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ABSTRACT

We report a set of numerical experiments aimed at addressing the applicability of competitive accretion to explain
the high-mass end of the stellar initial mass function in a sheet geometry with shallow gravitational potential, in
contrast to most previous simulations which have assumed formation in a cluster gravitational potential. Our flat
cloud geometry is motivated by models of molecular cloud formation due to large-scale flows in the interstellar
medium. The experiments consisted of smoothed particle hydrodynamics simulations of gas accretion onto sink
particles formed rapidly from Jeans-unstable dense clumps placed randomly in the finite sheet. These simplifications
allow us to study accretion with a minimum of free parameters and to develop better statistics on the resulting
mass spectra. We considered both clumps of equal mass and Gaussian distributions of masses and either uniform
or spatially varying gas densities. In all cases, the sink mass function develops a power-law tail at high masses,
with dN/d log M ∝ M−Γ. The accretion rates of individual sinks follow Ṁ ∝ M2 at high masses; this results in a
continual flattening of the slope of the mass function toward an asymptotic form Γ ∼ 1 (where the Salpeter slope is
Γ = 1.35). The asymptotic limit is most rapidly reached when starting from a relatively broad distribution of initial
sink masses. In general, the resulting upper mass slope is correlated with the maximum sink mass; higher sink masses
are found in simulations with flatter upper mass slopes. Although these simulations are of a highly idealized situation,
the results suggest that competitive accretion may be relevant in a wider variety of environments than previously
considered, and in particular that the upper mass distribution may generally evolve toward a limiting value of Γ ∼ 1.
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1. INTRODUCTION

The stellar initial mass function (IMF) among other things
determines the fraction of stellar populations in massive stars;
this in turn affects the production of heavy elements, the stellar
feedback of energy into the interstellar medium (ISM), and
the evolution of galaxies. Salpeter (1955) first pointed out
the power-law distribution in the “original mass function;”
subsequent observational work has established the general form
of the IMF, which at high masses is still comparable to the
“Salpeter slope” Γ, where dN/d log M = M−Γ, Γ = 1.35. The
most widely used functional form is a power-law distribution
or a combination of power-law distribution at different mass
ranges. Other widely used forms of the IMF include log-normal
distributions and a combination of the power-law and log-
normal distributions (e.g., Chabrier 2003; Bastian et al. 2010).
As Bonnell et al. (2007) noted, the essential features of the IMF
include a peak at a mass of a few tenths of M� and a declining
power-law tail toward higher masses.

While the origin of the IMF remains a matter of extensive
debate, two general ideas have come to prominence in recent
years (e.g., Clarke 2009). The first supposes that the mass spec-
trum of dense structures within star-forming clouds, suggested
to be the result of supersonic turbulence, more or less directly
maps into the stellar mass distribution (e.g., Padoan & Nordlund
2002; Klein et al. 2007). In these models, the IMF results from
local mass reservoirs that are relatively isolated (Padoan et al.
2007; Hennebelle & Chabrier 2008), possibly affected by grav-
ity (Klessen et al. 2000; Klessen & Burkert 2001). The second
type of model invokes two processes to produce the IMF; the
low-mass end is determined by turbulence and thermal physics,
qualitatively similar to the first picture, but the high-mass “tail”

is a result of continuing accretion from a mass reservoir (e.g.,
Zinnecker 1982; Bonnell et al. 2001a, 2001b, 2007). Thus, the
accumulation of material by the most massive stars is the result
of non-isolated accretion, from size scales greater than the local
Jeans length. The process resulting in producing the high-mass
end of the IMF in this approach is usually called “competitive
accretion” (CA).

As summarized by Clark et al. (2009) and Bonnell et al.
(2007), the high-mass power-law tail in CA simulations typ-
ically arises from formation in a stellar cluster; the potential
well results in high gas densities near the center, helping to feed
material into the most massive objects (see also Bate 2009).
Bonnell et al. (2001b) found that the slope of the mass function
depended upon whether the gravitational potential was domi-
nated by gas—in which case they found an asymptotic limit of
Γ = 0.5, due to tidal lobe limitation of mass accretion, or by
stars—in which case the asymptotic limit was Γ = 1, where
Bondi–Hoyle accretion dominates. The latter is consistent with
the analysis of Zinnecker (1982), who showed that Γ = 1 results
asymptotically from accretion rates which scale as Ṁ ∝ M2.

These investigations suggest that CA can account for the
high-mass end of the IMF in clusters. However, while most
stars form in clusters, a non-negligible number do not, at least
in the solar neighborhood. In addition, the properties of clusters
vary widely, with most being relatively small (Lada & Lada
2003); this raises the question as to whether the IMF might be
affected by the mass of the cluster. Moreover, the initial states
and evolution of protocluster clouds and clusters are uncertain;
current assumptions range from relatively slow evolution in a
roughly virialized condition (e.g., Tan et al. 2006) to the op-
posite assumption of rapid gravitational collapse (e.g., Tobin
et al. 2009; Proszkow et al. 2009). We are therefore motivated
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to investigate a schematic model of competitive accretion which
does not employ the assumption of formation in an initially clus-
tered environment. In addition, we wish to adopt a simple initial
physical model with as few parameters as possible to isolate the
most important properties for producing the high-mass IMF.

In this paper, we report a set of numerical simulations in a
simplified model to address some general aspects of competitive
accretion. Our results suggest that values of Γ close to the
Salpeter slope can result in a wider variety of environments than
previously discussed; they also suggest that the value of Γ may
be correlated with the maximum mass achieved through CA.
These findings suggest additional new approaches for numerical
simulations of the production of stellar IMFs.

2. MODEL AND METHODS

Our initial setup is motivated by our models of molecular
cloud formation as a result of large-scale flows in the ISM
(Heitsch et al. 2006, 2008a, 2008b; Vázquez-Semadeni et al.
2006; Heitsch & Hartmann 2008). In these models, the dense
material formed in post-shock gas is geometrically thin rather
than spherical, due to post-shock compression by large-scale
flows (e.g., Hartmann et al. 2001). As there is no particular
mechanism which would enforce virialization, the cloud as a
whole collapses laterally under gravity; eventually, much if not
most of the supersonic motion in the cloud is due to acceleration
by the cloud’s self-gravity, rather than the initial turbulent
velocities injected during cloud formation (e.g., Heitsch et al.
2008a, 2008b; Heitsch & Hartmann 2008). The most important
role of this mostly gravitationally driven turbulence in the
post-shock gas is to provide density enhancements which can
gravitationally collapse faster than the cloud as a whole (Heitsch
et al. 2008a).

We adopt an extremely simplified version of this cloud
formation model; specifically, we use an initially circular
isothermal sheet with many thermal Jeans masses initially
in hydrostatic equilibrium in the short dimension. We then
introduce local Jeans-unstable mass concentrations in a spatially
random pattern within a given radius which rapidly form sink
particles (protostars). For simplicity, we do not introduce initial
velocity perturbations; instead, we allow the cloud and sinks
to evolve under their own gravity. The random placement of
the sinks (along with any density fluctuations imposed in the
gas) quickly results in complex “turbulent” gas velocities which
are gravitationally generated. This setup allows us to avoid the
issue of fragmentation for the present and to concentrate on the
development of CA in an initially non-clustered environment
with a minimum of free parameters.

We use Gadget-2 (Springel et al. 2001; Springel 2005) to
simulate the gas dynamics and the formation of “protostellar”
sink particles. Jappsen et al. (2005) implemented the sink
particle formulation into the form of Gadget-2 that we use.
Collapsing structures above a density threshold (n = 107 cm−3

in our case) are replaced by sink particles, which interact with
gas and other sink particles through only gravity.

For simplicity, we assume an isothermal equation of state at
10 K for the gas particles, with a molecular weight of μ = 2.36.
We use a code unit system in which the unit length is 1 pc,
the unit time is 1 Myr, and the unit mass is 0.058 M�. In these
units, the radius of the sheet is then 2 pc and the total mass
of the sheet is 820 M�. The surface density of the unperturbed
sheet is 1.37 × 10−2 g cm−2 (AV = 3.8 perpendicular to the
sheet). The (initial) number of gas particles in each simulation
is Ntot = 1.6 × 106. For convenience we report results scaled

to the above physical units, but note that the simulations can
be rescaled given the assumed isothermal equation of state.
Specifically, if the unit length is scaled to d pc, the unit of time
becomes d Myr and the unit of mass becomes 0.058 d M�.

The initial vertical structure of the sheet follows

ρ(z) = ρ0 sech2(z/H ), (1)

with ρ0 = 3.7 × 10−20 g cm−3 and scale height H = 0.06 pc.
However, the equilibrium density distribution of an isothermal
infinite sheet will follow the same form, with a scale height of
H = c2

s (πGΣ)−1 = 0.04 pc.
In the x and y directions, the gas particles are randomly

placed in a uniform sheet, with a radius of 2 pc (except for the
non-uniform sheet case, see Section 3.2). This leads to density
fluctuations due to the random positioning of the particles. To
plot the surface density and velocity fields, we interpolated the
densities and velocities of the smoothed particle hydrodynamics
(SPH) particles onto a rectangular grid. Each cell has an area of
(0.015)2 in code unit or (0.015pc)2.

We start each simulation with 100 Jeans unstable clumps. The
rapid collapse of these clumps leads to a dynamic creation of
sink particles before 0.1 Myr. We were unable to put sinks in
at the start, probably because of problems with the boundary
conditions around the sinks; when the sinks are dynamically
created within the simulation, the boundary conditions are
properly calculated to account for the discontinuities in density
and gas pressure around the sinks (Bate et al. 1995; Jappsen
et al. 2005).

Because the sheet itself is also highly Jeans unstable, it also
collapses under gravity, on a timescale tc ∼ R(πGΣ)−1/2 ≈
1.4 Myr (Burkert & Hartmann 2004, hereafter BH04). Due to
gravitational focusing, a ring of material piles up quickly along
the edge of the cloud. The edge can then become gravitationally
unstable and fragment (BH04; Vázquez-Semadeni et al. 2007;
Figure 1). With our isothermal equation of state, we find
relatively uncontrolled (numerically) fragmentation in this ring;
we therefore turn off the creation of sinks after the initial 100
clumps collapse, allowing us to focus entirely on competitive
accretion within the main body of the cloud. Our restriction
on the initial placement of clumps to a radius of 1 pc avoids
accretion from the ring.

Gas particles that come within a certain radius of a sink
(0.003 pc in our setup) are tested for accretion individually. If
a gas particle is bound to a sink, the gas particle is accreted
by the sink. Gas particles which come within 0.0003 pc of the
sink are always accreted. We ran each simulation for 1.2 Myr, or
approximately 0.8 tc, with an output file written every 0.1 Myr.

Within this general setup, we considered several cases. In the
first set of simulations, we assumed a uniform surface density for
the cloud and that each clump had the same mass, 0.82 M�. In a
second set, we assumed the same equal initial clump masses but
a varying density distribution in the gas. The final sets of sim-
ulations assumed constant surface density gas but log-normal
initial mass distributions for the clumps, keeping the total mass
of the clumps to be 10% of the cloud mass. To improve statis-
tics, we ran six realizations of each of the simulations described
above, differing only in the random positions of the clumps.

3. RESULTS

3.1. Equal Mass Clumps in a Uniform Sheet

Figure 1 shows one of the realizations of the simplest case,
equal mass clumps in a uniform sheet. The left panel shows
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Figure 1. Collapse of a sheet-like molecular cloud and the growth of the clumps in a simulation at 0, 0.2, 0.4, 0.6, 0.8, and 1.2 Mpc. The left panel is the molecular
cloud as viewed from the top and the right panel is from the side. Each box is 4.8 by 4.8 pc. The colors correspond to the logarithm of column density in g cm−2.

(A color version of this figure is available in the online journal.)
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Figure 1. (Continued)

(A color version of this figure is available in the online journal.)

the view from the top, and the right panel shows the side view.
Figure 2 shows a close-up view of the central 1.2 × 1.2 pc. The
circles mark the location of the sink particles, and the area of
the circles correspond to the mass of the sinks.

Early on (before 0.2 Myr), most sinks evolve independently
of one another, accreting mass from the original clump and
the environment. However, as the entire cloud collapses, after
0.2 Myr, the sink particles start to affect each other, forming
small groups, in a manner reminiscent of the simulations of
Bonnell et al. (2003; see also Maschberger et al. 2010). By
0.5 Myr, the gas between the sink particles starts to form
a filamentary structure that resembles the “cosmic web” in
cosmological simulations. At this stage, part of the gas is
accreted first onto the filament and then from the filament to
the sinks. The regions between the web become depleted of
gas. As time goes on, the small groups collapse, creating larger
groups while the sink particles accrete gas from the environment.

The more massive sinks in a group can accrete mass faster, thus
broadening the mass distribution.

Figure 3 shows the growth of each sink particle as a function
of time. Initially, all the clumps have the same mass, but the
final sink masses span over 1.5 dex in mass. Note that the initial
clump mass is not equal to the sink mass when the sinks are
created because it takes about 0.2 to 0.4 Myr for the all the
clump gas to fall in.

Figure 4 shows the mass accretion rate of each sink at
intervals of 0.2 Myr, including the sink particles from all six
runs. The accretion rates of the more massive sinks exhibit a
roughly dM/dt ∝ M(sink)2 behavior. As the system evolves,
the accretion rates decrease due mostly to the removal of gas
into sinks, and the lower-mass sinks lose the competition for
material to the high-mass sinks.

As shown in Figure 5, in an initially non-clustered envi-
ronment, the accretion rate shows no clear dependence on the
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Figure 2. Same simulation as in Figure 1, but only the inner part is shown. Each box is 2.4 pc by 2.4 pc. The arrows indicate the velocity vectors of the gas, with
1 km s−1 marked on the upper right corner of each panel. The colors correspond to the log of column density in g cm−2.

(A color version of this figure is available in the online journal.)



1536 HSU ET AL. Vol. 721

Table 1
Fitting Range and Slope of the Mass Function

Case Background Clump Mass Fitting Range Slope % of Final Mass in Sinks
log(M�)

1 Uniform Same 0.4–1.15 −2.07 ± 0.15 39%
2 Varying Same 0.4–1.15 −1.97 ± 0.15 40%
3 Uniform Gaussian (σ = 0.05) 0.4–1.15 −1.67 ± 0.14 40%
4 Uniform Gaussian (σ = 0.1) 0.45–1.2 −1.42 ± 0.14 40%
5 Uniform Gaussian (σ = 0.2) 0.55–1.3 −1.03 ± 0.16 40%

Figure 3. Evolution of sink mass as a function of time in one of the runs of the
equal mass case.

position of the sink within the sheet. This is unsurprising given
the uniform nature of the sheet, although the global motions of
the sheet do depend upon radius. This is in contrast to formation
in an initially clustered environment, as described by Bonnell
et al. (2001a, 2001b), where the accretion rate depends on the
position of the sink in the cluster through the tidal lobe radius.
While the center of the cluster is the preferred location to form
the most massive star, the most massive stars in our simula-
tions do not necessarily form in the center (though eventually
everything collapses to the center).

The combined mass distribution of the six runs is shown in
Figure 6. The thin black line represents the initial mass of the
clumps. The thick lines show the mass distribution at 0.4, 0.6,
0.8, 1.0, and 1.2 Myr after the beginning of the simulation. The
distribution starts with a delta function, evolves into a Gaussian-
like distribution, and then develops a high-mass power law
toward the end of the simulation. The solid black line shows a
fit to the distribution from 100.4 to 101.15 M� when we terminate
the simulation, or at t = 1.2 Myr, with a slope of −2.07 ± 0.15.
The derived slope does depend modestly on the range of masses
which are fitted. The slope and the fitting range in mass are
tabulated in Table 1.

3.2. Equal Mass Clumps in a Non-uniform Sheet

The setup is mostly the same as the previous case, but with
background density fluctuations. To construct a varying surface

density, we used the linear superposition of sine waves in both
the x and y directions whose magnitude is proportional to the
wavelength:

d(x, y) =
∑
kx ,ky

k−1 sin(kxx + φx(kx)) sin(kyy + φy(ky)),

where d(x,y) is the surface density at location x, y; kx and ky
are the wavenumbers in x and y directions; φx and φy are the
randomly chosen phases. The k−1 factor is used simply to ensure
that the fluctuations are mostly on large scales while still having
noticeable effects on smaller scales. On the smallest scales, the
density fluctuations are dominated by random positioning of the
particles. The largest wavelength allowed is the diameter of the
sheet; the smallest wavelength allowed is 1/20 of the diameter.
The fluctuating part of the surface density is then added to a
constant surface density part so that the minimum density is
30% of the maximum density. The phases of the surface density
are randomly chosen for each of the six simulations. Figure 7
shows a close-up view of the central 1.2 × 1.2 pc of one of
the runs of this case. The fluctuations in the background density
are not very prominent in the figure partly because the surface
density is plotted on a log scale, and the clumps are dominating
the density fluctuations.

In this set of simulations, the accretion rate is again propor-
tional to M(sink)2 for the more massive sinks (Figure 8). The
sink mass distribution grows in a similar way as in the previous
case, but the distribution spreads to higher masses slightly faster.
At t = 1.2 Myr, the linear fit to the distribution gives a slope of
−1.97±0.15, with a fitting range of 100.4 to 101.15 M�. Thus, in-
cluding these density fluctuations in the simulation makes little
difference in the final result.

3.3. Clumps with an Initial Mass Distribution

The previous results suggested that a wider initial distribution
of masses should grow the power-law tail faster. We therefore
constructed three sets of simulations with initial mass distribu-
tions:

N (log M) ∝ exp

(
− (log M − log Mc)2

2σ 2

)
, (2)

where log(Mc/M�) = −0.1 and σ = 0.05, 0.1, and 0.2 dex.
Figure 9 shows the sink mass distributions for these three
cases. The thin black lines represent the initial clump mass
distributions, and the thick lines are the mass distribution at t =
0.4, 0.6, 0.8, 1.0, and 1.2 Myr. The wider distribution of initial
clump masses yields faster growth of the high mass power law, as
expected. Linear fits to the final mass distribution at t = 1.2 Myr
yield slope of −1.67 ± 0.15, −1.42 ± 0.14, and −1.03 ±
0.16. Again, the parameters for the fitting are tabulated in
Table 1.
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Figure 4. Accretion rate vs. mass of sinks at 0.2, 0.4, 0.6, 0.8, and 1.0 Myr in one of the runs of equal mass sinks, with the uniform surface density cloud. The accretion
rates for the higher-mass sinks follow Ṁ ∝ M2.

The slope of the mass distribution depends on the spread
of the initial clump masses. The final slope can be flatter than
the Salpeter value of −1.35. In fact, if the mass accretion rate
grows strictly as Ṁ ∝ M2, all the slopes would approach −1
if the sinks have enough time and enough gas to accrete (e.g.,
Zinnecker 1982). Our numerical results are consistent with an

asymptotic slope of Γ = 1.0, although the statistical errors are
large enough to prevent an absolutely secure conclusion, even
with simulations totaling 600 objects. This emphasizes the long-
standing problem of achieving sufficient numbers of objects,
either theoretically or observationally, to make firm statistical
conclusions about IMF slopes.
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Figure 5. Accretion rate vs. distance of sink from the center of the sheet at t = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 Myr in the runs with equal mass sinks and the uniform
surface density cloud. All 600 sinks from the six runs are included.

4. DISCUSSION

4.1. Accretion and Clustered Environments

Figures 4 and 8 show the main result of this paper: a strong
tendency for Ṁ ∝ M2 to develop at the high-mass end of the

sink mass distribution, in initially non-clustered, flat, collapsing
cloud environments. This results in a general tendency for
the high-mass power law to approach Γ = 1 asymptotically,
depending upon how much mass the sinks can accrete beyond
their initial values, as shown in Figures 6 and 9. To put this in
context, we constructed a simple analytic model where an initial
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Figure 6. Left: distribution of mass at t = 0.4, 0.6, 0.8, 1.0, and 1.2 Myr for the constant background density, equal clump mass case. The weighted linear fit has a
slope of −2.08. Right: the distribution of mass at t = 0.4, 0.6, 0.8, 1.0, and 1.2 Myr for the varying background density, equal clump mass case. The weighted linear
fit has a slope of −Γ = −1.95. The dotted lines represent the Salpeter slope −Γ = −1.35 (see Table 1).

(A color version of this figure is available in the online journal.)

Gaussian distribution of masses is modified by accretion with
Ṁ ∝ M2 = αM2, where α is a constant. For an initial mass
M0, the mass grows as a function of time:

M(t) = M0

1 − αM0t
(3)

(Zinnecker 1982). The resulting mass grows as M(t) → ∞, as
t → t∞ = (αM0)−1. Figure 10 shows how the mass distribution
grows with time, plotted in increments of 0.16t∞ = (αM0)−1.
This does a surprisingly good job of reproducing the numerical
simulation results, if accretion is stopped at differing times.
Even though the simulation accretion rates do not scale exactly
as M 2, with the lower-mass sinks accreting more slowly, this
makes little difference in the resulting mass distribution. This
comparison emphasizes that the “competitive” effect in CA is
not only starving the low-mass systems at the expense of the
high-mass objects; in terms of producing the high-mass power
law, it is also the result of differential accretion, enhancing the
rates at which the higher-mass sinks accrete.

While our starting conditions do not assume an initial clus-
tered structure or a deep central gravitational potential, our as-
sumed cloud symmetry and lack of turbulence or rotation re-
sult in forming a cluster of sinks at the center. However, the
high-mass tail of the mass function is strongly developing well
before the final central cluster is formed. Indeed, we observe
Ṁ ∝ M2 at the earliest stages in our simulations, where the
clustering is minimal (we also see this in a simulation with
sinks in a uniform sphere—unsurprisingly). It does appear that
some local grouping is necessary to achieve enough differen-
tial accretion to develop a clearly asymmetric mass function,
based on simulations (not presented here) that show when the
sinks are initially placed further apart, and the groups take
longer to form and the high-mass tail of the IMF evolves more
slowly.

In our simulations, the local groupings happen relatively
quickly compared to the simulation of Bonnell et al. (2001b).
This is probably because the relaxation time in a sheet is faster
than in a sphere of the same central density and total mass (e.g.,
Rybicki 1971).

4.2. Applicability of Bondi–Hoyle Accretion

From their simulations of formation in a cluster potential,
Bonnell et al. (2001a, 2001b) argued that there are two regimes
of accretion. The first phase was where the gravitational po-
tential of the cluster gas dominated, and accretion was tidally
limited, leading to a Γ ∼ −0.5. This occurs when both the pro-
tostars and the gas fall in toward the cluster center (see, e.g.,
discussion in Clarke 2009, their Section 2). During the second
phase, the stars dominate the potential, become virialized, and
then Bondi–Hoyle accretion leads to an upper mass distribution
Γ → 1.

In contrast, we find Γ → 1 even during global collapse, for
a situation where the infall velocities tend to be larger at large
radii and the average density is roughly constant with position
(see also Burkert & Hartmann 2004). This occurs as the groups
begin to dominate the local gravitational potential and generate
significant relative velocities of the sinks and the infalling gas.
This may provide local environments equivalent to the global
second accretion regime of Bonnell et al. (2001b). The tidal
limiting phase is much less important in our simulation because
of the shallower gravitational potential gradient of the sheet,
so that the characteristic Bondi–Hoyle radius of accretion (see
below) is always smaller than the tidal radius.

In the simple, isolated version of Bondi–Hoyle accretion in
three dimensions, we get

Ṁ ∝ ρR2
accv , (4)

where ρ is the gas density and v is the (assumed supersonic)
relative velocity of the gas and sink, both averaged at the
accretion radius

Racc ∝ GM/v2 . (5)

This results in the usual scaling

Ṁ ∝ M2ρv−3 . (6)

Initially, we thought that in our adopted flat geometry the
accretion rates might scale as

Ṁ ∝ 2πΣRaccv , (7)
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Figure 7. Top view of the inner part (each box is 2.4 by 2.4 pc) of the case with equal clump mass and background density fluctuation. The arrows indicate the velocity
vectors of the gas, with 1 km s−1 marked on the upper right corner of each panel. The colors correspond to the log of column density in g cm−2.

(A color version of this figure is available in the online journal.)
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Figure 8. Accretion rate vs. mass of sinks at 0.2, 0.4, 0.6, 0.8, and 1.0 Myr in one of the runs of the fluctuating background case. The accretion rates for the higher-mass
sinks follow Ṁ ∝ M2; the surface density fluctuations have little effect (see Figure 4 for comparison).

where Σ is the gas surface density of the sheet; this would imply

Ṁ ∝ MΣv−1 . (8)

In fact, the accretion of the sink particles is more like a three-
dimensional than a two-dimensional flow. This is because the
accretion radius is effectively embedded in the sheet. In the

small groups, the velocity dispersion among the sinks is about
1–2 km s−1. The accretion radius is then

Racc = 0.08

(
M

10 M�

) (
v

1km s−1

)−2

pc. (9)

From the above equation, we conclude that for sink masses up
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Figure 9. Resulting mass distributions for initial clump masses with Gaussian distributions (Top left: σ = 0.05; top right: σ = 0.1; bottom left: σ = 0.2) with constant
background density. The linear fit slopes are −Γ = −1.66, −1.42, and −1.03, respectively. The thin solid lines represent the initial clump mass distribution. The dotted
lines represent the Salpeter slope −Γ = −1.35.

(A color version of this figure is available in the online journal.)

to 10 M�, the accretion radius is in general smaller than the
scale height of the sheet. Thus, the mass flow is (non-spherical)
Bondi–Hoyle accretion (Bondi & Hoyle 1944).

It is worth noting that our sheets are undoubtedly much
thinner than realistic molecular clouds. Thus, our results suggest
that formation of clouds by large scale flows, which tend to
produce flattened clouds (see Section 4.3), and does not alter
the basic applicability of Bondi–Hoyle accretion for the upper
mass IMF (though conceivably the results might be different in
a filament geometry).

It is difficult to apply the standard formula (6) to our numer-
ical results because the background medium rapidly becomes
strongly perturbed. The gas motions are not uncorrelated with
the sink velocity, as assumed in the development leading to
Equation (6), but instead tend to be focused toward mass con-
centrations. The local gas density distribution is also highly
perturbed, with strong, gravitationally accelerated flows into
and along filaments. Bonnell et al. (2001b) attempted to deal
with these difficulties through the following argument. Con-
sider a point mass at radius R in some environment, with infall

velocities
vrel ∝ R−η (10)

and gas densities
ρ ∝ R−ξ . (11)

With these assumptions Bonnell et al. found

Ṁ ∝ g(t)M2R3η−ξ , (12)

where g(t) is a function which allows for the assumed homol-
ogous evolution of the cluster. This analysis results in Γ → 1
for sinks whose masses are initially uncorrelated with position;
Bonnell et al. (2001b) suggested that the slope might be steeper
if the higher-mass objects reside preferentially in the cluster
center.

To see whether the densities and velocities correlate with
sink mass, we evaluate these quantities at two radii: first, at a
radius of 2GM/c2

s , the maximum accretion radius in the Bondi
accretion formulation in the case where the relative velocity
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Figure 10. Mass distribution at different time for Ṁ = αM2. The top figure has a
narrower initial mass range (σ = 0.05 dex) than the bottom figure (σ = 0.1 dex).
The thin solid line represents the initial distribution of masses, and the colored
lines represent the mass distribution in increments of 0.16t∞ = (αM0)−1. The
dotted line represent the Salpeter slope −Γ = −1.35.

(A color version of this figure is available in the online journal.)

between the sink and the gas is subsonic; the other at a radius
of 0.024 pc, the distance sound waves can travel in 0.1 Myr (the
time between snapshots). Figure 11 shows scatter plots of sink
masses versus velocities relative to the gas, gas density, surface
density, and surface density divided by v, with all properties
evaluated at R = 2GM/c2

s at t = 0.6 Myr. Figure 12 shows the
same plots, with gas properties evaluated at 0.024 pc away from
the sink. The results show that the densities and velocities of the
gas are not strongly correlated with the individual sink masses.
Therefore, the accretion rate scales as Ṁ ∝ M2. This may be
a result of having a group of accreting sinks experiencing the
same environment, as in the discussion leading to Equation (12);
whatever sets the local density and flow velocity, the capture
cross section will still scale as M 2.

This suggests that the important factor is not the form of the
initial density and velocity distribution but whether the global
features are uncorrelated with the individual sink masses, as in
Equation (12). As long as a group of objects of differing mass
“see” the same conditions—gas densities and velocities—their

differential accretion rates will scale as M 2 (the proportionality
due to the gravitational cross section). This only holds for the
most massive objects in each group; the low-mass sinks are
starved of material to accrete. More generally, the absolute value
of the mass accretion rate may vary from group to group; but as
long as each group can set up an Ṁ ∝ M2 relative accretion rate
with differing constants of proportionality, one may argue that
the summed population will still asymptotically evolve toward
Γ = 1.

4.3. Turbulence

Most simulations of star-forming clouds invoke an imposed
turbulent velocity field, in view of the supersonic spectral line
widths observed in molecular tracers. Our simplified approach,
in which we do not impose initial velocity fluctuations but initial
density perturbations, is motivated by recent simulations which
form turbulent star-forming clouds from large-scale flows (e.g.,
Heitsch et al. 2006, 2008b; Heitsch & Hartmann 2008; Vázquez-
Semadeni et al. 2006, 2007). These simulations found that while
hydrodynamically generated turbulence in the post-shock gas
dominates the cloud structure and motions in early phases,
gravitational acceleration dominates the motions at late stages
(e.g., Heitsch et al. 2008a). Similar behavior is seen in models
in which the turbulence is not continually driven but allowed
to decay (e.g., Bate et al. 2003). Thus, the initial turbulence
provides density fluctuations or “seeds” which then generate
supersonic motions as a result of gravitational forces in clouds
with many thermal Jeans masses. Our models take this view to a
simple extreme, where we let gravity do all of the (supersonic)
acceleration of the gas given initial density fluctuations (our
clumps).

The assumption that the largest “turbulent” motions are
mostly gravitationally driven is an essential part of the com-
petitive accretion picture. Krumholz & McKee (2005) argued
that the supersonic velocity dispersions of molecular clouds are
too large for Bondi (and thus competitive) accretion to be effec-
tive; however, this assumes that the “turbulent” motions persist
and are spatially uncorrelated with the accreting masses. In con-
trast, even though large (and roughly virial) velocities develop in
our simulations, competitive accretion still operates because the
motions are largely the result of gravitational infall to groups,
plus global, spatially correlated collapse of both the sheet gas
and the sinks. These considerations emphasize the importance
of understanding the nature of “turbulence” in star-forming
clouds.

4.4. Mass Functions

Recently, there have been suggestions that the stellar IMF
is not universal; in particular, that the most massive star in a
region depends upon its richness (Kroupa & Weidner 2003,
2005; also see Weidner et al. 2010 and references therein). The
models presented here also result in a non-universal upper-mass
IMF, with a suggestion that Γ ∼ 1 is an asymptotic limit which
is approached most closely when the matter accreted is much
larger than the initial “seed” mass; and thus, to some extent,
the slope may correlate with the most massive object formed.
This is difficult to ascertain observationally, in part because
of the tradeoff between upper mass slope and truncation mass
(e.g., Maschberger & Kroupa 2009). Using the simulations of
Bonnell et al. (2003) and Bonnell et al. (2008), Maschberger
et al. (2010) found global values of Γ slightly greater than unity
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Figure 11. Mass of sinks vs. the gas properties around the sinks for all the cases in the equal initial mass, uniform density case at t = 0.6 Myr. The gas properties
are evaluated at Racc = 2GM/c2

s from each sink. Top left: mass vs. gas velocity relative to the sink, top right: mass vs. gas density, middle left: mass vs. surface
density, middle right: mass vs. surface density/velocity, and bottom left: mass vs. ρ/v3. There is no obvious correlation between the gas properties and the sink
mass.

and Γ ∼ 0.8 in the richest subclusters. This may be consistent
with our findings of a correlation between slope and upper
mass.

It may be worth noting two other situations in which Γ ∼ 1
mass functions are found: dark-matter halo simulations (below
the upper-mass cutoff; e.g., Jenkins et al. 2001); and star cluster

mass distributions (Elmegreen & Efremov 1997; McKee &
Williams 1997; Zhang & Fall 1999; Chandar 2009), although
some estimates yield flatter power-law slopes (e.g., Maschberger
& Kroupa 2009). Gravitational accretion thus could potentially
provide a unified explanation of the similarities in these mass
functions.
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Figure 12. Mass of sinks vs. the gas properties around the sinks for all the cases in the equal initial mass, uniform density case at t = 0.6 Myr. The gas properties are
evaluated at R = cs × 0.1 Myr = 0.024 pc from each sink. Top left: mass vs. gas velocity relative to the sink, top right: mass vs. gas density, middle left: mass vs.
surface density, middle right: mass vs. surface density/velocity, and bottom left: mass vs. ρ/v3. There is no obvious correlation between the gas properties and the
sink mass.

5. CONCLUSIONS

This paper presents numerical experiments using SPH sim-
ulations to address the general applicability of competitive ac-
cretion in initially non-clustered environments. A flat geometry
is used to construct a shallow gravitational potential as opposed
to the spherical clustered potential used in previous simulations

by Bonnell et al. (2001a, 2001b). The simplified setup consists
of only the most important elements in forming the high-mass
IMF: differential gas accretion onto protostars under gravity.
With this setup, we were able to produce the high-mass end of
the IMF with slopes comparable to the Salpeter slope Γ = 1.35.
The simple setup also allows us to understand the mass growth
of sinks in detail without worrying about fragmentation and
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thermal physics and also permits us to generate reasonably sta-
tistically significant results for upper mass function slopes.

The mass growth rate of the sinks follows Ṁ ∝ M2 for
all high mass sinks, while low mass sinks sometimes accrete at
lower rates. The high-mass end of the IMF develops a power-law
tail and flattens, with an asymptotic slope of Γ = 1. Variations in
initial clump masses and surface density help the power-law tail
to flatten faster. In our simulations, most systems do not reach
the asymptotic slope due to gas depletion. In real molecular
clouds, stellar feedback as well as gas depletion can terminate
the accretion and determine the final high-mass IMF slope.

The present set of simulations are obviously quite idealized.
Our purpose was to elucidate the basic physics of CA in as
easily visualized and interpretable a situation as possible. The
next steps, which are currently under way, are to start with more
complex density distributions and allow sink formation and
consequent evolution in more complex geometries and include
velocity fields as necessary. While we suspect that the physics of
competitive accretion will remain the most important factor in
creating the high-mass region of the IMF, as previously argued
by Bonnell et al. (2001a, 2001b, 2003) and Clark et al. (2009),
further study is needed.

We thank the anonymous referee for very helpful comments
which improved the paper substantially. We thank Jeremy
Hallum for his efforts in maintaining the cluster on which these
simulations were computed. This work was supported in part by
NSF grant AST-0807305 and by the University of Michigan.
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