REAL const
pd(1)=c(nc)
dou j=2,nd
pd(j)=0.
enddo 11
do 13 i=nc-1,1,-1
nnd=min(nd,nc+1-1)
do 12 j=nnd,2,-1
pd(§)=pd (j)*x+pd (j-1)
enddo 12
pd(1)=pd (1)*x+c (i)
enddo 13
const=2. After the first derivative, factorial constants come in.
do 14 i=3,nd
pd(i)=const*pd(i)
const=const*i
enddo 14
return
END

As a curiosity, you might be interested to know that polynomials of degree
n > 3 can be evaluated in fewer than n multiplications, at least if you are willing
to precompute some auxiliary coefficients and, in some cases, do an extra addition.
For example, the polynomial

P(x) = ao + a1z + agx” + azz® + asa’ (5.3.1)
where a4 > 0, can be evaluated with 3 multiplicationsand 5 additions as follows:
P(z) = [(Az + B)? + Az + C][(Az+ B)* + D]+ E (5.3.2)

where A, B, C, D, and E are to be precomputed by

A= (a4)1/4
_ CL3—A3
B= 4A3
D =3B%+8B%+ CMAZ# (5.3.3)
c=22 9B 6B2-D

A2
E=ay— B~ B*C+D)-CD

Fifth degree polynomials can be evaluated in 4 multiplies and 5 adds; sixth degree
polynomias can be evaluated in 4 multiplies and 7 adds; if any of this strikes
you as interesting, consult references [3-5]. The subject has something of the same
entertaining, if impractical, flavor as that of fast matrix multiplication, discussed
in §2.11.
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Turn now to algebraic manipulations. You multiply a polynomia of degree
n—1 (array of lengthn) by amonomial factor « — a by abit of codelikethefollowing,

c(n+1)=c(n)

dou j=n,2,-1
c(=c(j-1-c(j)*a

enddo 11

c(1l)=-c(1)*a

Likewise, you divideapolynomial of degreen — 1 by amonomial factor x — a
(synthetic division again) using

rem=c (n)

c(n)=0.

do 11 i=n-1,1,-1
swap=c (i)
c(i)=rem
rem=swap+rem*a

enddo 11

which leaves you with a new polynomial array and a numerical remainder rem.

Multiplication of two general polynomials involves straightforward summing
of the products, each involving one coefficient from each polynomia. Division
of two general polynomias, while it can be done awkwardly in the fashion taught
using pencil and paper, is susceptible to a good deal of streamlining. Witness the
following routine based on the algorithm in[3].

SUBROUTINE poldiv(u,n,v,nv,q,r)

INTEGER n,nv

REAL q(n),r(n),u(n),v(av)
Given the n coefficients of a polynomial in u(1:n), and the nv coefficients of another
polynomial in v(1:nv), divide the polynomial u by the polynomial v (“u"/"“v") giving
a quotient polynomial whose coefficients are returned in q(1:n-nv+1), and a remainder
polynomial whose coefficients are returned in r(1:nv-1). The arrays q and r are dimen-
sioned with lengths n, but the elements r(av) ...r(n) and q(n-nv+2)...q(n) will be
returned as zero.

INTEGER j,k

dou j=1,n
r(j)=u(j)
q(j)=0.

enddo 11

do 13 k=n-nv,0,-1
q(k+1)=r (nv+k)/v(av)
do 12 j=nv+k-1,k+1,-1

r(j)=r(j)-q(k+1)*v(j-k)

enddo 12

enddo 13

do 1 j=nv,n
r(j)=0.

enddo 14

return

END
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Rational Functions

You evauate a rationa function like

Du(x) _potpiz+---+pua”

R P
(@) Qu(z) q+qr+- -+ g

(5.3.4)

in the obviousway, namely as two separate polynomiasfollowed by adivide. Asa
matter of convention one usually chooses gy = 1, obtained by dividing numerator
and denominator by any other ¢o. It is often convenient to have both sets of
coefficients stored in a single array, and to have a standard subroutine available
for doing the evaluation:

FUNCTION ratval(x,cof,mm,kk)

INTEGER kk,mm

DOUBLE PRECISION ratval,x,cof (mm+kk+1) Note precision! Change to REAL if desired.
Given mm, kk, and cof (1:mm+kk+1), evaluate and return the rational function (cof (1) +
cof (2)x+ --- + cof (mm+1) ™) /(1 + cof (mm+2)x + - - - + cof (mm+kk+1)xkk).

INTEGER j

DOUBLE PRECISION sumd,sumn

sumn=cof (mm+1)

dou j=mm,1,-1
sumn=sumn*x+cof (j)

enddo 11

sumd=0.d0

do 12 j=mm+kk+1,mm+2,-1
sumd= (sumd+cof (j))*x

enddo 12

ratval=sumn/(1.d0+sumd)

return

END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 183, 190. [1]

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), pp. 361-363. [2]

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §4.6. [3]

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 4.

Winograd, S. 1970, Communications on Pure and Applied Mathematics, vol. 23, pp. 165-179. [4]
Kronsjo, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley). [5]
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5.4 Complex Arithmetic

Since FORTRAN has the built-in data type COMPLEX, you can generaly let the
compiler and intrinsic function library take care of complex arithmetic for you.
Generdly, but not always. For a program with only a small number of complex
operations, you may want to code these yoursdf, in-line. Or, you may find that
your compiler is not up to snuff: It isdisconcertingly common to encounter complex
operations that produce overflows or underflows when both the complex operands
and the complex result are perfectly representable. This occurs, we think, because
software companies assign inexperienced programmers to what they believe to be
the perfectly trivial task of implementing complex arithmetic.

Actualy, complex arithmetic is not quite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can aso be donein the obviousway,
with 4 multiplications, one addition, and one subtraction,

(a+1b)(c +id) = (ac — bd) + i(bc + ad) (5.4.1)

(the addition before the ¢ doesn’t count; it just separates thereal and imaginary parts
notationally). But it is sometimes faster to multiply via

(a+ib)(c+id) = (ac — bd) + i[(a + b)(c + d) — ac — bd] (5.4.2)

which has only three multiplications(ac, bd, (a + b)(c + d)), plus two additionsand
three subtractions. The total operations count is higher by two, but multiplication
is a slow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when thefinal result isrepresentable, this happens only when thefina
answer is on the edge of representability. Not so for the complex modulus, if you
or your compiler are misguided enough to compute it as

la +ib] = /a2 + b2 (bad!) (5.4.3)

whose intermediate result will overflow if either a or b is as large as the sguare
root of the largest representable number (e.g., 101 as compared to 103%). Theright
way to do the calculation is

e [l VITEE ol 2 b
la-+ 2] {|b|\/1+<a/b>2 la] < b (544)

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

[a+b(d/c)] +i[b—a(d/c)]
a+ib c+d(d/c)
c+id ) [a(c/d)+b] +ilb(c/d) — a]
clefd)+d

l¢| > |d]
(5.4.5)

e < |d]
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Of course you should calculate repeated subexpressions, likec/d or d/c, only once.

Complex square root is even more complicated, since we must both guard
intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the sguare root of ¢ + id, first compute

0 C:d:o
1/|C|\/1+— V1+(d/e)? le| > |d|
w= 2 - (5.4.6)
le/d| + /1 + (c/d)?
Vidi 5 el < d
Then the answer is
0 w=0
o d
w—l—z(—) w#0,¢>0
2w
vV id = 547
et m—|—iw w#0,¢<0,d>0 ( )
2w
M—iw w#0,¢<0,d<0

CITED REFERENCES AND FURTHER READING:
Midy, P., and Yakovlev, Y. 1991, Mathematics and Computers in Simulation, vol. 33, pp. 33—49.

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley) [see solutions to exercises 4.2.1.16 and 4.6.4.41].

5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, eg.,

(n+ 1)Ppt1(x) = 2n+ DxPy(x) —nPy_1(z) (65.1)
Tsr(z) = 2x—an(x) (@) (55.2)
nEyy1(z) =e % —zE,(x) (653

cosnf = 2cosf cos(n — 1)0 — cos(n — 2)0 (5.5.9)
sinnf = 2 cosfsin(n — 1)6 — sin(n — 2)6 (5.5.5)

wherethefirst threefunctionsare Legendre polynomials, Bessel functionsof thefirst
kind, and exponential integrals, respectively. (For notation see[1].) These relations
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are useful for extending computational methods from two successive values of n to
other values, either larger or smaler.

Equations(5.5.4) and (5.5.5) motivate usto say afew words about trigonometric
functions. If your program’s running time is dominated by evaluating trigonometric
functions, you are probably doing something wrong. Trig functionswhose arguments
form alinear sequence § = 6y + nd, n = 0,1,2, ..., are efficiently calculated by
the following recurrence,

cos(0 + 6) = cosf — [acosf + [Fsind)

5.5.6
sin(f + ¢) = sinf — [asinf — [ cos 0] ( )
where « and (§ are the precomputed coefficients
o2 (0 o
a = 2sin 3 B =sind (5.5.7)

The reason for doing things thisway, rather than with the standard (and equivalent)
identities for sums of angles, is that here o and 5 do not lose significance if the
incremental ¢ is small. Likewise, the adds in equation (5.5.6) should be done in
the order indicated by square brackets. We will use (5.5.6) repeatedly in Chapter
12, when we deal with Fourier transforms.

Another trick, occasionally useful, is to note that both sin # and cos 6 can be
calculated via a single call to tan:

6 1—¢? . 2t
t = tan (§> cosf = 1—|——t2 sinf = 1—|——t2 (558)

The cost of getting both sin and cos, if you need them, is thus the cost of tan plus
2 multiplies, 2 divides, and 2 adds. On machines with slow trig functions, this can
be a savings. However, notethat special treatment is required if § — +x. And aso
note that many modern machines have very fast trig functions; so you should not
assume that equation (5.5.8) is faster without testing.

Stability of Recurrences

You need to be aware that recurrence relations are not necessarily stable
against roundoff error in the direction that you propose to go (either increasing n or
decreasing n). A three-term linear recurrence relation

Ynt1 + @nlYn + bnyn_1 =0, n=12,... (5.5.9)

hastwo linearly independent solutions, f,, and g,, say. Only one of these corresponds
to the sequence of functions f,, that you are trying to generate. The other one g,,
may be exponentially growing in the direction that you want to go, or exponentially
damped, or exponentialy neutral (growingor dying as some power law, for example).
If it is exponentially growing, then the recurrence relation is of little or no practical
usein that direction. Thisisthe case, e.g., for (5.5.2) in the direction of increasing
n, when z < n. You cannot generate Bessdl functions of high n by forward
recurrence on (5.5.2).
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174 Chapter 5.  Evaluation of Functions

To state things a bit more formaly, if
fn/gn —0 & mn— o0 (5.5.10)

then f,, iscalled theminimal solution of the recurrence relation (5.5.9). Nonminimal
solutionslike g,, are called dominant solutions. The minimal solutionisunique, if it
exists, but dominant solutions are not — you can add an arbitrary multiple of f,, to
agiven g,,. You can evaluate any dominant solution by forward recurrence, but not
the minimal solution. (Unfortunately it is sometimes the one you want.)

Abramowitz and Stegun (in their Introduction) [1] givealist of recurrences that
are stable in the increasing or decreasing directions. That list does not contain al
possible formulas, of course. Given a recurrence relation for some function f,, ()
you can test it yourself with about five minutes of (human) labor: For a fixed z
in your range of interest, start the recurrence not with true values of f;(z) and
fij+1(x), but (first) with the values 1 and 0, respectively, and then (second) with
0 and 1, respectively. Generate 10 or 20 terms of the recursive sequences in the
direction that you want to go (increasing or decreasing from j5), for each of the two
starting conditions. Look at the difference between the corresponding members of
the two sequences. If the differences stay of order unity (absolute value less than
10, say), then the recurrence is stable. If they increase slowly, then the recurrence
may be mildly unstable but quite tolerably so. If they increase catastrophically,
then there is an exponentially growing solution of the recurrence. If you know
that the function that you want actually corresponds to the growing solution, then
you can keep the recurrence formula anyway e.g., the case of the Bessel function
Y, (z) for increasing n, see §6.5; if you don’'t know which solution your function
corresponds to, you must at this point reject the recurrence formula. Notice that
you can do this test before you go to the trouble of finding a numerica method for
computing the two starting functions f;(z) and f;1(x): stability is a property of
the recurrence, not of the starting values.

An alternative heuristic procedure for testing stability is to replace the recur-
rence relation by asimilar one that islinear with constant coefficients. For example,
the relation (5.5.2) becomes

Yn+1 = 2YYn + Yn—1 =10 (5.5.11)

where v = n/x is treated as a constant. You solve such recurrence relations
by trying solutions of the form y, = «™. Subgtituting into the above recur-
rence gives

a>—2ya+1=0 o a=~v++42-1 (5.5.12)

Therecurrence is stableif |a| < 1 for al solutionsa. This holds (as you can verify)
if |y| < 1orn < z. The recurrence (5.5.2) thus cannot be used, starting with Jy ()
and Jy(x), to compute J,,(x) for large n.

Possibly you would at this point like the security of some real theorems on
this subject (although we ourselves always follow one of the heuristic procedures).
Here are two theorems, due to Perron [2]:

TheoremA.  If in(5.5.9) a,, ~ an®, b, ~ bn® asn — oo, and 3 < 2a, then

Gnt1/gn ~ —an®, fat1/fa ~ —(bja)n = (5.5.13)
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5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 175

and f, isthe minima solution to (5.5.9).
Theorem B.  Under the same conditions as Theorem A, but with § = 2«
consider the characteristic polynomial

t*+at+b=0 (5.5.14)
If the roots ¢, and ¢, of (5.5.14) have distinct moduli, [¢t1| > |t2| say, then

gnt1/gn ~tin®, a1/ fo ~ tan® (5.5.15)

and f, is again the minimal solution to (5.5.9). Cases other than those in these
two theorems are inconclusive for the existence of minimal solutions. (For more
on the stability of recurrences, seel3].)

How do you proceed if the solution that you desire is the minimal solution?
The answer lies in that old aphorism, that every cloud has a silver lining: If a
recurrence relation is catastrophically unstablein one direction, then that (undesired)
solution will decrease very rapidly in the reverse direction. This means that you
can start with any seed values for the consecutive f; and f;,; and (when you have
gone enough steps in the stable direction) you will converge to the sequence of
functions that you want, times an unknown normalization factor. If there is some
other way to normalize the sequence (e.g., by aformula for the sum of the f,,’s),
then this can be a practical means of function evaluation. The method is called
Miller’'s algorithm. An example often given[1,4] uses equation (5.5.2) in just this
way, aong with the normalization formula

1= Jo(x) + 2Ja(x) + 2J4(x) + 2J6(z) + - - - (5.5.16)

Incidentally, there is an important relation between three-term recurrence
relations and continued fractions. Rewrite the recurrence relation (5.5.9) as

n b?’L
In (5.5.17)
Yn—1 (7% + yn+1/yn
Iterating this equation, starting with n, gives
n b?’L n
In__ busr (5.5.18)
Yn—1 Ap — Qp41 —

Pincherle’'s Theorem (2] tells us that (5.5.18) converges if and only if (5.5.9) has a
minima solution f,,, inwhich case it convergesto f,,/ f.—1. Thisresult, usualy for
the case n = 1 and combined with some way to determine f;, underlies many of the
practica methods for computing special functionsthat we give in the next chapter.
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176 Chapter 5.  Evaluation of Functions

Clenshaw’s Recurrence Formula

Clenshaw's recurrence formulal5] is an elegant and efficient way to evaluate a
sum of coefficients times functions that obey a recurrence formula, e.g.,

N N
F0) = cpcoskd or  f(z) = cpPru(z)
k=0 k=0

Here is how it works: Suppose that the desired sum is

N
f@) = cxFi(x) (55.19)
k=0

and that F} obeys the recurrence relation
Foi1(z) = an,z)F,(z) + B(n, ) F—1(x) (5.5.20)

for some functions a(n,z) and G(n,x). Now define the quantities y;, (k =
N,N —1,...,1) by the following recurrence:

YN+2 =Yn+1 =0
(5.5.21)
Y = a(k,x)ka +6(k + 1ax)yk+2 + ¢k (k = Na N — 1a SRRR) 1)

If you solve eguation (5.5.21) for ¢, on the left, and then write out explicitly the
sum (5.5.19), it will look (in part) like this:

fl@)=---
+ [ys — (8, x)yo — B(9, x)y10] Fs ()
+ [yr — (7, 2)ys — B(8, x)yo| F7 ()
+ [ys — (6, 2)yr — B(7, )ys] Fo ()
+ [ys — (5, 2)ys — B(6, ©)y7| F5(x) (5.5.22)
L.
+ [y2 — a2, 7)ys — B(3, x)ya] Fa(x)
+ [y1 — (L, 2)y2 — B(2, 2)ys| F1 ()
+ [eo + B(1, 2)y2 — B(1, 2)y2] Fo(x)

Notice that we have added and subtracted 3(1, x)y- in thelast line. If you examine
the terms containing a factor of ys in (5.5.22), you will find that they sum to zero as
a consequence of the recurrence relation (5.5.20); similarly all the other y;.’s down
through . The only surviving terms in (5.5.22) are

f(x) = B(1, z)Fo(x)y2 + Fi(x)yr + Fo(x)co (5.5.23)
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5.5 Recurrence Relations and Clenshaw’s Recurrence Formula 177

Equations (5.5.21) and (5.5.23) are Clenshaw’srecurrence formulafor doing the sum
(5.5.19): You make one pass down through the y;'s using (5.5.21); when you have
reached y, and y; you apply (5.5.23) to get the desired answer.

Clenshaw’s recurrence as written above incorporates the coefficients ¢ in a
downward order, with k& decreasing. At each stage, the effect of all previous cj’s
is “remembered” as two coefficients which multiply the functions Fj1 and Fj,
(ultimately Fy and F1). If the functions F), are small when £ is large, and if the
coefficients ¢;, are small when k& is small, then the sum can be dominated by small
F}.’s. In this case the remembered coefficients will involve a delicate cancellation
and there can be a catastrophic loss of significance. An example would be to sum
the trivial series

Ji5(1) = 0% Jo(1)+0x Jy(1) 4 ... 40 x Jig(1) + 1 x Ji5(1)  (55.24)

Here Jy5, which is tiny, ends up represented as a canceling linear combination of
Jo and Jy, which are of order unity.

The solution in such cases is to use an alternative Clenshaw recurrence that
incorporates c’s in an upward direction. The relevant equations are

Yy—2=y-1=0 (5.5.25)
1
Y = m[yk_2 —a(k,x)yr—1 — cx,
(k=0,1,...,N—1) (5.5.26)

f(ll) = CNFN({IJ) — 6(]\7, x)FN_l(x)yN_l — FN(x)yN_Q (5527)

The rare case where equations (5.5.25)—(5.5.27) should be used instead of
equations (5.5.21) and (5.5.23) can be detected automatically by testing whether
the operands in the first sum in (5.5.23) are opposite in sign and nearly egua in
magnitude. Other than in this special case, Clenshaw’s recurrence is ways stable,
independent of whether the recurrence for the functions F}, is stable in the upward
or downward direction.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), pp. xiii, 697. [1]

Gautschi, W. 1967, SIAM Review, vol. 9, pp. 24-82. [2]

Lakshmikantham, V., and Trigiante, D. 1988, Theory of Difference Equations: Numerical Methods
and Applications (San Diego: Academic Press). [3]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 20ff. [4]

Clenshaw, C.W. 1962, Mathematical Tables, vol. 5, National Physical Laboratory (London: H.M.
Stationery Office). [5]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
84.4.3, p. 111.

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
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178 Chapter 5.  Evaluation of Functions

5.6 Quadratic and Cubic Equations

The roots of simple a gebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of the quadratic equation
ar® +br+c=0 (5.6.1)

with real coefficients a, b, ¢, namely

b+t Vb2 -4
T = u (5.6.2)
2a
and )
c
r= - 56.3
—b+ Vb2 —4ac ( )

If you use either (5.6.2) or (5.6.3) to get the two roots, you are asking for trouble: If
either a or ¢ (or both) are smdl, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

g= _% [b + sgn(b)v/b? — 4ac] (5.6.4)

Then the two roots are

sr=%  ad  zy=S (5.6.5)
a q

If the coefficients a, b, ¢, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be
chosen so as to make

Re(b*/b% — 4ac) > 0 (5.6.6)
where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functions sinh " and cosh™" are in fact just logarithms of
solutions to such eguations,

sinh™'(z) = In(z+ Va2 +1) (5.6.7)
cosh™'(z) = £In(z + Va2 — 1) (5.6.8)

Equation (5.6.7) is numerically robust for x > 0. For negative z, use the symmetry
sinh™*(—z) = —sinh™'(z). Equation (5.6.8) is of course valid only for z > 1.
Since FORTRAN mysteriously omits the inverse hyperbolic functions from its list of
intrinsic functions, equations (5.6.7)—(5.6.8) are sometimes quite essential .
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5.6 Quadratic and Cubic Equations 179

For the cubic equation
2* +ar® +br+c=0 (5.6.9)
with real or complex coefficients a, b, ¢, first compute

2 3
S 0 ad  R= W (5.6.10)

Q=

If Q and R are real (always true when a, b, c are real) and R? < @3, then the cubic
equation has three real roots. Find them by computing

9 = arccos(R/+/Q3) (5.6.11)

(5)-5
(=)
()

in terms of which the three roots are

>

r1 = —2+/Q cos

w

To = —24/Q cos

T3 = —2\/_c0s

(5.6.12)

0 — 2
3

wle wle

(This eguation first appears in Chapter VI of Francois Viéte's tregtise “De emen-
datione,” published in 1615!)
Otherwise, compute

1/3
A=— [R +V/R2 - Q?’} (5.6.13)
where the sign of the square root is chosen to make

Re(R*\/R2 — Q%) > 0 (5.6.14)

(asterisk again denoting complex conjugation). If @ and R are both real, equations
(5.6.13)(5.6.14) are equivaent to

1/3
A= —syn(R) [|R| + VR - Q?’} (5.6.15)
where the positive square root is assumed. Next compute
_je/Aa  (A#0)
B= {o (aZ 0) (5.6.16)

in terms of which the three roots are

a

(5.6.17)
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180 Chapter 5.  Evaluation of Functions

(the single red root when a, b, c are real) and

Ty = —%(A—l—B) - % +i?(A—B)
: S A (5.6.18)

(in that same case, a complex conjugate pair). Equations (5.6.13)—5.6.16) are
arranged both to minimize roundoff error, and a so (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the
spurious loss of a distinct root.

If you need to solve many cubic equations with only dlightly different coeffi-
cients, it is more efficient to use Newton's method (§9.4).

CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130-133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), §6.1.

McKelvey, J.P. 1984, American Journal of Physics, vol. 52, pp. 269-270; see also vol. 53,
p. 775, and vol. 55, pp. 374-375.

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a function f(z), and now
you want to compute its derivative f'(z). Easy, right? The definition of the
derivative, the limit as h — 0 of

f(z) ~ M (5.7.1)
practically suggests the program: Pick a small value h; evaluate f(x + h); you
probably have f(x) aready evaluated, but if not, do it too; finaly apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is amost
guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the function f is fiercely expensive to compute,
when you aready have invested in computing f(z), and when, therefore, you want
to get the derivativein no more than a single additional function evaluation. In such
asituation, the remaining issue isto choose h properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

P+ h) = f(@) 4 hf' (@) + G025 @) + B @) 4 (872)
whence

flz+h) - f(z)

- =f+ %hf” T (5.7.3)
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5.7 Numerical Derivatives 181

The roundoff error has various contributions. First there is roundoff error in h:
Suppose, by way of an example, that you are at a point x = 10.3 and you blindly
choose h = 0.0001. Neither z = 10.3 nor =z + A = 10.30001 is a number with
an exact representation in binary; each istherefore represented with some fractional
error characteristic of the machine's floating-point format, e,,,, whosevalue in single
precision may be~ 10~7. Theerror inthe effectivevalue of h, namely the difference
between = + h and x as represented in the machine, istherefore on the order of ¢,,, x,
whichimpliesafractiona error in & of order ~ €,z /h ~ 10~2! By equation (5.7.1)
thisimmediately implies at least the same large fractional error in the derivative.
Wearriveat Lesson 1: Alwayschoose h sothat x + h and z differ by an exactly
representable number. This can usually be accomplished by the program steps

temp=x+h

(5.7.4)
h =temp — x

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy thanis stored externally, can foil thistrick; if so, itisusually
enough to call a dummy subroutinedonothing (temp) between the two equations
(5.7.4). Thisforces temp into and out of addressable memory.

With h an “exact” number, the roundoff error in equation (5.7.1) is e, ~
er|f(x)/h|. Here ey isthe fractiona accuracy with which f is computed; for a
simple function thismay be comparable to the machine accuracy, €y ~ ¢,,, but for a
complicated cal cul ation with additional sources of inaccuracy it may be larger. The
truncation error in equation (5.7.3) is on the order of e; ~ |hf”(x)|. Varying h to
minimize the sum e,. + e; gives the optimal choice of h,

h~ eff NS (5.7.5)
where z. = (f/f")'/? isthe “curvature scal€’ of the function f, or “characteristic
scale’ over which it changes. In the absence of any other information, one often
assumes z. = x (except near x = 0 where some other estimate of the typica =
scale should be used).

With the choice of equation (5.7.5), the fractional accuracy of the computed
derivative is

(er +e) /|| ~ e (FF" ] 22 ~ Je7 (5.7.6)

Here the last order-of-magnitude equality assumes that f, f/, and f” al share
the same characteristic length scale, usualy the case. One sees that the simple
finite-difference equation (5.7.1) gives at best only the square root of the machine
accuracy €,.

If you can afford two function evaluations for each derivative calculation, then
it is significantly better to use the symmetrized form

fl@+h) - flz—h)
2h

f(z) ~ (5.7.7)
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182 Chapter 5.  Evaluation of Functions

In this case, by equation (5.7.2), the truncation error ise; ~ h2f"’. The roundoff
error e, isabout the same as before. The optimal choice of h, by a short calculation
analogous to the one above, is nhow

e\ 1/3
h~ (3{”{0 ) ~ ()P, (5.7.8)

and the fractiona error is

(er +e)/If'| ~ (e 2 fPR(" 21~ (e4)?? (5.7.9)

which will typically be an order of magnitude (single precision) or two orders of
magnitude (double precision) better than equation (5.7.6). We havearrived at Lesson
2: Choose h to be the correct power of € or €, times acharacteristic scale ..

You can easily derive the correct powers for other cases[1]. For afunction of
two dimensions, for example, and the mixed derivative formula

0*f _[flathy+h) —fle+hy—h]-[fl@—hy+h) —flz—hy—h)

oxdy 4h?
(5.7.10)
the correct scaling is h ~ e}/?’xc.

It is disappointing, certainly, that no simple finite-difference formula like
equation (5.7.1) or (5.7.7) gives an accuracy comparable to the machine accuracy
em, Or even the lower accuracy to which f is evaluated, ;. Are there no better
methods?

Yes, there are.  All, however, involve exploration of the function’s behavior
over scales comparable to z., plus some assumption of smoothness, or analyticity,
so that the high-order terms in a Taylor expansion like equation (5.7.2) have some
meaning. Such methods also involve multiple evaluations of the function f, so their
increased accuracy must be weighed against increased cost.

The general idea of “Richardson’sdeferred approach to thelimit” isparticularly
attractive. For numerical integrals, that idea leads to so-called Romberg integration
(for review, see §4.3). For derivatives, one seeks to extrapolate, to h — 0, the result
of finite-difference calculations with smaller and smaller finite values of h. By the
use of Neville'sagorithm (§3.1), one uses each new finite-difference calculation to
produce both an extrapolation of higher order, and also extrapolations of previous,
lower, orders but with smaller scales k. Ridders[2] has given a nice implementation
of thisidea; the following program, dfridr, is based on his algorithm, modified by
an improved termination criterion. Input to theroutineisafunction f (called func),
a position x, and a largest stepsize h (more analogous to what we have caled .
above than to what we have called h). Output isthereturned value of the derivative,
and an estimate of its error, err.

FUNCTION dfridr(func,x,h,err)

INTEGER NTAB

REAL dfridr,err,h,x,func,CON,CON2,BIG,SAFE

PARAMETER (CON=1.4,CON2=CON*CON,BIG=1.E30,NTAB=10,SAFE=2.)
EXTERNAL func

C USES func

Returns the derivative of a function func at a point x by Ridders’ method of polynomial
extrapolation. The value h is input as an estimated initial stepsize; it need not be small,
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5.7 Numerical Derivatives 183

but rather should be an increment in x over which func changes substantially. An estimate
of the error in the derivative is returned as err.
Parameters: Stepsize is decreased by CON at each iteration. Max size of tableau is set by
NTAB. Return when error is SAFE worse than the best so far.

INTEGER i, j

REAL errt,fac,hh,a(NTAB,NTAB)

if(h.eq.0.) pause ’h must be nonzero in dfridr’

hh=h
a(1,1)=(func(x+hh)-func(x-hh))/(2.0%hh)
err=BIG
do 12 i=2,NTAB Successive columns in the Neville tableau will go to smaller
hh=hh/CON stepsizes and higher orders of extrapolation.
a(1,i)=(func(x+hh)-func(x-hh))/(2.0%hh) Try new, smaller stepsize.
fac=CON2
don j=2,i Compute extrapolations of various orders, requiring no new
a(j,i)=(a(j-1,i)*fac-a(j-1,i-1))/(fac-1.) function evaluations.
fac=CON2x*fac
errt=max(abs(a(j,i)-a(j-1,1)),abs(a(j,i)-a(j-1,i-1)))
The error strategy is to compare each new extrapolation to one order lower, both at
the present stepsize and the previous one.
if (errt.le.err) then If error is decreased, save the improved answer.
err=errt
dfridr=a(j,i)
endif
enddo 11

if (abs(a(i,i)-a(i-1,i-1)).ge.SAFE*err)return
If higher order is worse by a significant factor SAFE, then quit early.
enddo 12
return
END

Indfridr, thenumber of evaluationsof funcistypicaly 6to 12, but isallowed
to be as great as 2xNTAB. As a function of input h, it istypical for the accuracy
to get better as h is made larger, until a sudden point is reached where nonsensica
extrapolation produces early return with alarge error. You should therefore choose
afairly large value for h, but monitor the returned value err, decreasing h if it is
not small. For functionswhose characteristic « scale is of order unity, we typically
take h to be a few tenths.

Besides Ridders' method, there are other possible techniques. If your function
is fairly smooth, and you know that you will want to evauate its derivative many
times at arbitrary points in some interval, then it makes sense to construct a
Chebyshev polynomial approximationto thefunctionin that interval, and to evaluate
the derivative directly from the resulting Chebyshev coefficients. This method is
described in §§5.8-5.9, following.

Another technique applies when the function consists of data that is tabulated
at equally spaced intervas, and perhaps aso noisy. One might then want, at each
point, to least-squares fit a polynomia of some degree M, using an additional
number nz, of pointsto the left and some number n of pointsto the right of each
desired = value. The estimated derivative is then the derivative of the resulting
fitted polynomial. A very efficient way to do this construction is via Savitzky-Golay
smoothing filters, which will be discussed later, in §14.8. There we will give a
routinefor getting filter coefficientsthat not only construct thefitting polynomial but,
in the accumulation of a single sum of data pointstimes filter coefficients, evaluate
it aswell. In fact, the routine given, savgol, has an argument 1d that determines
which derivative of the fitted polynomial is evaluated. For the first derivative, the
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appropriate setting is 1d=1, and the value of the derivative is the accumulated sum
divided by the sampling interval h.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall), §§5.4-5.6. [1]

Ridders, C.J.F. 1982, Advances in Engineering Software, vol. 4, no. 2, pp. 75-76. [2]

5.8 Chebyshev Approximation

The Chebyshev polynomial of degree n is denoted T,,(z), and is given by

the explicit formula
T, (x) = cos(n arccos x) (5.8.1)
This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomias and the discrete Fourier transform); however

(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for T, (x) (see Figure 5.8.1),

(5.8.2)

Tot1(x) = 22T, () — Th—1(xz) n>1.

(There also exist inverse formulas for the powers of z in terms of the T,,’s — see
equations 5.11.2-5.11.3.)

The Chebyshev polynomiasare orthogonal intheinterval [—1, 1] over aweight
(1 — 22)71/2. In particular,

1 0 1]
Ti(x)Ty(x) , i
[ e { I .

The polynomia T,,(x) has n zerosin the interval [—1, 1], and they are located
a the points

(5.8.4)
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5.8 Chebyshev Approximation 185

Chebyshev polynomials

Figure 5.8.1. Chebyshev polynomials Ty () through Tg(x). Note that T; has j roots in the interval
(—1,1) and that al the polynomials are bounded between +1.

Inthissame interval there are n + 1 extrema (maxima and minima), located at
T = cos (ﬁ> k=0,1,....n (5.8.5)
n

At dl of the maxima T, (z) = 1, while a al of the minima T, (z) = —1;
it is precisaly this property that makes the Chebyshev polynomials so useful in
polynomia approximation of functions.

The Chebyshev polynomials satisfy a discrete orthogonality relation as well as
the continuous one (5.8.3): If z, (k = 1,...,m) are them zeros of T,,,(z) given
by (5.84), and if i, < m, then

m 0 1]
S T Ty ) = {m/z i=j#0 (586)
k=1 m 1=7=0

It is not too difficult to combine equations (5.8.1), (5.8.4), and (5.8.6) to prove
the following theorem: If f(z) isan arbitrary function in the interval [—1, 1], and
if NV coefficientsc;,j = 1,..., N, are defined by

N

];f(xk)Tj—l(xk)
S (e (2

Cj =

2|

(5.8.7)

S
N [=
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186 Chapter 5.  Evaluation of Functions

then the approximation formula

a 1
flz) = [ZCka—l(x)] -3a (5.8.8)
k=1

is exact for = equal to all of the N zeros of T (x).

For afixed N, equation (5.8.8) is a polynomia in x which approximates the
function f(z) intheinterval [—1, 1] (where all the zeros of T () arelocated). Why
isthisparticular approximating polynomial better than any other one, exact on some
other set of NV points? The answer is not that (5.8.8) is necessarily more accurate
than some other approximating polynomial of the same order N (for some specified
definition of “accurate”), but rather that (5.8.8) can be truncated to a polynomial of
lower degreem < N inavery graceful way, onethat doesyield the“most accurate”
approximation of degree m (in a sense that can be made precise). Suppose N is
so large that (5.8.8) is virtually a perfect approximation of f(x). Now consider
the truncated approximation

flx) ~ [chTk_l(x)] - %cl (5.8.9)
k=1

with the same ¢;'s, computed from (5.8.7). Since the Tj(z)'s are al bounded
between +1, the difference between (5.8.9) and (5.8.8) can be no larger than the
sum of the neglected c¢’s (K = m + 1,...,N). In fact, if the ¢'s are rapidly
decreasing (which is the typical case), then the error is dominated by ¢, +1 7, (),
an oscillatory function with m 4 1 equa extrema distributed smoothly over the
interval [—1, 1]. This smooth spreading out of the error is avery important property:
The Chebyshev approximation (5.8.9) is very nearly the same polynomial as that
holy grail of approximating polynomial s the minimax polynomial, which (among all
polynomials of the same degree) has the smallest maximum deviation from the true
function f(x). The minimax polynomia is very difficult to find; the Chebyshev
approximating polynomial is amost identical and is very easy to compute!

So, given some (perhaps difficult) means of computing the function f(z), we
now need algorithms for implementing (5.8.7) and (after inspection of the resulting
cr;'s and choice of atruncating value m) evaluating (5.8.9). The latter equation then
becomes an easy way of computing f(z) for al subsequent time.

The first of these tasksis straightforward. A generalization of equation (5.8.7)
that is here implemented is to allow the range of approximation to be between two
arbitrary limitsa and b, instead of just —1to 1. Thisiseffected by achange of variable

z—1(b+a)
2(b—a)

and by the approximation of f(x) by a Chebyshev polynomial in y.

y (5.8.10)

SUBROUTINE chebft(a,b,c,n,func)

INTEGER n,NMAX

REAL a,b,c(n),func

DOUBLE PRECISION PI

EXTERNAL func

PARAMETER (NMAX=50, PI=3.141592653589793d0)
Chebyshev fit: Given a function func, lower and upper limits of the interval [a,b], and
a maximum degree 1, this routine computes the n coefficients cj such that func(z) ~
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5.8 Chebyshev Approximation 187

[P, ckTk—1(¥)] — c1/2, where y and z are related by (5.8.10). This routine is to be
used with moderately large n (e.g., 30 or 50), the array of c's subsequently to be truncated
at the smaller value m such that c¢,, 1 and subsequent elements are negligible.
Parameters: Maximum expected value of n, and 7.

INTEGER j,k

REAL bma,bpa,fac,y,f (NMAX)

DOUBLE PRECISION sum

bma=0.5% (b-a)

bpa=0.5%(b+a)

doun k=1,n We evaluate the function at the n points required by (5.8.7).
y=cos (PI*(k-0.5d0)/n)
£ (k)=func (y*bmat+bpa)

enddo 11

fac=2./n

do1s j=1,n
sum=0.d0 We will accumulate the sum in double precision, a nicety that
do12 k=1,n you can ignore.

sum=sum+f (k) *cos ((PI*(j-1))*((k-0.5d0)/n))

enddo 12
c(j)=fac*sum

enddo 13

return

END

(If you find that the execution time of chebft isdominated by the cal culation of
N? cosines, rather than by the N evaluations of your function, then you should look
ahead to §12.3, especialy equation 12.3.22, which shows how fast cosine transform
methods can be used to evaluate equation 5.8.7.)

Now that we have the Chebyshev coefficients, how do we eval uate the approxi-
mation? One could use the recurrence relation of equation (5.8.2) to generate values
for Ty (x) from Ty = 1,71 = x, while aso accumulating the sum of (5.8.9). It
is better to use Clenshaw’s recurrence formula (§5.5), effecting the two processes
simultaneously. Applied to the Chebyshev series (5.8.9), the recurrence is

dn%+2 Eidn%+1 =0

dj =2zdj11 —djrote;  j=mym—1,...,2 (5.8.11)

1
f(x)EdO:xdz—d3+§cl

FUNCTION chebev(a,b,c,m,x)

INTEGER m

REAL chebev,a,b,x,c(m)
Chebyshev evaluation: All arguments are input. c(1:m) is an array of Chebyshev coeffi-
cients, the first m elements of ¢ output from chebft (which must have been called with
the same a and b). The Chebyshev polynomial 3"%_| ¢, Tk_1(y) — ¢1/2 is evaluated at a
point y = [x — (b + a)/2]/[(b — a)/2], and the result is returned as the function value.

INTEGER j

REAL d,dd,sv,y,y2

if ((x-a)*(x-b).gt.0.) pause ’x not in range in chebev’

d=0.

dd=0.

y=(2.*x-a-b)/(b-a) Change of variable.
y2=2.%y

don j=m,2,-1 Clenshaw’s recurrence.

sv=d
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d=y2*d-dd+c(j)
dd=sv
enddo 11
chebev=y*d-dd+0.5%c(1) Last step is different.
return
END

If we are approximating an even function on theinterval [—1, 1], its expansion
will involve only even Chebyshev polynomials. It iswasteful to call chebev with
all the odd coefficients zero [1]. Instead, using the half-angle identity for the cosine
in equation (5.8.1), we get the relation

Ton(z) = Tn(22% — 1) (5.8.12)

Thus we can evaluate a series of even Chebyshev polynomias by calling chebev
with the even coefficients stored consecutively in the array c, but with the argument
x replaced by 222 — 1.

An odd function will have an expansion involving only odd Chebysev poly-
nomials. It is best to rewrite it as an expansion for the function f(z)/z, which
involves only even Chebyshev polynomias. This will give accurate values for
f(z)/x near x = 0. The coefficients ¢/, for f(z)/z can be found from those for
f(z) by recurrence:

Ay =0
(5.8.13)

/ /
Cn_1:20n—cn+1, n:N,N—2,...

Equation (5.8.13) follows from the recurrence relation in equation (5.8.2).

If youinsist on evaluating an odd Chebyshev series, the efficient way isto once
again use chebev with z replaced by y = 222 — 1, and with the odd coefficients
stored consecutively in the array c. Now, however, you must aso change the last
formula in equation (5.8.11) to be

f(z) = 2[(2y — 1)d2 — d3 + 1] (5.8.14)

and change the corresponding line in chebev.

CITED REFERENCES AND FURTHER READING:

Clenshaw, C.W. 1962, Mathematical Tables, vol. 5, National Physical Laboratory, (London: H.M.
Stationery Office). [1]

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), Chapter 8.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
84.4.1, p. 104.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §6.5.2, p. 334.

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), §1.10, p. 39.
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5.9 Derivatives or Integrals of a
Chebyshev-approximated Function

If you have obtained the Chebyshev coefficients that approximate a functionin
a certain range (e.g., from chebft in §5.8), then it is a Simple matter to transform
them to Chebyshev coefficients corresponding to the derivative or integral of the
function. Having done this, you can evaluate the derivative or integral just asiif it
were a function that you had Chebyshev-fitted ab initio.

The relevant formulas are these: If ¢;, i« = 1,..., m are the coefficients that
approximateafunction f in equation (5.8.9), C; are the coefficients that approximate
theindefiniteintegral of f, and ¢ arethe coefficients that approximatethe derivative
of f, then

Ci—1 — Cit+1

Ci = 2(i— 1)

(i>1) (5.9.1)

1 =Ciq +2(i— 1) t=m-1,m-2,...,2) (5.9.2)

Equation (5.9.1) isaugmented by an arbitrary choice of C1, correspondingto an
arbitrary constant of integration. Equation (5.9.2), which is arecurrence, is started
withthevalues ¢, = ¢}, = 0, corresponding to no information about the m + 1st
Chebyshev coefficient of the original function f.

Here are routines for implementing equations (5.9.1) and (5.9.2).

SUBROUTINE chder(a,b,c,cder,n)

INTEGER n

REAL a,b,c(n),cder(n)
Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of ¢ to be used), this routine returns the array cder(1:n), the
Chebyshev coefficients of the derivative of the function whose coefficients are c(1:n).

INTEGER j

REAL con

cder (n)=0. n and n-1 are special cases.

cder (n-1)=2*%(n-1) *c(n)

dou j=n-2,1,-1
cder (j)=cder (j+2)+2*j*c(j+1) Equation (5.9.2).

enddo 11

con=2./(b-a)

do2 j=1,n Normalize to the interval b-a.
cder(j)=cder(j)*con

enddo 12

return

END

SUBROUTINE chint(a,b,c,cint,n)

INTEGER n

REAL a,b,c(n),cint(n)
Given a,b,c(1:n), as output from routine chebft §5.8, and given n, the desired degree
of approximation (length of ¢ to be used), this routine returns the array cint(1:n), the
Chebyshev coefficients of the integral of the function whose coefficients are c. The constant
of integration is set so that the integral vanishes at a.

INTEGER j

REAL con,fac,sum
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190 Chapter 5.  Evaluation of Functions

con=0.25%(b-a) Factor that normalizes to the interval b-a.
sum=0. Accumulates the constant of integration.
fac=1. Will equal +1.
dou j=2,n-1
cint(j)=con*(c(j-1)-c(j+1))/(j-1) Equation (5.9.1).
sum=sum+fac*cint (j)
fac=-fac
enddo 11

cint(n)=con*c(n-1)/(n-1) Special case of (5.9.1) for n.
sum=sum+fac*cint(n)

cint (1)=2.*sum Set the constant of integration.
return

END

Clenshaw-Curtis Quadrature

Since a smooth function’s Chebyshev coefficients ¢; decrease rapidly, generally expo-
nentially, equation (5.9.1) is often quite efficient as the basis for a quadrature scheme. The
routines chebft and chint, used in that order, can be followed by repeated callsto chebev
if [ f(x)dx isrequired for many different values of z in therangea < = < b.

If only the single definite integral [;’ f(x)dz is required, then chint and chebev are
replaced by the simpler formula, derived from equation (5.9.1),

1 1 1

b 1
/Gf(x)dx:(b—a) 501—§c3—ﬁcs_..._m62k+l_...
(5.9.3)

where the ¢;'s are as returned by chebft. The series can be truncated when ca541 becomes
negligible, and the first neglected term gives an error estimate.

This schemeis known as Clenshaw-Curtis quadrature[1]. It is often combined with an
adaptive choice of IV, the number of Chebyshev coefficients calculated via equation (5.8.7),
which is also the number of function evaluations of f(x). If a modest choice of N does
not give a sufficiently small cax41 in equation (5.9.3), then a larger value is tried. In this
adaptive case, it is even better to replace equation (5.8.7) by the so-called “trapezoidal” or
Gauss-Lobatto (§4.5) variant,

¢ = %Ié”f {Cos (%)} cos (W) j=1,...,N (5.9.4)

where (N.B.!) the two primes signify that the first and last terms in the sum are to be
multiplied by 1/2. If N is doubled in equation (5.9.4), then half of the new function
evaluation points areidentical to the old ones, allowing the previousfunction evaluationsto be
reused. Thisfeature, plus the analytic weights and abscissas (cosine functionsin 5.9.4), give
Clenshaw-Curtis quadrature an edge over high-order adaptive Gaussian quadrature (cf. §4.5),
which the method otherwise resembles.

If your problemforcesyouto largevaluesof NV, you should be awarethat equation (5.9.4)
can be evaluated rapidly, and simultaneously for all the values of j, by afast cosinetransform.
(See §12.3, especially equation 12.3.17.) (We already remarked that the nontrapezoidal form
(5.8.7) can also be done by fast cosine methods, cf. equation 12.3.22.)

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), pp. 78-79.

Clenshaw, C.W., and Curtis, A.R. 1960, Numerische Mathematik, vol. 2, pp. 197-205. [1]
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5.10 Polynomial Approximation from Chebyshev Coefficients 191

5.10 Polynomial Approximation from
Chebyshev Coefficients

You may well ask after reading the preceding two sections, “Must | store and
evaluate my Chebyshev approximation as an array of Chebyshev coefficients for a
transformed variable y? Can’t | convert the ¢;,’sinto actual polynomial coefficients
in the original variable z and have an approximation of the following form?’

f(z) ~ i gratt (5.10.1)
k=1

Yes, you can do this (and we will give you the algorithm to do it), but we
caution you against it: Evaluating equation (5.10.1), where the coefficient ¢'sreflect
an underlying Chebyshev approximation, usually requires more significant figures
than evaluation of the Chebyshev sum directly (as by chebev). This is because
the Chebyshev polynomias themselves exhibit a rather delicate cancellation: The
leading coefficient of T, (z), for example, is 2" ~!; other coefficients of T,,(z) are
even bigger; yet they al manage to combineinto apolynomial that lies between +1.
Only when m is no larger than 7 or 8 should you contemplate writing a Chebyshev
fit as a direct polynomial, and even in those cases you should be willing to tolerate
two or so significant figures less accuracy than the roundoff limit of your machine.

You get the g’sin equation (5.10.1) from the ¢’s output from chebft (suitably
truncated at amodest valueof m) by callingin sequencethefollowing two procedures:

SUBROUTINE chebpc(c,d,n)
INTEGER n,NMAX
REAL c(n),d(n)
PARAMETER (NMAX=50) Maximum anticipated value of n.
Chebyshev polynomial coefficients. Given a coefficient array c (1:1n) of length 1, this routine
generates a coefficient array d(1:n) such that 22:1 dpyF—1 = 22:1 cpTi_1(y) —c1/2.
The method is Clenshaw’s recurrence (5.8.11), but now applied algebraically rather than
arithmetically.
INTEGER j,k
REAL sv,dd(NMAX)
dou j=1,n
d(j)=0.
dd(j)=0.
enddo 11
d(1)=c(n)
do1s j=n-1,2,-1
do 12 k=n-j+1,2,-1
sv=d (k)
d(k)=2.*d(k-1)-dd (k)
dd(k)=sv

enddo 12

sv=d (1)

d(1)=-dd(1)+c(j)

dd(1)=sv

enddo 13

dois j=n,2,-1
d(j)=d(j-1)-dd(j)

enddo 14

d(1)=-dd(1)+0.5%c (1)

return

END
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192 Chapter 5.  Evaluation of Functions

SUBROUTINE pcshft(a,b,d,n)

INTEGER n

REAL a,b,d(n)
Polynomial coefficient shift. Given a coefficient array d(1:n), this routine generates a
coefficient array g(1:n) such that 22:1 dpyF—1 = 22:1 grz®~1, where z and y are
related by (5.8.10), i.e., the interval —1 < y < 1 is mapped to the interval a < z < b.
The array g is returned in d.

INTEGER j,k

REAL const,fac

const=2./(b-a)

fac=const

dou j=2,n First we rescale by the factor const...
d(j)=d(j)*fac
fac=fac*const

enddo 11

const=0.5%(a+b) ...which is then redefined as the desired shift.

do13 j=1,n-1 We accomplish the shift by synthetic division. Synthetic
do 12 k=n-1,j,-1 division is a miracle of high-school algebra. If you

d(k)=d(k)-const*d(k+1) never learned it, go do so. You won't be sorry.

enddo 12

enddo 13

return

END

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 59, 182-183 [synthetic division].

5.11 Economization of Power Series

One particular application of Chebyshev methods, the economization of power series, is
an occasionally useful technique, with a flavor of getting something for nothing.

Suppose that you are aready computing a function by the use of a convergent power
series, for example

f@)=1- gt g =+ (5.11.1)

(This function is actually sin(y/z)/+/z, but pretend you don’t know that.) You might be
doing a problem that requires eval uating the series many times in some particular interval, say
[0, (2)?]. Everything is fine, except that the series requires a large number of terms before
its error (approximated by the first neglected term, say) is tolerable. In our example, with
x = (2r)?, the first term smaller than 10~ is z*3/(27!). This then approximates the error
of the finite series whose last term is 22 /(25!).

Notice that because of the large exponent in =%, the error is much smaller than 10~
everywherein theinterval except at the very largest values of . Thisisthe feature that allows
“economization”: if we are willing to let the error elsewherein the interval rise to about the
same value that the first neglected term has at the extreme end of the interval, then we can
replace the 13-term series by one that is significantly shorter.

Here are the steps for doing so:

1. Change variables from x to y, as in equation (5.8.10), to map the z interval into

-1<y< L

2. Find the coefficients of the Chebyshev sum (like equation 5.8.8) that exactly equalsyour
truncated power series (the one with enough terms for accuracy).
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5.11 Economization of Power Series 193

3. Truncatethis Chebyshev seriesto a smaller number of terms, using the coefficient of the
first neglected Chebyshev polynomial as an estimate of the error.

4. Convert back to a polynomial in y.

5. Change variables back to .

All of these steps can be done numerically, given the coefficients of the original power
series expansion. The first step is exactly the inverse of the routine pcshft (§5.10), which
mapped a polynomial from y (in the interval [—1, 1]) to z (in the interval [a, b]). But since
equation (5.8.10) is a linear relation between x and y, one can also use pcshft for the
inverse. The inverse of

pcshft(a,b,d,n)

turns out to be (you can check this)

—2—-b—a 2—b—a
pcshft , »d,n
b—a b—a

The second step requiresthe inverse operation to that done by the routine chebpc (which
took Chebyshev coefficients into polynomial coefficients). The following routine, pccheb,
accomplishes this, using the formula[1]

1 k k
z* = it | Tk(z) + (1)Tk—z(w) + (2) Tho—a(z) + - - (5.11.2)
where the last term depends on whether & is even or odd,
+ K Ti(z) (kodd) + Lk To(z) (keven) (5.11.3)
(k—1)/2)" "\ ’ 2\ k/2) 0N - O

SUBROUTINE pccheb(d,c,n)

INTEGER n

REAL c(n),d(n)
Inverse of routine chebpc: given an array of polynomial coefficients d(1:n), returns an
equivalent array of Chebyshev coefficients c(1:n).

INTEGER j,jm,jp,k

REAL fac,pow

pow=1. Will be powers of 2.
c(1)=2.%d(1)
do 12 k=2,n Loop over orders of x in the polynomial.
c(k)=0. Zero corresponding order of Chebyshev.
fac=d(k)/pow
jm=k-1
jp=1
dou j=k,1,-2 Increment this and lower orders of Chebyshev with the com-
c(j)=c(j)+fac binatorial coefficent times d(k); see text for formula.
fac=fac*float(jm)/float(jp)
jm=jm-1
jp=jp+1
enddo 11
pow=2.*pow
enddo 12
return
END

The fourth and fifth steps are accomplished by the routines chebpc and pcshft,
respectively. Here is how the procedure looks all together:
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194 Chapter 5.  Evaluation of Functions

INTEGER NMANY,NFEW

REAL e (NMANY) ,d(NFEW),c (NMANY),a,b
Economize NMANY power series coefficients e (1:NMANY) in the range (a,b) into NFEW
coefficients d (1:NFEW).

call pcshft((-2.-b-a)/(b-a), (2.-b-a)/(b-a),e,NMANY)

call pccheb(e,c,NMANY)

Here one would normally examine the Chebyshev coefficients ¢ (1:NMANY) to decide how
small NFEW can be.

call chebpc(c,d,NFEW)

call pcshft(a,b,d,NFEW)

In our example, by the way, the 8th through 10th Chebyshev coefficients turn out to
be on the order of —7 x 107°%, 3 x 1077, and —9 x 10~?, so reasonable truncations (for
single precision calculations) are somewhere in this range, yielding a polynomial with 8 —
10 terms instead of the original 13.

Replacing a 13-term polynomial with a (say) 10-term polynomial without any loss of
accuracy — that does seem to be getting something for nothing. Is there some magic in
this technique? Not really. The 13-term polynomial defined a function f(x). Equivalent to
economizing the series, we could instead have evaluated f(x) at enough points to construct
its Chebyshev approximation in the interval of interest, by the methods of §5.8. We would
have obtained just the same lower-order polynomial. The principal lesson is that the rate
of convergence of Chebyshev coefficients has nothing to do with the rate of convergence of
power series coefficients; and it is the former that dictates the number of terms needed in a
polynomial approximation. A function might have a divergent power series in some region
of interest, but if the function itself is well-behaved, it will have perfectly good polynomial
approximations. These can be found by the methods of §5.8, but not by economization of
series. Thereis slightly less to economization of series than meets the eye.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 12.

Arfken, G. 1970, Mathematical Methods for Physicists, 2nd ed. (New York: Academic Press),
p. 631. [1]

5.12 Padé Approximants

A Padé approximant, so called, is that rational function (of a specified order) whose
power series expansion agrees with a given power series to the highest possible order. If
the rational function is

M
k
Z arT
R(z) = ———— (5.12.1)
1+ Z bkwk
k=1

then R(x) is said to be a Padé approximant to the series

oo

f@)=) epa® (5.12.2)

k=0

R(0) = £(0) (5.12.3)
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5.12 Padé Approximants 195

and also
dk

@R(I)L:O = o /f@)
Equations (5.12.3) and (5.12.4) furnish M + N + 1 equationsfor the unknownsao, . . ., an
and b1,...,bny. The easiest way to see what these equations are is to equate (5.12.1) and
(5.12.2), multiply both by the denominator of equation (5.12.1), and equate all powers of
x that have either a’s or b’s in their coefficients. If we consider only the special case of
a diagonal rational approximation, M = N (cf. §3.2), then we have ap = co, with the
remaining a’'s and b's satisfying

k=12 . M+N (5.12.4)
=0

N
> bmen-mik =—cnir,  k=1,...,N (5.12.5)
m=1
k
> bmck-m = ax, k=1,....,N (5.12.6)
m=0

(note, in equation 5.12.1, that by = 1). To solve these, start with equations (5.12.5), which
are a set of linear equations for all the unknown b’s. Although the set is in the form of a
Toeplitz matrix (compare equation 2.8.8), experience shows that the equations are frequently
close to singular, so that one should not solve them by the methods of §2.8, but rather by
full LU decomposition. Additionally, it is a good idea to refine the solution by iterative
improvement (routine mprove in §2.5) [1].

Oncethe b’s are known, then equation (5.12.6) givesan explicit formulafor the unknown
a’s, completing the solution.

Padé approximants are typically used when there is some unknown underlying function
f(x). We suppose that you are able somehow to compute, perhaps by laborious analytic
expansions, the values of f(z) and a few of its derivatives at = = 0: f(0), f'(0), f”(0),
and so on. These are of course the first few coefficients in the power series expansion of
f(x); but they are not necessarily getting small, and you have no idea where (or whether)
the power series is convergent.

By contrast with techniques like Chebyshev approximation (§5.8) or economization
of power series (§5.11) that only condense the information that you already know about a
function, Padé approximants can give you genuinely new information about your function’s
values. It is sometimes quite mysterious how well this can work. (Like other mysteries in
mathematics, it relates to analyticity.) An example will illustrate.

Imagine that, by extraordinary labors, you have ground out the first five terms in the
power series expansion of an unknown function f(z),

- 1 1 5 49 5 175 4
J@~2+5e+ g ~ s® T et
(It is not really necessary that you know the coefficients in exact rational form — numerical
values are just as good. We here write them as rationals to give you the impression that
they derive from some side analytic calculation.) Equation (5.12.7) is plotted as the curve
labeled “power series” in Figure 5.12.1. One sees that for = 2 4 it is dominated by its
largest, quartic, term.

We now take the five coefficients in equation (5.12.7) and run them through the routine
pade listed below. It returnsfiverational coefficients, threea’s and two b’s, for usein equation
(5.12.1) with M = N = 2. The curvein thefigure labeled “ Padé” plots the resulting rational
function. Note that both solid curves derive from the same five original coefficient values.

To evaluate the results, we need Deus ex machina (a useful fellow, when heis available)
to tell usthat equation (5.12.7) is in fact the power series expansion of the function

fl@) =[7+ (1 42)]° (5.12.8)

which is plotted asthe dotted curvein thefigure. Thisfunction hasabranch pointatx = —1,
S0 its power series is convergent only in the range —1 < = < 1. In most of the range
shown in the figure, the series is divergent, and the value of its truncation to five terms is

S (5.12.7)
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077171 L LA B B B I —
8l f(x) = [7+ (1 + X413 U3 ]
61— power series (5 terms) —_ ]

£(x)

Padé (5 coefficients)

0 2 4 6 8 10

Figure 5.12.1. The five-term power series expansion and the derived five-coefficient Padé approximant
for a sample function f(z). The full power series converges only for z < 1. Note that the Padé
approximant maintains accuracy far outside the radius of convergence of the series.

rather meaningless. Nevertheless, those five terms, converted to a Padé approximant, give a
remarkably good representation of the function up to at least z ~ 10.

Why does this work? Are there not other functions with the same first five terms in
their power series, but completely different behavior in the range (say) 2 < =z < 10? Indeed
there are. Padé approximation has the uncanny knack of picking the function you had in
mind from among all the possibilities. Except when it doesn’t! That is the downside of
Padé approximation: it is uncontrolled. There is, in general, no way to tell how accurate
it is, or how far out in x it can usefully be extended. It is a powerful, but in the end still
mysterious, technique.

Hereistheroutinethat getsa’sand b’s from your ¢’s. Note that the routineis specialized
to the case M = N, and also that, on output, the rational coefficients are arranged in aformat
for use with the evaluation routine ratval (§5.3). (Also for consistency with that routine,
the array of ¢'s is passed in double precision.)

SUBROUTINE pade(cof,n,resid)

INTEGER n,NMAX

REAL resid,BIG

DOUBLE PRECISION cof (2*n+1) For consistency with ratval.

PARAMETER (NMAX=20,BIG=1.E30) Max expected value of n, and a big number.

USES | ubksb, | udcnp, nprove
Given cof (1:2*n+1), the leading terms in the power series expansion of a function, solve
the linear Padé equations to return the coefficients of a diagonal rational function approx-
imation to the same function, namely (cof (1) 4+ cof (2)x + --- + cof (m+1)z™) /(1 +
cof (n+2)z +- - -4 cof (2*n+1)z"). The value resid is the norm of the residual vector;
a small value indicates a well-converged solution.

INTEGER j,k,indx (NMAX)

REAL d,rr,rrold,sum,q(NMAX,NMAX) ,qlu(NMAX,NMAX) ,x (NMAX),

y (NMAX) , z (NMAX)

do12 j=1,n Set up matrix for solving.

x(j)=cof (nt+j+1)
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5.13 Rational Chebyshev Approximation 197

y(3)=x(3)
dou k=1,n
q(j,k)=cof (j-k+n+1)
qlu(j,k)=q(j,k)
enddo 11
enddo 12
call ludcmp(qlu,n,NMAX,indx,d) Solve by LU decomposition and backsubstitution.
call lubksb(qlu,n,NMAX,indx,x)
rr=BIG
continue Important to use iterative improvement, since the
rrold=rr Padé equations tend to be ill-conditioned.
do13 j=1,n
z(j)=x(3)
enddo 13
call mprove(q,qlu,n,NMAX,indx,y,x)
rr=0.
dou j=1,n Calculate residual.
rr=rr+(z(j)-x(j))**2
enddo 14
if (rr.1lt.rrold)goto 1
resid=sqrt(rr)
do 16 k=1,n Calculate the remaining coefficients.
sum=cof (k+1)
dois j=1,k
sum=sum-x (j) *cof (k-j+1)
enddo 15
y (k) =sum
enddo 16 Copy answers to output.
do17 j=1,n
cof (j+1)=y(j)
cof (j+n+1)=-x(j)
enddo 17
return
END

If it is no longer improving, call it quits.

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
p. 14.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 2.

Graves-Morris, P.R. 1979, in Padé Approximation and Its Applications, Lecture Notes in Mathe-
matics, vol. 765, L. Wuytack, ed. (Berlin: Springer-Verlag). [1]

5.13 Rational Chebyshev Approximation

In §5.8 and §5.10 we learned how to find good polynomial approximations to a given
function f(z) in agiveninterval a < z < b. Here, we want to generalize the task to find
good approximations that are rational functions (see §5.3). The reason for doing so is that,
for some functions and some intervals, the optimal rational function approximation is able
to achieve substantially higher accuracy than the optimal polynomial approximation with the
same number of coefficients. This must be weighed against the fact that finding a rational
function approximation is not as straightforward as finding a polynomial approximation,
which, as we saw, could be done elegantly via Chebyshev polynomials.
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198 Chapter 5.  Evaluation of Functions

Let the desired rational function R(z) have numerator of degree m and denominator
of degree k. Then we have

po+p1x+ -+ pa™
L+qe+-- +qea”

Theunknown quantitiesthat weneedto findarepo, . . ., pm and g1, . . ., gi, thatis, m + k+ 1
quantities in all. Let r(z) denote the deviation of R(x) from f(x), and let » denote its
maximum absolute value,

r(z) = R(z) — f(x) r = max |r(z)| (5.13.2)

a<zx<b

R(z) =

~ f(x) fora<z<b (5.13.1)

The ideal minimax solution would be that choice of p’'s and ¢'s that minimizes r. Obviously
there is some minimax solution, since r is bounded below by zero. How can we find it, or
a reasonable approximation to it?

A first hint isfurnished by the following fundamental theorem: If R(z) isnondegenerate
(has no common polynomial factors in numerator and denominator), then there is a unique
choice of p's and ¢'s that minimizes r; for this choice, r(z) has m + k + 2 extrema in
a < z < b, all of magnitude » and with alternating sign. (We have omitted some technical
assumptionsin this theorem. See Ralston[1] for a precise statement.) We thuslearn that the
situation with rational functions is quite analogousto that for minimax polynomials: In §5.8
we saw that the error term of an nth order approximation, with n + 1 Chebyshev coefficients,
was generally dominated by the first neglected Chebyshev term, namely 7)., which itself
hasn + 2 extrema of equal magnitude and alternating sign. So, here, the number of rational
coefficients, m + k + 1, playsthe samerole of the number of polynomial coefficients, n + 1.

A different way to see why r(z) should have m + k + 2 extremais to note that R(x)
can be made exactly equal to f(z) at any m + k + 1 pointsz;. Multiplying equation (5.13.1)
by its denominator gives the equations

Po + p1xi + -+ Dmxy = f(wi)(1+Q1$i+'”+qw§)
(5.133)
i=1,2,.. . om4k+1

This is a set of m + k + 1 linear equations for the unknown p's and ¢'s, which can be
solved by standard methods (e.g., LU decomposition). If we choose the z;’s to all be in
the interval (a,b), then there will generically be an extremum between each chosen z; and
xit+1, plus aso extrema where the function goes out of the interval at a and b, for a total
of m + k + 2 extrema. For arbitrary x;'s, the extrema will not have the same magnitude.
The theorem saysthat, for one particular choice of x;’s, the magnitudes can be beaten down
to the identical, minimal, value of r.

Instead of making f(z;) and R(x;) equal at the points z;, one can instead force the
residual r(x;) to any desired values y; by solving the linear equations

po+p1@i 4+ + eyt = [f(@i) — yil(1+ @i + - + qezl)
(5.13.4)
=12 m4k+1

In fact, if the x;’s are chosen to be the extrema (not the zeros) of the minimax solution,
then the equations satisfied will be

po+pixi+ -+ pmxl = [f(@:) £ )1+ quai + - + qeal)
(5.135)
i=1,2,... o m+k+2

wherethe + aternates for the alternating extrema. Notice that equation (5.13.5) is satisfied at
m + k + 2 extrema, while equation (5.13.4) was satisfied only at m + k + 1 arbitrary points.
How can this be? The answer is that r in equation (5.13.5) is an additional unknown, so that
the number of both equations and unknownsis m + k + 2. True, the set is mildly nonlinear
(inr), butin general it is still perfectly soluble by methods that we will develop in Chapter 9.

We thus see that, given only the locations of the extrema of the minimax rational
function, we can solve for its coefficients and maximum deviation. Additional theorems,
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Figure 5.13.1. Solid curves show deviations r(z) for five successiveiterations of the routine ratlsq

for an arbitrary test problem. The algorithm does not converge to exactly the minimax solution (shown
as the dotted curve). But, after one iteration, the discrepancy is a small fraction of the last significant
bit of accuracy.

leading up to the so-called Remes algorithms|[1], tell how to converge to these locations by
an iterative process. For example, hereis a (slightly simplified) statement of Remes’ Second
Algorithm: (1) Find aninitial rational function with m + k& + 2 extrema z; (not having equal
deviation). (2) Solve equation (5.13.5) for new rational coefficients and r. (3) Evaluate the
resulting R(x) to find its actual extrema (which will not be the same as the guessed values).
(4) Replace each guessed value with the nearest actual extremum of the same sign. (5) Go
back to step 2 and iterate to convergence. Under a broad set of assumptions, this method will
converge. Ralston [1] fillsin the necessary details, including how to find theinitial set of z;’s.

Up to this point, our discussion has been textbook-standard. We now reveal ourselves
as heretics. We don’t much like the elegant Remes algorithm. Its two nested iterations (on
r in the nonlinear set 5.13.5, and on the new sets of x;’s) are finicky and require a lot of
special logic for degenerate cases. Even more heretical, we doubt that compulsive searching
for the exactly best, equal deviation, approximation is worth the effort — except perhaps for
those few people in the world whose business it is to find optimal approximations that get
built into compilers and microchips.

When we userational function approximation, the goal is usually much more pragmatic:
Inside some inner loop we are evaluating some function a zillion times, and we want to
speed up its evaluation. Almost never do we need this function to the last bit of machine
accuracy. Suppose (heresy!) we use an approximation whose error hasm + k + 2 extrema
whose deviations differ by a factor of 2. The theorems on which the Remes algorithms
are based guarantee that the perfect minimax solution will have extrema somewhere within
this factor of 2 range — forcing down the higher extrema will cause the lower ones to rise,
until all are equal. So our “sloppy” approximation is in fact within a fraction of a least
significant bit of the minimax one.

That is good enough for us, especially when we have available a very robust method
for finding the so-called “sloppy” approximation. Such a method is the least-squares solution
of overdetermined linear equations by singular value decomposition (§2.6 and §15.4). We
proceed as follows: First, solve (in the least-squares sense) equation (5.13.3), not just for
m + k + 1 values of z;, but for a significantly larger number of z;’s, spaced approximately
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200 Chapter 5.  Evaluation of Functions

like the zeros of a high-order Chebyshev polynomial. This gives an initial guessfor R(x).
Second, tabulate the resulting deviations, find the mean absolute deviation, call it r, and then
solve (again in the least-squares sense) equation (5.13.5) with r fixed and the 4+ chosen to be
the sign of the observed deviation at each point x;. Third, repeat the second step a few times.

You can spot some Remes orthodoxy lurking in our algorithm: The equations we solve
are trying to bring the deviations not to zero, but rather to plus-or-minus some consistent
value. However, we dispense with keeping track of actual extrema; and we solve only linear
equations at each stage. One additional trick is to solve a weighted least-squares problem,
where the weights are chosen to beat down the largest deviations fastest.

Hereis aprogram implementing theseideas. Noticethat the only callsto the function fn
occur in the initia filling of the table £s. You could easily modify the code to do this filling
outside of the routine. It is not even necessary that your abscissas xs be exactly the ones
that we use, though the quality of the fit will deteriorate if you do not have several abscissas
between each extremum of the (underlying) minimax solution. Notice that the rational
coefficients are output in a format suitable for evaluation by the routineratval in §5.3.

SUBROUTINE ratlsq(fn,a,b,mm,kk,cof ,dev)
INTEGER kk,mm,NPFAC,MAXC,MAXP ,MAXIT
DOUBLE PRECISION a,b,dev,cof (mm+kk+1) ,fn,PI02,BIG
PARAMETER (NPFAC=8,MAXC=20,MAXP=NPFAC*MAXC+1,
MAXIT=5,PI02=3.141592653589793D0/2.D0,BIG=1.D30)
EXTERNAL fn
USES fn, ratval, dsvbksb, dsvdcnp DOUBLE PRECISION versions of svdcmp, svbksb.
Returns in cof (1:mm+kk+1) the coefficients of a rational function approximation to the
function fn in the interval (a,b). Input quantities mm and kk specify the order of the numer-
ator and denominator, respectively. The maximum absolute deviation of the approximation
(insofar as is known) is returned as dev.
INTEGER 1i,it,j,ncof,npt
DOUBLE PRECISION devmax,e,hth,pow,sum,bb(MAXP),coff (MAXC) ,ee (MAXP),
£s (MAXP) ,u(MAXP,MAXC) ,v(MAXC,MAXC) ,w(MAXC) ,wt (MAXP) ,xs (MAXP) ,

ratval
ncof=mm+kk+1
npt=NPFAC*ncof Number of points where function is evaluated, i.e., fineness
dev=BIG of the mesh.
do1u i=1,npt Fill arrays with mesh abscissas and function values.
if (i.1t.npt/2) then At each end, use formula that minimizes roundoff sensitivity.

hth=PI02*(i-1)/(npt-1.d0)

xs (i)=a+(b-a)*sin(hth)**2
else

hth=PI02* (npt-i)/(npt-1.40)

xs (1)=b-(b-a)*sin (hth)**2

endif
fs(i)=fn(xs(i))
wt(i)=1.d0 In later iterations we will adjust these weights to combat the
ee(i)=1.40 largest deviations.
enddo 11
e=0.d0
do 17 it=1,MAXIT Loop over iterations.
do 1 i=1,npt Set up the “design matrix” for the least-squares fit.
pow=wt (i)
bb(i)=pow*(fs(i)+sign(e,ee(i))) Key idea here: Fit to fn(x) + e where
do1 j=1,mm+1 the deviation is positive, to fn(z) —e
u(i,j)=pow where it is negative. Then e is sup-
pow=pow*xs (i) posed to become an approximation
enddo 12 to the equal-ripple deviation.
pow=-bb (i)

do 13 j=mm+2,ncof
pow=pow*xs (i)
u(i,j)=pow
enddo 13
enddo 14
call dsvdcmp(u,npt,ncof ,MAXP,MAXC,w,v) Singular Value Decomposition.
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In especially singular or difficult cases, one might here edit the singular values w(1:ncof),
replacing small values by zero.
call dsvbksb(u,w,v,npt,ncof ,MAXP,MAXC,bb,coff)
devmax=0.d0
sum=0.d0
do 15 j=1,npt Tabulate the deviations and revise the weights.
ee(j)=ratval(xs(j),coff,mm,kk)-fs(j)
wt (j)=abs(ee(j)) Use weighting to emphasize most deviant points.
sum=sum+wt (j)
if (wt(j) .gt.devmax)devmax=wt (j)
enddo 15
e=sum/npt Update e to be the mean absolute deviation.
if (devmax.le.dev) then Save only the best coefficient set found.
do1s j=1,ncof
cof (j)=coff(j)
enddo 16
dev=devmax
endif
write (*,10) it,devmax
enddo 17
return
FORMAT (1x,’ratlsq iteration=’,i2,’ max error=’,1pel0.3)
END

Figure 5.13.1 shows the discrepancies for the first five iterations of ratlsq whenit is
applied to find the m = k = 4 rational fit to the function f(z) = cosz/(1 + €%) in the
interval (0, 7). One seesthat after the first iteration, the results are virtually as good as the
minimax solution. The iterations do not converge in the order that the figure suggests: In
fact, it is the second iteration that is best (has smallest maximum deviation). The routine
ratlsq accordingly returns the best of its iterations, not necessarily the last one; there is no
advantage in doing more than five iterations.

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
Chapter 13. [1]

5.14 Evaluation of Functions by Path
Integration

In computer programming, the technique of choice is not necessarily the most
efficient, or elegant, or fastest executing one. Instead, it may be the onethat is quick
to implement, general, and easy to check.

One sometimes needs only a few, or a few thousand, evaluations of a special
function, perhaps a complex valued function of a complex variable, that has many
different parameters, or asymptotic regimes, or both. Use of the usua tricks (series,
continued fractions, rational function approximations, recurrence relations, and so
forth) may result in a patchwork program with tests and branches to different
formulas. While such a program may be highly efficient in execution, it is often not
the shortest way to the answer from a standing start.

A different technique of considerable generality is direct integration of a
function’s defining differential equation — an ab initio integration for each desired
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202 Chapter 5.  Evaluation of Functions

function value — aong a path in the complex plane if necessary. Whilethismay at
first seem like swatting a fly with a golden brick, it turns out that when you already
have the brick, and the fly is adeep right under it, al you haveto doislet it fall!

As a specific example, let us consider the complex hypergeometric func-
tion o Fy (a, b, ¢; z), which is defined as the analytic continuation of the so-called
hypergeometric series,

2F1(ab0'z):1_|_a_b o Q(Cb-l-l)b(b-{-l)i

¢ 1! cle+1) 21
ala+1)...(a+j—Dbb+1)...(b+j—1) 27
+ cle+1)...(c+j—1) ﬁ—i_

(5.14.1)
The series converges only within the unit circle |z| < 1 (seell]), but one's interest
in the function is often not confined to this region.
The hypergeometricfunction o F; isasolution (infact the solutionthat isregular
at the origin) of the hypergeometric differential equation, which we can write as

2(1—2)F" =abF —[c— (a+ b+ 1)z]F’ (5.14.2)

Here prime denotes d/d~. One can see that the equation has regular singular points
a z=0,1,and co. Sincethe desired solutionisregular a = = 0, the values 1 and
oo will in general be branch points. If we want 5 F; to be asingle valued function,
we must have a branch cut connecting these two points. A conventional position for
this cut is along the positive real axis from 1 to oo, though we may wish to keep
open the possibility of atering this choice for some applications.

Our golden brick consists of a collection of routines for the integration of sets
of ordinary differential equations, which we will develop in detail later, in Chapter
16. For now, we need only a high-level, “black-box” routine that integrates such
a set from initial conditions at one value of a (real) independent variable to final
conditions at some other value of the independent variable, while automatically
adjusting its internal stepsize to maintain some specified accuracy. That routineis
caled odeint and, in one particular invocation, calculates its individual steps with
a sophisticated Bulirsch-Stoer technique.

Suppose that we know values for F' and itsderivative F’ at some value z, and
that we want to find £ at some other point z; in the complex plane. The straight-line
path connecting these two points is parametrized by

z(8) = zo + s(z1 — 20) (5.14.3)

with s areal parameter. The differential equation (5.14.2) can now be written as
a set of two first-order equations,

dF
E = (21 —Zo)F/
dF’ abF—[c—(a+b—|—1)z]F’>

a5 ) ( 21— 2)

to be integrated from s = 0 to s = 1. Here F and F’ are to be viewed as two
independent complex variables. The fact that prime means d/dz can be ignored; it

(5.14.4)

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



5.14 Evaluation of Functions by Path Integration 203

Im
'y [ ]
". e - —”“"Q ------- ':. ____________
[} 7 N L T T
L} \ [} --9
4 \ h
5 // use power series  \1
Y l branch cut
N T o
i . \\ 0 I“‘ 1 Re
R \ /
R \ /N
’ \ / |‘
[ ) ~N - < K
S == \
........ Y
_____ .

Figure 5.14.1. Complex plane showing the singular points of the hypergeometric function, its branch
cut, and some integration paths from the circle |z| = 1/2 (where the power series converges rapidly)
to other points in the plane.

will emerge as aconsequence of thefirst equationin (5.14.4). Moreover, therea and
imaginary parts of equation (5.14.4) define a set of four real differential equations,
with independent variable s. The complex arithmetic on the right-hand side can be
viewed as mere shorthand for how the four components are to be coupled. It is
precisaly this point of view that gets passed to the routine odeint, since it knows
nothing of either complex functions or complex independent variables.

It remains only to decide where to start, and what path to take in the complex
plane, to get to an arbitrary point z. This is where consideration of the function’s
singularities, and the adopted branch cut, enter. Figure 5.14.1 shows the strategy
that we adopt. For |z| < 1/2, theseriesin equation (5.14.1) will in general converge
rapidly, and it makes senseto useit directly. Otherwise, we integrate along astraight
line path from one of the starting points (+1/2, 0) or (0, +1/2). Theformer choices
are natural for 0 < Re(z) < 1 and Re(z) < 0, respectively. The latter choices are
used for Re(z) > 1, above and below the branch cut; the purpose of starting away
from the real axisin these cases is to avoid passing too close to the singularity at
z = 1 (see Figure 5.14.1). The location of the branch cut is defined by the fact that
our adopted strategy never integrates across the real axisfor Re(z) > 1.

An implementation of thisalgorithm isgiven in §6.12 as the routinehypgeo.

A number of variants on the procedure described thusfar are possible, and easy
to program. If successively called valuesof = areclosetogether (withidentical values
of a, b, and c), then you can save the state vector (F, F”) and the corresponding value
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204 Chapter 5.  Evaluation of Functions

of z on each call, and use these as starting values for the next call. The incremental
integration may then take only one or two steps. Avoid integrating across the branch
cut unintentionally: the function value will be“correct,” but not the one you want.

Alternatively, you may wish to integrate to some position z by a dog-leg path
that does cross thereal axis Rez > 1, as a means of moving the branch cut. For
example, in some cases you might want to integrate from (0,1/2) to (3/2,1/2),
and go from there to any point with Rez > 1 — with either sign of Imz. (If
you are, for example, finding roots of a function by an iterative method, you do
not want the integration for nearby values to take different paths around a branch
point. If it does, your root-finder will see discontinuous function values, and will
likely not converge correctly!)

Inany case, beawarethat alossof numerical accuracy can resultif you integrate
through a region of large function value on your way to a fina answer where the
functionvalueissmall. (For the hypergeometric function, aparticular case of thisis
when a and b are both large and positive, with ¢ and = 2 1.) In such cases, you'll
need to find a better dog-leg path.

The genera technique of evaluating a function by integrating its differential
equation in the complex plane can also be applied to other special functions. For
example, the complex Bessel function, Airy function, Coulomb wave function, and
Weber function are al specia cases of the confluent hypergeometric function, with a
differential equation similar to the one used above (see, eg., [1] §13.6, for atable of
special cases). The confluent hypergeometric function has no singularitiesat finite z:
That makes it easy to integrate. However, its essentia singularity at infinity means
that it can have, aong some paths and for some parameters, highly oscillatory or
exponentially decreasing behavior: That makes it hard to integrate. Some case by
case judgment (or experimentation) is therefore required.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York). [1]
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Chapter 6. Special Functions

6.0 Introduction

There is nothing particularly specia about a special function, except that
some person in authority or textbook writer (not the same thing!) has decided to
bestow the moniker. Special functions are sometimes called higher transcendental
functions (higher than what?) or functionsof mathematical physics (but they occur in
other fields aso) or functionsthat satisfy certain frequently occurring second-order
differential equations (but not all special functionsdo). One might simply call them
“useful functions’” and let it go at that; it is surely only a matter of taste which
functions we have chosen to include in this chapter.

Good commercially available program libraries, such asNAG or IMSL, contain
routinesfor anumber of specid functions. These routinesare intended for userswho
will have no idea what goes on inside them. Such state of the art “black boxes’ are
often very messy things, full of branchesto completely different methods depending
on the vaue of the calling arguments. Black boxes have, or should have, careful
control of accuracy, to some stated uniform precision in al regimes.

We will not be quite so fastidious in our examples, in part because we want
to illustrate techniques from Chapter 5, and in part because we want you to
understand what goes on in the routines presented. Some of our routines have an
accuracy parameter that can be made as small as desired, while others (especialy
those involving polynomia fits) give only a certain accuracy, one that we believe
serviceable (typically six significant figures or more). We do not certify that the
routines are perfect black boxes. We do hope that, if you ever encounter trouble
in a routine, you will be able to diagnose and correct the problem on the basis of
the information that we have given.

In short, the special function routines of this chapter are meant to be used —
we use them al the time — but we also want you to be prepared to understand
their inner workings.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York) [full of useful numerical approximations to a great variety
of functions].

IMSL Sfun/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042).

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.),
Chapter S.
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206 Chapter 6.  Special Functions

Hart, J.F, et al. 1968, Computer Approximations (New York: Wiley).
Hastings, C. 1955, Approximations for Digital Computers (Princeton: Princeton University Press).
Luke, Y.L. 1975, Mathematical Functions and Their Approximations (New York: Academic Press).

6.1 Gamma Function, Beta Function, Factorials,
Binomial Coefficients

The gamma function is defined by the integra

I'(z) = /OOO t*~tetdt (6.1.1)

When the argument z is an integer, the gamma function is just the familiar factorial
function, but offset by one,

n!l=T(n+1) (6.1.2)
The gamma function satisfies the recurrence relation
T(z+1) = 2I'(2) (6.1.3)

If thefunctionis known for arguments =z > 1 or, more generally, in the half complex
planeRe(z) > 1itcanbeobtainedfor » < 1 or Re(z) < 1 by thereflection formula
™ w4

Td-2)= I'(z) sin(7z) B (1 + z)sin(wz) (6:1.4)

Noticethat I'(z) hasapoleat = = 0, and at al negative integer values of z.

There are a variety of methods in use for calculating the function I'(z)
numerically, but none is quite as neat as the approximation derived by Lanczos[1].
This scheme is entirely specific to the gamma function, seemingly plucked from
thin air. We will not attempt to derive the approximation, but only state the
resulting formula: For certain integer choices of v and N, and for certain coefficients
1,2, .. ., cn, the gamma function is given by

Tz 4+1) = (2 47 + b= FemGrHd)
(6.1.5)

Cc1 C2 CN
X V2 +—4——+F ——+ >0
| z+1 z42 z+ N ¢ (2 )

You can see that this is a sort of take-off on Stirling’s approximation, but with a
series of corrections that take into account the first few poles in the left complex
plane. The constant ¢, isvery nearly equal to 1. The error termis parametrized by e.
Fory =5, N = 6, and acertain set of ¢'s, the error issmaller than |¢| < 2 x 10710,
Impressed? If not, then perhaps you will be impressed by the fact that (with these
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6.1 Gamma, Beta, and Related Functions 207

same parameters) the formula (6.1.5) and bound on e apply for the complex gamma
function, everywhere in the half complex plane Re z > 0.

Itis better to implement InT'() than T'(z), since the latter will overflow many
computers floating-point representation at quite modest values of z. Often the
gammafunctionisused in calculationswherethe large values of T'(x) are divided by
other large numbers, with the result being aperfectly ordinary value. Such operations
would normally be coded as subtraction of logarithms. With (6.1.5) in hand, we can
compute the logarithm of the gamma function with two calls to a logarithm and 25
or so arithmetic operations. This makesit not much more difficult than other built-in
functions that we take for granted, such as sinz or e”:

FUNCTION gammln(xx)
REAL gammln,xx
Returns the value In[['(xx)] for xx > 0.
INTEGER j
DOUBLE PRECISION ser,stp,tmp,x,y,cof (6)
Internal arithmetic will be done in double precision, a nicety that you can omit if five-figure
accuracy is good enough.
SAVE cof,stp
DATA cof,stp/76.18009172947146d40,-86.50532032941677d0,
24.01409824083091d0,-1.231739572450155d0, . 1208650973866179d-2,
-.5395239384953d-5,2.5066282746310005d0/
X=XX
y=x
tmp=x+5.5d0
tmp=(x+0.5d0)*1og (tmp) -tmp
ser=1.000000000190015d0
dou j=1,6
y=y+1 .do
ser=ser+cof(j)/y
enddo 11
gammln=tmp+log(stp*ser/x)
return
END

How shall we write a routine for the factorial function n!? Generally the
factorial function will be called for small integer values (for large values it will
overflow anyway!), and in most applicationsthe same integer valuewill becalled for
many times. It isa profligate waste of computer timeto call exp (gammln(n+1.0))
for each required factorial. Better to go back to basics, holding gammln in reserve
for unlikely cals:

FUNCTION factrl(n)
INTEGER n
REAL factrl
USES ganmi n
Returns the value n! as a floating-point number.
INTEGER j,ntop

REAL a(33),gammln Table to be filled in only as required.
SAVE ntop,a
DATA ntop,a(1)/0,1./ Table initialized with 0! only.

if (n.1t.0) then
pause ’negative factorial in factrl’

else if (n.le.ntop) then Already in table.
factrl=a(n+1)

else if (n.le.32) then Fill in table up to desired value.
dou j=ntop+1l,n
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208 Chapter 6.  Special Functions

a(j+1)=j*a(j)
enddo 11
ntop=n
factrl=a(n+1)
else Larger value than size of table is required. Actually, this big
factrl=exp(gammln(n+1.)) a value is going to overflow on many computers, but no
endif harm in trying.
return
END

A useful point is that factrl will be exact for the smaller values of n, since
floating-point multiplieson small integers are exact on all computers. This exactness
will not hold if we turn to the logarithm of the factorials. For binomial coefficients,
however, we must do exactly this, since the individual factorias in a binomial
coefficient will overflow long before the coefficient itself will.

The binomia coefficient is defined by

(Z) _ wnniik)' 0<k<n (6.1.6)

FUNCTION bico(n,k)
INTEGER k,n
REAL bico
USES factln
Returns the binomial coefficient (Z) as a floating-point number.
REAL factln
bico=nint (exp(factln(n)-factln(k)-factln(n-k)))
return The nearest-integer function cleans up roundoff error for smaller values of n and k.
END

which uses

FUNCTION factln(n)

INTEGER n

REAL factln

USES ganmi n
Returns In(n!).

REAL a(100) ,gammln

SAVE a
DATA a/100%-1./ Initialize the table to negative values.
if (n.1t.0) pause ’negative factorial in factln’
if (n.le.99) then In range of the table.
if (a(n+1).1t.0.) a(n+1)=gammln(n+1.) If not already in the table, put it in.
factln=a(n+1)
else
factln=gammln(n+1.) Out of range of the table.
endif
return

END
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6.2 Incomplete Gamma Function 209

If your problem requires a series of related binomial coefficients, a good idea
is to use recurrence relations, for example

() = () - () 60
(,{L):Z—;f@

Finally, turning away from the combinatorial functions with integer valued
arguments, we come to the beta function,

(6.1.7)

1
B(z,w) = B(w,2) = / =71 — ) tdt (6.1.8)
0
which is related to the gamma function by
B(z,w) = =———= (6.1.9)

hence

FUNCTION beta(z,w)
REAL beta,w,z
USES ganmi n
Returns the value of the beta function B(z,w).
REAL gammln
beta=exp (gammln(z)+gammln (w) -gammln(z+w))
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 6.

Lanczos, C. 1964, SIAM Journal on Numerical Analysis, ser. B, vol. 1, pp. 86-96. [1]

6.2 Incomplete Gamma Function, Error
Function, Chi-Square Probability Function,
Cumulative Poisson Function

The incomplete gamma function is defined by

Pa,z) = a, ) = ! /OI et tdt (a>0) (6.2.1)
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210 Chapter 6.  Special Functions

10

o]

incompl ete gamma function P(a,x)

Figure 6.2.1. The incomplete gamma function P(a, ) for four values of a.
It has the limiting values
P(a,0)=0 and P(a,0) =1 (6.2.2)

Theincomplete gamma function P(a, 2) ismonotonic and (for a greater than one or
s0) rises from “near-zero” to “near-unity” in arange of = centered on about a — 1,
and of width about \/a (see Figure 6.2.1).

The complement of P(a,x) is aso confusingly caled an incomplete gamma
function,

Qa,z)=1— Pla,x) = FIEC(L;L;C) = F(la) /OO et dt (a>0) (6.23)
It has the limiting values
Q(a,0)=1 and Q(a,00) =0 (6.2.4)

The notations P(a, z),7(a, z), and T'(a, x) are standard; the notation Q(a, x) is
specific to this book.
There is a series development for +(a, =) as follows:

Y(a, ) Z " (6.2.5)

a—|—1—|—n)

One does not actually need to compute anew I'(a + 1 + n) for each n; one rather
uses equation (6.1.3) and the previous coefficient.
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6.2 Incomplete Gamma Function 211

A continued fraction development for I'(a, ) is

. 0 6.2.6
r+ 14+ x4+ 1+ z+ (z>0) ( )

1 1- 1 2- 2
T(a,z) =e a2 ( ¢ ¢ )

It is computationally better to use the even part of (6.2.6), which converges twice
as fast (see §5.2):

(x >0)
(62.7)

F(a,x)Ze_Ix“( L L-(1-a) 2:-2-0) )

z+l—a— z+3—-a— z+5—a—

It turns out that (6.2.5) converges rapidly for x less than about a + 1, while
(6.2.6) or (6.2.7) convergesrapidly for x greater than about a + 1. In theserespective
regimes each requires at most a few times /a terms to converge, and this many
only near z = a, where the incomplete gamma functions are varying most rapidly.
Thus (6.2.5) and (6.2.7) together alow evauation of the function for all positive
a and z. An extra dividend is that we never need compute a function value near
zero by subtracting two nearly equal numbers. The higher-level functionsthat return
P(a,z) and Q(a,z) are

FUNCTION gammp(a,x)
REAL a,gammp,x
USES gcf, gser
Returns the incomplete gamma function P(a,z).
REAL gammcf,gamser,gln
if(x.1t.0..or.a.le.0.)pause ’bad arguments in gammp’
if(x.1t.a+1.)then Use the series representation.
call gser(gamser,a,x,gln)
gammp=gamser

else Use the continued fraction representation
call gcf (gammcf,a,x,gln)
gammp=1.-gammcf and take its complement.

endif

return

END

FUNCTION gammq(a,x)
REAL a,gammq,x
USES gcf, gser
Returns the incomplete gamma function Q(a,z) = 1 — P(a,x).
REAL gammcf,gamser,gln
if(x.1t.0..or.a.le.0.)pause ’bad arguments in gammq’

if(x.1t.a+1.)then Use the series representation
call gser(gamser,a,x,gln)
gammg=1.-gamser and take its complement.
else Use the continued fraction representation.

call gcf (gammcf,a,x,gln)
gammqg=gammcf

endif

return

END
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212 Chapter 6.  Special Functions

The argument gln is returned by both the series and continued fraction
procedures containing the value InT'(a); the reason for thisis so that it is available
to you if you want to modify the above two procedures to givey(a, «) and I'(a, ),
in addition to P(a, z) and Q(a, x) (cf. equations 6.2.1 and 6.2.3).

The procedures gser and gcf which implement (6.2.5) and (6.2.7) are

SUBROUTINE gser (gamser,a,x,gln)
INTEGER ITMAX
REAL a,gamser,gln,x,EPS
PARAMETER (ITMAX=100,EPS=3.e-7)
USES ganmi n
Returns the incomplete gamma function P(a,z) evaluated by its series representation as
gamser. Also returns InT'(a) as gln.
INTEGER n
REAL ap,del,sum,gammln
gln=gammln(a)
if(x.le.0.)then
if(x.1t.0.)pause ’x < O in gser’
gamser=0.
return
endif
ap=a
sum=1./a
del=sum
do 11 n=1,ITMAX
ap=ap+1.
del=del*x/ap
sum=sum+del
if (abs(del).lt.abs(sum)*EPS)goto 1
enddo 11
pause ’a too large, ITMAX too small in gser’
gamser=sum*exp (-x+a*log(x)-gln)
return
END

SUBROUTINE gcf (gammcf,a,x,gln)
INTEGER ITMAX
REAL a,gammcf,gln,x,EPS,FPMIN
PARAMETER (ITMAX=100,EPS=3.e-7,FPMIN=1.e-30)
USES ganmi n
Returns the incomplete gamma function Q(a, ) evaluated by its continued fraction repre-
sentation as gammcf. Also returns InT'(a) as gln.
Parameters: ITMAX is the maximum allowed number of iterations; EPS is the relative accu-
racy; FPMIN is a number near the smallest representable floating-point number.
INTEGER i
REAL an,b,c,d,del,h,gammln
gln=gammln(a)
b=x+1.-a Set up for evaluating continued fraction by modified
c=1./FPMIN Lentz’s method (§5.2) with by = 0.
d=1./p
h=d
don i=1,ITMAX Iterate to convergence.
an=-ix(i-a)
b=b+2.
d=an*d+b
if (abs(d) .1t .FPMIN)d=FPMIN
c=b+an/c
if (abs(c) .1t .FPMIN) c=FPMIN
d=1./d
del=d*c
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h=h*del

if (abs(del-1.).1t.EPS)goto 1
enddo 11
pause ’a too large, ITMAX too small in gcf’
gammcf=exp(-x+axlog(x)-gln)*h Put factors in front.
return

END

Error Function

The error function and complementary error function are special cases of the
incomplete gamma function, and are obtained moderately efficiently by the above

procedures. Their definitions are

2 z 2
erf(x) = ﬁ‘/o E_t dt

and

(6.2.8)

_ 2 [T e
erfc(z) =1 — ef(x) = \/E~/r e " dt (6.2.9)
The functions have the following limiting values and symmetries:

ef(0) =0 erf(co) =1 ef(—x) = —ef(z) (6.2.10)
erfc(0) =1 erfc(oo0) =0 erfc(—z) = 2 — erfc(x) (6.2.11)

They are related to the incomplete gamma functions by

ef(x) = P(%, x2> (x>0) (6.2.12)
and
erfc(z) = Q(%, x2> (z >0) (6.2.13)

Hence we have

FUNCTION erf (x)
REAL erf,x
USES ganmp
Returns the error function erf(x).
REAL gammp
if(x.1t.0.)then
erf=-gammp (.5,x**2)
else
erf=gammp (.5,x**2)
endif
return
END
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214 Chapter 6.  Special Functions

FUNCTION erfc(x)
REAL erfc,x
USES ganmp, ganmy
Returns the complementary error function erfc(x).
REAL gammp,gammq
if(x.1t.0.)then
erfc=1.+gammp (.5,x**2)
else
erfc=gammq(.5,x**2)
endif
return
END

If you care to do so, you can easily remedy the minor inefficiency in erf and
erfc, namely that I'(0.5) = /7 is computed unnecessarily when gammp or gammq
is caled. Before you do that, however, you might wish to consider the following
routine, based on Chebyshev fitting to an inspired guess as to the functional form:

FUNCTION erfcc(x)
REAL erfcc,x
Returns the complementary error function erfc(x) with fractional error everywhere less than
1.2 x 1077.
REAL t,z
z=abs (x)
t=1./(1.40.5%z)
erfcc=t*exp(-z*z-1.26551223+t*(1.00002368+t*(.37409196+
t*(.09678418+t* (-.18628806+t* (.27886807+t* (-1.13520398+
t*(1.48851587+t*(-.82215223+t*.17087277)))))))))
if (x.1t.0.) erfcc=2.-erfcc
return
END

There are aso some functions of two variables that are special cases of the
incomplete gamma function:

Cumulative Poisson Probability Function

P.(< k), for positive = and integer k£ > 1, denotes the cumulative Poisson
probability function. It is defined as the probability that the number of Poisson
random events occurring will be between 0 and k& — 1 inclusive, if the expected mean
number is x. It has the limiting values

P (<1l)=¢e"" P(<o0)=1 (6.2.14)
Its relation to the incomplete gamma function is simply

P.(< k)= Q(k,z) = gammq (k, x) (6.2.15)
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6.3 Exponential Integrals 215

Chi-Square Probability Function

P(x?|v) is defined as the probability that the observed chi-square for a correct
model should be less than a value x2. (We will discuss the use of this function in
Chapter 15.) Itscomplement Q(x2|v) isthe probability that the observed chi-square
will exceed the value x? by chance even for a correct model. In both cases v isan
integer, the number of degrees of freedom. The functions have the limiting values

POly)=0  P(colv)=1 (6.2.16)
QU =1  Q(colv)=0 (6.2.17)

and the following relation to the incomplete gamma functions,

2 2
v X 'S

P(X2|1/) = P(i’ —2 > = gammp (5, —2 > (6.2.18)
2 2

Q*|v) = Q(g %) — ganmq (g %) (6.2.19)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 6, 7, and 26.

Pearson, K. (ed.) 1951, Tables of the Incomplete Gamma Function (Cambridge: Cambridge
University Press).

6.3 Exponential Integrals

The standard definition of the exponentia integrd is

oo —xt
En(x):/l S dt, x>0, n=01,... (6.3.1)

The function defined by the principal value of the integral

—X —00

is also caled an exponential integral. Note that Ei(—x) is related to —F; (x) by
analytic continuation.
The function E,,(z) isaspecia case of the incomplete gamma function

E,(r) =" 'T'(1 —n,z) (6.3.3)
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216 Chapter 6.  Special Functions

We can therefore use a similar strategy for evaluating it. The continued fraction —
just equation (6.2.6) rewritten — converges for al = > 0:

1 n 1 n+1 2
E,(x)=¢"" — 6.34
(@) =e (x—|— 1+ z+ 1+ z+ ) ( )
We use it in its more rapidly converging even form,
- 1 1-n 2(n+1)
E,(zx)=¢e"" 6.3.5
(@) =e (x—|—n— r+n+2— z4+n+4—- > ( )

The continued fraction only really converges fast enough to be useful for = 2 1.
For 0 < =z < 1, we can use the series representation

Bo(x) = %[_ Inz +(n)] — mZ:O % (6.36)
m#n—1

The quantity ¢)(n) hereisthe digamma function, given for integer arguments by

n—1

e (6.3.7)
1 m

3
I

where~ = 0.5772156649 . . . isEuler’s constant. We evaluate the expression (6.3.6)
in order of ascending powers of x:

1 T 2 (—z)"2
En(z) == (1_n)_(2_n)-1+(3_n)(1-2)_"'+(_1)(n_2)!]
—r n—1 —z)" —r n+1
" ((n )1)! =hnz+9(n) = (1.2! +2(- (n)—|— 1)!+"']

(6.3.8)

The first square bracket is omitted when n = 1. This method of evaluation has the
advantage that for large n the series converges before reaching the term containing
¥(n). Accordingly, one needs an algorithm for evaluating v (n) only for small n,
n S 20—40. We use equation (6.3.7), although a table look-up would improve
efficiency dightly.

Amos|[1] presents a careful discussion of the truncation error in evaluating
equation (6.3.8), and gives a fairly elaborate termination criterion. We have found
that simply stopping when the last term added is smaller than the required tolerance
works about as well.

Two special cases have to be handled separately:

”3 (6.3.9)
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6.3 Exponential Integrals 217

The routine expint alows fast evaluation of F, (z) to any accuracy EPS
within the reach of your machine's word length for floating-point numbers. The
only modification required for increased accuracy is to supply Euler’s constant with
enough significant digits. Wrench [2] can provide you with the first 328 digits if
necessary!

FUNCTION expint(n,x)
INTEGER n,MAXIT
REAL expint,x,EPS,FPMIN,EULER
PARAMETER (MAXIT=100,EPS=1.e-7,FPMIN=1.e-30,EULER=.5772156649)
Evaluates the exponential integral E,, (z).
Parameters: MAXIT is the maximum allowed number of iterations; EPS is the desired rel-
ative error, not smaller than the machine precision; FPMIN is a number near the smallest
representable floating-point number; EULER is Euler's constant +.
INTEGER i,ii,nml
REAL a,b,c,d,del,fact,h,psi
nmi=n-1
if(n.1t.0.0or.x.1t.0..0or.(x.eq.0..and.(n.eq.0.0r.n.eq.1)))then
pause ’bad arguments in expint’
else if(n.eq.0)then Special case.
expint=exp(-x)/x
else if(x.eq.0.)then
expint=1./nm1
else if(x.gt.1.)then
b=x+n
c=1./FPMIN
d=1./b
h=d
dou i=1,MAXIT
a=-ix(nmi+i)
b=b+2.
d=1./(a*xd+b) Denominators cannot be zero.
c=b+a/c
del=cx*d
h=hx*del
if (abs(del-1.) .1t.EPS)then
expint=h*exp(-x)
return
endif
enddo 1
pause ’continued fraction failed in expint’
else Evaluate series.
if (nm1.ne.0)then Set first term.
expint=1./nml
else
expint=-log(x)-EULER
endif
fact=1.
do 1 i=1,MAXIT
fact=-fact*x/i
if (i.ne.nml)then
del=-fact/(i-nm1)
else
psi=-EULER Compute 9(n).
do 12 ii=1,nml
psi=psi+1./ii
enddo 12
del=fact*(-log(x)+psi)
endif
expint=expint+del
if (abs(del) .1t .abs(expint)*EPS) return
enddo 13

Another special case.

Lentz's algorithm (§5.2).
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218 Chapter 6.  Special Functions

pause ’series failed in expint’
endif
return
END

A good algorithm for evaluating Ei is to use the power series for small = and
the asymptotic series for large x. The power series is

2

x x
Ei(z) =7+ Inz + ——
i(x) =~+ n:c—|—1.1!—|-2.2!

o (6.3.10)

where « is Euler’'s constant. The asymptotic expansion is
* 12!
Ei(z) ~ & (1 R R ) (6.3.11)
x x X

The lower limit for the use of the asymptotic expansion is approximately | InEPS],
where EPS is the required relative error.

FUNCTION ei(x)
INTEGER MAXIT
REAL ei,x,EPS,EULER,FPMIN
PARAMETER (EPS=6.e-8,EULER=.57721566,MAXIT=100,FPMIN=1.e-30)
Computes the exponential integral Ei(z) for z > 0.
Parameters: EPS is the relative error, or absolute error near the zero of Ei at x = 0.3725;
EULER is Euler's constant «; MAXIT is the maximum number of iterations allowed; FPMIN
is a number near the smallest representable floating-point number.
INTEGER k
REAL fact,prev,sum,term
if(x.le.0.) pause ’bad argument in ei’
if (x.1t.FPMIN) then Special case: avoid failure of convergence test be-
ei=log(x)+EULER cause of underflow.
else if(x.le.-log(EPS))then Use power series.
sum=0.
fact=1.
dou k=1,MAXIT
fact=fact*x/k
term=fact/k
sum=sum+term
if (term.1lt.EPS*sum)goto 1
enddo 11
pause ’series failed in ei’
ei=sum+log(x)+EULER

else Use asymptotic series.
sum=0. Start with second term.
term=1.

do 12 k=1,MAXIT
prev=term
term=term¥k/x

if (term.1t.EPS)goto 2 Since final sum is greater than one, term itself ap-
if (term.1lt.prev)then proximates the relative error.
sum=sum+term Still converging: add new term.
else
sum=sum-prev Diverging: subtract previous term and exit.
goto 2
endif
enddo 12

ei=exp(x)*(1.+sum)/x
endif
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6.4 Incomplete Beta Function, Student’s Distribution, F-Distribution, Cumulative Binomial Digit$bution

return
END

CITED REFERENCES AND FURTHER READING:

Stegun, L.A., and Zucker, R. 1974, Journal of Research of the National Bureau of Standards,
vol. 78B, pp. 199-216; 1976, op. cit., vol. 80B, pp. 291-311.

Amos D.E. 1980, ACM Transactions on Mathematical Software, vol. 6, pp. 365-377 [1]; also
vol. 6, pp. 420-428.

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 5.

Wrench J.W. 1952, Mathematical Tables and Other Aids to Computation, vol. 6, p. 255. [2]

6.4 Incomplete Beta Function, Student’s
Distribution, F-Distribution, Cumulative
Binomial Distribution

The incomplete beta function is defined by

L.(a,b) = %ﬁ’bb)) = B(i’ 3 /Or "t -t tat (a,b>0)  (64.1)

It has the limiting values
Io(a,b) =0 Ii(a,b) =1 (6.4.2)

and the symmetry relation
I.(a,b) =1—T1_,(b,a) (6.4.3)

If @ and b are both rather greater than one, then 7,,(a, b) rises from “near-zero” to
“near-unity” quite sharply at about = = a/(a + b). Figure 6.4.1 plots the function
for several pairs (a,b).

The incomplete beta function has a series expansion

(1 —a)b  Bla+1l,n+1) .,
I.(a,b) = P O0R l1 +> Ba ot D" + ] : (6.4.4)

but this does not proveto be very useful initsnumerical evaluation. (Note, however,
that the beta functionsin the coefficients can be evaluated for each value of n with
just the previous value and a few multiplies, using equations 6.1.9 and 6.1.3.)

The continued fraction representation proves to be much more useful,

o1 —xz)b [ 1 di do ]

Io(a,b) = aB(a,b) |1+1+ 1+

: (6.4.5)
1+ 1+ 1+
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220 Chapter 6.  Special Functions

(0.5,0.5)

incomplete beta function 1y(a,b)

O Femmmeaam Y g —

0 2 4 .6 .8 1
X

Figure6.4.1. Theincompletebetafunction I, (a, b) for five different pairsof (a, b). Notice that the pairs
(0.5,5.0) and (5.0, 0.5) arerelated by reflection symmetry around the diagonal (cf. equation 6.4.3).

where
d (a+m)(a+b+m)x
2m+1 — —
2 2 1
(a+2m)(a+2m+1) (6.4.6)
m(b—m)z
d2m =

(a+2m —1)(a+ 2m)

This continued fraction converges rapidly for x < (a + 1)/(a + b + 2), taking in
the worst case O(y/max(a, b)) iterations. But forx > (a + 1)/(a + b + 2) we can
just use the symmetry relation (6.4.3) to obtain an equiva ent computation where the
continued fraction will also converge rapidly. Hence we have

FUNCTION betai(a,b,x)
REAL betai,a,b,x
USES bet acf, ganmi n
Returns the incomplete beta function Ix(a,b).
REAL bt,betacf,gammln
if(x.1t.0..or.x.gt.1.)pause ’bad argument x in betai’
if(x.eq.0..0or.x.eq.1.)then
bt=0.
else Factors in front of the continued fraction.
bt=exp (gammln (a+b)-gammln(a)-gammln (b)
+a*xlog(x)+b*log(1l.-x))
endif

if(x.1t.(a+1.)/(a+b+2.))then Use continued fraction directly.
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6.4 Incomplete Beta Function, Student’s Distribution, F-Distribution, Cumulative Binomial Digibution

betai=bt*betacf(a,b,x)/a

return

else
betai=1.-bt*betacf(b,a,1.-x)/b Use continued fraction after making the symme-
return try transformation.

endif

END

which utilizes the continued fraction evaluation routine

FUNCTION betacf(a,b,x)

INTEGER MAXIT

REAL betacf,a,b,x,EPS,FPMIN

PARAMETER (MAXIT=100,EPS=3.e-7,FPMIN=1.e-30)
Used by betai: Evaluates continued fraction for incomplete beta function by modified
Lentz's method (§5.2).

INTEGER m,m2

REAL aa,c,d,del,h,qab,qam,qap

gab=a+b These q's will be used in factors that occur in the
qap=a+1. coefficients (6.4.6).

qam=a-1.

c=1. First step of Lentz's method.

d=1.-qab*x/qap
if (abs(d) .1t .FPMIN)d=FPMIN
d=1./d
h=d
do 11 m=1,MAXIT
m2=2%m
aa=m* (b-m) *x/ ((qam+m2) * (a+m2) )
d=1.+aa*d One step (the even one) of the recurrence.
if (abs(d) .1t .FPMIN)d=FPMIN
c=1.+aa/c
if (abs(c) .1t .FPMIN) c=FPMIN
d=1./d
h=hx*d*c
aa=-(a+m) * (qab+m) *x/ ((a+m2) * (qap+m2))
d=1.+aa*d Next step of the recurrence (the odd one).
if (abs(d) .1t .FPMIN)d=FPMIN
c=1.+aa/c
if (abs(c) .1t .FPMIN) c=FPMIN
d=1./d
del=d*c
h=hx*del
if (abs(del-1.).1t.EPS)goto 1 Are we done?
enddo 11
pause ’a or b too big, or MAXIT too small in betacf’
1 betacf=h
return
END

Student’s Distribution Probability Function

Student’s distribution, denoted A(t|v), is useful in several statistical contexts,
notably inthetest of whether two observed distributionshave the ssmemean. A(t|v)
is the probahility, for v degrees of freedom, that a certain statistic ¢ (measuring the
observed difference of means) would be smaler than the observed value if the
means were in fact the same. (See Chapter 14 for further details.) Two means are
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222 Chapter 6.  Special Functions

significantly different if, eg., A(tjv) > 0.99. In other words, 1 — A(t|v) is the
significance level a which the hypothesisthat the means are equal is disproved.
The mathematical definition of the function is

Altp) = —— /t (1 + x—2>_VTﬂdx (6.4.7)

vi12B(%,%) J_ v
Limiting values are
A(Olv) =0 A(colv) =1 (6.4.8)
A(t|v) is related to the incomplete beta function I, (a, b) by

Altlv)y=1—1_v (g%) (6.4.9)

vt2
So, you can use (6.4.9) and the above routinebetai to evaluate the function.
F-Distribution Probability Function

This function occurs in the statistical test of whether two observed samples
have the same variance. A certain statistic F', essentially the ratio of the observed
dispersion of the first sample to that of the second one, is calculated. (For further
details, see Chapter 14.) The probability that F' would be as large as it isif the
first sample's underlying distribution actually has smaller variance than the second’s
is denoted Q(F'|v1, v2), where 11 and v are the number of degrees of freedom
in the first and second samples, respectively. In other words, Q(F|vq,v9) is the
significance level at which the hypothesis “1 has smaller variance than 2" can be
rejected. A small numerical value implies a very significant rejection, in turn
implying high confidence in the hypothesis“1 has variance greater or equal to 2.”

Q(F'|v1,v2) has the limiting values

QOlv1,19) =1 Q(oolv1,v9) =0 (6.4.10)

Itsrelation to the incomplete beta function I,;(a, b) as evaluated by betai aboveis

Q(F|vi,va) =1 v (”2 ”1> (6.4.11)

-, —
mraE \ 2 2

Cumulative Binomial Probability Distribution

Suppose an event occurs with probability p per trial. Then the probability P of
itsoccurring k£ or moretimesinn trialsistermed acumulative binomial probability,
and is related to the incomplete beta function I,(a, b) as follows:

P=Y" (?)pﬂ'(l —p)" I =L, (k,n — k+1) (6.4.12)

n
=k
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6.5 Bessel Functions of Integer Order 223

For n larger than a dozen or so, betai is amuch better way to evaluate the sumin
(6.4.12) than would be the straightforward sum with concurrent computation of the
binomial coefficients. (For n smaller than a dozen, either method is acceptable.)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapters 6 and 26.

Pearson, E., and Johnson, N. 1968, Tables of the Incomplete Beta Function (Cambridge: Cam-
bridge University Press).

6.5 Bessel Functions of Integer Order

This section and the next one present practical algorithmsfor computing various
kinds of Bessal functions of integer order. In §6.7 we deal with fractional order. In
fact, the more complicated routines for fractional order work fine for integer order
too. For integer order, however, the routines in this section (and §6.6) are simpler
and faster. Their only drawback is that they are limited by the precision of the
underlying rational approximations. For full double precision, it isbest to work with
the routines for fractional order in §6.7.

For any red v, the Bessel function J,(x) can be defined by the series
representation

(65.1)

The series converges for al x, but it is not computationally very useful for z > 1.
For v not an integer the Bessel function Y, (z) is given by

Jy(x) cos(vm) — J_, ()

sin(vm)

Y, (x) =

(65.2)

The right-hand side goes to the correct limiting value Y,,(x) as v goes to some
integer n, but thisis also not computationally useful.

For arguments x < v, both Bessdl functions look qualitatively like simple
power laws, with the asymptotic forms for 0 < » <« v

1 1\”
Ju(x) ~ m (§x> v>0
Yo(x) ~ %hl(x) (6.5.3)
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Figure 6.5.1. Bessel functions Jy (z) through J3 (z) and Yy (z) through Y ().

For = > v, both Bessdl functionslook quditatively like sine or cosine waves whose
amplitude decays as 2~ 1/2. The asymptotic formsfor = > v are

2 1 1
Ju(x) ~ 4/ %Cos(x — 5T Zw)

2 1 1
Y, (z) ~ 4/ %Sin(x — gy Zw)

In the transition region where = ~ v, the typical amplitudes of the Bessdl functions
are on the order

(6.5.4)

2131 0.4473
~ 3231 (2) v1/3 ~ B

213 1 0.7748
_31/6F(%) PSVE RS VE

Ju(v)

(65.5)
Y, (v) ~

which holds asymptotically for large ». Figure 6.5.1 plots the first few Bessdl
functions of each kind.
The Bessal functions satisfy the recurrence relations

Tsr(z) = 2x—an(x) (@) (65.6)
and )
Yoi1(z) = ?”Yn (z) — Yn_1(2) (6.5.7)

As aready mentioned in §5.5, only the second of these (6.5.7) is stable in the
direction of increasing n for z < n. The reason that (6.5.6) is unstable in the
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6.5 Bessel Functions of Integer Order 225

direction of increasing n is simply that it isthe same recurrence as (6.5.7): A small
amount of “polluting” Y,, introduced by roundoff error will quickly come to swamp
the desired J,,, according to equation (6.5.3).

A practical strategy for computing the Bessdl functionsof integer order divides
into two tasks: first, how to compute Jy, J1, Yy, and Y7, and second, how to use the
recurrence relations stably to find other J’sand Y's. We treat the first task first:

For z between zero and some arbitrary value (we will use the value 8),
approximate Jy(x) and J; (x) by rational functionsin x. Likewise approximate by
rational functions the “regular part” of Yy(z) and Y1 (z), defined as

Yo(x)—gJo(x)ln(x) and Yl(x)_ﬂjl(x)m(x)_ﬂ (65.38)

For 8 < = < oo, use the approximating forms (n = 0, 1)

Iw) =/ 2 [Pn (—) cos(X,) — Qn (-) sm(Xn)] (65.9)
Vi (z) = % [Pn (_> sin(X,,) + On (;) cos(Xn)] (65.10)

where
Xp=a— 2”4—+17r (65.11)

and where Py, P1, Qo, and Q1 are each polynomias in their arguments, for 0 <
8/x < 1. The P’s are even polynomids, the Q’s odd.

Coefficients of the various rationa functions and polynomials are given by
Hart [1], for variouslevels of desired accuracy. A straightforward implementationis

FUNCTION bessjoO(x)
REAL bessjo,x
Returns the Bessel function Jyo(x) for any real x.
REAL ax,xx,z
DOUBLE PRECISION pi1,p2,p3,p4,p5,91,92,93,94,95,r1,r2,r3,r4,
r5,r6,s1,s2,s3,s4,s5,s6,y We'll accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,91,92,93,94,95,r1,r2,r3,r4,r5,r6,
sl,s2,s3,s4,s5,s6
DATA p1,p2,p3,p4,p5/1.d0,-.1098628627d-2, .2734510407d-4,
-.2073370639d-5, .2093887211d-6/, q1,92,93,94,95/-.1562499995d-1,
.1430488765d-3,-.6911147651d-5, .7621095161d-6,-.9349451524-7/
DATA r1,r2,r3,r4,r5,r6/57568490574.d0,-13362590354.d0,651619640.7d0,
-11214424.18d0,77392.33017d0,-184.9052456d0/,
s1,s2,s3,s4,s5,56/57568490411.d0, 1029532985 .40,
9494680.718d0,59272.64853d0,267.8532712d0,1.40/
if (abs(x).1t.8.)then Direct rational function fit.
y=xk*2
bessjOo=(ri1+y* (r2+y* (r3+y*(rd+y* (r5+y*r6)))))
/ (s1+y* (s2+y* (s3+y* (s4+y* (s5+y*s6)))))
else Fitting function (6.5.9).
ax=abs (x)
z=8./ax
y=z**2
xx=ax-.785398164
bessjO=sqrt(.636619772/ax) * (cos(xx) * (pl+y* (p2+y* (p3+y* (ph+y
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*p5))))-z*sin(xx)* (ql+y* (q2+y* (q3+y* (q4+y*q5)))))
endif
return
END

FUNCTION bessyO(x)
REAL bessy0,x
USES bessj 0
Returns the Bessel function Yy (x) for positive x.
REAL xx,z,bessjo
DOUBLE PRECISION pi1,p2,p3,p4,p5,ql,
q2,93,q94,95,r1,r2,r3,1r4,

r5,r6,s1,s2,s3,s4,s5,s6,y We'll accumulate polynomials in double precision.

SAVE p1,p2,p3,p4,p5,91,92,93,94,95,r1,r2,r3,r4,
r5,r6,s1,s2,s3,s4,s5,s6
DATA p1,p2,p3,p4,p5/1.d0,-.1098628627d-2, . 2734510407d-4,
-.2073370639d-5, . 2093887211d-6/, q1,q92,93,q94,q5/-.1562499995d-1,
.1430488765d-3,-.6911147651d-5, .7621095161d-6,-.9349451524-7/
DATA rl,r2,r3,r4,r5,r6/-2957821389.d0,7062834065.d0,-512359803.6d0,
10879881.29d0,-86327.92757d0,228.4622733d0/,
s1,s2,s3,s4,s5,56/40076544269.d0, 745249964 . 8d0,
7189466.43840,47447.26470d40,226.1030244d0,1.40/
if(x.1t.8.)then Rational function approximation of (6.5.8).
y=xk*2
bessy0=(rl+y* (r2+y* (r3+y* (r4+y*(r5+y*r6)))))/(sl+y*(s2+y
* (83+y* (s4+y* (sb+y*s6)))))+.636619772xbessjO (x) *1log(x)
else Fitting function (6.5.10).
z=8./x
y=z**2
xx=x-.785398164
bessyO=sqrt(.636619772/x)* (sin (xx)* (pl+y* (p2+y* (p3+y* (ph+y*
P5))))+z*cos (xx) *(ql+y*(q2+y* (q3+y* (g4+y*q5)))))
endif
return
END

FUNCTION bessj1(x)
REAL bessjl,x
Returns the Bessel function J;(x) for any real x.

REAL ax,xx,z

DOUBLE PRECISION pi1,p2,p3,p4,p5,91,92,93,94,95,r1,r2,r3,r4,
r5,r6,s1,s2,s3,s4,s5,s6,y We'll accumulate polynomials in double precision.

SAVE p1,p2,p3,p4,p5,91,92,93,94,95,r1,r2,r3,r4,r5,r6,
sl1,s2,s3,s4,s5,s6

DATA r1,r2,r3,r4,r5,r6/72362614232.d0,-7895059235.d0, 242396853 .. 1d0,
-2972611.439d0,15704.48260d0,-30.16036606d0/,
s1,s2,s3,s4,s5,56/144725228442.d0,2300535178.d0,
18583304.74d0,99447.43394d0,376.9991397d0,1.40/

DATA p1,p2,p3,p4,p5/1.d0, .183105d-2, -.3516396496d-4 , . 2457520174d-5,
-.240337019d-6/, q1,92,93,94,95/ .04687499995d0,-.2002690873d-3,
.84491990964-5,-.88228987d-6, .105787412d-6/

if (abs(x).1t.8.)then Direct rational approximation.

y=xk*2
bessjl=x* (ri+y* (r2+y* (r3+y* (r4+y* (r5+y*r6)))))
/ (s1+y* (s2+y* (s3+y* (s4+y* (s5+y*s6)))))
else Fitting function (6.5.9).
ax=abs (x)
z=8./ax
y=z**2
xx=ax-2.356194491
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6.5 Bessel Functions of Integer Order 227

bessjl=sqrt(.636619772/ax) * (cos (xx) * (pl+y* (p2+y* (p3+y* (pd+y
*pb))) ) -z*sin (xx)* (ql+y* (q2+y* (q3+y* (q4+y*q5)))))
*xsign(1.,x)
endif
return
END

FUNCTION bessyl(x)
REAL bessyl,x
USES bessj 1
Returns the Bessel function Y;(x) for positive x.
REAL xx,z,bessjil
DOUBLE PRECISION pi1,p2,p3,p4,p5,91,92,93,94,95,r1,r2,r3,r4,

r5,r6,s1,s2,s3,s4,s5,s6,s7,y We'll accumulate polynomials in double precision.

SAVE p1,p2,p3,p4,p5,91,92,93,94,95,r1,r2,r3,r4,
r5,r6,s1,s2,s3,s4,s5,s6,s7

DATA p1,p2,p3,p4,p5/1.d0, .183105d-2, -.3516396496d-4 , . 2457520174d-5,
-.240337019d-6/, q1,92,93,q4,q5/.04687499995d0, - .2002690873d-3,
.84491990964-5,-.88228987d-6, .105787412d-6/

DATA r1,r2,r3,r4,r5,r6/-.4900604943d13, . 1275274390d13, -.5153438139d11,
.734926455149,-.423792272647, .8511937935d4/,
s1,s2,s3,s4,s5,56,s7/.2499580570d14, . 4244419664d12,
.3733650367d10, .22459040024d8, . 102042605046, . 3549632885d3,1.40/

if(x.1t.8.)then Rational function approximation of (6.5.8).

y=xk*2

bessyl=x* (ri+y* (r2+y* (r3+y* (rd+y* (r5+y*r6)))) )/ (sl+y*(s2+y*
(s3+y* (s4+y* (sb+y* (s6+y*s7)))))) +.636619772
*(bessjl(x)*log(x)-1./x)

else Fitting function (6.5.10).

z=8./x

y=z**2

xx=x-2.356194491

bessyl=sqrt(.636619772/x)* (sin(xx)* (pl+y* (p2+y* (p3+y*(pd+y
*p5))) ) +z*cos (xx)* (ql+y* (q2+y* (q3+y* (q4+y*q5)))))

endif

return

END

We now turn to the second task, namely how to use the recurrence formulas
(6.5.6) and (6.5.7) to get the Bessel functions J,,(x) and Y,,(x) for n > 2. Thelatter

of these is straightforward, since its upward recurrence is always stable:

FUNCTION bessy(n,x)
INTEGER n
REAL bessy,x
USES bessyO0, bessy1
Returns the Bessel function Yn(x) for positive x and n > 2.
INTEGER j
REAL by,bym,byp,tox,bessy0,bessyl
if(n.1t.2)pause ’bad argument n in bessy’
tox=2./x
by=bessy1(x) Starting values for the recurrence.
bym=bessy0(x)
dou j=1,n-1 Recurrence (6.5.7).
byp=j*tox*by-bym
bym=by
by=byp
enddo 11
bessy=by
return
END
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228 Chapter 6.  Special Functions

The cost of thisalgorithmisthe call to bessy1 and bessy0 (which generate a
call to each of bessj1 and bessjo0), plus O(n) operations in the recurrence.

Asfor J,(x), things are a bit more complicated. We can start the recurrence
upward on n from J, and Jy, but it will remain stable only whilen does not exceed
x. This is, however, just fine for calls with large = and small »n, a case which
occurs freguently in practice.

The harder case to provide for is that with x < n. The best thing to do here
is to use Miller's algorithm (see discussion preceding equation 5.5.16), applying
the recurrence downward from some arbitrary starting value and making use of the
upward-unstable nature of the recurrence to put us onto the correct solution. When
we finally arrive a Jy or J; we are able to normalize the solution with the sum
(5.5.16) accumulated along the way.

The only subtlety isin deciding at how large an n we need start the downward
recurrence so as to obtain a desired accuracy by the time we reach the n that we
really want. If you play with the asymptotic forms (6.5.3) and (6.5.5), you should
be able to convince yoursef that the answer isto start larger than the desired n by
an additive amount of order [constant x n]'/2, where the square root of the constant
is, very roughly, the number of significant figures of accuracy.

The above considerations lead to the following function.

FUNCTION bessj(n,x)
INTEGER n,IACC
REAL bessj,x,BIGNO,BIGNI
PARAMETER (IACC=40,BIGNO=1.e10,BIGNI=1.e-10)
USES bessj 0, bessj 1
Returns the Bessel function Jn(x) for any real x and n > 2.
INTEGER j,jsum,m
REAL ax,bj,bjm,bjp,sum,tox,bessjO,bessj1
if(n.1t.2)pause ’bad argument n in bessj’
ax=abs (x)
if (ax.eq.0.)then
bessj=0.
else if(ax.gt.float(n))then Upwards recurrence from Jy and Jj.
tox=2./ax
bjm=bessjo0(ax)
bj=bessjl(ax)
dou j=1,n-1
bjp=j*tox*bj-bjm
bjm=bj
bj=bjp
enddo 11
bessj=bj
else Downwards recurrence from an even m here com-
tox=2./ax puted. Make IACC larger to increase accuracy.
m=2* ((n+int (sqrt (float (IACC*n))))/2)
bessj=0.
jsum=0 jsum will alternate between 0 and 1; when it is 1, we
sum=0. accumulate in sum the even terms in (5.5.16).
bjp=0.
bj=1.
do 12 j=m,1,-1 The downward recurrence.
bjm=j*tox*bj-bjp
bjp=bj
bj=bjm
if (abs(bj).gt.BIGNO)then  Renormalize to prevent overflows.
bj=bj*BIGNI
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6.6 Modified Bessel Functions of Integer Order 229

bjp=bjp*BIGNI
bessj=bessj*BIGNI
sum=sum*BIGNI

endif
if (jsum.ne.O0)sum=sum+bj Accumulate the sum.
jsum=1-jsum Change 0 to 1 or vice versa.
if(j.eq.n)bessj=bjp Save the unnormalized answer.
enddo 12
sum=2.*sum-bj Compute (5.5.16)
bessj=bessj/sum and use it to normalize the answer.
endif
if(x.1t.0..and.mod(n,2) .eq.1)bessj=-bessj
return
END

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 9.

Hart, J.F, et al. 1968, Computer Approximations (New York: Wiley), §6.8, p. 141. [1]

6.6 Modified Bessel Functions of Integer Order

The modified Bessel functions I,,(z) and K,,(x) are equivaent to the usua
Bessdl functions J,, and Y,, evaluated for purely imaginary arguments. In detail,
the relationship is

5ﬂ
~—
8
S—
Il

(=0)™ Iy (ix)

6.6.1
Ko(z) = =i, (iz) + i, (i) (6e1)
The particular choice of prefactor and of thelinear combination of .J,, and Y,, toform
K, are simply choices that make the functions real-valued for real arguments x.
For small arguments x < n, both I,,(z) and K,,(z) become, asymptotically,
simple powers of their argument

In(x)%%(g)n n>0

Ko(z) ~ —In(x) (6.6.2)

These expressions are virtually identical to thosefor J,, (z) and Y, (x) inthisregion,
except for the factor of —2/ difference between Y,,(z) and K,,(z). In the region
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T - =S——+

—_———
—_——

modified Bessel functions

Figure 6.6.1. Modified Bessel functions Iy(z) through I3 (z), Ko(z) through K2 ().

x > n, however, the modified functions have quite different behavior than the
Bessdl functions,

1
I(z) = exp(z)
v2me (6.6.3)
Ky (z) ~ %QXP(—@

The modified functions evidently have exponentia rather than sinusoidal
behavior for large arguments (see Figure 6.6.1). The smoothness of the modified
Bessel functions, once the exponential factor isremoved, makes asimple polynomial
approximation of a few terms quite suitable for the functions I, I;, Ko, and K.
The following routines, based on polynomial coefficients given by Abramowitz and
Stegun [1], evaluate these four functions, and will provide the basis for upward
recursion for n > 1 when z > n.

FUNCTION bessiO(x)
REAL bessiO,x
Returns the modified Bessel function Iy(x) for any real x.

REAL ax
DOUBLE PRECISION pi1,p2,p3,p4,p5,p6,p7,91,92,93,94,95,96,97,
98,99,y Accumulate polynomials in double precision.

SAVE p1,p2,p3,p4,p5,p6,p7,91,92,93,94,95,96,97,98,99

DATA p1,p2,p3,p4,p5,p6,p7/1.0d0,3.5156229d0,3.0899424d0,1.2067492d0,
0.2659732d0,0.360768d-1,0.45813d-2/

DATA q1,92,93,94,95,96,97,98,99/0.39894228d40,0.1328592d-1,
0.225319d4-2,-0.157565d-2,0.916281d-2,-0.2057706d-1,
0.2635537d-1,-0.1647633d-1,0.392377d-2/
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if (abs(x).1lt.3.75) then
y=(x/3.75) **2
bessiO=pl+y* (p2+y* (p3+y* (p4+y* (p5+y* (p6+y*p7)))))

else
ax=abs (x)
y=3.75/ax

bessiO=(exp(ax)/sqrt(ax))* (ql+y* (q2+y* (q3+y* (g4
+y* (qb+y* (q6+y* (q7+y*(q8+y*q9))))))))
endif
return
END

FUNCTION besskO(x)
REAL besskO,x
USES bessi 0
Returns the modified Bessel function K((x) for positive real x.
REAL bessiO
DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,q9l,
92,93,94,95,96,q7,y
SAVE p1,p2,p3,p4,p5,p6,p7,91,92,93,94,95,96,97
DATA pi,p2,p3,p4,p5,p6,p7/-0.57721566d0,0.42278420d0,0.23069756d0,
0.34885904-1,0.262698d-2,0.10750d-3,0.744-5/
DATA q1,92,93,94,95,96,q7/1.25331414d0,-0.7832358d-1,0.2189568d-1,
-0.1062446d-1,0.587872d-2,-0.251540d4-2,0.53208d-3/
if (x.le.2.0) then Polynomial fit.
y=x*x/4.0
bessk0=(-log(x/2.0)*bessiO(x))+(pl+y*(p2+y* (p3+
y* (pa+y* (pb+y* (p6+y*p7))))))
else
y=(2.0/x%)
bessk0=(exp(-x)/sqrt(x)) *(ql+y*(q2+y*(q3+
y*(qd+y* (q5+y* (q6+y*q7))))))
endif
return
END

FUNCTION bessil(x)
REAL bessil,x
Returns the modified Bessel function I (x) for any real x.
REAL ax
DOUBLE PRECISION pi1,p2,p3,p4,p5,p6,p7,91,92,93,94,95,96,97,

98,99,y Accumulate polynomials in double precision.

SAVE p1,p2,p3,p4,p5,p6,p7,91,92,93,94,95,96,97,98,99
DATA p1,p2,p3,p4,p5,p6,p7/0.5d0,0.87890594d0,0.51498869d0,
0.15084934d0,0.2658733d-1,0.301532d-2,0.32411d-3/
DATA q1,92,93,94,95,96,97,98,99/0.39894228d0, -0.3988024d-1,
-0.3620184-2,0.163801d-2,-0.1031555d-1,0.2282967d-1,
-0.2895312d-1,0.1787654d-1,-0.420059d-2/
if (abs(x).1lt.3.75) then Polynomial fit.
y=(x/3.75) **2
bessil=x* (pl+y* (p2+y* (p3+y* (pa+y* (p5+y* (p6+y*p7))))))
else
ax=abs (x)
y=3.75/ax
bessil=(exp(ax)/sqrt(ax))*(ql+y*(q2+y*(q3+y* (qé+
y*(qb+y* (q6+y* (q7+y*(q8+y*q9))))))))
if(x.1t.0.)bessil=-bessil
endif
return
END

Accumulate polynomials in double precision.
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232 Chapter 6.  Special Functions

FUNCTION besski (x)
REAL besskl,x
USES bessi 1
Returns the modified Bessel function K1 (x) for positive real x.
REAL bessil
DOUBLE PRECISION p1,p2,p3,p4,p5,p6,p7,ql,
92,93,94,95,96,q97,y Accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,p6,p7,91,92,93,94,95,96,97
DATA p1,p2,p3,p4,p5,p6,p7/1.0d0,0.15443144d0,-0.67278579d0,
-0.18156897d0,-0.1919402d-1,-0.1104044-2,-0.4686d-4/
DATA q1,92,93,94,95,96,q7/1.25331414d0,0.23498619d0,-0.3655620d-1,
0.15042684-1,-0.780353d-2,0.325614d-2,-0.68245d-3/
if (x.le.2.0) then Polynomial fit.
y=x*x/4.0
besskl=(log(x/2.0)*bessil(x))+(1.0/x)* (pl+y*(p2+
y* (p3+y* (pa+y* (p5+y* (p6+y*p7))))))
else
y=2.0/x
besskl=(exp(-x)/sqrt(x))*(ql+y*(q2+y*(q3+
y*(qd+y*(q5+y*(q6+y*q7))))))
endif
return
END

The recurrence relation for I,,(x) and K, (x) is the same as that for J,,(z)
and Y,,(x) provided that iz is substituted for z. This has the effect of changing
a sign in the relation,

Ior(z) = — (%”) (@) + I+ (x)

o (6.6.4)

Knpi(z) = + (?> Ko (@) + Kn_1(2)

These relations are always unstable for upward recurrence. For K, itself growing,
this presents no problem. For I,,, however, the strategy of downward recursion is
therefore required once again, and the starting point for the recursion may be chosen
in the same manner as for the routine bessj. The only fundamental difference is
that the normaization formulafor I, (x) has an aternating minussign in successive
terms, which again arises from the substitution of ix for x in the formula used
previously for J,

1= Io(x) — 2I(x) + 2L4(z) — 2Ig(z) + - -- (6.6.5)

In fact, we prefer simply to normalize with a call to bessio.
With thissimple modification, the recursion routinesbessj and bessy become
the new routines bessi and bessk:

FUNCTION bessk(n,x)
INTEGER n
REAL bessk,x
USES bessk0, bessk1
Returns the modified Bessel function Kn(x) for positive x and n > 2.
INTEGER j
REAL bk,bkm,bkp,tox,bessk0,besskl
if (n.1t.2) pause ’bad argument n in bessk’
tox=2.0/x
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6.6 Modified Bessel Functions of Integer Order 233

bkm=besskO0(x) Upward recurrence for all x...
bk=bessk1 (x)
dou j=1,n-1 ...and here it is.
bkp=bkm+j*tox*bk
bkm=bk
bk=bkp
enddo 11
bessk=bk
return
END

FUNCTION bessi(n,x)
INTEGER n,IACC
REAL bessi,x,BIGNO,BIGNI
PARAMETER (IACC=40,BIGN0=1.0e10,BIGNI=1.0e-10)
USES bessi 0
Returns the modified Bessel function In(x) for any real x and n > 2.
INTEGER j,m
REAL bi,bim,bip,tox,bessi0
if (n.1t.2) pause ’bad argument n in bessi’
if (x.eq.0.) then

bessi=0.
else

tox=2.0/abs(x)

bip=0.0

bi=1.0

bessi=0.

m=2* ((n+int (sqrt (float (IACC*n))))) Downward recurrence from even m.

dou j=m,1,-1 Make IACC larger to increase accuracy.
bim=bip+float(j)*tox*bi The downward recurrence.
bip=bi
bi=bim

if (abs(bi).gt.BIGNO) then
bessi=bessi*BIGNI
bi=bi*BIGNI
bip=bip*BIGNI
endif
if (j.eq.n) bessi=bip
enddo 11
bessi=bessi*bessiO(x)/bi Normalize with bessiO
if (x.1t.0..and.mod(n,2).eq.1) bessi=-bessi
endif
return
END

Renormalize to prevent overflows.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §9.8. [1]

Carrier, G.F., Krook, M. and Pearson, C.E. 1966, Functions of a Complex Variable (New York:
McGraw-Hill), pp. 220ff.
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234 Chapter 6.  Special Functions

6.7 Bessel Functions of Fractional Order, Airy
Functions, Spherical Bessel Functions

Many algorithms have been proposed for computing Bessel functions of fractional order
numerically. Most of them are, in fact, not very good in practice. The routines given here are
rather complicated, but they can be recommended wholeheartedly.

Ordinary Bessel Functions

Thebasic ideais Steed’'s method, which was originally developed [1] for Coulomb wave
functions. The method calculates .J,, J,, Y., and Y, simultaneously, and so involves four
relations among these functions. Three of the relations come from two continued fractions,
one of which is complex. The fourth is provided by the Wronskian relation

w=JY,-Y,J, = 2 (6.7.1)
™r
The first continued fraction, CF1, is defined by
J, v o
MR T (6.7.2)
_v_ 1 1 h
Tz 2v+D/z— 2w +2)/z—

You can easily deriveit from the three-term recurrencerelation for Bessel functions: Start with
equation (6.5.6) and use equation (5.5.18). Forward evaluation of the continued fraction by
one of the methods of §5.2 is essentially equivalent to backward recurrence of the recurrence
relation. The rate of convergence of CF1 is determined by the position of the turning point
x4p = \/v(v + 1) = v, beyond which the Bessel functions become oscillatory. If z < ztp,
convergenceisvery rapid. If = 2 z,, then eachiteration of the continued fraction effectively
increases v by one until = < x4,; thereafter rapid convergence sets in.  Thus the number
of iterations of CF1 is of order = for large . In the routine bessjy we set the maximum
allowed number of iterations to 10,000. For larger x, you can use the usual asymptotic
expressions for Bessel functions.

One can show that the sign of .J,, is the same as the sign of the denominator of CF1
once it has converged.

The complex continued fraction CF2 is defined by
JL4+iY) 1 i (1727 = (3/2)2 =02
Ty, Ut e 2o 2wtz +
(We sketch the derivation of CF2 in the analogous case of modified Bessel functions in the
next subsection.) This continued fraction converges rapidly for 2 x+,,, while convergence
falsasxz — 0. We haveto adopt a special method for small x, which we describe below. For
x not too small, we can ensurethat = 2 x+,, by astable recurrence of .J,, and J;, downwards
toavaluerv = p S z, thus yielding the ratio f,, at this lower value of v. Thisis the stable
direction for the recurrence relation. Theinitial values for the recurrence are

J, = arbitrary, J, = fudu, (6.7.4)

p+iqg= (6.7.3)

with the sign of the arbitrary initial value of .J,, chosen to be the sign of the denominator of
CF1. Choosing theinitial value of J,, very small minimizesthe possibility of overflow during
the recurrence. The recurrence relations are

Jl/—l = ZJV + Jl:
X

-1
J_, =L —Jo1 =

(6.7.5)
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6.7 Bessel Functions of Fractional Order 235

Once CF2 has been evaluated at v = p, then with the Wronskian (6.7.1) we have enough
relationsto solvefor all four quantities. Theformulas are simplified by introducing the quantity

_pP— fu
V= (6.7.6)
Then
w 1/2
I = fudyu (6.7.8)
Y, =, (6.7.9)
Y=Y, (p + %) (6.7.10)

Thesignof J,, in (6.7.7) is chosento be the same as the sign of theinitial J,, in (6.7.4).

Onceall four functions have been determined at the valuer = p, we can find them at the
original value of v. For J, and J;,, simply scalethe valuesin (6.7.4) by the ratio of (6.7.7) to
the value found after applying the recurrence (6.7.5). The quantities Y, and Y, can be found
by starting with the valuesin (6.7.9) and (6.7.10) and using the stable upwards recurrence

Yo = XY, — Y,y (6.7.11)
T
together with the relation
v, =Yy, —v,., (6.7.12)
T

Now turn to the case of small xz, when CF2 is not suitable. Temme[2] has given a
good method of evaluating Y;, and Y, +1, and hence Y, from (6.7.12), by series expansions
that accurately handle the singularity asx — 0. The expansionswork only for |v| < 1/2,
and so now the recurrence (6.7.5) is used to evaluate f,, at avalue v = p in this interval.
Then one calculates J,, from

W

Iu = Y;f = Yufu

(6.7.13)
and J;, from (6.7.8). Thevaluesat the original value of v are determined by scaling as before,
and the Y’'s are recurred up as before.

Temme's series are

o0 2 o0
V== g Yop=-=) el (6.7.14)
k=0 x k=0
Here
—z?/4)k
et = % (6.7.15)

while the coefficients g, and h;, are defined in terms of quantities py, gx, and fi that can
be found by recursion:

1%

2 .

gk = fr + — sin? (—W) qr
v 2

hr = —kgr + pr

_ Pr-1

Pe=3"7 (6.7.16)
Q-1

I = k+v

_kfk—1+pr-1+ g
fr= k2 _ 2
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236 Chapter 6.  Special Functions

The initial values for the recurrences are

po=1 (5)_” I(1+v)

" ; é)” (- ») (6.7.17)
o= 22 [eosmotu() + T (2 1)
with
on(2)
Ii(v) = % {ml_ 0y F(II—FV)} (6.718)

Ia(v) = % {ml_ Nt r(11+ u)}

The whole point of writing the formulas in this way is that the potential problemsasy — 0
can be controlled by evaluating v/ sin v, sinh o /o, and T’y carefully. In particular, Temme
gives Chebyshev expansionsfor I'1 (v) and I'2(v). We have rearranged his expansion for I’y
to be explicitly an even seriesin v so that we can use our routine chebev asexplainedin §5.8.
Theroutine assumesv > 0. For negative v you can use the reflection formulas

J_, =cosvrmJ, —sinvnY,

6.7.19
v, (6.7.19)

sinvw J, + cosvmY,

The routine also assumesz > 0. For z < 0 the functions are in general complex, but
expressible in terms of functionswith z > 0. For z = 0, Y, is singular.

Internal arithmetic in the routine is carried out in double precision. To maintain
portability, complex arithmetic has been recoded with real variables.

SUBROUTINE bessjy(x,xnu,rj,ry,rjp,ryp)
INTEGER MAXIT
REAL rj,rjp,ry,ryp,x,xnu, XMIN
DOUBLE PRECISION EPS,FPMIN,PI
PARAMETER (EPS=1.e-10,FPMIN=1.e-30,MAXIT=10000,XMIN=2.,
PI=3.141592653589793d0)
USES beschb
Returns the Bessel functions rj = J,, ry =Y, and their derivatives rjp = J,, ryp =Y,
for positive x and for xnu = v > 0. The relative accuracy is within one or two significant
digits of EPS, except near a zero of one of the functions, where EPS controls its absolute
accuracy. FPMIN is a number close to the machine’'s smallest floating-point number. All
internal arithmetic is in double precision. To convert the entire routine to double precision,
change the REAL declaration above and decrease EPS to 10716, Also convert the subroutine
beschb.
INTEGER i,isign,1,nl
DOUBLE PRECISION a,b,br,bi,c,cr,ci,d,del,dell,den,di,dlr,dli,
dr,e,f,fact,fact2,fact3,ff,gam,gaml,gam2,gammi,gampl,h,
p,pimu,pimu2,q,r,rjl,rjll,rjmu,rjpl,rjpl,rjtemp,ryl,
rymu,rymup,rytemp,sum,suml,temp,w,x2,xi,xi2,xmu, xmu2
if(x.le.0..or.xnu.1t.0.) pause ’bad arguments in bessjy’
if (x.1t.XMIN)then nl is the number of downward recurrences of the J's and
nl=int (xnu+.5d0) upward recurrences of Y's. xmu lies between —1/2 and
else 1/2 for x < XMIN, while it is chosen so that x is greater
nl=max (0, int (xnu-x+1.5d0)) than the turning point for x > XMIN.
endif
xmu=xnu-nl
XMU2=Xmuxmu
xi=1.d0/x
x12=2.d0*xi
w=xi2/PI The Wronskian.
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6.7 Bessel Functions of Fractional Order

isign=1 Evaluate CF1 by modified Lentz's method (§5.2). isign keeps

h=xnu*xi track of sign changes in the denominator.
if (h.1t.FPMIN)h=FPMIN
b=xi2%*xnu
d=0.d0
c=h
dou i=1,MAXIT
b=b+xi2
d=b-d
if (abs(d) .1t .FPMIN)d=FPMIN
c=b-1.4d0/c
if (abs(c) .1t .FPMIN) c=FPMIN
d=1.40/4
del=c*d
h=del*h
if(d.1t.0.d0)isign=-isign
if (abs(del-1.4d0) .1t .EPS)goto 1
enddo 11
pause ’x too large in bessjy; try asymptotic expansion’
continue

rjl=isign*FPMIN Initialize J,, and J], for downward recurrence.
rjpl=h*rjl

rjli=rjl Store values for later rescaling.

rjpi=rjpl

fact=xnu*xi

do 12 1=nl,1,-1
rjtemp=fact*rjl+rjpl
fact=fact-xi
rjpl=fact*rjtemp-rjl

rjl=rjtemp
enddo 12
if(rjl.eq.0.d0)rj1=EPS
f=rjpl/rjl Now have unnormalized J,, and JL.
if (x.1t.XMIN) then Use series.
x2=.5d0*x

pimu=PI*xmu

if (abs(pimu) .1t .EPS)then
fact=1.d0

else
fact=pimu/sin(pimu)

endif

d=-log(x2)

e=xmu*xd

if (abs(e) .1t .EPS)then
fact2=1.d40

else
fact2=sinh(e)/e

endif

call beschb(xmu,gaml,gam2,gampl,gammi) Chebyshev evaluation of I'; and I's.

f£=2.d0/PI*fact*(gaml*cosh(e)+gam2*xfact2*d) fo.
e=exp(e)
p=e/ (gampl#*PI) Po-
q=1.d0/ (e*PI*gammi) q0-
pimu2=0.5d0*pimu
if (abs(pimu2) .1t .EPS)then
fact3=1.d0
else
fact3=sin(pimu?2)/pimu?2
endif
r=PIxpimu2*fact3*fact3
c=1.d0
d=-x2%x2
sum=ff+r*q
suml=p

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes



Chapter 6.

Special Functions

do 1 i=1,MAXIT
ff=(i*xff+p+q)/(i*i-xmu2)
c=c*xd/1i
p=p/ (i-xmu)
q=q/ (i+xmu)
del=c* (ff+r*q)
sum=sum+del
dell=c*p-i*del
suml=suml+dell

if (abs(del) .1lt. (1.d0+abs(sum))*EPS)goto 2

enddo 13

pause ’bessy series failed to converge’
continue

rymu=-sum

ryl=-suml*xi2

rymup=xmu*xi*rymu-ryl

rjmu=w/ (rymup-f*rymu)

else

a=.25d0-xmu2

p=-.5d0*xi

q=1.d0

br=2.d0*x

bi=2.d0

fact=a*xi/ (p*p+q*q)

cr=br+g*fact

ci=bi+px*fact

den=br*br+bixbi

dr=br/den

di=-bi/den

dlr=cr*dr-cixdi

dli=cr*di+ci*dr

temp=p*dlr-q*dli

q=p*dli+qx*dlr

p=temp

do 14 i=2,MAXIT
a=a+2*(i-1)
bi=bi+2.d0
dr=a*dr+br
di=a*di+bi
if (abs(dr)+abs(di).1lt.FPMIN)dr=FPMIN
fact=a/(crxcr+cix*ci)
cr=br+crxfact
ci=bi-cixfact
if (abs(cr)+abs(ci) .1t .FPMIN) cr=FPMIN
den=dr*dr+dixdi
dr=dr/den
di=-di/den
dlr=cr*dr-cixdi
dli=cr*di+cixdr
temp=p*dlr-q*dli
q=p*dli+q*dlr

Equation (6.7.13).
Evaluate CF2 by modified Lentz's method
(85.2).
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p=temp
if (abs(dlr-1.d0)+abs(dli) .1t .EPS)goto 3
enddo 14
pause ’cf2 failed in bessjy’
continue
gam=(p-£)/q Equations (6.7.6) — (6.7.10).

rjmu=sqrt (w/ ((p-£f) *gam+q))
rjmu=sign(rjmu,rjl)
rymu=rjmu*gam
rymup=rymu*(p+q/gam)
ryl=xmu*xi*rymu-rymup

endif
fact=rjmu/rjl
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6.7 Bessel Functions of Fractional Order 239

rj=rjlixfact Scale original J,, and J},.
rjp=rjpl*fact
do1s i=1,nl Upward recurrence of Y,,.
rytemp=(xmu+i)*xi2*ryl-rymu
rymu=ryl
ryl=rytemp
enddo 15
ry=rymu
ryp=xnu*xi*rymu-ryi
return
END

SUBROUTINE beschb(x,gaml,gam2,gampl, gammi)
INTEGER NUSE1,NUSE2
DOUBLE PRECISION gaml,gam2,gammi,gampl,x
PARAMETER (NUSE1=5,NUSE2=5)
USES chebev
Evaluates 'y and I'y by Chebyshev expansion for |x| < 1/2. Also returns 1/T'(1 + x) and
1/T'(1 — x). If converting to double precision, set NUSE1 = 7, NUSE2 = 8.
REAL xx,c1(7),c2(8),chebev
SAVE c1,c2
DATA c1/-1.142022680371168d0,6.5165112670737d4-3,
3.087090173086d-4,-3.4706269649d-6,6.9437664d-9,
3.67795d-11,-1.356d-13/
DATA c2/1.843740587300905d0,-7.68528408447867d-2,
1.2719271366546d-3,-4.9717367042d-6,-3.31261198d-8,
2.423096d-10,-1.702d-13,-1.49d-15/

xx=8.d0*x*x-1.d0 Multiply x by 2 to make range be —1 to 1, and then
gaml=chebev(-1.,1.,c1,NUSE1,xx) apply transformation for evaluating even Cheby-
gam2=chebev(-1.,1.,c2,NUSE2, xx) shev series.

gampl=gam2-x*gaml
gammi=gam2+x*gaml
return

END

Modified Bessel Functions

Steed's method does not work for modified Bessel functions becausein this case CF2 is
purely imaginary and we have only three relations among the four functions. Temme[3] has
given a normalization condition that provides the fourth relation.

The Wronskian relation is

wW=IK, — K, = 1 (6.7.20)
T
The continued fraction CF1 becomes
!
=l 1 L . (6.7.21)

I, z 2w+1)/z+ 2w+2)/z+

To get CF2 and the normalization condition in a convenient form, consider the sequence
of confluent hypergeometric functions

zn(x) =Uw+1/2+n,2v + 1, 2z) (6.7.22)
for fixed v. Then

=
R
-~
8
&
|

w2 (23) e " z0(x) (6.7.23)

Ko@) _ % {1/—!— LRI (u2 - 1) Z—l} (6.7.24)
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240 Chapter 6.  Special Functions

Equation (6.7.23) is the standard expression for K, in terms of a confluent hypergeometric
function, while equation (6.7.24) follows from relations between contiguous confluent hy-
pergeometric functions (equations 13.4.16 and 13.4.18 in Abramowitz and Stegun). Now
the functions z,, satisfy the three-term recurrence relation (equation 13.4.15 in Abramowitz
and Stegun)

2n-1(x) = bnzn(x) + Ant12n+1 (6.7.25)
with
br =2(n+x)
6.7.26
ani1 = —[(n+1/2)* =7 ( )

Following the steps leading to equation (5.5.18), we get the continued fraction CF2
Z1 _ 1 az

20 b1+ b2+

from which (6.7.24) gives K, 11 /K, and thus K, /K,,.
Temme's normalization condition is that

oo 1 v+1/2
n;) Crzn = (%> (6.7.28)

. (6.7.27)

where (1) I / )
-D)"T'(v+1/2+n
Cn = n! T'(v+1/2—n) (6:7.29)
Note that the C),’s can be determined by recursion:
_ _ an41
Co =1, Cny1 = — 10” (6.7.30)
We use the condition (6.7.28) by finding
oo Zn
S = Cn— 6.7.31
; - (6.7.31)
Then
1 v+1/2 1
— (= Sl 6.7.32
=0 (2m> 1+5 (67.32)

and (6.7.23) gives K,.

Thompson and Barnett [4] have given a clever method of doing the sum (6.7.31)
simultaneously with the forward evaluation of the continued fraction CF2. Suppose the
continued fraction is being evaluated as

zZ1

= =) Ah, (6.7.33)
n=0

20

where theincrements Ah,, arebeing found by, e.g., Steed’s algorithm or the modified Lentz's
algorithm of §5.2. Then the approximation to .S keeping the first N' terms can be found as

N
Sn =Y QuAh, (6.7.34)
n=1
Here
Qn=> Crax (6.7.35)
k=1

and g is found by recursion from
qr+1 = (qr—1 — brqr)/ax+1 (6.7.36)

starting with go = 0, ¢1 = 1. For the case at hand, approximately three times as many terms
are needed to get S' to converge as are needed simply for CF2 to converge.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes



*

6.7 Bessel Functions of Fractional Order 241

To find K, and K, for small z we use series analogousto (6.7.14):

oo oo

2
K, = == 7.
v ck Sk Kyt1 - ZCkhk (6.7.37)
k=0 k=0
Here
_ (/4"
k=T
he = —kfr + pr
_ Pr—1
Pk = b — o (6.7.38)
k-1
I = k+v
_kfk—1+pr-1+qre—1
fe= L2 _ 12
The initial values for the recurrences are
1 /x\—v
1 /x\v
% =3 (5) I(l—v) (6.7.39)
fo= T |coshol’ (v) + sinho In 2 T2 (v)
0= sin v ! o T 2

Both the series for small z, and CF2 and the normalization relation (6.7.28) require
|v| < 1/2. Inboth cases, therefore, we recurse I,, down to avaluev = p inthisinterval, find
K, there, and recurse K, back up to the original value of v.

The routine assumes v > 0. For negative v use the reflection formulas

I, =1+ 2sin(mr) K,
T
K_, =K,

(6.7.40)

Note that for large x, I, ~ %, K, ~ e~ %, and so these functions will overflow or
underflow. It is often desirable to be able to compute the scaled quantitiese~“1,, and e” K.
Simply omitting the factor e~ in equation (6.7.23) will ensure that all four quantities will
have the appropriate scaling. If you also want to scale the four quantities for small « when
the series in equation (6.7.37) are used, you must multiply each series by e”.

SUBROUTINE bessik(x,xnu,ri,rk,rip,rkp)
INTEGER MAXIT
REAL ri,rip,rk,rkp,x,xnu,XMIN
DOUBLE PRECISION EPS,FPMIN,PI
PARAMETER (EPS=1.e-10,FPMIN=1.e-30,MAXIT=10000,XMIN=2.,
PI=3.141592653589793d0)
USES beschb
Returns the modified Bessel functions ri = I,, rk = K, and their derivatives rip = I,’/,
rkp = K], for positive x and for xnu = v > 0. The relative accuracy is within one or
two significant digits of EPS. FPMIN is a number close to the machine's smallest floating-
point number. All internal arithmetic is in double precision. To convert the entire routine
to double precision, change the REAL declaration above and decrease EPS to 10~16. Also
convert the subroutine beschb.
INTEGER i,1,nl
DOUBLE PRECISION a,al,b,c,d,del,dell,delh,dels,e,f,fact,
fact2,ff,gaml,gam2,gammi, gampl,h,p,pimu,q,ql,q2,
qnew,ril,rill,rimu,ripl,ripl,ritemp,rkl,rkmu,rkmup,
rktemp,s,sum,suml,x2,xi,xi2, xmu, xmu2
if(x.le.0..or.xnu.1t.0.) pause ’bad arguments in bessik’
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242 Chapter 6.  Special Functions

nl=int (xnu+.5d0) nl is the number of downward recurrences
xmu=xnu-nl of the I's and upward recurrences
XMUu2=Xmu*xmu of K's. xmu lies between —1/2 and
xi=1.d0/x 1/2.
x12=2.d0*xi
h=xnu*xi Evaluate CF1 by modified Lentz's method
if (h.1t.FPMIN)h=FPMIN (85.2).
b=xi2*xnu
d=0.d0
c=h
dou i=1,MAXIT
b=b+xi2
d=1.d0/ (b+d) Denominators cannot be zero here, so no
c=b+1.d0/c need for special precautions.
del=c*d
h=del*h
if (abs(del-1.4d0) .1t .EPS)goto 1
enddo 11
pause ’x too large in bessik; try asymptotic expansion’
continue
ril=FPMIN Initialize I, and I,’, for downward recur-
ripl=h*ril rence.
rill=ril Store values for later rescaling.
ripl=ripl

fact=xnu*xi

do 12 1=nl,1,-1
ritemp=fact*ril+ripl
fact=fact-xi
ripl=fact*ritemp+ril
ril=ritemp

enddo 12
f=ripl/ril Now have unnormalized I, and I},.
if (x.1t.XMIN) then Use series.

x2=.5d0*x

pimu=PI*xmu
if (abs(pimu) .1t .EPS)then
fact=1.d0
else
fact=pimu/sin(pimu)
endif
d=-log(x2)
e=xmu*xd
if (abs(e) .1t .EPS)then
fact2=1.d40
else
fact2=sinh(e)/e
endif
call beschb(xmu,gaml,gam2,gampl,gammi) Chebyshev evaluation of I'; and I's.
ff=fact*(gaml*cosh(e)+gam2*fact2*d) fo-
sum=ff
e=exp(e)
p=0.5d0%e/gampl Po
q=0.5d0/ (exgammi) q0-
c=1.d0
d=x2%x2
suml=p
do 1 i=1,MAXIT
ff=(i*xff+p+q)/(i*i-xmu2)
c=cxd/i
p=p/ (i-xmu)
q=q/ (i+xmu)
del=cx*xff
sum=sum+del
dell=c*(p-i*ff)
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suml=suml+dell
if (abs(del) .1t .abs(sum)*EPS)goto 2
enddo 13
pause ’bessk series failed to converge’
continue
rkmu=sum
rkl=suml*xi2
else
b=2.d0*(1.d0+x)
d=1.d0/b
delh=d
h=delh
q1=0.d0
q2=1.d0
al=.25d0-xmu2
c=al
q=c
a=-al
s=1.d0+qg*delh
do 14 i=2,MAXIT
a=a-2x(i-1)
c=-a*c/i
gqnew=(ql-b*q2)/a
ql=q2
q2=qnew
gq=q+c*qnew
b=b+2.d0
d=1.d0/ (b+ax*d)
delh=(b*d-1.d0)*delh
h=h+delh
dels=g*delh
s=s+dels
if (abs(dels/s) .1t .EPS)goto 3
enddo 14
pause ’bessik: failure to converge in cf2’
continue
h=al*h
rkmu=sqrt (PI/(2.d0*x))*exp(-x)/s
rkil=rkmu* (xmu+x+.5d0-h)*xi
endif
rkmup=xmu*xi*rkmu-rkil
rimu=xi/ (f*rkmu-rkmup)
ri=(rimu*rill)/ril
rip=(rimu*ripl)/ril
doi1s i=1,nl
rktemp=(xmu+i)*xi2*rk1l+rkmu
rkmu=rk1l
rkil=rktemp
enddo 15
rk=rkmu
rkp=xnu*xi*rkmu-rkil
return
END

Airy Functions

For positive z, the Airy functions are defined by

Ai(z) = %\/gKuﬂz)

Evaluate CF2 by Steed’s algorithm (§5.2),

which is OK because there can be no
zero denominators.

Initializations for recurrence (6.7.35).

First term in equation (6.7.34).

Need only test convergence of sum since

CF2 itself converges more quickly.

Omit the factor exp(—x) to scale all the

returned functions by exp(z) for z >
XMIN.

Get I, from Wronskian.
Scale original I, and I},.

Upward recurrence of K, .

(6.7.41)
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Bi(z) = \/§[11/3(Z) +1-1/3(2)] (6.7.42)
where
z= §x3/ ? (6.7.43)

By using the reflection formula (6.7.40), we can convert (6.7.42) into the computationally
more useful form

2 1
Bi(z) = vz | —=11,3(2) + —K1/,3(2 6.7.44
(@) = V& | Z=tal) + £ Kuya(a)] (67.44
so that Ai and Bi can be evaluated with a single call to bessik.

The derivatives should not be evaluated by simply differentiating the above expressions
because of possible subtraction errors near z = 0. Instead, use the eguivalent expressions

Ai'(z) = ———=Ky3(2)
mf
(6.7.45)
Bi'(z) = 2 [ﬁm(z) + %Kz/xz)}
The corresponding formulas for negative arguments are
o VE !
Ai(—z) = 5 |:J1/3(Z) - ﬁlﬂw(z)}
Bi(—z) = —ﬁ L/—Jua( )+ Y1/3(Z)}
(6.7.46)
Ai'(—z g |:J2/3 3Y2/3( )}
Bi'(—z g {TJz/s - Y2/3(Z)}

SUBROUTINE airy(x,ai,bi,aip,bip)
REAL ai,aip,bi,bip,x
USES bessi k, bessj y
Returns Airy functions Ai(x), Bi(z), and their derivatives Ai’(z), Bi'(z).
REAL absx,ri,rip,rj,rjp,rk,rkp,rootx,ry,ryp,z,
PI,THIRD,TWOTHR,ONOVRT
PARAMETER (PI=3.1415927,THIRD=1./3.,TWOTHR=2.*THIRD,
ONOVRT=.57735027)
absx=abs (x)
rootx=sqrt(absx)
z=TWOTHR*absx*rootx
if(x.gt.0.)then
call bessik(z,THIRD,ri,rk,rip,rkp)
ai=rootx*0ONOVRT*rk/PI
bi=rootx* (rk/PI+2.*0NOVRT*ri)
call bessik(z,TWOTHR,ri,rk,rip,rkp)
aip=-x*0NOVRT*rk/PI
bip=x* (rk/PI+2.*0NOVRT*ri)
else if(x.1t.0.)then
call bessjy(z,THIRD,rj,ry,rjp,ryp)
ai=.b*rootx* (rj-ONOVRT*ry)
bi=-.5*rootx* (ry+ONOVRT*rj)
call bessjy(z,TWOTHR,rj,ry,rjp,ryp)
aip=.b5*absx* (ONOVRT*ry+rj)
bip=.5*absx* (ONOVRT*rj-ry)
else Case z = 0.
ai=.35502805
bi=ai/0ONOVRT
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6.7 Bessel Functions of Fractional Order 245

aip=-.25881940
bip=-aip/0NOVRT
endif
return
END

Spherical Bessel Functions

For integer n, spherical Bessel functions are defined by

. s

gn(x) =4/ %Jm-(l/z) ()
s

Yn(x) =/ %Ym-(l/z) ()

They can be evaluated by a call to bessjy, and the derivatives can safely be found from
the derivatives of equation (6.7.47).

Note that in the continued fraction CF2in (6.7.3) just thefirst term survivesforv = 1/2.
Thus one can make a very simple algorithm for spherical Bessel functions along the lines of
bessjy by alwaysrecursing j,, downton = 0, setting p and ¢ from the first term in CF2, and
then recursing y,, up. No special seriesis required near x = 0. However, bessjy is aready
so efficient that we have not bothered to provide an independent routine for spherical Bessels.

(6.7.47)

SUBROUTINE sphbes(n,x,sj,sy,sjp,syp)

INTEGER n

REAL sj,sjp,sy,syp,x

USES bessj y
Returns spherical Bessel functions jn (), yn(z), and their derivatives j,, (z), v}, (z) for
integer n.

REAL factor,order,rj,rjp,ry,ryp,RTPI02

PARAMETER (RTPI02=1.2533141)

if(n.1t.0.or.x.le.0.)pause ’bad arguments in sphbes’

order=n+0.5

call bessjy(x,order,rj,ry,rjp,ryp)

factor=RTPI02/sqrt (x)

sj=factor*rj

sy=factor*ry

sjp=factor*rjp-sj/(2.*x)

syp=factor*ryp-sy/(2.*x)

return

END

CITED REFERENCES AND FURTHER READING:

Barnett, A.R., Feng, D.H., Steed, J.W., and Goldfarb, L.J.B. 1974, Computer Physics Commu-
nications, vol. 8, pp. 377-395. [1]

Temme, N.M. 1976, Journal of Computational Physics, vol. 21, pp. 343-350 [2]; 1975, op. cit.,
vol. 19, pp. 324-337. [3]

Thompson, 1.J., and Barnett, A.R. 1987, Computer Physics Communications, vol. 47, pp. 245—
257. [4]

Barnett, A.R. 1981, Computer Physics Communications, vol. 21, pp. 297-314.

Thompson, 1.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490-509.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 10.
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246 Chapter 6.  Special Functions

6.8 Spherical Harmonics

Spherical harmonics occur in a large variety of physica problems, for ex-
ample, whenever a wave equation, or Laplace's equation, is solved by separa
tion of variables in spherical coordinates. The spherical harmonic Y, (0, ¢),
—1 < m <, isafunction of the two coordinates 6, ¢ on the surface of a sphere.

The spherica harmonics are orthogona for different [ and m, and they are
normalized so that their integrated square over the sphere is unity:

2m 1
/ do / (o8 0)Ypr s * (0, ) Yim (0, &) = 6116m/m (6.8.1)
0 -1

Here asterisk denotes complex conjugation.
Mathematically, the spherical harmonics are related to associated Legendre
polynomials by the equation

l Il —m)! .
Vim (6, 6) = 1|2 ;1 EZ+Z§!le(cos 6)eime (682)
By using the relation
Yi,—m(0,0) = (=1)" Y *(0, $) (6.8.3)

we can aways relate a spherical harmonic to an associated Legendre polynomial
with m > 0. With z = cos 6, these are defined in terms of the ordinary Legendre
polynomias (cf. §4.5 and §5.5) by

PM(x) = (=1)™(1 — x2)m/2jx—mpl (z) (6.8.4)

The first few associated Legendre polynomials, and their corresponding nor-
malized spherical harmonics, are

P(x)= 1 Yoo= /&

Pl(z)= — (1 —a2)1/? Yii=— \/Egzﬁsin@ei‘;5
Pl(z)= = Yi0 = \/gcosﬂ

P2(z) = 3(1—22) Yoo = 1 1/32 sin® e>

P} (z) = -3 (1 —2?)Y/%z Yo = — \/éiisinﬂcosﬂew
PYz)= L(32%-1) Yo= /& (Gcos?0-1)

(6.8.5)

There are many bad ways to evaluate associated L egendre polynomia s numer-
ically. For example, there are explicit expressions, such as

o (D)™ +m)! 2vm/2 ((=m)(m+1+1) (1-x
P@) = ity L™ [1‘ H(m+1) ( 3 )

N (—m)(l-m-1)(m+Il+1)(m+1+2) (1—x>2_”.]

2l(m+1)(m + 2) 2
(6.86)
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6.8 Spherical Harmonics 247

where the polynomial continues up through the term in (1 — x)'=™. (Seel1] for
this and related formulas) This is not a satisfactory method because evaluation
of the polynomial involves delicate cancellations between successive terms, which
aternate in sign. For large [, the individua terms in the polynomia become very
much larger than their sum, and all accuracy is lost.

In practice, (6.8.6) can be used only in single precision (32-bit) for I up
to 6 or 8, and in double precision (64-bit) for [ up to 15 or 18, depending on
the precision required for the answer. A more robust computational procedure is
therefore desirable, as follows:

The associated Legendre functions satisfy numerous recurrence relations, tab-
ulated in[1-2]. These are recurrences on [ alone, on m aone, and on both [ and
m Simultaneously. Most of the recurrences involving m are unstable, and so
dangerous for numerical work. The following recurrence on [ is, however, stable
(compare 5.5.1):

(I—-m)P"=xz2l-1)P" —(1+m—-1)P", (6.8.7)
It isuseful because there is a closed-form expression for the starting value,
P™ = (=1)™(2m — 1)I1(1 — 2%)™/? (6.8.8)

(The notation n!! denotes the product of al odd integers less than or equa to n.)
Using (6.8.7) with! = m + 1, and setting P’ ; = 0, we find

Pl =x(2m+1)P (6.8.9)

m

Equations (6.8.8) and (6.8.9) provide the two starting values required for (6.8.7)
for general |.
The function that implements this is

FUNCTION plgndr(1l,m,x)
INTEGER 1,m
REAL plgndr,x
Computes the associated Legendre polynomial P/ (z). Here m and [ are integers satisfying
0 < m < I, while z lies in the range —1 < z < 1.
INTEGER i,11
REAL fact,pll,pmm,pmmpl,somx2
if(m.1t.0.or.m.gt.l.or.abs(x).gt.1.)pause ’bad arguments in plgndr’
pmm=1. Compute P,
if(m.gt.0) then
somx2=sqrt ((1.-x)*(1.+x))
fact=1.
don i=1,m
pmm=-pmm*fact*somx2
fact=fact+2.
enddo 11
endif
if(l.eq.m) then
plgndr=pmm
else
pmmpl=x* (2*m+1) *pmm Compute P7, ;.
if(l.eq.m+1) then
plgndr=pmmp1l
else Compute P, I > m + 1.
do12 11=m+2,1
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248 Chapter 6.  Special Functions

pll=(x*(2%11-1)*pmmp1-(11+m-1)*pmm)/(11-m)
pmm=pmmp1
pmmpl=pll
enddo 12
plgndr=pll
endif
endif
return
END

CITED REFERENCES AND FURTHER READING:

Magnus, W., and Oberhettinger, F. 1949, Formulas and Theorems for the Functions of Mathe-
matical Physics (New York: Chelsea), pp. 54ff. [1]

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 8. [2]

6.9 Fresnel Integrals, Cosine and Sine Integrals

Fresnel Integrals

The two Fresndl integrals are defined by

Cz) = /0 Icos(gtz) i, S() = /0 " sin (5 an (6.9.1)

The most convenient way of evaluating these functionsto arbitrary precisionis
to use power series for small = and a continued fraction for large x. The series are

Cla)=o- (92 53?52! + (94 93?94! o

S(z) = (g) 33?31! B (g)s 73;_73' + (g)S 1?1-15! Y

There is a complex continued fraction that yields both S(x) and C(z) si-
multaneoudly:

(6.9.2)

14
C(z)+iS(z) = ;lerfz, z:g(l—i)x (6.9.3)
where
Fuierm L (L 121322 )
Zz+ z+ z+ z+ z+

6.9.4
1 1-2 3-4 ( )

- 71'(2z2+l— 222 +5— 22249— )
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6.9 Fresnel Integrals, Cosine and Sine Integrals 249

In the last line we have converted the “standard” form of the continued fraction to

its “even” form (see §5.2), which converges twice as fast. We must be careful not

to evaluate the alternating series (6.9.2) at too large a vaue of x; inspection of the

terms showsthat = = 1.5 isagood point to switch over to the continued fraction.
Note that for large x

1 1 ./ 1 1 T
C(z) ~ B + o sin (§x2) , S(z) ~ 3 cos (§x2) (6.9.5)

Thus the precision of the routine frenel may be limited by the precision of the
library routines for sine and cosine for large .

SUBROUTINE frenel(x,s,c)
INTEGER MAXIT
REAL c,s,x,EPS,FPMIN,PI,PIBY2,XMIN
PARAMETER (EPS=6.e-8,MAXIT=100,FPMIN=1.e-30,XMIN=1.5,
PI=3.1415927,PIBY2=1.5707963)
Computes the Fresnel integrals S(z) and C(z) for all real z.
Parameters: EPS is the relative error; MAXIT is the maximum number of iterations allowed;
FPMIN is a number near the smallest representable floating-point number; XMIN is the
dividing line between using the series and continued fraction; PI = m; PIBY2 = /2.
INTEGER k,n
REAL a,absc,ax,fact,pix2,sign,sum,sumc,sums,term,test
COMPLEX b,cc,d,h,del,cs
LOGICAL odd
absc(h)=abs(real(h))+abs(aimag(h)) Statement function.
ax=abs (x)
if (ax.1lt.sqrt(FPMIN))then Special case: avoid failure of convergence test
s=0. because of underflow.
c=ax
else if (ax.le.XMIN)then
sum=0.
sums=0.
sumc=ax
sign=1.
fact=PIBY2*ax*ax
odd=.true.
term=ax
n=3
dou k=1,MAXIT
term=term*fact/k
sum=sum+sign*term/n
test=abs (sum)*EPS
if (odd)then
sign=-sign
sums=sum
sum=sumc
else
sumc=sum
sum=sums
endif
if (term.lt.test)goto 1
odd=.not.odd
n=n+2
enddo 11
pause ’series failed in frenel’
s=sums
c=sumc
else Evaluate continued fraction by modified Lentz's
pix2=PI*ax*ax method (§5.2).
b=cmplx(1l.,-pix2)

Evaluate both series simultaneously.
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cc=1./FPMIN
d=1./b
h=d
n=-1
do 12 k=2,MAXIT
n=n+2
a=-n*x(n+1)
b=b+4.
d=1./(a*xd+b) Denominators cannot be zero.
cc=b+a/cc
del=cc*d
h=hx*del
if (absc(del-1.).1t.EPS)goto 2
enddo 12

pause ’cf failed in frenel’
h=h*cmplx (ax,-ax)
cs=cmplx(.5,.5)*(1.-cmplx(cos(.5*pix2),sin(.5*pix2))*h)
c=real(cs)
s=aimag(cs)

endif

if(x.1t.0.)then Use antisymmetry.
c=-c
s=-s

endif

return

END

Cosine and Sine Integrals

The cosine and sine integrals are defined by

T cost — 1
Ci(x)Z”y—Flnx—!—/ %dt
® gint 0 (6.9.6)
81(50):/ ST g
o t

Here v ~ 0.5772... is Euler's constant. We only need a way to calculate the
functions for z > 0, because

Si(—z) = —Si(z), Ci(—z) = Ci(x) —ir (6.9.7)

Once again we can evaluate these functions by a judicious combination of
power series and complex continued fraction. The series are

) 3 x?
Siw) =r= g5t 55~
: . (6.9.8)
. x x
Ci(z) =vy+Inz+ (_ﬁ+ T —)
The continued fraction for the exponentia integral E; (iz) is
E,(iz) = — Ci(z) + i[Si(x) — 7/2]
L1 1 1 2 2
= € _—  — e
ir+ 1+ iz + 1+ iz + (6.9.9)

in 1 12 22
=€ « e
1+ix— 3+ix— S+ix—
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6.9 Fresnel Integrals, Cosine and Sine Integrals 251

The “even” form of the continued fraction is given in the last line and converges
twice as fast for about the same amount of computation. A good crossover point
from the alternating series to the continued fraction is x = 2 in this case. As for
the Fresnel integras, for large = the precision may be limited by the precision of
the sine and cosine routines.

SUBROUTINE cisi(x,ci,si)
INTEGER MAXIT
REAL ci,si,x,EPS,EULER,PIBY2,FPMIN,TMIN
PARAMETER (EPS=6.e-8,EULER=.57721566,MAXIT=100,PIBY2=1.5707963,
FPMIN=1.e-30,TMIN=2.)
Computes the cosine and sine integrals Ci(z) and Si(z). Ci(0) is returned as a large negative
number and no error message is generated. For z < 0 the routine returns Ci(—z) and you
must supply the —im yourself.
Parameters: EPS is the relative error, or absolute error near a zero of Ci(z); EULER = #;
MAXIT is the maximum number of iterations allowed; PIBY2 = 7/2; FPMIN is a number
near the smallest representable floating-point number; TMIN is the dividing line between
using the series and continued fraction.
INTEGER i,k
REAL a,err,fact,sign,sum,sumc,sums,t,term,absc
COMPLEX h,b,c,d,del
LOGICAL odd
absc(h)=abs(real(h))+abs(aimag(h)) Statement function.
t=abs (x)
if(t.eq.0.)then Special case
si=0.
ci=-1./FPMIN
return
endif
if (t.gt.TMIN)then Evaluate continued fraction by modified Lentz's
b=cmplx(1.,t) method (§5.2).
c=1./FPMIN
d=1./p
h=d
dou i=2,MAXIT
a=-(i-1)**2
b=b+2.
d=1./(a*d+b) Denominators cannot be zero.
c=b+a/c
del=c*d
h=hx*del
if (absc(del-1.).1t.EPS)goto 1
enddo 11
pause ’cf failed in cisi’
continue
h=cmplx(cos(t),-sin(t))*h
ci=-real(h)
si=PIBY2+aimag(h)
else Evaluate both series simultaneously.
if (t.1t.sqrt (FPMIN))then Special case: avoid failure of convergence test
sumc=0. because of underflow.
sums=t
else
sum=0.
sums=0.
sumc=0.
sign=1.
fact=1.
odd=.true.
do 12 k=1,MAXIT
fact=fact*t/k
term=fact/k
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sum=sum+sign*term
err=term/abs (sum)
if (odd)then
sign=-sign
sums=sum
sum=sumc
else
sumc=sum
sum=sums
endif
if (err.1t.EPS)goto 2
odd=.not.odd

enddo 12
pause ’maxits exceeded in cisi’
endif
si=sums
ci=sumc+log(t)+EULER
endif
if(x.1t.0.)si=-si
return
END

CITED REFERENCES AND FURTHER READING:

Stegun, L.A., and Zucker, R. 1976, Journal of Research of the National Bureau of Standards,

vol. 80B, pp. 291-311; 1981, op. cit., vol. 86, pp. 661-686.

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by

Dover Publications, New York), Chapters 5 and 7.

6.10 Dawson’s Integral
Dawson’s Integral F'(x) is defined by
F(x) = e / el at
0
The function can also be related to the complex error function by
F(z)= ge_zz [1 —erfc(—iz)].

A remarkable approximation for F'(x), due to Rybicki [1], is

e—(z—nh)2

(6.10.1)

(6.10.2)

(6.10.3)

What makes equation (6.10.3) unusual is that its accuracy increases exponentially
as h gets small, so that quite moderate values of h (and correspondingly quite rapid

convergence of the series) give very accurate approximations.
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6.10 Dawson'’s Integral 253

We will discuss the theory that leads to equation (6.10.3) later, in §13.11, as
an interesting application of Fourier methods. Here we simply implement a routine
based on the formula

It isfirst convenient to shift the summation index to center it approximately on
the maximum of the exponentia term. Define ng to be the even integer nearest to
x/h, and xg = noh, ' =z — 9, and n’ = n — ng, SO that

N ! )2
F ! e 6.10.4
W~ 7= 2 (6104)

n’/ odd

where the approximate equality is accurate when h is sufficiently small and N is
sufficiently large. The computation of this formula can be greatly speeded up if
we note that

o— @' =n'h)? _ —a? =0 h)? (ezr/h)" , (6.10.5)

The first factor is computed once, the second is an array of constants to be stored,
and the third can be computed recursively, so that only two exponentias need be
evaluated. Advantage is also taken of the symmetry of the coefficients e~ ("'")° by
breaking the summation up into positive and negative values of n’ separately.

In the following routine, the choices h = 0.4 and N = 11 are made. Because
of the symmetry of the summations and the restriction to odd values of n, the limits
on the do loops are 1 to 6. The accuracy of the result in thisREAL version is about
2 x 10~7. In order to maintain relative accuracy near = = 0, where F(z) vanishes,
the program branchesto the eval uation of the power series[2] for F'(x), for |x| < 0.2.

FUNCTION dawson(x)
INTEGER NMAX
REAL dawson,x,H,A1,A2,A3
PARAMETER (NMAX=6,H=0.4,A1=2./3.,A2=0.4,A3=2./7.)
Returns Dawson's integral F(z) = exp(—x2) IS exp(t?)dt for any real x.
INTEGER i,init,n0
REAL d1,d2,el,e2,sum,x2,xp,xx,c (NMAX)
SAVE init,c
DATA init/0/ Flag is O if we need to initialize, else 1.
if (init.eq.0)then
init=1
do 11 i=1,NMAX
c(i)=exp(-((2.*float (i)-1.)*H)**2)
enddo 11
endif
if (abs(x).1t.0.2)then Use series expansion.
X2=x%%2
dawson=x*(1.-A1*x2%(1.-A2%x2*(1.-A3*x2)))
else Use sampling theorem representation.
xx=abs (x)
n0=2*nint (0.5%xx/H)
xp=xx-float(n0)*H
el=exp(2.*xp*H)
e2=el**2
di=float (n0+1)
d2=d1-2.
sum=0.
do 2 i=1,NMAX
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sum=sum+c (i) *(el/d1+1./(d2x*el))
di=d1+2.
d2=42-2.
el=e2%*el
enddo 12
dawson=0.5641895835*sign (exp(-xp**2) ,x)*sum Constant is 1/+/7.
endif
return
END

Other methods for computing Dawson’s integral are also known [2,3].

CITED REFERENCES AND FURTHER READING:
Rybicki, G.B. 1989, Computers in Physics, vol. 3, no. 2, pp. 85-87. [1]

Cody, W.J., Pociorek, K.A., and Thatcher, H.C. 1970, Mathematics of Computation, vol. 24,
pp. 171-178. [2]

McCabe, J.H. 1974, Mathematics of Computation, vol. 28, pp. 811-816. [3]

6.11 Elliptic Integrals and Jacobian Elliptic
Functions

Ellipticintegrals occur in many applications, because any integra of theform

/ R(t,s) dt (6.11.1)

where R is a rationa function of ¢ and s, and s is the square root of a cubic or
quartic polynomial in ¢, can be evaluated in terms of dliptic integrals. Standard
references[1] describe how to carry out the reduction, which was originaly done
by Legendre. Legendre showed that only three basic dliptic integrals are required.
The simplest of these is

I = / dt
y \/(CL1 + b1t)(az + bat)(as + bst)(as + bat)

(6.11.2)

where we have written the quartic s? in factored form. In standard integral tables[2],
one of the limits of integration is dways a zero of the quartic, while the other limit
lies closer than the next zero, so that there is no singularity within the interval. To
evauate I;, we smply break the interval [y, z] into subintervas, each of which
either begins or ends on a singularity. The tables, therefore, need only distinguish
the eight cases in which each of thefour zeros (ordered according to size) appears as
the upper or lower limit of integration. In addition, when one of the b'sin (6.11.2)
tends to zero, the quartic reduces to a cubic, with the largest or smallest singularity
moving to +oo; thisleads to eight more cases (actually just special cases of thefirst
eight). The sixteen cases in total are then usually tabulated in terms of Legendre's
standard elipticintegral of the 1st kind, which we will define below. By a change of
the variableof integration ¢, the zeros of the quartic are mapped to standard locations
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6.11 Elliptic Integrals and Jacobian Elliptic Functions 255

on the real axis. Then only two dimensionless parameters are needed to tabulate
Legendre'sintegral. However, the symmetry of the original integral (6.11.2) under
permutation of the roots is concealed in Legendre’s notation. We will get back to
Legendre's notation below. But first, here is a better way:

Carlson [3] has given a new definition of a standard elliptic integral of the first kind,

1 [ dt
)= 5/0 VE+ )t + )+ 2)

where z, y, and z are nonnegative and at most one is zero. By standardizing the range
of integration, he retains permutation symmetry for the zeros. (Weierstrass' canonical form
also has this property.) Carlson first shows that when x or y is a zero of the quartic in
(6.11.2), the integral I; can be written in terms of Ry in a form that is symmetric under
permutation of the remaining three zeros. In the general case when neither = nor y is a
zero, two such Rr functions can be combined into a single one by an addition theorem,
leading to the fundamental formula

Rr(z,y,z (6.11.3)

I = 2Rp (Ui, Ufs, Uly) (6.11.4)

where
Uij = (XiX;YiYm + ViV X6 X)) /(x — y) (6.11.5)
Xi = (ai +bx)'?,  Yi=(ai+biy)"? (6.11.6)

and i, j, k, m is any permutation of 1,2, 3, 4. A short-cut in evaluating these expressionsis

Uts = Uty — (a1bs — asbr)(azbs — asbs)
. (6.11.7)
Uiy = Uiy — (a1bs — asby)(a2bs — asbs)

The U’s correspond to the three ways of pairing the four zeros, and I, is thus manifestly
symmetric under permutation of the zeros. Equation (6.11.4) therefore reproduces all sixteen
cases when one limit is a zero, and also includes the cases when neither limit is a zero.

Thus Carlson’s function allows arbitrary ranges of integration and arbitrary positions of
the branch points of the integrand relative to the interval of integration. To handle elliptic
integrals of the second and third kind, Carlson definesthe standard integral of the third kind as

Ry(2,y,2,p) = 5/0 (t+p)/E+2)E+y)(t+2)

which is symmetric in z, y, and z. The degenerate case when two arguments are equal
is denoted

(6.11.8)

RD(x7y7 Z) = RJ(%%Z’Z) (6119)

and is symmetric in x and y. The function Rp replaces Legendre’s integral of the second
kind. The degenerate form of Ry is denoted

Re(z,y) = Rr(z,y,9) (6.11.10)

It embraces logarithmic, inverse circular, and inverse hyperbolic functions.

Carlson [4-7] gives integral tables in terms of the exponents of the linear factors of
the quartic in (6.11.1). For example, the integral where the exponents are (3,2,—3,—2)
can be expressed as a single integral in terms of Rp; it accounts for 144 separate cases in
Gradshteyn and Ryzhik [2]!

Refer to Carlson’s papers[3-7] for some of the practical details in reducing elliptic
integrals to his standard forms, such as handling complex conjugate zeros.
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256 Chapter 6.  Special Functions

Turn now to the numerical evaluation of elliptic integrals. The traditional methods[8]
are Gauss or Landen transformations. Descending transformations decrease the modulus
k of the Legendre integrals towards zero, increasing transformations increase it towards
unity. In these limits the functions have simple analytic expressions. While these methods
converge quadratically and are quite satisfactory for integrals of the first and second kinds,
they generally lead to loss of significant figures in certain regimes for integrals of the third
kind. Carlson’s algorithms[9,10], by contrast, provide a unified method for all three kinds
with no significant cancellations.

The key ingredient in these algorithms is the duplication theorem:

Rp(z,y,2) = 2Rr(x+ Ay + A, 2+ A)

R (w—!—)\ y+ A z—|—)\> (6.11.11)
4 7 4 7 4
where
A= ()% + (22)% + (y2)*/? (6.11.12)

This theorem can be proved by a simple change of variable of integration[11]. Equation
(6.11.11) isiterated until the argumentsof R are nearly equal. For equal arguments we have

Rp(z,z,z) = o~ /2 (6.11.13)
When the arguments are close enough, the function is evaluated from afixed Taylor expansion
about (6.11.13) through fifth-order terms. While the iterative part of the algorithm is only
linearly convergent, the error ultimately decreasesby afactor of 4° = 4096 for each iteration.
Typically only two or three iterations are required, perhaps six or seven if the initial values
of the arguments have huge ratios. We list the algorithm for Rr here, and refer you to
Carlson’s paper [9] for the other cases.
Stage 1: For n = 0,1, 2,... compute
Xn=1—(xn/ttn), Yo=1—=(yn/tn);, Zn=1— (2n/pin)
en = max(|Xnl, [Yal, | Zn])
If €, < tol go to Stage 2; else compute

1/2 1/2

Ao = (@nyn)'? + (@n20)'? + (Yn2n)
Tpt1 = (Tn + An) /4y Ynt1 = (Yn + M) /4, zng1 = (2n + An)/4
and repeat this stage.
Stage 2: Compute
Ey= XY, — Z2, Es= XnYnZn
Rp=(1- 5B+ LEs + 4 E; — 2E2Es)/(pn)"?

In some applications the argument p in Ry or the argument y in R¢ is negative, and the
Cauchy principal value of theintegral isrequired. Thisis easily handled by using the formulas

RJ(I7 yvzvp) =
(v —y)Rs(x,y,2,7) — 3Rr(x,y,2) + 3Rc(x2/y,pv/y)] /(y — p)
(6.11.14)
where
y=yg BV —2) (6.11.15)
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6.11 Elliptic Integrals and Jacobian Elliptic Functions 257

is positive if p is negative, and

T

Refa) = (72

The Cauchy principal value of R; has a zero at some value of p < 0, so (6.11.14) will give
some loss of significant figures near the zero.

1/2
) Re(z —vy, —y) (6.11.16)

FUNCTION rf(x,y,z)
REAL rf,x,y,z,ERRTOL,TINY,BIG,THIRD,C1,C2,C3,C4
PARAMETER (ERRTOL=.08,TINY=1.5e-38,BIG=3.E37,THIRD=1./3.,
C1=1./24.,C2=.1,C3=3./44.,C4=1./14.)
Computes Carlson’s elliptic integral of the first kind, Rp(z,v,2). z, y, and z must be
nonnegative, and at most one can be zero. TINY must be at least 5 times the machine
underflow limit, BIG at most one fifth the machine overflow limit.
REAL alamb,ave,delx,dely,delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt,zt
if (min(x,y,z).1t.0..or.min(x+y,x+z,y+z) .1t.TINY.or.
max(x,y,z).gt.BIG)pause ’invalid arguments in rf’
xt=x
yt=y
zt=z
continue
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx* (sqrty+sqrtz)+sqrty*sqrtz
xt=.25*(xt+alamb)
yt=.25%(yt+alamb)
zt=.25*(zt+alamb)
ave=THIRD* (xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt) /ave
if (max (abs(delx) ,abs(dely) ,abs(delz)) .gt.ERRTOL)goto 1
e2=delx*dely-delz**2
e3=delx*dely*delz
rf=(1.+(C1*e2-C2-C3*e3) *e2+C4*e3) /sqrt(ave)
return
END

A value of 0.08 for the error tolerance parameter is adequate for single precision (7
significant digits). Sincethe error scalesas <, we see that 0.0025 will yield double precision
(16 significant digits) and require at most two or three more iterations. Since the coefficients
of the sixth-order truncation error are different for the other elliptic functions, these valuesfor
theerror tolerance should be changedto 0.04 and 0.0012in the algorithm for R, and 0.05 and
0.0015for Ry and Rp. Aswell asbeing an algorithmin its ownright for certain combinations
of elementary functions, the algorithm for R¢ is used repeatedly in the computation of R ;.

The Fortran implementations test the input arguments against two machine-dependent
constants, TINY and BIG, to ensure that there will be no underflow or overflow during the
computation. We have chosen conservative values, corresponding to a machine minimum
of 3 x 1073% and a machine maximum of 1.7 x 1038, You can always extend the range of
admissible argument values by using the homogeneity relations (6.11.22), below.

FUNCTION rd(x,y,z)

REAL rd,x,y,z,ERRTOL,TINY,BIG,C1,C2,C3,C4,C5,C6

PARAMETER (ERRTOL=.05,TINY=1.e-25,BIG=4.5E21,C1=3./14.,C2=1./6.,

€3=9./22.,C4=3./26.,C5=.25%C3,C6=1.5%C4)

Computes Carlson’s elliptic integral of the second kind, Rp(z,y,z). = and y must be
nonnegative, and at most one can be zero. z must be positive. TINY must be at least twice
the negative 2/3 power of the machine overflow limit. BIG must be at most 0.1 x ERRTOL
times the negative 2/3 power of the machine underflow limit.

REAL alamb,ave,delx,dely,delz,ea,eb,ec,ed,ee,fac,sqrtx,sqrty,
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sqrtz,sum,xt,yt,zt
if (min(x,y).1t.0..or.min(x+y,z).1t.TINY.or.
max(x,y,z).gt.BIG)pause ’invalid arguments in rd’
xt=x
yt=y
zt=z
sum=0.
fac=1.
continue
sqrtx=sqrt (xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/ (sqrtz*(zt+alamb))

fac=.2b*fac
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)

zt=.25*(zt+alamb)
ave=.2* (xt+yt+3.*zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt) /ave
if (max (abs(delx),abs(dely) ,abs(delz)) .gt.ERRTOL)goto 1
ea=delxx*dely
eb=delz*delz
ec=ea-eb
ed=ea-6.*eb
ee=ed+ectec
rd=3.*sum+fac* (1.+ed*(-C1+C5*xed-C6*delz*ee)
+delz* (C2*ee+delz* (-C3*ec+delz*C4*ea)))/(ave*sqrt (ave))
return
END

FUNCTION rj(x,y,z,p)
REAL rj,p,x,y,z,ERRTOL,TINY,BIG,C1,C2,C3,C4,C5,C6,C7,C8
PARAMETER (ERRTOL=.05,TINY=2.5e-13,BIG=9.E11,C1=3./14.,C2=1./3.,
C3=3./22.,C4=3./26.,C5=.75*C3,C6=1.5%C4,C7=.5%C2,C8=C3+C3)
USES rc, rf
Computes Carlson’s elliptic integral of the third kind, R;(z,y, 2, p). x, y, and z must be
nonnegative, and at most one can be zero. p must be nonzero. If p < 0, the Cauchy
principal value is returned. TINY must be at least twice the cube root of the machine
underflow limit, BIG at most one fifth the cube root of the machine overflow limit.
REAL a,alamb,alpha,ave,b,beta,delp,delx,dely,delz,ea,eb,ec,
ed,ee,fac,pt,rcx,rho,sqrtx,sqrty,sqrtz, sum, tau,xt,
yt,zt,rc,rf
if (min(x,y,z).1t.0..or.min(x+y,x+z,y+z,abs(p)) .1t.TINY.or.
max(x,y,z,abs(p)) .gt.BIG)pause ’invalid arguments in rj’
sum=0.
fac=1.
if(p.gt.0.)then
xt=x
yt=y
zt=z
pt=p
else
xt=min(x,y,z)
zt=max(x,y,z)
yt=x+y+z-xt-zt

a=1./(yt-p)
b=ax(zt-yt)*(yt-xt)
pt=yt+b

rho=xt*zt/yt
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tau=p*pt/yt
rcx=rc(rho,tau)
endif
continue
sqrtx=sqrt (xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx* (sqrty+sqrtz)+sqrty*sqrtz
alpha=(pt*(sqrtx+sqrty+sqrtz) +sqrtx*sqrty*sqrtz)**2
beta=pt* (pt+alamb) **2
sum=sum+fac*rc(alpha,beta)
fac=.26xfac
xt=.25*(xt+alamb)
yt=.25%(yt+alamb)
zt=.25*(zt+alamb)
pt=.25*(pt+alamb)
ave=.2* (xt+yt+zt+pt+pt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
delp=(ave-pt)/ave
if (max (abs(delx),abs(dely) ,abs(delz),abs(delp)).gt.ERRTOL)goto 1
ea=delx*(dely+delz)+dely*delz
eb=delx*dely*delz
ec=delp**2
ed=ea-3.*ec
ee=eb+2.*delp*(ea-ec)
rj=3.*sum+fac*(1.+ed*(-C1+C5*ed-C6*ee)+eb* (C7+delp* (-C8+delp*C4))
+delp*ea* (C2-delp*C3)-C2*delp*ec)/ (ave*sqrt (ave))
if (p.le.0.) rj=ax(b*rj+3.*(rcx-rf(xt,yt,zt)))
return
END

FUNCTION rc(x,y)
REAL rc,x,y,ERRTOL,TINY,SQRTNY,BIG,TNBG,COMP1,COMP2,THIRD,
C1,C2,C3,C4
PARAMETER (ERRTOL=.04,TINY=1.69e-38,SQRTNY=1.3e-19,BIG=3.E37,
TNBG=TINY*BIG,COMP1=2.236/SQRTNY,COMP2=TNBG*TNBG/25.,
THIRD=1./3.,C1=.3,C2=1./7.,C3=.375,C4=9./22.)
Computes Carlson’s degenerate elliptic integral, Rc(x,y). £ must be nonnegative and y
must be nonzero. If y < 0, the Cauchy principal value is returned. TINY must be at least
5 times the machine underflow limit, BIG at most one fifth the machine maximum overflow
limit.
REAL alamb,ave,s,w,xt,yt
if(x.1t.0..0or.y.eq.0..or. (x+abs(y)).1t.TINY.or. (x+abs(y)) .gt .BIG
.or.(y.1t.-COMP1.and.x.gt.0..and.x.1t.COMP2))
pause ’invalid arguments in rc’
if(y.gt.0.)then
xt=x
yt=y
w=1.
else
xt=x-y
yt=-y
w=sqrt(x)/sqrt(xt)
endif
continue
alamb=2.*sqrt (xt)*sqrt(yt)+yt
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
ave=THIRD* (xt+yt+yt)
s=(yt-ave) /ave
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260 Chapter 6.  Special Functions

if (abs(s) .gt .ERRTOL) goto 1

rc=w* (1.+s*s*(Cl+s*(C2+s*(C3+s*C4)))) /sqrt(ave)
return

END

At times you may want to express your answer in Legendre’s notation. Alter-
natively, you may be given results in that notation and need to compute their values
with the programs given above. It is a simple matter to transform back and forth.
The Legendre dliptic integral of the 1st kind is defined as

¢ do
F(g, k)= —_—_— (6.11.17)
0 1 — k2 sin?
The complete eliptic integral of the 1st kind is given by
K(k)=F(r/2,k) (6.11.18)

In terms of Rp,

F(¢,k) =sinpRp(cos® ¢, 1 — k%sin? ¢, 1)
) (6.11.19)
K(k) = Rp(0,1 — K%, 1)

The Legendre elliptic integral of the 2nd kind and the complete dliptic integral of
the 2nd kind are given by

¢
E(¢, k) = / V1 — k2sin® 6 df
0

=sin¢Rp(cos? ¢, 1 — k?sin® ¢, 1)

(6.11.20)
— 2k?sin® pRp(cos® ¢, 1 — k? sin® ¢, 1)
E(k) = E(r/2,k) = Rp(0,1 — k* 1) — 2k*Rp(0,1 — k*,1)
Finaly, the Legendre dliptic integral of the 3rd kind is
¢
(6.0, = | v
0 (1+nsin?0)v1— k2sin®0
— sinpRp(cos® 6,1 — k2 sin® 6, 1) (6.11.21)

— insin® gR;(cos® ¢, 1 — k* sin® ¢, 1, 1 + nsin® ¢)

(Notethat thissign convention for n isoppositethat of Abramowitz and Stegun [12],
and that their sina is our k.)

FUNCTION ellf (phi,ak)

REAL ellf,ak,phi

USES rf
Legendre elliptic integral of the 1st kind F'(¢, k), evaluated using Carlson’s function Rp.
The argument ranges are 0 < ¢ < /2, 0 < ksing < 1.

REAL s,rf

s=sin(phi)

ellf=s*rf (cos(phi)**2, (1.-s*ak)*(1.+s*ak),1.)

return

END
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6.11 Elliptic Integrals and Jacobian Elliptic Functions 261

FUNCTION elle(phi,ak)
REAL elle,ak,phi
USES rd, rf
Legendre elliptic integral of the 2nd kind E(¢, k), evaluated using Carlson’s functions Rp
and Rp. The argument ranges are 0 < ¢ < 7/2, 0 < ksing < 1.
REAL cc,q,s,rd,rf
s=sin(phi)
cc=cos (phi) **2
q=(1.-s*ak)*(1.+s*ak)
elle=s*(rf(cc,q,1.)-((s*ak)**2)*rd(cc,q,1.)/3.)
return
END

FUNCTION ellpi(phi,en,ak)

REAL ellpi,ak,en,phi

USES rf,rj
Legendre elliptic integral of the 3rd kind II(¢, n, k), evaluated using Carlson’s functions Ry
and Rp. (Note that the sign convention on n is opposite that of Abramowitz and Stegun.)
The ranges of ¢ and k are 0 < ¢ < 7/2, 0 < ksing < 1.

REAL cc,enss,q,s,rf,rj

s=sin(phi)

enss=en*s*s

cc=cos (phi) **2

q=(1.-s*ak)*(1.+s*ak)

ellpi=s*(rf(cc,q,1.)-enss*rj(cc,q,1.,1.+enss)/3.)

return

END

Carlson’s functions are homogeneous of degree —% and —%, 5]
Rp(Az, Ay, \2) = A2 Rp (2, y, 2)

) (6.11.22)

Ry(Ax, My, Az, Ap) = ARy (2, y, 2,p)

Thus to express a Carlson function in Legendre's notation, permute the first three
arguments into ascending order, use homogeneity to scale the third argument to be
1, and then use equations (6.11.19)—(6.11.21).

Jacobian Elliptic Functions

The Jacobian dliptic function sn is defined as follows: instead of considering
the dliptic integral

u(y, k) =u= F(¢,k) (6.11.23)
consider the inverse function
y =sin¢ = sn(u, k) (6.11.24)
Equivalently,
u= / > dy (6.11.25)
o V(I —y?)(1 - k)
When k£ = 0, snisjust sin. The functions cn and dn are defined by the relations
sP4en’=1, Ks?+dn’=1 (6.11.26)

The routine given below actually takes m. = k2 = 1 — k? as an input parameter.
It also computes all three functions sn, cn, and dn since computing al three is no
harder than computing any one of them. For a description of the method, see [8].
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262 Chapter 6.  Special Functions

SUBROUTINE sncndn(uu,emmc,sn,cn,dn)

REAL cn,dn,emmc,sn,uu,CA

PARAMETER (CA=.0003) The accuracy is the square of CA.
Returns the Jacobian elliptic functions sn(u, kc), cn(u, kc), and dn(u, kc). Here uu = u,
while emmc = k2.

INTEGER i,ii,1

REAL a,b,c,d,emc,u,em(13),en(13)

LOGICAL bo

emc=emmc

u=uu

if (emc.ne.0.)then
bo=(emc.1t.0.)

if (bo)then
d=1.-emc
emc=-emc/d
d=sqrt(d)
u=d*u

endif

a=1.

dn=1.

don i=1,13
1=3i
em(i)=a
emc=sqrt (emc)
en(i)=emc

c=0.5%(a+emc)
if (abs(a-emc).le.CAxa)goto 1
emc=a*emc
a=c
enddo 1
u=c*u
sn=sin(u)
cn=cos (u)
if(sn.eq.0.)goto 2
a=cn/sn
c=axc
dorw ii=1,1,-1
b=em(ii)
a=c*a
c=dn*c
dn=(en(ii)+a)/(b+a)
a=c/b
enddo 12
a=1./sqrt(c**2+1.)
if(sn.1t.0.)then
sn=-a
else
sn=a
endif
cn=c*sn
if (bo)then
a=dn
dn=cn
cn=a
sn=sn/d
endif
else
cn=1./cosh(u)
dn=cn
sn=tanh (u)
endif
return
END
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6.12 Hypergeometric Functions

Aswas discussed in §5.14, a fast, general routinefor the the complex hyperge-
ometric function o F (a, b, ¢; 2), isdifficult or impossible. The function is defined as
the analytic continuation of the hypergeometric series,

ab z ala+1)b(b+1) 2*

F M :1 _ - @@z ~ @7
2Fi(a,,¢;2) RPETR c(c+1) 2!
ala+1)...(a+j—Dbb+1)...(b+j—1) 27
+ - - +
cle+1)...(c+j—1) 7!

(6.12.1)
This series converges only within the unit circle |z| < 1 (see[1]), but on€'s interest
in the function is not confined to this region.

Section 5.14 discussed the method of evaluating this function by direct path
integration in the complex plane. We here merely list the routinesthat result.

Implementation of the function hypgeo is straightforward, and is described by
comments in the program. The machinery associated with Chapter 16's routine for
integrating differentia equations, odeint, is only minimaly intrusive, and need
not even be completely understood: use of odeint requires a common block with
one zeroed variable, one subroutine call, and a prescribed format for the derivative
routine hypdrv.

The subroutine hypgeo will fail, of course, for values of z too close to the
singularity at 1. (If you need to approach this singularity, or the one a oo, use
the “linear transformation formulas’ in §15.3 of [1].) Away from z = 1, and for
moderate values of a, b, ¢, it is often remarkable how few steps are required to
integrate the equations. A half-dozen is typical.
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