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ABSTRACT

We investigate the collapse of non-spherical substructures, such as sheets and filaments, which are ubiquitous in
molecular clouds. Such non-spherical substructures collapse homologously in their interiors but are influenced by
an edge effect that causes their edges to be preferentially accelerated. We analytically compute the homologous
collapse timescales of the interiors of uniform-density, self-gravitating filaments and find that the homologous
collapse timescale scales linearly with the aspect ratio. The characteristic timescale for an edge-driven collapse
mode in a filament, however, is shown to have a square-root dependence on the aspect ratio. For both filaments and
circular sheets, we find that selective edge acceleration becomes more important with increasing aspect ratio. In
general, we find that lower dimensional objects and objects with larger aspect ratios have longer collapse timescales.
We show that estimates for star formation rates, based upon gas densities, can be overestimated by an order of
magnitude if the geometry of a cloud is not taken into account.
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1. INTRODUCTION

Molecular clouds are observed to have complex geometries
and contain non-spherical substructures, including sheets and
filaments (e.g., Schneider & Elmegreen 1979; Bally et al. 1987;
Lada et al. 1999, 2007; Hartmann 2002; Johnstone et al. 2003;
Myers 2009; Molinari et al. 2010; André et al. 2010). Recent
Herschel observations, in particular, have revealed a plethora of
filamentary structures within star-forming regions (e.g., André
et al. 2010). Filamentary structures are seen on both molecular
cloud scales as well as on the small scales of individual protostel-
lar envelopes (e.g., André et al. 2010; Tobin et al. 2010; Hacar &
Tafalla 2011). Such filamentary structures are also commonly
predicted by star formation models and formed in molecular
cloud simulations, although their formation mechanisms vary
depending upon which model is used. Supersonic hydrody-
namic and magnetohydrodynamic turbulence, gravo-turbulent
models, gravitational amplification of anisotropies, flow col-
lisions, and global gravitational accelerations have all been
shown to be capable of forming filamentary structures (e.g., Lin
et al. 1965; Klessen & Burkert 2001; Padoan et al. 2001, 2007;
Burkert & Hartmann 2004; Hartmann & Burkert 2007; Bate
2009; Vazquez-Semadeni et al. 2010, 2011).

The collapse modes of spherical and infinite, non-spherical
structures have been thoroughly investigated in earlier works
(e.g., Ledoux 1951; Stoddlkiewicz 1963; Ostriker 1964; Larson
1969, 1985; Penston 1969; Shu 1977; Inutsuka & Miyama 1992,
1997; Nakamura et al. 1993; Fiege & Pudritz 2000; Curry 2000;
Myers 2009), but the collapse properties of finite, non-spherical
structures have only been considered recently and are much less
understood, owing to their inherent global and local instabilities,
as well as the critical importance of initial conditions (e.g.,
Bastien 1983; Bastien et al. 1991; Burkert & Hartmann 2004,
Hsu et al. 2010; Pon et al. 2011; Toala et al. 2012).

Simulations show that non-spherical structures collapse on
longer timescales than equal-density spherical objects (e.g.,
Burkert & Hartmann 2004; Vazquez-Semadeni et al. 2007) and

that non-spherical structures are prone to gravitational focusing,
whereby strong density enhancements form at the edges of
these objects (e.g., Bastien 1983; Burkert & Hartmann 2004;
Hartmann & Burkert 2007; Heitsch et al. 2008; Hsu et al. 2010).
The longer collapse timescales of non-spherical objects, as well
as the presence of selective edge acceleration, have also been
analytically demonstrated (Burkert & Hartmann 2004; Pon et al.
2011; Toala et al. 2012).

While uniform-density spheres collapse homologously (e.g.,
Binney & Tremaine 1987), an edge effect in circular sheets
and filaments produces a second mode through which these
lower dimensional clouds can collapse, wherein the collapse
is controlled by an infalling edge sweeping up material. It
has not been clear, however, whether the edge of a lower
dimensional structure will obtain sufficient momentum to be
able to sweep up the interior, so that the collapse timescale is
controlled by the selective edge acceleration, or whether the
roughly homologously collapsing interior will slow down the
collapsing edge enough such that the collapse timescale will
approach the homologous collapse timescale of the interior.

Recently, Toal4 et al. (2012) showed that the free-fall times
of circular sheet-like (“2D” collapse) and filamentary clouds
(“1D” collapse) depend strongly on the geometry of the cloud
and, for both cases, are larger than that of a uniform sphere with
the same volume density by a factor proportional to the square
root of the initial aspect ratio, A. For circular sheets, the aspect
ratiois given by A = R(0)/H, R(0) being a sheet’s initial radius
and H its thickness, and for filaments, the aspect ratio is defined
as A = Z(0)/R, where Z(0) is a filament’s initial half-length
and R is the radius. On the other hand, Pon et al. (2011) find
that the collapse timescale of an infinitely thin filament varies
linearly with the aspect ratio, rather than with the square root of
the aspect ratio.

Toala et al. (2012) obtain their analytic expressions for the
free-fall times by integrating, over time, the accelerations at
the edges of a circular sheet and cylinder under two different
assumptions. In the first case, Toald et al. (2012) assume that the
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mass of the cloud remains constant and that the density of the
cloud remains spatially uniform over the entire collapse. This
is equivalent to assuming that the collapse is homologous. In
their second case, Toala et al. (2012) assume that the density
of the cloud remains spatially and temporally constant. For
this second case, it is assumed that the collapse is dominated
by the insweeping edge. These approximations are used to
make the problem analytically tractable. Toald et al. (2012)
argue that these two approximations represent the extreme cases,
where the collapse timescale is determined solely from either
the homologously collapsing interior or from the selective edge
acceleration, such that the actual collapse timescale should
lie somewhere between the two derived timescales.

In Section 2.1, we calculate the collapse timescales of a
uniform-density cylinder, under the assumption that the cylinder
collapses homologously along its major axis. We use the first-
order approximation to the acceleration that is valid in the
interior of the cylinder, rather than using the acceleration at
the edge, as done by Toald et al. (2012). In Section 2.2,
we calculate the collapse timescale for a filament, under the
approximation that the interior density remains spatially and
temporally constant, by treating the gravitational force per unit
mass on the edge as a rate of momentum transfer per unit mass,
rather than as an acceleration, as done by Toald et al. (2012).
We thus take into account the effect of low velocity mass being
accumulated by the edge. We compare our collapse timescales
to previously obtained results in Section 2.3. In Section 3, we
compare the relative importance of the homologous collapse
mode and edge-driven collapse mode in filaments and circular
sheets. We also discuss in Section 3 whether the collapse
timescales of filaments and circular sheets have the same
dependence upon the aspect ratio, as found by Toald et al. (2012),
as well as discussing the implications of our collapse timescales.
Finally, we summarize our findings in Section 4.

2. COLLAPSE TIMESCALES OF
UNIFORM-DENSITY CYLINDERS

While circular sheets and cylinders are formally the same type
of object, we differentiate between the two based upon which
axis is longer and along which axis collapse is occurring. We
refer to objects with radii larger than their heights, and collapsing
radially, as finite, circular sheets and refer to objects with heights
larger than their radii, and collapsing along their long, vertical
axis, as cylinders. Thus, finite circular sheets represent “2D”
sheets while cylinders represent “1D” filaments.

2.1. Homologous Collapse

The free-fall collapse timescale of a sphere is a well-studied
problem (e.g., Binney & Tremaine 1987) and the homologous
collapse timescale of the interior of a finite circular sheet is
calculated by Toald et al. (2012, erratum in preparation). For
reference, we present derivations of the collapse timescales of
these two objects in Appendices A and B.

We examine a cylinder with a total mass M, a total length
along the major axis of 2Z(¢), and a volume density p(t) =
M /[2nR*Z(t)], where R is the time-independent radius. We
denote the distance of a mass element along the major axis from
the center of the cylinder as z, the initial length of the cylinder
as 2Z(0), and the initial volume density as p(0). The aspect ratio
of the cylinder is defined as A = Z(0)/R. The magnitude of
the acceleration along the major axis of the cylinder, for points
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within the cylinder, is given by Burkert & Hartmann (2004) as

a(z, 1) =2 Gp(t){2z + VR? + (Z(1) — 2)?
—VR2+(Z(t) + 22} (D)

In a homologous collapse, the density remains spatially
uniform, although not temporally constant, and all regions have
the same collapse timescale. For a uniform-density object to
collapse homologously, the acceleration across the object at any
given time must be a linear function of the radial distance to the
collapse center. Equation (1) is not a linear function of z and
thus the collapse of a filament is not homologous. Burkert &
Hartmann (2004) find that the first-order approximation to the
acceleration,® under the condition that |Z(f) — z| > R, is

2z
Z(1)? — zz} ’ @

a(z, 1) = 1 GR*p(t) [
While Equation (2) is also not a linear function of z, for the
interior of a filament, where z2 < Z(t)?, the acceleration can
be approximated by

a(z,t) ~ T GR?p(1) [ 2 (3)

7]
z? ]

Since Equation (3) is a linear function of z, the assumption
of homologous collapse is reasonable for the interior portion of
a cylinder. As shown in Appendix B, this is also the case for the
interior of a circular sheet. While strictly Equation (3) should
only be used to find accelerations of the interior of a cylinder,
the collapse timescales in a homologous collapse are constant
across the entire object, and thus evaluating this acceleration at
the edge will yield the collapse timescale of the interior. In this
paper, the ends of the major axis of a cylinder are referred to as
the edges of the cylinder.

Equation (3) can be rewritten in terms of the total mass of a
cylinder. Evaluating this new expression at the edge, where z =
Z(1), yields

duy(t) GM
. Z@)?*

where vy(#) is the velocity at the edge at time ¢. This differential
equation has the same dependences on mass and length as in the
spherical and circular sheet cases presented in Appendices A
and B. Equation (4) can be solved for the cylinder collapse

timescale, tip,
2
TID = 4/ 3 A 13p, ()

where t3p is the classical free-fall timescale of a uniform-density
sphere with the same volume density as the cylinder, as derived
in Appendix A. Thus, the homologous collapse timescale for a
cylinder is linearly proportional to the aspect ratio.

“4)

2.2. Cylindrical Edge Collapse: A Constant
Density Approximation

The exact solution for the accelerations of a cylinder,
Equation (1), shows that nonlinear terms become significant
toward edges, such that the edges are preferentially given more

6 Equation (11) of Burkert & Hartmann (2004) gives another form of this
first-order approximation, but is missing a negative sign from the first term in
the brackets. In our notation, Burkert & Hartmann’s (2004) Equation (11)

should read as |a(z, )| ~ 7 G p(1) R [—(Z(t) + )~ +(Z(t) — 2)71].
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momentum than would be expected for homologous collapse. If
edges are given sufficient momentum, the collapse of a cylinder
may be dominated by the edges sweeping up interior material,
such that the collapse occurs on a timescale faster than the ho-
mologous collapse timescale calculated in Section 2.1.

We now calculate the collapse timescale of a cylinder under
the approximation that the material inside the edge stays at a
constant density and does not move inward until contacted by
the insweeping edge. We assume that the only acceleration in
the system is due to the gravitational force on the edge caused
by the interior material and we assume that the edge sweeps up
all material it contacts, such that the mass of the edge grows
as it falls inward. We do not consider the gravitational force on
one edge of the filament due to the other edge. For a cylinder
with an aspect ratio of 10, the gravitational force due to the
second edge only becomes equal to the force due to the uniform-
density, interior material once the cylinder has shrunk to roughly
one tenth of its original size. Thus, the collapse timescale is
relatively unaffected by the presence of a mass concentration
at the other edge. As argued by Toald et al. (2012), the true
collapse timescale should lie between the homologous collapse
approximation and this constant density approximation.

As given by Pon et al. (2011) and Toald et al. (2012), the
gravitational force per unit mass on the major axis and at the
edge of a cylinder of length 2Z, radius R, and uniform-density
pis

g=2nGpRZt)+R — VR*+4Z()]. ©6)

Under the assumption that Z(#) > R, the square root can be
expanded and the force per unit mass, to lowest order, becomes

g~2nGpR. @)

Note that the force per unit mass is independent of the length of
the cylinder. This approximation to the acceleration at the end
of a cylinder is within 5% of the exact acceleration given by
Equation (6) for aspect ratios above 5 and within 10% for an
aspect ratio of 3.

By equating the gravitational force acting on the edge with
the total rate of change of momentum of the edge, we find, in
Appendix C, that the length of the cylinder at a time ¢ is given
by

gt?
Z(t)~ Z(0) — o (®)
where Z(0) is the initial length of the cylinder.

Equation (8) shows that the effect of the edge of a cylinder
accreting low velocity mass is only to lower the effective
acceleration by a factor of three below the acceleration that
would be obtained by directly equating the gravitational force
per unit mass to the acceleration of the edge. Substituting in
the lowest order approximation to the force per unit mass at the
edge yields a collapse timescale of

6Z(0) .
Ip=.|—t
b 2mMGpR
32A
Tip =4/ —5 T3Ds (10)
P

where, as before, A is the original aspect ratio and t3p is the
classical free-fall timescale of a uniform-density sphere with
the same volume density as the cylinder.

PON ET AL.
2.3. Comparison to Previous Works

Pon et al. (2011) examine the accelerations of an infinitely
thin, but finitely long, filament and find that the acceleration
becomes infinite at the edge of such a filament. Because
of this infinite acceleration, Pon et al. (2011) derive a first-
order approximation to the accelerations of their infinitely thin
filament that is identical to the first-order approximation to the
accelerations of a finite radius cylinder derived in Section 2 as
Equation (3).

We find that the homologous collapse timescale for a cylinder
is ~0.82A tr3p. This differs significantly from the timescale
found by Toala et al. (2012) for the homologous collapse of
a cylinder, ~0.92/A 73p. We find that the collapse timescale
for a homologously collapsing cylinder scales linearly with the
aspect ratio, while Toald et al. (2012) find a /A relationship.
The cause of the difference between these two results is
that Toald et al. (2012) use the acceleration at the edge,
while we use a first-order approximation to the acceleration
in the interior of a cylinder. Thus, we probe the collapse
timescales of the interior of a cylinder while Toald et al.
(2012) are sensitive to the collapse dynamics at the edge of a
cylinder.

We find that if the collapse of a cylinder is dominated by
the preferential edge acceleration, such that the interior remains
static and at a constant density until swept up by the edge,

the collapse timescale is \/32A /72 t3p. Toal4 et al. (2012) find
that the collapse timescale of a cylinder, under this constant
density approximation, is v/32A/(372) 13p. Since we show in
Section 2.2 that the effect of accounting for the additional mass
being accreted by the edge of the cylinder is to decrease the
effective acceleration by a factor of three, it is unsurprising that
the Toala et al. (2012) collapse timescale is exactly a factor of
/3 smaller than what we derive.

3. DISCUSSION

Figure 1 shows the exact accelerations, from Equation (1),
of uniform-density cylinders with various aspect ratios. The
aspect ratios shown range from 2.5 to 20 by factors of two. The
units of acceleration in Figure 1 are 2AG/Z, where A = 1 R?p,
such that the linear approximations to the accelerations of all of
the cylinders are given by the same solid line. The momentum
deposited per unit length, per unit time of a cylinder can be
found by multiplying the acceleration by a constant factor and
thus is not shown in Figure 1.

The exact accelerations of aradially collapsing, infinitely thin,
uniform-density, circular sheet with mass M, radius R(¢), and
surface density X(¢), are given by Equation (B1) in Appendix B,
while the first-order approximations to these accelerations are
given by Equation (B2). Figure 2 shows these exact and first-
order accelerations of a circular sheet in units of 4GX. Figure 2
also shows the total momentum deposited per unit angle, per
unit radial length, per unit time of a circular sheet, as a
function of enclosed mass, for these two different acceleration
equations, in units of 4GXR. The momentum deposited per unit
angle, per unit radial length, per unit time, is related to the
acceleration via

p(r,t) =a(r, t)r. (11D

Figures 1 and 2 show that, for the interiors of uniform-density
cylinders and circular sheets, the accelerations can be well
approximated by linear functions of distance. A comparison
of Equations (1) and (B1) to Equations (3) and (B2) shows
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Figure 1. Radial accelerations, in units of 2AG/Z, for uniform-density cylinders with different aspect ratios. The dotted, dashed, dash-dotted, and dash-triple-dotted
lines show the exact radial accelerations for cylinders with aspect ratios of 2.5, 5, 10, and 20, respectively. The solid line shows the first-order approximation to the
accelerations for all four cylinders. Note how the assumption of homologous collapse becomes worse as the aspect ratio increases.
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Figure 2. Exact radial accelerations, in units of 4GZ, for an infinitely thin, uniform-density, circular sheet are shown as the solid line. The first-order approximation
to these accelerations is shown as the dashed line. The dotted and dash-dotted lines show the momentum imparted per unit angle, per unit radial length, per unit time,
in units of 4G Z?R, based upon the exact and approximate accelerations, respectively. The lower x-axis shows the distance along the sheet as a fraction of the total
radius and the upper x-axis gives the fraction of the total mass of the sheet within that radius.

that this linear approximation is valid to within a factor of
two for z < 0.7Z in a uniform-density cylinder with an
aspect ratio of 10 and for r < 0.94 R in a uniform-density
circular sheet. Near the edges of cylinders and circular sheets,
nonlinear terms become dominant and the accelerations become
significantly larger than the first-order approximations. This
suggests that the collapse of cylinders and circular sheets can be
described as the combination of two separate collapse modes.
The interiors of these objects collapse roughly homologously
while the outer regions are dominated by an edge-driven collapse
mode, wherein momentum is preferentially deposited toward the
edges of the objects and collapse proceeds as the edges sweep up
slower moving interior gas. This preferential edge acceleration
has been previously identified in simulations and analytic work

(e.g., Burkert & Hartmann 2004; Hartmann & Burkert 2007;
Pon et al. 2011).

We associate the collapse timescales of Sections 2.1 and 2.2
with the two different collapse modes. We consider the ho-
mologous collapse timescale derived in Section 2.1 to be the
characteristic collapse timescale of the interior of a cylinder and
the constant density collapse timescale derived in Section 2.2
to be the characteristic collapse timescale for the edge-driven
collapse mode in a cylinder.

The different dependences on aspect ratio, for a cylinder’s
collapse timescale, as derived in Sections 2.1 and 2.2, are thus
explainable as being due to the different calculations probing
different collapse modes. Our results suggest that the interior
of a cylinder will collapse on a timescale proportional to A
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while the edge-driven collapse timescale will depend on +/A.
Furthermore, this suggests that the relative importance of the
preferential edge acceleration will also depend upon the aspect
ratio, with the edge collapse mode being more important in
cylinders with larger aspect ratios. Such a trend is clearly seen
in Figure 1.

3.1. Relative Importance of Preferential Edge
Acceleration versus Homologous Collapse

While the actual collapse of a cylinder or a circular sheet
will be a combination of the homologous collapse mode and
the edge-driven collapse mode, it is possible that one of these
modes will be dominant. If the edge-driven collapse mode is
dominant, such that the majority of the total momentum is
injected at the edge, the collapse will proceed primarily by
the edge falling in and sweeping up material. Alternatively,
if the majority of the momentum imparted to an object is due to
the linear term of the acceleration, the infalling edge will have
insufficient momentum to significantly accelerate the material it
sweeps up and the collapse will proceed roughly homologously,
albeit with a slight density enhancement at the edge.

The total rate of momentum imparted to a circular sheet can
be calculated by integrating the product of Equation (B1) and
the mass element over the entire sheet or by multiplying the
total area under the dashed curve in Figure 2 by 27. The total
momentum imparted to a cylinder can be found by integrating
Equation (1) over the entire cylinder and then multiplying by
the total mass of the cylinder, or by multiplying the area under
the appropriate curve in Figure 1 by the mass of the cylinder.

For an infinitely thin circular sheet, the total rate of momen-
tum imparted to the sheet is finite, whereas for an infinitely
thin filament, the total rate of momentum imparted is infinite.
Thus, there is a maximum limit to the fractional contribution
of the nonlinear components of the acceleration to the total
momentum imparted to a circular sheet. For an infinitely thin
circular sheet, almost twice as much momentum is imparted to
the sheet due to the linear term in the acceleration than due to
the nonlinear terms. Since the importance of preferential edge
acceleration shrinks with decreasing aspect ratio, the linear ac-
celeration term will dominate the momentum imparted for all
circular sheets with finite height. Thus, it is expected that circu-
lar sheets should collapse roughly homologously.

Burkert & Hartmann (2004) simulate the collapse of uniform-
density circular sheets and find that the collapse timescales of
the sheets are only 20% shorter than the homologous collapse
timescale that we calculate. This shortening of the timescale
by 20% is almost exactly what would be expected given that
nonlinear terms contribute an additional 50% to the momentum
of infinitely thin circular sheets. Burkert & Hartmann (2004)
also note that the interiors of their simulated circular sheets
undergo significant collapse before encountering the edge, as
would be expected only if the homologous collapse mode is
significant in these circular sheets.

For uniform-density cylinders with aspect ratios larger than
five, the nonlinear components of the acceleration impart more
momentum to the cylinders than the linear component. The
nonlinear components contribute relatively more momentum
as the aspect ratio increases, and by an aspect ratio of 10,
the nonlinear components contribute almost twice as much
momentum as the linear component. Since realistic filaments
have aspect ratios up to 60 (André et al. 2010), preferential
edge acceleration may control the evolution of many observed
filaments.

PON ET AL.
3.2. Interpretation

Equations (Al), (B4), and (4) are the differential equations
describing the collapse of spheres, circular sheets, and cylinders,
respectively, under the assumption of homologous collapse, and
all three equations are of the form

d Vo GM

T (12)

where x is the collapsing dimension. Because of the similarity
in these differential equations, the collapse timescales of the
three different objects are all of the form

72y’

T~ (13)
When written in terms of the total mass of the cloud, the collapse
timescales for all three objects are independent of the initial
aspect ratio. This lack of dependence upon the aspect ratio is
not trivial, as dimensional arguments place no constraints on the
proportionality of the unitless aspect ratio.

The dependence of the homologous collapse timescales, of
spheres, circular sheets, and cylinders, on the aspect ratio,
when written in terms of the initial density, comes solely
from the conversion between total mass and initial density.
Thus, the proportionality of the aspect ratio naturally changes
with the changing dimensionality of the initial cloud. Each
reduction of dimension produces an additional /A dependence
in the collapse timescale. Since, by definition, A > 1, the “2D”
and “1D” collapse timescales are larger than that of a sphere
with the same volume density. Similarly, objects of the same
dimensionality but with larger aspect ratios also take longer
to collapse. The increasing importance of an edge collapse
mode with increasing aspect ratio, in cylindrical structures,
will partially reduce the difference in collapse times between
cylinders with different aspect ratios, as well as the difference
between circular sheets and cylinders. Such an edge-driven
collapse, however, will still occur on timescales longer than
the corresponding spherical collapse timescale due to the v/A
dependence that the edge-driven collapse timescale has.

3.3. Implications

As discussed by Toald et al. (2012), the spherical free-fall
timescale, T3p, is often used to calculate collapse timescales, and
thus star formation rates, from observed gas densities, regardless
of geometry. Since recent observations reveal a multitude of non-
spherical substructures within molecular clouds (e.g., Myers
2009; Molinari et al. 2010; André et al. 2010), using the
spherical free-fall timescale underestimates collapse timescales
and overestimates star formation rates. In particular, attempts to
predict the total Galactic star formation rate from the observed
gas properties of the Milky Way, by dividing the total molecular
mass of the Galactic interstellar medium by the spherical free-
fall time corresponding to the mean density and temperature of
the molecular gas, produce values of at least 30Mg yr~! (e.g.,
Zuckerman & Palmer 1974; Zuckerman & Evans 1974), while
more direct, observational determinations of the Galactic star
formation rate, based upon emission from and number counts
of young, massive stars, yield star formation rates closer to a
few solar masses per year (e.g., Smith et al. 1978; Diehl et al.
2006; Misiriotis et al. 2006; Murray & Rahman 2010; Robitaille
& Whitney 2010).
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For a filamentary structure with an aspect ratio of 60, cor-
responding to the upper limit of observed filamentary aspect
ratios (André et al. 2010), the homologous collapse timescale
is a factor of almost 50 slower than the corresponding spher-
ical free-fall time. The edge-driven collapse timescale, while
faster than the homologous collapse timescale, is still almost
15 times slower than the spherical free-fall time. For a more
typical aspect ratio of 10, both the homologous and edge-driven
collapse timescales of such a filament would be roughly seven
times slower than the spherical free-fall timescale. Thus, geo-
metric considerations can account for a considerable portion of
the discrepancy between observed and predicted galactic star
formation rates, although they are unlikely to account for the
entire discrepancy. For a further discussion on the implications
of “1D” and “2D” collapsing objects having longer timescales,
please see Pon et al. (2011) and Toala et al. (2012).

The two collapse modes studied in this paper, the homologous
and edge-driven collapse modes, are both global collapse modes.
That is, these modes cause a cloud to collapse into one central
object. Density perturbations within molecular clouds will
introduce local collapse modes and these local collapse modes
must operate on timescales less than the global collapse modes,
as molecular clouds are observed to fragment into clusters of
stars, rather than collapsing to form million solar mass stars.

Pon et al. (2011) examine the conditions under which local
collapse modes are significantly faster than the homologous
global collapse mode in spheres, circular sheets, and cylinders.
They find that strong perturbations are required for local collapse
modes to be significantly faster in circular sheets and spheres,
but small (~10%) density perturbations in a cylinder can
collapse significantly (three times) faster than the entire cylinder
if the total length of the cylinder is greater than 10 times
the length of the perturbation. Since thermal motions support
perturbations smaller than the Jeans length and the radial length
scale of a radially supported cylinder is also approximately the
Jeans length (Stodélkiewicz 1963; Ostriker 1964), Pon et al.
(2011) find that local collapse modes are most effective in high
aspect ratio cylinders. Unfortunately, it is in these large aspect
ratio cylinders that the preferential edge acceleration produces
significantly faster collapse timescales than the homologous
collapse timescale. Thus, cylinders, as well as circular sheets
and spheres, may require strong density perturbations or large-
scale support mechanisms for local collapse modes to be
significantly faster than global collapse modes. Note, however,
that preferential edge acceleration naturally produces strong
density perturbations along the edges of circular sheets and
filaments, as seen in simulations of both circular sheets (e.g.,
Burkert & Hartmann 2004) and filaments (e.g., Bastien 1983).

3.4. Caveats

Realistic cloud structures are not perfect uniform-density
spheres, circular sheets, nor filaments, and deviations from such
perfect, symmetrical shapes will influence the collapse prop-
erties of the clouds. For instance, Burkert & Hartmann (2004)
show, via simulations, that deviations from axisymmetry pro-
duce gravitational focusing, whereby local density enhance-
ments are readily formed.

For the timescales calculated in this paper, it is assumed that
clouds have sharp density boundaries. More realistic clouds
are likely to taper off slowly at the edges. The introduction of
such density tapers at the edges of clouds is known to reduce
the significance of the preferential edge acceleration, although
such a taper has to be quite large in comparison to the size
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of the constant density interior before the preferential edge
acceleration is significantly weakened (Nelson & Papaloizou
1993; Li 2001; Pon et al. 2011). As such, preferential edge
acceleration may be slightly weaker in realistic clouds than
assumed here, but edge-driven collapse modes should still be
important for reasonably elongated filaments.

Star-forming regions are observed to be turbulent and this
effect can provide support against gravitational collapse (e.g.,
Hennebelle & Chabrier 2011; Padoan & Nordlund 2011). Ther-
mal pressure, rotation, and magnetic fields can also significantly
alter the collapse of a cloud. Thermal pressure, however, is only
effective at supporting objects on scales smaller than the Jeans
length, whereas observed filaments are often much longer than
the Jeans length (e.g., André et al. 2010). Burkert & Hartmann
(2004) also point out that if solid body rotation were supporting
the interior of non-spherical clouds the edge would still collapse
due to the preferential edge acceleration, and if the exterior were
rotationally supported, the central regions would be moving too
rapidly and would expand. Finally, magnetic fields are only ca-
pable of providing support perpendicular to the field lines, and
thus may not be capable of supporting filaments and circular
sheets depending upon the orientation of the magnetic field.
Models of filament formation predict that magnetic fields can
be either parallel or perpendicular to the long axis of a filament
(Nagai et al. 1998) and observational studies have found mag-
netic fields that are both perpendicular and parallel to the long
axes of filamentary structures (Goodman et al. 1990; Houde
et al. 2004; Vallée & Fiege 2006, 2007; Schneider et al. 2010;
Chapman et al. 2011; Sugitani et al. 2011).

The influence of collapse along the short axis of any cloud
has not been considered because thermal support will generally
be more effective at preventing collapse along shorter axes. In
deriving the collapse timescales, the assumption that A > 1 has
been utilized. While this assumption clearly breaks down at late
times in the collapse, the collapse timescale should be primarily
dependent upon the early stages of the collapse when infall
velocities are still relatively small. Local collapse modes are also
expected at later times in the collapse when, as a consequence
of the density increase caused by the global collapse, the short
dimension becomes larger than the Jeans length.

The cases considered in this paper, pure homologous collapse
and pure edge-driven collapse, are idealized collapse modes and
are likely to bracket the true mode of collapse.

4. SUMMARY AND CONCLUSIONS

We have calculated homologous collapse timescales for the
interiors of uniform-density cylinders, based upon a first-order
approximation to the accelerations along the major axis of the
cylinders. We have also calculated the collapse timescale for
a uniform-density cylinder, under the approximation that the
central density remains constant, by associating the gravitational
force per unit mass on the edge with the rate of change of
the momentum per unit mass of the edge. With these results,
in conjunction with the homologous collapse timescales of
uniform-density circular sheets calculated by Toal4 et al. (2012,
erratum in preparation) and reproduced in Appendix B, we
find that

1. Two separate collapse modes are present within circular
sheets and filaments. The interiors of these clouds collapse
roughly homologously while the edges are preferentially
given more momentum, such that the edges sweep up
material and form density enhancements. The effect of
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preferential edge acceleration has been previously noted
in simulations and analytic studies (e.g., Bastien 1983;
Burkert & Hartmann 2004; Hartmann & Burkert 2007;
Vazquez-Semadeni et al. 2007; Heitsch et al. 2008; Hsu
et al. 2010; Pon et al. 2011; Toala et al. 2012).

2. The homologous collapse mode is dominant in circular
sheets while the edge-driven collapse mode dominates the
momentum imparted to filaments with aspect ratios larger
than 5.

3. The homologous collapse timescales for the interiors of
filamentary clouds scale linearly with A = Z(0)/R, where
2Z(0) is the total initial length and R is the radius of the
filamentary cloud. The edge-driven collapse mode (constant
density collapse) of filamentary clouds produces collapse
timescales that are proportional to /A. Thus, preferential
edge acceleration is most important for clouds with large
aspect ratios.

4. Regardless of dimensionality, the acceleration, under the
assumption of homologous collapse, can be expressed as

d Vo GM

dt x2’
with x as the collapsing dimension (e.g., radius R for
spherical and sheet-like clouds, and the semimajor axis Z
for a cylinder). Thus, each reduction of dimension produces
an additional +/A dependence in the homologous collapse
time.

5. In general, lower dimensional objects (“1D” and “2D”)
and objects with higher aspect ratios have larger collapse
timescales than for a sphere with the same volume density.

6. Estimates of star formation rates from gas densities can
be overestimated by an order of magnitude, for realistic
filamentary aspect ratios, if the geometry of a cloud is not
taken into account.
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APPENDIX A
HOMOLOGOUS COLLAPSE TIMESCALE OF A SPHERE

The free-fall collapse timescale of a uniform-density sphere
is a well-studied problem (e.g., Binney & Tremaine 1987) and it
is known that the collapse proceeds homologously. For a sphere
with a volume density of p, the acceleration at a distance r from
the center of the sphere, a(r) = 47 Gpr/3, is linearly dependent
upon the radial distance, as required for homologous collapse.

The governing differential equation for the collapse of a
sphere is

dvy(t) GM

dt — R()?

(AD)
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where vy(¢) is the velocity of the edge at time ¢, R(¢) is the total
radius of the sphere at time 7, and M = 4w p(0)R(0)?/3 is the
total mass of the sphere, with p(0) being the volume density
at t = 0. This differential equation is well known and can be
solved for the classical free-fall timescale of a sphere, 73p,

_ 3n A2
3p = m (A2)

APPENDIX B

HOMOLOGOUS COLLAPSE TIMESCALE
OF A CIRCULAR SHEET

The homologous collapse timescale of a circular sheet is
derived in Toald et al. (2012, erratum in preparation) and the
general derivation is reproduced here. We consider a circular
sheet with mass M, radius R(¢), and surface density X(¢),
such that the initial radius and surface density are R(0) and
(0) = M/[m R(0)*], respectively. Burkert & Hartmann (2004)
show that for an infinitesimally thin circular sheet, the radial
acceleration at a distance r from the center of the sheet is

. R(1) r r
a(r, t)—4GZ(l)T K m —FE m s (Bl)

where K is the first complete elliptic integral and E is the second
complete elliptic integral. They note that the acceleration of such
an infinitely thin sheet is infinite at the edge, where r = R(),
but that in a sheet with finite thickness, the acceleration at the
edge is finite.

Due to this infinite acceleration at the edge, it is common
(e.g., Burkert & Hartmann 2004; Pon et al. 2011; Toala et al.
2012) to use a first-order approximation to the acceleration,

r

a(r,t) ~ TtGX(t) RO

(B2)

The terms excluded from the above equation are higher order
terms of r/R(t), such that the above equation is not valid at, or
near, the edge of a circular sheet, but is reasonably accurate for
most points within the interior of a circular sheet.

While we use Equation (B2) in the following derivation, we
assume that the sheet has a constant, finite height of H that is
much smaller than the initial radius R(0), such that we can define
the aspect ratio as A = R(0)/ H. We thus rewrite Equation (B2)
as

’

R(@)’

where p(t) = X(¢)/H is the volume density of the sheet at
time ¢.

It is critical to note that the acceleration in Equation (B3) is
a linear function of the radius and, thus, this equation exactly
describes a homologous collapse. That is, to first order, the
accelerations of an infinitely thin, circular sheet will cause the
sheet to collapse homologously. It is only the higher order terms
of r/R that cause a deviation from homologous collapse.

Denoting the velocity at the edge as vg(¢) and using the
relation between the mass of a circular sheet and its volume
density, M = mR3p/ A, Equation (B3) can be rewritten as

a(r,t) ~ tGp(t)H (B3)

dv() ~ GM
dt R()?’

(B4)
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Equation (B4) can be solved to show that the collapse timescale
of a circular sheet, top, is

1A
Top ~ = T (B5)

Thus, under the assumption of homologous collapse, the
timescale for collapse of a circular sheet scales with \/Z

APPENDIX C
UNIFORM-DENSITY COLLAPSING FILAMENT

Assuming that the only force on the edge of a cylinder is
from the uniform-density interior material, this gravitational
force from the interior must be equal to the rate of change of the
momentum of the edge. From Newton’s second law,

m(t)g = v(r)d’zt“) " m(r)dfl(t’),

(CI)

where v(t) is the velocity of the edge and m(¢) is the mass
of the edge. We define the sign of the velocity such that v(z)
is positive for inward motions. See also Section 2.2 for other
variable definitions. Since the mass at the edge increases as
material is swept up,

dm(t) o

2
P TR?p v(1). (C2)

Thus, the differential equation governing the motion of the edge

is
dv(t)
dt
For the remainder of this derivation, we drop the functional
dependence on 7 from our notation. Rewriting the derivative of
the velocity yields

m(t)g = 7R p v(1)? +m(t) (C3)

d dvd
dv _ dvdm 4
dt dm dt
dv dv
— = —aR%v, C5
dr dm P ©)
2.2 dv .,
mg=nR pv +md—7rR PV, (Co)
m
dv —v? g
—v=—+ . (C7h
dm m  aR%*p

This is an Abel differential equation of the second kind. It
can be solved with the aid of the substitution

v=—, (C8)

m

dv_dwl w

a2 9

dm dmm m? ©9)
dw w I (C10)
dmm?>  wR2p’

2 —w(t =0)? S —m(t =0)>

w” — w( ) :(m m( ') g 1)

2 3R p
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At the beginning of the collapse, m = 0 and v = 0, such that

w(t = 0) = 0. We have also used the fact that the gravitational

force per unit mass, to lowest order, is constant over the collapse.
The edge velocity, as a function of the edge mass, is thus

) 2mg

= —. C12
37 R%p (€12)

Since the mass at the edge is equal to the mass swept up,

m = (Z(0) — Z)nR?p, (C13)
_dZ _ [2(Z(0) — Z)g’ (Cl4)
dt 3
_ |6z ~ 2)7 C15)
g
g’
Z=2Z0) — = (C16)
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