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ABSTRACT
Motivated by recent numerical simulations of molecular cloud (MC) evolution, in which
the clouds engage in global gravitational contraction, and local collapse events culminate
significantly earlier than the global collapse, we investigate the growth of density perturbations
embedded in a collapsing background, to which we refer as an inverse Hubble flow (IHF). We
use the standard procedure for the growth of perturbations in a universe that first expands (the
usual Hubble flow) and then recollapses (the IHF). We find that linear density perturbations
immersed in an IHF grow faster than perturbations evolving in a static background (the
standard Jeans analysis). A fundamental distinction between the two regimes is that, in the
Jeans case, the time τ nl for a density fluctuation to become non-linear increases without limit
as its initial value approaches zero, while in the IHF case τ nl ≤ τ ff always, where τ ff is the free-
fall time of the background density. We suggest that this effect, although moderate, implies
that small-scale density fluctuations embedded in globally collapsing clouds must collapse
earlier than their parent cloud, regardless of whether the initial amplitude of the fluctuations is
moderate or strongly non-linear, thus allowing the classical mechanism of Hoyle fragmentation
to operate in multi-Jeans-mass MCs. More fundamentally, our results show that, contrary to
the standard paradigm that fluctuations of all scales grow at the same rate in the linear regime,
the hierarchical nesting of the fluctuations of different scales does affect their growth even in
the linear stage.

Key words: stars: formation – ISM: clouds – ISM: structure – galaxies: formation – large-
scale structure of Universe.

1 IN T RO D U C T I O N

The fragmentation of a local overdensity (a ‘cloud’) in a continuum
is one of the fundamental problems in astrophysics, as it underlies
the formation of galaxy and star clusters. Over sixty years ago,
Hoyle (1953) proposed a model in which stars form in a fragmen-
tation process during the collapse of a nearly isothermal spherical
cloud, based on the fact that the Jeans mass in an isothermal medium
(or, more generally, in any polytropic medium with polytropic ex-
ponent γ < 4/3; e.g. Chandrasekhar 1961) decreases as the den-
sity increases. Hoyle’s mechanism was subsequently laid on firmer
mathematical grounds by Hunter (1962, 1964). This point of view
prevailed until it was realized by Tohline (1980) that the small-scale
density fluctuations within a cloud whose initial mass is close to
the Jeans mass could not grow faster than the cloud itself, because
when thermal pressure is non-negligible, it acts to slow down the
collapse of smaller scales compared to the larger scales. Since then,
it has been generally accepted that molecular clouds (MCs) do not
fragment by a Hoyle-like mechanism, and other mechanisms, such
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as turbulent fragmentation (e.g. Mac Low & Klessen 2004) might
be at work.

However, recent numerical studies suggest that cold, dense clouds
in the interstellar medium (ISM) can form by intermediate- to
large-scale converging flows in the warm atomic medium, which
are capable of coherently triggering a phase transition to the cold
atomic phase over large regions in the gas (e.g. Ballesteros-Paredes,
Hartmann & Vázquez-Semadeni 1999; Hennebelle & Pérault 1999;
Walder & Folini 2000; Hartmann, Ballesteros-Paredes & Bergin
2001; Koyama & Inutsuka 2002; Audit & Hennebelle 2005; Heitsch
et al. 2005, 2006; Vázquez-Semadeni et al. 2006). This large-scale
coherence implies that the clouds can form already containing a
large number of Jeans masses (Vázquez-Semadeni et al. 2007).
Therefore, the crucial assumption made by Tohline (1980), that the
cloud’s mass is near the Jeans mass, is not necessarily fulfilled in
collapsing MCs, thus making it relevant to again consider the col-
lapse of small-scale fluctuations within a larger-scale object which
is itself collapsing, for the fragmentation of MCs.

The analysis of the collapse of density structures embedded
within larger ones that are also undergoing collapse may benefit
from the tools developed for studying the evolution of linear fluctu-
ations in the cosmological flow of dark matter. In this case, it is
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standard to consider a pressureless, expanding Hubble flow, in
which small-amplitude density enhancements at a certain scale L0

begin to retard their expansion, until they eventually begin to col-
lapse, at which point, they are said to ‘separate’ from the global
expansion (e.g. Kolb & Turner 1990). It is well known that, in
this case, the collapse of these regions proceeds more slowly (as
a power-law in time) than that of a fluctuation in a non-expanding
medium (which grows exponentially), because the global expan-
sion counteracts the global collapse. Now, if being embedded in
an expanding (regular Hubble) flow reduces the growth rate of the
large-scale fluctuation, it is natural to expect that being embedded in
a contracting (inverse Hubble) flow should enhance the growth rate
of the fluctuations located inside the collapsing large-scale structure.
This could be thought of as an inescapable form of non-linearity, in
the sense that the growth of one mode is linked to that of another
mode, since the growth of a small-scale fluctuation depends on its
being located within a larger-scale one, an effect that will be active
even when the small-scale fluctuation has a small (linear) amplitude.

In this paper, we investigate this possibility, using a linear pertur-
bation analysis to study the growth of density fluctuations located
inside a larger-scale spherical fluctuation undergoing free-fall col-
lapse as well. Because, as discussed above, the MC case may be
adequately described by means of a nearly pressureless regime,
while the dark matter is intrinsically so, we consider a pressureless
regime here. The solution for the density perturbation growth is then
compared to that of the classical Jeans’ case for a static background,
to show that the initially linear density perturbations grow at a faster
rate inside a collapsing spherical cloud.

2 TH E G OV E R N I N G E QUAT I O N S

2.1 The contracting background

In what follows, we will consider the collapse of a spherical cloud,
embedded in a medium that is itself collapsing. Although MCs in
particular are known to strongly depart from a spherical symme-
try (e.g. Bally et al. 1987; Gutermuth et al. 2008; Myers 2009;
Men’shchikov et al. 2010; Molinari et al. 2010), and the collapse
times for non-spherical clouds are known to be longer than the stan-
dard free-fall time, which assumes this geometry (Pon et al. 2012;
Toalá, Vázquez-Semadeni & Gómez 2012), the study of the spher-
ical case will allow us to compare with this standard time-scale.

The collapse of a spherical cloud can be described using the
standard machinery applied for a contracting Universe, noting that
the physical differences lie in the definition of the Hubble parameter
H(t). In both cases this can be written as H (t) = ȧ(t)/a(t), where
a(t) is a suitable scale factor. For the cosmological case, a is simply
the well-known scale factor, while for a spherical MC, a can be
defined as a(t) = R(t)/R0, where R0 is the initial cloud’s radius. In
both the MC and the cosmological cases, a(t) satisfies Friedmann’s
equation (see Appendix A for the MC case)(

ȧ

a

)2

+ k

a2
= 8

3
πGρ. (1)

The case of a collapsing spherical cloud is mathematically equiv-
alent to the second half of the evolution of a closed (k > 0), matter-
dominated universe that first expands to a certain maximum scale
factor and then recollapses. So, in what follows, we will consider
that the origin of the time coordinate is the point of maximum ex-
pansion of such closed Universe. Note that, during this contracting
phase, ȧ < 0.

2.2 The linear analysis

The standard linear stability analysis for the growth of density fluc-
tuations in the case of an expanding (or contracting) universe starts
from the linearized equations of continuity and momentum conser-
vation, together with the Poisson equation, which read (e.g. Kolb &
Turner 1990)

∂ρ1

∂t
+ 3ȧ

a
ρ1 + ȧ

a
(r · ∇)ρ1 + ρ0∇ · v1 = 0

∂v1

∂t
+ ȧ

a
v1 + ȧ

a
(r · ∇)v1 + v2

s

ρ0
∇ρ1 + ∇ϕ1 = 0

∇2ϕ1 = 4πGρ1, (2)

where vs denotes the sound speed, r denotes the position vector,
and the variables (generically denoted x) have been decomposed as
x = x0 + x1, the subindex ‘0’ denoting the unperturbed quantities,
and the subindex ‘1’ denoting the corresponding (small) fluctuation.
The unperturbed quantities include the background expansion (or
contraction)

ρ0(t) = ρ0(t0) a−3(t) v0 = Ṙ

R
r ∇ϕ0 = 4

3
πGρ0r, (3)

where a(t) is the scale factor, obeying the Friedmann equation,
equation (1).

As is well known, for scales much larger than the Jeans scale, that
is, neglecting the pressure term, the equation for the perturbation
growth (e.g. Mukhanov 2005) is given by

δ̈ + 2H (t)δ̇ − 4πGρ0δ = 0, (4)

where δ ≡ ρ1/ρ0 ≡ (ρ − ρ0)/ρ0 is the relative density fluctuation.
A general solution to equation (4) can be written as (Mukhanov
2005)

δ = C1H (t)
∫

dt

a(t)2H (t)2
+ C2H (t), (5)

where C1 and C2 are constants.
To find the solution, a parametrization is usually proposed in

which both the scale factor a and time t are functions of a parameter
θ . A usual parametrization is

t ∝ (θ − sin θ ) (6)

and

a(t) ∝ (1 − cos θ ), (7)

with θ ∈ [0 : 2π] (Narlikar 1993). In Fig. 1 we have plotted the
time and scale factor as a function of θ in normalized units for
the collapsing part of the evolution in this model – that is, for
θ ∈ [π : 2π]. This case has been studied by Groth & Peebles (1975),
who found the solution for δ as a function of θ as (see also Narlikar
1993)

δ(θ ) = A

[
5 + cos θ

1 − cos θ
− 3θ sin θ

(1 − cos θ )2

]
+ B

sin θ

(1 − cos θ )2
, (8)

where A and B are constants, which can be evaluated using the
initial conditions as follows. We note that

δθ=π = 2A (9)

and(
dδ

dθ

)
θ=π

= 3πA − B

4
. (10)
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Inverse Hubble flows 3727

Figure 1. Normalized time t and scale factor a as a function of θ for the
collapsing part (θ ∈ [π : 2π]) of the closed matter-dominated universe.

For B > 0, the last term in equation (8) is positive but mono-
tonically decreasing in the interval 0 < θ < π, approaching +∞ as
θ → 0+, and becoming zero at θ = π. For B < 0, the signs are
reversed, but the divergence of this term as θ → 0 persists. For
π < θ < 2π, it approaches ∞ as θ → 2π. On the other hand, the
first term in the right-hand side of equation (8) is zero at θ = 0.
This implies that the full solution with B 
= 0 diverges there. For
the cosmological case, which starts contracting at θ = π, but must
have previously undergone an expanding stage (0 < θ < π), we
must require that δ → 0 as θ → 0+ (the big bang), and thus we
must take B = 0. The constant A is determined by equation (9),
which gives A = δθ=π/2. Defining δθ=π ≡ δ0 ≡ ρ1(t = 0)/ρ0, we
can then write the evolution equation for the cosmological case as

δC(θ ) = δ0

2

[
5 + cos θ

1 − cos θ
− 3θ sin θ

(1 − cos θ )2

]
, (11)

together with the initial condition, from equation (10),

δ̇C

∣∣
θ=π

= 3πδ0

8
, (12)

where we have defined δ̇ ≡ dδ/dθ .
On the other hand, for the MC case, for which there is no con-

straint that our initial state (θ = π) be the continuation of a previous
expanding stage, we have no boundary condition applicable at θ = 0,
and thus no reason to set B = 0. In this case, a reasonable limiting
initial condition is to set δ̇ = 0 at θ = π, meaning that the fluc-
tuation starts growing from rest. From equation (10), this implies
B = 3πδ0/2, and thus the evolution equation for the perturbation
becomes

δMC(θ ) = δ0

2

[
5 + cos θ

1 − cos θ
− 3θ sin θ

(1 − cos θ )2

]
+ 3πδ0

2

sin θ

(1 − cos θ )2
,

(13)

with the initial condition

˙δMC

∣∣
θ=π

= 0. (14)

The solution starting from this initial condition should be considered
as describing the minimum possible growth rate of the density
fluctuation. In reality, the buildup of the fluctuation will imply that
at the initial time its growth rate is moderate but larger than zero.
However, since there is no criterion to decide the initial growth rate,
we consider the case of zero rate as the lower limit to the possible
realistic rates, and so the evolution of actual fluctuations should be
considered to be bounded from below by this case.

Equations (11) and (13), with the corresponding initial conditions
given by equations (12) and (14), describe the evolution of a density
fluctuation in a contracting background, in the cosmological and
MC subcases, respectively. In general, we will refer to the situation
of a contracting background, as an inverse Hubble flow (IHF).

Finally, we note that the collapsing background (assumed spher-
ical) for either IHF case completes its collapse on its free-fall time,
which is given by

τff =
√

3π

32 Gρ0
. (15)

Because at t = τ ff the scale factor of the background a has shrunk
to zero, τ ff corresponds to θ = 2π. On the other hand, we consider
that the evolution starts when θ = π, that is, at the onset of the
contracting stage. Thus, relation (6) can be written as the equality

t =
(

θ − sin θ

π
− 1

)
τff . (16)

2.3 The Jeans case: a static background

In this next section, we will compare the evolution of the fluctuations
in an IHF to the evolution of the classical Jeans case, applicable to
a static background. For this case, it is well known (see, e.g. Binney
& Tremaine 1987) that the general solution is

δJ(t) = αet/τ + βe−t/τ , (17)

where the characteristic time-scale τ is given by

τ =
√

1

4πGρ0
=

√
8

3π2
τff, (18)

and α and β are coefficients to be determined as follows. First, we
note that, to compare to the cosmological IHF case, the simplest
choice is α = δ0 and β = 0, since we then have(

dδJ

dt

)
t=0

= δ0

τ
. (19)

This can be compared to the initial growth rate for the cosmological
IHF case which, writing equation (12) in terms of the time variable,
is(

dδc

dt

)
t=0

= 3π

8

(
2

3

)1/2
δ0

τ
≈ 0.962

δ0

τ
, (20)

and so the two initial growth rates are nearly the same.
On the other hand, in order to compare to the MC IHF solution,

a useful choice is α = β = δ0/2, since in this case the initial growth
rate for the Jeans solution is zero, in agreement with the initial
condition for the MC IHF solution.

3 R ESULTS

Equations (11) and (13) on one hand, and equation (17) on the other,
describe the linear growth of the density perturbations in an IHF and
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Figure 2. Linear growth of the perturbations (δ/δ0) in an IHF (solid lines)
and in a static background (the Jeans case; dashed lines) as a function of
time, as given by equation (16). The cosmological case, given by equations
(11) and (12) for the IHF flow, and by equation (17) with α = δ0 and β = 0
for the Jeans case, is shown by the black lines. The MC case, given by
equations (13) and (14) for the IHF, and by equation (17) with α = β = δ0/2
for the Jeans case, is shown by the red lines. The time-scale in all cases is
given in units of the free-fall time for the IHF background, equation (15).

in the Jeans’ case, respectively. Note that these expressions contain
an explicit dependence on the initial density perturbation δ0.

In Fig. 2, we plot the two IHF solutions, equations (11) and (13)
(black and red solid lines, respectively) as a function of time, to-
gether with the Jeans solution with either finite (α = δ0, β = 0)
or zero (α = β = δ0/2) initial growth rate (black and red dashed
lines, respectively). The time-scale for all cases is normalized to
the free-fall time, τ ff, and all solutions are normalized to the initial
fluctuation amplitude, δ0. From Fig. 2, the linear growth of the nor-
malized density fluctuation is seen to be faster in the IHF cases than
in the Jeans case. Moreover, the fact that δ increases monotonically
with time means that the density of the perturbation increases faster
than that of the collapsing background.

However, note that, for the linear IHF solutions, the fluctuation
terminates its collapse at the same time as the background, since,
from equations (11) and (13), it is seen that δ → ∞ as θ → 2π,
as seen in Fig. 2. The anticipated collapse of the fluctuation with
respect to that of the background occurs as a consequence of the
non-linear growth of the fluctuation, which starts when δ ≈ 1. After
this time, the fluctuation collapses on its own free-fall time and,
since its density is now roughly twice that of the background at this
time, its free-fall time is now ∼1/

√
2 that of the background, also

at this time, implying an anticipated collapse of the fluctuation.
Fig. 3 illustrates the time for the perturbation to become non-

linear (τ nl), that is, the time for the perturbation to grow to δ = 1,
as a function of the initial fluctuation amplitude, δ0. For example,
consider the case of δ0 = 10−1. The time for the density fluctuation
to grow by a factor of 1/δ0 (i.e. the time to reach non-linearity, or
δ = 1) in the cosmological IHF case and the corresponding Jeans
case is ≈0.8 and 1.2τ ff, respectively, as shown by the black solid and
dashed lines, respectively. For the MC case and its corresponding
Jeans case with zero initial growth rate (red solid and dashed lines,

Figure 3. Time τ nl for the perturbation to grow to δ = 1 in both the Jeans
(dashed lines) and the IHF (solid lines) cases, versus the initial fluctuation
amplitude, δ0. As in Fig. 2, the black lines denote the cosmological case,
and the red lines denote the MC case.

respectively), these times are ∼0.9 and ∼1.5τ ff, respectively. In
general, this figure shows that, the smaller the initial amplitude,
the larger the ratio of the Jeans to the IHF growth times. More
fundamentally, the linear growth time in the Jeans case increases
without limit as δ0 decreases, while it remains finite, asymptotically
approaching the free-fall time for the IHF cases. Again, this is a
manifestation of the inherent non-linearity of the situation when a
small-scale perturbation is growing within a larger-scale one that is
also growing.

4 D I SCUSSI ON

The results from the previous section have a number of important
implications for the evolution of density fluctuations within col-
lapsing MCs. First and foremost, our results imply that the standard
notion that, in the linear regime, all fluctuations grow at the same
rate, is not entirely accurate. Small-scale fluctuations embedded in
a larger-scale fluctuation that is also collapsing will grow faster than
isolated fluctuations. The fact that this feature has not been recog-
nized before can be traced to the common practice of discussing
purely in terms of Fourier spectra, neglecting the phases of the
Fourier modes, which are the part related to the spatial distribution
of the density field (Armi & Flament 1985). In our case, it is seen
that the spatial location introduces a fundamental modification to
the picture. This coupling between a small and a large scale is in-
evitable even in the linear regime, and arises from the fact that the
large-scale fluctuation embedding the small-scale one constitutes a
background which modifies the governing equations, even in the
linear analysis.

In the case of structure formation within the expanding cosmo-
logical flow, it is well known that all density fluctuations are initially
part of the expanding Universe, and therefore, although their cor-
responding density fluctuation δ is increasing monotonically, their
physical size is still increasing as a consequence of the expansion,
albeit at a lower rate than the global one. At some time, usually
referred to as the turnaround point, they finally stop expanding and
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begin to contract, but by this time they are already non-linear with
respect to the universal Hubble flow. Therefore, it is possible that
the linear growth of a small-scale fluctuation embedded within a
larger-scale one will occur while the latter is still expanding, even
if its corresponding δ is increasing. In this case, the small-scale
fluctuation will nevertheless find itself embedded in a background
that is expanding more slowly that the global expansion, and so its
growth will be faster than that of a fluctuation growing in the global
expansion field, causing an earlier collapse anyway. We hope to
investigate this in future work.

In fact, it is possible that the accelerated growth of density fluctu-
ations embedded in growing density fluctuations may have already
been observed in numerical simulations of halo and galaxy forma-
tion, but not recognized as a consequence of this effect. Indeed, the
numerical study of the environmental dependence of halo formation
by Sheth & Tormen (2004) found evidence that haloes of a given
mass forming in high-density environments typically form earlier
than those formed in low-density environments. This result has
been subsequently confirmed by other authors (e.g. Harker et al.
2006; Wechsler et al. 2006; Maulbetsch et al. 2007; Wang et al.
2011), some of which use a different measure of the environment’s
overdensity.1 We suggest that this result may be a consequence
of the halo being located in an overdense region which is itself
growing; therefore, it grows faster than otherwise.

In the MC context, our results have also relevant implications.
First, if the formation mechanism of MCs is such that they quickly
acquire many Jeans masses, then their collapse is nearly pressure-
less (as suggested by many numerical studies; see, e.g. Vázquez-
Semadeni et al. 2007, 2011; Heitsch & Hartmann 2008; Heitsch
et al. 2008; Banerjee et al. 2009; Heitsch, Ballesteros-Paredes &
Hartmann 2009; Micic et al. 2013), and then even moderately lin-
ear perturbations, with δ0 � 10−1 can grow faster than the global
collapse, as systematically observed in those simulations. Of course,
this is supplemented by the facts that (a) the turbulence may pro-
duce moderately non-linear fluctuations, which then have shorter
free-fall times even from the start, and (b) that flattened or fila-
mentary structures have longer free-fall times than spherical ones,
so that spheroidal fluctuations within such structures will collapse
earlier than the larger structure (Pon et al. 2012; Toalá et al. 2012).
But the important issue here is that, even in the worst-case scenario
for fragmentation, namely that of a spherical geometry with linear
density fluctuations, the perturbations are able to collapse earlier
than the cloud.

5 SU M M A RY A N D C O N C L U S I O N S

Recent numerical simulations of MC formation and evolution have
shown that the clouds engage in global gravitational collapse, and
that the density fluctuations within them grow and complete their
local collapse before the global collapse is completed (Vázquez-
Semadeni et al. 2007, 2011; Heitsch & Hartmann 2008; Heitsch
et al. 2008, 2009; Banerjee et al. 2009; Micic et al. 2013). Motivated
by these results, in this paper we have performed a linear analysis of
the growth rate of density fluctuations immersed in a medium that is
itself undergoing global gravitational contraction. We have used the
standard linear analysis used for the growth of density fluctuations
in Hubble flows, but considering the case of an IHF, where the
background is contracting rather than expanding. We considered

1 Note, however, that this effect is weak compared to the dependence on the
mass assembly history.

two variants of an IHF. The first is appropriate for a cosmological
setup, in which the initial fluctuation at the onset of the collapse of
the background is already growing at a finite rate, consistent with
the evolution during a previous epoch of growth, during the epoch
when the background was still expanding. The other is meaningful
as a lower limit for a collapsing MC, in which we assume the initial
growth rate to be zero. This represents a lower limit to the possible
initial growth rate of the fluctuation, which is unconstrained in this
case.

Our main results are the following.

(i) Density fluctuations embedded in an IHF grow faster than in
the standard Jeans analysis (where the background is static).

(ii) While in the Jeans case the growth time to reach non-linearity
(i.e. to reach a density fluctuation amplitude δ = 1) increases without
limit as δ0 → 0, where δ0 is the initial value of δ, in the IHF case
this growth time is bounded from above by the free-fall time of
the background density, τ ff. This reflects the fact that the density
fluctuation is embedded in a medium which is itself collapsing on
a time-scale τ ff, and the longest possible time for the fluctuation to
complete its collapse is the free-fall time of the medium in which it
is embedded.

(iii) For perturbations embedded in an IHF having initial ampli-
tudes δ0 � 10−1, the time to reach non-linearity is ∼0.8τ ff in the
cosmological variant, and ∼0.9τ ff in the MC variant. From then on,
the perturbation grows at its own free-fall rate, and therefore it will
always be ‘ahead’ of the global collapse.

In the context of large-scale structure formation in the Universe,
these results may offer an alternative (or complementary) explana-
tion for the observation in numerical simulations that haloes of a
given mass typically form earlier in high-density environments than
those formed in low-density environments. In the MC context, they
may offer an explanation for the ubiquitous observation in numer-
ical simulations that small-scale density fluctuations within large
MCs complete their collapse (i.e. form stars) before the collapse of
the parent cloud is completed, even if the time difference is not too
large. It must also be borne in mind that the spherical symmetry
that we have assumed for the background constitutes a worst-case
scenario for the possibility of fragmentation, since in this case the
free-fall time depends only on the density, and is independent of
size scale. Instead, for flattened or filamentary geometries, the actual
collapse time is larger than the spherical free-fall time by factors
that depend on the aspect ratio of the object (Pon et al. 2012; Toalá
et al. 2012).

More fundamentally, our results show that the hierarchical nest-
ing of the fluctuations of different scales affects the growth rate
of density fluctuations, even in the linear regime. Thus, our results
imply that density perturbations are always able to collapse earlier
than the whole cloud, as envisioned by Hoyle (1953), and recently
observed in the numerical simulations, regardless of whether they
have linear or non-linear amplitudes, making Hoyle-like fragmen-
tation an inescapable process in multi-Jeans-mass MCs.
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Pon A., Toalá J. A., Johnstone D., Vázquez-Semadeni E., Heitsch F., Gómez
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A P P E N D I X A : FR I E D M A N N ’ S E QUAT I O N
F O R A S P H E R I C A L M C

Let us suppose a spherical cloud with total mass M and initial radius
R(t = 0) = R0. By energy conservation we have

1

2
v(t)2 − GM

R(t)
= ETOT, (A1)

and ETOT can be evaluated at t = 0, supposing that v(t) = 0. This
gives

ETOT = −GM

R0
. (A2)

Manipulating equation (A1) we can write

v(t)2

R(t)2
− 2GM

R(t)3
= −2GM

R0

1

R(t)2
, (A3)

and using M/R(t)3 = 4/3πρ(t), we can rewrite the former equation
as

v(t)2

R(t)2
− 8πGρ(t)

3
= −8πGρ0

3

R2
0

R(t)2
. (A4)

If we now define a(t) = R(t)/R0, this is, ˙a(t) = Ṙ(t)/R0 with
v(t) = Ṙ(t), we can write equation (A4) as(

ȧ

a

)2

+ 8πGρ0

3

1

a2
= 8πGρ(t)

3
. (A5)

Under this scenario, we can define k ≡ 8/3πGρ0 and write(
ȧ

a

)2

+ k

a2
= 8πGρ(t)

3
. (A6)
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