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ABSTRACT

Assuming that density waves trigger star formation, and that young stars preserve the velocity components of the
molecular gas where they are born, we analyze the effects that non-circular gas orbits have on color gradients
across spiral arms. We try two approaches, one involving semianalytical solutions for spiral shocks, and another
with magnetohydrodynamic (MHD) numerical simulation data. We find that, if non-circular motions are ignored,
the comparison between observed color gradients and stellar population synthesis models would in principle yield
pattern speed values that are systematically too high for regions inside corotation, with the difference between the
real and the measured pattern speeds increasing with decreasing radius. On the other hand, image processing and
pixel averaging result in systematically lower measured spiral pattern speed values, regardless of the kinematics of
stellar orbits. The net effect is that roughly the correct pattern speeds are recovered, although the trend of higher
measured Ωp at lower radii (as expected when non-circular motions exist but are neglected) should still be observed.
We examine the Martı́nez-Garcı́a et al. photometric data and confirm that this is indeed the case. The comparison of
the size of the systematic pattern speed offset in the data with the predictions of the semianalytical and MHD models
corroborates that spirals are more likely to end at outer Lindblad resonance, as these authors had already found.
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1. INTRODUCTION

Until the detection of an azimuthal color gradient across one
of the arms of the SAc galaxy M 99 (González & Graham
1996, GG96 hereafter), only sparse evidence of star formation
triggered by spiral density waves had been found in stellar counts
in the Milky Way (Sitnik 1989, 1991; Avedisova 1989) and
M 31 (Efremov 1980a, 1980b, 1985). More recently, applying
the same method defined by GG96 and described below,
Martı́nez-Garcı́a et al. (2009, MG09 hereafter) examined a
sample of 13 spiral galaxies of types A and AB, and found
color gradients consistent with theoretical expectations in 10 of
their objects.3 Although they did not compute stellar orbits, both
GG96 and MG09 implicitly assumed that all stars, including
those recently born near spiral arms, move in circular orbits.
MG09 did investigate the effects of variable circular speeds and
variable densities on observed color gradients and found them
to be negligible. However, complicated non-circular motions
have been reported in studies about the migration of young
stars following star formation triggered by spiral shocks (Yuan
1969; Wielen 1979; Fernández et al. 2008). Bash (1981) had
also noticed that the ballistic orbits calculated from galactic H ii

region complexes follow non-circular trajectories that initially
move along (and not across) the spiral arms.

In the present work, we examine how the presence of non-
circular motions would modify the pattern speeds derived from
color gradients under the assumption of circular orbits.

We will explore two different approaches. The first one (see
Section 3) involves the semianalytical solutions obtained for
spiral shocks (Roberts 1969; Shu et al. 1973; Gittins & Clarke
2004); we assume that newly born stars preserve the orbital mo-
tion of the shocked gas where they form. The second approach

3 See also Grosbøl & Dottori (2009) for an infrared study of young stellar
complexes in NGC 2997.

(see Section 4) is based on data from magnetohydrodynamic
(MHD) simulations; we follow the gas flow vectors near spiral
arms. We always assume that stars are triggered all along the
studied regions of spiral arms in the respective model. Other
methods, not discussed here, may involve orbit calculations for
young stellar groups.

2. THE GG96 METHOD

The photometric technique employed by GG96 and MG09
uses three optical bands, g, r, and i, plus the near-infrared
J band (see Table 1). With these filters, the reddening insensitive
and star formation sensitive photometric index Q is obtained:

Q(rJgi) = (r − J ) − 0.82(g − i), (1)

Q(rJgi) = log10

I 2.05
g I 2.50

J

I 2.50
r I 2.05

i

. (2)

In star-forming regions, the Q(rJgi) index has higher values,
because the g and J bands in the numerator of Equation (2) trace
the light from red and blue supergiants, respectively. When the
star formation activity is poor, the value of the Q(rJgi) goes
down.

For each studied galaxy and at each wavelength, the spiral
arms are first unwrapped (Iye et al. 1982), by plotting them in
an ln R versus θmap (see Figures 1 and 2). All the spiral arms
in the disk galaxy are inspected in search of color gradients. If
a candidate region is found, the arm is straightened, by adding
a different phase shift to θ at each value of ln R, until the arm
appears as a horizontal line (see Figure 3). This procedure allows
us to add the data from different ln R, and thus to increase
the signal-to-noise ratio of the light profile as a function of θ .
One-dimensional plots of Q versus θ are obtained from the
unwrapped and straightened galaxy images. These are then
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Figure 1. Schematic of a spiral disk. White circles are separated by 50 arbitrary
units.

Figure 2. Unwrapped version of Figure 1. Logarithmic spiral arms now appear
as straight lines with slope = cot(−i), where i is the arm pitch angle. Horizontal
lines are located every 90◦. Vertical lines correspond to radii marked with white
circles in Figure 1.

Table 1
Filters Employed in the GG96 Method

Filter λeff FWHM

g 5000 Å 830 Å
r 6800 Å 1330 Å
i 7800 Å 1420 Å
J 1.25 μm 0.29 μm

compared to one-dimensional plots of (g − J ) that trace the
dust lane location, and to one-dimensional plots of the K-band
(or K ′ or Ks, depending on what we have available) data that
trace the density wave (under the assumption that the near-IR
emission of red supergiants can be neglected). The regions
that seem to match theoretical expectations according to these
plots are selected and compared to stellar population synthesis
models, that provide Q as a function of stellar age, tage.

If one assumes that stars form in the site of the shock, and that
they age as they move away from this location, then distance
from the dust lane (at constant radius) parameterizes stellar age.
In fact, stretching the model Q(tage) to fit the data (where Q is a
function of angular or linear distance) fixes the ratio between the
distance from the shock, d, and the age of the stellar population.

Figure 3. Straightened version of Figure 2. Now spiral arms appear as horizontal
lines. The ln R coordinate remains the same, but the θ coordinate has a phase
shift that depends on ln R.

If, in addition, the rotational velocity is known, it is possible to
find the angular velocity of the spiral pattern, Ωp, as follows:

Ωp
∼= 1

Rmean

(
vrot(R) − d

tage

)
. (3)

Here, Rmean is the mean radius of the region where the gradient
has been detected, measured from the center of the galaxy;
vrot(R) is the rotational velocity of the disk at such radius
(obtained from the literature); d is the distance from the shock,
and tage is the stellar age obtained from fitting the population
synthesis model to the observations. With the pattern speed, we
obtain the location of major resonances: the outer Lindblad
resonance (OLR), corotation, and the 4/1 resonance. This
resonance positions are compared with the observed spiral end
points.

As mentioned before, this procedure implicitly assumes
circular motion for the stars involved, even though no stellar
orbits have been computed.

3. SEMIANALYTICAL SHOCK SOLUTIONS

Shock solutions obtained from semianalytical approaches
have shown that gas streamlines are not circular. Roberts (1969),
for example, found that streamlines appear as sharp-pointed
ovals (see Figure 4). Although such solutions were found for the
tightly wound approximation, they provide a good reference for
the study of real galaxies (see also Saaf 1974). Here, we obtain
gas streamlines under the assumption that young stars follow
the motion of the molecular gas, and by adopting a procedure
similar to that of Gittins & Clarke (2004).4 Our adopted model
has a pattern speed of 13 km s−1 kpc−1, and a flat rotation
curve with vrot = 220 km s−1. From R = 5 kpc to R = 10 kpc,
streamlines were calculated in steps of 0.05 kpc. Since the stellar
models give us Q as a function of tage, we can assign a stellar
age to each point in the streamlines; in order to do so, we need
to assume that the onset of star formation occurs at a certain
orbital time t, where t = 0 corresponds to the shock position.

3.1. Star Formation Onset Delay

Martı́nez-Garcı́a et al. (2009) use the term “timescale for star
formation” as the duration of the burst that is estimated to be
2×107 years. They do not make any assumptions about the time
it takes for star formation to begin after the shock. A preliminary
inspection of their findings shows that the shock (as traced by the
dust lanes) and the onset of star formation (marked by tage = 0

4 See the Appendix. The reference system is the rotating frame of the spiral
pattern.
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Figure 4. Typical streamlines obtained from semianalytical solutions of spiral,
trailing type, shocks. Dotted line: spiral potential minimum; dotted circles:
shock position. Average radii, from left to right, are 6, 7, 8, 9, and 10 kpc.

in the stellar models) are not always at the same location. In real
galaxies, whether there is a delay between the shock and the
star formation onset is not well understood yet. In fact, the time
needed for a diffuse cloud of neutral gas to first become a dense
cloud, then a molecular cloud, and finally a self-gravitating
cloud is ∼107 years. Once this cloud is formed, the onset of
star formation may be very fast (Vázquez-Semadeni et al. 2007;
Heitsch & Hartmann 2008). Egusa et al. (2009), based on an
observational study between the peaks of molecular (CO) and
young stellar (Hα) arms, report a delay for the onset of star
formation of ∼5–30 Myr in five galaxies (out of 13); Tamburro
et al. (2008) estimate a timescale for star formation in the range
1–4 Myr, from a study of angular offsets between H i and 24 μm
emissivity peaks in a sample of 14 disk galaxies.5

In order to test for the effects of a star formation onset delay
on azimuthal color gradients, we try three cases. The first one
has a delay (i.e., the time it takes for the gas to move from the
shock to the location where star formation begins) δtshock = 0 yr;
the other two have δtshock = 1 × 107 yr and δtshock = 2 × 107 yr,
respectively.

4. MHD SIMULATIONS

The gas simulations were performed with a version of the
zeus code (Stone & Norman 1992a, 1992b), that is an Eulerian,
time-explicit, finite-difference code for ideal MHD simulations.
We employ a two-dimensional grid with 500 × 500 points in
polar coordinates. The radial extent goes from R ∼ 3 to 30 kpc,
and the azimuthal one from θ ∼ 0 to π radians. We assume that
the half-disk simulation data have a 180◦ “mirror” symmetry.
The gaseous disk follows an isothermal equation of state with
a temperature of 10900 K. At the beginning of the simulation,
the magnetic field has a toroidal geometry and a value of 5μG

5 For these authors, the term “star formation timescale” is equivalent to star
formation onset delay.

Figure 5. MHD simulation at 800 Myr. Colors represent the gas density, while
arrows indicate the velocity field (in the rotating frame of the spiral pattern).
The arrow in the lower right corner corresponds to ∼80 km s−1. Corotation is
located at R = 10.9 kpc.

(A color version of this figure is available in the online journal.)

at 8.5 kpc from the galactic center, although it rapidly evolves
away from this setup. No self-gravity is included.

The background gravitational potential has two components:
one axisymmetric, that consists of a bulge, a disk, and a halo,
while the other is the non-axisymmetric spiral arm perturbation.
The adopted bulge and disk are described in Allen & Santillan
(1991). The dark matter halo is NFW type (Navarro et al. 1996,
1997), with density

ρ(R) = ρh

R/ah (1 + R/ah)2 , (4)

where ρh = 1.021 × 10−2 M� pc−3 and ah = 15.133 kpc. The
two-arm spiral potential has a pitch angle of 15.◦5, and is self-
consistent in the stellar orbits sense (Pichardo et al. 2003). The
simulation is performed in this stellar arms reference frame that
rotates with velocity Ωp = 20 km s−1 kpc−1.

We allow the simulation to evolve during 8 × 108 yr (see
Figure 5). By this time, the gas develops spiral arms as a
response to the imposed perturbation, initial transients subside,
and changes in the simulation are only observable at very long
timescales. Therefore, we assume that density and velocity
distributions at this time represent a close approximation to
a steady state solution.

As shown in Figure 5, the gas in the simulation has responded
to the spiral perturbation with a four-arm pattern (Martos et al.
2004). A hypothetical circular gas orbit would encounter four
shocks before completing its transit around the disk. In this case,
the corresponding velocity field would be very different from
the case where only two shocks are considered. For the present
investigation we focus on the main shock (i.e., the one closer
to the potential minimum of the spiral perturbation), although
spiral-arm triggering of star formation may also take place in
the secondary shocks.

In order to obtain the orbit a parcel of gas would follow, we
locate the main shock position by searching for the gas density
maxima closest to the (stellar) spiral arms. These are taken as
the start point for the integration of the gaseous orbits. The
orbits are then calculated from the velocity data (in the spiral
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Figure 6. Gas orbits for the simulation data, in the ln R vs. Θ plane. Initial radii
(from left to right) are 5.5, 6, 7, 8, and 9 kpc. Dotted line: stellar arms density
maximum; short-dashed line: primary gas arms density maximum; long-dashed
line: secondary gas arms density maximum.

pattern reference frame), using a Runge–Kutta method, every
ΔR = 0.005 kpc, and Δt = 7 × 1012 s. A sample of orbits
is shown in Figure 6. Other gas orbits with MHD simulations
using the full time evolution of the gas can be seen in Gómez &
Martos (2009), who find a close resemblance between gas orbits
and the central family of ballistic orbits in stellar dynamics.

5. ANALYSIS AND RESULTS

5.1. Q Profiles

From the first approach, involving semianalytical solutions,
we obtain Q index profiles for the non-circular and circular
cases, respectively, calculated in a narrow annulus with mean
radius ∼7 kpc; we show them in Figure 7. To produce the
Q profiles, we assume a background population of old stars
with an age of 5 × 109 yr (i.e., the density wave), plus a young
burst of star formation lasting 2 × 107 yr. Both the old and the
young populations have a Salpeter IMF, with Mlower = 0.1 M�
and Mupper = 10 M�.6 For the present case, we adopt a constant
fraction of young stars of 2% by mass (see Equation (9) in
MG09).7 We then use the stellar population synthesis models
by S. Charlot & G. Bruzual (2007, private communication) to
find the changing g, r, i, and J emission of the population mixture
as it evolves.

In the circular case, the stellar complexes that give origin to
the Q profile were all born at the same (ln R, θ ) position. In the
non-circular case, due to the trajectories of the gas streamlines,
the stars that give rise to the Q profiles were not all formed at the

6 There is a conspicuous inverse correlation between the detection of
azimuthal color gradients and the presence of H ii regions (see MG09).
7 The effects of variable densities of both the young and old populations on
the color gradients have already been discussed by Martı́nez-Garcı́a et al.
(2009). Their main conclusion is that variable stellar densities can produce
deformations in the expected color gradients. However, the estimated error
introduced by these deformations is lower than the computed random error
contributed by the combined uncertainties in the inclination angle, the rotation
velocity, and the distance to the galaxy.

Figure 7. Q index profiles inside a narrow annulus with mean radius R = 7 kpc,
vs. azimuthal distance relative to the shock (d = 0). Solid line: circular case;
dashed line: non-circular case.

Figure 8. Stellar population ages inside a narrow annulus with mean radius
R = 7 kpc, vs. azimuthal distance from the shock (d = 0). Solid line: circular
case; dashed line: non-circular case.

same location. The age of the stellar complexes that contribute
to the Q profile as a function of distance from the shock position
is plotted in Figure 8. As expected, young objects tend to spend
more time concentrated toward the spiral shock (d = 0 kpc),
with the consequence that the peak of the Q profile (dashed line
in Figure 7) occurs closer to the shock.

Another aspect to be noticed in Figure 7 is that there is no
“downstream fall” of the gradients (i.e., Q does not fall below,
in this case, ∼1.56, contrariwise to what is sometimes observed
with the data). Martı́nez-Garcı́a et al. (2009) had hypothesized
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Figure 9. Ωp values obtained at different galactocentric radii, from the numerical
semianalytical solutions of spiral shocks, under the (false) assumption that stars
move in circular orbits. Solid line: star formation onset delay δtshock = 0 yr;
dotted line: δtshock = 10 Myr; short-dashed line: δtshock = 20 Myr. Long-dashed
line: spiral perturbation input angular velocity.

that the fall of the observed Q profiles below the model values
(assuming pure circular orbits) might be caused by stellar non-
circular motions in the data. However, results may differ if
ballistic trajectories with post-shock velocities are considered
(e.g., Bash et al. 1977; Bash 1979).

5.2. Pattern Speeds

From the Q profiles, it is possible to derive pattern speeds by
comparing stellar population synthesis models (Q versus tage)
to the “data” (Q versus d), assuming implicitly that stars move
in circular orbits, as was done by GG96 and MG09, and was
sketched above in Section 2.

In the case of the semianalytical approach, “data” Q profiles
were obtained from narrow annular regions, ∼0.001 kpc wide.
Given that we know the input pattern speed, we can search
for systematic effects in the determination of Ωp. Figure 9
shows the input pattern speed (long-dashed line), and Ωp values
that are obtained from the color gradients for three different
presuppositions about the delay of star formation onset after
the shock (0, 10, and 20 Myr). For reasons explained below in
Section 6, rather than stretching the stellar population synthesis
model to the “data,” we just compare the positions of the maxima
of the model Q, on the one hand, and of the shock location, on
the other.

There is a significant systematic effect, whereby the derived
Ωp is always larger than the input pattern speed; moreover, the
effect decreases with galactocentric radius. Also, the difference
between the input and the output pattern speeds decreases for
larger star formation onset delays.

In the case of the MHD simulations, we again analyze
the pattern speeds derived when assuming a circular motion
dynamic model. In order to obtain Ωp, we compare the peak
value of Q in the stellar population model to the density
maximum of the gas in the simulations. In Figure 10, we show
the Ωp values obtained for δtshock of 0, 10, and 20 Myr.

Figure 10. Ωp values obtained from the MHD simulation data, at different
galactocentric radii, assuming a circular motion dynamic model. The “data”
Q profiles were calculated in narrow annuli 0.001 kpc wide. Symbols as in
Figure 9.

6. PIXEL AVERAGING

One of the caveats of the GG96 method, that was not discussed
in MG09, comes from image processing. Each pixel in the
optical and infrared images actually contains information about
many young stellar orbits that all fall within the same spatial
region. The process of “unwrapping” the spiral arms then
averages pixels in the θ and ln R directions (the “straightening”
of the arms is just a shift in the θ direction and does not involve
pixel averaging). In order to increase the signal-to-noise ratio
of the Q profiles, an additional averaging in the ln R direction
is done in selected regions. This last step averages together
orbits with different angular speeds, and hence stars of slightly
different ages at a fixed distance from the shock.

Figure 11 shows the behavior of Q profiles from an unwrapped
and straightened synthetic image (see below), under the assump-
tion of pure circular motion; the different profiles are taken from
various mean radii, after averaging in ln R. The shift of the peak
toward d = 0 is expected as we approach the corotation radius.
However, due to the pixel averaging, a drop in the maximum
value of Q is also obtained. If, in order to match the observed
or synthetic profile peak, a constant downward shift is applied
to the stellar population synthesis model,8 the “wings” of the
profiles will not match, since those of the stellar model will now
lie within the “wings” of the data. This mimics wider gradi-
ents, and in order to fit the observed or synthetic profile we will
need to overstretch the model. Consequently, the pattern speed
obtained via Equation (3) will be lower, because the stellar age
(tage) at a fixed distance d from the shock will be underestimated.
The effect amounts to ∼1 to 2 km s−1 kpc−1 for moderate pixel
averaging, but can be as large as 10 km s−1 kpc−1 when the
averaged region in ln R is very extended.

8 Vertical shifts are also expected if the metallicities or the ratios of young to
old stars of model and data are different; these differences do not significantly
affect the derived pattern speed (MG09), because the horizontal extension of
the profiles is not noticeably affected.
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Figure 11. Q profiles obtained from unwrapped and straightened images at
different mean radii, after averaging in ln R. The dynamic model assumes pure
circular motions with v ∼ 220 km s−1 and Ωp = 13 km s−1 kpc−1. Rmean
denotes the region mean radius and d is the azimuthal distance from the shock
(d = 0). Stellar population synthesis models from S. Charlot & G. Bruzual
(2007, private communication), with IMF lower limit of 0.1 M� and upper limit
of 10 M�.

One way out of this problem is to compare only the distances
between the onset of star formation and the Q peak, in the
model and the data, instead of the whole Q profiles, since image
processing affects less the peak positions than the profile shapes.
We have used this approach with our semianalytical calculations
and MHD simulations; unfortunately, in the case of real data,
the position of the star formation onset is generally unknown
(see also Section 3.1).

To better estimate the effects of averaging, with the R, Θ,
and t (time elapsed since the shock, t = 0 corresponds to
the shock location) data of the streamlines obtained from the
semianalytical solutions, we constructed images of a synthetic
“galaxy” as would be observed in the g, r, i, and J bands
with the aid of stellar population synthesis models (S. Char-
lot & G. Bruzual 2007, private communication; the fraction
of young stars constitute is 2% by mass). The model face-on
galaxy is at a distance of 35 Mpc and the synthetic images have
1′′ × 1′′ pixels. Whenever various streamlines were located at
the same pixel, their elapsed times since the shock were aver-
aged. Next, the synthetic images were unwrapped. Each hyper-
pixel of the unwrapped images is 3◦ long in the θ -axis; the
ln R-axis has 250 hyperpixels in total, from the center of
the galaxy to R = 10 kpc. Then, the synthetic unwrapped
images were straightened according to the shock’s pitch
angle (∼5.◦266) that is smaller than the potential minimum’s
pitch angle (∼5.◦739; see the Appendix). Finally, Q profiles were
obtained from these “images” in sections with a width of five
hypercolumns in ln R. Pattern speeds were measured by com-
paring the “observed” Q (versus d) from the simulated images,
at different radii, with Q (versus tage) from stellar population
synthesis models.9

9 The adopted models throughout this investigation have an IMF upper limit
of 10 M�. Models with higher upper limits would peak at younger ages, closer

Figure 12. Ωp measurements. All the analysis methods assume circular
kinematics, regardless of the actual kinematics of the input galaxy. Dotted
line: input pattern speed. Squares: measurements, with pixel averaging, for
a synthetic galaxy with purely circular motions obtained through the GG96
“stretching” method (solid) and via the comparison of Q peaks (open). Solid
line: Ωp values derived without averaging in the case where the synthetic galaxy
has streamline trajectories described by the semianalytical model. Triangles:
measurements, with pixel averaging, for a synthetic galaxy with streamline
trajectories described by the semianalytical model deduced from the GG96
method (solid) and with the Q peak method (open).

In Figure 12, we illustrate the effects of averaging. The
dotted line is the input pattern speed. If the synthetic galaxy
has circular orbits and the galaxy is analyzed assuming circular
orbits, then one obtains the Ωp values depicted by squares. The
solid black squares are obtained with the GG96 “stretching”
method, whereas the comparison between model and data Q
maxima positions relative to the shock yields the open symbols.
Clearly, the solid black squares are biased while the open ones
are not.

On the other hand, if the synthetic galaxy has non-circular
orbits but is analyzed under the assumption of circular orbits,
then one obtains the Ωp values shown as triangles. The solid
black triangles are the values obtained with the GG96 method;
the empty triangles are the pattern speeds found when comparing
only the positions, relative to the shock location, of model and
“observed” Q peaks; and the solid line represents the biased
values measured from the semianalytical solutions, without
averaging, if existing non-circular motions are ignored. The
reason for this bias toward higher measured pattern speeds
is that real gas streamlines in a steady rotating spiral shock
turn somewhat along the arm after passing through the shock.
Consequently, stars close to the shock are slightly older than
would be expected in a circular model with the same Ωp. The
observer using a circular model would infer that the gas flow
into the arms is smaller than is actually the case, i.e., that the
difference between the stellar orbital velocity and the pattern
speed is smaller than in reality; inward of corotation, this means
that the observer would overestimate the pattern speed. Also
inside corotation, the effect decreases with galactocentric radius,
as the shock strength diminishes.

to the shock; see MG09 for models with an IMF upper mass limit of 100 M�.
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Figure 13. δΩp (see the text) vs. Rmean/Rend for the 23 regions in Table 4
of MG09. The spirals are assumed to end at the 4:1 resonance. The dotted line
indicates δΩp = 0 (i.e., no difference between the real and the measured pattern
speeds).

The open triangles product of the peak comparison are
much less sensitive to the competing systematics introduced by
orbit averaging. However, ironically, the original “stretching”
method (solid black triangles) seems much less biased toward
higher values if non-circular motions are neglected, although
the dependence of the bias on galactocentric radius is still
noticeable. This is a fortunate turn of events, because (1) in real
images it is hard to pinpoint the location of the star formation
onset and (2) the radial dependence of the bias allows us to
detect the presence of non-circular motions and to confirm the
link between star formation and disk dynamics.

7. DISCUSSION

From theory (e.g., Gittins & Clarke 2004), it is well known
that the spiral shock strength diminishes as one approaches coro-
tation. The shock weakening implies fewer radial movements
and more circular trajectories. Figures 9 (corotation radius, RCR,
located at ∼17 kpc) and 10 (RCR ∼ 11 kpc) support this con-
clusion; they also allow us to predict that, in general, Ωp values
derived from color gradients observed inside corotation in real
data will be too high if a circular dynamic model is adopted.10

For color gradients observed beyond corotation, we expect again
to overestimate the pattern speed, but the difference between the
actual and the measured Ωp will now grow with radius. In this
case, the radial velocities of the streamlines after the shock have
an outward, rather than an inward, component (see the lead-
ing case in Roberts 1969). If, however, spiral shocks are not
as strong as inside corotation, inverse post-corotation gradients
will yield unbiased pattern speed measurements.

How would these results affect the Martı́nez-Garcı́a et al.
(2009) conclusions about the end points of spiral patterns? Their

10 For some radii (e.g., ∼6 and 8.5 kpc) in the MHD simulation, the measured
Ωp will be actually slightly lower (∼1 km s−1 kpc−1) than the input pattern
speed of 20 km s−1 kpc−1.

Figure 14. Same as Figure 13 for the case where spirals are assumed to end
at the OLR. Long-dashed ellipse: surrounds points that presumably correspond
to inverse color gradients, outside corotation. Short-dashed ellipse: surrounds
points from regions in NGC 578, whose spiral pattern might end at or inside
corotation (MG09).

Figure 4 displays the ratio, Rres/Rend, of the resonance radii
(calculated from their pattern speed measurements and rotation
curves) to the observed spiral end points in their deprojected,
near-infrared galaxy images. If their Ωp measurements (most
of them inside corotation) are systematically too high, then the
resonance radii and their ratio to the spiral end points would be
systematically smaller than the true values.

In order to better quantify the impact of non-circular motions
on the MG09 results, we define the expression δΩp = (Ωdata −
Ω′

p)/Ω′
p. Here, Ωdata is the pattern speed obtained from the data,

by comparing the observed color gradient candidates with the
stellar models, under the assumption that stars move in purely
circular orbits; Ω′

p is the pattern speed that the spiral should
have if it ends at certain resonance. For the 4:1 resonance, for
example, we have

Ω′
p ∼ vrot

R4:1

(
1 −

√
2

4

)
, (5)

where vrot is the circular orbital velocity (obtained from the
literature, see MG09). And if the spiral ends at the OLR, then

Ω′
p ∼ vrot

ROLR

(
1 +

√
2

2

)
. (6)

To calculate δΩp for the 23 regions analyzed in MG09, we
take both Ωdata and Rend from their Table 4. In Figures 13
and 14, we plot δΩp versus Rmean/Rend, where Rmean is the
mean orbital radius of the studied region. Figure 13 corresponds
to the case where the end point of the spiral pattern is fixed
at the 4:1 resonance. Contopoulos & Grosbol (1986) state that
strong spirals (Hubble types Sb or Sc) may be truncated at this
resonance. The δΩp values show the trend with radius expected
from Figures 9 and 10. This would imply that we are actually
detecting non-circular motions from the photometric data!
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However, three discrepancies with respect to theoretical
expectations are also present. The first one is related to the
systematic effects discussed in Section 6. In spite of the tendency
to actually measure values around the true pattern speed with
the method used by GG96 and MG09 (solid black triangles in
Figure 12), there is a lack of points below the δΩp = 0 line. The
second difference is the gap around Rmean/Rend ∼ 0.6, where
a point with huge vertical error bars is located.11 If spirals are
really truncated at the 4:1 resonance, and hence inside or near
corotation, one would expect a continuous distribution of points
between the inner Lindblad resonance and the spiral end point
(i.e., Rmean/Rend = 1). The third inconsistency concerns the
actual values attained by δΩp at low Rmean/Rend. From the solid
black triangles in Figure 12, the maximum expected value of
δΩp is � 0.5. The high δΩp values would imply the presence
of extremely strong shocks near the spiral arms.

Figure 14, in contrast, shows the behavior of δΩp for the
case when the spiral end points are fixed at the OLR. If spirals
stop near this resonance, the expected Rmean/Rend value for
corotation is ∼0.59, and the gap in the data distribution is
naturally explained. We also observe now that some points are
located below the δΩp = 0 line, as expected from Figure 12,
owing to the systematic error introduced by the “stretching”
GG96 method and discussed in Section 6. The three last
points, marked with a long-dashed ellipse, represent the “inverse
color gradients” (i.e., located beyond corotation) examined in
MG09 (these points were treated as being inside corotation
in Figure 13). The points surrounded by a short-dashed ellipse
belong to the galaxy NGC 578. If NGC 578 actually ends before
or at corotation (as argued by MG09), its position in Figure 13
is in concordance with theoretical expectations (i.e., close to the
δΩp = 0 line). On the other hand, NGC 578 may be the only
galaxy in the MG09 sample with a spiral pattern that stops at the
4:1 resonance, as predicted by Contopoulos & Grosbol (1986).

8. CONCLUSIONS

Under the assumption that the orbits of young stars preserve
the velocity components of the parent molecular clouds where
they form, we have analyzed the effects that non-circular mo-
tions would have on azimuthal color gradients. Semianalytical
calculations and MHD simulations show that the spiral pattern
speeds derived from the comparison between color gradients and
stellar population synthesis models, assuming purely circular
motions, would have values systematically higher than the real
ones for regions within corotation. Also inside corotation, the
effect would decrease with galactocentric radius. Non-circular
motions, however, would not prevent the detection of legitimate
azimuthal color gradients in real galaxies.

Using a synthetic image, we have also analyzed the effects
of image processing and pixel averaging on the method applied
in GG06 and MG09 to detect color gradients and derive pattern
speeds. We have found that pixel averaging (due to image
processing) systematically decreases the derived Ωp, such that
it nearly compensates for the systematic effect introduced when
neglecting non-circular motions in the analysis. The net result
is that the correct spiral pattern speeds and resonance locations
can be obtained. Nevertheless, a residual trend of slightly higher
pattern speeds at lower radii can still be discerned (solid triangles
in Figures 12), so that it is possible to detect the presence of non-
circular motions and confirm the link between star formation and
disk dynamics.

11 MG09 argued that this feature could be due to a star formation event, not
triggered by spiral waves, located near corotation in NGC 1421.

We have re-examined the results obtained by MG09. When
normalizing the mean radii where gradients were found by the
end point radii, in order to treat the whole sample as a single
galaxy, we were able to reproduce the trend of δΩp with radius
expected if non-circular motions are ignored (as these authors
did). The size of the observed δΩp in the data only matches the
theoretical expectations if spiral patterns end at the OLR, and not
at the 4:1 resonance (compare Figure 12 with both Figures 13
and 14).

Future studies of azimuthal color gradients in disk galaxies
by orbit calculations should include the effects of disk heating
(Asiain et al. 1999) and a correct modeling of the IMF as
a discrete distribution. These factors may be important, since
high-mass stars may take different trajectories when compared
to low-mass stars, due to the effects of dynamical friction
(Chandrasekhar 1943).
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APPENDIX

STREAMLINE LOCUS DETERMINATION FROM
SEMIANALYTICAL SOLUTIONS

The differential equations needed to obtain the density and ve-
locity components, product of spiral shocks, are fully explained
in Roberts (1969), Shu et al. (1972, 1973), and Gittins & Clarke
(2004).12 The independent parameters used in this investigation
for the solutions are: number of arms, m = 2; spiral arms pitch
angle i such that sin i = 0.1; angular speed of the spiral pattern,
Ωp = 13 km s−1 kpc−1; effective speed of sound, a = 8 km s−1;
amplitude ratio of the perturbed spiral field to the axisym-
metric field, F = 0.05; rotation velocity of material,13vrot =
220 km s−1. In Figure 15, we show the positions of the sonic
point and the spiral shock relative to the potential minimum
(η = 0), with the parameters described above. As already no-
ticed by Tosa (1973) and Gittins & Clarke (2004), the shock
front moves away from the potential minimum as the radius
increases. In this case, for R ∼ 5 kpc, the shock front is slightly
ahead of the potential minimum. These relative positions may
change for another set of parameters.

The solutions are obtained in curvilinear coordinates η
(perpendicular to the spiral equipotential curves) and ξ (parallel
to the spiral equipotential curves). We adopt the η and ξ
definitions from Shu et al. (1973) and Gittins & Clarke (2004).
These definitions differ from those used in Roberts (1969)
and Shu et al. (1972) by a multiplicative factor m/ sin i, and
by an additive constant, chosen such that η = 0 determines
the location of the potential minimum. The corresponding

12 See also Fujimoto (1968) and Ishibashi & Yoshii (1984).
13 A generic flat rotation curve is adopted, such that the epicyclic frequency
κ = √

2Ω. We also assume that F ∼ constant for the selected range of radii
(5–10 kpc).
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Figure 15. Sonic point and shock positions at different radii. Dashed line: ηsp,
sonic point position relative to the potential minimum (dotted line, η = 0); solid
line: ηsub, position of the spiral shock relative to the potential minimum.

expressions in terms of the radius, R, and the angular coordinate
in the rotating frame of the spiral pattern, Θ = θ − Ωpt , are as
follows:

η = m

tan i
ln

(
R

Ra

)
+ m(θ − Ωpt) + π, (A1)

ξ = −m ln

(
R

Ra

)
+

m

tan i
(θ − Ωpt). (A2)

The η coordinate is obtained from the shock solution, together
with the velocity components uξ = uξ0 + uξ1 and uη =
uη0 + uη1. The subscript 0 labels the unperturbed velocity (i.e.,
in the absence of a spiral perturbation), and the subscript 1,
the perturbation due to the spiral gravitational field. The ξ
coordinate is obtained by solving the equation

dξ

dη
= uξ

uη

(A3)

that can also be expressed as∫ ηstream

ηsub

(
dξ

dη

)
dη = ξstream − ξsub. (A4)

The shock on the subsonic branch occurs at ηsub and ξsub.
ηstream and ξstream are coordinate values at any point along the
streamline; their maximum possible values are ηsup and ξsup, i.e.,
the point at which the shock occurs on the supersonic branch.14

In order to obtain ξsub, we proceed in the way described below.
We define the quantity

x = R0

⎛
⎜⎝

∫ Θ′
sup

Θ′
sub

(
R
Ra

)′
dΘ′

Θ′
sup − Θ′

sub

⎞
⎟⎠

−1

, (A5)

14 ηsup − ηsub = 2π . In theory, ξsup − ξsub = 2π
tan i

but, due to a slight
non-closure of the streamlines with radius, the numerical values may differ
(see Shu et al. 1972).

where ( R
Ra

)′ and Θ′ are the ( R
Ra

) and Θ values obtained when
ξsub = 0 and Ra = 1. R0 is the average radius of the streamline.

We use the x value to get

ξsub = −
(
m +

m

tan2 i

)
ln x. (A6)

With this definition, the mean value of ( R
Ra

) will be R0.
The time elapsed since the shock, t, is obtained by integrating

the velocity along the Θ direction

t =
∫ Θstream

Θsub

RdΘ
uΘ

, (A7)

where t = 0 when Θstream = Θsub, and

uΘ = uη + uξ cot i

cot i cos i + sin i
. (A8)
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