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A B S T R A C T 

We investigate the effect of numerical magnetic diffusion in magnetohydrodynamic (MHD) simulations of magnetically supported 

molecular clouds. To this end, we have performed numerical studies on adaptive mesh isothermal simulations of marginally 

subcritical molecular clouds. We find that simulations with low and intermediate resolutions collapse, contrary to what is 
theoretically expected. Ho we ver, the simulation with the highest numerical resolution oscillates around an equilibrium state 
without collapsing. In order to quantify the numerical diffusion of the magnetic field, we ran a second suit of current-sheet 
simulations in which the numerical magnetic dif fusion coef ficient can be directly measured and computed the corresponding 

diffusion times at various numerical resolutions. On this basis, we propose a criterion for the resolution of magnetic fields in 

MHD simulations based on requiring that the diffusion time to be larger than the characteristic time-scale of the physical process 
responsible for the dynamic evolution of the structure. 

Key words: magnetic fields – MHD – methods: numerical – ISM: clouds – ISM : magnetic fields. 
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 I N T RO D U C T I O N  

agnetohydrodynamic (MHD) simulations of the formation and
volution of molecular clouds have played an important role in the
tudy of molecular clouds and star formation, either for the magnetic-
upport model, where magnetic fields are responsible for supporting
he clouds and their substructures against gravitational collapse (Shu,
izano & Adams 1987 ; Mouschovias 1991 ), or for the turbulent-
upport model, where the main support mechanism is the dynamical
ressure generated by turbulence (Elmegreen 2000 ; Mac Low &
lessen 2004 ). Therefore, it is important to study the effects of
umerical dissipation of the magnetic field on MHD simulations of
olecular clouds and their substructure. 
One common way of measuring the importance of magnetic fields

n the support of molecular clouds and their substructure is by
omputing the mass-to-flux ratio, denoted by μ when normalized to
 critical value for marginal support, which depends on the geometry,
ut is otherwise a constant. When a cloud is magnetically supported
gainst gravitational collapse, it is referred to as subcritical and,
heoretically, μ < 1. In this case, the cloud is expected to contract
artially and then attain a hydrostatic configuration, flattened along
he field direction (Mouschovias & Spitzer 1976 ). Otherwise, the
loud is said to be supercritical, undergoes gravitational collapse,
nd has μ > 1 (Mestel & Spitzer 1956 ). Ho we ver, if the magnetic
eld is insufficiently resolved, it is possible that a simulation

hat is in principle subcritical may nevertheless undergo spurious
 E-mail: g.granda@irya.unam.mx (GG-M); e.vazquez@irya.unam.mx 
EV-S); g.gomez@irya.unam.mx (GCG) 
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ravitational collapse due to numerical diffusion of the magnetic
ux. 
Resolution criteria are necessary for the adequate numerical

imulation of every physical process. For example, Truelove et al.
 1997 ) found that resolving the Jeans length with a minimum of four
ells a v oids spurious fragmentation on adaptive mesh refinement
AMR) hydrodynamic simulations of isothermal molecular clouds.
dditionally, Bate & Burkert ( 1997 ) found a similar resolution

ondition for smoothed particle hydrodynamics (SPH) simulations.
lso, Koyama & Inutsuka ( 2004 ) found that at least three cells are
ecessary to resolve the Field length and to achiev e conv ergence of
ome properties such as the number of clouds formed by thermal
nstability and the maximum Mach number in simulations of the de-
elopment of turbulent motions driven by the non-linear evolution of
hermal instability. More recently, Federrath et al. ( 2011 ) studied the
ra vity–turb ulence-driven magnetic field amplification of supercriti-
al clouds. They found that it is necessary to resolve the Jeans length
ith at least 30 cells in order to resolve turbulence at the Jeans scale

nd capture minimum dynamo amplification of the magnetic field. 
Resolution criteria are generally obtained by means of conver-

ence tests, which consist of increasing the resolution until a certain
eature of the flow remains invariant as the resolution is increased. In
his sense, convergence tests constitute a trial-and-error procedure.
n this work, we propose instead a resolution criterion based on
easuring a ‘numerical diffusion coefficient’ via a test problem,

rom which the dependence of the numerical diffusion time-scale on
he resolution can be inferred and compared with the characteristic
ime-scale of the physical process being investigated, thus providing
 physically moti v ated prescription for the necessary resolution.
pecifically, the requirement is that the diffusion time needs to be
© 2021 The Author(s) 
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Table 1. Molecular cloud simulations. In the first, second, and third columns the simulation’s name, its ef fecti ve and maximum resolution are shown. In the 
fourth column, we show the magnetic pressure gradient magnitudes computed at half the Jean’s length. The diffusion coefficients, free-fall times, diffusion 
times, and collapse times at the dynamically equi v alent time (see text) are shown in the fifth, sixth, seventh, and eight columns, respectively. 

Simulation Ef fecti ve resolution Maximum resolution ( pc ) |∇P B | (dyn cm 

−3 ) η ( pc 2 Myr −1 ) τff ( Myr ) τd ( Myr ) τcoll ( Myr ) 

MC7 128 7.81 × 10 −2 1.565 × 10 −29 0.293 0.428 0.083 9.6 
MC8 256 3.91 × 10 −2 1.041 × 10 −29 0.036 0.353 0.384 9.8 
MC9 512 1.95 × 10 −2 1.218 × 10 −30 0.001 0.697 51.907 –
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1 This and the other plots present in this paper were done using YT project 
(Turk et al. 2011 ). 
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onger than the rele v ant dynamical time of the structure. In this paper,
e present an application to the problem of adequately resolving the 
agnetic support against the self-gravity of a dense molecular cloud 

ore. 
This paper is organized as follows. In Section 2, we present a

uite of numerical simulations of marginally magnetically subcritical 
olecular clouds at various resolutions, which undergo spurious col- 

apse when the magnetic field is insufficiently resolved. In Section 3, 
e propose a resolution criterion based on estimating the physical 

haracteristic time-scale of the physical process being simulated, a 
easurement of the numerical dif fusion coef ficient by means of a test

imulation, and apply it to the problem of magnetic cloud support. In
ection 4, the suite of simulations aimed at computing the numerical 
agnetic diffusion coefficient is presented. In Section 5, we derive 

he numerical magnetic diffusion coefficient and apply our criterion 
o the magnetic cloud support simulations, finding an agreement with 
he resolution needed to resolve the support. In Section 6, we discuss
he implications of our results and present our conclusions. 

 M O L E C U L A R  C L O U D  SIMULATIONS  

.1 Numerical set-up 

n this section, we present a suite of numerical simulations of
agnetic support in molecular clouds using the AMR code FLASH , 
 ersion 4.5 (Fryx ell et al. 2000 ; Dube y, Reid & Fisher 2008 ;
ubey et al. 2009 ), and the ideal MHD multiwave Harten–Lax–van 
eer (HLL)-type solver (Waagan, Federrath & Klingenberg 2011 ). 
he gravitational solver applied for these simulations is the octree 
lgorithm also included in FLASH (W ̈unsch et al. 2018 ), while for the
daptive refinement, we use the L ̈ohner’s error estimation applied to 
he density (Lohner 1987 ). 

We consider an isothermal cloud that is marginally supported by 
he magnetic field (i.e. marginally subcritical), and find the minimum 

umerical resolution necessary for the cloud to actually be supported, 
ather than collapsing due to the loss of magnetic support caused 
y numerical diffusion. Each of these simulations has the same 
nitial conditions and starts with an initial ef fecti ve resolution of 32
ells per dimension, although each simulation reaches a different 
aximum resolution (see Table 1 ). They also include periodic 

oundary conditions for both the MHD and the self-gravity. 
The initial conditions consist of an initially uniform magnetic 

eld along the x -axis of 25 . 17 μG , a box size of 10 pc , and a
ensity perturbation of a 3D Gaussian profile on top of a background
ensity ρ0 : 

= ρ0 

{ 

1 + A exp 
[ 
− 1 

2 σ 2 

(
x 2 + y 2 + z 2 

)] } 

, (1) 

here A and σ are constants that represent the perturbation ampli- 
ude and a measure of the perturbation size, respectiv ely. F or this
imulation, ρ0 = 2 . 12 × 10 −22 g cm 

−3 , A = 1.50, and σ = 2.5 pc. 
his set-up results in a total mass in the computational volume of
 . 14 × 10 3 M �, a Jeans’ length of 2 . 66 pc , given by 

J = 

√ 

πc 2 s 

Gρ
, (2) 

here c s = 0 . 2 km s −1 is the sound speed, and a mass-to-flux ratio
= 0.53 where we considered spherical geometry. 
It is important to notice that this estimated value for the mass-

o-flux ratio ( μ = 0.53) yields in practice a marginally subcritical
olecular cloud because it does not include the contribution of 

he external gas and magnetic pressures on the computation of the
ritical mass-to-flux ratio (Shu 1992 ) and/or the flat geometry of
he cloud due the mass accretion along the magnetic field lines
Strittmatter 1966 ). The marginal nature of the subcritical condition is
n important feature, since otherwise the cloud evolution should not 
e very different for simulations with similar numerical resolutions. 

.2 Results of the simulations 

s mentioned in the previous section, the three simulations have 
dentical physical parameters and differ only in the maximum 

esolution allowed in each of them. We find that, while the low-
MC7) and medium-resolution (MC8) simulations undergo collapse 
fter 9.6 and 9 . 8 Myr , respectively, a dense structure is formed and
scillates around an equilibrium state for the high-resolution run 
MC9). 

The evolution of the intermediate- (MC8) and high-resolution 
MC9) simulations is shown in Fig. 1 . 1 Both simulations start their
volution in a very similar way (top left-hand and top right-hand
anels), collecting gas on the central part of the computational 
omain along the magnetic field direction. The maximum density 
n both simulations increases and eventually reaches a plateau on its
emporal evolution that is shown in Fig. 2 . The time to reach the
lateau density value is different in each simulation. We attribute 
his to the presence of different levels of numerical diffusion at
ach resolution, so that magnetic support is lost more rapidly at
ower resolution. Therefore, we consider a different, but dynamically 
qui v alent, time in each simulation, defined as the time at which
he maximum density reaches the plateau stage on its temporal 
volution. We call this stage the dynamically equi v alent for the
ifferent simulations. The dynamically equivalent times are 7.8, 7.0, 
nd 5 . 4 Myr for the simulations MC7, MC8, and MC9, respectively,
nd we consider them as the computation snapshots for the diffusion
nd dynamical times estimates (see Section 5.3). 

After the dynamically equi v alent stage, the final evolution state of
ach simulation depends on whether the resolution was enough for 
olving the magnetic field correctly or not. For MC8, as shown in
he bottom left-hand panel of Fig. 1 , the structure collapses due to
he poor numerical resolution, or equi v alently, to its high numerical
MNRAS 510, 5062–5068 (2022) 
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Figure 1. Zoomed cross-section through the z = 0 plane. Colours represent gas density, and the velocity field is represented by the black arrows. Left-hand 
column corresponds to the MC8 simulation while right-hand column to the MC9 simulation. Note the dif ferent e volution times for each simulation. Simulation 
MC8 has already developed a collapsed object at its centre by t = 9.6 Myr, while run MC9 has not done it even by t = 13.0 Myr. 
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agnetic diffusion coefficient. On the contrary, as shown in the
ottom right-hand panel of this figure, MC9 oscillates around an
quilibrium state without collapsing in agreement with its subcritical
ondition. Therefore, numerical diffusion of the magnetic field can
ause a spurious collapse of a marginally subcritical molecular cloud.
NRAS 510, 5062–5068 (2022) 
 RESOLUTI ON  C R I T E R I O N  

n the previous section, we empirically found the resolution necessary
o properly resolve the magnetic support of a subcritical molecular
loud. Ho we ver, it would be desirable to have a more physically

art/stab3663_f1.eps
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Figure 2. Temporal evolution of the maximum density in each of the 
molecular cloud (MC) simulations. The dark edge coloured •, � , � represent 
the dynamical equi v alent densities for the MC7, MC8, and MC9 simulations 
respectively. 
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2 Note that we will actually consider twice the free-fall time as the rele v ant 
time-scale because numerical simulations consistently show this to be the 
order of the actual collapse time, since the thermal pressure gradient is not 
negligible during the first stages of the collapse (e.g. Larson 1969 ; Galv ́an- 
Madrid et al. 2007 ; Naranjo-Romero, V ́azquez-Semadeni & Loughnane 
2015 ). 
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oti v ated, predicti ve criterion that can then be used in simulations
n regard to effects other than the magnetic field. Since the evolution
f any physical process is controlled by its rele v ant dynamical time,
e propose a resolution criterion based on comparing the numerical 
iffusion time in a given simulation to the dynamical time of the
hysical process under investigation. 
For subcritical molecular clouds, we obtain the rele v ant dynamical 

imes from the condition μ < 1, which requires that the Alfv ́en
rossing time be less than the free-fall time: 

A < τff , (3) 

here the Alfv ́en crossing time is given by 

A = L/v A , (4) 

ith L being the rele v ant spatial scale and v A the Alfv ́en velocity
agnitude. In turn, the free-fall time is given by 

ff = 

( 3 π

32 Gρ

)1 / 2 
, (5) 

here G is the gravitational constant. To obtain the resolution 
riterion, we compare the diffusion time with these time-scales. 

The diffusion time in the simulation may be obtained using the 
act that the effect of the spatial discretization due to the numerical
rid on the evolution of magnetic fields can be computed in terms of
 magnetic dif fusi vity coef ficient η (e.g. Bodenheimer 2007 ). Hence,
 diffusion time may be computed in terms of η, 

d = L 

2 /η, (6) 

here η is the numerical magnetic diffusion coefficient. So, a smaller 
means a larger diffusion time; ideal MHD is achieved when η is

qual to zero. 
When the numerical magnetic diffusion is large and controls the 

ynamics of the structure, we have 

d < τA . (7) 

n this case, the evolution of the structure is not physical because
t is driven by numerical diffusivity and the Alfv ́en waves up to the
avelength for which τ d = τA are damped by numerical diffusion. 
Increasing the numerical resolution reduces the numerical mag- 

etic dif fusion coef ficient, so, the numerical magnetic diffusion time 
iven by equation (6) increases. Therefore, the numerical resolution 
hould be increased until the numerical diffusion and dynamical 
imes fulfil the relation 

ff , τA < τd . (8) 
hen relation (8) is satisfied, the diffusion time is larger than the
ynamical time of the mechanism responsible for the support of 
he molecular cloud, namely the propagation of MHD waves, for 
hich the rele v ant time-scale is the Alfv ́en crossing time. Therefore,
hen relation (8) is satisfied, Alfv ́en waves can propagate without

ignificant numerical diffusion during a free-fall time, 2 and thus our 
roposed resolution criterion based on the characteristic time-scales 
f the problem consists in finding a numerical resolution that ensures
hat relation (8) is satisfied. The problem becomes now the estimation
f the numerical diffusion time-scale as a function of resolution. 

 HARRI S-LI KE  CURRENT-SHEET  

I MULATI ONS  

n order to apply the resolution criterion given by relation (8), we
rst need to measure the numerical magnetic dif fusion coef ficient η.
ith this in mind, we simulate a Harris-like current sheet (e.g. Kliem,
arlicky & Benz 2000 ; Sk ́ala et al. 2015 ). This simulation consists in

etting up a magnetic field configuration that reverses direction across 
 narrow region, maintaining total (thermal + magnetic) pressure 
quilibrium. Following the set-up of Sk ́ala et al. ( 2015 ), these sim-
lations are two-dimensional and isothermal with a computational 
omain of [ −5 , 5] pc on the x -axis, [ −0 . 6 , 0 . 6] pc on the y -axis, and
pen and periodic boundary conditions in the x and y directions,
espectively. Note that these simulations do not include self-gravity. 

The initial density and magnetic field intensity are given by 

= 

(
P tot − P B, par tanh 2 ( x) 

)
/c 2 s , (9) 

 y = 

(
8 π P B, par 

)1 / 2 
tanh ( x) , (10) 

here P tot = P th + P B is the total pressure, P th = c 2 s ρ is the thermal
ressure, and P B = B 

2 /8 π is the magnetic pressure. P B, par is the
symptotic value of the magnetic pressure at large x . 

Numerical magnetic diffusion disrupts the initial pressure equi- 
ibrium in the central region of the computational domain, which is
he region where the gradient of the magnetic field is the largest. In
rder to measure the magnetic diffusion coefficient on this region, 
e consider the induction equation in the presence of resistivity: 

∂ B 

∂ t 
+ ∇ × ( B × v ) = −∇ × ( η∇ × B ) , (11) 

here v is the fluid velocity, which, for our pressure equilibrium 

onfiguration, is zero. Assuming that η is uniform in space, we 
btain 

= 

(
∂ B 
∂ t 

)
(

∂ 2 B 

∂ x 2 

) . (12) 

ence, in order to measure the numerical resistivity corresponding to 
 given resolution, we performed the suite of simulations described 
n Table 2 , in which the deri v ati ves appearing in equation (12) are to
e measured. Each of the simulations has the same initial conditions
ut different numerical resolution. The simulations were performed 
ith the same version of the FLASH code and MHD solver. 
MNRAS 510, 5062–5068 (2022) 
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Table 2. Harris-like simulations. The first and second columns represent 
the simulation name and its resolution, respectively. The third and fourth 
columns represent numerical magnetic diffusion coefficients and magnetic 
pressure gradient magnitudes. 

Simulation Resolution (pc) η ( pc 2 Myr −1 ) |∇P B | ( dyn cm 

−3 ) 

H7 7.81 × 10 −2 6.164 × 10 −3 3.289 × 10 −31 

H8 3.91 × 10 −2 1.170 × 10 −3 3.406 × 10 −31 

H9 1.95 × 10 −2 2.950 × 10 −4 3.393 × 10 −31 

H10 9.75 × 10 −3 7.399 × 10 −5 3.383 × 10 −31 

H11 4.88 × 10 −3 1.849 × 10 −5 3.377 × 10 −31 

Figure 3. Magnetic field and density initial conditions for the Harris-like 
simulations. 

Figure 4. η versus time for the Harris-like simulations. 

5

5
s

T  

t  

c  

i  

(  

t  

m  

p  

a  

c
 

r  

o  

Figure 5. The numerical dif fusi vity η versus the magnetic pressure gradient 
magnitude. The blue points represent the measured values, while the red line 
is a fit to those points. 

i  

a

5

I  

m  

d  

t  

s  

P  

a  

s  

e  

c
 

s  

fi  

a
2  

i  

t  

i  

c

η

w  

u  

r
i  

a  

t  

T  

t  

e  

s  

t  

r  

v  

a  

I  

3 We also computed the diffusion parameters for the eight-wave MHD solver 
included in the FLASH 4.5 distribution. These results are shown in Appendix A. 
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 RESU LTS  

.1 Numerical magnetic diffusion coefficients of the Harris-like 
imulations 

o measure the numerical magnetic diffusion coefficients of each of
he simulations presented in Table 2 , where we have set the initial
onditions to obtain the density and magnetic field profiles shown
n Fig. 3 . We e v aluated numerically equation (12) on the point
 x m 

, y m 

) = ( −0 . 5493 pc , 0) ≡ ( −x 0 , 0), which is the point where
he magnetic field strength is half of its maximum magnitude. The

agnetic dif fusion coef ficient measured o v er time, following the
rescription by Sk ́ala et al. ( 2015 ), is shown in Fig. 4 . As expected,
 higher resolution yields a smaller numerical magnetic diffusion
oefficient, thus a larger diffusion time. 

Since η varies in time, we consider its maximum value at each
esolution as the measured value to a v oid that the time term present
n the denominator of the discretization of equation (12) dominates
NRAS 510, 5062–5068 (2022) 
ts temporal evolution. The resulting numerical diffusion coefficients
re listed in the third column of Table 2 . 3 

.2 Scaling of η for different conditions 

n addition to depending on the resolution, the value of the numerical
agnetic diffusion coefficient depends also on the magnetic field

eri v ati ves in the region where it is measured. In order to estimate
his dependence, we performed several Harris-like current-sheet
imulations for a range of values of the magnetic pressure parameter
 B, par (see equation 10) while keeping the same numerical resolution
nd the same width of the central transition region (i.e. keeping the
ame value of x 0 ) used in simulation H7. Thus, varying P B, par is
qui v alent to varying the magnetic pressure gradient, since x 0 is kept
onstant. 

For this set of simulations, we chose values of P B, par that corre-
pond to magnetic field values in the range of [10.56, 105.64] μG. We
nd that η scales almost linearly with the magnetic pressure gradient,
s shown in Fig. 5 , for which we obtained a fit given by log ( η) ≈
5.48 + 1.04 log ( |∇P B | ). We attribute this behaviour to the fact that,
n the Harris simulations, the driver of the numerical diffusion is
he magnetic pressure gradient. Therefore, this result allows us to
ncorporate different values of the magnetic field gradient into the
omputed value for η by making the correction 

2 = η1 
|∇P B2 | 
|∇P B1 | , (13) 

here η2 and η1 are the numerical magnetic dif fusion coef ficient
nder the conditions of magnetic pressure gradient ∇P B 2 and ∇P B 1 ,
espectively. In our case, this allows us to use the derived values for η
n the Harris-like simulations. We, therefore, proceed as follows: for
 given refinement level, the pressure gradient, ∇P B 1 , is measured at
he same point as η1 (see Section 5.1) in the Harris-like simulations.
hese measurements are listed in the third column of Table 2 . In

he molecular cloud simulations, ∇P B 2 is measured at a distance
qual to half the Jeans length from the cloud’s centre, since we are
tudying the evolution of a molecular cloud that would collapse in
he absence of magnetic support, therefore, the Jeans length is the
ele v ant characteristic length scale. Therefore, using the measured
alues for η1 , |∇ P B 1 | , and |∇ P B 2 | (listed in Tables 1 and 2 ), as well
s equation (13), we obtain the values of η2 also listed in Table 1 .
n turn, this allows us to compute the diffusion time and compare
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t with the free-fall time to ensure that the numerical resolution is
nough to correctly model the dynamical evolution. 

.3 Diffusion and dynamical times 

ccording to equation (6), the diffusion time-scales can be obtained 
rom the numerical magnetic diffusion coefficients and the spatial 
cale across which the magnetic field is being diffused. As mentioned 
n the previous subsection, we consider half the Jeans length as
he diffusion length scale. The diffusion and free-fall times are 
omputed at the time when the simulations reach their dynamically 
qui v alent state (see Section 2) and are listed in Table 1 . It is worth
oting that the computed free-fall times differ only slightly for the 
ifferent resolution simulations, while the estimated diffusion times 
ary by almost three orders of magnitude, as a consequence of the
trong dependence of the magnetic dif fusion coef ficient on numerical 
esolution. Specifically, for the MC7 and MC8 simulations, the 
iffusion time is smaller than twice the free-fall time. In other words,
he numerical diffusion of the magnetic field controls the dynamics 
f these clouds. Unsurprisingly, the subcritical cloud spuriously 
ollapses. 

In contrast, for the MC9 simulation, the diffusion time is larger 
han twice the free-fall time. So, this simulation is not dominated by
he numerical diffusion of the magnetic field and it does not collapse.

In conclusion, the results from this section show that our resolution 
riterion, based on comparing the numerical diffusion time-scale with 
he characteristic time-scale of the physical problem, is consistent 
ith the resolution empirically found to be necessary in order to 

orrectly simulate the magnetic support of a cloud in Section 2. 

 DISCUSSION  A N D  C O N C L U S I O N S  

n this work, we have found that a numerical simulation of
 marginally magnetically subcritical molecular cloud undergoes 
purious collapse if the numerical resolution is insufficient, and 
resented two different approaches to estimate the resolution required 
n order to properly resolve the magnetic support. The first one 
onsisted in a study of the evolution of a marginally subcritical 
olecular cloud, finding that when the resolution is poor, numerical 

iffusion of the magnetic field causes the spurious collapse of the 
loud. The second approach consisted in the implementation of a 
hysically moti v ated resolution criterion, relying on the comparison 
f the numerical magnetic diffusion time implied by the resolution 
sed with the rele v ant dynamical time, in this case (twice) the free-
all time. 

This criterion reco v ers the required resolution, but in addition, it
rovides a physical interpretation and a predictive procedure for the 
hoice of the required resolution, provided some additional numerical 
ests are performed in order to estimate the numerical diffusion for
 given physical process, using a given solver. For example, for
old atomic clumps that can grow from thermal instabilities in the 
resence of a magnetic field on time-scales of the order of the cooling
ime, we may compare this dynamical time-scale with the magnetic 
iffusion time and obtain equations analogous to (7) and (8). 
It is important to note that, in this work, we have restricted our

tudy to the effect of numerical magnetic diffusion on the evolution 
nd collapse of subcritical molecular clouds. On the other hand, in 
he case of supercritical clouds with μ > 1, the relation between 
he free-fall and the Alfv ́enic crossing times corresponding to that 
resented in equation (3) becomes instead 

ff < τA . (14) 
n this case, collapse al w ays occurs but, if the resolution is insuffi-
ient, the collapse may occur too rapidly, since it is known that the
agnetic forces can in principle delay it (e.g. Ostriker, Gammie &
tone 1999 ). Thus, the required numerical resolution to a v oid this
ituation is the one that ensures the fulfilment of 

ff < τA < τd . (15) 

herefore, insufficient resolution in either the subcritical or super- 
ritical cases may lead to an o v erestimation of the star formation
ate. 
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PPENDIX  A :  MAGNETIC  DIFFUSION  

OEFFIC IEN TS  F O R  T H E  E I G H T- WAV E  F L A S H 

H D  SOLV ER  

he magnetic diffusion coefficients and magnetic pressure gradients
btained for the standard eight-wave FLASH MHD solver are shown
n Table A1 . 

These values were computed with the same procedure and initial
onditions described in Section 4. The scaling of η for different
onditions was also performed in the way described in Section 5.2,
btaining log ( η) ≈ 25.49 + 1.04 log ( |∇P B | ). 
NRAS 510, 5062–5068 (2022) 
able A1. Magnetic diffusion for the eight-wave MHD solver. The first
nd second columns represent the simulation name and its resolution,
espectively. The third and fourth columns represent numerical magnetic
if fusion coef ficients and magnetic pressure gradient magnitudes. 

imulation Resolution (pc) η ( pc 2 Myr −1 ) |∇P B | ( dyn cm 

−3 ) 

7 7.81 × 10 −2 4.209 × 10 −3 3.289 × 10 −31 

8 3.91 × 10 −2 1.040 × 10 −3 3.400 × 10 −31 

9 1.95 × 10 −2 2.772 × 10 −4 3.389 × 10 −31 

10 9.75 × 10 −3 7.179 × 10 −5 3.378 × 10 −31 

11 4.88 × 10 −3 1.819 × 10 −5 3.371 × 10 −31 
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