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2Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, 69120 Heidelberg, Germany
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ABSTRACT
We investigate the formation and evolution of giant molecular clouds (GMCs) by the col-
lision of convergent warm neutral medium (WNM) streams in the interstellar medium, in
the presence of magnetic fields and ambipolar diffusion (AD), focusing on the evolution of
the star formation rate and efficiency (SFE), as well as of the mass-to-magnetic-flux ratio
(M2FR) in the forming clouds. We find that (1) clouds formed by supercritical inflow streams
proceed directly to collapse, while clouds formed by subcritical streams first contract and
then re-expand, oscillating on the scale of tens of Myr; (2) our suite of simulations with
the initial magnetic field strength of 2, 3 and 4 μG show that only supercritical or marginal
critical streams lead to reasonable star forming rates. This result is not altered by the inclu-
sion of AD; (3) the GMC’s M2FR is a generally increasing function of time, whose growth
rate depends on the details of how mass is added to the GMC from the WNM; (4) the
M2FR is a highly fluctuating function of position in the clouds. This implies that a signifi-
cant fraction of a cloud’s mass may remain magnetically supported, while SF occurs in the
supercritical regions that are not supported; (5) in our simulations, the SFE approaches sta-
tionarity, because mass is added to the GMC at a similar rate to which it converts mass to
stars. In such an approximately stationary regime, we find that the SFE provides a proxy of
the supercritical mass fraction in the cloud; and (6) the low-M2FR regions exhibit buoyancy
within the gravitationally contracting GMCs, so that the latter naturally segregate into a high-
density, high-M2FR ‘core’ and a low-density, low-M2FR ‘envelope’, without the intervention
of AD.
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1 IN T RO D U C T I O N

Magnetic fields in molecular clouds (MCs), and the gradual redistri-
bution of magnetic flux within them by ambipolar diffusion (AD),
have been thought to be crucial ingredients in regulating star for-
mation (SF) and its efficiency (SFE) for over two decades (see e.g.
the reviews by Shu, Adams & Lizano 1987; Mouschovias 1991,
and references therein). In early studies, MCs were considered to
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generally have strongly magnetically subcritical mass-to-flux ratios
(M2FRs) and supercritical clouds were believed to be rare (e.g.
Mouschovias 1991, section 2.1) so that the time for AD to allow
their cores to become supercritical turned out to be very long, of the
order of 10–20 times larger than the clouds’ free-fall time (tff ) (e.g.
Basu & Mouschovias 1994; Ciolek & Mouschovias 1994). In this
‘standard model’ of magnetically supported, AD-mediated subcrit-
ical clouds, the general mechanism for the formation of low-mass
stars was through the slow gravitational contraction of isolated cores
containing a very small fraction of the clouds’ mass, thus account-
ing for the very low observed global SFE of giant MCs (GMCs)
(Myers et al. 1986; Evans et al. 2009).

However, subsequent studies have suggested that both MCs
(McKee 1989) and their clumps (Myers & Goodman 1988; Bertoldi
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& McKee 1992; Crutcher 1999; Bourke et al. 2001; Crutcher, Heiles
& Troland 2003; Troland & Crutcher 2008) are close to being mag-
netically critical, with a moderate preference for being supercritical.
This implies that, if a MC is subcritical, it is expected to be only
moderately so as well, in which case the time for cores within it to
become locally supercritical may be almost as short as the cores’
free-fall time (Ciolek & Basu 2001; Vázquez-Semadeni et al. 2005).
Moreover, MCs are generally believed to be supersonically turbulent
(see e.g. the reviews by Vazquez-Semadeni et al. 2000; Elmegreen
& Scalo 2004; Mac Low & Klessen 2004; Ballesteros-Paredes et al.
2007; McKee & Ostriker 2007, and references therein), and in
this case, AD must be treated non-linearly. As a consequence, its
characteristic time-scale is expected to decrease, suggesting again
that it may be comparable to the free-fall time (Fatuzzo & Adams
2002; Heitsch et al. 2004). Thus, the gravitational contraction and
collapse of a star-forming region must occur rapidly, essentially
in the time-scales corresponding to those of a magnetically su-
percritical region, which is of the order of a few free-fall times
(Ostriker, Gammie & Stone 1999; Heitsch, Mac Low & Klessen
2001; Vázquez-Semadeni et al. 2005; Galván-Madrid et al. 2007),
although the subcritical envelope may still be held up by the
magnetic field, since, at the envelopes’ lower typical densities,
the AD time-scale is indeed much longer than the dynamical
time-scales.

Moreover, the realization that the majority of MCs may be su-
percritical and that most stars, including low-mass ones, form in
cluster-forming regions (Lada & Lada 2003) have forced a recon-
sideration of the problem to accommodate the fact that the standard
model’s paradigm of low-mass star formation in strongly subcriti-
cal clouds may be the exception rather than the rule, even for the
formation of low-mass stars.1 Unfortunately, if most MCs are su-
percritical, one must once again face the old Zuckerman & Palmer
(1974) conundrum that the Galactic star formation rate (SFR) should
be roughly two orders of magnitude larger than the one observed,
of ∼3–4 M� yr−1 (see the supplementary material of Diehl et al.
2006). This is because globally supercritical clouds cannot be sup-
ported by the magnetic field and thus should be collapsing as a
whole.

Turbulence is often invoked as an additional source of support
against the clouds’ self-gravity, as if it were simply an extra source
of pressure (Chandrasekhar 1951). Such a treatment, however, ne-
glects the fundamental property of turbulence that the largest ve-
locities occur at the largest scales, a property which is reflected in
Kolmogorov’s (1941) famous energy spectrum of the turbulence.
Studies taking this into account have generally only considered it
from the point of view of the energetics involved (e.g. Bonazzola
et al. 1987; Vázquez-Semadeni & Gazol 1995), but have neglected
the vector nature of the velocity field. Having the largest velocity
differences at the largest scales implies that the effect of classical
vortical turbulence within a cloud or clump should be primarily to
distort it, rather than to support it (Ballesteros-Paredes, Vázquez-
Semadeni & Scalo 1999a). In highly supersonic turbulence, it has
recently been noted (Vázquez-Semadeni et al. 2008; Federrath et al.
2010b) that the non-thermal motions within clumps must contain
a significant compressive component, even if the driving is purely
solenoidal. This compressive component, rather than opposing grav-
ity, aids it or is driven by it. This is consistent with recent suggestions
that, for example, the Orion A cloud is collapsing, and producing the

1 One instance of such an infrequent, strongly magnetized cloud may be the
Taurus MC (Heyer et al. 2008).

Orion Nebula Cluster in the process (Hartmann & Burkert 2007),
that the non-thermal motions within the clump NGC 2264-C cor-
respond mainly to gravitational contraction, rather than to isotropic
turbulence (Peretto, Hennebelle & André 2007), that massive star-
forming regions may be immersed in large-scale accretion flows
(Galván-Madrid et al. 2009; Csengeri et al. 2010; Schneider et al.
2010) and that MCs in the Large Magellanic Cloud seem to follow
an evolutionary trend such that more evolved clouds are more mas-
sive (Fukui et al. 2009). Also, if the non-thermal motions within
clouds were homogeneous and isotropic turbulence, it would be
difficult to understand the common observation that SF occurs at
localized spots within the clouds, rather than scattered throughout
their volumes (e.g. Kirk, Johnstone & Di Francesco 2006; Evans
et al. 2009).

These findings all suggest that an important, and perhaps even
dominant, component of the non-thermal motions observed in MCs
and their substructure is actually converging flows, which may be
driven by gravity or by external compressions. In fact, a model in
which the non-thermal motions in MCs are a gravitationally driven
mass cascade has been recently proposed by Field, Blackman &
Keto (2008). Moreover, the collision of converging flows has been
shown to produce turbulence in the compressed layers formed by
them (Hunter et al. 1986; Vishniac 1994; Walder & Folini 2000;
Heitsch et al. 2005, 2006; Vázquez-Semadeni et al. 2006, here-
inafter Paper I). Klessen & Hennebelle (2010) have recently shown
that the turbulent kinetic energy observed in objects as diverse as
galactic discs, MCs and protostellar accretion discs is in general
consistent with being driven by infall from the environments of
those objects. However, if the turbulence is being driven by the
gravitational contraction, it cannot be expected to halt the very con-
traction that drives it. Thus, one is faced with the Zuckerman–Palmer
conundrum again.

One way to avoid the Zuckerman–Palmer conundrum is through
stellar feedback, which may either stabilize the clouds against col-
lapse by feeding their turbulence, and consequently lowering their
SFR (Norman & Silk 1980; McKee 1989; Matzner & McKee 2000;
Krumholz & McKee 2005; Krumholz, Matzner & McKee 2006;
Nakamura & Li 2007), or erode the cloud, diverting the infalling
gas from actually reaching the stars, but without stabilizing the cloud
at large, until the clump is finally dispersed (Hartmann, Ballesteros-
Paredes & Bergin 2001; Vázquez-Semadeni et al. 2010; Wang et al.
2010). In particular, Vázquez-Semadeni et al. (2010, hereinafter
Paper III) have shown that the ionization-like heating of the gas
surrounding stellar particles is able to bring the SFE of simulations
down to realistic values.

Nevertheless, another way of avoiding the Zuckerman–Palmer
conundrum is if large chunks of the molecular gas in the Galaxy are
indeed magnetically subcritical and thus supported against gravity,
while SF occurs precisely in those regions that are not, as recently
suggested by Elmegreen (2007). Thus, the chaotic spatial and sta-
tistical distributions of the physical variables, produced by the tur-
bulence in the forming MCs, may play a key role in the control of
the SFR and the SFE.

In this paper, we investigate the role of the magnetic field, in the
presence of AD in regulating the SFR and SFE, neglecting stellar
feedback. This means that the SFRs and SFEs we will obtain are
overestimates, as the additional effect of feedback is not included.
We present numerical simulations of the formation and evolution
of MCs, starting from their formation out of generic compressions
in the warm neutral medium (WNM) and reaching up to their star-
forming epochs, in the presence of magnetic fields and AD, in order
to investigate the production of sub- and super-critical regions, and
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the rate at which clouds with various environmental conditions
form stars. We focus on the effect of AD on the SFE and the global
evolution of the clouds.

The layout of this paper is as follows. In Section 2, we present
some general considerations on the evolution of the M2FR in MCs.
In Section 3, we present the numerical model and the parameters
of the simulations. In Section 4, we then present our results on the
variability of the M2FR, the evolution of the SFE and the role of
AD in the evolution of both sub- and super-critical clouds. Finally,
Section 5 presents a summary and our conclusions.

2 EVO L U T I O N O F TH E M 2 F R I N M O L E C U L A R
CL OU D S: FRO M SUB- TO SUPER-CRITICAL

Although the most commonly considered mechanism for increasing
the M2FR of a certain density enhancement is the redistribution of
magnetic flux among the central flux tubes of a cloud by AD (Mestel
& Spitzer 1956; Mouschovias 1977), another important, yet often-
neglected, mechanism is that, for a uniform medium permeated by
a given mean magnetic field strength B0, there is always a certain
length along the field (termed the ‘accumulation length’ by Mestel
1985; see also Shu et al. 2007) such that flux tubes longer than that
contain enough mass per unit area to be magnetically supercritical.
The criticality condition in terms of the mass column density � =
ρL and the field strength B0 for a cylindrical geometry is (Nakano
& Nakamura 1978):

�/B0 ≈ (4π2G)−1/2 ≈ 0.159G−1/2, (1)

where ρ is the mass density and L is the cylinder length. This
condition gives the accumulation length in terms of fiducial values
representative of the interstellar medium (ISM) in the solar neigh-
bourhood as (Hartmann et al. 2001):

Lc ≈ 470

(
B0

5 μG

) ( n

1 cm−3

)−1
pc, (2)

where n = ρ/(μmH) is the number density of the medium, mH is
the mass of hydrogen and μ is mean particle weight, taken as μ =
1.27. In principle, if the Galactic field is primarily azimuthal, then
the Galactic ISM at large is magnetically supercritical in general,
because field lines do not end and thus sufficiently long distances
are always available along them.2 Thus, the M2FR of a system is
not a uniquely defined, absolute parameter, but rather depends on
where the system’s boundaries are drawn. We also stress that the
M2FR depends on the local geometry of the considered system.
For instance, a system with spherical symmetry has a slightly lower
critical value of μcrit ≈ 0.13G−1/2 (Mouschovias & Spitzer 1976).
Measuring the criticality of the streams with respect to this value
would lead to a supercritical configuration for our runs B3 rather
than sub-critical configurations.

Now consider a cloud or clump that is formed by the accumulation
of gas along field lines in general.3 In the rest of this discussion,
we will generically refer to the resulting density enhancement as
a ‘cloud’, referring to either a cloud, a clump or a core. Although
redistribution of matter along field lines does not in principle affect

2 Note, however, that supercriticality does not necessarily imply collapse,
since the gas may be thermally or otherwise supported, as is likely the case
for the diffuse warm medium at scales of hundreds of parsecs.
3 Since compressions perpendicular to the magnetic field cannot induce
collapse, and compressions oblique to the field can produce collapse by
reorienting the directions of the flow and the field lines (Hennebelle &
Pérault 2000), our assumed configuration involves no loss of generality.

the total M2FR along the full ‘length’ of a flux tube, this length is
a rather meaningless notion, since the flux tube may extend out to
arbitrarily long distances. What is more meaningful is the M2FR of
the dense gas that makes up the cloud, since the cloud is denser than
its surroundings, and thus it is the main source of the self-gravity
that the field has to oppose. In fact, for the formation of a cloud out
of flow collisions in the WNM, the cloud’s density is ∼100 times
larger than that of the WNM (Hennebelle & Pérault 1999; Koyama
& Inutsuka 2002; Audit & Hennebelle 2005; Heitsch et al. 2005;
Vázquez-Semadeni et al. 2006; Hennebelle et al. 2008; Banerjee
et al. 2009) and so the latter’s self-gravity is negligible. Thus, in
this problem, natural boundaries for the system are provided by
the bounding surface of the dense gas, allowing a clear working
definition of the M2FR.

However, contrary to the very common assumption of a constant
cloud mass, the formation of clouds by converging gas streams
implies that the cloud’s mass is a (generally increasing) func-
tion of time (Ballesteros-Paredes et al. 1999b; Vázquez-Semadeni
et al. 2007, hereinafter Paper II; Banerjee et al. 2009; Klessen &
Hennebelle 2010; Vázquez-Semadeni et al. 2010), a result that has
recently received observational support (Fukui et al. 2009). This
means that, within the volume of the cloud, the M2FR is also an
increasing quantity, since the flux remains constant if the flow is
along field lines, while the mass increases (see also Shu et al. 2007).
If the cloud starts from essentially zero mass, this in turn implies
that the M2FR of a cloud is expected to start out strongly subcritical
(when the cloud is only beginning to appear) and to evolve towards
larger values at later times. Rewriting equation (2) for the column
density, we see that the cloud becomes supercritical when

Ncr = 1.45 × 1021

(
B0

5 μG

)
cm−2, (3)

where N ≡ �/μmH is the number column density along field lines.
The critical column density for magnetic criticality given by equa-

tion (3) turns out to be very similar, at least for solar neighbourhood
conditions, to the critical column density of hydrogen atoms nec-
essary for cold atomic gas to become molecular, NH ∼ (1–2) ×
1021 cm−2 (e.g. Franco & Cox 1986; van Dishoeck & Black 1988;
van Dishoeck & Blake 1998; Hartmann et al. 2001; Glover & Mac
Low 2007a,b; Glover et al. 2010). Thus, the evolution of a cloud is
such that it starts out as an atomic and subrcritical diffuse cloud
(Paper I) and, as it continues to accrete mass from the warm atomic
medium, it later becomes molecular and supercritical, roughly at
the same time (Hartmann et al. 2001). This is fully consistent with
the observation that diffuse atomic clouds are in general strongly
subcritical (Heiles & Troland 2005), while MCs are approximately
critical or moderately supercritical (Crutcher 1999; Bourke et al.
2001; Troland & Crutcher 2008).

Moreover, the critical column density given by equation (3) is also
very similar to that required for rendering cold gas gravitationally
unstable, which is estimated to be

Ngrav ≈ 0.7 × 1021

(
P/k

3000 K cm−3

)1/2

cm−2 (4)

(Franco & Cox 1986; Hartmann et al. 2001). Thus, at solar neigh-
bourhood conditions, a forming cloud is expected to become molec-
ular, magnetically supercritical and self-gravitating at roughly the
same time.

It is important to note that the mass accretion on to a cloud due
to gas stream collisions is likely to start along essentially just one
dimension. This mode of mass accretion may be slow and it has been
argued that it may involve excessively long times (e.g. McKee &
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Ostriker 2007). However, numerical simulations of the process show
that, once the gas has transitioned to the cold, dense phase, it soon
becomes gravitationally unstable, even though it may remain mainly
in the atomic phase, and three-dimensional gravitational contraction
can then ensue, providing a much faster mode for increasing the
column density (Elmegreen 2007; Paper II; Heitsch & Hartmann
2008; Hennebelle et al. 2008; Banerjee et al. 2009). The same is
true if the global convergence of the flow is driven by larger-scale
gravitational instabilities (e.g. Kim, Ostriker & Stone 2003; Li,
Mac Low & Klessen 2005; Kim & Ostriker 2007). Of course, this
increase in the column density due to gravitational contraction of
the dense gas is only relevant to molecule formation. During such
a process, the M2FR remains constant if the cloud’s mass remains
fixed or varies on time-scales much longer than the contraction,
and the latter occurs under ideal magnetohydrodynamic (MHD)
conditions. The gravitational contraction can only contribute to a
further increase of the M2FR if the gravitational potential of the
cloud causes it to accrete further amounts of diffuse gas, which
transitions to the dense phase as it is incorporated into the bulk of
the cloud.

In all of the processes discussed so far, AD has not played a
role. This is of course due to the well-known fact that AD is not
dynamically relevant until densities as high as nAD ∼ 105 cm−3 are
reached (Mouschovias, Paleologou & Fiedler 1985). Such densities
are only reached in the dense cores of MCs and therefore AD is
not expected to cause any important effects on the global evolution
of MCs. Such cores, however, may be magnetically subcritical if
they form by turbulent compressions within the cloud before AD
becomes locally important, even if the cloud is globally supercrit-
ical. This is because, under ideal MHD, a core formed within an
initially uniform cloud must have a smaller M2FR than that of the
cloud (Vázquez-Semadeni et al. 2005). In a sense, the core repeats
the pattern followed by its parent cloud, initially being strongly
subcritical and evolving towards higher values of the M2FR, being
limited by the M2FR of its parent cloud, until AD becomes im-
portant and allows its M2FR to overtake that of the parent cloud,
perhaps becoming supercritical and allowing the core to collapse.
However, this notion has not been tested in the context of the global
evolution of a GMC, in particular taking into account the property
that the cloud’s M2FR should evolve (generally increasing) with
time. In the remainder of this paper, we investigate this scenario, by
means of numerical simulations of the formation and evolution of
a GMC, including AD, and focusing in particular on the resulting
SFE. We are particularly interested in the star-forming properties of
the cloud as it transits from sub- to super-critical.

3 TH E N U M E R I C A L M O D E L

3.1 The numerical code and setup

We use the adaptive mesh refinement code FLASH (Fryxell et al.
2000) with MHD, modified to include the AD module developed by
Duffin & Pudritz (2008). The AD treatment takes the single-fluid
approximation and uses a simple prescription to avoid the need
to track the ion density in this approximation. This prescription
essentially turns off AD at low (n � 103 cm−3) densities. For more
details, we refer the reader to Duffin & Pudritz (2008).

The single fluid approximation is not without its limitations.
Strictly speaking, it is only valid when the ions and the neutrals are
strongly coupled, a condition that depends not only on the degree
of ionization, but also on the scale (Kulsrud & Pearce 1969; Li,
McKee & Klein 2006). However, as discussed in the appendix,

under reasonable assumptions, this condition appears to be well
fulfilled within the range of physical conditions spanned by the
simulations and therefore we consider that the single fluid approxi-
mation is sufficient for the systems that interest us here.

The simulations also use a sink particle prescription (Bate,
Bonnell & Price 1995; Jappsen et al. 2005; Banerjee et al. 2009;
Federrath et al. 2010a). A sink particle is created in a cell if the
density there reaches a threshold density nsink = 2 × 105 cm−3 and
the cell is a local minimum of the gravitational potential. When a
cell forms a sink, the latter takes all the mass in excess of nsink in
the region where the density n satisfies n ≥ nsink. The sink particles
have an accretion radius of 0.065 pc, corresponding to roughly 1
Jeans length at nsink and T ∼ 20 K.

Concerning the heating and cooling, we use the same prescription
as used in Paper II and Banerjee et al. (2009), which is derived from
the fit by Koyama & Inutsuka (2002) to the results of the chem-
istry and cooling calculations of Koyama & Inutsuka (2000). This
prescription implies that the simulated ISM is thermally unstable in
the density range 1 � n � 10 cm−3, which, under thermal balance
between heating and cooling, corresponds to the temperature range
5000 � T � 500 K.

We model the convergence of WNM flows as the collision of
two large-scale cylindrical streams. Our setup is similar (though
not identical) to the non-magnetic SPH simulation of Paper II la-
belled L256�v0.17 (see their fig. 1). Each stream is 112 pc long
and has a radius of 32 pc. The streams collide at the plane x =
0 pc and are embedded in a (256 pc)3 simulation box, in which the
coordinates range from −128 to 128 pc. The numerical box is pe-
riodic, and the streams are completely contained within it, ending
at a distance of 16 pc from the x-boundaries. The resulting cloud
occupies a relatively small volume far from the boundaries, and so
it can interact freely with its diffuse environment, with relatively
little effect from the boundaries. Most importantly, the cloud is free
to grow by accretion from the WNM.

The cylindrical streams are given an initial, moderately super-
sonic inflow velocity vinf so that they collide at the centre of the
numerical box. The inflow speed of each stream is measured with
respect to the isothermal sound speed of 5.7 km s−1 that corresponds
to the initial temperature of 5000 K. This isothermal inflow Mach
number is denoted by Minf . We also add 10 per cent random veloc-
ity perturbations to the bulk stream speeds, in order to trigger the
instabilities that generate turbulence in the forming cloud (Vishniac
1994; Heitsch et al. 2005; Pittard et al. 2005; Paper I). The box is
initially filled with WNM at a uniform density of n = 1 cm−3 (ρ =
2.12 × 10−24 g cm−3, using a mean atomic weight of 1.27). At the
temperature of T = 5000 K for the warm phase, this implies that the
cold phase comes into hydrostatic thermal pressure balance with the
WNM at a density n ≈ 100 cm−3 (see fig. 2 of Paper I). However,
in our simulations, the density of the cold phase is higher, because
it is in balance with the sum of the thermal and the ram pressure
of the colliding streams (Paper I; Hennebelle et al. 2008; Banerjee
et al. 2009).

It is important to note that the simulations we describe here, as
those described in previous papers of the series, are presented as a
proof of concept only. By no means do we imply that the compres-
sion process responsible for the formation of the clouds needs to
have the specific geometry or parameter values we consider here,
nor be of a purely kinematic origin. For example, the converging
flows can be initiated by large-scale gravitational instabilities in the
gas itself (e.g. Elmegreen 1991; Kim et al. 2003; Kim & Ostriker
2007) or by the combined gaseous plus stellar potential well of a
spiral arm (e.g. Li et al. 2005).
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In particular, given the density we take for our initial conditions,
and the radius and extension of the inflows, our clouds never be-
come very massive, rarely exceeding 2 × 104 M�. This should not
be taken as a limitation of the mechanism itself, but rather as a con-
sequence of the particular initial conditions we have chosen. For
example, accumulation lengths approaching the kiloparsec scale
across spiral arms, in which the mean density can be larger than
what we have taken here by factors of several, can easily produce
much more massive clouds, via essentially the same mechanism.

3.2 Resolution issues

We start our simulations at a base resolution of 5123, that is, �x =
0.5 pc, at the convergence point of the flows. Additionally, we allow
the code to refine up to four additional levels, the highest of which
corresponds to a maximum resolution of 8192 grid points, or a grid
spacing of �x = 0.03 pc in each direction. For the dynamical mesh
refinement, we use a Jeans-type criterion [Truelove et al. 1997; see,
however, Federrath et al. (2011) for a more stringent criterion in the
presence of magnetic fields], requiring the local Jeans length to be
resolved with at least 10 grid cells while refining is active. Beyond
the last refinement level, the Jeans length begins to be more poorly
resolved, until a maximum allowed density of nsink = 2 × 105 cm−3

is reached, at which a sink particle is formed. We refer the reader
to Banerjee et al. (2009) for a discussion of the justification and
possible limitations of this choice with regards to thermal issues.
Here we discuss issues related to gravity and AD.

The value of nsink we use was chosen in order to reasonably ensure
that the material going into sink particles is actually gravitationally
bound (see also Federrath et al. 2010a). Indeed, Galván-Madrid et al.
(2007) found that, when cores are defined by means of a density
threshold, most cores defined by thresholds �105 cm−3 proceed to
collapse. Instead, when cores are defined by lower thresholds (say,
∼104 cm−3), a significant fraction of them is transient, rebound-
ing instead of collapsing (see also Ballesteros-Paredes, Klessen &
Vázquez-Semadeni 2003; Klessen et al. 2005; Vázquez-Semadeni
et al. 2005; Federrath et al. 2010a). Now, at n = nsink and T = 20 K,
the Jeans length is LJ = 0.066 pc and so we marginally fail to fulfill
the minimum Jeans criterion of resolving LJ with at least four cells.
However, this should not introduce any significant errors, as we are
not concerned here with the fragmentation of the core into multiple
stars, nor with their mass distribution, but only with the total mass
going into stars.

Another issue is that numerical diffusion can have an effect sim-
ilar to that of AD, as discussed by Klessen, Heitsch & Mac Low
(2000). Specifically, since the scale of the densest cores is a few grid
cells, numerical diffusion can cause the magnetic flux to diffuse out
of them, in a similar manner to AD. Indeed, we do occasionally ob-
serve the occurrence of gravitational collapse in magnetically sub-
critical, ideal MHD simulations, in which theoretically this should
not occur. Moreover, since nsink effectively constitutes an upper
limit to the density that can be reached by any cell in the simulation,
and since we have chosen a value of nsink that is of the same order
as nAD, the highest densities in the code will be of the order of
nAD, and numerical diffusion and AD will have comparable effects.
This limitation could be avoided by using an even larger number of
refinement levels but, since the simulations are already very numer-
ically expensive (∼200 000 CPU hours per run), this option is not
presently feasible. Alternatively, we could give up on satisfying the
Jeans criterion, simply raising nsink without increasing the allowed
number of refinement levels, an option that we may attempt else-
where. In any case, the effect of numerical diffusion will again be

to allow SF to occur more readily than if mediated by AD alone in
subcritical cases, and so our SFRs must again be considered upper
limits to the ones caused by AD alone.

3.3 The simulations

We consider five numerical simulations with three reasonably re-
alistic values of the initial, uniform magnetic field B0 of 2, 3 and
4 μG. These values span the observed range of values of the uniform
component of the Galactic magnetic field (Beck 2001). The initial
field is along the x-direction.

With respect to the cylindrical criticality criterion, equation (1),
these cases, respectively, correspond to μ/μcrit ≈ 1.36, 0.91 and
0.68, so that the first case is magnetically supercritical, while the
other two are subcritical. Note, however, that the subcritical cases
are only so because of the finite extent (256 pc) of the numerical
box. For B0 = 3 and 4 μG, lengths of 280 and 380 pc, respectively,
would be required to render the system magnetically critical. Also,
because the critical value of the mass-to-flux ratio depends on the
geometry of the considered configuration, individual (molecular)
clumps could be supercritical if compared to the slightly lower μcrit

of Mouschovias & Spitzer (1976) (see discussion in Section 4.2).
The supercritical case is considered only in the AD regime, as we

do not expect the absence of AD to make a significant difference
in this case. The B0 = 3 and 4 μG cases are considered both in
the ‘ideal’ and in the AD regimes to investigate the effect of AD
on the star-forming properties of magnetically subcritical clouds.
Note that we have written the word ‘ideal’ within quotation marks
because we cannot avoid the effect of numerical diffusion, even
if we turn-off the AD. Except for the value of the magnetic field
strength and whether AD is on or off, the simulations are otherwise
identical, all having an inflow speed of 13.9 km s−1, corresponding
to an isothermal Mach number Minf = 2.44 with respect to the
unperturbed, initial medium at T = 5000 K.

The runs are labelled mnemonically, so that the first two charac-
ters of the run’s name indicate the field strength in μG (e.g. ‘B3’
denotes B0 = 3 μG) and the last two characters denote whether the
simulation is in the ideal MHD case (‘MH’) or includes AD (‘AD’).
Table 1 summarizes the parameters used in each of the five runs.
The last column in this table gives the maximum time reached by
each simulation.

3.4 Considerations on measuring the mass-to-flux ratio

In what follows, we will be presenting measurements of the M2FR
in various regions of the simulations. However, this is not an

Table 1. Run parameters.

Run B0 AD μ/μcrit Final time
name (µG) (Myr)

B2-AD 2.0 On 1.36 31.4
B3-MH 3.0 Off 0.91 26.1
B3-AD 3.0 On 0.91 35.6
B4-MH 4.0 Off 0.68 48.4
B4-AD 4.0 On 0.68 59.2

Notes. Initial conditions and final simulation time of the runs
presented in this work. To calculate the magnetic criticality
of the entire system, we use the critical mass-to-flux ratio,
μcrit ≈ 0.16G−1/2, for a cylindrical geometry of Nakano &
Nakamura (1978).
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unambiguous task in general and in fact the M2FR can be mea-
sured using different procedures. In principle, the M2FR should be
measured along flux tubes, in order for the measurement to be di-
rectly representative of the dynamical effect of the field on the gas.
Thus, the measurement should be performed by tagging a bundle
of field lines and integrating the density along the path defined by
them. Unfortunately, such a measurement is extremely difficult to
perform, even in the simulations. A magnetic flux tube may lose
coherence if the field lines that compose it diverge from each other
at long distances. Also, the field near and within the cloud can be
significantly distorted, due both to the turbulence in the cloud and
to its gravitational contraction, even if the initial flow direction is
along the field lines.

Observationally, the M2FR is often estimated by measuring the
ratio of column density to magnetic field strength, N/B, along lines
of sight (LOSs) through the cloud of interest (e.g. Crutcher et al.
2003). However, this procedure actually intersects many different
flux tubes and thus gives only an approximation to the actual M2FR
of a single flux tube. As discussed by Crutcher (1999), if a cloud is
flattened, its plane is perpendicular to the magnetic field lines and
the system is observed at an angle θ , then the observed M2FR or,
equivalently, N/B, will be related to the actual one by (N/B)obs =
N/(B cos 2θ ). Alternatively, as is the case for the measurements we
present below, if the observation is performed along a LOS that is
perpendicular to the cloud, but the magnetic field is at an angle θ

with respect to the LOS and to the normal to the plane, then we have
that (N/B)obs = N/(Bcos θ ), with |θ | ≤ π/2. In either case, (N/B)obs

tends to overestimate the actual value and on some occasions very
large values may be artificially measured. This implies that a map
of (N/B)obs is actually a map of upper limits to the actual N/B.
This led Crutcher (1999) to introduce statistical correction factors
of 1/2–1/3 to the set of M2FR values obtained in the observations
he considered.

The equivalent procedure for the simulation data is to mea-
sure M2FR along LOSs through the clouds in our simulations.
We choose the LOSs to lie along the x-direction, since this is the
direction of the mean magnetic field and of the colliding WNM
streams, and thus it is the direction along which the column den-

sity is dynamically relevant. Specifically, we then measure the
M2FR as

μ = �

〈Bx〉 ≡
∫

L
ρ dx

L−1
∫

L
Bx dx

, (5)

where L is the stretch of the cloud along the x-direction. The path
L is chosen so as to contain the full extent of the cloud’s thick-
ness. This is done for every position on the plane of the cloud
to obtain maps of the M2FR over the cloud’s surface. We refer
to this as ‘the projection method’ of measuring the M2FR in the
simulations.

In order to appreciate the amount of distortion that may be present
in the field within the clouds, in Fig. 1 we show cross-sections
through the centre of runs B3-MH and B4-MH along the (x, y)
plane, showing the density field and the component of the magnetic
field on this plane. We observe that in run B3-MH the field lines are
not strongly bent, except at the sites of local collapse. This suggests
that the M2FRs we measure by the projection method should not
exceedingly overestimate the actual flux-tube value.

Nevertheless, a more definite way to estimate the amount of
overestimation of the M2FR incurred in by the projection method
is to use a different estimator. One such estimator is what we call
the ‘local method’, which consists in measuring the M2FR for
individual cells in the simulations, using the total magnetic field
strength. Specifically, we measure the gas mass M and read off the
total magnetic field strength B in a cell, in order to calculate the
M2FR as

μ ≈ M

B dx2
, (6)

where dx is the cell’s side length. This estimator gives a lower bound
to the M2FR in a magnetic flux tube, since it only counts the mass
in a single cell within that tube. This method has no observational
analogue but, by using the two methods, we expect to bracket the
true distribution of values of the M2FR, at least in a statistical
sense.

Figure 1. Cross-section through the simulation centre on the (x, y) plane, showing the density field on the plane and the component of the magnetic field on
this plane, for the B3-MH (left-hand panel) and B4-MH (right-hand panel) runs at t = 20 Myr. The initial flow collision occurred along the x-direction, which
is also the direction of the mean magnetic field.

C© 2011 The Authors, MNRAS 414, 2511–2527
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



MC evolution – IV. Magnetic Fields 2517

4 R ESULTS

4.1 Global evolution and star formation

We first direct our attention to the global evolution of the clouds. The
supercritical run B2-AD evolves very similarly to the non-magnetic
runs presented in Papers II and III, and the strongly supercritical runs
presented by Hennebelle et al. (2008) and Banerjee et al. (2009).
The cloud starts out as a thin cylindrical sheet that fragments and
thickens as time increases, until it becomes gravitationally unstable
and begins a global radial contraction at t ∼ 9 Myr. Shortly after
that (t ∼ 12 Myr) star formation begins in the densest fragments
(‘clumps’), while the fragments continue to fall towards the global
centre of mass, and by t ∼ 24 Myr a dense cloud of radius ∼10 pc
has formed there, which does not appear to contract further. This
lack of contraction, however, is only apparent, because in fact gas
is being consumed within the cloud by SF, and gas from the outside
continues to fall on to the cloud. Fig. 2 shows this run at t = 10, 20
and 30 Myr, illustrating its evolution.

On the other hand, the subcritical runs B3 and B4 undergo a pe-
riod of initial contraction followed by a rebound, eventually settling
into an oscillatory regime, which consists of alternating periods of
contraction and expansion around the magnetostatic equilibrium
state, as previously observed by Li & Nakamura (2004). These os-
cillations are best seen in animations of the simulations (not shown),
but they can also be observed in Figs 3 and 4, which show snap-

shots of the density field of runs AD-B3 and AD-B4 at various
times, respectively. In Fig. 3, it can be seen that the central density
is larger at the intermediate time shown in the middle panel than at
the final time shown in the right-hand panel. A similar behaviour
is seen in Fig. 4, where the central density is seen to be larger at
times t = 20.5 and 48 Myr than at t = 34 Myr. The B3 runs, having a
weaker mean field, contract for a longer time (up to t ∼ 25 Myr) and
reach a smaller size (radius R ∼ 20 pc) than the B4 runs (maximum
contraction at t ∼ 20 Myr, with radius R ∼ 25 pc). The B4 runs,
which were followed to longer times, clearly exhibit the oscillatory
regime, with a period of ∼30 Myr. The oscillations can also be seen
in Fig. 5, which we now discuss.

Fig. 5 shows, for all the runs, the evolution of the total dense gas
mass and total sink mass (top left-hand panel), the time-derivative
of the total sink mass, Ṁsinks (top right-hand panel), the total number
of sinks (bottom left-hand panel) and the SFE (bottom right-hand
panel), defined as

SFE(t) = Msinks(t)

Mdense(t) + Msinks(t)
, (7)

where Mdense is the mass of the gas with density n > 100 cm−3 and
Msinks is the total mass in sink particles. We take Ṁsinks as a proxy
for the SFR.

The evolution of the runs is seen to depend sensitively on the
magnetic field strength. For t � 7 Myr, the dense gas mass oscil-
lates by factors of 2–4 for the subcritical runs B3 and B4, in both the

Figure 2. Snapshots of run B2-AD showing the column density integrated along the central 20 pc of the simulation along the x-direction (perpendicular to the
colliding inflows), at times t = 10 Myr (left-hand panel), t = 20 Myr (middle panel) and t = 30 Myr (right-hand panel).

Figure 3. Snapshots of run B3-AD showing the column density integrated along the central 20 pc of the simulation along the x-direction (parallel to the
colliding inflows), at times t = 9.6 Myr (left-hand panel), t = 26 Myr (middle panel) and t = 29.7 Myr (right-hand panel). The simulation contracts until t =
26 Myr, after which it begins to rebound.
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Figure 4. Snapshots of run B4-AD showing the column density integrated along the central 20 pc of the simulation along the x-direction (parallel to the
colliding inflows), at times t = 9.6 Myr (top left-hand panel) t = 20.5 Myr (top right-hand panel), t = 34 Myr (bottom left-hand panel) and t = 48 Myr (bottom
right-hand panel). The simulation is seen to be undergoing global oscillations, with star formation (indicated by the dots) scarcely occurring only during the
times of maximum compression.

MHD and the AD cases, evidencing again the oscillatory regime in
which these runs engage. The maxima of the mass in the subcritical
runs coincide with the times of maximum compression. This may
be partially an artefact of the threshold density we have chosen for
defining the cold gas. Because the global magnetic support for the
cloud prevents it from contracting much, the gravitational binding
of the cloud is generally weak. This in turn means that the during
periods of maximum expansion, a significant fraction of the cloud,
although still in the cold phase, may be below the density threshold
of 100 cm−3 we have used for defining the cloud. Nevertheless, if
the mean density of the cloud varies, it is likely that the molecu-
lar fraction should actually vary as well, since molecular gas may
be dissociated if the cloud’s column density decreases sufficiently
(Glover et al. 2010). Thus, during periods of expansion, the cloud
may contain a lower molecular fraction. In addition, significant
amounts of gas may be in a transient state between the warm and
cold phases of the ISM (see the reviews by Vázquez-Semadeni et al.
2003; Hennebelle, Mac Low & Vazquez-Semadeni 2009; Vazquez-
Semadeni 2009, and references therein), being thus lost from the
cold, dense phase.

The supercritical run B2, on the other hand, does not exhibit
such strong oscillations in its dense gas mass content. Instead, the
dense gas mass increases rapidly at first. This is because this run
does not engage in any radial oscillations, but simply proceeds
directly to collapse. Interestingly, however, the dense gas mass later
becomes roughly stationary, although this stabilization is not due
to the cloud being in any sort of equilibrium, but rather to the fact
that it is forming stars at roughly the same rate as it accretes mass
from the WNM. Indeed, the red lines in the top left-hand panel, as
well as in the top right-hand panel, of Fig. 5 show that the total
sink mass in the simulation increases at a steady pace of roughly
400 M� Myr−1 during the time interval 20 < t < 30 Myr.

All runs, including those that are subcritical, form ‘stars’ (i.e. sink
particles), since, as discussed in Section 3.2, numerical diffusion
acts in a similar manner to AD. Nevertheless, when AD is included,
the total sink number and mass increase, and the dense gas mass
decreases, these effects being relatively more notable for the strong-
field runs B4. In general, as can be seen in the bottom left-hand
panel of Fig. 5, the total number of sinks in the B4 and B3 cases is
larger only by a few sinks when AD is included. This reinforces our
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Figure 5. Evolution of the total dense gas mass (n > 100 cm−3) and total sink mass (top left-hand panel), the time-derivative of the total sink mass Ṁsinks

(approximately giving the SFR; top right-hand panel), the total number of sink particles (bottom left-hand panel) and the SFE, defined by equation (7) (bottom
right-hand panel) in all simulations. The density range for the dense gas includes gas that would classify as ‘atomic’ as well as ‘molecular’. The graphs of
Ṁsinks have been smoothed by averaging over 16 neighbouring data points at each plotted value.

conclusion from Section 3.2 that numerical diffusion has an effect
of comparable strength to that of AD in our simulations, since AD is
able to induce the collapse of a few clumps in addition to those that
collapse because of numerical diffusion. In the case of the B3 runs,
the relative effect of AD is smaller because the same difference of
a few extra sink particles is a smaller fraction of the total number
of sinks produced.

Indeed, run B3-AD forms stars at a much higher rate than run
B4-AD, even though both are subcritical. The time-derivative of the
sink mass, Ṁsinks, in run B3-AD is roughly one order of magnitude
larger than that of run B4-AD, as seen in the top right-hand panel
of Fig. 5. In fact, the formation of sinks completely stops in run
B4-AD after t ≈ 27, as can be seen in the bottom left-hand panel
of this figure. The very slight increase in the sink mass observed
during this period (top left-hand panel, dash–dotted red line) is due
to the accretion on to the existing sink particles, rather than to the
formation of new particles. Run B2-AD, on the other hand, is seen
to have a larger SFR than run B3-AD, although only by factors of a
few. Also, it can be seen from all panels of Fig. 5 that the onset of
SF is delayed as B0 increases, but that the presence of AD shortens
this delay. It is important to note that all SF in the runs occurs after
the cloud has been assembled and its M2FR has reached a nearly
stationary value (t > 10 Myr).

To conclude this section, the bottom right-hand panel of Fig. 5
shows the evolution of the SFE, defined by equation (7), in all
simulations. Again, a continuous trend of increasing SFE with de-
creasing B0 is observed throughout our set of simulations. The

supercritical run B2-AD reaches an SFE of ∼35 per cent at t =
30 Myr. For comparison, at this time, run B3-AD has reached an
SFE of ∼25 per cent, while run B4-AD has reached an SFE of only
∼3 per cent. Although at face value these numbers would suggest
that run B4-AD compares best to the observed SFEs of GMCs (My-
ers et al. 1986; Evans et al. 2009), this conclusion may be premature,
since the additional effect of stellar feedback in reducing the SFE
(e.g. Paper III) is not taken into account in the present simulations.
We conclude that the SFR and SFE can depend sensitively on the
mean field strength, even for globally subcritical cases, and that the
marginally subcritical run has an SFE comparable to that of the
supercritical case.

4.2 Spatial and probability distribution
of the mass-to-flux ratio

A key piece of information needed to understand the behaviour of
simulations is the spatial distribution of the M2FR, as well as the
evolution of its global average value. In what follows, we discuss
the M2FR estimated using the projection method (cf. equation 5)
along LOSs parallel to the x-axis (i.e. perpendicular to the plane
of the cloud), taking L as the path −10 < x < 10 pc along the
direction of the inflows. We consider the M2FR normalized to the
critical value given by equation (1). Given the flattened geome-
try of our clouds, we consider that this is a more realistic value
of the critical M2FR than the other commonly encountered criti-
cal value of (6π2 G)−1/2 ≈ 0.13G−1/2, which holds for spherical
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Figure 6. Snapshots of the mass-to-flux ratio μ, normalized to the critical value, for runs B2-AD (top left-hand panel), B3-AD (top middle panel), B4-AD (top
right-hand panel), B3-MH (bottom middle panel) and B4-MH (bottom right-hand panel) at time t = 20 Myr. The M2FR is calculated as N/BLOS, as indicated
by equation (5), integrated over a 20-pc path centred at the mid-plane of the simulation along the direction of the inflows. This path completely encloses
the cloud along the x-direction in all simulations. Note that there exist vast numbers of supercritical filaments intermixed with subcritical patches. The latter,
however, occupy most of the volume. The dots indicate the positions of sink particles. Note also that the density structure is similar at large scales but different
in the small-scale detail between the cases with and without AD.

geometry (e.g. Shu 1992). Fig. 6 shows snapshots of the normalized
M2FR for runs B2-AD, B3-AD and B4-AD in the top row, and of
runs B3-MH and B4-MH in the bottom row, all at t = 20 Myr. In
all cases, the spatial distribution of the M2FR is seen to fluctuate
strongly.

Comparing the MH and AD cases, it is interesting to note that the
spatial structure of the M2FR is similar in the large-scale features,
but differs in the shape and precise location of the fine, small-scale
ones. This is a manifestation of the system being chaotic, so that
the subtle variations in the magnetic forces at the densest structures
induced by AD are sufficient to change the details in the topology
of the gas. Presumably, for sufficiently long times, the differences
in structure will reach even the largest scales. On the other hand,
simple visual inspection of the images is not enough to discern any
trend of systematically larger values of the M2FR in the presence
of AD. To quantify this, we show in Fig. 7 histograms of the M2FR.
The histograms are computed for all LOSs within a circular region
centred at (y, z) = (0, 0), with a 20-pc radius. From these, we see
that the inclusion of AD causes the production of a small excess
of high-M2FR cells in comparison with the non-AD cases and that
this effect is most notable in the strong-field (B4) case, in which
the maximum value of the M2FR is over a factor of 2 larger than
in the non-AD case. Instead, in the B3 case, the excess is marginal,
suggesting that when the system is very close to being supercritical,
numerical diffusion dominates over AD. This result suggests that
the relative importance of AD and numerical diffusion depends on

the mean field strength, an issue that deserves further exploration,
but which is out of the scope of this paper.

Returning to Fig. 6, and focusing on the top row of images, which
show the variation of the M2FR’s spatial distribution as a function
of the magnetic field strength, several points are worth noting. First,
as mentioned above, the M2FR is seen to be highly inhomogeneous
in all three runs. This is also illustrated in Fig. 8, whose top left-
hand panel shows histograms of the M2FR in the three runs at the
same time as that shown in Fig. 6. The top right-hand and bottom
left-hand panels of Fig. 8 show the corresponding cumulative dis-
tributions, respectively, weighted by volume and by mass. Finally,
the bottom right-hand panel shows the mass-weighted cumulative
distribution for high-column density (N > 1021 cm−2) LOSs only.
From these figures, it is seen that μ fluctuates by over one order
of magnitude in the subcritical runs and by two in the supercritical
one. Part of this variability, especially the highest values of μ, may
be an artefact of the measurement procedure, as discussed in Sec-
tion 3.4. Nevertheless, significant actual fluctuations of the M2FR
on the plane are expected, since the cloud is turbulent and clumpy,
due to the combined action of the thermal, Kelvin–Helmholtz and
non-linear thin-shell (Vishniac 1994) instabilities (Heitsch et al.
2006; Vázquez-Semadeni et al. 2006). In the ideal MHD case, seg-
ments of magnetic flux tubes must have M2FRs smaller than that
of the whole tube at all times. However, in the presence of diffusion
(numerical and/or ambipolar), Lagrangian regions where the den-
sity is large enough can lose magnetic flux and reach M2FR values
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Figure 7. Left-hand panel: comparison of the M2FR histograms at t = 20 Myr, for cases with (dotted lines) and without (solid lines) AD, for runs B3 (left-hand
panel) and B4 (right-hand panel). The M2FR is estimated through the ‘projection method’, as indicated by equation (5) over a circular region centred at the
point (y, z) = (0, 0), and of radius 20 pc.

larger than the initial value for the tube. Thus, local clumps may
become magnetically supercritical even within the globally subcrit-
ical simulations, as in the low-mass mode of the ‘standard model’
of magnetically regulated SF (Shu et al. 1987; Mouschovias 1991),
and turbulent extensions of it (Nakamura & Li 2005). According
to the top right-hand and bottom left-hand panels of Fig. 8, the
fraction of the volume (mass) that is in locally supercritical regions
increases from ∼3 per cent (∼10 per cent) in run B4-AD to ∼17 per
cent (∼58 per cent) in run B2-AD. In summary, there exist plenty
of mechanisms that contribute to the development of a highly inho-
mogeneous spatial distribution of the M2FR, both in the ideal MHD
and in the diffusive cases. This is consistent with recent observa-
tional determinations suggesting that the magnetic field strength is
randomly distributed in MCs, with only its maximum values scaling
as a power law of the density (Crutcher et al. 2010).

Secondly, we note from the top left-hand panel of Fig. 8 that the
M2FR histogram for the supercritical run B2-AD is wider than the
histograms of either of the subcritical runs, having a larger frac-
tion of both sub- and super-critical LOSs. This can be understood
as a consequence of the combined action of AD enhanced by tur-
bulence and mass conservation. For weaker magnetic fields, the
Alfvénic Mach number is larger, implying larger density fluctua-
tions, in which AD is enhanced (Fatuzzo & Adams 2002; Heitsch
et al. 2004; Li & Nakamura 2004), thus allowing the formation of
more strongly supercritical clumps, which are denser and contain
more mass. In turn, this implies a stronger evacuation of the remain-
ing regions, which are those left with smaller masses, and therefore
with lower values of the M2FR.

Thirdly, from the images in Fig. 6, in which the dots indicate the
positions of the sink particles, we see that not all of the regions that
appear supercritical according to the projection method proceed to
form stars. This may be either because they are truly supercritical
albeit locally Jeans stable or because they are actually magnetically
subcritical and only appear supercritical due to the projection effect.
Therefore, it is important to determine the degree to which the M2FR
is overestimated by the projection method. We defer a detailed
energy-balance study of the clumps and cores to a future paper, but
here we can take a first step towards addressing this problem by

comparing the maps and histograms of the M2FR obtained with
the projection method to those obtained with the ‘local method’
(cf. Section 3.4). Fig. 9 shows histograms of the M2FR using this
method for the middle plane of each simulation at t = 20 Myr.
Here we do not integrate over any LOS in order to show the largest
excursions that the M2FR can exhibit in local cells. As mentioned
in Section 3.4, the local method gives lower limits to the actual
M2FR in the flux tube to which the local cell belongs.

The μ-histograms using the local method exhibit a number of in-
teresting features. First, it is seen that no supercritical cells are seen
in both of the subcritical runs. At least for run B3-AD this is neces-
sarily an underestimation of the actual M2FR, since sink formation
has already occurred in this run at the time at which the histograms
are made (t = 20 Myr). Secondly, the supercritical run B2-AD ex-
hibits a small but finite fraction of supercritical cells, even with
this M2FR-underestimating method, indicative of the abundance of
supercritical regions in this case. Thirdly, the histograms are seen
to peak at μ/μcrit ∼ 10−2, while those obtained with the projec-
tion method peak at μ/μcrit ∼ 0.6. Thus, the difference between the
two methods is so large that the true distribution remains relatively
unconstrained between them.

A final criterion that can be used to determine the accuracy of the
observational-like projection method is to compare the supercriti-
cal mass fraction obtained with this method with the SFE, which is
in fact a measure of the mass fraction that has become simultane-
ously Jeans unstable and magnetically supercritical over the cloud’s
history. Unfortunately, in principle, this relationship is not trivial,
because the supercritical mass fraction is an instantaneous quantity
in the simulation, while the stellar mass in the cloud is a time-
integrated quantity. However, if an approximately stationary state is
established in which fresh gas is continuously added to the clouds
by the accretion from the WNM, replenishing the gas used up to
form stars (Paper III), then the (stationary) SFE may be considered
as a lower limit to the (stationary) supercritical mass fraction. The
notion that the SFE is a lower limit of the supercritical mass frac-
tion allows for the possibility that the efficiency of the conversion
of gas to stars is still less than unity even within the supercritical,
Jeans-unstable gas.
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Figure 8. Top left-hand panel: histograms of the M2FR, estimated through the projection method, for runs B2-AD (solid line), B3-AD (dotted line) and
B4-AD (dashed line) at t = 20 Myr in all cases. Top right-hand panel: cumulative probability distributions for the same three runs, with the same line coding.
Bottom left-hand panel: density-weighted probability distribution, giving the fraction of mass below the indicated value of μ. Bottom right-hand panel: same
as the bottom left-hand panel but for high column density LOSs (N > 1021 cm−2) only.

With this in mind, we plot in Fig. 10 the SFE versus the super-
critical mass fraction in the three runs B2-AD, B3-AD and B4-AD,
as read off from Figs 5 (bottom right-hand panel) and 8 (bottom
left-hand panel). The plotted value of the SFE is the mean between
the extremes taken by the SFE over the time-interval after which
the initial rapid growth has ended, and the error bars denote these
extremes. The dotted line indicates a least-squares fit to the data
points, given by

SFE ≈ −0.034 + 0.54

(
Msup

M

)
. (8)

Of course, this fit is totally empirical and is provided only as a guide-
line for the trend of the SFE with the supercritical mass fraction.
In particular, it is meaningless below the value of the supercritical
mass fraction that produces an SFE of zero.

We observe that, in all three cases, the SFE is a few to several times
smaller than the supercritical mass fraction. Under the assumption
of stationarity, this then suggests that the supercritical mass fraction
obtained through the projection method does not differ from the
real one by more than factors of a few, on average.

A final point worth noting is that, as shown in the bottom right-
hand panel of Fig. 8, the supercritical mass fraction in the high
column density gas is significantly larger in all three runs than the
supercritical mass fraction for gas at all column densities (bottom
left-hand panel). This reinforces the scenario that the M2FR is
determined mainly by the column density acquired by the individual
regions in the clouds by the accretion of gas along field lines and
less importantly by the local effect of ambipolar (and/or numerical)
diffusion.

We conclude from this section that the projection method gives
estimates of the M2FR that are within less than a factor of a few
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Figure 9. Left-hand panel: histograms of the M2FR at t = 20 Myr, estimated
through the ‘local method’, using equation (6) for each cell of the middle
plane, x = 0, of the three simulations, B2-AD (solid line), B3-AD (dotted
line) and B4-AD (dashed line). These histograms can be compared to those
using the projection method, shown in the left-hand panel of Fig. 8.

Figure 10. SFE versus the supercritical mass fraction in runs B2-AD, B3-
AD and B4-AD, with the SFE read off from the bottom right-hand panel
of Fig. 5 and the supercritical mass fraction read off from the bottom left-
hand panel of Fig. 8. The plotted value of the SFE is the mean between
the extremes taken by the SFE over the time-interval after which the initial
rapid growth has ended (18 � t ≤ 26 Myr for B2-AD, 25 � t ≤ 36 Myr for
B3-AD and 30 � t ≤ 58 Myr for B4-AD) and the error bars denote these
extremes. The dotted line indicates a least-squares fit to the data points,
given by equation (8).

from the actual distribution and that the dominant mechanism that
determines the local M2FR is the accumulation of gas along field
lines.

4.3 Evolution of the global M2FR

We proceed now to discuss the evolution of the mean M2FR of the
clouds in the simulations and its range of variability. Fig. 11 shows
the evolution of the mean and the 3σ range of the normalized M2FR,
μ/μcrit, for runs B2-AD (top panels), B3-AD (middle panels) and
B4-AD (bottom panels). The computation of the M2FR is performed
using the projection method with the same path-length and over the
same circular region as those used for the histograms of Fig. 8. The
left-hand panels of Fig. 11 show the mean and 3σ range computed

for the set of all LOSs contained in the circular region, while the
right-hand panels show these quantities computed only for the set
of LOSs for which the column density is larger than 1021 cm−2.

These plots illustrate the fact, discussed in Section 2, that the
M2FR of a cloud is an evolving quantity, which first increases as
the cloud gathers material from the WNM inflows that assemble
it. At the inflow speed of 13.9 km s−1, the 112-pc-long inflows are
entirely incorporated into the cloud in approximately 8 Myr, which
indeed corresponds to the time-scale at which the M2FR of all
three clouds is seen to have reached a roughly stationary value.
This value is seen to be larger for weaker mean field, as expected.
However, a second increase in the M2FR is seen to occur after this
first stabilization. This can be attributed to the fact that the inflows
drag part of the surrounding, initially static WNM along with them,
as they leave a partial vacuum behind them. This dragged material
flows at lower speeds and reaches the cloud at later times (for further
discussion, see Paper II) .

It is interesting that 〈μ/μcrit〉 for the set of all LOSs is smaller
than unity at all times for all three runs, even the supercritical
one, B2-AD. This is likely a consequence of mass conservation
again (cf. Section 4.2). Because these statistics are weighted by
area over the circular region, the supercritical regions, which are
denser, occupy a smaller fraction of the surface area of the cloud,
and therefore the area-weighted average M2FR is smaller than unity
in all cases. However, the averages for the high-column density
LOSs, shown in the right-hand panels of Fig. 11, are larger than
unity for all times in run B2-AD and for nearly 20 Myr in run
B3-AD. Instead, for run B4-AD, even this high-N average barely
reaches values larger than unity, and only over less than 10 Myr.
Finally, in all cases, the high-N average M2FR decreases at late
times, a phenomenon that can be attributed to the high-M2FR gas
consumption by star formation.

In general, we conclude from Sections 4.2 and 4.3 that the M2FR
is a time-dependent function of time as a cloud is built up by con-
verging WNM streams, whose average generally increases with
time, although in the high-N regions the average later decays due
to consumption by SF. Spatially, the M2FR exhibits large fluctua-
tions, whose 3σ range spans over one order of magnitude even in
the strong-field cases. It is the high-M2FR tail of the distribution
that is responsible for star formation.

4.4 Buoyancy of subcritical regions

An unexpected feature we have observed in these simulations is
that the subcritical and supercritical regions do not maintain their
relative positions fixed throughout the evolution of the simulations.
Instead, the subcritical regions exhibit ‘buoyancy’, so that they tend
to separate themselves from the global contraction of the clouds,
even in the globally subcritical cases that rebound at later times.
This is most clearly seen in animations of the simulations, but can
be seen in Fig. 12, where we show that, as time proceeds, the
subcritical regions become segregated from the supercritical ones,
moving outwards, and developing cometary shapes, with their heads
pointing outwards as well.

This behaviour can be described as a macroscopic-scale ana-
logue of the very process of AD. In the latter, the neutrals sink
into the gravitational potential well, percolating through the ions,
which remain attached to the magnetic field lines. In our case, the
supercritical regions sink into the potential well, while the subcriti-
cal ones remain in the outer parts of the well, being held up by the
magnetic tension. The process is also reminiscent of the interchange
mode of the Parker instability (Hughes & Cattaneo 1987).
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Figure 11. Evolution of the M2FR μ, normalized to the critical value, for runs B2-AD (top panel), B3-AD (middle panel) and B4-Ad (bottom panel), computed
using the projection method over the same circular region as in Fig. 8. The solid lines show the mean value of μ/μcrit and the dotted lines delimit the 3σ range
of μ, where the mean and the standard deviation are calculated for log μ. The left-hand panels show these quantities computed for all LOSs parallel to the axis
of a cylindrical volume of length and diameter both equal to 20 pc, centred in the centre of the numerical box. The right-hand panels show the same quantities
computed only for LOSs having column densities N > 1021 cm−2. In all cases, the LOSs extend over the interval −10 < x < 10 pc.

Figure 12. Snapshots of the mass-to-flux ratio μ, normalized to the critical value, for run B4-AD at times t = 20 (left-hand panel), 22 (middle panel) and 24
(right-hand panel) Myr. Note the evolution of the subcritical regions, shown in green, which develop cometary shapes pointing outwards from the centre of the
image.
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5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have presented a study of the formation and evolu-
tion of GMCs by the convergence of WNM streams, or ‘inflows’, in
the presence of magnetic fields and AD. As described by many
groups (see the review by Vazquez-Semadeni 2011, and refer-
ences therein), this process involves the transition of the atomic
gas from the warm, diffuse phase to the cold, dense one, allowing
the fresh cold gas to quickly become self-gravitating and begin to
contract.

We first reviewed the general evolution of the gas and the M2FR
expected in this type of systems, noting that, as originally pointed
out by Hartmann et al. (2001), the M2FR of the cloud is expected
to increase in time, so that the cloud becomes molecular, self-
gravitating and magnetically supercritical at roughly the same time,
provided that there is enough mass in the converging streams to
render them supercritical. This condition requires that, for solar
neighbourhood conditions, the inflows extend beyond the accumu-
lation length given by equation (2). Flows that do not extend to such
distances are expected to form subcritical clouds which, however,
may be predominantly atomic. This suggests that, in particular, the
converging flows induced by the spiral-arm potential wells, which
have typical size scales ∼1 kpc, will in general induce the formation
of magnetically supercritical MCs. On the other hand, converging
flows induced by smaller-scale inflows, such as supernova shocks,
or simply turbulent random motions in the gas, may lead to the
formation of subcritical, partially atomic clouds.

We then discussed the difficulties inherent to measuring the
M2FR, even under controlled conditions such as those of the simu-
lations. Other than measuring the M2FR along magnetic flux tubes,
which is impossible to perform observationally, and perhaps even
numerically, we considered two methods for measuring the M2FR:
the ‘projection’ method, which mimics the observational procedure
of measuring the ratio of column density to field strength along the
LOS and which gives an upper limit to the actual M2FR, and the
‘local’ method, which simply measures the mass and magnetic field
in a grid cell in the simulation and estimates the M2FR as given by
equation (6), giving a lower limit to the M2FR.

We next studied the evolution of the M2FR and the star-forming
properties of clouds formed by both sub- and super-critical inflows.
We concluded that in our simulations the effect of numerical dif-
fusion is at a comparable level to that of AD. We found that the
subcritical cases do undergo an initial phase of contraction, fol-
lowed by a re-expansion, settling into an oscillatory regime. The
supercritical case, on the other hand, proceeds directly to collapse,
as expected. All cases form stars, although at greatly different rates,
producing what appears more a continuum of star-forming regimes
as the mean magnetic field strength is varied, rather than a bimodal
regime of high SFR in supercritical cases and low SFR in subcrit-
ical ones, as was the case in the ‘standard’ model of magnetically
regulated SF (Shu et al. 1987; Mouschovias 1991). In particular, the
marginally subcritical case B3-AD, through the action of diffusion,
reached SFEs comparable to those of the supercritical case B2-AD.
The onset of SF is delayed by up to 15 Myr in the most strongly
magnetized cases we studied, although this delay is reduced by a
few to several Myr when AD is included (when it is not, all SF
activity is due to numerical diffusion). The SFEs observed in our
simulations range from ∼35 per cent for run B2-AD to ∼3 per
cent for run B4-AD. However, since stellar feedback, which would
reduce the SFE even further, is not included in these simulations,
it is likely that the efficiency of run B4-AD is actually too low in
comparison with observed values.

We then investigated the spatial and statistical distribution of the
M2FR, finding that this is a highly fluctuating quantity. The frag-
mentation of the cloud by the combined action of thermal, non-linear
thin-shell and gravitational instabilities leads to the formation of
clumps of high-density, high-M2FR and of low-density, low-M2FR
patches. The fluctuations in the M2FR we observed span between
one-and-a-half and two orders of magnitude, the distribution being
wider for weaker magnetizations. These results are qualitatively
consistent with recent observational determinations suggesting that
the magnetic field strength in MCs is strongly fluctuating (Crutcher
et al. 2010).

Next, we discussed the evolution of the mean M2FR and its 3σ

range in the various simulations, finding that in general it initially
increases as expected by the assembly process of the cloud, to later
reach a roughly stationary regime. The M2FR of the high-column-
density LOSs, on the other hand, tends to decrease at later times,
due to the consumption of gas in this regime by SF.

Finally, we reported the occurrence of an unexpected effect: the
buoyancy of the low-M2FR regions with respect to the high-M2FR
ones, through a process that appears as the macroscopic-scale ana-
logue of AD: the high-M2FR regions sink deeper into the potential
well of the cloud, while the low-M2FR ones remain supported by
the field in the outer parts of the cloud, so that the clouds evolve
towards a segregated state with a low M2FR in their periphery and
a high M2FR towards their centre, even on scales much larger than,
and densities much lower than, those directly affected by AD. The
process also bears resemblance with the interchange mode of the
Parker instability.
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APPEN D IX A : A PPLICABILITY OF
THE SIN GLE-FLUID A PPROX IMATION

Li et al. (2006) give a criterion for determining whether the strong
coupling condition is satisfied in a partially ionized gas and therefore
the single fluid approximation is valid. The condition reads

M2
A,i � RAD(lvi ), (A1)

where MA,i = v/vA,i is the ion Alfvén Mach number, with v the
flow velocity, vi the ion speed and vA,i the ion Alfvén speed, lvi the
length-scale at which vi is measured and

RAD(l) = 4πγρiρnlv

B2
(A2)

is the AD Reynolds number, with ρ i and ρn the ion and neutral
mass density, respectively, and γ = 〈wσ in〉/(mn + mi) the ion–

neutral drag coefficient. Here, mn and mi are the mean neutral and
ion masses, respectively, and 〈wσ in〉 is the ion–neutral collision
rate. Manipulating these expressions, and assuming that vi ≈ v, one
finds that

fAD ≡ M2
A,i

RAD(lvi )
≈ v

lvi

mn + mi

ρn〈wσin〉 . (A3)

We can evaluate this expression near the resolution limit in two
regimes that span the range of conditions in the simulations: the
WNM and a dense MC core.

For the dense core, we take as an example the core W3 (main),
using the data from McKee, Li & Klein (2010) and Crutcher (1999),
for which the neutral number density is n ≈ 105.5 cm−3, li = 0.12 pc
and v ≈ 3.0 km s−1. We further take mn = 2.36mH and mi = 29mH.
For these parameters, equation (A3) gives f AD ≈ 2.0 × 10−8. For
the WNM, we take the conditions of the initial medium in our
simulations, with n = 1 cm−3, v = 5.7 km s−1 (the sound speed in
our WNM), li = 0.5 pc, mn = 1.27mH and mi = 1mH. We obtain
f AD ≈ 4 × 10−4. These numbers indicate that the strong coupling
approximation is excellent within the range of physical conditions
spanned by the simulations.
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