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Preface

These lecture notes are intended for an advanced astrophysics course on Stellar Structure and Evolu-
tion given at Utrecht University (NS-AP434M). Their goal is to provide an overview of the physics
of stellar interiors and its application to the theory of stellar structure and evolution, at a level appro-
priate for a third-year Bachelor student or beginning Master student in astronomy. To a large extent
these notes draw on the classical textbook by Kippenhahn & Weigert (1990; see below), but leaving
out unnecessary detail while incorporating recent astrophysical insights and up-to-date results. At
the same time I have aimed to concentrate on physical insight rather than rigorous derivations, and
to present the material in a logical order, following in part the very lucid but somewhat more basic
textbook by Prialnik (2000). Finally, I have borrowed some ideas from the textbooks by Hansen,
Kawaler & Trimble (2004), Salaris & Cassissi (2005) and the recent book by Maeder (2009).

These lecture notes are evolving and I try to keep them up to date. If you find any errors or incon-
sistencies, I would be grateful if you could notify me by email (O.R.Pols@uu.nl).

Onno Pols
Utrecht, September 2011
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Physical and astronomical constants

Table 1. Physical constants in cgs units (CODATA 2006).

gravitational constant G 6.674 3 × 10−8 cm3 g−1 s−2

speed of light in vacuum c 2.997 924 58 × 1010 cm s−1

Planck constant h 6.626 069 × 10−27 erg s
radiation density constant a 7.565 78 × 10−15 erg cm−3 K−4

Stefan-Boltzmann constant σ = 1
4ac 5.670 40 × 10−5 erg cm−2 s−1 K−4

Boltzmann constant k 1.380 650 × 10−16 erg K−1

Avogadro’s number NA = 1/mu 6.022 142 × 1023 g−1

gas constant R = kNA 8.314 47 × 107 erg g−1 K−1

electron volt eV 1.602 176 5 × 10−12 erg
electron charge e 4.803 26 × 10−10 esu

e2 1.440 00 × 10−7 eV cm
electron mass me 9.109 382 × 10−28 g
atomic mass unit mu 1.660 538 8 × 10−24 g
proton mass mp 1.672 621 6 × 10−24 g
neutron mass mn 1.674 927 2 × 10−24 g
α-particle mass mα 6.644 656 2 × 10−24 g

Table 2. Astronomical constants, mostly from the Astronomical Almanac (2008).

Solar mass M⊙ 1.988 4 × 1033 g
GM⊙ 1.327 124 42 × 1026 cm3 s−2

Solar radius R⊙ 6.957 × 1010 cm
Solar luminosity L⊙ 3.842 × 1033 erg s−1

year yr 3.155 76 × 107 s
astronomical unit AU 1.495 978 71 × 1013 cm
parsec pc 3.085 678 × 1018 cm

iv



Chapter 1

Introduction

This introductory chapter sets the stage for the course, and briefly repeats some concepts from earlier
courses on stellar astrophysics (e.g. the Utrecht first-year course Introduction to stellar structure and
evolution by F. Verbunt).

The goal of this course on stellar evolution can be formulated as follows:

to understand the structure and evolution of stars, and their observational properties,
using known laws of physics

This involves applying and combining ‘familiar’ physics from many different areas (e.g. thermody-
namics, nuclear physics) under extreme circumstances (high temperature, high density), which is part
of what makes studying stellar evolution so fascinating.

What exactly do we mean by a ‘star’? A useful definition for the purpose of this course is as follows:
a star is an object that (1) radiates energy from an internal source and (2) is bound by its own gravity.
This definition excludes objects like planets and comets, because they do not comply with the first
criterion. In the strictest sense it also excludes brown dwarfs, which are not hot enough for nuclear
fusion, although we will briefly discuss these objects. (The second criterion excludes trivial objects
that radiate, e.g. glowing coals).

An important implication of this definition is that stars must evolve (why?). A star is born out of an
interstellar (molecular) gas cloud, lives for a certain amount of time on its internal energy supply, and
eventually dies when this supply is exhausted. As we shall see, a second implication of the definition
is that stars can have only a limited range of masses, between ∼0.1 and ∼100 times the mass of the
Sun. The life and death of stars forms the subject matter of this course. We will only briefly touch on
the topic of star formation, a complex and much less understood process in which the problems to be
solved are mostly very different than in the study of stellar evolution.

1.1 Observational constraints

Fundamental properties of a star include the mass M (usually expressed in units of the solar mass,
M⊙ = 1.99 × 1033 g), the radius R (often expressed in R⊙ = 6.96 × 1010 cm) and the luminosity L,
the rate at which the star radiates energy into space (often expressed in L⊙ = 3.84 × 1033 erg/s). The
effective temperature Teff is defined as the temperature of a black body with the same energy flux
at the surface of the star, and is a good measure for the temperature of the photosphere. From the
definition of effective temperature it follows that

L = 4πR2 σT 4
eff . (1.1)
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In addition, we would like to know the chemical composition of a star. Stellar compositions are
usually expressed as mass fractions Xi, where i denotes a certain element. This is often simplified
to specifying the mass fractions X (of hydrogen), Y (of helium) and Z (of all heavier elements or
‘metals’), which add up to unity. Another fundamental property is the rotation rate of a star, expressed
either in terms of the rotation period Prot or the equatorial rotation velocity υeq.

Astronomical observations can yield information about these fundamental stellar quantities:

• Photometric measurements yield the apparent brightness of a star, i.e. the energy flux received
on Earth, in different wavelength bands. These are usually expressed as magnitudes, e.g. B,
V , I, etc. Flux ratios or colour indices (B − V , V − I, etc.) give a measure of the effective
temperature, using theoretical stellar atmosphere models and/or empirical relations. Applying
a bolometric correction (which also depends on Teff) yields the apparent bolometric flux, fbol
(in erg s−1 cm−2).

• In some cases the distance d to a star can be measured, e.g. from the parallax. The Hipparcos
satellite has measured parallaxes with 1 milliarcsec accuracy of more than 105 stars. The lumi-
nosity then follows from L = 4π d2 fbol, and the radius from eq. (1.1) if we have a measure of
Teff .

• An independent measure of the effective temperature can be obtained from interferometry. This
technique yields the angular diameter of a star if it is sufficiently extended on the sky, i.e. the
ratio θ = R/d. Together with a measurement of fbol this can be seen from eq. (1.1) to yield
σT 4

eff = fbol/θ
2. This technique is applied to red giants and supergiants. If the distance is also

known, a direct measurement of the radius is possible.

• Spectroscopy at sufficiently high resolution yields detailed information about the physical con-
ditions in the atmosphere. With detailed spectral-line analysis using stellar atmosphere models
one can determine the photospheric properties of a star: the effective temperature and surface
gravity (g = GM/R2, usually expressed as log g), surface abundances of various elements (usu-
ally in terms of number density relative to hydrogen) and a measure of the rotation velocity
(υeq sin i, where i is the unknown inclination angle of the equatorial plane). In addition, for
some stars the properties of the stellar wind can be determined (wind velocities, mass loss
rates). All this is treated in more detail in the Master course on Stellar Atmospheres.

• The most important fundamental property, the mass, cannot be measured directly for a single
star. To measure stellar masses one needs binary stars showing radial velocity variations (spec-
troscopic binaries). Radial velocities alone can only yield masses up to a factor sin i, where i is
the inclination angle of the binary orbit. To determine absolute mass values one needs informa-
tion on i, either from a visual orbit (visual binaries) or from the presence of eclipses (eclipsing
binaries). In particular for so called double-lined eclipsing binaries, in which the spectral lines
of both stars vary, it is possible to accurately measure both the masses and radii (with 1–2 % ac-
curacy in some cases) by fitting the radial-velocity curves and the eclipse lightcurve. Together
with a photometric or, better, spectroscopic determination of Teff also the luminosity of such
binaries can be measured with high accuracy, independent of the distance. For more details see
the Master course on Binary Stars.

All observed properties mentioned above are surface properties. Therefore we need a theory of
stellar structure to derive the internal properties of a star. However, some direct windows on the
interior of a star exist:
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Figure 1.1. H-R diagram of solar neighbourhood. Source: Hipparcos, stars with d measured to < 10 %
accuracy.

• neutrinos, which escape from the interior without interaction. So far, the Sun is the only (non-
exploding) star from which neutrinos have been detected.

• oscillations, i.e. stellar seismology. Many stars oscillate, and their frequency spectrum contains
information about the speed of sound waves inside the star, and therefore about the interior
density and temperature profiles. This technique has provided accurate constraints on detailed
structure models for the Sun, and is now also being applied to other stars.

The timespan of any observations is much smaller than a stellar lifetime: observations are like
snapshots in the life of a star. The observed properties of an individual star contain no (direct) infor-
mation about its evolution. The diversity of stellar properties (radii, luminosities, surface abundances)
does, however, depend on how stars evolve, as well as on intrinsic properties (mass, initial composi-
tion). Properties that are common to a large number of stars must correspond to long-lived evolution
phases, and vice versa. By studying samples of stars statistically we can infer the (relative) lifetimes
of certain phases, which provides another important constraint on the theory of stellar evolution.

Furthermore, observations of samples of stars reveal certain correlations between stellar properties
that the theory of stellar evolution must explain. Most important are relations between luminosity and
effective temperature, as revealed by the Hertzsprung-Russell diagram, and relations between mass,
luminosity and radius.

1.1.1 The Hertzsprung-Russell diagram

The Hertzsprung-Russell diagram (HRD) is an important tool to test the theory of stellar evolution.
Fig. 1.1 shows the colour-magnitude diagram (CMD) of stars in the vicinity of the Sun, for which the
Hipparcos satellite has measured accurate distances. This is an example of a volume-limited sample
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Figure 1.2. Colour-magnitude diagrams of a young open cluster, M45 (the Pleiades, left panel), and a globular
cluster, M3 (right panel).

of stars. In this observers’ HRD, the absolute visual magnitude MV is used as a measure of the
luminosity and a colour index (B − V or V − I) as a measure for the effective temperature. It is left
as an exercise to identify various types of stars and evolution phases in this HRD, such as the main
sequence, red giants, the horizontal branch, white dwarfs, etc.

Star clusters provide an even cleaner test of stellar evolution. The stars in a cluster were formed
within a short period of time (a few Myr) out of the same molecular cloud and therefore share the same
age and (initial) chemical composition.1 Therefore, to first-order approximation only the mass varies
from star to star. A few examples of cluster CMDs are given in Fig. 1.2, for a young open cluster (the
Pleiades) and an old globular cluster (M3). As the cluster age increases, the most luminous main-
sequence stars disappear and a prominent red giant branch and horizontal branch appear. To explain
the morphology of cluster HRDs at different ages is one of the goals of studying stellar evolution.

1.1.2 The mass-luminosity and mass-radius relations

For stars with measured masses, radii and luminosities (i.e. binary stars) we can plot these quantities
against each other. This is done in Fig. 1.3 for the components of double-lined eclipsing binaries for
which M, R and L are all measured with ∼< 2 % accuracy. These quantities are clearly correlated, and
especially the relation between mass and luminosity is very tight. Most of the stars in Fig. 1.3 are
long-lived main-sequence stars; the spread in radii for masses between 1 and 2 M⊙ results from the
fact that several more evolved stars in this mass range also satisfy the 2 % accuracy criterion. The
observed relations can be approximated reasonably well by power laws:

L ∝ M3.8 and R ∝ M0.7. (1.2)

Again, the theory of stellar evolution must explain the existence and slopes of these relations.

1The stars in a cluster thus consitute a so-called simple stellar population. Recently, this simple picture has changed
somewhat after the discovery of multiple populations in many star clusters.
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Figure 1.3. Mass-luminosity (left) and mass-radius (right) relations for components of double-lined eclipsing
binaries with accurately measured M, R and L.

1.2 Stellar populations

Stars in the Galaxy are divided into different populations:

• Population I: stars in the galactic disk, in spiral arms and in (relatively young) open clusters.
These stars have ages ∼< 109 yr and are relatively metal-rich (Z ∼ 0.5 − 1Z⊙)

• Population II: stars in the galactic halo and in globular clusters, with ages ∼ 1010 yr. These stars
are observed to be metal-poor (Z ∼ 0.01 − 0.1Z⊙).

An intermediate population (with intermediate ages and metallicities) is also seen in the disk of the
Galaxy. Together they provide evidence for the chemical evolution of the Galaxy: the abundance
of heavy elements (Z) apparently increases with time. This is the result of chemical enrichment by
subsequent stellar generations.

The study of chemical evolution has led to the hypothesis of a ‘Population III’ consisting of the
first generation of stars formed after the Big Bang, containing only hydrogen and helium and no
heavier elements (‘metal-free’, Z = 0). No metal-free stars have ever been observed, probably due to
the fact that they were massive and had short lifetimes and quickly enriched the Universe with metals.
However, a quest for finding their remnants has turned up many very metal-poor stars in the halo,
with the current record-holder having an iron abundance XFe = 4 × 10−6XFe,⊙.

1.3 Basic assumptions

We wish to build a theory of stellar evolution to explain the observational constraints highlighted
above. In order to do so we must make some basic assumptions:

• stars are considered to be isolated in space, so that their structure and evolution depend only on
intrinsic properties (mass and composition). For most single stars in the Galaxy this condition
is satisfied to a high degree (compare for instance the radius of the Sun with the distance to its
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nearest neighbour Proxima Centauri, see exercise 1.2). However, for stars in dense clusters, or
in binary systems, the evolution can be influenced by interaction with neighbouring stars. In
this course we will mostly ignore these complicating effects (many of which are treated in the
Master course on Binary Stars).

• stars are formed with a homogeneous composition, a reasonable assumption since the molecular
clouds out of which they form are well-mixed. We will often assume a so-called ‘quasi-solar’
composition (X = 0.70, Y = 0.28 and Z = 0.02), even though recent determinations of solar
abundances have revised the solar metallicity down to Z = 0.014. In practice there is relatively
little variation in composition from star to star, so that the initial mass is the most important
parameter that determines the evolution of a star. The composition, in particular the metallicity
Z, is of secondary influence but can have important effects especially in very metal-poor stars
(see § 1.2).

• spherical symmetry, which is promoted by self-gravity and is a good approximation for most
stars. Deviations from spherical symmetry can arise if non-central forces become important
relative to gravity, in particular rotation and magnetic fields. Although many stars are observed
to have magnetic fields, the field strength (even in highly magnetized neutron stars) is always
negligible compared to gravity. Rotation can be more important, and the rotation rate can be
considered an additional parameter (besides mass and composition) determining the structure
and evolution of a star. For the majority of stars (e.g. the Sun) the forces involved are small
compared to gravity. However, some rapidly rotating stars are seen (by means of interferome-
try) to be substantially flattened.

1.4 Aims and overview of the course

In the remainder of this course we will:

• understand the global properties of stars: energetics and timescales

• study the micro-physics relevant for stars: the equation of state, nuclear reactions, energy trans-
port and opacity

• derive the equations necessary to model the internal structure of stars

• examine (quantitatively) the properties of simplified stellar models

• survey (mostly qualitatively) how stars of different masses evolve, and the endpoints of stellar
evolution (white dwarfs, neutron stars)

• discuss a few ongoing research areas in stellar evolution

Suggestions for further reading

The contents of this introductory chapter are also largely covered by Chapter 1 of Prialnik, which
provides nice reading.
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Exercises

1.1 Evolutionary stages
In this course we use many concepts introduced in the introductory astronomy classes. In this exercise
we recapitulate the names of evolutionary phases. During the lectures you are assumed to be familiar
with these terms, in the sense that you are able to explain them in general terms.
We encourage you to use Carroll & Ostlie, Introduction to Modern Astrophysics, or the book of the
first year course (Verbunt, Het leven van sterren) to make a list of the concepts printed in italic with a
brief explanation in your own words.

(a) Figure 1.1 shows the location of stars in the solar neighborhood in the Hertzsprung-Russel dia-
gram. Indicate in Figure 1.1 where you would find:
main-sequence stars, neutron stars,
the Sun, black holes,
red giants, binary stars,
horizontal branch stars, planets,
asymptotic giant branch (AGB) stars, pre-main sequence stars,
centrals star of planetary nebulae, hydrogen burning stars,
white dwarfs, helium burning stars.

(b) Through which stages listed above will the Sun evolve? Put them in chronological order. Through
which stages will a massive star evolve?

(c) Describe the following concepts briefly in your own words. You will need the concepts indicated
with * in the coming lectures.
ideal gas*, Jeans mass,
black body, Schwarzschild criterion,
virial theorem*, energy transport by radiation,
first law of thermodynamics*, energy transport by convection,
equation of state, pp-chain,
binary stars, CNO cycle,
star cluster, nuclear timescale*,
interstellar medium, thermal or Kelvin-Helmholtz timescale*,
giant molecular clouds, dynamical timescale*

1.2 Basic assumptions
Let us examine the three basic assumptions made in the theory of stellar evolution:

(a) Stars are assumed to be isolated in space. The star closest to the sun, Proxima Centauri, is 4.3
light-years away. How many solar radii is that? By what factors are the gravitational field and
the radiation flux diminished? Many stars are formed in clusters and binaries. How could that
influence the life of a star?

(b) Stars are assumed to form with a uniform composition. What elements is the Sun made of? Just
after the Big Bang the Universe consisted almost purely of hydrogen and helium. Where do all
the heavier elements come from?

(c) Stars are assumed to be spherically symmetric. Why are stars spherically symmetric to a good
approximation? How would rotation affect the structure and evolution of a star? The Sun rotates
around its axis every 27 days. Calculate the ratio of is the centrifugal acceleration a over the
gravitational acceleration g for a mass element on the surface of the Sun. Does rotation influence
the structure of the Sun?

1.3 Mass-luminosity and mass-radius relation

(a) The masses of stars are approximately in the range 0.08 M⊙ ! M ! 100 M⊙. Why is there an
upper limit? Why is there a lower limit?
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(b) Can you think of methods to measure (1) the mass, (2) the radius, and (3) the luminosity of a
star? Can your methods be applied for any star or do they require special conditions. Discuss your
methods with your fellow students.

(c) Figure 1.3 shows the luminosity versus the mass (left) and the radius versus the mass (right) for
observed main sequence stars. We can approximate a mass-luminosity and mass-radius relation
by fitting functions of the form

L
L⊙
=

(

M
M⊙

)x

,
R
L⊙
=

(

M
M⊙

)y

(1.3)

Estimate x and y from Figure 1.3.
(d) Which stars live longer, high mass stars (which have more fuel) or low mass stars? Derive an

expression for the lifetime of a star as a function of its mass. (!)
[Hints: Stars spend almost all their life on the main sequence burning hydrogen until they run
out of fuel. First try to estimate the life time as function of the mass (amount of fuel) and the
luminosity (rate at which the fuel is burned).]

1.4 The ages of star clusters

Figure 1.4. H-R diagrams of three star clusters (from Prialnik).

The stars in a star cluster are formed more or less simultaneously by fragmentation of a large molecular
gas cloud.

(a) In Fig. 1.4 the H-R diagrams are plotted of the stars in three different clusters. Which cluster is
the youngest?

(b) Think of a method to estimate the age of the clusters, discuss with your fellow students. Estimate
the ages and compare with the results of your fellow students.

(c) (*) Can you give an error range on your age estimates?
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Chapter 2

Mechanical and thermal equilibrium

In this chapter we apply the physical principles of mass conservation and momentum conservation to
derive two of the fundamental stellar structure equations. We shall see that stars are generally in a
state of almost complete mechanical equilibrium, which allows us to derive and apply the important
virial theorem. We consider the basic stellar timescales and see that most (but not all) stars are also
in a state of energy balance called thermal equilibrium.

2.1 Coordinate systems and the mass distribution

The assumption of spherical symmetry implies that all interior physical quantities (such as density ρ,
pressure P, temperature T , etc) depend only on one radial coordinate. The obvious coordinate to use
in a Eulerian coordinate system is the radius of a spherical shell, r (∈ 0 . . .R). In an evolving star,
all quantities also depend on time t. When constructing the differential equations for stellar structure
one should thus generally consider partial derivatives of physical quantities with respect to radius and
time, ∂/∂r and ∂/∂t, taken at constant t and r, respectively.

The principle of mass conservation applied to the mass dm of a spherical shell of thickness dr at
radius r (see Fig. 2.1) gives

dm(r, t) = 4πr2 ρ dr − 4πr2 ρ υ dt, (2.1)

where υ is the radial velocity of the mass shell. Therefore one has
∂m
∂r
= 4πr2 ρ and

∂m
∂t
= −4πr2 ρ υ. (2.2)

The first of these partial differential equations relates the radial mass distribution in the star to the
local density: it constitutes the first fundamental equation of stellar structure. Note that ρ = ρ(r, t)
is not known a priori, and must follow from other conditions and equations. The second equation of
(2.2) represents the change of mass inside a sphere of radius r due to the motion of matter through
its surface; at the stellar surface this gives the mass-loss rate (if there is a stellar wind with υ > 0) or
mass-accretion rate (if there is inflow with υ < 0). In a static situation, where the velocity is zero, the
first equation of (2.2) becomes an ordinary differential equation,

dm
dr
= 4πr2 ρ. (2.3)

This is almost always a good approximation for stellar interiors, as we shall see. Integration yields
the mass m(r) inside a spherical shell of radius r:

m(r) =
∫ r

0
4πr′2ρ dr′.
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Figure 2.1. Mass shell inside a spherically symmetric
star, at radius r and with thickness dr. The mass of the
shell is dm = 4πr2ρ dr. The pressure and the gravita-
tional force acting on a cylindrical mass element are
also indicated.

Sincem(r) increases monotonically outward, we can also usem(r) as our radial coordinate, instead
of r. This mass coordinate, often denoted as mr or simply m, is a Lagrangian coordinate that moves
with the mass shells:

m := mr =

∫ r

0
4πr′2ρ dr′ (m ∈ 0 . . .M). (2.4)

It is often more convenient to use a Lagrangian coordinate instead of a Eulerian coordinate. The mass
coordinate is defined on a fixed interval, m ∈ 0 . . .M, as long as the star does not lose mass. On the
other hand r depends on the time-varying stellar radius R. Furthermore the mass coordinate follows
the mass elements in the star, which simplifies many of the time derivatives that appear in the stellar
evolution equations (e.g. equations for the composition). We can thus write all quantities as functions
of m, i.e. r = r(m), ρ = ρ(m), P = P(m), etc.

Using the coordinate transformation r → m, i.e.

∂

∂m
=
∂

∂r
·
∂r
∂m
, (2.5)

the first equation of stellar structure becomes in terms of the coordinate m:

∂r
∂m
=

1
4πr2ρ

(2.6)

which again becomes an ordinary differential equation in a static situation.

2.1.1 The gravitational field

Recall that a star is a self-gravitating body of gas, which implies that gravity is the driving force
behind stellar evolution. In the general, non-spherical case, the gravitational acceleration g can be
written as the gradient of the gravitational potential, g = −∇Φ, where Φ is the solution of the Poisson
equation

∇2Φ = 4πGρ.

Inside a spherically symmetric body, this reduces to g := |g| = dΦ/dr. The gravitational acceleration
at radius r and equivalent mass coordinate m is then given by

g =
Gm
r2 . (2.7)
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Spherical shells outside r apply no net force, so that g only depends on the mass distribution inside
the shell at radius r. Note that g is the magnitude of the vector g which points inward (toward smaller
r or m).

2.2 The equation of motion and hydrostatic equilibrium

We next consider conservation of momentum inside a star, i.e. Newton’s second law of mechanics.
The net acceleration on a gas element is determined by the sum of all forces acting on it. In addition to
the gravitational force considered above, forces result from the pressure exerted by the gas surround-
ing the element. Due to spherical symmetry, the pressure forces acting horizontally (perpendicular to
the radial direction) balance each other and only the pressure forces acting along the radial direction
need to be considered. By assumption we ignore other forces that might act inside a star (Sect. 1.3).

Hence the net acceleration r̈ = ∂2r/∂t2 of a (cylindrical) gas element with mass

dm = ρ dr dS (2.8)

(where dr is its radial extent and dS is its horizontal surface area, see Fig. 2.1) is given by

r̈ dm = −g dm + P(r) dS − P(r + dr) dS . (2.9)

We can write P(r + dr) = P(r) + (∂P/∂r) · dr, hence after substituting eqs. (2.7) and (2.8) we obtain
the equation of motion for a gas element inside the star:

∂2r
∂t2
= −

Gm
r2 −

1
ρ

∂P
∂r
. (2.10)

This is a simplified from of the Navier-Stokes equation of hydrodynamics, applied to spherical sym-
metry (see Maeder). Writing the pressure gradient ∂P/∂r in terms of the mass coordinate m by
substituting eq. (2.6), the equation of motion is

∂2r
∂t2
= −

Gm
r2 − 4πr2 ∂P

∂m
. (2.11)

Hydrostatic equilibrium The great majority of stars are obviously in such long-lived phases of
evolution that no change can be observed over human lifetimes. This means there is no noticeable
acceleration, and all forces acting on a gas element inside the star almost exactly balance each other.
Thus most stars are in a state of mechanical equilibrium which is more commonly called hydrostatic
equilibrium (HE).

The state of hydrostatic equilibrium, setting r̈ = 0 in eq. (2.10), yields the second differential
equation of stellar structure:

dP
dr
= −

Gm
r2 ρ, (2.12)

or with eq. (2.6)

dP
dm
= −

Gm
4πr4 (2.13)

A direct consequence is that inside a star in hydrostatic equilibrium, the pressure always decreases
outwards.

Eqs. (2.6) and (2.13) together determine the mechanical structure of a star in HE. These are
two equations for three unknown functions of m (r, P and ρ), so they cannot be solved without a
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third condition. This condition is usually a relation between P and ρ called the equation of state
(see Chapter 3). In general the equation of state depends on the temperature T as well, so that the
mechanical structure depends also on the temperature distribution inside the star, i.e. on its thermal
structure. In special cases the equation of state is independent of T , and can be written as P =
P(ρ). In such cases (known as barotropes or polytropes) the mechanical structure of a star becomes
independent of its thermal structure. This is the case for white dwarfs, as we shall see later.

Estimates of the central pressure A rough order-of-magnitude estimate of the central pressure can
be obtained from eq. (2.13) by setting

dP
dm
∼
Psurf − Pc

M
≈ −

Pc
M
, m ∼ 1

2M, r ∼ 1
2R

which yields

Pc ∼
2
π

GM2

R4 (2.14)

For the Sun we obtain from this estimate Pc ∼ 7 × 1015 dyn/cm2 = 7 × 109 atm.
A lower limit on the central pressure may be derived by writing eq. (2.13) as

dP
dr
= −

Gm
4πr4

dm
dr
= −

d
dr

(

Gm2

8πr4

)

−
Gm2

2πr5 ,

and thus

d
dr

(

P +
Gm2

8πr4

)

= −
Gm2

2πr5 < 0. (2.15)

The quantity Ψ(r) = P+Gm2/(8πr4) is therefore a decreasing function of r. At the centre, the second
term vanishes because m ∝ r3 for small r, and hence Ψ(0) = Pc. At the surface, the pressure is
essentially zero. From the fact that Ψ must decrease with r it thus follows that

Pc >
1

8π
GM2

R4 . (2.16)

In contrast to eq. (2.14), this is a strict mathematical result, valid for any star in hydrostatic equilibrium
regardless of its other properties (in particular, regardless of its density distribution). For the Sun we
obtain Pc > 4.4 × 1014 dyn/cm2. Both estimates indicate that an extremely high central pressure is
required to keep the Sun in hydrostatic equilibrium. Realistic solar models show the central density
to be 2.4 × 1017 dyn/cm2.

2.2.1 The dynamical timescale

We can ask what happens if the state of hydrostatic equilibrium is violated: how fast do changes
to the structure of a star occur? The answer is provided by the equation of motion, eq. (2.10). For
example, suppose that the pressure gradient that supports the star against gravity suddenly drops. All
mass shells are then accelerated inwards by gravity: the star starts to collapse in “free fall”. We can
approximate the resulting (inward) acceleration by

|r̈| ≈
R
τff2 ⇒ τff ≈

√

R
|r̈|
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where τff is the free-fall timescale that we want to determine. Since −r̈ = g ≈ GM/R2 for the entire
star, we obtain

τff ≈

√

R
g
≈

√

R3

GM
. (2.17)

Of course each mass shell is accelerated at a different rate, so this estimate should be seen as an
average value for the star to collapse over a distance R. This provides one possible estimate for the
dynamical timescale of the star. Another estimate can be obtained in a similar way by assuming that
gravity suddenly disappears: this gives the timescale for the outward pressure gradient to explode the
star, which is similar to the time it takes for a sound wave to travel from the centre to the surface of
the star. If the star is close to HE, all these timescales have about the same value given by eq. (2.17).
Since the average density ρ̄ = 3M/(4πR3), we can also write this (hydro)dynamical timescale as

τdyn ≈

√

R3

GM
≈ 1

2 (Gρ̄)−1/2. (2.18)

For the Sun we obtain a very small value of τdyn ≈ 1600 sec or about half an hour (0.02 days). This
is very much smaller than the age of the Sun, which is 4.6 Gyr or ∼ 1.5 × 1017 sec, by 14 orders of
magnitude. This result has several important consequences for the Sun and other stars:

• Any significant departure from hydrostatic equilibrium should very quickly lead to observable
phenomena: either contraction or expansion on the dynamical timescale. If the star cannot
recover from this disequilibrium by restoring HE, it should lead to a collapse or an explosion.

• Normally hydrostatic equilibrium can be restored after a disturbance (we will consider this
dynamical stability of stars later). However a perturbation of HE may lead to small-scale oscil-
lations on the dynamical timescale. These are indeed observed in the Sun and many other stars,
with a period of minutes in the case of the Sun. Eq. (2.18) tells us that the pulsation period is a
(rough) measure of the average density of the star.

• Apart from possible oscillations, stars are extremely close to hydrostatic equilibrium, since
any disturbance is immediately quenched. We can therefore be confident that eq. (2.13) holds
throughout most of their lifetimes. Stars do evolve and are therefore not completely static, but
changes occur very slowly compared to their dynamical timescale. Stars can be said to evolve
quasi-statically, i.e. through a series of near-perfect HE states.

2.3 The virial theorem

An important consequence of hydrostatic equilibrium is the virial theorem, which is of vital impor-
tance for the understanding of stars. It connects two important energy reservoirs of a star and allows
predictions and interpretations of important phases in the evolution of stars.

To derive the virial theorem we start with the equation for hydrostatic equilibrium eq. (2.13). We
multiply both sides by the enclosed volume V = 4

3πr
3 and integrate over m:

∫ M

0

4
3πr

3 dP
dm

dm = − 1
3

∫ M

0

Gm
r

dm (2.19)

The integral on the right-hand side has a straightforward physical interpretation: it is the gravitational
potential energy of the star. To see this, consider the work done by the gravitational force F to bring
a mass element δm from infinity to radius r:

δW =
∫ r

∞
F · dr =

∫ r

∞

Gm δm
r2 dr = −

GM
r
δm.
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The gravitational potential energy of the star is the work performed by the gravitational force to bring
all mass elements from infinity to their current radius, i.e.

Egr = −
∫ M

0

Gm
r

dm (2.20)

The left-hand side of eq. (2.19) can be integrated by parts:
∫ Ps

Pc
V dP = [V · P]s

c −
∫ Vs

0
P dV (2.21)

where c and s denote central and surface values. Combining the above expressions in eq. (2.19) we
obtain

4
3πR

3 P(R) −
∫ Vs

0
P dV = 1

3Egr, (2.22)

with P(R) the pressure at the surface of the volume. This expression is useful when the pressure from
the surrounding layers is substantial, e.g. when we consider only the core of a star. If we consider
the star as a whole, however, the first term vanishes because the pressure at the stellar surface is
negligible. In that case

−3
∫ Vs

0
P dV = Egr, (2.23)

or, since dV = dm/ρ,

−3
∫ M

0

P
ρ

dm = Egr. (2.24)

This is the general form of the virial theorem, which will prove valuable later. It tells us that that the
average pressure needed to support a star in HE is equal to − 1

3Egr/V . In particular it tells us that a
star that contracts quasi-statically (that is, slowly enough to remain in HE) must increase its internal
pressure, since |Egr| increases while its volume decreases.

The virial theorem for an ideal gas The pressure of a gas is related to its internal energy. We will
show this in Ch. 3, but for the particular case of an ideal monatomic gas it is easy to see. The pressure
of an ideal gas is given by

P = nkT =
ρ

µmu
kT, (2.25)

where n = N/V is the number of particles per unit volume, and µ is mass of a gas particle in atomic
mass units. The kinetic energy per particle is ϵk = 3

2kT , and the internal energy of an ideal monatomic
gas is equal to the kinetic energy of its particles. The internal energy per unit mass is then

u =
3
2
kT
µmu

=
3
2
P
ρ
. (2.26)

We can now interpret the left-hand side of the virial theorem (eq. 2.24) as
∫

(P/ρ) dm = 2
3

∫

u dm =
2
3Eint, where Eint is the total internal energy of the star. The virial theorem for an ideal gas is therefore

Eint = − 1
2Egr (2.27)

This important relation establishes a link between the gravitational potential energy and the internal
energy of a star in hydrostatic equilibrium that consists of an ideal gas. (We shall see later that the
ideal gas law indeed holds for most stars, at least on the main sequence.) The virial theorem tells
us that a more tightly bound star must have a higher internal energy, i.e. it must be hotter. In other
words, a star that contracts quasi-statically must get hotter in the process. The full implications of this
result will become clear when we consider the total energy of a star in a short while.
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Estimate of the central temperature Using the virial theorem we can obtain an estimate of the
average temperature inside a star composed of ideal gas. The gravitational energy of the star is found
from eq. (2.20) and can be written as

Egr = −α
GM2

R
, (2.28)

where α is a constant of order unity (determined by the distribution of matter in the star, i.e. by
the density profile). Using eq. (2.26), the internal energy of the star is Eint =

3
2k/(µmu)

∫

Tdm =
3
2k/(µmu)T̄ M, where T̄ is the temperature averaged over all mass shells. By the virial theorem we
then obtain

T̄ =
α

3
µmu

k
GM
R
. (2.29)

Taking α ≈ 1 and µ = 0.5 for ionized hydrogen, we obtain for the Sun T̄ ∼ 4 × 106 K. This is the
average temperature required to provide the pressure that is needed to keep the Sun in hydrostatic
equilibrium. Since the temperature in a star normally decreases outwards, it is also an approximate
lower limit on the central temperature of the Sun. At these temperatures, hydrogen and helium are
indeed completely ionized. We shall see that Tc ≈ 107 K is high enough for hydrogen fusion to take
place in the central regions of the Sun.

The virial theorem for a general equation of state Also for equations of state other than an ideal
gas a relation between pressure and internal energy exists, which we can write generally as

u = φ
P
ρ
. (2.30)

We have seen above that φ = 3
2 for an ideal gas, but it will turn out (see Ch. 3) that this is valid not

only for an ideal gas, but for all non-relativistic particles. On the other hand, if we consider a gas of
relativistic particles, in particular photons (i.e. radiation pressure), φ = 3. If φ is constant throughout
the star we can integrate the left-hand side of eq. (2.23) to obtain a more general form of the virial
theorem:

Eint = − 1
3φEgr (2.31)

2.3.1 The total energy of a star

The total energy of a star is the sum of its gravitational potential energy, its internal energy and its
kinetic energy Ekin (due to bulk motions of gas inside the star, not the thermal motions of the gas
particles):

Etot = Egr + Eint + Ekin. (2.32)

The star is bound as long as its total energy is negative.
For a star in hydrostatic equilibrium we can set Ekin = 0. Furthermore for a star in HE the virial

theorem holds, so that Egr and Eint are tightly related by eq. (2.31). Combining eqs. (2.31) and (2.32)
we obtain the following relations:

Etot = Eint + Egr =
φ − 3
φ

Eint = (1 − 1
3φ)Egr (2.33)
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As long as φ < 3 the star is bound. This is true in particular for the important case of a star consisting
of an ideal gas (eq. 2.27), for which we obtain

Etot = Eint + Egr = − Eint =
1
2Egr < 0 (2.34)

In other words, its total energy of such a star equals half of its gravitational potential energy.
From eq. (2.34) we can see that the virial theorem has the following important consequences:

• Gravitationally bound gas spheres must be hot to maintain hydrostatic equilibrium: heat pro-
vides the pressure required to balance gravity. The more compact such a sphere, the more
strongly bound, and therefore the hotter it must be.

• A hot sphere of gas radiates into surrounding space, therefore a star must lose energy from its
surface. The rate at which energy is radiated from the surface is the luminosity of the star. In
the absence of an internal energy source, this energy loss must equal the decrease of the total
energy of the star: L = −dEtot/dt > 0, since L is positive by convention.

• Taking the time derivative of eq. (2.34), we find that as a consequence of losing energy:

Ėgr = −2L < 0,

meaning that the star contracts (becomes more strongly bound), and

Ėint = L > 0,

meaning that the star gets hotter – unlike familiar objects which cool when they lose energy.
Therefore a star can be said to have a negative heat capacity. Half the energy liberated by
contraction is used for heating the star, the other half is radiated away.

For the case of a star that is dominated by radiation pressure, we find that Eint = −Egr, and there-
fore the total energy Etot = 0. Therefore a star dominated by radiation pressure (or more generally,
by the pressure of relativistic particles) is only marginally bound. No energy is required to expand or
contract such a star, and a small perturbation would be enough to render it unstable and to trigger its
collapse or complete dispersion.

2.3.2 Thermal equilibrium

If internal energy sources are present in a star due to nuclear reactions taking place in the interior, then
the energy loss from the surface can be compensated: L = Lnuc ≡ −dEnuc/dt. In that case the total
energy is conserved and eq. (2.34) tells us that Ėtot = Ėint = Ėgr = 0. The virial theorem therefore
states that both Eint and Egr are conserved as well: the star cannot, for example, contract and cool
while keeping its total energy constant.

In this state, known as thermal equilibrium (TE), the star is in a stationary state. Energy is radiated
away at the surface at the same rate at which it is produced by nuclear reactions in the interior. The
star neither expands nor contracts, and it maintains a constant interior temperature. We shall see
later that this temperature is regulated by the nuclear reactions themselves, which in combination
with the virial theorem act like a stellar thermostat. Main-sequence stars like the Sun are in thermal
equilibrium, and a star can remain in this state as long as nuclear reactions can supply the necessary
energy.

16



Note that the arguments given above imply that both hydrostatic equilibrium and thermal equilib-
rium are stable equilibria, an assumption that we have yet to prove (see Ch. 7). It is relatively easy to
understand why TE is stable, at least as long as the ideal-gas pressure dominates (φ < 3 in eq. 2.31).
Consider what happens when TE is disturbed, e.g. when Lnuc > L temporarily. The total energy then
increases, and the virial theorem states that as a consequence the star must expand and cool. Since
the nuclear reaction rates typically increase strongly with temperature, the rate of nuclear burning and
thus Lnuc will decrease as a result of this cooling, until TE is restored when L = Lnuc.

2.4 The timescales of stellar evolution

Three important timescales are relevant for stellar evolution, associated with changes to the mechani-
cal structure of a star (described by the equation of motion, eq. 2.11), changes to its thermal structure
(as follows from the virial theorem, see also Sect. 5.1) and changes in its composition, which will be
discussed in Ch. 6.

The first timescale was already treated in Sec. 2.2.1: it is the dynamical timescale given by
eq. (2.18),

τdyn ≈

√

R3

GM
≈ 0.02

(

R
R⊙

)3/2(M⊙
M

)1/2

days (2.35)

The dynamical timescale is the timescale on which a star reacts to a perturbation of hydrostatic equi-
librium. We saw that this timescale is typically of the order of hours or less, which means that stars
are extremely close to hydrostatic equilibrium.

2.4.1 The thermal timescale

The second timescale describes how fast changes in the thermal structure of a star can occur. It is
therefore also the timescale on which a star in thermal equilibrium reacts when its TE is perturbed.
To obtain an estimate, we turn to the virial theorem: we saw in Sec. 2.3.1 that a star without a nuclear
energy source contracts by radiating away its internal energy content: L = Ėint ≈ −2Ėgr, where the
last equality applies strictly only for an ideal gas. We can thus define the thermal or Kelvin-Helmholtz
timescale as the timescale on which this gravitational contraction would occur:

τKH =
Eint

L
≈
|Egr|
2L
≈
GM2

2RL
≈ 1.5 × 107

(

M
M⊙

)2R⊙
R
L⊙
L

yr (2.36)

Here we have used eq. (2.28) for Egr with α ≈ 1.
The thermal timescale for the Sun is about 1.5 × 107 years, which is many orders of magnitude

larger than the dynamical timescale. There is therefore no direct observational evidence that any
star is in thermal equilibrium. In the late 19th century gravitational contraction was proposed as the
energy source of the Sun by Lord Kelvin and, independently, by Hermann von Helmholtz. This led to
an age of the Sun and an upper limit to the age the Earth that was in conflict with emerging geological
evidence, which required the Earth to be much older. Nuclear reactions have since turned out to be
a much more powerful energy source than gravitational contraction, allowing stars to be in thermal
equilibrium for most (> 99 %) of their lifetimes. However, several phases of stellar evolution, during
which the nuclear power source is absent or inefficient, do occur on the thermal timescale.
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2.4.2 The nuclear timescale

A star can remain in thermal equilibrium for as long as its nuclear fuel supply lasts. The associated
timescale is called the nuclear timescale, and since nuclear fuel (say hydrogen) is burned into ‘ash’
(say helium), it is also the timescale on which composition changes in the stellar interior occur.

The energy source of nuclear fusion is the direct conversion of a small fraction φ of the rest mass
of the reacting nuclei into energy. For hydrogen fusion, φ ≈ 0.007; for fusion of helium and heavier
elements φ is smaller by a factor 10 or more. The total nuclear energy supply can therefore be written
as Enuc = φMnucc2 = φ fnucMc2, where fnuc is that fraction of the mass of the star which may serve as
nuclear fuel. In thermal equilibrium L = Lnuc = Ėnuc, so we can estimate the nuclear timescale as

τnuc =
Enuc

L
= φ fnuc

Mc2

L
≈ 1010 M

M⊙
L⊙
L

yr. (2.37)

The last approximate equality holds for hydrogen fusion in a star like the Sun, with has 70 % of its
initial mass in hydrogen and fusion occurring only in the inner ≈ 10 % of its mass (the latter result
comes from detailed stellar models). This long timescale is consistent with the geological evidence
for the age of the Earth.

We see that, despite only a small fraction of the mass being available for fusion, the nuclear
timescale is indeed two to three orders of magnitude larger than the thermal timescale. Therefore the
assumption that stars can reach a state of thermal equilibrium is justified. To summarize, we have
found:

τnuc ≫ τKH ≫ τdyn.

As a consequence, the rates of nuclear reactions determine the pace of stellar evolution, and stars may
be assumed to be in hydrostatic and thermal equilibrium throughout most of their lives.

Suggestions for further reading

The contents of this chapter are covered more extensively by Chapter 1 of Maeder and by Chapters 1
to 4 of Kippenhahn & Weigert.

Exercises

2.1 Density profile
In a star with mass M, assume that the density decreases from the center to the surface as a function of
radial distance r, according to

ρ = ρc

[

1 −
( r
R

)2]

, (2.38)

where ρc is a given constant and R is the radius of the star.

(a) Find m(r).
(b) Derive the relation between M and R.
(c) Show that the average density of the star is 0.4ρc.
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2.2 Hydrostatic equilibrium

(a) Consider an infinitesimal mass element dm inside a star, see Fig. 2.1. What forces act on this mass
element?

(b) Newton’s second law of mechanics, or the equation of motion, states that the net force acting on
a body is equal to its acceleration times it mass. Write down the equation of motion for the gas
element.

(c) In hydrostatic equilibrium the net force is zero and the gas element is not accelerated. Find an
expression of the pressure gradient in hydrostatic equilibrium.

(d) Find an expression for the central pressure Pc by integrating the pressure gradient. Use this to
derive the lower limit on the central pressure of a star in hydrostatic equilibrium, eq. (2.16).

(e) Verify the validity of this lower limit for the case of a star with the density profile of eq. (2.38).

2.3 The virial theorem

An important consequence of hydrostatic equilibrium is that it links the gravitational potential energy
Egr and the internal thermal energy Eint.

(a) Estimate the gravitational energy Egr for a star with mass M and radius R, assuming (1) a constant
density distribution and (2) the density distribution of eq. (2.38).

(b) Assume that a star is made of an ideal gas. What is the kinetic internal energy per particle for an
ideal gas? Show that the total internal energy, Eint is given by:

Eint =

∫ R

0

(

3
2

k
µmu

ρ(r)T (r)
)

4πr2 dr. (2.39)

(c) Estimate the internal energy of the Sun by assuming constant density and T (r) ≈ ⟨T ⟩ ≈ 1
2Tc ≈

5 × 106K and compare your answer to your answer for a). What is the total energy of the Sun? Is
the Sun bound according to your estimates?

It is no coincidence that the order of magnitude for Egr and Eint are the same1. This follows from
hydrostatic equilibrium and the relation is known as the virial theorem. In the next steps we will derive
the virial theorem starting from the pressure gradient in the form of eq. (2.12).

(d) Multiply by both sides of eq. (2.12) by 4πr3 and integrate over the whole star. Use integration by
parts to show that

∫ R

0
3 P 4πr2 dr =

∫ R

0

Gm(r)
r

ρ4πr2 dr. (2.40)

(e) Now derive a relation between Egr and Eint, the virial theorem for an ideal gas.
(f) (*) Also show that for the average pressure of the star

⟨P⟩ =
1
V

∫ R∗

0
P 4πr2 dr = −

1
3
Egr

V
, (2.41)

where V is the volume of the star.

As the Sun evolved towards the main sequence, it contracted under gravity while remaining close to
hydrostatic equilibrium. Its internal temperature changed from about 30 000 K to about 6 × 106K.

(g) Find the total energy radiated during away this contraction. Assume that the luminosity during
this contraction is comparable to L⊙ and estimate the time taken to reach the main sequence.

2.4 Conceptual questions

1In reality Egr is larger than estimated above because the mass distribution is more concentrated to the centre.
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(a) Use the virial theorem to explain why stars are hot, i.e. have a high internal temperature and
therefore radiate energy.

(b) What are the consequences of energy loss for the star, especially for its temperature?
(c) Most stars are in thermal equilibrium. What is compensating for the energy loss?
(d) What happens to a star in thermal equilibrium (and in hydrostatic equilibrium) if the energy pro-

duction by nuclear reactions in a star drops (slowly enough to maintain hydrostatic equilibrium)?
(e) Why does this have a stabilizing effect? On what time scale does the change take place?
(f) What happens if hydrostatic equilibrium is violated, e.g. by a sudden increase of the pressure.
(g) On which timescale does the change take place? Can you give examples of processes in stars that

take place on this timescale.

2.5 Three important timescales in stellar evolution

(a) The nuclear timescale τnuc.
i. Calculate the total mass of hydrogen available for fusion over the lifetime of the Sun, if 70%

of its mass was hydrogen when the Sun was formed, and only 13% of all hydrogen is in the
layers where the temperature is high enough for fusion.

ii. Calculate the fractional amount of mass converted into energy by hydrogen fusion. (Refer to
Table 1 for the mass of a proton and of a helium nucleus.)

iii. Derive an expression for the nuclear timescale in solar units, i.e. expressed in terms of R/R⊙,
M/M⊙ and L/L⊙.

iv. Use the mass-radius and mass-luminosity relations for main-sequence stars to express the
nuclear timescale of main-sequence stars as a function of the mass of the star only.

v. Describe in your own words the meaning of the nuclear timescale.
(b) The thermal timescale τKH.

i-iii. Answer question (a) iii, iv and v for the thermal timescale and calculate the age of the Sun
according to Kelvin.

iv. Why are most stars observed to be main-sequence stars and why is the Hertzsprung-gap
called a gap?

(c) The dynamical timescale τdyn.
i-iii. Answer question (a) iii, iv and v for the dynamical timescale.

iv. In stellar evolution models one often assumes that stars evolve quasi-statically, i.e. that the
star remains in hydrostatic equilibrium throughout. Why can we make this assumption?

v. Rapid changes that are sometimes observed in stars may indicate that dynamical processes are
taking place. From the timescales of such changes - usually oscillations with a characteristic
period - we may roughly estimate the average density of the Star. The sun has been observed
to oscillate with a period of minutes, white dwarfs with periods of a few tens of seconds.
Estimate the average density for the Sun and for white dwarfs.

(d) Comparison.
i. Summarize your results for the questions above by computing the nuclear, thermal and dy-

namical timescales for a 1, 10 and 25M⊙ main-sequence star. Put your answers in tabular
form.

ii. For each of the following evolutionary stages indicate on which timescale they occur: pre-
main sequence contraction, supernova explosion, core hydrogen burning, core helium burn-
ing.

iii. When the Sun becomes a red giant (RG), its radius will increase to 200R⊙ and its luminosity
to 3000L⊙. Estimate τdyn and τKH for such a RG.

iv. How large would such a RG have to become for τdyn > τKH? Assume both R and L increase
at constant effective temperature.

20


