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ABSTRACT

The formation mechanism of massive stars remains one of the main open problems in astrophysics, in particular the relationship
between the mass of the most massive stars and that of the cores in which they form. Numerical simulations of the formation
and evolution of molecular clouds, within which dense cores and stars form self-consistently, show that the core mass increases
in time, and also that the most massive stars tend to appear later than lower mass stars. We present an idealized model that
incorporates accretion onto the cores as well as onto the stars, in which the core mass growth is regulated by a ‘gravitational
choking’ mechanism that does not involve any form of support. This process is of purely gravitational origin, and causes some
of the mass accreted onto cores to stagnate there, rather than being transferred to the stars. In addition, we estimate the mass
of the most massive allowed star before its photoionizing radiation is capable of overcoming the accretion flow. This model
constitutes a proof of concept for the simultaneous growth of the gas reservoir and the stellar mass, the delay in the formation
of massive stars observed in numerical simulations, the need for massive, dense cores in order to form massive stars, and the
observed correlation between the mass of the most massive star and the mass of the cluster it resides in. Also, our model implies

that by the time massive stars begin to form in a core, a number of low-mass stars are expected to have already formed.
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1 INTRODUCTION

The formation mechanism of massive stars and its relationship to
the physical nature and state of the dense cores in which these stars
form is a crucial ingredient for understanding the origin of the stellar
initial mass function (IMF) and the evolution of molecular clouds,
which are strongly affected by the feedback from these massive stars.
Two main models exist for the formation of massive stars, which are
based on fundamentally different scenarios for the process. On the
one hand, the competitive accretion (CA) scenario (Bonnell et al.
2001a) assumes that the stars in a forming cluster, as well as the
gas from which they accrete, both generate and reside in a common
gravitational potential well. Thus, the stars near the bottom of the
well accrete at a higher rate, and therefore become more massive
than stars in the periphery. On the other hand, the turbulent core
(TC) model (McKee & Tan 2003) assumes that a massive, dense
core must form, so that the pressure within it is high enough to
provide high enough accretion rates onto the protostar that they can
persist and resist the feedback from the protostar itself.

In spite of their very different sets of assumptions, they are
both developed within the context of a fixed gas mass reservoir.
However, recent numerical simulations of star cluster formation
under the global hierarchical collapse (GHC) scenario have shown
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that the clumps and cores harbouring star-forming regions grow
in density, mass, and size due to accretion from their respective
environments (Heitsch & Hartmann 2008; Heitsch et al. 2008;
Vazquez-Semadeni et al. 2009; Camacho et al. 2020; Gonzilez-
Samaniego & Vazquez-Semadeni 2020), and that the formation of
massive stars begins a few to several Myr after the first stars began
to form (Vazquez-Semadeni, Gonzdlez-Samaniego & Colin 2017).
In addition, Gonzalez-Samaniego & Véazquez-Semadeni (2020) re-
ported the somewhat surprising result that the dense gas mass and
density in the star-forming regions in their simulations manage to
continue growing even when star formation has already begun. This
implies that somehow the mass transfer rate from the clump scale
to the protostars is not fully efficient, allowing part of the gas mass
to ‘stagnate’ in the core, thus causing the latter’s mass to grow. In
this case, the natural evolution of a core would be to start out as
a low-mass star-forming structure, and to evolve into a high-mass
one, until finally destroyed by its own stellar population. In addition,
this would provide a possible natural, physical explanation for the
observed correlation between the mass of the most massive star in a
young cluster with the cluster’s mass (e.g. Weidner & Kroupa 2006;
Weidner, Kroupa & Bonnell 2010), if the latter in turn is somehow
capped by the parent clump’s mass, as also suggested by Oey (2011).

However, several important questions then arise, such as (1) What
is the mechanism that allows the cores to accumulate mass without
transferring it fully to their central parts? (2) How does the core
mass growth correlate with the stellar mass growth? (3) At what
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point during a core’s growth does its internal stellar content become
capable of disrupting the core? (4) Does this limit depend on the
boundary or initial conditions of the core’s growth?

A possible mechanism of core growth could be that turbulence
within the core maintains it in approximate equilibrium (McKee &
Tan 2003), so that it can continue to accumulate mass without
collapsing. However, since the core itself must have formed by
gravitational contraction and accretion from an external environment,
it does not appear feasible that the collapse would be halted by
virialization at the core scale while continuing to accrete at the large
scale (as suggested, e.g., by Field, Blackman & Keto 2008), and then
resume again to form stars. Instead, a continuous mechanism of core
growth would be desirable. An alternative explanation is provided
by the GHC scenario (Vazquez-Semadeni et al. 2009, 2019), which
proposes that each level in the hierarchy of density structures within
molecular clouds is accreting from its parent structure due to large-
scale gravity.

At the scale of accretion onto the young stellar objects (YSOs),
it is important to note that the standard Bondi—Hoyle-Lyttleton
accretion mechanism (Hoyle & Lyttleton 1939; Bondi & Hoyle 1944)
assumes that the accretion is driven exclusively by the gravity of the
(proto)stellar object, neglecting the self-gravity of the gas. Clearly,
the gas flow cannot be driven by this mechanism during the pre-
stellar stage of collapse of a core, since there is no stellar object
yet during that period. The gravity from the stellar component also
cannot be the driver of the flow at large distances from the stellar
object, where the mass is dominated by the gaseous component, even
after a YSO has appeared. Therefore, accounting for the self-gravity
of the gas is crucial at all radii during the pre-stellar stage, and at the
large (core) scale, during both stages. This was taken into account
in the CA scenario (Bonnell et al. 2001a), although still within the
context of a fixed core mass.

In this paper, we address these questions, along the following
steps: we first discuss a plausible mechanism of core mass growth
through gravity-driven accretion for isothermal spherical collapse,
regulated by the logarithmic slope of the density profile, including the
possibility of deviations due to the presence of filaments (Section 2).
Next, we explore how the instantaneous core mass limits the mass
of the most massive star that the core can harbour (Section 3). We
then determine the time when the photoionizing photon flux from
the most massive star becomes capable of destroying the core, by
equating the power of the accretion onto it to the heating power from
the ionizing photons (Section 3.1). We conclude in Section 5 with
a summary of our results and some conclusions. It is worth noting
that, in a closely related study, Myers (2011) considered both clump-
to-core as well as core-to-protostar accretion, although he focused
more on the generation of the stellar mass distribution, while here
we focus on the simultaneous evolution of the core’s mass and the
mass of the most massive possible star.

2 CORE MASS EVOLUTION

2.1 Core structure and evolution in strict spherical geometry

The most general analytical solutions of spherical and isothermal
gravitational collapse that describe (under idealized conditions) the
collapse of dense molecular cloud cores (Whitworth & Summers
1985) show that the latter go through two distinct asymptotic dynamic
evolutionary stages, each of which has two distinct spatial regions,
denoted inner and outer. This evolution is described via a similarity
analysis, in which the variables are non-dimensionalized, and are
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functions of the ‘similarity variable’, x = r/ct, where r is the radius,
t is time, and c¢; is the isothermal sound speed.

The time at which the protostar (formally, the singularity) forms is
usually denoted ¢ = 0, and so the time interval ¢ < 0 (which implies
x < 0 as well) corresponds to the pre-stellar stage, while the interval
t > 0 corresponds to the protostellar stage. During the pre-stellar
stage, the inner region has a uniform density and a (negative) infall
speed that scales linearly with radius (v(x)  x), so that its magnitude
decreases inwards. The size of the inner region is comparable to the
Jeans length corresponding to its uniform density (Keto & Caselli
2010). The outer region has a density profile p(x) oc |x|~2 and an
infall speed that decreases with radius as v(x) oc x~! if the speed
is required to vanish at infinity (see equation 3.8 of Whitworth &
Summers 1985 with y,, = 0). During the protostellar stage, the
inner region has p(x) « x¥2 and v(x) « — x~ "2, and the outer
region has p(x) o< x~2 and again v(x) oc — x~ .

In the strict spherical description, during the pre-stellar stage, the
mass contained within a certain fixed radius increases because both
the central and the mean density increase with time. However, during
the protostellar stage, the gaseous mass in the core remains fixed,
because it can be shown that the radial density profile p(x) o x~2
and the non-dimensionalization of p by the time-dependent quantity
47tG#* combine to make the density profile independent of ¢. That is,
the density profile becomes fixed in time, and so does the gaseous
mass in the core (see also Murray & Chang 2015). Only the mass of
the central protostar increases with time.

In the remainder of this section, we revisit the accretion flow into
and across the core towards the star, using the prescription introduced
in Gémez, Vazquez-Semadeni & Palau (2021, hereafter Paper I),
where we presented an approximate model for the evolution of the
average logarithmic slope of the radial density profile of a core
embedded in a uniform background.! The model can be thought
of as describing the temporal transients undergone by the density
profile during the early stages of the collapse, as well as the ‘spatial
transients’ (flattenings) of the slope happening at the outer and inner
boundaries of the core. The outer edge, denoted r., is defined as
the radius at which the core merges with the background, while the
inner edge, denoted r;, is defined as the radius where the spherical
symmetry assumption must break down due to the formation of an
accretion disc (Fig. 1). Note that these transients are not considered
in the classical asymptotic Larson—Penston (Larson 1969; Penston
1969) solutions, which, by their very asymptotic nature, are valid only
far away from temporal transients and border effects. In reality (e.g.
in numerical simulations including a background; Naranjo-Romero,
Vazquez-Semadeni & Loughnane 2015), the slope varies with time
and radius, and the model approximates it by a single, time-dependent
slope from r; to r.. The model allows the calculation of the gravity-
driven accretion rate at any given radius r, which we will compute at
both . and r; to respectively estimate the accretion onto the core and
from the core onto its innermost parts, where it is assumed to form
stars.

It is worth noting that the evolving power-law profile of our model
represents an ‘average’ slope of the formal solution by Whitworth &

ISince the background is assumed uniform, or at least shallower than the core,
it must also be gravitationally unstable, and therefore, undergoing collapse.
However, as proposed in the GHC scenario (Vazquez-Semadeni et al. 2019),
the background may be undergoing large-scale collapse towards a different
collapse centre than that of our core, so that the latter can be thought of as
collapsing locally while ‘riding’ the large-scale collapse flow in a conveyor
belt fashion (Longmore et al. 2014).
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T Z(r) < £(r)

Figure 1. Schematic diagram of the assumed core boundaries and structure.
The core is assumed to be immersed in a medium with a uniform (or slowly
varying) density, into which the core merges at an outer radius r., whose
initial value is ro. In its innermost region, the core is assumed to end at an
internal radius r;, below which the spherical symmetry ends, perhaps due to
the presence of an accretion disc. We refer to the region r < r; as the stellar
region. The core accretes mass from its environment at a rate F(r.), and
accretes onto the stellar region at a (generally lower) rate F(r;). We refer to
the condition F(r;) < F(r.) as gravitational choking.

Summers (1985) only in a loose, qualitative way, since our model is
not ‘derived’ by any form of averaging from the formal solution.
Instead, our model simply represents an approximate, idealized
spherical core, forced to have a power-law profile from its centre to a
radius equal to the initial Jeans length in the background medium, ry,
and accreting at each radius at the rate dictated by the gravity internal
to that radius. In this sense, at the start of its evolution (formally ¢ ~
—tr, Where tg is the free-fall time of the background medium, so that
t = 0 when the singularity forms), our model represents exclusively
the flat part of the true density profile. Subsequently, during the time
interval —tx < t < 0, the flat part in the true solution shrinks in size,
and the =2 region grows in size. Our r~” profile, with 0 < p < 2,
qualitatively represents the transition from a fully flat to a fully 2
profile, albeit with no detailed averaging of the true profile.

Finally, we remark that the fundamental aspect of the present
model is that the core’s mass is time dependent, due to accretion
onto it from its environment. Therefore, the core’s mass grows
simultaneously with the stellar mass it contains, and the main goal
of this paper is to compare these two growth rates.

2.2 Core mass evolution in spherical geometry: gravitational
choking

Already the first numerical simulations and analytical calculations of
isothermal spherical collapse showed the development of a density
profile approaching p(r) oc ¥~2 (Larson 1969; Penston 1969). The
early interpretation of such a profile was that a period of quasi-static
contraction (Shu 1977) was required in order for sound waves to
establish detailed pressure balance throughout the core, similarly to
the case of a hydrostatic Bonnor—Ebert (Ebert 1955; Bonnor 1956)
sphere. However, a recent study (Li 2018) has shown that the r~2
profile can arise simply from letting the radial infall speed at every
radius r be the gravitational velocity induced by the gas mass internal
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to that radius,

2GM
) = 1/ 0, ()

where

M(r) = / 4rp(r'yr* dr’, 2)
0

and requiring that the accretion rate at radius r,

F(r) = dmp(ryv(rr?, A3)

be independent of radius. Note that F(r) has units of mass per unit
time, and corresponds to the rate at which mass accretes through a
surface of radius r.

Furthermore, in Paper I an additional step was taken by considering
the transient evolution of the logarithmic slope of the core’s density
profile. The core was assumed to begin its life as a moderate, arbitrary
density fluctuation, in an isothermal medium, of radius r. & L;(p¢)/2,
where p is the density of the background medium and L;(py) is the
Jeans length at that density. During the pre-stellar stage studied in
that paper, the core was assumed to evolve by increasing the slope of
its density profile, keeping r. fixed. However, as we shall see below,
7. can vary over time, and so in general we will have r, = r(#). For
the radius-averaged density profile from r = 0 to r = r,, Paper |
assumed a power law of the form

—-P
p(r) = po (L> 4)
14

c

at all times. Note that this is not strictly true since, as seen in
equation (5) below, the slope varies at different rates at different
radii. In this context, p should be regarded as the mean logarithmic
slope of the density profile over the core’s radial extent.

Then, making the approximations that the infall speed is given by
equation (1) and that the density profile is given by equation (4) at
all times (i.e. that it evolves from one power law to another), and
introducing them into the continuity equation, Paper I showed that
the rate of change of the logarithmic slope p at radius r is given by

dp() _ (33 \ (4nGpo\ 7 [/ro) " s
dr _( 2p>(3—p) {—ln(r/rc)}' ©
Furthermore, Paper I noted that the sign of this derivative is

determined exclusively by the factor (3 — 3p/2) in the right-hand

side of equation (5), so that, if p < 2, then the slope increases over
time, while if p > 2, then the slope decreases. If p = 2, the slope
remains stationary. That is, p = 2 is an attractor for the logarithmic
slope of the density profile of a flow generated by the gravitational
attraction of the internal mass, under spherical symmetry.

An additional implication of equations (1) and (4) for the velocity
and density profiles is that, if p # 2, then the accretion rate given by
equation (3) is not constant with radius, but instead depends on r as

373,30\ /2
128G pyr; r(3_% )
3-p
As areference, the above expression, expressed in dimensional form

and evaluated at the initial outer boundary of the core, ry = r.(t =
0), reads

Fr)= ( (6)

F(ro) =

1.88 x 103( Mg Myr™") ( ro )*( 1o )3/2. o

GB—-p)'2 17[)'3 103 cm™—3
Differentiating equation (6) with respect to the radius then gives

dF(r)  32-p) (128n3cpgrgp>”2 (-15)
= r\" 2/,

8
dr 2 3—p ®
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This equation shows that the accretion rate F(r) decreases with
decreasing radius for p < 2, implying that not all of the mass entering
the core at its outer boundary can be transferred to its centre. Some
of the mass is trapped in the core, causing the core’s mass to grow,
as long as p < 2. We refer to this phenomenon as gravitational
choking of the gravity-driven inflow. It is important to note that
this phenomenon does not involve any kind of support; the gas is
still freely infalling at all radii as dictated by equation (3), but the
gravity-driven infall rate decreases with decreasing radius. That is,
for a profile with p < 2, the gravity of the material inside r just cannot
transfer mass at a constant rate across the radial extent of the core.

Finally, it is also important to note that equation (6) implies, for
strict spherical symmetry, that the mass accretion flow vanishes at
r = 0 during the pre-stellar stage, in which p < 2. This situation
changes during the protostellar stage, which starts when the density
profile slope reaches p = 2, since at this point, the accretion rate
F(r) becomes independent of radius. That is, during the protostellar
stage, in spherical geometry, all of the mass entering through the
core’s boundary is transferred to the central stellar object.

Summarizing, under spherical symmetry, three important condi-
tions are reached when the slope reaches the value p = 2:

(i) the slope becomes stationary;

(ii) the mass accretion rate becomes independent of radius (all the
mass entering the core on the outside is uniformly transferred across
all radii);

(iii) a singularity (protostar) is formed.

Note that the latter condition does not follow from the model
in Paper I, but rather from the similarity solutions and numerical
simulations (e.g. Larson 1969; Whitworth & Summers 1985), which
show that the entire density profile becomes a single power law with
a logarithmic slope of —2 when the central singularity first appears.
The exact solution has a constant density inner region and an r—2
outer envelope during the pre-stellar stage. When the central region
shrinks to zero radius, the singularity appears.

2.3 Mass fraction retained in the core per unit time

We now wish to estimate the amount of mass that is retained in the
core and the amount of mass that goes into ‘stars’ as a function of
time. However, as noted above, equation (6) implies that, for all p <
2, the accretion rate F(r) vanishes at the centre. We can circumvent
this problem by noting that the spherical geometry assumption cannot
strictly extend to zero radius, but rather must end at some inner radius
ri, representing, for example, the radius at which an accretion disc
forms.” In this case, the fraction of mass retained in the core per unit
time is given by the accretion rate at the outer boundary, r., minus
the accretion rate at r;. We can thus write

) N\ 32-p)
Mcore = F(ro) |:1 - ]:(rl):| = F(ro) |:1 - (ﬁ) :| . C))

F(re) re

Itis worth noting that, in the idealized, perfectly spherical collapse,
during the pre-stellar stage with p < 2, all of the mass entering the
core is retained in the gaseous phase, since the central density has
not diverged yet, and so there is zero mass transfer to the ‘stars’ (the
region r < r;). Conversely, the mass transfer from the boundary to the

2Note that this internal boundary of the core is not related in any way to
the transition between the inner and outer regions of the core discussed in
Section 2.1. Instead, it just accounts for the fact that the spherical symmetry
must break down at radii comparable to the size of an accretion disc.
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centre becomes 100 per cent efficient at the onset of the protostellar
stage (the time at which the singularity — the protostar — appears),
because at that time the logarithmic slope becomes p = 2. That is,
in the idealized, perfectly spherical case, the core transitions from
having zero net mass transfer to its centre to having 100 per cent
efficient mass transfer at the moment of singularity formation.

However, in real molecular cloud cores, the actual profiles ap-
pear to be shallower than —2 even after protostellar objects have
appeared. Indeed, the mean slope for the compilation of cores
examined in Paper I was found to be p =~ 1.9 for low-mass cores
and p &~ 1.7 for high-mass cores. Moreover, in Fig. 2 we show
the spherically averaged density profiles of the three star-forming
regions appearing in the simulation LAFO (without stellar feedback)
studied by Gonzdlez-Samaniego & Vdzquez-Semadeni (2020), see
Appendix A, from the onset of star formation to a few megayears
later, showing that the logarithmic slopes are consistently shallower
than —2.> The reason for this is not clear, but one possibility is that
filamentary accretion flows may cause a flattening of the spherically
averaged density distribution. As a proof of concept, in Appendix B
we show that the superposition of a uniform-density filament on
top of a power-law spherical density distribution flattens the net
spherically averaged profile, thus decreasing the depth of the core’s
gravitational potential well.

We thus suggest that the presence of filaments in hub—filament
systems can flatten the spherically averaged density profile, thus
causing the gravitational attraction of the inner gas mass to be
insufficient for driving all of the material entering the core to be
transferred to the central stars, and therefore allowing the core to
grow by mass accumulation. In the next section, we now describe
the simultaneous mass growth of the central star(s) and of the core,
as a function of time and of the density profile’s slope.

2.4 Evolution of the core’s mass and radius

Following Paper I, let us assume a core with the density profile given
by equation (4), surrounded by an environment at constant density
po. Let us ignore, for the moment, the core’s inner boundary at r;
and label it as ‘core’ the gas with density greater than pg. Then, the
core’s mass M. is given by

47

Mc(p) = 3_pr3p0

_ 32Mo ( e )3 (o). (10)
3—p \lpc 103 cm—3

This equation gives the time dependence of the core’s mass implicitly,
through the time dependence of p given by equation (5). However,
since the slope p becomes stationary after forming a star (possibly at
a value p < 2 due to the presence of filaments), and we are assuming
that po remains constant during this stage, the mass growth of the
core caused by accretion and gravitational choking requires the core’s
radius r, to increase —i.e. the core expands (see Fig. 3). This implies a
departure from the asymptotic self-similar solution, which implicitly

pushes the core boundaries to infinity. For a finite core, then, the
expansion rate dr./dz, after the slope becomes stationary, can be

31t is important to note that these slopes cannot be attributed to the profiles
being determined by the gravity of the central stellar objects, as in Shu’s
inside-out collapse solution (Shu 1977), since the gaseous mass at most of
the radii indicated in the figure is much larger than the stellar mass (see e.g.
fig. 3 of Gonzédlez-Samaniego & Vdzquez-Semadeni 2020).
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Figure 3. Evolution of the core’s density profile. Since the core results from
the collapse of a region at constant density, its outer edge (r¢) is initially
107164 —— t=0.0 Myr equal to the environment’s Jeans length. As the gas surrounding the core is
- Group 2 — t=1.0 Myr accreted, the core’s density profile steepens. After the density slope becomes
10717+ S === linear fit: p=1.28 stationary, the continued accretion implies that the core’s size increases (see
\‘\.\' — : = ;é m: Appendix C). The core’s inner boundary (r;) is assumed to remain constant
— 10-181] ~. =3 . .
o 10 \\'\' t= 4.1 Myr throughout this evolution.
IS '~ — t=51Myr
© 10719 - \\.—\—- t = linear fit: p=0.98
2 \\,\ In turn, this mass growth rate must be equal to the net accretion rate
107204 given by equation (9), neglecting the factor within square brackets,
) since we are ignoring the core’s inner boundary. We thus have
107414
dr, 2
—~ ~Z[23 - p)nGpyl"*re. 12
Lo-22] | o 326Gl (12)
-1 0 1
10 10r Ipcl 10 It is thus seen that r, grows approximately exponentially.
In Appendix C, we show that the mass increase due to the evolution
of p occurs on a shorter time-scale than that for the increase of r..
10-17. N Group 3 _ ¢~ g0 myr Therefore, the core’s mass must grow initially by increasing the slope
N --=- linear fit: p=0.89 of its density profile at nearly constant radius . (during the pre-stellar
N —_— = . . . . .
o _ t - ;2 my: stage), and later by increasing its size at a nearly fixed slope (during
— 107184 N i |inea}fit:);>=1.05 the protostellar stage). However, due to the presence of filaments,
IE t=3.0 Myr we expect that the slope may saturate at a value p < 2. Thus, the
S 10-19] core’s mass can continue to grow by gravitational choking until the
= accretion supply is exhausted, and the evolution of the core’s mass
S . can be followed together with that of the internal stellar object(s).
10775 We now take into account the fact that the stellar mass accumulates
at the centre. In this case, equation (12) reads
-21 ]
10 N\ 3@-p)2
T T T %Ng[2(3— Y7tG po]'? 1— ni (13)
101 100 101 dt ~ 3 p Lo re P s
C
r[pcl

Figure 2. Spherically averaged density profile for ‘clumps’ in the numerical
simulation LAFO of Gonzélez-Samaniego & Vazquez-Semadeni (2020) at
different times after the formation of the first stellar particle; each clump
is clearly identified as a different star-forming region in the numerical box
and they are labelled as Group 1, Group 2, and Group 3. The median of
density cells in spherical bins (shells) is used to compute the density profile.
In each panel dashed lines represent the shallowest and steepest slopes for
the different times considered. In each clump and at all the times considered,
density profile slopes are always lower than p = 2 (represented by the dot—
dashed line in each panel). Interestingly, we do not see an evolutionary trend
in the profiles.

related to the mass growth rate within the core by taking the time
derivative of equation (10),
dM. _ 1271,00rc2 dr,

dt =~ 3—p dt’

QY

and the gravitational velocity vj,s at radius r is given by

2G My 2G |My(r) + M;
() (| T = [3(:) I (14)

where M,(r) is the gas mass contained between r; and r, and M; is
the total mass that has been accreted onto the internal ‘stellar’ region
through 7; over the entire evolution. We refer to M; as the ‘stellar
mass’.

At short radii, where » — r;, we have that M; > M,, and so

Uine(r) & /2GM; 2, (15)

Therefore the mass accretion rate (the surface-integrated mass flux)
into the ‘stellar region’, F(r;) = 47rp(ri)vmf(ri)ri2, using the density
profile given by equation (4), becomes

2 12, 3-p
F(ri) = (32°GM;) "~ portri® " (16)

MNRAS 530, 3445-3457 (2024)

$20zZ Aey zo uo Jasn INYNN Ad G96959//060 1 9B1S/SEIUW/SE0 | 01 /10P/[0IIB-80UBAPE/SEIUW/WOD dNoolwapeoe//:sdiy woll papeojumod



3450

On the other hand, at the outer radius of the core, r. > r;, we have
M; < Mg, and therefore the infall speed is

8mGpo\ /?
Vi (e > 1) & ( a °> e (17)
3-p
and the accretion rate onto the core is then
12873G\ '/*
F(ro) = (ﬁ) ,Og/zrg. (18)

It is important now to determine under which conditions can the
accretion from the core to the stellar region overcome the accretion
onto the core. For this, using equations (16) and (18), we compute
the ratio of the inner and outer accretion rates:

F(ri) (Mi>1/2 3P p-3
x| — rir rPTe. 19)
F(re) Lo (

This expression can be more easily interpreted noting that M;/py =
(M./po)(M;/M.) and that, from equations (2) and (4),

M. 47Trc3
— = (20)
P 3-p
Therefore, writing r; = er., we finally obtain
Fr) s

xel?, 2D
F(re)

This equation shows that, for p > 3/2, the accretion rate ratio
increases as the size of the inner stellar region becomes a smaller
fraction of the core’s size. This happens precisely as the core’s
radius increases, therefore allowing for the possibility that the core
is depleted by the accretion onto the stellar region if p > 3/2. This
depletion implies that it is possible for the mass accumulated in the
stellar region to become larger than the gaseous mass of the core. On
the contrary, for p < 3/2 the core’s mass always grows faster than
the mass of the stellar region.

Therefore, p = 3/2 is another critical value of the logarithmic slope,
determining whether the core grows or is depleted by the accretion
onto the stellar region. This is illustrated in Fig. 4, which shows the
evolution of the core size (left panel), and of the core’s gas mass and
the stellar mass (right panel) obtained by numerically integrating the
mass fluxes* F(r;) and F(r.) in time for a range of logarithmic slope
values. The surrounding medium is assumed to have a density of
3 x 10° cm™ and temperature of 15K, implying a Jeans radius of
0.22 pc, which is taken as the initial value for the core’s radius. The
core’s inner boundary is assumed to be at r; = 3 x 10 au. We choose
this value of r; as representative of the region where an accretion disc
begins to form, based on estimates of the Oort cloud’s mean radius
(Morbidelli 2005). As expected, for p > 3/2 the flow across the inner
boundary depletes the gaseous mass of the core, although the stellar
mass still becomes larger than the core’s mass for p = 3/2.

3 THE MOST MASSIVE STAR A CORE CAN
HARBOUR

3.1 The competition between core and stellar mass growth

Having obtained the mass accretion rate onto the core, we can now
estimate the mass of the most massive star the core can harbour

4By numerically integrating the mass fluxes, and so calculating the core and
stellar mass evolution, we avoid the need to make assumptions about the
masses relative importance in the estimation of infall velocities, as it was
necessary leading to equations (15) and (17).

MNRAS 530, 3445-3457 (2024)

E. Vazquez-Semadeni, G. C. Gomez, and A. Gonzdlez-Samaniego

without its accretion supply being destroyed by the ultraviolet (UV)
feedback from this star.’> Assuming that the gas infall velocity
onto the core at every radius is given by the free-fall velocity
(equation 1) driven by the total (stellar and gaseous) mass internal
to that radius, then the power Pg associated with the kinetic energy
density in the accretion flow at the boundary, K = 1/2 p(rc)viznf(rc),
is

P = 47r2 K vins(re)

- 0.97Lg ( Te )5 ( no )5/2 ’ )
3 —p)¥? \1pc 103 cm~3
where the order-of-magnitude value in the second line corresponds
to the calculation ignoring the stellar mass at the centre.

Now, the most massive star that can exist within this core without
disrupting the accretion flow must not inject thermal energy into the
surrounding gas at a rate larger than Pk. To find the mass of this
star, we can use the table of ionizing photon rates as a function of
stellar mass, Nign(M.), provided by Diaz-Miller, Franco & Shore
(1998). Specifically, Nion(M,) is the number of photons with energy
e > 13.6 eV emitted per unit time by a star of mass M,. The total
ionizing power emitted by the star is then P, = Nion(M,) &, where
e is the characteristic energy of the ionizing photons, and can be
approximated by ¢ ~ 13.6eV.

However, out of this total power, one part will be consumed in
ionizing the gas, and another will be used in heating it up to the
typical ionized gas temperature, with only the remaining power
being available to halt the accretion flow. Denoting this fraction
by fi, and assuming that the gas is heated to a temperature 7}, the
radiative energy available to halt the accretion flow will be that above
13.6eV + kg Ty, which corresponds to 14.3eV for T, = 8 x 10 K.
‘We then estimate f;, as

fIO;6eV B,(Ter)dv’

where B, (T) is Planck’s law of blackbody radiation, and T is the
effective temperature of the star of mass M,. Therefore, in order
to compensate for the power lost to the ionization of the gas, we
determine the mass of the accretion-halting star as that in table 1 of
Diaz-Miller et al. (1998) whose ionizing-photon rate corresponds to
a total power P, = Pglfy.

The left panel of Fig. 5 shows the scaling of this accretion-
destroying stellar mass, M,, versus the core’s mass, M., the latter
obtained by integration of equation (9), for a range of p values.
On the other hand, the right panel of Fig. 5 shows the evolution
of the mass accreted onto the central region of the core with
radius r; = 3000 au (M;(); dashed lines), obtained by integrating the
equation M; = F(ry), for the same values of p- Therefore, M;(t) can
be thought of as the mass of the most massive possible star (if there
were no fragmentation within r;) as a function of time. In this panel,
we also show the evolution of the mass of the accretion-destroying
star, M, (solid lines).

We observe that the stellar mass M; starts smaller, but increases
faster, than the accretion-destroying stellar mass M., and so eventu-
ally M; becomes equal to M,. At this time, accretion onto the core can
be disrupted, ending the local star formation episode. Thus, the actual

o (23)

SWe consider the UV flux rather than the radiation pressure because we are
interested in the competition between the stellar feedback and the accretion
onto the core, which occurs at scales larger than the core scale (0.1 pc).
At those scales, the dominant form of continuous feedback is already UV
radiation (e.g. Sales et al. 2014).
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Figure 4. Core size (r., left) and gaseous and stellar mass (M. and M;, right) as a function of time for a range of p-values. The masses are obtained by
numerically integrating the fluxes at r.(¢) and the core’s inner boundary (at r;). When p > 3/2, the flow across r; eventually becomes larger than the flow across
r¢. So, the core ends up being depleted. In these plots, we have assumed an environmental density pg = 3 x 10? cm™3 and an initial radius of the core r¢(f = 0)

equal to the Jeans length at p.
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Figure 5. Left: Mass of the star (M) required to halt, by photoionizing radiation, the accretion driven by self-gravity onto a core of mass M.. Right: Temporal
evolution of M, (solid lines), and of the mass that has been accumulated within an inner, characteristic ‘accretion disc radius’ r; = 3000 au (M;, dashed
lines). As in Fig. 4, we have assumed an environmental density pp = 3 x 103 cm~3 and an initial radius of the core r. (r = 0) equal to the Jeans length

at pg.

maximum possible stellar mass within a core is given by min [M;,
M,] at every moment in time.

Note also that this stellar mass reaches values ~10 M, within a
time of the order of 1 Myr, with the precise time depending on the
slope of the core’s density profile. Note that this total stellar mass will
be distributed among a population of collapsed objects, and therefore
M; needs to be significantly larger than M, in order to have a star
of this latter mass. Therefore, our time-scales for the growth of M;
can be considered as lower limits to the true required time-scale.

This can be compared to the time required in numerical simulations
for massive stars to appear. For example, Fig. 6 shows the evolution
of the stellar mass distribution in the simulation LAF1° (including
feedback) analysed in Vazquez-Semadeni et al. (2017) in differential

©We compare to the simulation including feedback because the one without
it deviates from a Salpeter slope of the stellar IMF. In any case, massive stars
also appear at a later time in that simulation.
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Figure 6. Evolution of the mass function for one of the star-forming regions
(‘Group 1°) appearing in the simulation labelled ‘LAF1’ of Gonzilez-
Samaniego & Vézquez-Semadeni (2020), representing cluster formation in
clouds undergoing GHC, including stellar feedback. More massive stars
appear later during the evolution of the region. We show this simulation
because the one without feedback (LAF0) does not produce a Salpeter slope,
and produces massive stars too rapidly, although they still form later than less
massive ones.
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Figure 7. Evolution of the stellar and dense gas mass in the inner parsec of
Group 2 for the simulation without feedback (LAFO).

(or PDF) form.” It can be seen that stars of masses up to M < 5Mg
appear within 2 Myr, and a star with M ~ 10 My appears after
~4 Myr. At this time, the total stellar mass within 1 pc is ~150 Mg,
and the gas mass is ~1000 My (see Fig. 7). Although the model
core and stellar masses shown in Fig. 4 are still significantly larger
than the simulation values, it is shown in Appendix D that a slightly
more realistic case, assuming a background that is not uniform, but
rather has a shallower slope than that of the core, produces numbers
closer to those of the simulation. Regardless, both Figs 5 and 6
illustrate the sequential appearance of more massive stars as time
proceeds, implying that the region evolves from being a low-mass
star-forming region to a high-mass one, as predicted by the GHC
scenario (Vazquez-Semadeni et al. 2009).

It is important to note that the maximum stellar mass allowed
by the feedback, M., plotted in the two panels of Fig. 5, does not
intend to predict the mass of the stars that will actually be forming

7Fig. 7 in Vizquez-Semadeni et al. (2017) showed the same distribution in
cumulative form.
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within a core, since the core will undoubtedly undergo fragmentation,
forming stars with a certain mass distribution, probably through the
CA mechanism (Bonnell et al. 2001a, b). This result should instead be
interpreted as meaning that, due to the accretion flow, both the core’s
mass M. and the total mass available for star formation increase with
time, thus increasing the mass of the most massive possible star (M),
as well as the latter’s corresponding photoionizing feedback power.
When the mass of this most massive possible star surpasses the mass
of the star that can disrupt the accretion flow (M,), the core can stop
growing, and the star formation episode may be terminated by gas
exhaustion, as inferred observationally by Ginsburg et al. (2016).

Although our model is highly idealized and approximate, its main
relevance is the implication that, when the accretion both from a
clump to a core and from the core to the star(s) are taken into account,
the maximum stellar mass that a core can harbour increases over
time, together with the core’s mass, a proof-of-concept model for
the numerical result that more massive stars appear later in a cluster
(Vézquez-Semadeni et al. 2017), and for the observed property of
clusters that the mass of the most massive star correlates with the
mass of its parent cluster (e.g. Weidner & Kroupa 2006; Weidner
et al. 2010).

4 DISCUSSION

4.1 Caveats

Our model is certainly highly idealized, and, as a consequence, it still
falls short of having a strong predictive power. Its main limitations
are as follows.

(i) The restriction to spherical symmetry. Although we have con-
sidered the possible effect of filaments on producing some flattening
of the effective spherically averaged density profile, all our accretion
rates are computed assuming spherical symmetry. This assumption
causes the gravitational potential to be deeper than if the same mass
were to be distributed in a sheet- or filament-like geometry, causing
longer infall times and smaller accretion velocities (Pon et al. 2012;
Toald, Vazquez-Semadeni & Gémez 2012).

(1) The neglect of any form of agents counteracting gravity, such
as thermal pressure or magnetic fields, or of low-mass-star feedback,
that may delay the gravitational contraction.

As a consequence, our infall speeds and accretion rates should be
considered as upper limits, and our evolutionary time-scales as lower
limits, to what may be expected in actual molecular cloud cores.
Nevertheless, our model incorporates several important features
observed in numerical simulations that point towards aspects of
gravitational contraction that, to our knowledge, have not been
previously addressed, and provides a proof-of-concept discussion
of the mechanism of gravitational choking, and the importance of
the density profile slope in determining accretion rates. In addition,
our model compares well to order of magnitude with the numerical
results of Gonzélez-Samaniego & Vazquez-Semadeni (2020).

5 SUMMARY AND CONCLUSIONS

In this paper, we have presented a simple, idealized model, in
quasi-spherical geometry, of a mechanism that can account for
the observation, in numerical simulations of cloud formation and
evolution from warm diffuse atomic gas, that star-forming regions
grow in mass and size, and that massive stars form with a delay of a
few to several megayears after the first stars begin to form.
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The model is based on two main ingredients. First, on the
assumption that there is accretion both from the core to the stars and
from the cloud to the core. That is, we account for the two last stages
of the multistage accretion process predicted by the GHC scenario to
be occurring in molecular clouds. Second, on the result from Paper
I that the gravity-driven accretion rate in a core varies with radius in
general. In a core with a power-law density profile with logarithmic
slope —p, the accretion rate is only independent of radius when p =
2. For p < 2, the accretion rate decreases inwards, causing some of
the infalling material to stagnate in the gaseous phase, increasing the
core’s gaseous mass. We call this process ‘gravitational choking’,
and it continues until the stellar mass at the centre becomes large
enough to dominate the core-to-star accretion rate, at which point
the core may be depleted (Appendix D).

In Paper I, we had furthermore shown that, under strict spherical
geometry, the value p = 2 is an attractor, meaning that the slope
evolves toward that value, reaching it at the time when a protostar
forms. However, here we have shown (Appendix B) that deviations
from sphericity, such as those induced by the presence of filaments
feeding a hub, may allow the spherically averaged slope to remain
at values p < 2, thus allowing for the core’s mass to grow even after
stars have begun to form at the core’s centre, and for simultaneous
growth of the core and stellar masses.

A key element of the GHC paradigm (Vazquez-Semadeni et al.
2019) is the interconnection of scales through mass accretion.
Computing the accretion rate at the core’s outer boundary, as well
as the accretion from the core to the ‘stellar region’ (defined by an
inner radius within the core comparable to the estimated size of the
Oort cloud), we were able to obtain the simultaneous growth by
accretion of both the core’s and stellar masses. The latter constitutes
an upper limit to the mass of the most massive star that the core can
harbour. Moreover, we also computed the mass of the star whose
photoionizing radiation flux balances the power of the accretion onto
the core. When the total mass of stars is large enough to produce this
disrupting star, we suggest that the accretion can be halted, and the
local star formation event can be terminated. In the GHC picture, the
evolution of the core and the formation of massive stars with it are
not defined by the core’s own mass, as in the CA or the turbulent-
core models, but by the mass in its environment susceptible to be
accreted onto the core. So, the formation of a star capable of halting
the accretion flow sets the limit of the mass available to fall onto the
core.

In this way, the model implies that more massive stars require
more time to form than low-mass stars, because a sufficient amount
of mass must be collected at the centre of the cores, and that the mass
of the most massive star present in a core must correlate with the
core’s own mass, because the core’s mass also grows while the mass
available to form stars in its centre increases.

Our model is, of course, highly idealized, as it assumes a spherical
geometry with a single power law for the density profile, and
neglects any processes opposing the collapse before the disruption
of the accretion flow. The only deviation from sphericity is the
consideration that filamentary structures may flatten the spherically
averaged density profile. However, our model provides a proof
of concept that the simultaneous core-to-stars and cloud-to-core
accretion processes imply a delayed formation of the more massive
stars, and a correlation between the mass of the most massive star and
that of its parent core. The latter suggests that a correlation between
the mass of the most massive star and that of its host cluster should
exist as well.

Note, however, that the delayed formation of the massive stars
does not imply that the less massive stars are all older than the more
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massive ones. This is because the star formation rate also increases,
and so most of the low-mass stars are coeval with the more massive
ones (Vazquez-Semadeni et al. 2017). However, a small population of
old, low-mass stars is expected to exist in the cluster in addition to the
majority of young, low- and high-mass stars. The main implication
of our model is that the distribution of stellar masses in a star-forming
region extends to ever larger masses as time proceeds, until the local
episode of star formation is halted by the stellar feedback.

Finally, our model can be considered as a time-dependent alterna-
tive to the turbulent core model of McKee & Tan (2003), which was
based on the assumption of turbulent support of a massive core, and
has triggered intense searches for pre-stellar massive cores. Instead,
our model generally predicts that, by the time massive stars begin to
form in a clump or core, a significant number of low-mass must have
already formed.
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APPENDIX A: SIMULATIONS

In Gonzilez-Samaniego & Vazquez-Semadeni (2020), two simu-
lations of converging flows in the warm Galactic atomic medium
were considered, one without stellar feedback, labelled LAF0, and
one with a subgrid prescription for emulating the UV ionizing
feedback from massive stars, extended down to masses ~1 Mg,
labelled LAF1. The numerical box was 256 pc on a side, at a
maximum resolution of 0.0625 pc. These simulations, first presented
in Colin, Vazquez-Semadeni & Gémez (2013), used a stochastic star
formation prescription that allowed the sink particles to have stellar
masses and with a Salpeter (Salpeter 1955) slope in the case with
feedback, making them the first simulations at the giant molecular
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cloud scale with stellar mass sink particles. We refer the reader to
that paper for details on the simulations.

In Figs 2, 6, and 7, we refer to ‘clumps’, which are defined
as spherical regions centred at the centre of mass of the stellar
clusters forming in the simulations, and of the radii indicated in the
figures.

APPENDIX B: THE EFFECT OF FILAMENTS
ON A CORE’S DENSITY PROFILE

The results from Section 2.3 apply to a spherical collapse flow.
However, in reality, star-forming regions in general are far from
spherical, and at present it is agreed that they consist of filament—hub
systems, in which the central, approximately spherical hubs are ‘fed’
with fresh gas by a network of filaments (e.g. Myers 2009; Schneider
et al. 2010; Kirk et al. 2013; Fernandez-Lopez et al. 2014; Jiménez-
Serra et al. 2014; Peretto et al. 2014; Ginsburg et al. 2016; Wyrowski
et al. 2016; Judrez et al. 2017; Gong et al. 2018; Chen et al. 2019).
The filaments are known to have a nearly uniform transverse column
density (and presumably linear mass density) along their length (e.g.
André etal. 2014), and so one can expect that the spherically averaged
profile will be shallower than if the filaments were not present.

Consider the case of a core embedded in a filament with a
Plummer-like radial density profile. Thus, the total density of the
distribution, o, is

— (L)ip R . S (B1)
=i [1+ (R/RoP17/?’

with R = rsin @ being the cylindrical radial coordinate, 0 the angle
with respect to the filament’s axis, p; the filament axial density,
and Ry a radial scale. The configuration is illustrated in the left
panel of Fig. B1, and its spherically averaged density profile can
be computed numerically. The mean density profile, p(r), and its
effective logarithmic slope are also shown in the top- and bottom-
right panels. When r < ry, the core density dominates and p reflects
the r~7 profile. But, as the filament density becomes important, the
profile flattens significantly.

It should be noted that this flattening of the slope is important
at the dynamical level. Since the accretion flow is driven by the
gravitational potential of the mass distribution of the hub—filament
system, the fact that the spherically averaged mass distribution has
an effective slope p < 2, implies that we can expect the gravitational
choking mechanism to continue operating, and the core can continue
to increase its mass, regardless of whether protostar formation has
already begun in the system, as long as a filamentary component
remains in the system.
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Figure B1. Spherically averaged density profile of a hub—filament system. The core’s density profile is given by equation (4), while the embedded filament
has a density p(R) = pg/[1 + (R/Rp)*1P"2. In this example, pg/po = 10 and Ro/rop = 0.3, while p = 2 for both distributions. Left: Density distribution
for the core + filament system. Right top: Spherically averaged density profile, 5, of the superposed distributions. Right bottom: Effective profile slope,
pefi = —dlog(p)/dlog(r). As r increases, the filament contribution keeps the density above the value corresponding to the clump distribution, thus flattening

the profile.

APPENDIX C: TIME-SCALES FOR PROFILE
STEEPENING AND RADIUS GROWTH

The core’s mass may grow through the steepening of its density
profile (driven by accretion onto the core) and/or by increasing its
size. The time-scale for the former process is 7, = p/(dp/df), with
dp/dt given by equation (5), while the latter is found by setting the
accretion rate, equation (3), evaluated at the core boundary ry, equal
to the time derivative of the core’s mass, equation (11), and defining
the time-scale for core expansion as t,, = ro/(dro/dt). The ratio of
these time-scales is given by

T N2p (1—=p/3\ [=In(r/ry)
v 3 \1-p/2) [fro P

Fig. C1 shows this ratio as a function of radius. It is seen that,
throughout most of the core’s volume, the density distribution first
steepens and then the core expands. In addition, recalling that the
slope becomes stationary at p = 2, and that at that time a collapsed
object forms, the result 7, < 7,, suggests that p increases during the
pre-stellar stage, while ry increases during the protostellar stage.

(ChH

APPENDIX D: A NON-UNIFORM MEDIUM
AROUND THE CORE

The cores obtained from the model discussed in Section 2.4 develop
masses that grow unrealistically. One of the reasons for such growth is

— p=0.1
p=20.5
p=1.0

100 4 — p=15
o
~ ——
=
10-11
1072 T ! |
1073 1072 107! 10°
[h] rirg

Figure C1. Ratio of the time-scale for growth of the density slope p (t) to
that for core-size increase (t,.). The time-scale for increasing p is generally
shorter than that for increasing ro, and so the density distribution steepens
faster than the core expands.

the assumption that the core is surrounded by an infinite environment
of uniform density. We may relax this assumption by assuming that
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Figure D1. Schema for the density profile of the core surrounded by a
decreasing-density environment. When growing into a density distribution
p o« r~4, the core’s profile (brown lines) is lower than a similar-size core
growing in a constant density environment (blue lines).

the core’s environment also follows a power-law density profile,

r -q
penv(r) = Po (i) . (Dl)
ro

This is actually a reasonable assumption, as the typical density of
molecular cloud cores at the 0.1 pc scale is ~10* cm™3, while the
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mean density of molecular clouds at the 10 pc scale is ~100 cm™3,

in fact suggesting g ~ 1.
In order to maintain a continuous density distribution, the core’s
density profile must be modified from equation (4) to

P\ P
pr) = pc (—) , (D2)
Te
with p. = peny(7c) (see Fig. D1). Thus, as the core’s radius grows, the
density profile of the core remains lower than that of a similar-sized
core growing in a uniform-density environment, as those modelled
in Section 2.4. Also, the growing core accretes material of ever-
diminishing density. The mass flux at the core’s boundary will be
given by

]:(rc) = 47Trczpenv(rc)vinf7 (D3)

with viyr still given by equation (14). This new F(r.), and F(r;)
from Section 2.4, is integrated in time to obtain the core and stellar
mass evolution in time (see Fig. D2, which is equivalent to Fig. 4,
but for a non-uniform environment). Although the core’s gas and
stellar mass are still large, they are a few orders of magnitude
smaller than that of the core growing in a uniform density, and
compare better to those of the numerical simulation (Fig. 7). On
the other hand, the main features discussed in Section 2.4 are still
present, like the fact that the critical slope of the density profile
required for the core to be emptied onto the stellar region remains at
p=3/2.
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Figure D2. Core size (r., left) and core and stellar mass (M. and M;, right) evolution for the case of the core growing into a decreasing-density environment
with g = 1. This figure is equivalent to Fig. 4 and uses the same value for p¢ and r;.
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