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ABSTRACT

Whenmodeling the three-dimensional hydrodynamics of interstellar material rotating in a galactic gravita-
tional potential, it is useful to have an analytic expression for gravitational perturbations due to stellar spiral
arms. We present such an expression for which changes in the assumed characteristics of the arms can be
made easily and the sensitivity of the hydrodynamics to those characteristics examined. This analytic expres-
sion also makes it easy to rotate the force field at the pattern angular velocity with little overhead on the
calculations.

Subject headings: galaxies: spiral — galaxies: structure — Galaxy: structure — hydrodynamics

1. INTRODUCTION

In this paper we present analytic expressions for the per-
turbation of the galactic axisymmetric gravitational poten-
tial due to redistribution of part of the stellar disk mass into
spiral arms, and for the distribution of density responsible
for that potential. Adjustable parameters include the num-
ber of arms, N, the pitch angle, �, the radial scale length of
the drop-off in density amplitude of the arms, Rs, the mid-
plane arm density, �0 at fiducial radius r0, and the scale
height of the stellar arm perturbation,H.

The amplitude of the spiral density distribution whose
gravitational potential we set out to find is given by

�Aðr; zÞ ¼ �0 exp � r� r0
Rs

� �
sech2

�
z

H

�
: ð1Þ

Modulating this by a simple sinusoidal pattern in �,
following a logarithmic spiral with a pitch angle �, the over-
all density perturbation is

�ðr; �; zÞ ¼ �Aðr; zÞ cos ð�Þ ; ð2Þ

where

� ¼ N �� �pðr0Þ �
lnðr=r0Þ
tan ð�Þ

� �
: ð3Þ

More complicated azimuthal arm structures can be con-
structed with linear combinations of these solutions of the
form

�ðr; �; zÞ ¼ �Aðr; zÞ
X
n

Cn cos ðn�Þ : ð4Þ

In a particularly interesting example, the density behaves
approximately as a cosine squared in the arms but is sepa-
rated by a flat interarm region occupying half the volume. It
has three terms in its sum, with C1 ¼ 8=ð3�Þ, C2 ¼ 1

2, and
C3 ¼ 8=ð15�Þ. The resulting phase pattern is compared with
that of a simple sinusoid in Figure 1.

An important feature of such a perturbation is that its
average density is zero. Its potential can thus be added to
observationally constrained models for the azimuthally

averaged potential without altering the latter. In addition,
because the assumed arm perturbation extends over all
radii, it is important that the average density be zero at both
large and small radii where the arms do not actually exist.
The radial exponential damping introduced in equation (1)
is also useful in this regard. Thus, the gradient of the pertur-
bation potential in the calculation region is provided pre-
dominantly by the local distribution of material.

2. THE POTENTIAL

In developing an expression for the potential, we first con-
sidered an infinite sinusoidally oscillating density pattern in
a rectilinear coordinate system. Mathematically it was
equivalent to equations (1) and (2) with Rs infinite, �
replaced with kx, and y extending from +1 to�1, normal
to the wave vector. For this density distribution, we eval-
uated the potential numerically and fitted the results versus
phase (kx) and z with a simple functional form. We then
remapped the solution’s phase into the desired spiral
pattern and reintroduced the radial drop-off factor,
exp ½�ðr� r0Þ=Rs�, obtaining a trial potential function.

The resulting potential has three functional parameters
dependent on radius:

Kn ¼
nN

r sinð�Þ ; ð5Þ

�n ¼ KnHð1þ 0:4KnHÞ ; ð6Þ

Dn ¼
1þ KnH þ 0:3ðKnHÞ2

1þ 0:3KnH
: ð7Þ

With these parameters, the trial potential corresponding
approximately to the density distribution of equation (4) is

�ðr; �; zÞ ¼ � 4�GH�0 exp � r� r0
Rs

� �X
n

Cn

KnDn

� �

� cosðn�Þ sech
Knz

�n

� �� ��n
: ð8Þ
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3. THE DENSITY

Our next step was just an inversion of attitude, from con-
sidering the density function of equations (1)–(4) as primary
and the potential function of equation (8) as an approxi-
mate solution, to the inverse perspective. Equation (8) is
our final equation for the potential perturbation, and by
evaluating

� ¼ r2�

4�G
ð9Þ

we find the exact corresponding density function. Because
of the radial dependence of the parameters Kn, �n, and Dn,
the radial derivatives of the Laplacian are particularly
messy. The full solution is given in the Appendix; for each n
there is one dominant term for small H=r and not too large
z=H such that

�ðr; �; zÞ � �0 exp � r� r0
Rs

� �X
n

Cn
KnH

Dn

�n þ 1

�n

� �

� cosðn�Þ sech
Knz

�n

� �� �ð2þ�nÞ
: ð10Þ

Of course, for particular choices of parameters, the Lapla-
cian can be evaluated numerically to determine the corre-
sponding density function. We did so to check the exact
density solution of the Appendix, for example.

4. EXAMPLES

We next present the results for two cases, one with simple
sinusoidal arms and one with the more concentrated arms,
as per Figure 1. The parameters in both cases are N ¼ 2,
� ¼ 15�, Rs ¼ 7 kpc, �0 ¼ mn0, n0 ¼ 1 atom cm�3 at r0 ¼ 8

kpc, and H ¼ 0:18 kpc (chosen to match the scale height of
the thin stellar disk of Dehnen & Binney 1998, Model 2).
The average mass per atom is m ¼ ð14=11ÞmH. Unless oth-
erwise noted, results are shown versus r and z along a radial
cut passing through maximum arm density at r ¼ 8 kpc.

Figures 2 and 3 show the perturbing gravitational poten-
tial and corresponding density found from the Laplacian of
the potential, for the sinusoidal arm case. Figures 4 and 5
are similar but for the concentrated arms case. In both cases,
the density functions are almost indistinguishable from the
assumed function of equation (4) or the dominant term
form of equation (10); the differences are much smaller than
the uncertainty in how the true arms should be represented.
As a result, equation (4) (or eq. [10]) can be used with con-
siderable confidence as an approximation to the density dis-
tribution responsible for the potential.

It is somewhat easier to compare these two cases by exam-
ining separately their radial and vertical behaviors. Figures
6 and 7 compare the midplane densities and potentials ver-
sus radius. The maxima and minima of the density functions
are bounded by the decaying exponential envelope with
Rs ¼ 7 kpc. This value for the radial drop-off scale was
chosen so that the amplitude of the potential variation
would not depend strongly on radius. Our ‘‘ sinusoidal ’’
case is sinusoidal with phase (and in �), but in the logarith-
mic spiral, the effective wavelength is proportional to radius.
The ‘‘ concentrated ’’ case has the desired flatter interarm
density and sharper peaks at the arms. The difference is
moderated somewhat in the potential function, but the flat-
ter peaks (interarm) and sharper valleys of the arms are

Fig. 1.—Comparison of modulation functions for sinusoidal and con-
centrated arms.

Fig. 2.—Gravitational potential for sinusoidal arms. This plot and all
subsequent ones vs. r and z are for a radial cut at constant �which intersects
an arm at 8 kpc. Parameters are given in x 4.
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apparent in the concentrated arm case. Figures 8 and 9 com-
pare the vertical structures at the location of an arm. The
greater density and deeper and sharper potential well of the
concentrated case are evident.

Comparison of Figures 8 and 9 emphasizes the much
greater scale height of the potentials, compared to that of
the responsible densities, evident also in Figures 2–5. The
potential scale height depends on both the density scale

Fig. 3.—Distribution of density perturbation for sinusoidal arms.
Corresponding potential is shown in Fig. 2.

Fig. 4.—Gravitational potential for concentrated arms

Fig. 5.—Distribution of density perturbation for concentrated arms.
Corresponding potential is shown in Fig. 4.

Fig. 6.—Midplane densities of the two cases, vs. radius
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height and on the radial wavelength. For an infinite disk
(infinite radial wavelength), the vertical scale height is also
infinite, having a constant gradient outside the mass distri-
bution. Our results successfully model the useful cases with
KnH small to moderate.

The impressions invoked by the density distributions of
Figures 3 and 5 can be somewhat misleading. These den-
sities must be regarded as perturbations to an azimuthally
uniform stellar disk with the same vertical scale height. In

Figure 10, a disk component with the same radial drop-off
and scale height as the perturbation, and just sufficient
amplitude to make the net density everywhere positive,
has been added to the perturbation density. In the figure

Fig. 7.—Midplane potentials of the two cases, vs. radius

Fig. 8.—Densities of the two cases at r ¼ 8 kpc, vs. height

Fig. 9.—Potentials of the two cases at r ¼ 8 kpc, vs. height

Fig. 10.—Density distribution of concentrated arm perturbation plus
net mass disk. See text for description of this intuitive distribution of the
arm density, rather than the arm density perturbation, which has average
density zero.
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captions, this disk is referred to as the Net Mass Disk, as it
provides the material for the arms. This picture provides a
better idea of the assumed density structure of the arms.

Those tempted to find the potential of the above combi-
nation of disk plus perturbation may wish to consider an
alternative approach to evaluation of the spiral arm poten-
tial that has been pursued byMartos et al. (2002); they spec-
ify a positive density pattern and evaluate the potential with
mixed analytic and numerical techniques.

Having created this intuitive view of the density distri-
bution, it is used in Figure 11 to illustrate the qualitative
distribution of armmaterial in the galactic midplane.

In Figures 12 and 13, various amounts of perturbation
density are shown added to a representative full stellar disk.
The disk parameters were chosen to approximate the thin
stellar disk in Model 2 of Dehnen & Binney (1998). It has a
sech2ðz=HÞ form with a scale height of 0.18 kpc, a radial
drop-off scale of 2.4 kpc, and an atomic number density of
3.21 cm�3 at r ¼ 8 kpc. In the sinusoidal arm case, the added
perturbation has, at 8 kpc, an amplitude equal to the frac-
tions of the total 3.21 cm�3 disk density that are shown in
the legend. A fraction of 0.4, for example, implies total
interarm and arm densities of 0.6 and 1.4 times the unper-
turbed density. At smaller radii, the perturbation is a
smaller fraction of the full disk because of their different
radial drop-off scales.1 In the concentrated arm case, the

normalization is slightly different to provide similar arm to
interarm density difference at fixed radius, as per Figure 1.
In this case, a 0.4 perturbation fraction implies total inter-
arm and arm densities of 0.8 and 1.6 times the unperturbed
density at r ¼ 8 kpc. (The average density is the same in the

Fig. 11.—Midplane arm density for the concentrated arm case. The
domain is 22 kpc on a side. The rapidly oscillating density in the inner 3 kpc
is not shown. Density includes net mass disk with the same scale height,
radial drop-off rate, and total mass as the arms.

1 The extreme difference between the 2.4 kpc radial drop-off scale for the
average thin disk density and our choice of 7 kpc for the radial drop-off
scale of the perturbation density was not guided by observations. We are
using the perturbation in three-dimensional MHD modeling of the
response of the interstellar medium to the stellar arm potential and did not
want to introduce, at least initially, a strong radial gradient in the depth of
the arm potential well.

Fig. 12.—Midplane density of disk + arms for various arm amplitudes,
sinusoidal arm case. The legend shows the fractional amplitude relative to
the unperturbed disk at a radius of 8 kpc.

Fig. 13.—Midplane density vs. radius of disk + arms for various arm
amplitudes, concentrated arm case. See text for amplitude description.
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two cases because the concentrated arms are narrower.)
These figures provide a sense of the degree of modulation
required for an observable density contrast in the presence
of the steep gradient of the unperturbed disk. Rather large
perturbations are required just to flatten the density profile.
When the perturbation is large enough to give the total den-
sity a local maximum, that maximum is shifted radially
inward from the perturbation peak.

Figures 14 and 15 further examine the stellar density dis-
tribution. Figure 14 shows the vertical distribution of the
density versus radius for the stellar disk described above
plus ‘‘ 0.57 ’’ fraction sinusoidal arms. Figure 15 is similar,
but the perturbation is shown added to the entire axisym-
metric galactic density distribution of Model 2 of Dehnen &
Binney (1998). (Actually, the potentials were added and
then the density evaluated by taking the Laplacian numeri-
cally.) In the spiral arm modeling of Gómez & Cox (2002),
these are the parameters used for the two-armed case. It had
been our prejudice that a 57% modulation of the disk den-
sity at r ¼ 8 kpc represented a rather extreme situation, and
we were therefore surprised to learn its rather modest
effect on the density structure in comparison to the radial
gradient.

These results can be compared with measurements of the
actual red light profiles of spiral galaxies, if the contamina-
tion due to red supergiants can be neglected, to provide a
reasonable estimate for the arm perturbation amplitude.
This was done, for example, for M51 by Rix & Rieke (1993)
and for several other galaxies by Rix & Zaritsky (1995).
They concluded that in galaxies with strong arms, the arm
to interarm stellar density contrast was roughly a factor of
2. They further found that in some two-armed spirals, the
nonaxisymmetric structure was dominated by the funda-

mental sinusoidal component, implying very broad arms (as
in our ‘‘ sinusoidal ’’ case); but in cases with very strong
arms there was a significant higher harmonic, implying
narrower arms (as in our ‘‘ concentrated ’’ case). Thus, den-
sity contrasts at the upper end of those we have explored
seem to be relevant to at least strong armed galaxies, as do
both varieties of the armmodulation functions of Figure 1.

5. ROTATING THE PATTERN

If one is calculating the hydrodynamics in the inertial
frame, it is necessary to rotate the perturbing potential at
the pattern angular velocity �. For � increasing counter-
clockwise and a clockwise rotation, examination of equa-
tions (3) and (8) reveals that each term in the sum consists of
an amplitude function

Anðr; zÞ ¼ � 4�GH�0 exp � r� r0
Rs

� �
Cn

KnDn

� �

� sech
Knz

�n

� �� ��n
ð11Þ

multiplied by a phase function cosðn�Þ, where

�ðr; �; tÞ ¼ � þN�t ¼ N �þ �t� �pðr0Þ �
lnðr=r0Þ
tan ð�Þ

� �
:

ð12ÞFig. 14.—Density distribution of disk plus arms for 0.57 amplitude,
sinusoidal arm case.

Fig. 15.—Figure shows the full density represented by Model 2 of Deh-
nen & Binney (1998) plus a sinusoidal arm perturbation with our standard
parameters (see x 4) with an amplitude at 8 kpc of 57% of the thin disk den-
sity. This is the two-armed spiral model used by Gómez & Cox (2002) to
explore the gaseous response in MHD. Note that the arm/interarm con-
trast is small even at this amplitude.
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Thus, for each term in the sum of equation (8), only the
function Anðr; zÞ needs to be evaluated and stored. At any
time, they can be combined according to

�ðr; �; z; tÞ ¼
X
n

Anðr; zÞ cos ½n�ðr; �; tÞ� : ð13Þ
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APPENDIX

THE EXACT DENSITY DISTRIBUTION

The exact density distribution reflected in the nth term of the potential of equation (8) is given by

�nðr; �; zÞ ¼Cn�0
H

Dnr

� �
exp � r� r0

Rs

� �
sech

Knz

�n

� �� ��n

�
�

ðKnrÞ
�n þ 1

�n

� �
sech2

Knz

�n

� �
� 1

Knr
ðE2 þ rE 0Þ

� �
cos ðn�Þ � 2E cos ð�Þ sin ðn�Þ

�

where

E ¼ 1þ KnH

Dn
1� 0:3

ð1þ 0:3KnHÞ2

" #
� r

Rs
� ðKnHÞð1þ 0:8KnHÞ ln sech

Knz

�n

� �� �
� 0:4ðKnHÞ2 Knz

�n

� �
tanh

Knz

�n

� �
;

and

rE0 ¼ � KnH

Dn
1� 0:3ð1� 0:3KnHÞ

ð1þ 0:3KnHÞ3

" #
þ KnH

Dn
1� 0:3

ð1þ 0:3KnHÞ2

" #( )2

� r

Rs

þ ðKnHÞð1þ 1:6KnHÞ ln sech
Knz

�n

� �� �
� 0:4ðKnHÞ2 Knz

�n

� �
sech

Knz

�n

� �� �2�
�n þ 1:2ðKnHÞ2 Knz

�n

� �
tanh

Knz

�n

� �
:

We have stated in the text that, except at very small r or large z, the terms other than that in equation (10) are very small.
Trying to state this more carefully, we note that for KnH41, E and rE0 approachKnz and�Knz, respectively. In that limit, the
density function approaches

�nðr; �; zÞ � Cn�0 exp � r� r0
Rs

� �
sech

Knz

�n

� �� ��n��
sech2

�
Knz

�n

�
�
�
z

r

�2�
cos ðn�Þ � 2

�
z

r

�
cos ð�Þ sin ðn�Þ

�
:

From this it is clear that when

2

�
z

r

�
cosð�Þ � sech2

Knz

�n

� �
;

the third term will exceed the first. This occurs even with our standard parameters; its effect can be clearly seen in Figures 3, 5,
and 10, as a shift in phase of the density perturbation above about 500 pc. So, it is inaccurate to say that the small terms are
everywhere negligible compared to the leading term. What is true is that the small terms will dominate at high z and small r,
but in practical cases of moderate z=r and KnH 6> 1, the small terms will be small where the density is large, and not very
noticeable where it is small. They drop off slowly with z, about like the perturbation potential.
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