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ABSTRACT

Errors in the kinematic distances, under the assumption of circular gas orbits, were estimated by performing syn-
thetic observations of a model disk galaxy. It was found that the error is <0.5 kpc for most of the disk when the
measured rotation curve is used, but larger if the real rotation curve is applied. In both cases, the error is significantly
larger at the positions of the spiral arms. The error structure is such that, when kinematic distances are used to develop
a picture of the large-scale density distribution, the most significant features of the numerical model are significantly
distorted or absent, while spurious structure appears. By considering the full velocity field in the calculation of the
kinematic distances, most of the original density structures can be recovered.
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1. INTRODUCTION

Since the classic work by Oort et al. (1958) there have been
many attempts to use the kinematic properties of diffuse gas to
determine the large-scale spiral structure of the Milky Way. Very
early in the study of the Galaxy, it was determined that the orbits
of the disk components of the Galaxy are not very different from
circular, with an orbital frequency that decreases monotonically
as a function of galactocentric radius. These facts allow the use
of the kinematic distance method as a first approximation to
map the gaseous component of the Galactic disk. Two of the main
strengths of this method (that it can be used for a very large frac-
tion of the Galaxy and that it can be applied to the gaseous com-
ponent of the disk, which is notoriously difficult to obtain a
distance to) make it particularly useful for this goal. Never-
theless, it was soon realized that the deviations from circular
orbits, however small in absolute value, might have a strong
impact on how we see the Galaxy.

One of the first difficulties of the kinematic distance method
appeared in the determination of the rotation curve, namely, in
the fact that the circular rotation velocity measured for positive
Galactic longitudes (northern Galaxy) did not match the one mea-
sured for negative longitudes (southern Galaxy). The simplest
way to reconcile these observed rotation laws is to take their av-
erage, assuming that the differences generated by nonaxisym-
metric structure will cancel out. Kerr (1962) showed that this
approximation leads to large north-south asymmetries that, given
their heliocentric nature, seemed unlikely. It became clear that the
complex kinematic structure revealed in the diffuse gas surveys,
such as the presence of gas at forbidden velocities or the oscilla-
tions in the rotation curve, was itself a consequence of the spiral
structure that was being sought. Given the importance of the
rotation curve for understanding Galactic dynamics, in addition
to the determination of kinematic distances, a different approach
to measuring the rotation curve was needed.

A frequently used method to obtain the Galactic rotation curve
involves measuring the full velocity field of discrete sources that
might share the motion of the diffuse gas (young objects such as
H 1 regions, for example), and then averaging the so-obtained
azimuthal velocities. This approach has led to models of the ro-
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tation curve (Brand & Blitz 1993; Maciel & Lago 2005) that
might more closely trace the real mass distribution of the Galaxy
but introduces new sources of error when used to obtain kine-
matic distances. Nevertheless, generally accepted models of the
spiral structure (Georgelin & Georgelin 1976; Taylor & Cordes
1993) have been obtained using this assumption. (For a nice re-
view of the early work, see Kerr [1969].)

Another approach involves the modeling of noncircular mo-
tions of the gas instead of forcing the assumption of circular or-
bits. In a recent paper, Foster & MacWilliams (2006) used an
analytic approach for the velocity field of the outer Galaxy. In
this work a numerical model of the Galactic disk, with full MHD,
was used to further explore the effects of noncircular motions in
the image one would obtain of the Galaxy when relying on the
kinematic method for distances. An observer is imagined inside
the numerical model, which is assumed similar to the Milky Way,
and the analysis that this observer would perform is reproduced. In
§ 2 a brief description of the numerical simulation is presented; in
§ 3 the selection of the observer’s position is described, and how
the measurement of the rotation curve was emulated; § 4 presents
an analysis of the errors in the kinematic distances and how they
affect the image the observer generates of his/her home galaxy;
and finally, § 5 summarizes the results.

2. THE SIMULATION

The numerical model used here is described elsewhere (Martos
et al. 2004a, 2004b; Yaiiez 2005), and only an overview is pre-
sented here. The initial setup consisted of a gaseous disk with
an exponential density profile in the radial direction, with a scale
length of 4 kpc. The density at the position of the Sun (at 8 kpc
from the galactic center) was taken to be 1.11 cm~>. The equa-
tion of state for the gas was isothermal, with 7 = 10* K. The disk
was threaded by an azimuthal magnetic field, with strength given
by the relation

n

n+n.’

(1)

P =PMm

where pp is the magnetic pressure, n is the gas density, py, =
1.43 x 107'2 dyne cm =2, and n. = 0.04 cm~>. Equation (1) yields
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Fic. 1.—Density distribution of the simulation after 1 Gyr of evolution. The
gray scale shows the gas density in units of cm~3. It is notable that, although the
perturbation has only two arms, the gas response shows four arms. The Sun
symbol shows the position chosen for the imaginary observer.

B = 5.89 uG for r = Re. This intensity, and the magnetic field
geometry, were set only as initial conditions and were allowed to
evolve in time according to the ideal MHD equations.

The gas initially follows circular orbits, with a velocity given
by the equilibrium between the background gravitational po-
tential, the thermal and magnetic pressures, and the magnetic
tension:
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where v, is the azimuthal velocity, p = meg 1 is the gas mass den-
sity, megr = 1.27my is the mean particle mass, pr is the thermal
pressure, and  is the gravitational potential described by model
2 of Dehnen & Binney (1998). The equilibrium was then per-
turbed by the two-armed spiral potential described in Pichardo
et al. (2003). The simulation was performed in the perturba-
tion reference frame, which rotates with an angular speed Q2p =
20 km s~ ! kpe~! (Martos et al. 2004a, 2004b). It is worth men-
tioning that the perturbing potential was calculated as a super-
position of oblate spheroidals, and so it does not have the usual
sinusoidal profile. Also, the parameters that describe the pertur-
bation (total mass in the arms, pitch angle, pattern speed, etc.) were
constrained by those authors so that the pattern generated self-
consistent stellar orbits.

The MHD equations were solved using a version of the ZEUS
code (Stone & Norman 1992a, 1992b), a finite-difference, time-
explicit, operator-split Eulerian code for ideal MHD. The numer-
ical domain consisted of a two-dimensional grid in cylindrical
geometry, with 500 points. The numerical domain extended from
1 through 15 kpc in radius and spanned a full circle in azimuthal
angle. The boundary conditions were reflecting in the radial
direction.

Figure 1 shows the simulation after 1 Gyr of evolution. The
most important characteristics of the simulation at this stage are
the following: (1) although the perturbation consists of two spiral
arms, the gas forms four arms (two pairs with pitch angles of 9°
and 13° each, as opposed to the perturbation with a pitch angle of
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Fic. 2.—Column density, in arbitrary units, vs. galactic longitude in the sim-
ulation. By moving the imaginary observer around a circle of radius Ro =
8 kpc, the local maxima can be matched to the observed directions tangent to the
spiral arms (thick vertical lines). The dashed area at |I| < 7° shows the simu-
lation inner radial boundary.

15%5); (2) a high-density ring is formed at =~ 4 kpc; and (3) a
low-density ring is formed near corotation, at 7 =~ 11 kpc. Again,
details of the simulation and the physical phenomena related to
these structures are discussed elsewhere. The corotation low-
density ring was found (using a different background potential)
by M. Martos & M. A. Yaifiez (2006, private communication).
A study of the necessary conditions for the formation of such a
ring, its physics, and the consequences for our Galaxy is pre-
sented in M. Martos (2006, in preparation).

Gomez & Cox (2004a, 2004b) also performed large-scale sim-
ulations of the Galaxy. Since their numerical model was three-
dimensional, they were able to study some phenomena (such as
the vertical motions associated with the hydraulic jump behavior
of the gas near the spiral arms) that could have an impact on the
dynamics of the gas near the midplane. Nevertheless, the focus
of their model was to study those phenomena, and an emulation
of the Milky Way was not a priority. Specifically, their three-
dimensional numerical grid, a necessity in their work, restricted
the spatial resolution achievable in the midplane. This, together
with the low value used for (2p, did not allow the formation of
four spiral arms as a response to a two-arm spiral potential (in
order to obtain four gaseous arms, their model included a four-
arm potential). In the present work the model was restricted to
the galactic plane so that sufficient resolution could be reached.

3. THE SYNTHETIC OBSERVATIONS

Local maxima in column density (V) versus galactic longi-
tude (/) plots for the diffuse gas are usually interpreted as the
directions at which the line of sight is tangent to a spiral arm. The
N versus [ distribution that an imaginary observer would see if
placed inside this model galaxy is presented in Figure 2. By mov-
ing the observer around the solar circle, at 8 kpc in the numerical
model, the number and positions of the local maxima can be fit-
ted to the observed values for the diffuse gas. In this work the
chosen directions are those tangent to the locus of spiral arms
proposed by Taylor & Cordes (1993), namely, [ = —765, —5176,
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—32%,32%7,and 47°1. It was found that by choosing the position
shown in Figure 1 for the imaginary observer, all but one of the
column density local maxima in the model fall within 3° of these
quoted directions. If the tangent directions quoted by Drimmel &
Spergel (2001) are adopted, namely, / ~ —80°, +=50°, and 4-30°,
all but one of the tangent directions yield an even better fit. (The
difference between the ill-fitting tangent in the model, at / ~
—72°, and the quoted direction is in fact smaller than the width of
the feature observed in 240 um; see, e.g., Drimmel [2000] and
Drimmel & Spergel [2001].)

3.1. The Rotation Curve

Once a position for the observer is chosen, the next step to-
ward calculating the kinematic distances is to adopt a rotation
curve for the simulated galaxy. For the inner galaxy (» < R), the
standard procedure consists of searching for the terminal ve-
locity of the gas, i.e., the maximum line-of-sight component
of the velocity (minimum, for negative longitudes). If one as-
sumes that the gas orbits are circular, the terminal velocity arises
from the point at which the line of sight is tangent to the orbit,
and so the galactocentric radius of the emitting gas is known.
Under this assumption the circular rotation curve for the galaxy
is given by

ve(r) = vl) + ve sin (3)

where v, is the circular velocity, v,(/) is the terminal velocity for a
given galactic longitude, v is the velocity at the solar circle, and
r = R sin [ is the galactocentric radius of the tangent point.

At this point, a choice between two options for the value of the
circular velocity at the solar circle has to be made. One option is
to take a circular velocity consistent with the background grav-
itational potential (v, = 220 km s!). This option has the dis-
advantage that the gas in the evolved simulation will stream by
the observer (although this is not necessarily wrong, since the
presence of gas at forbidden velocities in the /-v diagram is well
known [Linblad 1967; Blitz & Spergel 1991]). Nevertheless, it
was decided in this work to take a second option, which is to take
the value for v, (=225 km s~!) given by the azimuthal velocity of
the gas in the evolved simulation at the position assigned to the
imaginary observer, since this choice would more closely mimic
the procedure used to determine the Local Standard of Rest from
Galactic sources (Binney & Merrifield 1998). There will still be
streaming gas, but this will happen in the radial direction only.
Such radially streaming gas has been reported by Brand & Blitz
(1993).

Figure 3 shows the line-of-sight component of the velocity
field. The figure also shows the actual positions at which the ter-
minal velocity is reached for a given /. Although the distance be-
tween those terminal-velocity points and the tangent points is
typically small, the noncircular motions and spiral shocks gener-
ate kiloparsec-scale deviations and discontinuities in the terminal-
velocity locus. Since those deviations happen at the positions of
the spiral arms, they will generate larger errors at the vicinity of
the arms and will strongly affect the observer’s view of the spiral
structure of the model galaxy.

For the outer galaxy (» > Rg), the usual procedure to deter-
mine the rotation curve involves looking for sources with in-
dependently known distance and measuring their line-of-sight
velocity (Brand & Blitz 1993, for example). This procedure was
simulated by assuming that the observer finds such a source at
each point of the numerical grid outside the solar circle. It is as-
sumed that the distances to such sources are less reliable the
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Fic. 3.—Line-of-sight component of the velocity field as a function of galac-
tic longitude and (real) distance to the observer, with contours every 50 km s~
(the thicker contour marks the 1, = 0 km s~! level). The dotted line shows the
locus of the tangent points, while the circles show the positions at which the
terminal velocity is reached. [See the electronic edition of the Journal for a color
version of this figure.]

farther they are from the observer. So, the circular velocity for the
outer galaxy was taken to be

r WeU los
=—> . 4
ve(r) R ( sin +Uo>7 (4)

where the weights w,, decrease linearly with the distance to the
observer and the summation is performed at a given radius over
the azimuthal points, excluding those within 7° of the galactic
center and anticenter directions.

Figure 4a shows the so-obtained rotation curves, together with
the rotation consistent with the background gravitational poten-
tial. The northern rotation curve is lower than the southern ro-
tation at 3.5 kpc < r < 5.5 kpc, while the opposite is true up to
r = Rg. This behavior is similar to the rotation curves reported
by Blitz & Spergel (1991) when scaled for Rz, = 8 kpc.

In order to try to recuperate the true (background) rotation,
which should more closely trace the large-scale mass distribu-
tion, the average of both the northern and southern rotation curves
was taken. The result is compared with the background rotation
in Figure 4b. Although the result is smoother and closer to the
rotation consistent with the background potential, it is still system-
atically higher (in agreement with the results reported by Sinha
1978). Another approach is to take the full velocity field and av-
erage the azimuthal velocity of the gas (Brand & Blitz 1993). The
result, also shown in Figure 45, is much closer to the background
rotation, but it is still systematically larger.

4. ERRORS IN THE KINEMATIC DISTANCE

After adopting a rotation curve and assuming that the gas fol-
lows circular orbits, the errors in the measured kinematic dis-
tances can be estimated by comparing the measured with the real
distance in the simulation. In order to resolve the distance am-
biguity for the inner galaxy, the usual procedure is to constrain
the distance close enough to place the object of interest on either
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Fic. 4—(a) Rotation curve given by the background potential (solid line) compared with the measured rotation curve. For the inner galaxy, the rotations measured
for both positive (dotted line) and negative longitudes (dashed line) are presented. The rotation curve corresponding to the outer galaxy is also shown (dash-dotted line).
(b) Rotation curve given by the background potential (solid line) compared with the average of the north and south rotation curves (dotted line) and the mean azimuthal
velocity of the gas in the simulation (dashed line). Note that both the mean velocity and the mean rotation curve are above the background rotation curve for most of the

radial domain.

side of the tangent point by looking at the galactic latitude exten-
sion of the source (Fish et al. 2003), or by using observed in-
termediate absorption features (Watson et al. 2003; Sewilo et al.
2004). For this investigation I decided to cheat: I looked up
which side of the tangent point the gas parcel fell on, and chose
the measured distance accordingly.
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Figure 5a shows the error in measured distance with respect to

the real distance in the model. Recalling Figure 4, the observer
would determine different rotation curves for the northern and
southern sides of the galactic center. Accordingly, in determin-
ing the kinematic distance for Figure 5a, the rotation curve used
is that of the corresponding side of the galactic center. It is
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FiG. 5.—Error in the measured kinematic distance (Ad) obtained under the assumption of circular orbits following («) the measured rotation curve and (b) the
rotation given by the background potential. Sections of 7° around the galactic longitudes / = 0° and 180° were excluded. Although the error in most of the galactic disk
is of the order of 0.5 kpc, it is significantly larger at the positions of the spiral arms. The sharp edges at the positions of the tangent points are a consequence of the fact
that the terminal velocities do not occur at those points. The errors in measured kinematic distances are larger when the real (background) rotation curve is used. [See the
electronic edition of the Journal for a color version of this figure.]
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noticeable that although the errors are on the order of 0.5 kpcin
most of the galactic disk, they are significantly larger at the
positions of the spiral arms (as hinted by Gomez & Cox 2004b).
This fact has a special impact in studies of the spiral structure of
the Galaxy that rely on kinematic distances, since it distorts the
image the observer would generate (see § 4.1).

There is another significant feature in Figure 5. Although the
terminal velocity does not really arise from the tangent point, the
circular orbits assumption assigns gas observed near terminal ve-
locity to that point. This generates a feature in the errors that
corresponds to the locus of the tangent points. Again, the error is
significant at the position of the spiral arms and would generate
large errors in the determination of distances to objects that trace
the spiral structure.

The assumptions of circular orbits and different rotation curves
for positive and negative longitudes are, of course, inconsistent.
One solution is to fit a single rotation curve to both sides of the
Galaxy. In order to test this method the average of both rotation
curves was taken, and the equivalent of Figure 5a was calculated.
The result was that the magnitude of the error in the kinematic
distances was approximately the same, but the area with error
>0.5 kpc spanned a larger fraction of the disk.

Suppose now that the imaginary observer somehow manages
to obtain the large-scale distribution of stellar mass in the model
galaxy. This would allow the derivation of the real rotation curve
from the background axisymmetric potential. If the observer now
uses that real rotation to determine kinematic distances, even
larger distance errors would be obtained, especially for the inner
galaxy, as shown in Figure 5b. This counterintuitive result arises
because, at this point of the simulation, the gas has already adopted
orbits that are not only influenced by the background potential
but also by the large-scale magnetic field (likely different from
the field in the initial conditions) and the torques and resonances
generated by the spiral perturbation. Although the real rotation
curve is consistent with the most important determinant of the
gas rotation velocity (the background mass distribution), it does
not include other influences in that velocity, while the “wrong”
rotation curve determined from gaseous terminal velocities more
closely reflects the real motion of the gas (recall Fig. 4, in which
the measured rotation curve is systematically above the true
rotation).

Although intrinsically inconsistent, the two different measured
rotation curves are used in the remainder of this investigation since
that procedure leads to smaller distance errors. The results pre-
sented in § 4.1 are even more noteworthy if the average or the real
rotation curves are used.

4.1. The Galaxy Distorted

Consider now that the imaginary observer is trying to study
the spiral structure of the galaxy he/she lives in. The procedure
would consist of translating the longitude-velocity data obtained
from a diffuse gas survey, for example, into a spatial distribution
using the kinematic distances that result from the assumption of
circular orbits that follow the measured rotation curve.' The re-
sulting map is shown in Figure 6. Note that the features described
for Figure 1 (namely, the four spiral arms, the 4 kpc high-density
ring, and the corotation low-density ring) all but disappear, while
new fictitious features, such as the structure in the outer Galaxy,
are formed as a consequence of the oscillations in the outer ro-

! In order to diminish spurious interpolation effects, each gas parcel was spread
using a two-dimensional Gaussian weight function into a 3 x3 grid-cell region
around the position corresponding to that parcel’s galactic longitude and measured
distance.
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Fic. 6—Remapping of the gas distribution resulting from the kinematic dis-
tances using the measured rotation curves in Fig. 4a and assuming circular gas
orbits. Note the regions near the tangent points and the corotation circle, where
little or no gas is mapped to.

tation curve. Also significant in this figure are the regions where
little or no gas is assigned by the mapping, namely, the bands
near the corotation circle and the quasi-triangular regions near
the tangent point locus. (These nearly empty regions are signifi-
cantly larger when the background or the mean rotation curves
are used to determine the distance to the observed gas parcel.)

The imaginary observer would likely conclude that his/her
home galaxy has two ill-defined spiral arms. If a logarithmic spiral
model were forced, an ~11° pitch angle and a density contrast
much stronger than that in the numerical model would be found.

Another possibility for determining the distance to a gas par-
cel consists of comparing the line-of-sight velocity of the parcel
with the predicted velocity obtained from some model for the
Galactic structure. For the numerical model described in § 2, given
a Galactic longitude, Figure 3 is searched for the required ve-
locity, and the corresponding distance is read out.? Although
the same procedure to solve the ambiguity with respect to the
tangent point is used, the noncircular motions introduce new dis-
tance ambiguities for certain longitude-velocity values (up to 11,
although 3 is a more typical number). When these ambiguities
appear, they occur close to each other, making their resolution
difficult. So, when reconstructing the map of the galaxy, the gas
density is equally split among these positions.

The result is shown in Figure 7. The new distance ambiguities
still introduce spurious structure, such as the splitting of the spi-
ral arms. Nevertheless, the number and position of the arms, the
structure around the corotation radius, and the lack of features in
the outer galaxy are recovered. The imaginary observer would
likely conclude that his/her home galaxy has four arms with 9°
and 12°5 pitch angles, although he/she would also find nonexis-
tent bridges and spurs. On the other hand, it should be considered
that the imaginary observer would not see thermal or turbulent

2 A simple C language program that provides a distance given a Galactic lon-
gitude and line-of-sight velocity value and uncertainty is available at http://www.
astrosmo.unam.mx /~g.gomez/publica/. In that program the resulting distance
is given as a range instead of a central value and uncertainty, since the velocity-
distance mapping makes the distance probability distribution neither uniform in
the range nor peaked around a central value.
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Fig. 7.—Same as Fig. 6, but using the full velocity field to recover the den-
sity distribution. Most of the characteristics of Fig. 1 are recovered, although
some spurious structure appears due to the new distance ambiguities introduced
by the noncircular motions.

line broadening. When these are considered, some of the new
ambiguities are spread over a range of distances, effectively dis-
appearing. Therefore, some of the spurious structures blend with
real structures. So, the observer might get an image of the model
galaxy closer to reality than Figure 7 suggests.

5. SUMMARY AND DISCUSSION

The effect of the circular orbits assumption on our perception
of the large-scale structure of the Galaxy was explored. Since
these errors might be quite large at the positions of the spiral arms,
the study of the spiral structure of the Galaxy and objects asso-
ciated with it is particularly affected. By simulating the way an
imaginary observer inside a model galaxy might try to infer the
structure of the gaseous disk, it was found that the circular orbits
assumption destroys the spiral structure and creates spurious
features in the measured distribution.

The method of kinematic distances is a powerful one, since it
allows measurement of distances to diffuse sources and is easily
applicable to a large fraction of the Galactic disk. Even if the mea-
sured rotation curve includes deviations that do not reflect the true
large-scale mass distribution, Figure 5a shows that the errors in
the distance are, in fact, not very large for most of the Galactic
disk; in fact, the distance errors that arise from using the true
rotation curve are larger. In both cases, however, the errors are
quite large at the positions of the spiral arms. If we want to use
this distance method for objects associated with the spiral struc-
ture, we need to consider noncircular motions (as has been suc-
cessfully shown by Foster & MacWilliams [2006] for a set of
H 1 regions and supernova remnants).
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One possibility for achieving this is to try to determine the full
velocity field of the Galactic disk. But direct measures of dis-
tances to the diffuse gas components is quite difficult (therefore
the strength of the kinematic distance method). So, we need to
use discrete objects and assume that they share their velocity
with the diffuse component (e.g., Brand & Blitz 1993; see also
the discussion in Minn & Greenberg 1973). Yet another difficulty
arises when tangential velocities and distances are required be-
yond the solar neighborhood.

Another approach to determining the full velocity field is to
model it. Recently, Foster & MacWilliams (2006) used an ana-
lytical model of the density and velocity fields of the diffuse gas,
with parameters for the model fitted to H 1 observations of the
outer Galaxy. Despite the fact that their density and velocity
models are not consistent in the hydrodynamics sense, and that
the model does not include the dynamical effects of magnetic
fields, they were able to add features of the Galaxy that are cur-
rently difficult to incorporate into numerical models, such as
the disk’s warp or the rolling motions associated with the spiral
arms. Further numerical studies should allow the development
of a more realistic analytical model.

Instead of an analytic model, a numerical model was used in
the present work to obtain density and velocity fields. Since the
focus is on large-scale velocity structures, an Eulerian code pro-
vides a good approach. Also, since the Galactic magnetic field
has been proved to be an important component of the total inter-
stellar medium pressure (Boulares & Cox 1990), its effect in the
gas dynamics is likely to be important; therefore, a full MHD sim-
ulation was required. The large-scale forcing is also transcendent;
since the azimuthal shape of the spiral perturbation appears to
have an influence on the gaseous response (Franco et al. 2002),
the usual sinusoidal perturbation was deemed too simplistic, and
a self-consistent model for the perturbing arms was chosen. At
the present time, the Galactic warp and the vertical motions as-
sociated with the spiral arms (Gomez & Cox 2004a, 2004b) could
not be considered at the necessary resolution.

In this work it has been shown that it is possible to recover
most of the gaseous structure of a galactic disk using kinematic
distances, as long as the full velocity field is considered. Never-
theless, applying these results to the Milky Way is a whole new
issue, since obtaining the full velocity field is not trivial. For the
procedure used here, how close the numerical simulation is to the
real Galaxy remains the weak point of this approach. The com-
putation cost of a realistic enough simulation is still too high to
allow a parameter fitting analysis. So, the remaining question is
whether the velocity field that results from the simulation yields a
determination of the distance to a given object, or only an esti-
mation of the distance error. The answer to that question is left to
the reader’s criterion.

This author wishes to thank J. Ballesteros-Paredes, E. Vazquez-
Semadeni, C. Watson, J. Franco, L. Loinard, S. Kurtz, and an anon-
ymous referee for their encouragement and useful comments
during the preparation of this manuscript.
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