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ABSTRACT

We analyze the physical properties and energy balance of density enhancements in two SPH simulations of the
formation, evolution, and collapse of giant molecular clouds. In the simulations, no feedback is included, so all
motions are due either to the initial decaying turbulence or to gravitational contraction. We define clumps as
connected regions above a series of density thresholds. The resulting full set of clumps follows the generalized
energy equipartition relation, o,/R'/? o< ¥!/2, where o, is the velocity dispersion, R is the “radius,” and X is the
column density. We interpret this as a natural consequence of gravitational contraction at all scales rather than
virial equilibrium. Nevertheless, clumps with low 3 tend to show a large scatter around equipartition. In more than
half of the cases, this scatter is dominated by external turbulent compressions that assemble the clumps rather than
by small-scale random motions that would disperse them. The other half does actually disperse. Moreover, clump
sub-samples selected by means of different criteria exhibit different scalings. Sub-samples with narrow > ranges
follow Larson-like relations, although characterized by their respective values of . Finally, we find that (i) clumps
lying in filaments tend to appear sub-virial, (ii) high-density cores (n > 105 cm?®) that exhibit moderate kinetic
energy excesses often contain sink (“stellar”) particles and the excess disappears when the stellar mass is taken into
account in the energy balance, and (iii) cores with kinetic energy excess but no stellar particles are truly in a state of
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dispersal.
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1. INTRODUCTION

Ever since the pioneering work of Larson (1981) it has been
recognized that molecular clouds (MCs) obey scaling relation-
ships, that have been interpreted as representative of approximate
virial equilibrium in the clouds between their internal “turbulent”
motions and their self-gravity. Subsequently, however, there have
been suggestions that these relations may actually be the result of
observational selection effects (e.g., Kegel 1989; Scalo 1990, p.
151). In addition, there have been attempts to generalize these
relations (e.g., Keto & Myers 1986; Heyer et al. 2009) and
to reinterpret them in terms of global cloud collapse rather than
virialization (Ballesteros-Paredes et al. 2011, hereafter B11).
Moreover, there are structures that have been observed to possess
kinetic energies in excess of those that would be consistent with
equilibrium (or more generally, energy equipartition).

In this paper we aim to investigate whether clumps forming
in numerical simulations of clouds undergoing global gravita-
tional contraction exhibit properties similar to those in
observational surveys such as Larson scaling relations, and
we search for a cause of the apparent kinetic energy excesses
seen in some subsets of clumps in observational samples.

1.1. Larson’s Relations and Their Generalization

For over three decades, it has been accepted that MCs satisfy
the so-called Larson (1981) scaling relations between velocity
dispersion (0,), mean number density ((n)), and size (L). In
their presently accepted form, these relations are (e.g., Solomon

et al. 1987; Heyer & Brunt 2004)

L \!
(n) ~ 3400(—] cm 3, D
1 pc
and
1/2
oy & I(L) km s~ 2)
1 pc

Larson (1981) additionally showed that these relations implied
that the velocity dispersion is close to the value corresponding
to virial equilibrium. In what follows, we will more generally
refer to this as “near equipartition” between the nonthermal
kinetic and the gravitational energies. Also, note that
Equation (1) implies that the column density of the clouds,
Y= Los pd? is approximately the same for MCs of all sizes.

In this expression, ¢ is the length element, and the integration is
performed along the line of sight (LOS) through the cloud.
However, the validity of Larson’s relations has been
questioned by various authors. Kegel (1989) and Scalo
(1990, p. 151) argued that the apparent constancy of the
column density may arise from selection effects caused by the
need to exceed a certain minimum column density in order to
detect the clouds and by a maximum apparent column density
caused by line saturation (optical thickening). This possibility
was in fact recognized by Larson (1981) himself. Some time
later, Ballesteros-Paredes & Mac Low (2002) showed that in
numerical simulations of turbulent clouds, clumps defined by
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means of a column density threshold exhibited a Larson-like
density—size relation, but clumps defined by means of a volume
density threshold did not.

Several years later, using the Boston University-FCRAO
Galactic Ring Survey (Jackson et al. 2006), Heyer et al. (2009,
hereafter H09) re-analyzed the giant molecular cloud (GMC)
sample of Solomon et al. (1987). The higher angular sampling
rate and resolution available to H09, as well as the use of the
3CO J = 1-0 line allowed them to obtain a much larger
dynamic range in column density than that available to
Solomon et al. (1987). Moreover, HO9 considered two different
definitions for the cloud boundaries, thus effectively obtaining
two different MC samples.” With this procedure, the GMC
sample of H09 spanned over two orders of magnitude in
column density, making it clear that column density is not
constant for GMCs (see also Heyer et al. 2001). Nevertheless,
HO09 noted that, in spite of the non-constancy of the column
density, the GMCs are still consistent with virial equilibrium.
They showed this by noting that their GMC sample satisfied

oy _(7GE 172
R27\ s '

3)

When the column density is not constant, this relationship
corresponds to virial equilibrium; i.e., to |Eg| = 2FE, with Ey
being the nonthermal kinetic energy and E, being the
gravitational energy for a spherical cloud of uniform density
and radius R. Thus, Equation (3) can be considered the
generalization of Larson’s relations when X is not constant.

Shortly thereafter, Lombardi et al. (2010) claimed that the
column density of GMCs is constant after all. Using near-
infrared excess techniques, these authors argued that the mean
GMC column density in their sample remained constant in
spite of being sensitive to very low extinctions, thus suggesting
that the minimum column density imposed by a sensitivity
threshold was not an issue. However, it has subsequently been
recognized that this effect is natural for clouds with a ¥
probability density function (PDF) that peaks at some value
and drops fast enough at lower column densities (Ballesteros-
Paredes et al. 2012; Beaumont et al. 2012). The lack of pixels
at low X implies that the dominant apparent column density
will be that of the peak, and it is now recognized that the
presence of a peak may be an artifact of incomplete sampling at
low column densities (Lombardi et al. 2015). Therefore, at
present, there is no compelling evidence for the validity of the
density—size relation (Equation (1)) for GMCs or their
substructures in general.

On the other hand, the velocity-dispersion—size relation,”*
expression (2) above, has often been interpreted as the
signature of supersonic turbulence, with an energy spectrum
E (k) o< k2, where k is the wave number. Indeed, the velocity
variance, interpreted as the average turbulent kinetic energy per
unit mass in scales of size ¢ < 2n/k, given by
o2() = J];zﬂ/[ E (k)dk, scales as ¢'/2 (e.g., Vizquez-Sema-
deni et al. 2000b, p. 3; Elmegreen & Scalo 2004; McKee &

3 Contrary to some claims in the literature, these two definitions of the cloud

boundaries do amount to two different MC samples, as the masses and velocity
dispersions were measured for each cloud within each of the two boundaries.
Thus, the “A2” clouds in HO9 constitute a sample of smaller, denser objects
within the “A1” sample, just like dense clumps and cores are substructures of
their parent MCs, with independent dynamical indicators.

4 In what follows, we will refer to this relation as the linewidth—size relation
as well.
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Ostriker 2007). In this case, the velocity-dispersion—size
relation would have a completely independent origin from that
of the density—size relation, and the reason for the observed
near equipartition between the gravitational and turbulent
kinetic energies would require a separate explanation. How-
ever, massive star-forming clumps notoriously do not conform
to the o,—L relation (e.g., Caselli & Myers 1995; Plume
et al. 1997; Shirley et al. 2003; Gibson et al. 2009; Wu
et al. 2010), a situation that appears inconsistent with a
universal turbulent energy cascade spanning the whole range
from the scale of GMCs down to the scale of massive clumps.

An alternative interpretation was suggested by Ballesteros-
Paredes et al. (2011, hereafter B11), who proposed that the
origin of the o,—L relation was not turbulence, but rather
gravitational contraction of the clouds, combined with the
observational selection effect of a restricted column density
range. This possibility was actually suggested over four
decades ago by Goldreich & Kwan (1974). Similarly, Liszt
et al. (1974) suggested that their line profiles and LOS-velocity
maps of the Orion MC were consistent with extended radial
motions, although they could not discriminate between
expansion and collapse. However, the extended-motion
scenario was soon dismissed by Zuckerman & Palmer
(1974) who argued that if that were the case, then the star
formation rate in MCs should be much larger than observed,
and that systematic shifts between emission lines produced by
H1 regions at the centers of the clouds and absorption lines
produced in the radially moving cloud envelopes should be
observed, but they are not. Zuckerman & Evans (1974) then
proposed that the observed linewidths corresponded to super-
sonic, small-scale turbulence.

The small-scale turbulence scenario, however, suffers from a
number of problems (see Viazquez-Semadeni 2015 for a
detailed discussion). Instead, B11 have suggested a return to
the scenario of gravitational collapse at the scale of all GMCs,
with the problem of an excessive SFR being solved by early
destruction of the clouds by stellar feedback (Vazquez-
Semadeni et al. 2010; Dale et al. 2012; Zamora-Avilés et al.
2012; Colin et al. 2013; Zamora-Avilés & Vazquez-Sema-
deni 2014). B11 noted that the generalized Larson relation,
Equation (3), is satisfied by not only GMCs but also massive
clumps that do not satisfy Larson’s velocity-dispersion—size
relation, Equation (2).

Thus, B11 interpreted the near equipartition as evidence for
free-fall in the clouds (see also Traficante et al. 2015) rather
than near virial equilibrium, noting that the virial and free-fall
velocities differ only by a factor of /2. Indeed, for a freely
collapsing cloud, defining the total energy as zero, the
nonthermal kinetic energy and the gravitational energy satisfy
Ey = |Ey|, so that, instead of Equation (3), we have

1/2
% ~ (ZWGE) . @
R'/2 5

Generally, the observational errors and uncertainties in cloud
and clump surveys are larger than this slight /2 factor, so
that for all practical purposes, any evidence in favor of virial
equilibrium based on energetics of the clouds can just as well
be interpreted as evidence in favor of free collapse. Recent
observational studies have shown signatures of infall motions
in line profiles along filaments and massive clumps in the
Cygnus X region (Schneider et al. 2010) in massive star-
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forming cores of the infrared dark cloud SDC335.579-0.272
(Peretto et al. 2013) and in massive starless cores (Traficante
et al. 2015), supporting the notion that these systems are
consistent with a global gravitational collapse. Moreover,
Traficante et al. (2015) introduce an equivalent analysis as in
HO09 to demonstrate that most of the nonthermal motions in
their sample originate from self-gravity.

1.2. Deviations from Energy Equipartition

An additional important feature in the GMC sample studied
by HOO9 is that the clouds tended to lie systematically above the
virial equilibrium line in a plot of ¢,/R'/? versus ¥, a plot that
we will refer to as the Keto—Heyer, or KH, diagram (Keto &
Myers 1986; Heyer et al. 2009). This feature has received
different interpretations by different authors. HO9 themselves
interpreted it simply as a systematic underestimation of the
cloud masses due to the various assumptions they used
to determine the masses from '*CO emission. On the other
hand, Dobbs et al. (2011) have interpreted this feature as
evidence that most of the GMCs are gravitationally unbound,
probably because they form by cloud—cloud collisions, which
feed a large velocity dispersion that unbinds the GMCs. By
contrast, Keto & Myers (1986) and Field et al. (2011) have
assumed that the clouds are gravitationally unbound, but
confined by an external pressure, while B11 suggested that the
GMC:s are actually collapsing, and that at face value, the H09
data are slightly more consistent with free-fall than with virial
equilibrium, since the free-fall velocity is slightly larger than
the virial one.

In addition to the slight systematic overvirial nature of cloud
surveys, in several observational clump and core surveys, some
objects, especially low-mass ones, appear to be strongly
overvirial, exhibiting values of the virial parameter,
a =502R/GM ~10-100 (see, e.g., Figure 16 of Barnes
et al. 2011). These objects are traditionally interpreted as
having a kinetic energy significantly larger than their gravita-
tional energy, perhaps due to driving by stellar feedback, and
therefore requiring confinement by external pressure to prevent
them from dispersing, as in the interpretation by Field et al.
(2011) of the HO9 sample. However, if we adopt the
interpretation that star-forming GMCs are undergoing global
and hierarchical collapse, pressure confinement is not satisfac-
tory, since in this scenario the clumps should be gravitationally
dominated as well. Investigating the origin of these kinetic
energy excesses within the scenario of collapsing clouds is one
of the goals of this paper.

1.3. This Work

In this work we create an ensemble of clumps in simulations
of the formation and evolution of MCs in order to investigate
their energy balance under a scenario of initial turbulence and
subsequent gravitational collapse. Our simulations, of course,
have a number of limitations, which are discussed in more
detail in Section 4.1, but here we note that they neglect
magnetic fields and stellar feedback, and have relatively low
masses that restrict the clumps and cores we obtain to values
typical of low-mass star-forming regions, which form low-mass
stellar groups or low-mass clusters. Nevertheless, we expect
that the results we obtain can be extrapolated to regions of
larger masses.
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The organization of the paper is as follows. In Section 2.1 we
briefly describe the simulations, and in Section 2.2, we describe
the clump-finding algorithm used to define clumps at various
values of volume density, ny,, as well as the selection criteria
we used in order to avoid considering unrealistic clumps (i.e.,
those that would be affected by stellar feedback in reality).
Next, in Section 3, we present our results on the energetics of
the clumps and cores and their implications on Larson’s
relations. In Section 4 we discuss our work in the context
of recent related numerical studies as well as the range of
applicability, possible extrapolations, and limitations of our
study. Finally, in Section 5 we present a summary and some
conclusions.

2. NUMERICAL DATA AND ANALYSIS
2.1. The Simulations

The simulations used in this work are those presented in
Goémez & Vizquez-Semadeni (2014) and Heiner et al. (2015).
For historical reasons, in this paper we will refer to these
simulations as RUN20 and RUNO3, respectively. Both
simulations were performed with the code GADGET-2
(Springel et al. 2001), using 2963 ~ 2.6 x 10’ smoothed
particle hydrodynamics (SPH) particles and a numerical box
of 256 pc per side. Each SPH particle is characterized by a
single mass and a smoothing length, the latter defined as the
radius of the volume that contains 40 £+ 5 neighboring
particles. The simulations include the prescription for the
formation of sink particles by Jappsen et al. (2005) and the fix
proposed by Abel (2011), which eliminates several unphysical
effects that arise in the standard SPH prescription, and
describes more accurately a number of physical instabilities -
such as the Kelvin—-Helmholz and Rayleigh—Taylor instabil-
ities. Both simulations used the cooling and heating functions
of Koyama & Inutsuka (2002), corrected for typographical
errors as described in Vazquez-Semadeni et al. (2007).

In RUN20, the (uniform) initial density and temperature
were set to 1 cm—3 and 5206 K, and the mass per SPH particle
was ~0.02 M, so that the total mass in the box was
5.26 x 10°M,,. In this simulation, two cylindrical streams of
warm neutral atomic gas, of diameter 64 pc and length 112 pc,
were set to collide at the central (x =0) plane. In addition, a
small amount of turbulent energy was added (with speeds
~10% of the collision speed), at wave numbers
k = 8-16 x 2w/L, where L is the box size, so that the
perturbations are applied at scales smaller than the inflow
diameter. The collision produces a turbulent cloud, which
grows in mass until it becomes gravitationally unstable and
begins to collapse (e.g., Vazquez-Semadeni et al. 2007; Heitsch
& Hartmann 2008). The collapse, however, is irregular and
chaotic because of the turbulence in the cloud, which creates a
multi-scale and multi-site chaotic collapse (Heitsch et al. 2008;
Viazquez-Semadeni et al. 2009), rather than a monolithic one,
producing a complex morphology, in which filamentary
structures arise self-consistently. We refer the reader to Gémez
& Vazquez-Semadeni (2014) for more details.

On the other hand, RUNO3 was produced with the aim of
avoiding the over-idealized conditions of a colliding-flow
simulation in which the flows are perfect cylinders with
circular cross-sections moving in opposite directions along
the same axis. Instead, RUNO3 was started by applying a
Fourier turbulence driver with purely solenoidal modes, with
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Table 1
Initial Conditions in Simulations
L (pc) To(K) np(em ™) Mapn (M) Myox (M) Type
RUNO3 256 730 3 0.06 1.5 x 10° Decaying turbulence
RUN20 256 5206 1 0.02 5% 10° Colliding flows

Note. L is the box size, mgpy is the mass per SPH particle, T is the initial temperature, and ny is the initial density.

wave numbers in the range 1 < kL/2mw < 4 over the first
0.65Myr of the simulation, reaching a maximum velocity
dispersion of o~ 18kms~'. This produces a complex
network of sheets and filaments, which subsequently grow by
gravitational accretion. In this simulation, the initial density and
temperature were set to 3 cm~3 and 730 K, respectively, the
total mass in the box was 1.58 x 10°M,, and the mass per
SPH particle was ~0.06 M.

Finally, in both simulations, the density threshold to form
sink particles is set at 3.2 x 10° cm >, and no prescription for
feedback is included. This implies that we must be careful in
the choice of the clumps to be analyzed in order to avoid
including clumps that would have already been destroyed by
stellar feedback, had it been included (see Section 2.2). The
main parameters of the simulations are summarized in Table 1.

In these simulations, we analyze the physical properties of
the clumps formed self-consistently using a clump-finding
algorithm described in Section 2.2. We then measure the mass,
size, density, and velocity dispersion of the clumps in physical
space (not projected) to investigate their energy balance.
Table 2 gives the velocity dispersion, mass in sinks, and
global star formation efficiency, SFE = My/(Myx + Mcoq), of
the simulations at the chosen times. Here, M4 is the total
mass in cold gas (n > 50 cm~3, T ~ 10-20 K).

2.2. Generation of the Clump Ensemble

In the present work, we use the term “clump” in a loose way,
simply to denote a local density enhancement above a given
density threshold, except for the objects defined at the highest
thresholds (ny, > 10° cm~3), which will be referred to as
“cores,” and those defined at the lowest thresholds
(g = 300 cm™3), which will be sometimes referred to as
“clouds.” No implication is made about a specific density or
mass range for the clumps, nor about whether they will form
only a few stars or a cluster. This is a somewhat looser usage of
the term “clump” than the frequently-adopted meaning of
clumps as the gaseous objects from which stellar clusters form
(see, e.g., the review by Blitz & Williams 1999). However, for
the purposes of the present study, which considers objects with
a variety of densities and masses, our more generic terminology
is adequate. Note that, in general, a single clump at a lower
threshold may contain several clumps at a higher one.

In what follows, we first describe the procedure for finding
the clumps, and then the selection criteria for including them in
our sample.

2.2.1. Clump-finding Algorithm

The procedure to find clumps in the simulation was
performed directly in the SPH particles without previous
mapping onto a grid. This allows the procedure to find the
clumps in a manner independent of the grid resolution and
without the smoothing inherent to the gridding procedure.

Table 2
Total Velocity Dispersion, Mass in Sinks, and Total SFE (=My/(Myx + Mco1))
at the Times Analyzed in the Two Simulations

t (Myr) o, (kms ™) M (M) SFE
15.6 4.15 83.8 0.0002
18.2 3.69 512.9 0.0012
RUNO3 18.5 3.65 576.9 0.0013
19.5 3.50 1300.0 0.0027
22.1 3.21 6786.9 0.1200
20.8 0.536 57.0 0.0032
21.1 0.533 119.6 0.0067
RUN20 222 0.526 763.5 0.0409
24.8 0.518 2995.7 0.1471
26.5 0.517 4817.1 0.2234

Note. Here, M4 is the total mass in cold gas (n > 50 cm ).

The procedure is the following. First, we select all the
SPH particles in the simulation with a density above a certain
threshold, ng,. We then locate the particle with the highest
density. This particle and all those located within its smoothing
length are labeled as members of the clump. Then, the
following steps are iterated: we locate the member of the clump
with the highest density to which this subprocedure has not
been applied, and then label as members all the particles within
a smoothing length not yet belonging to the clump. The
iteration ends when all the clump members are examined. If
there are particles remaining with a density n > ny, that are not
yet members of any clump, we locate the one with the highest
density and use it to define a new clump and the procedure is
repeated.

In summary, this procedure finds the largest connected
object above a volume density threshold.

2.2.2. Clump Sample

For the analysis of both simulations we only considered
clumps with more than 80 SPH particles (M > 4.8M,, in
RUNO3 and M > 1.6M;, in RUN20) in order to guarantee that
they are well resolved, according to the criterion by Bate &
Burkert (1997). This amounts to twice the number of particles
contained within one particle smoothing length.

Since in RUNO3 we first apply a turbulent driver and then
we leave the simulation to decay and collapse, we analyze
various timesteps that correspond to different levels of turbu-
lence and different evolutionary stages of the clouds and clump
populations. Specifically, we analyze the simulation at
t=15.6, 18.1, 18.5, 19.5, and 22.1 Myr. Sink (“star”)
formation begins in the simulation at r ~ 14.7 Myr, and at
t = 22.1 the total mass of sinks is 6787M;, amounting to
~0.4% of the total mass in the box and ~4% of the cold gas
mass. At these times, we generate an ensemble of clouds,
clumps, and cores by applying the clump-finding algorithm at
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the density thresholds, ng = 300, 10°, 3 x 103, 10* and
10% cm3, for both simulations.

In RUN20 the turbulence in the cloud develops self-
consistently, and so it never is excessive (i.e., not larger than
what would be produced self-consistently by the gravitational
contraction). Nevertheless, the structures (filaments and
clumps) still evolve, the filaments gathering mass by accretion
from their surrounding medium, and the filaments themselves
feeding the clumps inside them (Gémez & Vazquez-Sema-
deni 2014). However, close inspection of the evolution of the
filament/clump systems shows that they form at about the
same time, and the flow along the filaments toward the clumps
develops later (see also Gong & Ostriker 2015). Whether the
accretion from the filaments onto the clumps has any effects on
the dynamics of the latter will be relevant later in the
investigation (Section 3.2.3). In this simulation we choose
timesteps that exhibit well defined filament/clump systems in
order to study whether clumps accreting from filaments exhibit
systematically larger velocity dispersions than those expected
from energy equipartition considering the mass of the clump
only. Specifically, we consider timesteps at t = 20.8, 21.2,
23.2, 24.8, and 26.5 Myr.

In order to find cores of high column density we selected
some timestepss, t = 18.1 and 18.5Myr for RUNO3, and
t = 20.8 and 21.2 Myr for RUN20, and we applied the clump-
finding algorithm at ng = 3 x 10° and 10°.

In the SPH simulations used in this work, the SPH particle
mass (mgpy; see Table 1) is fixed. Thus, for clumps satisfying
the above conditions, we compute the gas mass as
Mgy,s = Nymspy, where N is the number of SPH particles
contained in the clump. Note that, in general, the measured
masses are smaller at higher thresholds because denser objects
are embedded within larger ones that are more massive but less
dense on average.

Finally, note also that the clumps exhibit complex
morphologies, being far from spherical in general, and often
display elongated and twisting shapes, as shown in Figure 1.
This implies that there is an inherent ambiguity in the definition
of the clump size since in general they have more than one
characteristic dimension. With this caveat in mind, we compute
the clump “radius” as R = (3V /4m)!/3, where V is the sum of
the specific volumes of all particles that belong to a clump, i.e.,

Nl

Nei Mgph Noi .
voSy S 5)
i=1

i=1 i=1 Pi

where p. is the density of particle i. With this definition, the
mean density of the clump (p = M/V) is given by,

msthcl . N
Na —1 Ny —1°
Mgph Zi:01pi Z,’:C]pi

Since feedback is not included in either of our simulations,
we need to apply some kind of criterion to avoid including
clumps that exhibit unrealistic physical properties because
if feedback had been included, it already should be dominating
their dynamics. We therefore consider only clumps that, at a
density threshold of ng = 10° cm™3, have a star formation

p= ©6)

> Ttis important to note that the original timestep between successive dumps
in both simulations was At = 0.136 Myr. This timestep proved inadequate for
resolving the formation and collapse of the densest clumps which, at
n > 10 cm—3, have free-fall times 74 < 0.045 Myr. Therefore, to find cores
of high column density we restarted the simulations shortly before new sinks
appeared with 10 times finer temporal resolution.
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efficiency, SFE5; < 65%, where the SFE5 is defined as

SFEs = )

tot,5

and My, = My + Mg, 5, where M, is the mass in stars (sink
particles) and Mg, s is the mass in dense gas above
n = 10° cm3. We choose this value as a compromise between
realistic SFEs for massive cluster-forming clumps (10%-50%,
Matzner & McKee 2000; Lada & Lada 2003) and obtaining a
reasonably large statistical clump sample.

For lower clump-defining density thresholds, we must
impose a further restriction on the maximum accepted SFE at
each threshold. Star formation is a highly spatially inter-
mittent phenomenon, so that star-forming sites only occur at a
few highly localized positions that have the highest densities
in a large MC. Thus, if one focuses on a given star-forming
sitte and measures the gas mass around it at various
thresholds, this mass will be larger for lower thresholds since
this procedure includes progressively more material from
progressively larger distances from the star-forming site. In
consequence, the measured SFE around a star-forming site
will be smaller at lower thresholds (as long as no other site
enters the domain defined by the threshold). This is consistent
with the general trend that lower-density objects generally are
observed to have lower SFEs (e.g., Palau et al. 2013; Louvet
et al. 2014).

To replicate this trend, we require progressively smaller
efficiencies at lower thresholds in order to admit a clump in our
sample. Thus, the maximum star formation efficiency, SFEnax i,
for any clump included in our sample at threshold i is given by

SFE s = (%
M.

l

)SFES, 8)

where M5 is the total mass in clumps defined at threshold
ng = 10° cm™3, M; is the total mass in clumps defined at the
ith threshold, ny, ;, and SFEs = 65%. Figure 2 shows the mass
fraction Ms/M; as a function of ny,; for the two simulations.
With this prescription, we avoid including clumps whose
measured SFEs at low thresholds are so large that at a higher
threshold they would exceed the maximum SFE allowed.

3. RESULTS
3.1. Testing for Larson’s Relations
3.1.1. The Density—Size Relation

We first check whether our clump sample, occurring in clouds
undergoing global collapse, satisfies Larson-like relations. Figure 3
shows our clumps in the n versus L and o, versus L diagrams for
the two simulations. In this plot, the different colors represent
different column densities, the dashed lines represent various
column densities, and the symbols correspond to the volume
density thresholds used to define the clumps.

Due to the resolution requirement that our clumps contain at
least 80 SPH particles, our sample is mass-limited from
below so that the clumps are constrained to have masses
M, > 1.6 M, in RUN20 and M, > 4.8 M, in RUNO3.

A first point to notice in Figure 3 is that RUNO3 produces
more clumps than RUN20. This is because in RUNO3 the
density structures are scattered throughout the simulation
domain since the clouds and clumps have been produced from
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a large number of turbulent fluctuations in the early stages of
the run. Instead, in RUN20 there is only a single large cloud
complex produced initially by the collision of the large
cylindrical warm neutral medium (WNM) streams.

From Figure 3, we also see that our clump sample does not
follow the standard Larson n oc R™' relation (Figure 3).
Instead, the entire sample occupies a triangular region in the
n—R diagram, so that no single density—size relation exists.
Additionally, we observe a very well defined group of points
at nearly constant density for each volume density threshold.
However, we also observe that when the clumps are classified
by column density (with various column density ranges
shown as the different colors in the figure), then each sub-
sample traces a slope R~! as in the Larson (1981) density—
size relation. This supports the notion that the density—size
relation is an artifact of defining clumps by a column density
threshold.

The fact that the clumps defined at a certain volume density
threshold appear to have a nearly constant volume density was
already noticed in numerical simulations by Vizquez-Sema-
deni et al. (1997) and Ballesteros-Paredes & Mac Low (2002),
and later interpreted by Ballesteros-Paredes et al. (2012) and
Beaumont et al. (2012) as a consequence of the steep slope of
the high-density side of the density PDF, which implies that
most of the volume (and even the mass) is at the lowest
densities allowed by the threshold if the threshold is above the
density corresponding to the maximum of the PDF. The same
is expected to happen for the column density if it is also
described by a lognormal or a power law with a slope steeper
than —1 (Ballesteros-Paredes et al. 2012), again reinforcing the
notion that the apparent constant column density of MCs is an

artifact of the restricted column density range allowed by the
tracers used to observe them such as the '*CO line.°

An expression equivalent to Larson’s density-size relation is
that of mass versus size, which reads M o RZ. Figure 4 shows
the scaling of size versus mass (left panels) and also the column
density versus mass (right panel) for our clump sample in the
same X ranges as in Figure 3. Solid lines correspond to
M o R? (or constant X). Again, it can be seen that, in both
simulations, when the entire sample is considered, the clumps
do not show constant column density (right panels, Figure 4) or
an M x R2 scaling (left panels, Figure 4). However, such a
correlation reappears when the data are classified by column
density. On the other hand, at every volume density threshold
(different symbols for each threshold) clumps show the relation
R o< M'/3, denoted by the dashed black line in Figure 4, which
is the scaling expected for clumps of constant volume density
(Ballesteros-Paredes et al. 2012; Beaumont et al. 2012).

It is worth noting that in the right panels of Figure 4 clumps
in a given range of column densities include clumps defined at
various volume density thresholds. Nevertheless, there is a net
trend for clumps defined at higher volume density thresholds to
fall into higher column density ranges. This behavior is also

® It has been argued by Lombardi et al. (2010) that the constant column

density of molecular clouds is an actual physical property of molecular clouds,
which can be observed in dust extinction maps that allow thresholds
significantly lower than that claimed for the physical column density of the
molecular clouds. However, the result by Ballesteros-Paredes et al. (2012) that
the observed most common column density for a cloud is dominated by the
lowest densities present in the cloud when the PDF slope is <—1 and by the
highest densities otherwise can explain the result by Lombardi et al. (2010) if
the bimodal PDF of the Galactic gas is taken into account (e.g., Vazquez-
Semadeni et al. 2000a; Audit & Hennebelle 2005; Gazol et al. 2005). We plan
to address this issue in a separate contribution.
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Figure 2. Maximum SFE (SFE .y ;) allowed for clumps included in the sample as

timesteps considered in the two simulations.

present in observational data (see, e.g., Figure 14 of Barnes
et al. 2011).

3.1.2. The Linewidth—Size Relation

With respect to the o,—R relation, we notice in Figure 3 that
the o, o R'/2 scaling is not satisfied by the whole clump
sample in either of the simulations and, instead, the ensemble
of clumps fills a large area in the oy,—R diagram (as is often the
case in observational surveys as well; see, e.g., Heyer et al.
2001; Ballesteros-Paredes et al. 2011; Heyer & Dame 2015,
and references therein). However, it can be observed that the
clumps with log(R/pc) = 0.5 are bounded from below by
approximately the Larson slope (right panels of Figure 3). A
similar effect was observed by Véazquez-Semadeni et al.
(1997). In addition, it is also noticeable that some of the
samples at certain X ranges (see, for example, the orange and
green points) seem to follow this scaling. In Section (3.2.4) we
discuss the origin of the observed scatter.

3.2. Generalization of Larson’s Relations and Energy Balance
3.2.1. The KH Diagram

The results from the previous section show that the clumps
defined by volume density thresholds in the clouds in our
simulations of global, hierarchical gravitational collapse do not
seem to follow the linewidth—size relation. Instead, Larson-like
density—size (and equivalent) relations appear when the
selection of the clumps is done by means of a column density
threshold or range. Larson-like linewidth—size relations appear
for some of the clumps.

We now test whether our clump sample follows a relation of
the form of Equation (3) or (4), i.e., we test for whether the
clouds appear to be near virial equilibrium or energy
equipartition, respectively, where the latter is consistent with
free-fall. These relations can be considered as the general-
ization of Larson’s relations when the column density of the
objects in the sample is not constant.

Figure 5 shows the ratio o/R'/? versus ¥ for clumps in
RUNO3 and RUN20. In what follows, we refer to this diagram as
the KH diagram (Keto & Myers 1986, H09). The solid line
corresponds to virial equilibrium and the dashed line corresponds
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to energy equipartition, or free-fall condition. Contrary to Figures 3
and 4, in these plots we use colors to denote the volume density
thresholds at which clumps were defined and different symbols to
represent the timesteps considered in each simulation. Column
density has been computed as ¥ = M, /7R? where M, represents
the gas mass in the clump (we will consider the stellar mass—i.e.,
sink mass, M,—Ilater).

3.2.2. Low-column-density Clumps

The first noticeable feature in these plots is the group of
clumps at the lowest volume density threshold, i.e.,
ng = 300ny (yellow symbols), which also have the lowest
surface densities. These clumps are seen to occupy a region in
the diagram that extends from the virial and free-fall lines to
over one order of magnitude in o,/R'7? above those lines at
roughly constant column density. We note that this is precisely
the kind of behavior displayed in observational clump surveys
(see, e.g., Figure 10 of Keto & Myers 1986 and Figure 13 of
Leroy et al. 2015).

Another frequent way of displaying the energy balance of
the clumps 1is by plotting the “virial parameter”
a = 2E/|Es| = 50,R/GM (Bertoldi & McKee 1992). Figure 6
shows this parameter versus the clump mass for the two
simulations. As in Figure 3, the clumps with the lowest masses
exhibit the largest scatter in «, with excesses of up to nearly
two orders of magnitude. Again, this is similar to the observed
behavior of clump surveys (see, e.g., Figure 16 of Barnes
et al. 2011).

This behavior is generally interpreted as implying that these
clouds either have an excess of kinetic energy over their
gravitational energy, therefore being unbound and needing to
be confined by an external pressure to avoid rapid dispersal, or
else they are being dispersed by the energizing action of stellar
feedback. This latter possibility is not possible in our
simulations because we have not included any kind of stellar
feedback, with the purpose of examining the action of only the
initial assembling turbulent motions and of the gravitationally
driven motions.

An alternative possibility is that if turbulent compressions in
the atomic interstellar medium (ISM) are causing the early
assembly stages of these clouds, their associated velocities may
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be larger than the corresponding gravitational velocities for
those objects, although in this case their role is to assemble the
clouds rather than to disperse them, in the context of
converging flows from large-scale turbulent fluctuations. Later,
as a cloud gains mass, its gravitational velocity may begin to
dominate over the initial turbulent compression that started it,
which may itself tend to dissipate.

To test for this, in the top row of Figure 7 we show the
clouds obtained at the lowest density threshold
(nm = 300 cm™3) in the KH diagram, but representing
different mass ranges with different colors. Note that colors
in these plots are also representative of size ranges given that
all these clumps have similar volume densities (cf.
Section 3.1.1), and therefore the most massive ones are also
the largest ones. The most massive clumps are seen to lie
closest to the virial and equipartition lines, suggesting that
these objects tend to be dominated by the gravitational velocity
rather than by the turbulent velocity. This means that they have
the largest gravitational velocities at a given column density,
consistent with an evolutionary picture where the clumps are
first assembled by large-scale turbulent compressions and, as
they grow, they change from turbulent assembly to gravita-
tional contraction.

This scenario can be further tested by measuring the mean
velocity divergence in each clump’, which shows whether the
clump is contracting or expanding as a whole. A negative mean
divergence means that the clump is contracting on average and,
if its velocity is not driven by gravity, then its contraction must
be a turbulent compression from the outside gas (e.g., Vazquez-
Semadeni et al. 2008; Gonzdlez-Samaniego et al. 2014; Pan
et al. 2015). The bottom row of Figure 7 shows the histograms
of the mean velocity divergence of all the clouds defined at the
lowest threshold (ngy = 300 cm™>) and with masses
M < 100M; which are the clumps exhibiting the largest
scatter in the KH diagram. We see that more than half of the
clumps (~60% in both simulations) have negative divergence,
indicating that they are contracting on average and therefore
are in the process of assembly, although a significant fraction is
undeniably in the process of dispersal.

Figure 8 shows the velocity divergence histograms for all the
SPH particles belonging to some individual clumps at similar
masses (top: low mass; bottom: intermediate mass) and
different values of the mean velocity divergence (left: negative,

7 The particle velocity divergence was obtained directly from the GADGET-2

code, which computes the divergence in terms of the kernel function, the
density, and the velocity of each particle. Therefore, the errors in the velocity
divergence are of the same order as those in the integration of the equations.
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converging clumps; right: positive, dispersing clumps). From
this figure, we note that the clumps, in general, contain a wide
range of values of the divergence; quite wider, in fact, than the
range of average divergences seen in Figure 7, as expected for
the distribution of partial averages of a random variable. In
particular, even the clumps with negative mean divergence
contain a substantial amount of particles where the local
divergence is positive. Note, however, that a local positive
divergence does not necessarily imply that the object is
expanding globally. For example, a core undergoing non-
homologous collapse, with an increasing infall velocity toward
its center, will have a positive divergence in its envelope be-
cause of the stretching caused by the differential infall speed.
This in fact suggests that our estimate of the fraction of
contracting clumps based on the mean divergence may actually
underestimate the actual fraction.

3.2.3. High-column-density Clumps

While in the previous section we discussed the kinetic
energy excess in low-column-density clumps in the KH
diagram, another feature in Figure 5 is that some of the
highest-column-density objects also exhibit an excess of kinetic
energy over the equipartition value, especially in the case of
RUN?20.

As mentioned in Section 1.2, clumps that appear signifi-
cantly above (by factors of a few) the virial equilibrium line in

the KH have often been interpreted as being gravitationally
unbound and require an external confining pressure to avoid
being dispersed in a crossing time (e.g., Keto & Myers 1986;
Field et al. 2011). However, it is also possible that the apparent
kinetic energy excess is due to an underestimation of the
relevant gravitational mass involved in the clump dynamics, as
proposed, for example, by H0O9 for their MC sample. Two
mechanisms that come to mind for providing additional mass
beyond that directly measured in a clump are the mass in stars
and the mass of external accreting material that is part of the
same gravitational potential well. Even if our high-X clumps
and cores do not show a very large excess in the o, /R!/? ratio,
we investigate their energetics under these two possibilities.

3.2.3.1. The “Stellar Mass Effect”

One obvious source of mass in protostellar cores is the mass in
(proto-)stellar objects, which, in the case of cluster-forming
clumps, may reach observed values of up to 30%-50% (Lada &
Lada 2003). We thus re-compute the location in the KH diagram
of those cores and clumps that do contain sink particles, adding
the mass of the latter to the computation of the core column
density (ie., now we consider ¥ = (M, + Mgnk)/7R?). The
result is shown in Figure 9 where symbols represent the same
timesteps as in Figure 5 and clumps and cores that contain stellar
particles are marked with a red diamond. From this figure, it is
clear that the affected cores undergo a displacement in the KH
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diagram that relocates them closer to the virial equilibrium line in
the case of RUNO3 and to the region between the energy
equipartition and virial equilibrium lines in RUN20. However,
some cores with such an excess do not contain sinks, and for
them, the excess cannot be explained by this correction.

3.2.3.2. The “Filament Effect”

A second possible mechanism for missing relevant gravita-
tional mass in a core may be if the core is gravitationally
accreting material from a surrounding structure, with the
accretion driving turbulence into it (Klessen & Henne-
belle 2010). In particular, it has been found in both observa-
tions (e.g., Schneider et al. 2010; Kirk et al. 2013; Peretto
et al. 2013) and numerical simulations (Gémez & Vizquez-
Semadeni 2014) that filaments may provide an accretion
channel of cloud material onto cores. In this case, it is
reasonable to ask whether the velocity dispersion in the core
reflects the gravitational potential of the entire filament/core
system.

To test for this possibility, in both simulations we visually
examined the set of dense cores in our sample exhibiting a
kinetic energy excess, but not the “sink effect,” to determine
whether they belonged to a filament. Rather surprisingly, we
found none. We thus reversed the procedure, visually searching
for filament/core systems, and then analyzing their energy
budgets.

Figure 10 shows one such filament/core system from
RUN20 at r=26.5Myr at different density thresholds.
The bottom right corner of this figure shows this system on
the KH diagram. Contrary to our expectation, this filament/
core system exhibits a lower value of the ratio o, /R!/? than that
expected for a spherical configuration, appearing below both
the equipartition and the virial equilibrium lines in this figure.
In hindsight, this is actually natural since the gravitational
potential of a filamentary object of length L is much lower than
that of a spherical object of diameter L and the same volume
density, implying that the velocity dispersion of the former
should be significantly lower than that of the latter (Pon et al.
2012; Toala et al. 2012).

10

26.5).

However, it might still be possible that the central, roundish
core, should have a larger velocity dispersion than that of an
isolated core of the same dimensions and in equipartition be-
cause of the accretion from the filament. Unfortunately, this
system only appears roundish at ng, = 10® cm™3, and even at
this threshold density, the core appears sub-virial. In fact, we
had to relax our minimum-mass selection criterion (cf.
Section 2.2.2) in order to include this core in the system since
it only contains 60 SPH particles and is therefore likely to be
significantly affected by numerical dissipation. Thus, we
cannot determine where it would be located in the KH diagram
had it been free of numerical dissipation.

To try to answer this question, we searched for some other
filament/core systems at larger scale so that the central core
would have a sufficient number of particles to be relatively free
of numerical dissipation. However, we have been unable to
accomplish this task because of our restriction that the cores
should have an SFE <65% at ng = 10° cm™3. Indeed, we
found that all larger cores that appeared to be accreting from
filaments already had efficiencies larger than this. This seems to
be a consequence of the fact that the filaments and the cores
grow roughly simultaneously, and accretion from the filament
onto the core only begins after the core has already undergone
significant sink formation, as also noted by Gong & Ostriker
(2015). This suggests that cores located within filaments in
their prestellar or early protostellar stages should not exhibit
excess kinetic energies because they are not accreting sig-
nificantly from their filaments at these stages.

We conclude that filaments, and the pre- and protostellar
cores located within them, tend to exhibit sub-virial velocity
dispersions due to the lower gravitational energies of these
configurations than those of the spherical structures assumed
for the virial velocity dispersion estimate.

3.2.3.3. Dispersing Clumps and Cores

After considering both corrections by the mass in sink
particles and by existing in a filamentary environment, we are
nevertheless left with some dense cores whose kinetic energy
excess cannot be explained by either of these effects. Such is
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the case, for example, of the cores indicated by the green and
red “+” symbols with high values of o, /R'/? in the right panel
of Figure 9. Figure 11 shows this core at a threshold
ng = 10° cm™3 and at three times separated by 0.2 Myr, with
the arrows indicating the velocity field on the plane shown. It
can be seen that the core is actually being disrupted, and so this
is indeed a case of a starless core that will probably never form
stars.

3.2.4. Scatter Propagation from KH to Larson

Figure 5 shows a considerable scatter, especially for low .
In particular, it is clear that the scatter is reduced as X increases.
We have interpreted this effect as a consequence of an
increasing relative importance of self-gravity at increasing
column density, except for those high-density objects that are
being disrupted. Since we have argued that a Larson-like line-
width—size relation appears for objects near equipartition that
are furthermore selected by near-constant column density, the
scatter around equipartition should cause a scatter around the
velocity-dispersion—size relation as well. Indeed, a large scatter
is also observed in the velocity-dispersion—size plots for both
runs (see Figure 3).

To quantify this, we note that the scatter in the quantity
H = o0,/R"/? is related to that in the velocity dispersion and in
the radius by

din'H =dlnoy, — %dlnR. ©)

The scatter dH around the equipartition value 27GY/5)!/?
(cf. Equation (4)) represents the (physical) deviation from
equipartition for a given clump. Because the scatter d’H merges
the scatter in o, and in R, it is not possible to determine how
dIn'H is distributed among d Ino, and d InR. However, we
can obtain an upper limit in the expected scatter in o, if we
assume that it “absorbs” all of the scatter in H, with none of it
going to R; that is, assuming d In o, = d In'H. In Figure 12 we
have plotted the error bars for o, in the velocity-dispersion—size
relation corresponding to the scatter in the H ratio from
Figure 5 for the three different column density ranges
(represented with the color of the error bars, which are the
same as in the plots of Figure 3). It is clear from Figure 12 that

11

the scatter in the Larson-like velocity-dispersion—size relation
at low densities (purple points and error bar) is clearly
contained within the estimated upper limit originating from
the scatter in the KH diagram. Instead, for intermediate column
densities (green points and error bar), for which there is still a
large enough number of points to obtain good statistics and the
scatter in the KH diagram is not large, we see that the upper
limit to the scatter expected for o, is relatively small, and the
points define a clear Larson-like linewidth—size relation. We
conclude that the suggestion that clumps describe Larson-like
relations when they are restricted to narrow column density
ranges and that they are close to energy equipartition is
supported by our numerical clump sample.

4. DISCUSSION
4.1. Limitations

As mentioned in Section 1.3, our numerical simulations have
a number of limitations. In particular, our SPH simulations
neglect all forms of stellar feedback and magnetic fields. We
plan to perform a similar analysis in a future contribution
including these physical agents, but our present study allows a
first approximation of the problem. Furthermore, our chosen
setups only produce objects similar to observed low-mass star-
forming clumps and cores.

The neglect of stellar feedback has allowed us to investigate
the energy budget of clumps due exclusively to the interaction
of initial background turbulence and self-gravity, without
complicating the velocity field with additional contributions
from the feedback. Our study has shown that in this context,
our simulated clump sample reproduces observed trends in the
KH diagram. In our sample, gravity has an increasingly
dominant role as the column density of the clumps increases.
On the other hand, low-column-density clumps are increasingly
dominated by turbulence, although large-scale turbulent
compressions are dominant in more than half of these objects,
in which external turbulent compressions provide the initial
“push” that triggers the assembly of the clumps. In these,
gravitational contraction is expected to take over when the
clump has grown sufficiently massive. The other half may
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equipartition lines. The bottom row shows the histograms of the mean velocity divergence in the clumps defined at ng, = 300 cm~2 and with masses M < 100M,, in

RUNO3 (left) and in RUN20 (right).

actually correspond to clumps that will not grow to high
densities and masses.

Magnetic fields, on the other hand, even if insufficiently
strong to support the clouds, as they are presently believed to
be (e.g., Crutcher 2012), might possibly delay the collapses
(Ostriker et al. 1999) or reduce the number or formation rate of
collapsing objects (Vazquez-Semadeni et al. 2005; Nakamura
& Li 2007). This may affect the kinetic energies observed in
the clumps, and we plan to repeat the present analysis in a
future contribution including both feedback and magnetic
fields. Nevertheless, the similarity of the distribution of clumps
in our simulations in the KH diagram to the observed one
suggests that these agents may only play a secondary role
during the assembly and early stages of collapse of clumps and
cores.
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4.2. Applicability to Low- and High-mass Regions

Strictly speaking, our results only apply to low-mass clumps
and cores since our sample does not include high-mass, high-
column-density (high-X) objects (see, e.g., the bottom panels of
Figure 4) similar to cluster-forming clumps, such as those
studied by Fall et al. (2010). Nevertheless, because massive
star-forming cores do appear to follow the same scaling in the
KH diagram (e.g., Ballesteros-Paredes et al. 2011, J. Balles-
teros-Paredes et al. 2016, in preparation) as MCs and the low-
mass cores we have discussed in Section 3.2, we speculate that
our results may apply to high-mass, high-> clumps. The
clumps examined by Fall et al. (2010), which were selected for
their star formation activity (not for their volume or surface
density) have masses in the range 10> < M < 10°M, and
surface densities X ~ 103M,pc 2. They are currently
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Figure 8. Histograms of the velocity divergence for all the SPH particles belonging to four representative low- to intermediate-mass individual clumps from both
simulations. The top row shows clumps from RUN20, and the bottom row shows clumps from RUNO3. The left columns show clumps with negative mean divergence
(i.e., converging on average), while the right columns show clumps with positive mean divergence (i.e., diverging on average).

experiencing strong stellar feedback that may counteract their
own self-gravity. The fact that these clumps have roughly
constant column density may indicate that these values of X are
physically selected by the requirement of exhibiting strong star
formation and feedback. Column densities much higher than
~103M, pc? may not be observed because at that point gas
removal from the clumps becomes important (Fall et al. 2010).
On the other hand, at column densities lower than those values,
the star formation activity may not be so strong (Zamora-Avilés
et al. 2012; Zamora-Avilés & Vazquez-Semadeni 2014), and
the association between the gas and the stars may not be one-
to-one because of the longer collapse timescales involved at
lower densities (Burkert & Hartmann 2013). Thus lower-
column-density objects will not be selected by a strong star
formation activity criterion.
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4.3. Comparison with Previous Work

Our results can be compared with those obtained in two
recent papers where the authors have performed numerical
simulations of su}z)ernova (SN)-driven turbulence in the ISM,
one in a (250 pc)” cubic box (Padoan et al. 2016, hereafter P
+16), the other in a parallelepiped-shaped box of 1 x 1 x 40
kpc®, with a vertically stratified medium (Ibfiez-Mejia
et al. 2016, hereafter IM+16). In both cases, turbulence is
driven for some time before turning on self-gravity. These two
papers have arrived at opposite conclusions concerning the
distribution of the simulated clouds in the KH diagram: IM+-16
find that the MC-like objects in their simulation develop near
equipartition after turning on self-gravity, while P4-16 find that
their clouds never approach equipartition and instead have a
roughly constant value of the ratio H = o,/R!/2, independent
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Figure 9. Correction to the location of sink-containing cores in the KH diagram (indicated by the arrows) due to the inclusion of the mass in sinks in the clumps’
energy balance. The cores with sinks are denoted by a red diamond. As in Figure 5, different symbols represent different times.

of the column density ¥, suggesting that Larson’s linewidth—
size relation is valid after all and equipartition is not. They also
show that a sample of outer-Galaxy clouds (Heyer et al. 2001)
appears to be consistent with this result.

The results from our initially random-driven, and subse-
quently decaying simulations support those of IM+-16 but not
those of P+16 since our clouds and clumps in general
approach the equipartition state. Moreover, we find that
equipartition is more tightly fulfilled at higher column
densities, while low-column-density objects exhibit larger
kinetic energy excesses over equipartition, in agreement with
observational data from various observational surveys (e.g.,
Barnes et al. 2011; Leroy et al. 2015). Nevertheless, the most
massive of the low-column-density objects are the ones closest
to equipartition, suggesting that the motions are dominated by
gravity.

The origin of the contrasting results between IM+16 and P
+16, both from their respective simulations and from the
observations each group considered, deserves further examina-
tion. Concerning the simulations, ample discussion has been
given by IM+16, and here we just point out that the
simulations of P4-16 may suffer from significant over-driving
of the turbulence. This is because they apply a standard value
of the SN surface density rate (~100 Myr ' kpc™?) into their
(250 pc)® numerical box. Although indeed most SN explosions
are expected to occur within this vertical span around the
Galactic midplane, the short height of the simulation box,
which uses periodic boundaries, does not allow the energy
injected by the SNe to escape to high altitudes, and to drive a
galactic fountain, as it is known to do. Instead, this energy must
remain within the small volume of the simulation, likely over-
driving the turbulence in comparison with the actual observed
levels in the ISM. For example, Figure 6 in P+16 shows that
the mean whole-box velocity dispersion increases steadily from
~20 to ~100 kms~! during the last 10 Myr of evolution
shown. However, Scannapieco et al. (2012; see also Gatto
et al. 2015) have recently found that in simulations where the
total velocity dispersion exceeds ~35 kms~!, the medium
goes into a thermal runaway regime where the gas is shocked
into an unstable regime in which the cooling time increases
strongly with temperature, causing a substantial fraction of the

14

ISM to be unable to cool on a turbulence dissipation timescale.
As a consequence, the medium goes into runaway heating,
causing ejection of gas from any stratified medium. Since the
simulation by P+16 lacks such stratification, the simulation is
probably just heating up, explaining the continuous rise of the
velocity dispersion, and justifying our interpretation that this
simulation is overdriven and therefore not very realistic for the
purpose of examining the energy budget of the clumps.

On the other hand, concerning the outer-Galaxy cloud data
used by P+-16, it is important to remark that these clouds have
in general quite low column densities, in the range 10-100 M,
pc 2. Thus, they are indeed in the column density range where
our simulations indicate that turbulence is still dominant (see
Figure 5), even if, as clouds grow, they may later transition to
being dominated by self-gravity. In fact, the outer-Galaxy
sample has been plotted by Leroy et al. (2015, see their Figure
13) together with data from several other surveys, and it can be
seen that the outer-Galaxy clouds have the lowest column
densities and the largest scatter in the 7 parameter of the whole
data set, as with our results for the low-column-density clouds
in our simulations. Nevertheless, when one considers the whole
data set, including in particular, objects of substantially larger
column densities, the tendency toward equipartition is
recovered, as shown in Figure 13 of Leroy et al. (2015) and
our own Figure 5. We therefore conclude that both the
simulations and the data considered by P16 are restricted to
regimes where indeed turbulence is dominant (either by too
strong turbulence driving or a low column density of the
clouds), but that these do not represent the general trend in the
Galactic ISM when a wide range of column densities is
considered.

5. SUMMARY AND CONCLUSIONS

In this paper we have investigated the intrinsic (rather than
derived from synthetic observations) physical conditions of
clumps and cores in two SPH simulations of the formation and
evolution of MCs formed by converging motions in the WNM.
The two simulations attempt to span a range of likely motions
in this medium.
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Figure 10. Filament/core system above (a) ng, = 103, (b) 3 x 10%, and (c) 10° ¢cm™3. The bottom right corner shows the filament/core system in the KH diagram at
thresholds ng, = 104,3 x 104, 10°, and 10° cm—3. The points corresponding to the various thresholds are seen to describe a line parallel to the equipartition and virial
equilibrium lines, but displaced to a lower value of the ratio o, /R!/2, except for the point corresponding to ny, = 10° cm—3, which is probably affected by numerical

dissipation.
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Figure 11. High-column density core from RUN20 at times r = 22.2, 22.4, and
22.6 Myr (from left to right) at ng = 10% cm >, showing that the core is being
disrupted. The velocity field, shown by the arrows, also indicates that the clump
is being dispersed, since in general it is divergent.

In both simulations, once the dense clouds form, they soon
begin to contract gravitationally, and some time later (a few
Myr) they begin to form stars, as in the general scenario
described by Véazquez-Semadeni et al. (2007) and Heitsch &
Hartmann (2008). Neither of the simulations includes turbu-
lence-driving stellar feedback or magnetic fields, and so all of
the kinetic energy is either driven by gravity or is a residual of
the turbulent/compressive motions that initiated the formation
of the clouds. Within this context of globally contracting MCs,
we have investigated whether the clumps within them follow

15

the Larson scaling relations or their generalization as proposed
by H09 and B11. We have also investigated the physical
conditions in clumps that appear to have an excess of kinetic
energy in an attempt to understand the physical processes that
cause this apparent over-virialization.

We created an ensemble of clumps in each simulation by
defining clumps as connected sets of SPH particles above a
certain density threshold ng,, so that a single clump at a lower
threshold may contain several clumps at a higher value of ny,.
The objects defined at the highest thresholds (g, > 103 cm )
are referred to as ‘““cores.”

Our results and conclusions may be summarized as follows:

1. The full ensemble of clouds, clumps, and cores does not
follow either of the Larson scaling relations, but mostly
follows their generalization, as proposed by H09
and B11. Nevertheless, low-column-density clumps in
particular exhibit a large scatter, with a significant
fraction of the clumps having values of the
H = o,/R"/? parameter of up to an order of magnitude
larger than the virial value, similar to the situation in
various observational studies.

2. We noted that, as emphasized by B11, the kinetic energy
implied by free-falling motions is only a factor of /2
larger than that for virial equilibrium. We therefore
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generically refer to this condition as “energy
equipartition.”

. In our simulations, the equipartition condition is due to
gravitational contraction by construction.

. The clumps defined at a single threshold ny do not
exhibit density—size or velocity-dispersion—size relations.
Instead, the exhibit nearly constant volume density, in
agreement with previous studies (Ballesteros-Paredes &
Mac Low 2002). However, ensembles of clumps that
exhibit near equipartition and that are selected by column
density ranges, do exhibit Larson-like relations, suggest-
ing that these relations are special cases of the more
general equipartition condition.

. We find examples of clouds, clumps, and cores that
exhibit excess kinetic energies over the equipartition level
at both low and high column densities. Low-column-
density clumps that exhibit this excess are the least
massive, while the more massive ones are closer to
equipartition. Moreover, for more than 50% of the low-
density clumps with an H excess in both simulations, the
velocity field in the clouds appears to be convergent (i.e.,
has negative net divergence). This suggests an evolu-
tionary process in which a turbulent compression initially
dominates the kinetic energy and exceeds the gravita-
tional energy of the forming cloud. However, as the cloud
becomes denser and more massive, the gravitationally
driven velocity becomes dominant. Also, this suggests
that the observation of an excess kinetic energy does not
necessarily imply that a clump will disperse or that
it needs an external thermal confining pressure to avoid
dispersal. The excess kinetic energy may simply reflect
the initial compressive motions within the clump. In this
case, instead of confinement of the cores by thermal
pressure, we have assembly by ram pressure.

. Some of the high-column-density cores that exhibit
kinetic energy excesses contain stellar particles that
increase the total gravitational potential in the volume
of the clump. When this stellar mass is added to the gas
mass in the energy budget of the core, the gas+stars
system returns to near equipartition.

16

Figure 12. Larson velocity-dispersion—size relation for clumps and cores in both simulations. Colors and symbols are the same as in Figure 3. The error bars
correspond to the scatter shown in Figure 5, and their colors correspond to the ¥ range.

7. Some high-column-density clumps with kinetic energy
excesses, however, do not contain stellar particles, so that
the above correction cannot be applied. Investigation of
the velocity field in these cases does show a rotating and/
or expanding motion, so that these objects are in the
process of being disrupted, and will not form stars.
Because this process is occurring at high densities, the
driver of these disrupting motions is likely to be the
turbulence generated by the large-scale collapse.

8. We also investigated the possibility that excess kinetic
energies in high-column-density cores might be due to
the cores being located in filamentary clumps, with net
accretion from the filament onto the core, so that the
velocity dispersion in the cores might represent the
gravitational potential of the mass in the filament.
However, this mechanism does not seem to be opera-
tional. We find that the filaments and their embedded
cores begin their evolution roughly simultaneously,
accreting material from the cloud mostly perpendicularly
to the filament. Accretion from the filament onto the core
begins later when the core has become more massive and
has already started to form stars. Thus, cores that are
actively accreting from their parent filaments are already
in advanced star-forming stages and do not correspond to
pre- or early protostellar objects.
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