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ABSTRACT

We present numerical hydrodynamic simulations of the formation, evolution, and gravitational collapse of isothermal
molecular cloud cores in spherical geometry. A compressive wave is set up in a constant sub-Jeans density distribution of
radius r¼ 1 pc. As the wave travels through the simulation grid, a shock-bounded spherical shell is formed. The inner
shock of this shell reaches and bounces off the center, leaving behind a central corewith an initially almost uniform density
distribution, surrounded by an envelope consisting of thematerial in the shock-bounded shell, which at late times develops
a logarithmic slope close to �2, even in noncollapsing cases. The central core and the envelope are separated by a mild
shock. The central core grows to sizes of �0.1 pc and resembles a Bonnor-Ebert (BE) sphere, although it has significant
dynamical differences: its self-gravity is initially negligible, and it is confined by the ram pressure of the infalling material,
thus growing continuously inmass and size.With the appropriate parameters, the coremass eventually reaches an effective
Jeans mass, at which time the core begins to collapse. Thus, the core evolves from a stable regime to an unstable one,
implying the existence of a time delay between the appearance of the core and the onset of its collapse, but due to its
growth in mass, rather than to the dissipation of its internal turbulence, as is often believed. These results suggest that
prestellar cores may approximate BE structures, which are, however, of variable mass and may or may not experience
gravitational collapse, in qualitative agreement with the large observed frequency of cores with BE-like profiles.

Subject headinggs: ISM: clouds — ISM: evolution — ISM: structure — stars: formation — turbulence
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1. INTRODUCTION

The process by which a gas parcel (‘‘core’’) within a molec-
ular cloud (MC) initiates a collapse leading to the formation of a
star or group of stars remains loosely understood, especially the
details of its dynamical evolution. Observations indicate that ‘‘pre-
stellar’’ molecular cloud cores (i.e., those that do not yet contain a
protostellar object, but that appear to be on route to forming it)
have a density structure that resembles Bonnor-Ebert (BE) pro-
files (Ebert 1955; Bonnor 1956), being nearly flat in their central
regions, while approaching the singular isothermal sphere (SIS)
profile n (r) / r�2 at large radii. ‘‘Stellar’’ cores (those already
containing a Class 0 or Class I protostellar object), on the other
hand, appear to have density profiles closer to that of the SIS
throughout their volume (e.g., Alves et al. 2001; Caselli et al. 2002;
Kirk et al. 2005; Lee et al. 2007; see also the reviews by Lada et al.
2007; di Francesco et al. 2007; Ward-Thompson et al. 2007 and
references therein).

The line profiles and spatial distribution of molecular line
observations provide further clues to the dynamics. For example,
on the basis of observations of CS(3Y2), CS(2Y1), DCO+(2Y1),
and N2H

+(1Y0), Lee et al. (2004) found a moderate fraction of
prestellar cores (18 out of 70 in their Table 2) showing clear ev-
idence of subsonic inward radial motions, at velocities of vP
0:07 km s�1. Moreover, studies of individual starless cores have
suggested that the radial velocity does not increase appreciably
toward the center (Tafalla et al. 1998;Williams et al. 1999; Tafalla
et al. 2004; Lee et al. 2007; Schnee et al. 2007). Those inward
motions frequently extend to long enough distances from the cores’
centers (a few tenths of a parsec) that they seem inconsistent with

the ‘‘inside-out’’ collapse model of Shu (1977), since a central pro-
tostar should have had time to formby the time the rarefactionwave
reaches those distances (di Francesco et al. 2007 and references
therein).
A large number of theoretical studies have investigated the

collapse process starting from a variety of initial and boundary con-
ditions, both analytically, through similarity solutions, and numer-
ically (e.g., Larson 1969; Penston 1969a, 1969b; Shu 1977; Hunter
1977; Foster & Chevalier 1993; Hennebelle et al. 2003). All of
these studies have considered the collapse of a fixed mass of gas,
either through the usage of a hot, tenuous confining medium that
pressure-confines the core while adding no weight to it, or through
fixed boundaries. Moreover, most of these studies used static initial
configurations, either with uniform density or with BE hydrostatic
equilibrium profiles.
On the other hand, MCs are thought to be supersonically

turbulent, since they exhibit supersonic line widths (Zuckerman
& Palmer 1974), and MC cores, as well as their parent MCs
themselves, have been suggested to be turbulent density fluc-
tuations within their environments (Sasao 1973; Elmegreen
1993; Ballesteros-Paredes et al. 1999b), being produced by ef-
fectively supersonic compressions. Hunter & Fleck (1982)
showed that the effective Jeans mass of a fluid parcel subject to
an external compressive velocity field is significantly decreased
with respect to its normal static value. Furthermore, Vázquez-
Semadeni et al. (2005) have recently pointed out that if MCs are
isothermal throughout,4 then the hot, tenuous medium necessary
to confine and stabilize a hydrostatic equilibrium configuration is
not available, and the equilibrium state is then expected to be un-
stable in general.
This leads naturally to the question of whether hydrostatic equi-

librium configurations can be produced in such turbulent conditions,
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and if so, how do they arrive at that state? Otherwise, if the entire
process is dynamic, one can ask, what is the density and velocity
structure of the cores at the time they engage into collapse, and, if it is
different from the initial conditions normally assumed, what effects
does that have on the evolution?Moreover, if the core is formed and
induced to collapse by a compressivewave, then in general there is an
inflow that builds up the core dynamically, and the mass that ends up
collapsing is not previously determined by the initial conditions, but
rather is determined ‘‘on the spot,’’ depending on the local instan-
taneous conditions. The studies of collapse mentioned above cannot
answer these questions, since they already assume gravitationally
unstable structures and initial hydrostatic equilibrium configurations,
so that all of the mass is involved in the collapse.

A study that comes close to these goals is that by Hennebelle
et al. (2003), who investigated the effect of an increase in the pres-
sure external to an initially stable BE sphere, Pext. They noted that
the resulting configurations are a good match to the observations
because the density profile is flat at the center and the prestellar
phase is characterized by subsonic inward velocities at the outskirts
and by nearly zero velocity at the inner parts. However, having a hot
confining medium outside and an initial hydrostatic profile, this
study still could not capture the core formationpart of the evolution,
and it predetermined the mass that collapses from the initial con-
ditions. Also, it did not consider the possibility of a transient com-
pression and thus of a failure to collapse.

A brief discussion of the dynamic scenario of core formation
has been given by Whitworth et al. (2007) in the context of the
formation of cores that give birth to brown dwarfs. These authors
have suggested that the dynamic formation of cores should in-
volve a mass growth period and the confinement of BE-like struc-
tures by ram pressure of external infalling material.

In view of the above, in this paper we then present numerical
hydrodynamic simulations in spherical coordinates of transient
compressions in homogeneous, initially gravitationally stable
regions, with the purpose of investigating the formation of cores
embedded in turbulent molecular clouds. In particular, we focus
on the evolution of its density and velocity profiles, the time-
scales required for a core to be assembled and then collapse or
redisperse, and the mechanism by which a certain fraction of the
mass is gravitationally ‘‘captured’’ to then proceed to collapse.

In particular, the timescale issue is highly relevant, because it
is often thought that the prestellar lifetimes of the cores in the tur-
bulent scenario of star formation are of the order of one core’s free-
fall time, � ff. However, it has been shown by Vázquez-Semadeni
et al. (2005) and Galván-Madrid et al. (2007) that even in highly
dynamical, driven-turbulence simulations, the lifetimes are a few to
several times � ff. It is important then to investigate the detailed
evolution of cores formed by turbulent compressions, in order to
understand the reason for those observed timescales.

The plan of the paper is as follows. In x 2 we first discuss the
motivation and applicability of the spherical symmetry used in
this paper, and then we describe the numerical setup of the prob-
lem. In x 3 we present the results of two fiducial cases of core
evolution, one collapsing and one rebounding, and in x 4 we then
discuss the implications of our results and compare with existing
observational and theoretical work. Finally, in x 5 we present a
summary and some concluding remarks.

2. THE MODEL

2.1. The Need for Focused Compressions

The formation and subsequent induction to gravitational col-
lapse of clouds and clumps by compressive velocity fields (as
opposed, in particular, to collisions of preexisting clouds) has

been studied intensively by numerousworkers for more than three
decades (e.g., Sasao 1973; Hunter & Fleck 1982; Tohline et al.
1987; McKee et al. 1993; Elmegreen 1993; Vázquez-Semadeni
et al. 1996, 2003, 2005, 2007; Ballesteros-Paredes et al. 1999b;
Ostriker et al. 1999, 2001; Klessen et al. 2000; Heitsch et al. 2001;
Li et al. 2004; Tilley&Pudritz 2004, 2005). In such a scenario, the
formation of cores and stars is in agreement with observational
studies that suggest that star formation is a rapid and dynamic pro-
cess (e.g., Lee & Myers 1999; Ballesteros-Paredes et al. 1999a;
Elmegreen 2000; Pringle et al. 2001; Briceño et al. 2001; Hartmann
et al. 2001; Ballesteros-Paredes&Hartmann 2007). The ability of a
compression to induce collapse is directly related to the stability of
self-gravitating equilibrium structures, which in turn depends
critically on the geometry of the configurations and on the effective
polytropic exponent (�eff ) of the medium. This exponent describes
the response to compressions of a medium subject to heating and
cooling processes (Tohline et al. 1987; Elmegreen 1991; Vázquez-
Semadeni et al. 1996), so that the flow exhibits an effective poly-
tropic equation of state of the form P / ��eA .

The stability of self-gravitating structures depends both on the
geometry and on �eff because both of them influence the variation
of the ratio J 2 � Eg

�� �� /E th in response to compressions, where
Eg

�� �� is the absolute value of the gravitational energy and E th is the
(supporting) internal energy. For example, it is well known that the
existence of stable spherical configurations without any external
confining agent requires �eA > 4/3 (Chandrasekhar 1981, x 117).
In this case, J 2 decreases on compression and increases on expan-
sion, rendering the equilibrium stable. This behavior is reversed for
�eA < 4/3, so equilibrium configurations are unstable in this case.
We refer to the value of �eff at which the reversal occurs as the crit-
ical value, �eA;c.

Now, if the compression occurs along � directions, so that the
density increases as L� , where L is the length scale along the di-
rection(s) of compression, then the rate of variation of Eg

�� �� and of
J 2 with the compression depends on � and, as a consequence, the
critical value of �eff also depends on �. Specifically, one obtains
(McKee et al. 1993; Vázquez-Semadeni et al. 1996)

�eA;c ¼ 2(1� ��1): ð1Þ

This recovers the value of �eA;c ¼ 4/3 for three-dimensional (e.g.,
spherically symmetric) compressions, as well as the well-known
fact that planar compressions (� ¼ 1) cannot induce collapse in
isothermal flows (�eA ¼ 1), since �eA;c ¼ 0 in this case. Equa-
tion (1) also shows that the induction of collapse in isothermal
media requires compressions in more than two dimensions
(� > 2).

These considerations show that useful insight can be gained
from the analysis of spherically symmetric compressions, such as
those assumed in this paper, since the compressions that induce
the collapse of selected subregions of turbulent, isothermal mo-
lecular clouds need to be of dimensionality higher than 2. Such
compressions are expected to be rare but still existent in general
supersonic turbulent regimes, involving a certain degree of focus-
ing (or convergence) of the flow. For example, Whitworth et al.
(2007) appeal to the low but finite probability of such focused
compressions to explain the scarcity of �0.01M� brown dwarfs.

Finally, note that these convergent flows are in principle dif-
ferent from a simple passing shock (which is essentially a planar
compression), although the latter can also induce multidimen-
sional compression when the shock has a finite transverse extent,
producing a flattened structure that then can contract gravita-
tionally in the transverse direction.
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2.2. The Numerical Setup

In view of the above considerations, in this work we consider
an idealized spherical cloud subject to an external compression
wave. The simple spherical geometry allows us to focus on the
basic phenomena related to the effects of the compression.More-
over, by considering a uniform density distribution and allowing
the system to dynamically choose the amount of mass involved
in the collapse, we avoid some of the restrictions that previous
work has imposed on the evolution.

The hydrodynamic evolution of this setup was solved using
ZEUS (Stone &Norman 1992), a finite-difference, time-explicit,
operator-split hydrodynamic code. The calculations were per-
formed on a one-dimensional spherical grid, with the domain
spanning the range 0 pc< r< 1 pc with 1000 grid points spaced
such that �r iþ1 /�r i ¼ 1:005. This yields a spatial resolution of
�3 ; 10�5 pc at the inner boundary and�5 ; 10�3 pc at the outer
boundary. (Selected simulations were performed with a much
higher resolution of 4000 grid points, and no significant dif-
ferences were observed.) The boundary conditions are ‘‘reflect-
ing’’ at r ¼ 0 and ‘‘outflow’’ at r ¼ 1 pc.No confining agents are
used whatsoever (neither closed boundary nor hot tenuous me-
dium), implying that mass can freely leave the system, although
it cannot enter. The absence of a confining agent attempts to
emulate the situation of a density enhancement immersed in a
much more extended medium at the same temperature.

All simulations started with a constant density distribution, an
isothermal equation of state, and a temperature of T ¼ 11:4 K,
which, with a mean particle mass of �¼ 2:36mH, yields an iso-
thermal sound speed of cs ¼ 0:2 km s�1. This setup was per-
turbed by a compressive velocity pulse given by the relation

v (r) ¼

0; r < r0 � dr0;

�v0 sin
�

2

r � r0

dr0

� �
; r0 � dr0 < r < r0 þ dr0;

�v0 sin
�

2

r1 � r

dr1

� �
; r0 þ dr0 < r;

8>>>>><
>>>>>:

ð2Þ

where v0 and r0 are parameters of the simulation, dr0 ¼ 0:1 pc,
r1¼½rmax þ (r0 þ dr0)� /2, and dr1¼½rmax� (r0þdr0)� /2, with
rmax ¼ 1 pc.A simple self-gravitymodulewas also added to the code.

Our approach continues along the lines of simple, basic models
that have explored the gravitational collapse of MC cores, from
Larson (1969) and Penston (1969a, 1969b) to Hennebelle et al.
(2003), which we have extended to include an initial velocity im-
pulse, intended to mimic the random compressive motions ex-
pected in a turbulent medium. Nevertheless, the one-dimensional
nature of themodel, togetherwith the adopted spherical geometry,
makes this setup somewhat unphysical, as it restricts the nature of
the compressible wave to spherical shells, and ‘‘turbulent’’ support
in this model is present only as purely divergent motion, with no
rotational component. A more realistic way of modeling the core
formation process, albeit perhaps less amenable to detailed analysis,
would be to perform full three-dimensional (3D) numerical simu-
lations via random compressions of finite cross section generated
by bulk motions of the gas, similarly to what has been done for the
diffuse medium by Vázquez-Semadeni et al. (2007). We intend to
pursue this in the near future, over the theoretical foundation laid
out by the simple present study.

Another limitation introduced by the adopted geometry is the
large mass of the collapsed core resulting from our simulations
(cf. x 3.2). In a more realistic simulation, without the geometrical
and symmetry restrictions, the collapsing system would probably

undergo fragmentation. Therefore, we see the collapsed objects
generated in these simulations not as a single star, but as the pre-
cursors of small clusters.

3. THE SIMULATIONS

3.1. Spontaneous Collapse

In order to study the effect of velocity fields in inducing the col-
lapse of molecular cloud cores, we first need to determine when
they can collapse under the influence of their self-gravity alone.
Because of the adopted spherical geometry (the usual Jeans anal-
ysis is applicable to sinusoidal perturbations in plane-parallel ge-
ometry), the critical density �c and mass (which we refer to as the
effective Jeansmass) at which the core collapses may differ slightly
from the standard Jeans values, and so we determine them here
numerically. We set v0 ¼ 0 and let the simulation run for 10 Myr
with a series of different initial densities.
As the simulations are started, self-gravity causes the cloud to

begin contracting, increasing its mean density (see Fig. 1). At some
point, the pressure gradient in the inner parts stops this process, and
the contraction is reversed (the cloud ‘‘bounces’’ momentarily). If
the cloud’s mass is large enough, self-gravity takes over again, the
expansion is also reversed, and the cloud collapses; otherwise, the
expansion continues until the simulation ends. It is found that an
initial density value of 160 cm�3 yields a collapsing core, while a
2% lower density does not; therefore, we take the critical density as
�c ¼ 160 cm�3. At this density, the mass in our numerical box (of
radiusR ¼ 1 pc) isMbox (�c) ¼ 39:1M�. For comparison, themean
density for which the standard Jeans length equals the diameter of
the numerical domain (2 pc) is �̄ ¼ �J � �c2s /GL

2
J ¼ 125 cm�3.

In light of this result, we define the effective Jeans mass as the
spherical Jeans mass (i.e., a sphere with diameter equal to the Jeans
length at mean density �̄ ) times a fudge factor A so that the product
equals the box’s mass at the empirical critical density:

MJ;eA ¼ A
4��c
3

LJ

2

� �3

¼ A
�5=2

6

c2s
G

� �3=2

��1=2
c ; ð3Þ

where G is the gravitational constant. By setting MJ;eA ¼Mbox,
we obtain A¼ 1:45. For comparison, the standard Jeans mass at
�c is MJ ¼ 27:0 M�, and the BE mass (Ebert 1955; Bonnor
1956) is MBE ¼ 1:18c3s /(G

3�c)
1=2 ¼ 10:0 M�.

3.2. Cores Formed by Ram Pressure

Although a large number of simulations were performed, our
discussion will focus on two of them that are, respectively, rep-
resentative of noncollapsing and collapsing cases.We denote the
simulation with the initial velocity impulse at r0 ¼ 0:33 pc as S1,
while simulation S2 places the impulse at r0 ¼ 0:67 pc. Both
simulations have the same velocity amplitude (v0 ¼ 0:4 km s�1 ¼
2cs ) and subcritical initial density (112:7 cm�3 � 0:7�c),meaning
that in the absence of compressivemotions, both simulationswould
simply expand away.
The evolution of simulation S1 is shown in Figure 2. This fig-

ure shows, respectively, as a function of radius, the density, the log-
arithmic slope of the density radial profile, the velocity, and the
core’s mass (solid line) and Jeans mass (dashed line) inside the
radius, in the four rows from top to bottom at selected times ( left to
right columns). Shortly after the starting time ( t � 0:28 Myr), a
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shell bounded by two shocks appears on the inner side of the initial
velocity pulse, at log r ��0:7 (r � 0:2 pc). The formation of
these two shocks and the shell between them is due to the middle
parts of the compressive wave, which have the highest velocities,
catching up with the frontal parts of the wave, causing the forma-
tion of a shock, which splits into two shocks receding from each
other and leaving the shock-bounded layer in between.

The innermost one of these shocks propagates inward, leaving
a large amount of inflowing mass behind it (Fig. 2b). As it travels
toward the center of the cloud (t � 0:77 Myr), geometrical fo-
cusing dramatically increases the internal density, lowering the
effective Jeans mass of the inner parts of the cloud (Fig. 2c ). As
the shock bounces off the center and expands outward, the shocked
gas behind it is left at uniform density and at essentially zero veloc-
ity; that is, a quiescent core is formed, with the shock-bounded shell
doubling as the core’s envelope (Fig. 2d). The gas from the shock-
bounded shell continues to fall in, being incorporated into the
quiescent core as it passes through the inner shock. Although the
mass of the quiescent core increases, its density is somewhat
lowered because of a mild expansion of the compressed region.
As a result, the Jeans mass becomes larger in the innermost parts
of the core and decreases close to the shock-bounded layer and
within it (compare Figs. 2d and 2e). As the core acquires more
mass, its density profile starts to deviate from being uniform and
to approach that of a truncated BE sphere. However, in this simu-
lation the mass of the inner core never becomes equal toMJ;eA at
any radius, and the uniform-density core begins to expand in-
definitely, developing positive velocities at the outermost re-
gions first (Fig. 2e ).

In simulation S2, the early evolution is quite similar to that of
S1. At t � 1:5 Myr, the inner shock bounding the layer bounces
off the center of the core (Fig. 3c ) and begins traveling outward.
But then, some 0.5 Myr later (t � 2:0 Myr), the amount of mass
in the core finally becomes equal toMJ;eA (Fig. 3d) at r � 0:07 pc,
and from that moment on, collapse ensues, culminating with the
formation of a singularity at t � 2:6Myr (Fig. 3e). It is interesting

that at t � 2:0 Myr, the mean density in the quiescent core is
n � 2:85 ; 104 cm�3, implying a free-fall time of �A � 0:2 Myr,
less than half the time that the actual collapse takes. There are sev-
eral reasons possibly responsible for the discrepancy with the ob-
served collapse time of 0.6 Myr (from t ¼ 2 Myr to t ¼ 2:6 Myr).
For example, it was already noted by Larson (1969, Appendix C)
that the actual collapse time lasts nearly 1.5 times the free-fall time,
because the pressure gradient is never negligible. The remaining
difference is probably due to the imprecisions introduced by con-
sidering the mean density rather than the detailed radial distribution
and the fact that the core is increasing its mass, so that the instability
sets in at an undetermined radius.

A very interesting feature of both simulations is the fact that
the density structure of the core+envelope system resembles a
BE sphere during the period over which the shock front is travel-
ing outward (Figs. 2e and 3d ), at which times the innermost
parts of the core have a nearly constant density and the shock-
bounded layer approaches an r�2 density profile. After the for-
mation of the singularity at the center, the r�2 density profile
extends throughout the core, similarly to an SIS profile (Fig. 3e).

It is worth remarking that, even though the idealized geometry
and initial conditions adopted in this paper should not have a
strong impact on the general qualitative behavior of these sim-
ulations, the sizes and timescales quoted above are expected to
depend on these details. In fact, the outcome of the simulation
(collapse or reexpansion) already depends sensitively on the
parameters of our idealized simulations. For example, the only
difference between simulations S1 and S2 is the initial position
of the compressive pulse. Moreover, a simulation similar to S1
but started with v0 ¼ 3cs and a lower initial density (88.8 cm

�3)
collapses 0.4 Myr after the initial shock bounces off the center.
That is, a lower initial mean density can be counterbalanced by a
larger compressive Mach number in the quest for inducing col-
lapse. Nevertheless, this simulation still goes through the same
qualitative evolution as simulation S2. For these reasons, the
results presented in this section can be regarded as a qualitative

Fig. 1.—Spontaneous collapse of the cloud without any velocity impulse. Left : When started with a constant density of n ¼ 175:70 cm�3, the central region of the cloud
undergoes gravitational collapse after a small bounce off the center. Right : When started with a constant density of n ¼ 112:72 cm�3, the cloud bounces off its center and
expands until it disperses.
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description of the formation and evolution of molecular cloud
cores, while more quantitative analysis requires more realistic sim-
ulations involvingmultidimensional compressions, whichwe leave
for future work.

4. DISCUSSION

4.1. Generality of Shock-bounded
Self-gravitating Structures

The formation of growing shock-bounded structures is not ex-
clusive to the spherical symmetry used in this paper. Planar com-
pressions are generally known to produce shock-bounded layers
in both isothermal and radiatively cooling flows. The one-dimensional
plane-parallel problem is equivalent to that of a shock front hit-
ting a wall and then reflecting off it, and thus by construction the
gas between the wall and the shock is at rest, with the shock front
receding from the wall at the postshock velocity of the flow. The
shocked layer increases its mass as gas from the incoming flow is
incorporated into it after crossing the bounding shock. The shock-
bounded layer is thus the planar equivalent of our spherical shock-
bounded quiescent core. The plane-parallel problem has been
worked out analytically in one dimension and numerically in two
or three dimensions by Folini &Walder (2006) for the isothermal
case and by Hennebelle & Pérault (1999) and Vázquez-Semadeni
et al. (2006) for the thermally bistable case. The main difference
with the spherical case is that plane-parallel compressions in ther-
mally bistable media (such as the warm H i gas) can induce grav-
itational collapse (Hunter et al. 1986; Vázquez-Semadeni et al.
2007), because in this case the flow behaves effectively as if it had a
value of �eA < 0, while in an isothermal medium, focused (i.e.,
multidimensional) compressions are necessary, because in this case
�eA ¼ 1 (see x 2.1). However, the planar and the spherically sym-
metric cases are qualitatively similar in that both involve the for-

mation of a shock-bounded structure that grows inmass by accretion
through the shock until it becomes gravitationally unstable and be-
gins contracting. In the planar compression case, this process has
been modeled numerically by various workers (e.g., Hunter et al.
1986; Vázquez-Semadeni et al. 2007).

4.2. Implications

The evolution of simulation S2 has a number of interesting im-
portant implications, which we now discuss.
First, a compressive wave (or a negative-divergence velocity

field) does not directly induce the collapse of an initially sub-
Jeans core. The collapse happens only if at some point in the
evolution the mass becomes larger than the Jeans mass. In all the
collapsing simulations we have performed here, this occurs only
after the resulting shock front has rebounded off the center,
traveled outward, and incorporated a large enough amount of
mass into the central core that a ‘‘traditional’’ Jeans criterion for
collapse [M (r) >MJ;eA] is satisfied there. Since the material be-
hind the shock is left at zero velocity, no turbulent support is ever
at play there. That is, the collapse does not occur because tur-
bulence is dissipated in the core, as is often believed, but rather
because the growing core eventually reaches the effective Jeans
mass. Moreover, as the shock continues to move outward, the
size of the region acquiring the effective Jeans mass increases, so
the determination of the mass that is subsequently incorporated
into the collapse happens ‘‘on the spot’’ in a highly fortuitous
manner.
Second, a near-r�2 density profile is approached at late times

in the infalling envelope around the central core, both in collaps-
ing and noncollapsing cases. The central core, in turn, evolves from
a near-flat density profile to that of a truncatedBE sphere as itsmass
increases. The central core and the envelope are separated by the

Fig. 2.—Evolution of simulation S1. Each row shows the evolution of (top to bottom) the density (n), the logarithmic density slope (d log n /d log r ), the velocity (vr ),
themass internal to radius r [M (r); bottom, solid line], and the effective Jeansmass (MJ;eA; bottom, dashed line) at (a) 0.000, (b) 0.625, (c) 0.775, (d ) 0.925, and (e) 1.500Myr.
Arrows show the direction of motion of the shocks. [This figure is available as an mpeg animation in the electronic edition of the Journal.]
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outward-traveling shock, which is, however, very mild, with a
Mach number very close to unity. Thus, the core+envelope
systemmay easily be taken for a single structure with a density pro-
file resembling that of a BE sphere.

Third, the central core, at all times after it has formed, has nearly
zero velocity throughout. This provides a physical basis for the
existence of quiescent (subsonic nonthermal velocity dispersion)
and coherent (nonthermal velocity dispersion nearly constant
through the core) cores, which in the turbulent model of core
formation are the stagnation points of the turbulent flow in mo-
lecular clouds (Klessen et al. 2005).

Fourth, there is a time delay between the formation of the core
and its gravitational collapse. The quiescent core grows from the
center as the shock moves outward, incorporating mass into the
central shocked region. This process cannot happen instanta-
neously, but rather requires a finite time until the core’s mass
equals the effective Jeans mass. In our simulations, the time from
the moment of central core formation to the development of a
singularity at the center spans roughly 1 Myr, with roughly half
of it being spent without any tendency to collapse. This time de-
lay naturally explains the high frequency of observed starless cores
with BE-like profiles.

Fifth, it is important to remark that even though our quiescent
cores are morphologically similar to BE spheres, they are dynam-
ically very different: they are not confined by the thermal pressure
of a hot, tenuous medium, but instead are confined by the ram
pressure of the inflowing gas from the envelope and grow in size
and mass accordingly until they become dominated by gravity, at
which point they begin to collapse.

Sixth, and finally, it appears that the whole evolution is not
very amenable to a similarity solution for the following reasons:
(a) the initial velocity pulse is finite, so the external flow is not
rescalable; (b) the inner shock bounding the shock-bounded shell

hits the center and bounces back toward the exterior, so the time
of collision at the center breaks the self-similarity; and (c) the
central core gradually increases its self-gravity and eventually
may become gravitationally unstable, a process that continuously
transforms the core’s density profile from uniform to being BE-
like, first stable and then unstable. Similarity solutions may bemost
applicable after the formation of the central singularity, as origi-
nally suggested by Shu (1977).

4.3. Comparison with Previous Work

It is interesting to put the results of our numerical simulations
in context with those of previous studies. The main difference is
that our simulations have investigated the formation of the cores,
in addition to their subsequent collapse, in order to studywhether
BE-like structures can be spontaneously produced out of super-
sonic turbulent compressions in isothermalmolecular clouds. Thus,
in particular, our study sheds light on the realizability of the initial
conditions used by previous works.

Our results suggest that in fully isothermal molecular clouds
( i.e., without a warm, tenuous interclumpmedium that can stabi-
lize a density enhancement), collapsing structures formed by ran-
dom turbulent compressions in the medium morphologically
resemble BE spheres through a large fraction of their evolution,
because they consist of a central core and an infalling envelope,
which, at late times after the formation of the central core, has a
density profile with a slope close to �2. This extends previous
results stating that plane-of-the-sky angular averaging and line-
of-sight averaging cause the observed density profiles to be
smoother that the actual ones and thus easily confused with BE
ones (Ballesteros-Paredes et al. 2003; Hartmann 2004). Also at
late times, near the onset of gravitational collapse, the core also
develops a density profile close to that of a BE sphere, which
connectswith that of the envelope. Thismeans that, at the onset of

Fig. 3.—Same as Fig. 2, but for the evolution of simulation S2 at 0.000, 1.125, 1.525, 2.000, and 2.625 Myr. [This figure is available as an mpeg animation in the
electronic edition of the Journal.]
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gravitational collapse, our simulations favor initial conditions for col-
lapse such as those usedbyFoster&Chevalier (1993), albeitwith the
added ingredient of a continuous accretion at the bounding shock.

The establishment of a near-r�2 density profile in the envelope
at late times is interesting in the context of the discussion by Shu
(1977). He points out that the development of such a profile re-
quires that the initial motions in the outer regions of collapsing
cores be subsonic, so that all fluid parcels are in acoustic contact
with each other and can therefore approach detailed mechanical
balance. In our simulations, however, this need for an initially
subsonic condition appears to be in contradiction with the super-
sonic nature of the initial pulse. However, the acoustic contact is
restored in the envelope because it consists of shocked gas that has
been thermalized and thus initially subsonic. The fact that a near-
r�2 profile develops in the envelope even in the noncollapsing sim-
ulation can be understood because the compressive pulse effectively
removes the support for the outer layers, analogously to the effect
of an inside-out collapse.

Some authors have already studied spherically symmetric flows
with shocks in the context of protostar formation using similarity
methods (e.g., Shen & Lou 2004; Lou & Gao 2006; Lou &Wang
2006). Similarity studies are extremely useful in extracting the
underlying asymptotic behavior of real flows. Therefore, it is impor-
tant to compare our numerical solutions with existing similarity
solutions of self-gravitating clouds in the presence of shocks, in
particular those of Shen & Lou (2004, hereafter SL04), whose
study most resembles our numerical setup. These authors pre-
sented two possible classes of self-similar shocked flow in the
context of the dynamical evolution of protostars, depending on
the asymptotic behavior of the solutions near the center of the
cloud. Their Class I solutions had negative (inflow) velocities
(/�r 1/2 ), a density profile of � / r �3=2, and finite mass as as-
ymptotic limits at r ! 0, while their Class II solutions had pos-
itive (expansion) velocities (/ r), constant finite density, and
vanishingmass (/ r 3) as the asymptotic behavior in the same limit.
In both classes, an outward-moving shock separates a collapsing (or
expanding) inner part and an accreting outer part. None of these
behaviors are seen in our simulations at any time. Their Class II so-
lutions are similar to our solutions during the core-growth stage, in
that they have a uniform central density and an accreting outer part,
which has a counterpart in the infalling shock-bounded layer in our
models. However, in our system the central core is neither ex-
panding nor contracting, but rather it is at rest. This difference is
most likely a consequence of self-gravity being negligible in our
cores during the early stages of their evolution. That is, unlike
the SL04 solution, where self-gravity is important at all radii and
at all times, in our simulations the relative importance of self-
gravity increases secularly with time, going from being zero at
the time of core formation to being dominant at the time when
gravitational instability sets in.

Another recent study that is closely related to ours is that by
Hennebelle et al. (2003), who numerically investigated the effect
of increasing the pressure external to an initially stable BE sphere,
Pext. These authors found that slow rates of increase of Pext cause
the sphere to approach instability quasi-statically, but higher rates
of increase produced a compressivewave that triggers an outside-in
collapse. It is noteworthy, however, that they do not report the
bounce of the compressive wave from the center that we find.
This is most probably because, in their case, the wave compresses a
previously existing core that is in a (fragile) stable hydrostatic equi-
librium state, and so the role of the wave is to directly trigger the
collapse. Instead, in our case, the compressive wave forms the core
and adds mass to it until it becomes gravitationally unstable and
proceeds to collapse. Moreover, in the case of Hennebelle et al.

(2003), the mass of the core was fixed, being bounded by a hot,
tenuous medium, while in our case, the fraction of the mass that
is driven to collapse is determined ‘‘in real time’’ by the interplay
between the accreting gas and the outgoing shock wave, and more-
over, the mass that becomes gravitationally unstable increases with
time, so the collapse proceeds ‘‘inside-out,’’ but over an interme-
diate range of radii. Thus, we see that the choice of equilibrium or
out-of-equilibrium initial conditions and continuous or discontin-
uous boundary conditions leads to very different patterns of evolu-
tion.Whichmodel applies best to actual turbulent molecular clouds
probably depends on whether they consist of a single, nearly iso-
thermal molecular phase (our model) or of a mixture of colder,
denser molecular cloudlets immersed in a more tenuous and
warmer atomic medium (Hennebelle & Inutsuka 2006). Exten-
sive theoretical and observational work, focusing especially on
the velocity structure of the cores, is needed to decide this issue.
The recent results of Lee et al. (2007), indicating the presence of
a sharp infall velocity increase at �0.03 pc from the centers of
the starless cores L694-2 and L1197, would seem to favor our
dynamical scenario for the formation of the cores.
Finally, our results are fully consistent with the scenario out-

lined byWhitworth et al. (2007). These authors have foreseen the
formation of evolving BE spheres bounded and fed by the accre-
tion of external infalling material, which can collapse if the core
eventually reaches theBEmass. Although they restricted their dis-
cussion to the formation of brown dwarfYproducing cores, the sim-
ulations described here are seen to be applicable to the formation of
cores of arbitrary mass. It is indeed likely that, as the core to be
formed is of smaller mass, the required compression and focusing
need to be stronger, as the initial conditions will have sizes much
smaller than the local Jeans length (cf. x 3.2).

5. SUMMARY AND CONCLUSIONS

In this paper we have performed a numerical study of the for-
mation of dense cores by dynamical compressions in isothermal,
nonmagnetized media, using simple one-dimensional calculations
in spherical geometry.Our results show that cores assembled by this
process consist of a central, quiescent corewith a density of 105 cm�3

that grows in mass and size as it accretes mass from a surrounding
envelope. The quiescent core and the envelope are separated by a
mild shock with a Mach number of just above unity, and the ac-
cretion from the envelope provides ram pressure that confines the
central quiescent, growing core. As the central core increases its
mass, it passes first through a negligible-gravity, uniform-density
stage, and later, as self-gravity becomes important, it evolves into
a ‘‘pseudoYBE sphere’’ stage. If at some point in the evolution the
mass of the core + envelope system becomes larger than the Jeans
mass, the core proceeds to collapse.Otherwise, it begins to reexpand.
Even in collapsing cases, this process requires a relatively long time
to complete, taking �0.5 Myr from the first appearance of the
central core to the time atwhich it becomes gravitationally unstable,
and another�0.5Myr for the collapse to produce a singularity at
the center.
At all times after the formation of the central core, the com-

bined density structure of the core+envelope system resembles
that of a BE sphere, since it is flattened at the center and has an
outer density profile that approaches r�2 at late times. More-
over, the central core is quiescent at all times, except for dur-
ing the very late stages of the noncollapsing case, in which the
core begins to expand. Thus, the high observed frequency of
BE-like profiles (e.g., di Francesco et al. 2007; Lada et al. 2007)
and the quiescent /coherent velocity dispersion structure (Myers
1983; Goodman et al. 1998; Caselli et al. 2002; Tafalla et al.
2002, 2004; Schnee et al. 2007) is naturally accommodated in this
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scenario of dynamic assembly of MC cores, as suggested also
by studies of dense cores in turbulent simulations of 3D, iso-
thermal molecular clouds (Klessen et al. 2005). However, the
structures are not classical BE spheres, because they are con-
fined by ram pressure, rather than by thermal pressure, and are
consequently accreting mass and growing inmass, size, and self-
gravitating energy in a process qualitatively similar to that de-
scribed for the formation of giantMCs by Vázquez-Semadeni et al.
(2007). In both cases, there is a secular evolution characterized by
the mass increase of the cloud or core.

The velocity structure of the cores formed in our simulations
appears to be consistent with the recent radiative transfer models
for the structure of cores L694-2 and L1197 presented by Lee et al.
(2007), which exhibit a nearly zero central velocity and a sharp rise
at radii of �0.03 pc. We plan to carry out a radiative transfer study
of the density and velocity structures produced by ourmodels in the

near future, in order to perform detailed comparisons with ob-
servational studies based on multitracer studies (e.g., Lee et al.
2004), as well as on line-profile mapping of prestellar cores
(e.g., Tafalla et al. 1998, 2004; Lee et al. 1999, 2007; Schnee et al.
2007).
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340, 870

Hunter, C. 1977, ApJ, 218, 834
Hunter, J. H., Jr., & Fleck, R. C., Jr. 1982, ApJ, 256, 505
Hunter, J. H., Jr., Sandford, M. T., II, Whitaker, R. W., & Klein, R. I. 1986,
ApJ, 305, 309

Kirk, J. M., Ward-Thompson, D., & André, P. 2005, MNRAS, 360, 1506
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